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ABSTRACT
Instabilities arise in a number of flow configurations. One such manifestation is the development of interfacial waves in multiphase flows, such
as those observed in the falling liquid film problem. Controlling the development of such instabilities is a problem of both academic interest
and industrial interest. However, this has proven challenging in most cases due to the strong nonlinearity and high dimensionality of the
underlying equations. In the present work, we successfully apply Deep Reinforcement Learning (DRL) for the control of the one-dimensional
depth-integrated falling liquid film. In addition, we introduce for the first time translational invariance in the architecture of the DRL agent,
and we exploit locality of the control problem to define a dense reward function. This allows us to both speed up learning considerably and
easily control an arbitrary large number of jets and overcome the curse of dimensionality on the control output size that would take place
using a naïve approach. This illustrates the importance of the architecture of the agent for successful DRL control, and we believe this will
be an important element in the effective application of DRL to large two-dimensional or three-dimensional systems featuring translational,
axisymmetric, or other invariance.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5132378., s

I. INTRODUCTION

Falling liquid films are a common phenomenon both in indus-
try and in nature.1–4 Such flows are highly complex due to their
nonlinearity and the presence of an interface between the liquid
and gas phases. In addition, there are many instabilities taking place
in such flows as highlighted by the previous references. These are
both a challenge and an attraction for engineers and scientists.

Progressing toward effective strategies for the control of instabilities
in falling liquid films is therefore a relevant and interesting prob-
lem. Some work has been performed in the case of falling liquid
flows,5–7 but the design of general robust control methods that can
be adapted to specific applications in a flexible way without user
expertise is still a relevant problem. Finding such general control
laws is made complex due to the combination of strong nonlinearity,
high dimensionality, and time-dependence of those systems.
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However, in recent years, methods based on data-driven
approaches inspired by recent results from the machine learning
community have proven increasingly successful. Those include sev-
eral classes of methods, such as Genetic Programming (GP)8,9 and
Deep Reinforcement Learning (DRL).10,11 These methods are now
being applied to fluid mechanics, with a series of recent successes
that include, for example, controlling complex wake dynamics in
two-dimensional (2D) simulations,12,13 controlling chaotic model
Partial Differential Equation (PDE) systems,14,15 and a number of
drag and vortex shedding control strategies.16–18 However, one must
be able to scale up those methods, in terms of both the number of
simulations and the number of control outputs, in order to envi-
sion control of realistic situations. While the first scaling problem
has recently been tackled and proven to work well,13 demonstrating
the ability of such methods to handle well a large number of outputs
without hitting the curse of dimensionality remains a critical open
problem.

In the present work, we consider the 1D falling liquid film prob-
lem and its optimal control through a DRL approach using small
localized actuators. This problem is well suited for exploring optimal
control of systems with many actuators, as it is both strongly nonlin-
ear, featuring the development of large unstable interfacial waves,
and inexpensive and quick to solve. Therefore, it is an excellent
model problem to explore the potential of DRL applied to systems
with many control signals, as it allows fast prototyping, training,
and assessment of different methodologies. Our contribution in this
article is double: First, we show that this system can be very effi-
ciently controlled using DRL. Second, we discuss different variations
around how DRL can be applied in practice to such a problem with
a potentially large control space dimensionality. Here, we show that
different approaches are possible to take advantage of the invari-
ance by translation of the equations describing the system and that
the choice of the method used has a large impact on the quality of
the control strategy obtained as well as on the speed of learning. In
addition, we observe that the locality (both spatial and temporal) of
the system allows us to define a dense reward function, which pro-
vides a fine-grained training signal and also allows better and faster
training.

The organization of this manuscript is as follows: First, we
present the methodology used for both the 1D falling liquid film sim-
ulation and the DRL methodology including the different strategies
to effectively implement multiple-output control. Then, we present
the results obtained controlling the system, and we compare the
efficiency of these different strategies. Finally, we discuss the applica-
bility of our findings to different control problems both within fluid
mechanics and at large.

II. METHODOLOGY
A. Falling liquid film simulation

In this work, we consider a liquid film that flows down an
inclined plane, as illustrated in Fig. 1. The x coordinate is chosen
along the streamwise direction, i.e., following the inclined plane. The
formulation of the problem and the numerical scheme implemented
to solve it are similar to that in Ref. 19. More specifically, the liquid
chosen is an incompressible Newtonian fluid with constant prop-
erties, such as its surface tension σ, viscosity μ, and density ρ. As a

FIG. 1. Schematic representation of the flow. h(x, t) is the local transient film
thickness, and q(x, t) is the local transient flow rate.

model for the falling film, we use the dimensionless depth-integrated
system,20
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where h is the nondimensional local film thickness, q is the nondi-
mensional local flow rate, and δ = (ρH11

c g4/σ)1/3/45ν2, with Hc
being the film thickness without waves, g = 9.81 m/s2 the accelera-
tion of gravity, and ν = μ/ρ. In practice, we will use δ = 0.1 in the
following similar to Ref. 19. This formulation resorts on a semi-
parabolic velocity profile and satisfies the no-slip boundary condi-
tion at the wall, as well as the zero stress boundary condition at the
gas-liquid interface. The boundary conditions at the inlet and outlet
are as follows:

h = 1, q = 1 at x = 0, (3)

∂h
∂x
= 0,

∂q
∂x
= 0 at x = L, (4)

where L = 300 is the length of the domain. This value of L is
long enough for the development of different types of waves to
take place in the case without control. The initial condition in time
is obtained by simulating a uniform liquid film of thickness and
mass flow rate unity (h = 1 and q = 1) until the waves are fully
developed.

