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Abstract

We consider a banking network represented by a system of stochastic differential

equations coupled by their drift. We assume a core-periphery structure, where banks

in the core hold a bubbly asset. Investments are modelled by the weight of the links,

which is a function of the robustness of the banks. In this way, a preferential attachment

mechanism of the banks in the periphery towards the core takes place during the growth

of the bubble. We then investigate how the bubble distorts the shape of the network,

both for finite and infinitely large systems, assuming a non vanishing impact of the core

on the periphery. Due to the influence of the bubble, banks are no longer independent,

and the strong law of large numbers cannot be directly applied to the average of banks’

investments towards the periphery. This results in a term in the drift of the diffusions

which does not average out, increasing systemic risk when the bubble bursts. We test

this feature of the model by numerical simulations.
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1 Introduction

In this paper we study the impact of financial asset bubbles on the evolution of depen-

dence structures and systemic risk in banking networks, both for finite and infinitely large

systems.

Systemic risk has been recently studied with different approaches. One stream of re-

search aims at extending the traditional regulatory framework of monetary risk measures,
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that quantify the risk of financial institutions based on a stand alone basis, to multivariate

systemic risk measures that take as a primitive the whole financial system. For an overview

about this topic, see Biagini et al. [8, 9], Bisias et al. [12], Chen et al. [19], Drapeau et al.

[29], Feinstein et al. [34], Hoffmann et al. [43, 44], Kromer et al. [56] and references therein.

Another popular ansatz to analyse systemic risk is based on explicit network models for

the financial system and the study of potential default cascades due to various contagion

effects. In the seminal work of Eisenberg and Noe [31] and its many extensions (see e.g.

Hurd [46] and references therein) cascade processes in static, deterministic network models

are analysed by computing endogenously determined clearing/equilibrium payment vectors.

Within the framework of random graph theory, cascade processes are studied in large finan-

cial random networks by means of law-of-large number effects in Amini and Minca [3], Amini

et al. [4, 5], Detering et al. [26, 27, 28] and Hurd [46], and in finite random networks by Elliott

et al. [32], Gai and Kapadia [38].

The approach we present in this paper is placed within the theory of mean-field equations

first introduced in the influential papers of McKean [61, 62]. In recent years, this framework

has been applied to the study of systemic risk in large financial networks where, contrary to

the static network models mentioned above, the dynamic evolution of a network of interacting

financial institutions is studied by means of a system of interacting diffusions. In this setting

the diffusions represent e.g. the wealth, monetary reserves, or other more general indicators

for the health of financial institutions, and are tied together through a term in the drift that

implies the network structure. A first simple model in this direction is given in Fouque and

Sun [37], where a system of SDEs is proposed with dynamics

dX i
t =

λ

n

n∑
j=1

(Xj
t −X i

t)dt+ σdW i
t , 0 ≤ t <∞, (1.1)

where W = (W 1
t , . . . ,W

n
t )t≥0 is a standard n-dimensional Brownian motion and λ, σ > 0.

Here, the X i stand for log-monetary reserves of banks, and the drift terms λ(Xj
t − X i

t)

represent the connections between banks in the network. In this case, the borrowing and

lending rate λ is supposed to be the same for every pair of banks. When the network size n

grows towards infinity, it is a well-know result (see Sznitman [70]) that due to law-of-large-

number effects the diffusions in (1.1) converge towards their mean-field limit

dȲ i
t = λ

(
E[Ȳt]− Ȳ i

t

)
dt+ σdW i

t , 0 ≤ t <∞.

Thus, for large networks propagation of chaos applies and the evolution of the X i asymp-

totically de-couples due to averaging effects, which allows to asymptotically describe the

complex system by a representative particle evolution. The model in (1.1) to study systemic

risk has been generalised in various ways in a number of articles, see for example Fang et al.

[33], where heterogeneity is introduced by allowing for different λi and σi for every bank in
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(1.1), Carmona et al. [17, 18] and Maheshwari and Sarantsev [58], where mean-field games

are considered, Fouque and Ichiba [36] where the probability distributions of multiple default

times is approximated, Garnier et al. [39, 40] and Battiston et al. [7] where a tradeoff between

individual and systemic risk in a banking network is described, and Chong and Klüppelberg

[22], Kley et al. [55] where partial mean-field limits are studied. We also mention the work

of Bo and Capponi [13], where a system of jump diffusions processes is introduced with

a banking sector indicator depending on positive or negative announcements, and Hambly

et al. [41], where distances-to-default of financial institutions is studied in a model where

herd behaviour and common exposures can lead to a structural contagion mechanism.