Similar to Ref. 19, Eqs. (1) and (2) are discretized using the
finite difference method. The transient terms are integrated using
the third order Runge-Kutta method (RK-3).21 Convective terms are
discretized using the Total Variation Diminishing (TVD) scheme.22
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The grid size is Δx = 0.1, and the time step is Δt = 0.001. In addition,
we use a similar technique to Ref. 19 and add noise on the h variable
at the inlet of the domain (x = 0) to trigger the appearance of waves.
This is done by replacing (3) with

h(t) = 1 + r(t) at x = 0, (5)

where r(t) is random, uniformly distributed in [−5 × 10−4; 5 × 10−4].
In Ref. 19, authors have studied the influence of the white noise input
and found that its amplitude and distribution do not have a signifi-
cant effect on the overall behavior of the waves due to the amplifier
nature of the flow at specific frequencies.

In addition, we introduce forcing terms in the equations at sev-
eral user-tunable positions. In the following, we will refer to these
individual forcings as “jets.” The strength of the jets is set by the
DRL algorithm (see the next paragraph) when applying control on
the system. For simplicity, forcing is performed on the mass flow rate
q by adding the following parabolic profile suction/blowing forcing
δqi at each time step in the numerical solver:

δqi(x, t) = {Ai(t) ⋅ (x − li)(ri − x) if li < x < ri,
0 otherwise,

(6)

where i (integer between 1 and N, the total number of jets) is the
index of the jet currently considered, which is located between x-
positions li < x < ri, and Ai(t) is the strength of the correspond-
ing jet at time t. As visible in (6), this corresponds to using a
small jet following a parabolic profile, going to zero on the right
and left edges of each of the forcing areas, with the centers being
located at positions ci = (li + ri)/2 and the jets having half-widths
wi = (ri − li)/2. In the following, the maximum strength of the jets,
as well as their widths and locations, will be used as physical meta-
parameters of the flow configuration. Note that both injection of
mass (positive forcing corresponding to an increase in the local mass
flow rate, i.e., blowing) and removal of mass (negative forcing, corre-
sponding to a reduction in the local mass flow rate, i.e., suction) are
possible.

Those numerics are implemented in highly tuned C++ code
for optimizing the speed of execution and made available to the
high-level Python DRL library (see the next paragraph) through
the use of C++/Boost Python bindings. All the implementation is

made available as Open Source (see the Appendix). Using our imple-
mentation, a simulation covering nondimensional times t = 0 to
t = 200 typically takes less than 30 s on a modern central processing
unit (CPU) using a single core. The problem is small enough that a
large part of it can reside purely in CPU cache, which also greatly
improves performance. Typical converged simulation results, with
the inlet perturbation but without jet control, are illustrated
in Fig. 2.

In order to provide the input (or state observation) and reward
to the DRL agent, we use small regions in the neighborhood of each
jet. The state is obtained by reading from the simulation both h and
q and considering them as two different input channels. In all the
following, unless stated otherwise, both h and q are sampled in an
area Aobs,i = [ri − Lobs; ri], where Lobs is the size of the observation
area. Similarly, the reward is computed either locally on the right of
each jet based on an area Areward,i = [li; li + Lreward] or globally on

the union of these areas
N
⋃
i=1

Areward, i. Typical values are Lobs = 25 and

Lreward = 10 in the following.
The formula for the reward is as follows:

R(Areward, t) = 1 − χ√
Lreward

⋅ ∥h − 1∥2, (7)

where Areward is the domain where we compute our reward it can

either be Areward,i or
N
⋃
i=1

Areward, i depending on what method we use

(see Sec. II B), Lreward is the total length of the domain, ||⋅||2 is the
L2-norm, and χ is a parameter chosen so that the reward calculated
in the pseudoperiodic region of Fig. 2, without any control, is close
to 0. Empirically, we use χ = 5.7. Applying such a reward renormal-
ization is a common technique in DRL. The reward can, therefore,
be expressed as an integral over the domain,

R(Areward, t) = 1 − χ ⋅ ( 1
Lreward

⋅ ∫
Areward

(h(x, t) − 1)2 dx)
1
2
, (8)

while in our discretized simulation, the calculated reward becomes

R(Areward, t) = 1 − χ ⋅

¿
ÁÁÁÀ

∑
x∈Areward

(h(x, t) − 1)2

card(Areward)
, (9)

FIG. 2. Illustration of a converged falling liquid film simulation performed with zero control but with inlet disturbances. Three areas are clearly visible: first, a region where
the flow disturbances induced by the inlet boundary condition perturbations grow exponentially; second, a region where the waves are pseudoperiodic and get unstable; and
third, a region where fully developed pseudochaotic behavior of the waves is observed. This pseudochaotic domain is defined as the region where large amplitude solitary
waves are observed, and there is no longer a pseudoperiodic pattern.
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where card(A) is the number of elements in the finite discrete
set A.

Using this reward, the network gets an incitation toward killing
waves (or, more mathematically, the reward functions is increased
when the wave fluctuations are reduced by the control), and a perfect
reward is obtained when no waves at all are present (h = 1 uni-
formly on the whole reward domain), while any fluctuations in h
get penalized.

Lobs and Lreward are to be chosen carefully. The reward being
a single value, it is essential for it to encapsulate relevant infor-
mation about how our action impacted the environment. We can
suspect that a too large reward space makes the reward less rele-
vant about the effect of our actuation, while a too small reward space
may have difficulties capturing the effect of the control behind of the
jet.

In addition to this definition of the state and actions, a renor-
malization is applied before the data are fed to the agent. The aim
of this renormalization is to make sure that the resting value of our
data is 0 instead of 1 and that it does not exceed a certain threshold
in an absolute value [typically, the maximum output to the Artificial
Neural Network (ANN) should be approximately between 1 and 10],
which is a necessary condition for the DRL control to perform well.
This renormalization is performed by defining the state s effectively
given to the ANN as

s = hnorm(Aobs, t) ∪ qnorm(Aobs, t), (10)

where

hnorm(x, t) = clip(γh ⋅ [h(x, t) − 1],−Smax, Smax), (11)

and

qnorm(x, t) = clip(γq ⋅ [q(x, t) − 1],−Smax, Smax), (12)

where γh ≈ 1.0 and γq ≈ 1.0 are normalization parameters and
Smax ≈ 5.0 is the maximum value we are ready to feed our ANN.
The clip function is a saturation function defined as clip(x, α, β)
= max(min(x, β), α). Similarly, the action effectively applied on the
simulation is

Ai(t) =
M ⋅ bi
w2
i

, (13)

where bi is the action effectively produced by the ANN, which is in
the range [−1, 1], and M is a hyperparameter defining the maximum
strength of the jets, typically M = 5. wi is the half-width of the jets, as
previously defined.

A typical illustration of the positioning of jets, as well as the
associated state and reward areas, is presented in Fig. 3. In Fig. 3, as
in similar figures in the following of the paper, we present snapshots
of the state of the system (q, h) together with snapshots of the outputs
bi, i = 1, . . ., N, provided by the ANN. Those outputs are between
1 and −1 and displayed the shift by an offset of +1 relative to the
vertical axis for clarity. Observe that the control effectively applied
is obtained by applying scaling proportional to M, as indicated in
Eq. (13).

In all the following, trainings are always started from a well-
converged state of the system with fully developed waves being
present. This corresponds to an initial configuration of the system
similar to what is visible in Fig. 2. The maximum jet intensity is
large enough that bad choices of the instantaneous strength of the
jets can create numerical blowup of the simulation. In this case,
the simulation is terminated, a negative reward of −500 is pro-
vided to the ANN to “punish” it, i.e., from a mathematical point
of view to reduce the probability of following a trajectory in the
phase space that leads to a numerical breakup, and the simulation
is reset to the initial converged state before training is resumed. Of
course, such a blowup is strictly a consequence of the numerics used
and a real-world experiment would not need to worry about such
problems.

B. DRL algorithm and strategies for multiple controls
Machine learning has become very attractive in the recent

years following several high-impact results of deep ANNs across
a variety of fields. Results include, for example, attaining super-
human performance at image labeling,23 winning against human
professionals at the game of Go,24 or achieving control of complex
robots.25 Those successes have demonstrated the ability of ANNs
to solve a wide range of strongly nonlinear, high dimensionality

FIG. 3. Illustration of the observation space, reward space, and jet position during training, here with 5 jets. The forcing by the agent is illustrated by plotting directly the output
of the Artificial Neural Network (ANN), which is between −1 and 1 and used to compute the control following Eq. (13). For clarity of this figure, the ANN output bi is shifted by
an offset of +1 relatively to the vertical axis used for h and q.
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problems that were resisting investigation using traditional meth-
ods. Following these developments, ANNs are now being applied
to other fields of science including fluid dynamics. Recent develop-
ments in this domain include, to name but a few, analyzing labo-
ratory data,26,27 formulation of reduced order models,28 active flow
control,12 the control of stochastic systems from only partial obser-
vations,15 shape optimization,29 and closure models for LES and
RANS simulations.30

More specifically, several of these applications rely on the use
of Deep Reinforcement Learning (DRL). This approach consists in
finding, through trial and error, the solution to a complex problem
for which no theoretical or algorithmic solution is known other-
wise. DRL takes advantage of the universal approximator31 prop-
erty of ANNs to optimize interaction with the system it should
control through three channels: an observation of the state of the
system, an action taken to control the system, and a reward func-
tion giving feedback on its current performance. This framework is
adapted to cases where only partial noisy observations of a stochas-
tic system are available. Therefore, choosing a good reward func-
tion is critical as this guides the ANN toward solving a specific
problem. In the following, we will use a specific DRL algorithm
known as the Proximal Policy Optimization (PPO32). This algorithm
belongs to a wider class of algorithms called the policy gradient
methods33 and is often regarded as the state-of-the-art algorithm
to be used for control problems where a continuous action space is
present.

As the PPO algorithm has been described in detail by its initial
authors32 and has been discussed also in the fluid mechanics liter-
ature at several occasions,12,34 we refer the reader curious of more
details about the inner working of this algorithm to these references
for further information, and in the following, we only provide a high
level overview of the algorithm.

The general idea behind the policy gradient method on which
PPO is based consists in parameterizing the policy function πθ(b|s)
with an ANN having the set of weights θ. Therefore, given in input
a state observation s, the ANN used to parameterize the policy π
produces a set of moments that describe a distribution (possibly
multidimensional) from which the individual actions b are sampled.
Therefore, the policy function describes the probability, provided
a state observation s, that the next action to be taken is b. Follow-
ing this definition, one can find an expression for the estimation
of the gradient of the actualized reward function relatively to the
set of weights θ used in the ANN, following Monte Carlo sampling
of phase space trajectories under control by the policy πθ. In the
case of the PPO algorithm, several additional technical improve-
ments are used. First, a critic network is in charge of estimating the
actualized reward function. This is especially useful when stochas-
tic, noisy reward functions are present. Second, a limit is set on
the maximum update allowed to the policy at each training step.
This allows us to avoid overfitting the policy to randomly occurring
“lucky” events. Several high-quality implementations of the PPO
algorithm are available open source from public software reposi-
tories, and in the following, we will use one of these to provide
us will a well-tested implementation (see the Appendix for further
details).

Similar to Ref. 13, we will in the following use the word “action”
to describe the value provided by the ANN based on a state input,
while “control” describes the value effectively used in the simulation.

This distinction is especially important as the choice of the duration
of an action, which may extend over several control time steps, is
critical for obtaining good learning (see Figs. 2 and 6 of Ref. 13).
In the following, we use linear interpolation to determine the value
of the control at each time step in between action updates. Since
the frequency of action update is set to be about 10 times higher
than the typical frequency of the evolution of the system, this lin-
ear interpolation does not limit, in practice, the effective control
quality.