In this paper, the main objective is to extend the model in (1.1) in order to study the effect

of a financial speculation bubble on the evolution of the network and on propagation of

systemic risk. It is a common understanding that bubbles are intimately connected with

financial crises, and many historical crises indeed originated after the burst of a bubble (e.g.

the Great Depression of the 1930s and the financial crisis of 2007-2008). This causality is

investigated for example in Brunnermeier [14] and statistically confirmed in Brunnermeier

and Schnabel [16]. However, it seems that literature on mathematical models that deal with

this question is very scarce.

We here specify a model for the network of financial robustness of the institutions, intro-

duced by Battiston et al. [7] and Hull and White [45] as an indicator of agent’s creditwor-

thiness or distance to default and also considered in Kley et al. [55], by a system of coupled

diffusions. In particular, we are able to include in the robustness dynamics the delayed im-

pact of an asset bubble on the financial network and mean-reversion features, as we explain

in details in the following. The banks affect each other’s robustness by being financially

exposed to each other, for example because of cross-holdings, which results in a coupling of

the drift terms. Following the setting in Battiston [6], we then assume that a fixed number of

banks are directly investing in a bubble that affects their financial robustness. The remain-

ing banks have the possibility to participate in the bubble by investing in the bubble banks.

This results in a typical core/periphery structure for financial networks, where here the core

is formed by the banks holding the bubble. In our model, banks’ investments depend on the

robustness of the other institutions, allowing for heterogeneity of the drift rates of the SDEs.

More precisely, in our case the rates depend on the robustness of the attracting institution

with a delay δ > 0, where the delay reflects the fact that the banks’ investment do not im-

mediately react to changes in the system. This extends previous models, where the coupling

drift rates representing the weighted network connections are constant (as in [13], [17], [37],

[55]), functions of time ([22], [58]) or of the difference in monetary reserves ([36]), but not

functions of the state of other banks. In this way, we introduce a preferential attachment

mechanism where the attractiveness of a node does not depend on its degree, but on its

“fitness”, as proposed by Bianconi and Barabàsi [11]. Due to this behaviour, the bubble
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causes a distortion in the network evolution: during the expanding phase of the bubble, the

network structure shifts towards an increasingly intense and centralised connectivity due to

the strong growth of the bubbly banks’ robustness, which then causes instability in case the

bubble bursts.

We then study the behaviour of the system when its size gets large. More precisely,

we let the number of periphery banks tend to infinity, but keep the number of core banks

holding the bubble constant and assume that their impact on the system does not vanish

when the total number of banks tends to infinity. In this way the bubble produces a common

stochastic source in the system that does not not average out even for large networks. Our

main result then determines a partial mean-field limit for the system where the influence of

the bubble is represented via stochastic interaction with the core banks even in the limit.

Because of this term, the banks in the periphery are also affected by a potential bubble burst.

This effect is amplified by the impossibility to immediately disinvest when the robustness

of some banks decreases due to the delay δ. We also refer to Chong and Klüppelberg [22]

where the authors investigate partial mean-field limits in a different setting, without taking

into account the delay and the influence of the bubble.

The remaining part of the paper is organised as follows. In Section 2 we introduce our

model and some technical results. In Section 3 we define the limit system and prove a

convergence result, whereas in Section 4 we perform Monte Carlo simulations both in the

finite and in the limit systems in order to numerically investigate the impact of the bubble

on systemic risk.

2 The model

Let (Ω,F ,F, P ) be a filtered probability space endowed with a (m+ n+ 2)-dimensional

Brownian motion W̄ = (W 1
t , . . . ,W

n
t ,W

B,1
t , . . . ,WB,m

t , B1
t , B

2
t )t≥0, m, n ∈ N, where F =

(Ft)t∈R+ is the natural filtration of W̄ . We consider a network of m + n banks, consisting

of m banks holding a bubbly asset in their portfolio (also referred to as core), and n banks

that do not directly hold the bubbly asset (also referred to as periphery).

By following a similar approach as in Kley et al. [55], we model the robustness of the banks

in the system. This coefficient dynamically evolves and represents a measure of how healthy

a bank remains in stress situations. Let ρi,n = (ρi,nt )t≥0, i = 1, . . . n, and ρk,B = (ρk,Bt )t≥0,

k = 1, . . . ,m, be the robustness of banks not holding and holding the bubble, respectively.