In the present work, the system to control is characterized by
the high dimensionality of its output. More specifically, it is nat-
ural to use several jets (up to 20 jets in our simulations, but a
larger domain could feature even more jets). Therefore, using the
PPO algorithm effectively becomes challenging. Indeed, the naïve
approach which consists in using a single network with several out-
puts does not scale well to an increasing number of jets, as the com-
bined combinatorial size of the output domain for N jets grows as
a power of N, and therefore, the curse of dimensionality is a threat
to finding effective control strategies. However, one can observe that
the system to control features a translation invariance along the x-
axis. Therefore, one should be able to take advantage of this property
to optimize learning, in the same way that Convolutional Neural
Networks (CNNs) take advantage of translational invariance of 2D
images across the x- and y-directions to share convolutional kernels
across the whole image and therefore reduce the number of weights
needed and improve learning performance.35,36

Following this observation, we design three different methods
for performing control of the system as follows:

● First, a “naïve” method in which the input regions from all
jets are concatenated and flattened before being provided to
the network and the dimensionality of the output is equal
to the number of jets. In this case, the reward is evaluated
over the whole combined reward region. This method will
be referred to as Method 1 (“M1”) in the following.

● Second, we apply control following a method that is a direct
analogy of the CNN used in image analysis. In this case, the
inputs from the regions around different jets are concate-
nated without flattening and fed into a purely convolutional
network. This allows us to apply the exact same weights,
and therefore, the same policy, on all inputs to generate the
individual jet values. There also, only one global reward is
available, similar to M1. Due to purely technical implemen-
tations, difficulties, and the exact architecture of the DRL
framework, this is, however, not implemented as a CNN in
practice, but as a formally equivalent cloned network. This
method will be referred to as Method 2 (“M2”).

● Third, we apply control by splitting the simulation into sev-
eral DRL environments, i.e., we consider each triplet (jet
observation domain, jet value, jet reward domain) as a sep-
arate environment. A unique agent is sampling trajecto-
ries from these environments as if they were clones of the
same environment, taking advantage of the translational
invariance of the system. Similar to M2, the same policy is
applied on all the jets. However, in contrast to both M1 and
M2, this method effectively “densifies” the reward: instead
of performing learning based on 1 single global reward,
many individual rewards are obtained (one for each jet),
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TABLE I. Comparison of the 3 different methods for the design of the DRL agent and its interaction with the thin liquid
film simulation. MLP = Multi-Layer Perceptron, an ANN where every layer is fully connected. CNN = Convolutional Neural
Network.

Method States Network Reward

M1: concatenated jets as Concatenated MLP One global
a single environment and flattened reward
M2: convolutional Concatenated CNN—equivalent to a MLP One global
network on each row of input reward
M3: each jet as a Kept MLP, shared N rewardsseparate environment separate between jets

providing more granularity in the learning process. This will
be referred to as Method 3 (“M3”).

These 3 different methods for controlling several jets are sum-
marized in Table I and presented in Fig. 4. Note that in all cases
the architecture of the network is kept equivalent (except for the
output layer in case M1 vs M2 and M3), and only the translational
invariance and reward densification differ between those methods.

As visible in Table I and Fig. 4, M1, M2, and M3 increasingly
reflect the structure of the underlying system to control, and there-
fore, we expect in terms of learning speed and performance that M1
<M2 <M3, where the order relation describes “how good” and “how
fast” the policies and trainings are. This hypothesis is confirmed
experimentally in Sec. III.

III. RESULTS
A. Physical metaparameters and successful learning

Using the methodology presented in Secs. II A and II B together
with a consistent set of metaparameters, satisfactory learning is
obtained. We find that tuning the metaparameters of the PPO algo-
rithms is not crucial to obtain learning, and in all the following, we
will use the default PPO metaparameters recommended by the pack-
age used (this include, for example, the decay constant γ used for
calculating the actualized reward, the batch size, the learning rates,
and several other parameters specific of PPO such as the likelihood
ratio clipping, and the entropy regularization). In addition, a simple
network composed of three hidden layers containing, going deeper
in the network, 128, 64, and 64 neurons (corresponding to an equal
number of convolutional kernels of individual size 1 × 1 in the case
using a CNN) is used. This is in good agreement with other stud-
ies, which generally observed that the PPO algorithm is quite robust
to the exact value of its metaparameters. By contrast, the “physical”
metaparameters of the simulation setup are important. In the fol-
lowing, the parameters used (unless stated otherwise) correspond
to a duration of action Δtaction = 0.05, i.e., 50 steps of the numeri-
cal solver are performed between each action update, which corre-
sponds to a typical propagation of the waves by a distance of the
order of Δx = 0.2. This is typically 10% of the half-width of a jet,
wi = 2, which itself is typically around 10% of the wavelength of big
fully developed waves λ = 20. The duration of an episode, which
dictates the number of actions performed between learnings, is set
to Δtepisode = 20. This allows us to sample trajectories in the phase
space that are long enough that the effect of policy updates can be
observed. Finally, the reference maximum strength of a jet is set to be

M = 5. While the exact numerical relation between these quantities
is not critical, their relative orders of magnitudes must be respected
to be able to control the system. For example, using too wide jets
(larger than the typical size of the waves) obviously does not allow to
perform control. Similarly, too small jets are not enough to signifi-
cantly alter the propagating waves. The choice of Δt is also critical to
allow the discovery of a valid policy through trial and error, similar
to what has been discussed in, for example, Ref. 13 and is illustrated
later in this section.

In this section, we only present results obtained with the train-
ing method M3, which is the best performing one (see discussion in
Sec. III B). Successful learning, corresponding to the default param-
eters, is illustrated in Fig. 5. There, M3 is used to train 10 jets to
perform active control of the incoming waves. As visible in Fig. 5,
the ANN can effectively kill waves on the control region.

As visible on Fig. 5, the placement of the jets in the physical
domain is there such that, upon control of the system, the waves
never get the possibility to fully develop into a pseudochaotic regime.
This means that, upon successful control, the problem becomes even
simpler for future actuation as only small waves are present, which
are less nonlinear than large pseudochaotic waves. To test the ability
of the system to learn and control also large pseudochaotic waves,
we run trainings with a strong perturbation jet added at x = 20. The
perturbation jet is sampled from a uniform distribution on the range
[−5; 5]. Typical results are visible in Fig. 6. One can see that, in this
case, satisfactory control can also be obtained (Fig. 6, top). However,
this holds only if the jets are made strong enough (no satisfactory
control is obtained for Fig. 6 bottom), while with the configuration
of Fig. 5 even weak jets were enough to exert effective control (see
the next paragraph).

The effect of more metaparameter experimentations is pre-
sented in Fig. 7. There, we present learning curves based on evalua-
tion from the reward function Eq. (7), even in the case when another
reward function is used during training. As visible in Fig. 7, the
exact size of the observation domain for each jet is not critical for
the learning. This is consistent with previous reports that DRL is
usually good at filtering out unnecessary information. Similarly, in
the default configuration, the maximum strength of the jets is not
too critical. This has already been discussed and corresponds to the
fact that upon discovery of a successful strategy by the ANN, waves
can be killed before they fully develop, therefore requiring only weak
jets for successful control. However, as was illustrated in Fig. 6, this
is not the case if the incoming waves are strong enough. By con-
trast, the choice of the reward domain, reward function, and action
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FIG. 4. Illustration of the 3 different methods for control of a system with translational invariance and locality. From top to bottom: M1, M2, and M3. M1 is the naïve
implementation of the DRL framework. M2 takes advantage of translation invariance of the system to reuse the network coefficients for the control of an arbitrary number of
jets. M3 exploits both the translation invariance and the locality of the system by using a dense reward signal. Details are available in Table I.

update frequency is much more important to obtain successful and
efficient training, as illustrated by the second plot of Fig. 7. There,
this is also consistent with previous reports, such as Refs. 12 and 13,
and can be easily understood in each of the cases presented. Indeed,

using a too large reward domain means that, until the waves are
successfully killed on a large region, a lot of the reward signal is
uncorrelated with the individual action of each jet—as it incorpo-
rates many waves from far downstream each individual jet. Similarly,
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FIG. 5. Evolution of the simulation during
the training phase. Here, we are using
M3 with 10 jets, coupled to one single
simulation, and default physical metapa-
rameters (see discussion in the text). We
can see that an efficient policy has been
found already for a nondimensional time
of around t = 400. This typically takes
less than 3 min on a recent CPU using
a single core. This model was trained on
an Intel(R) Core(TM) i7-8565U.

using the standard deviation of the water height std(h), instead of the
deviation to the reference water ∑

x∈Areward

[h(x, t)−1]2 in Eq. (7), means

that the agent may try to reduce the wave fluctuations around a dif-
ferent mean water level as forcing locally changes the mean value
of the water height. Therefore, this confuses the agent during learn-
ing. Finally, the most drastic effect on learning is observed when the
action period is reduced to be equal to the numerical time step. Sim-
ilar to Refs. 12 and 13, this means that only white noise forcing is
applied in general to the system, which fails at finding any consistent
strategy.

B. Comparison of the three training methods M1, M2,
and M3

Learning curves for a varying number of jets (1, 5, 10, and 20
jets) and the three different methods are presented in Fig. 8. In addi-
tion, since several actions are obtained for each numerical advance-
ment of the simulation in the case M3, the data in this later case
are presented again in Fig. 9, but showing on the horizontal axis
both the number of actions and the number of numerical advance-
ments. It is also visible there that the DRL agent is able to apply
effective control on the system. The evolution of the reward during
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FIG. 6. Illustration that control can be successfully applied even when pseudochaotic, fully developed waves are used as an input to the control region, as long as the physical
metaparameters used are relevant. Top: render of a policy trained over 150 episodes, acting while a stochastic perturbation jet is present at x = 20, creating a pseudochaotic
region. There we use M3 with 10 jets and the standard jet strength. We can see that large incoming waves are effectively controlled. Bottom: render of a policy trained during
740 episodes, using the same method and with the same perturbation jet at x = 20. We use twice as many jets as in the previous trainings (top), but each jet is 10 times less
powerful (reduction of M by a factor of 10). We observe that the policy fails to fully dissipate the large waves (some level of control is still achieved, though), as the control
strength is not sufficient to compensate for the wave growth.

FIG. 7. Analysis of the effect of both physical and DRL metaparameters on the strategies found using M3. The left panel focuses on the effect of physical metaparameters
such as the size of the observation domain of the maximum jet strength, while the right panel focuses on the effect of metaparameters of the DRL setup such as action
update frequency and definition of the reward domain. The baseline configuration corresponds to 4 evenly spaced jets, w i = 2.5, Lobs = 10, Lreward = 10, and the agent being
trained with M3. The first jet is located at x = 150, and the spacing between the jets is 10. The reward on vertical axis is computed with the same function on the same reward
domain for all the trainings. There is no perturbation jet in the base case. The “simulation collapse” label corresponds to points where bad choice of jet strength by the ANN
leads to numerical instability of the simulation, in which case the simulation is reset. Each thick learning curve is the average of 3 trainings (individually shown as thin colored
curves). On the left, we investigate the effect of the observation domain size and jet strength on the learning quality. We observe that the size of the observation domain has
little effect on the learning, as the ANN is able to select the relevant information. Similarly, in the case with no perturbation jet, the waves are small enough that the strength
of the jets can be reduced and control is still obtained. By contrast, if a perturbation jet is used, the waves are too big to be controlled with the weakest jets. On the right, we
investigate the effect of the reward parameters and the number of solver steps per action. We observed that using a reward domain that is too large, i.e., includes a large
region that is too far from the jets to be initially controlled, disturbs the learning and that more time is needed in this case to find a good policy. Similarly, a reward function
based on using a standard deviation works less well, as the ANN can try to change the mean level of the flow. Finally, using a duration for actions that is smaller than the
natural period of the system (1 numerical time step per action) completely stops the learning, similar to what had been observed in Ref. 13.
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FIG. 8. Comparison of the efficiency of the learning (both speed and quality of the final policy) for M1, M2, and M3 (varying color) and an increasing number of jets from left
to right and top to bottom (respectively 1, 5, 10, and 20 jets). The “simulation collapse” label corresponds to points where bad choice of jet strength by the ANN leads to
numerical instability of the simulation, in which case the simulation is reset. Each thick learning curve is the average of 3 trainings (individually shown as thin colored curves).
As visible here, M3 is best with increasing advantage over both M2 (second best) and M1 (worst) as the number of jets increases.