We assume that they satisfy the following system of stochastic differential delay equations

(SDDEs) for t ≥ δ, δ > 0,

dρi,nt =

(
1

n− 1

n∑
j=1,j 6=i

fP (ρj,nt−δ − A
n,m
t−δ )(ρj,nt − A

n,m
t ) +

1

m

m∑
k=1

fB(ρk,Bt−δ − A
n,m
t−δ )(ρk,Bt − An,mt )

)
dt
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+ λ(An,mt − ρi,nt )dt+ σ1dW
i
t , (2.1)

dρk,Bt =

(
1

n

n∑
i=1

fP (ρi,nt−δ − A
n,m
t−δ )(ρi,nt − A

n,m
t ) +

1

m− 1

m∑
`=1,` 6=k

fB(ρ`,Bt−δ − A
n,m
t−δ )(ρ`,nt − A

n,m
t )

)
dt

+ λ(An,mt − ρk,Bt )dt+ σ2dW
k,B
t + dβt, (2.2)

where λ > 0, σ1 > 0, σ2 > 0 and

An,mt =
1

m+ n

(
n∑
r=1

ρr,nt +
m∑
h=1

ρh,Bt

)
, t ≥ δ, (2.3)

is the mean of the robustness of all the banks in the network at time t. For t ∈ [0, δ),

we assume that (ρi,ns )s∈[0,δ), (ρk,Bs )s∈[0,δ), i = 1, . . . , n, k = 1, . . . ,m, satisfy (2.1)-(2.2) with

δ = 0, by following the approach of Mao [59]. We also suppose that ρi,n0 = ρ0 > 0 for all

i = 1, . . . , n.

Remark 1. Note that robustness may become negative in our model, as in [45] and [55],

since it is used as an indicator of banks’ creditworthiness. See also [37], where log-monetary

reserves play the role of robustness.

The process β = (βt)t≥0 in (2.2) represents the influence of the asset price bubble on the

robustness of core banks and has dynamics

dβt = µtdt+ σBt dB
1
t , t ≥ 0, (2.4)

where σB = (σBt )t≥0 is a positive and adapted process such that∫ t

0

E[|σBs |2]ds <∞, 0 ≤ t <∞, (2.5)

and µ is an adapted process, unique strong solution of

dµt = b̃(µt)dt+ σ̃(µt)dB
2
t , t ≥ 0, (2.6)

where b̃, σ̃ fulfil the usual Lipschitz and sub-linear growth conditions such that there exists

a unique solution of (2.6), satisfying∫ t

0

E[|µs|2]ds <∞, 0 ≤ t <∞. (2.7)

In Section 4 we will specify a model for the bubbly evolution in (2.4) and provide further

explanations on asset price bubbles, see Section 4.1.

We assume the following hypothesis on fB and fP .
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Assumption 2.1. The functions fB, fP : R→ R+ are measurable, with

fB(0) = fB(0+) = fB(0−) <∞, fP (0) = fP (0+) = fP (0−) <∞, (2.8)

and such that the functions FB(x) := xfB(x), F P (x) := xfP (x), x ∈ R, are Lipschitz

continuous, i.e.

|xf `(x)− yf `(y)| ≤ K1|x− y|, x, y ∈ R, ` = B,P, K1 > 0. (2.9)

Note that (2.8) and (2.9) imply that fB and fP are continuous on R and bounded, since

if f(x)x is Lipschitz, then

|f(x)x| = |f(x)x− f(0) · 0| ≤ K1|x|. (2.10)

The interdependencies of the banks’ robustness and corresponding contagion effects are

specified through the drifts in (2.1) and (2.2). The term λ(An,mt −ρ
i,n
t ) represents an attraction

of the individual robustness towards the average robustness of the system with rate λ as in

the classical mean-field model (1.1). In addition to the homogeneous average term, we

introduce the terms of type fP (ρj,nt−δ −A
n,m
t−δ )(ρj,nt −A

n,m
t ) and fB(ρk,Bt−δ −A

n,m
t−δ ) (ρk,Bt −An,mt )

that represent a robustness-dependent evolution of the network connectivity: for typically

positive and increasing fB and fP , bank i is the more connected to bank j the higher

bank j’s robustness is above the average. In this way, the evolution of the bubble alters

the connectivity structure of the network according to a model of preferential attachment.