training indicates that several phases take place. As should be
expected, control with a random policy (as takes place at the begin-
ning of each training) degrades the reward compared with the case
without control (the reward without control is around 0, and in the

first phase of training, a reward as low as −0.5 can be observed,
corresponding to larger waves being obtained when bad control
is applied). However, as training takes place, the reward starts to
increase at least in the cases when training is successful. Finally,

FIG. 9. Detailed overview of the training of the DRL agent following M3. On the left, the same data as in Fig. 8 are reproduced, showing that more actions are needed
to perform satisfactory learning with an increasing number of jets. However, we show on the right that the learning as a function of the number of simulation steps, i.e.,
advancement in time of the simulation, remains equivalent between all cases. This is because, with M3, the number of actions per advancement in time of the simulation
is proportional to the number of jets, i.e., “number of actions ∝ N × number of steps,” and therefore, using more jets allows us to extract more individual triplets of (state,
action, reward) out of each advancement in time of the simulation. More specifically, we observe that learning with M3 uses constant CPU resources (which is proportional to
the number of steps rather than the number of actions), independently of the number of jets used.
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a plateau in performance is reached upon successful training (or
failure of training). The value of the reward that is close to 1 in
several cases indicates that the system is controllable and that
this control is close to perfect in the sense that it manages to
kill close to all fluctuations in h [see Eq. (7)], i.e., all waves are
canceled.

However, it is clear that there are large variations between
the efficiency of the different methods. While all methods perform
similarly in the case with one single jet, which is really a con-
sistency test for the 3 methods as they are all equivalent in this
particular case, differences exist when the number of jets starts
to be increased. More specifically, one can observe that as the
number of jets increases, methods M1 and M2 see a reduction
of their efficiency regarding both the speed of convergence and
the quality of the control strategy asymptotically found. It appears
that M1 is performing worst, while M2 is doing slightly better
despite degrading with an increasing number of jets. By contrast,
M3 sees close to no reduction in performance when increasing
the number of jets (at least normalizing by the number of simu-
lation advances, as shown in Fig. 9, which is proportional to the
CPU cost, instead of the number of actions taken). Generally, this
experimentally confirms that here we clearly observe that M1 <M2
< M3, where the ordering relation describes effectiveness of the
methods.

The difference in efficiency between these 3 methods can eas-
ily be understood, as hinted in Sec. III A, by considering both the
invariance of the system by translation and how this compares to the
architecture of the DRL agent, as well as the amount of fine-grained
reward signal received.

First, Method 1 does not reflect whatsoever the invariance by
translation of the physical system. While this has no consequences
in the case when only 1 jet is used, this drastically reduces the ability
of the agent to learn when more jets are present. Indeed, this means
that the network has to “learn from scratch” by trial and error the
policy applied to each jet, and there is no sharing of the weights of
policies found at different locations. Therefore, method 1 is subject
to the curse of dimensionality. If, for the sake of a thought experi-
ment, one considers that the action space for each jet is a discrete set
of p values in the admissible range, then method 1 may need typi-
cally up to C × pN trials to sample effectively the policy in the case
where N jets are used, where C is a constant. By contrast, methods
2 and 3 use the exact same set of weights to link the state and jet
control at each position, it is by using either a fully convolutional
network or a shared agent, and therefore, they escape this curse of
dimensionality.

Second, both methods 1 and 2 fail to take into account that the
system presents some locality that allows, if exploited correctly, to
“densify” the reward. By contrast, M3 takes into account this local-
ity and is therefore able to extract N reward signals instead of 1,
therefore collecting much more information driving the gradient
descent. What is meant here is that, while the output flow condi-
tions obtained after the jet number j do influence what happens at
the area around the jet number j + 1, the actuation has first and
foremost a short term effect on the flow around the position where
it is applied. Therefore, it does make sense to consider the neigh-
borhood of each jet independently and use it in an individual DRL
control loop. The approach chosen in M3, which consists in hav-
ing an agent learn from the observation and reward of each jet,

takes, therefore, full advantage of both the invariance and locality
properties of the system. As visible in Fig. 9, this means that, while
more actions are needed to learn a valid policy as the number of
jets N is increased using M3, since at the same time the number
of actions executed by numerical advancement of the simulation
is N, the learning takes place in the constant number of numeri-
cal advancements, i.e., constant CPU time when the simulation is
the leading computational cost (which is usually the case in fluid
mechanics; see the discussion in Ref. 13). By contrast, M1 and M2 are
at a double disadvantage: First, they receive less volume of reward,
which is the signal allowing to perform training, i.e., less informa-
tion is fed into the DRL algorithm. Second, the reward in the cases
M1 and M2 covers a very large area, which encompasses several
jets, and therefore, the feedback information gets less representa-
tive of the actual state of the system. Indeed, if one jet performs a
“good” action and another a “bad” one at the same time, as a result,
the reward will be average and the DRL algorithm has no way to
know that it actually performed well on one jet and poorly on the
other.

However, one may argue that the densification of the reward
used in M3 may also be a potential problem for the optimality of
the solution found. Indeed, it means that all rewards are obtained
on a local, rather than a global, basis. In our case, this is not a
problem, as the optimal strategy at a local level is also the optimal
strategy at a global one. However, this may be a problem for M3, if
it is used exactly as deployed here, in a more complex system where
the local and global optimization processes are in conflict with each
other. One could, however, easily mitigate such an issue by defining
each local reward as a weighted average of the true local reward and
the global reward taken over the whole system. Such an approach
will, therefore, require expert knowledge from the user, in order to
define relevant reward spaces and help guide the algorithm. While
this means that further work will be needed to apply this approach
to more sophisticated situations, the results presented so far suggest
that the DRL methodology is robust to the exact domain chosen,
as long as it encompasses the regions where important physics are
happening.

IV. CONCLUSION
We present the first successful control of the falling liquid film

flow through a 1D simulation using DRL. In addition to proving
that the system is controllable, we show that the DRL methodology
can be used in such a way that it handles an arbitrary number of
jets. Therefore, one can effectively escape the curse of dimensional-
ity on the control output size. This relies on satisfactorily exploiting
invariance and locality properties of the underlying system. Failing
to exploit one, or several, of these properties leads to reduced qual-
ity of the learning and of the final policy. While this is the first time,
to our knowledge, that this methodology is proposed for the opti-
mal control of physical systems, it is deeply inspired by the success
of CNNs in image analysis. Indeed, CNNs prove efficient in such
tasks by similarly taking advantage of translation invariance of image
semantic content.

This work, possibly combined together with the results previ-
ously obtained in Ref. 13, opens the way to applying DRL to more
realistic complex physical systems. Indeed, such systems may require
many control outputs to be manipulated, which is a difficulty in
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itself due to the curse of dimensionality. In addition, using DRL
may be a promising avenue in situations where the combination of
several competing mechanisms such as friction drag, wake drag, or
the influence of adverse pressure gradients is competing and defies
traditional optimization methods.37 However, these same systems
usually present many properties of locality (either strong or weak)
and invariance; therefore, these kinds of techniques presented here
can be envisioned as a solution to this dimensionality problem. We
expect that such trainings, which will resort on the use of both sev-
eral independent simulations in parallel similar to Ref. 13 and envi-
ronment splitting and/or convolutional policy as presented in the
present work, may be able to scale to several thousands of CPUs
during training and become a tool for the study of realistic flow
configurations.
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APPENDIX: OPEN SOURCE CODE RELEASE
The source code of this project, together with a docker con-

tainer that enforces full reproducibility of our results, is released as
open-source on GitHub: https://github.com/vbelus/falling-liquid-
film-drl. The PPO agent is based on the open-source implemen-
tation provided by stable baselines,38 which builds on top of
the TensorFlow framework.39 We are using the RL toolkit Ope-
nAI Gym to build custom environments and interact with the
agent.40

REFERENCES
1S. V. Alekseenko, V. Ye. Nakoryakov, and B. G. Pokusaev, “Wave formation on
a vertical falling liquid film,” AIChE J. 31(9), 1446–1460 (1985).
2T. Nosoko, P. N. Yoshimura, T. Nagata, and K. Oyakawa, “Characteristics of
two-dimensional waves on a falling liquid film,” Chem. Eng. Sci. 51(5), 725–732
(1996).
3S. V. Alekseenko, V. A. Antipin, V. V. Guzanov, S. M. Kharlamov, and D. M.
Markovich, “Three-dimensional solitary waves on falling liquid film at low
Reynolds numbers,” Phys. Fluids 17(12), 121704 (2005).
4L. A. Dávalos-Orozco, “Nonlinear instability of a thin film flowing down a
smoothly deformed surface,” Phys. Fluids 19(7), 074103 (2007).
5M. Vlachogiannis, A. Samandas, V. Leontidis, and V. Bontozoglou, “Effect of
channel width on the primary instability of inclined film flow,” Phys. Fluids 22(1),
012106 (2010).
6A. B. Thompson, S. N. Gomes, G. A. Pavliotis, and D. T. Papageorgiou, “Stabil-
ising falling liquid film flows using feedback control,” Phys. Fluids 28(1), 012107
(2016).