Moreover, the propensity of a node i to attract future links not only depends on the current

level of robustness of i, but also on the robustness of the banks already connected to i.

This produces different kinds of preferential attachment: a direct preferential attachment

towards banks with the bubbly asset, and an indirect preferential attachment towards banks

that have invested money in the banks with the bubbly asset, increasing their robustness.

This mechanism is called preferential preferential attachment in Battiston [6], and creates a

network with a set of financial institutions which are very strongly connected to each other.

These banks form a cluster, which is in fact the core of the network. This is referred to as

“strong clustering effect” in [6].

This change in network structure then comes along with an increasing systemic risk and

instability in case the bubble burst, as noted by Battiston [6]. We introduce the delay

δ > 0 to reflect the fact that the bank i’s investment decisions does not immediately react

to changes in bank j’s robustness. Note that when there are no bubble banks and fP = λ,

the system (2.1)-(2.2) boils down to the basis mean-field model in (1.1), apart from the fact

that here we have the term 1
n−1

instead of 1
n

in front of the sum, since we are averaging the

investments with respect to the other (n− 1) banks. However, the impact of these terms is

the same for large networks, i.e., when n tends to infinity.
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Example 2.2. We have that f(x) = 1 + 2 arctan(x)/π satisfies Assumption 2.1: f takes

values in [0, 2], and both f and F (x) = xf(x) are Lipschitz, because they have bounded

derivatives.

In particular, f is increasing, so that if ρjt > ρit then the link towards j is stronger than

the link towards i. If the robustness ρjt of bank j is equal to the average An,mt in (2.3), then

the link towards bank j has weight f(0) = 1, if ρjt > An,mt the link has weight bigger than 1

and if ρjt < An,mt the link has weight less than 1. If all the banks have the same robustness,

we have an homogenous network, where all the links have weight equal to 1.

We note that different choices for f are possible. In particular, we could use different

functions for core and periphery banks (for example by considering a parametric dependence

in f) in order to introduce heterogeneity in the model. Here we choose only one function for

both kinds of banks for the sake of simplicity.

Furthermore, any constant function clearly satisfies Assumption 2.1. For such a choice,

we have a static and homogenous network.

Proposition 2.3. Under Assumption 2.1, for every δ ≥ 0 there exists a unique strong

solution for the system of SDEs (2.1)-(2.2). Moreover,

sup
0≤s≤t

E[|ρi,ns |2] <∞, 0 < t <∞, i = 1, . . . , n, (2.11)

sup
0≤s≤t

E[|ρk,Bs |2] <∞, 0 < t <∞, k = 1, . . . ,m. (2.12)

Proof. Suppose by simplicity λ = 1 and that σB = (σBt )t≥0 is constant, i.e. σBt = σB > 0

for all t ≥ 01. For δ = 0 we can write the system of SDEs given by (2.1),(2.2) and (2.6) as

an (m+ n+ 1)-dimensional SDE

dXt = b(Xt)dt+ σ(Xt)dW̄t, t ≥ 0, (2.13)

where

W̄t = (W 1
t , . . . ,W

n
t ,W

1,B
t , . . . ,Wm,B

t , B1
t , B

2
t )t≥0.

1We suppose that σB = (σB
t )t≥0 is constant in order to ease the computations and the notation in the

proof. However, condition (2.5) guarantees that the result also holds in more general cases.
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Moreover,

b(x) =



1
n−1

∑n
j=2 f

P (xj − x̄)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− x1,
...

1
n−1

∑n−1
j=1 f

P (xj − x̄)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− xn
1
n

∑n
j=1 f

P (xj − x̄)(xj − x̄) + 1
m−1

∑m+n
k=n+2 f

B(xk − x̄)(xk − x̄) + x̄− xn+1

...
1
n

∑n
j=1 f

P (xj − x̄)(xj − x̄) + 1
m−1

∑m+n−1
k=n+1 f

B(xk − x̄)(xk − x̄) + x̄− xm+n

b̃(xm+n+1)


,

(2.14)

with x = (x1, . . . , xm+n+1) ∈ Rm+n+1 and x̄ = 1
m+n

∑m+n
i=1 xi. Here σ(x) is a (m + n + 1) ×

(m+ n+ 1) block matrix of the form

σ(x) =

 Σ1 0 0

0 Σ2 0

0 0 σ̃(xm+n+1)

 , (2.15)

where Σ1 is a n × n diagonal matrix with diagonal (σ1, . . . , σ1) and