7E. A. Demekhin, S. Kalliadasis, and M. G. Velarde, “Suppressing falling film
instabilities by Marangoni forces,” Phys. Fluids 18(4), 042111 (2006).
8W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Programming:
An Introduction (Morgan Kaufmann, San Francisco, 1998), Vol. 1.
9W. B. Langdon and R. Poli, Foundations of Genetic Programming (Springer
Science & Business Media, 2013).
10R. S. Sutton, A. G. Barto et al., Introduction to Reinforcement Learning (MIT
Press Cambridge, 1998), Vol. 2.
11V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et al., “Human-
level control through deep reinforcement learning,” Nature 518(7540), 529
(2015).
12J. Rabault, M. Kuchta, A. Jensen, U. Réglade, and N. Cerardi, “Artificial neural
networks trained through deep reinforcement learning discover control strategies
for active flow control,” J. Fluid Mech. 865, 281–302 (2019).
13J. Rabault and A. Kuhnle, “Accelerating deep reinforcement learning strate-
gies of flow control through a multi-environment approach,” Phys. Fluids 31(9),
094105 (2019).
14T. Duriez, S. L. Brunton, and B. R. Noack, Machine Learning Control-Taming
Nonlinear Dynamics and Turbulence (Springer, 2016).
15M A. Bucci, O. Semeraro, A. Allauzen, G. Wisniewski, L. Cordier, and
L. Mathelin, “Control of chaotic systems by deep reinforcement learning,” Proc.
Royal Soc. A 223, 1 (2019).
16N. Gautier, J.-L. Aider, T. Duriez, B. R. Noack, M. Segond, and M. Abel,
“Closed-loop separation control using machine learning,” J. Fluid Mech. 770,
442–457 (2015).
17F. Ren, C. Wang, and H. Tang, “Active control of vortex-induced vibra-
tion of a circular cylinder using machine learning,” Phys. Fluids 31(9), 093601
(2019).
18C. Bingham, C. Raibaudo, C. Morton, and R. Martinuzzi, “Suppression of fluc-
tuating lift on a cylinder via evolutionary algorithms: Control with interfering
small cylinder,” Phys. Fluids 30(12), 127104 (2018).
19Z. Che, F. Fang, J. Percival, C. Pain, O. Matar, and M. Navon, “An ensemble
method for sensor optimisation applied to falling liquid films,” Int. J. Multiphase
Flow 67, 153–161 (2014).
20R. Craster and O. Matar, “Dynamics and stability of thin liquid films,” Rev. Mod.
Phys. 81(3), 1131–1198 (2009).
21S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces
(Springer, 2003).
22H. K. Versteeg and W. Malalasekera, An Introduction to Computational
Fluid Dynamics: The Finite Volume Method (Pearson Education Limited,
2007).
23Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature 521(7553), 436
(2015).
24D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the game of Go without
human knowledge,” Nature 550(7676), 354 (2017).
25S. Gu, E. Holly, T. Lillicrap, and S. Levine, “Deep reinforcement learn-
ing for robotic manipulation with asynchronous off-policy updates,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 3389–3396.
26J. Rabault, J. Kolaas, and A. Jensen, “Performing particle image velocimetry
using artificial neural networks: A proof-of-concept,” Meas. Sci. Technol. 28(12),
125301 (2017).
27S. Cai, J. Liang, Q. Gao, C. Xu, and R. Wei, “Particle image velocimetry based
on a deep learning motion estimator,” IEEE Trans. Instrum. Meas. (published
online).
28P. A. Srinivasan, L. Guastoni, H. Azizpour, P. Schlatter, and R. Vinuesa, “Pre-
dictions of turbulent shear flows using deep neural networks,” Phys. Rev. Fluids
4(5), 054603 (2019).
29J. Viquerat, J. Rabault, A. Kuhnle, H. Ghraieb, and E. Hachem, “Direct shape
optimization through deep reinforcement learning,” preprint arXiv:1908.09885
(2019).
30A. D. Beck, D. G. Flad, and C.-D. Munz, “Deep neural networks for data-driven
turbulence models,” preprint arXiv:1806.04482 (2018).

AIP Advances 9, 125014 (2019); doi: 10.1063/1.5132378 9, 125014-12

© Author(s) 2019

https://scitation.org/journal/adv
http://www.uh-iaas.no/
https://github.com/vbelus/falling-liquid-film-drl
https://github.com/vbelus/falling-liquid-film-drl
https://doi.org/10.1002/aic.690310907
https://doi.org/10.1016/0009-2509(95)00292-8
https://doi.org/10.1063/1.2158428
https://doi.org/10.1063/1.2750384
https://doi.org/10.1063/1.3294884
https://doi.org/10.1063/1.4938761
https://doi.org/10.1063/1.2196450
https://doi.org/10.1038/nature14236
https://doi.org/10.1017/jfm.2019.62
https://doi.org/10.1063/1.5116415
https://doi.org/10.1098/rspa.2019.0351
https://doi.org/10.1098/rspa.2019.0351
https://doi.org/10.1017/jfm.2015.95
https://doi.org/10.1063/1.5115258
https://doi.org/10.1063/1.5055016
https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.013
https://doi.org/10.1016/j.ijmultiphaseflow.2014.06.013
https://doi.org/10.1103/revmodphys.81.1131
https://doi.org/10.1103/revmodphys.81.1131
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature24270
https://doi.org/10.1088/1361-6501/aa8b87
https://doi.org/10.1109/tim.2019.2932649
https://doi.org/10.1103/physrevfluids.4.054603
http://arxiv.org/abs/1908.09885
http://arxiv.org/abs/1806.04482


AIP Advances ARTICLE scitation.org/journal/adv

31H. Kurt, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks 2(5), 359–366 (1989).
32J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” preprint arXiv:1707.06347 (2017).
33R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Pol-
icy gradient methods for reinforcement learning with function approxi-
mation,” in Advances in Neural Information Processing Systems, 2000, pp.
1057–1063.
34P. Garnier, J. Viquerat, J. Rabault, A. Larcher, A. Kuhnle, and E. Hachem,
“A review on deep reinforcement learning for fluid mechanics,” preprint
arXiv:1908.04127 (2019).
35Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech, and
time series,” in The Handbook of Brain Theory and Neural Networks (NIT Press
Cambridge, 1995), Vol. 3361(10).

36A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.
37M. Atzori, R. Vinuesa, A. Stroh, B. Frohnapfel, and P. Schlatter, “Assess-
ment of skin-friction-reduction techniques on a turbulent wing section,” preprint
arXiv:1812.03762 (2018).
38A. Hill, A. Raffin, M. Ernestus, A. Gleave, A. Kanervisto, R. Traore, P. Dhariwal,
C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford, J. Schulman, S. Sidor,
and Y. Wu, Stable baselines, https://github.com/hill-a/stable-baselines, 2018.
39M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for large-scale
machine learning,” in OSDI 16, 2016, pp. 265–283.
40G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, Openai gym, 2016.

AIP Advances 9, 125014 (2019); doi: 10.1063/1.5132378 9, 125014-13

© Author(s) 2019

https://scitation.org/journal/adv
https://doi.org/10.1016/0893-6080(89)90020-8
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1908.04127
http://arxiv.org/abs/1812.03762
https://github.com/hill-a/stable-baselines

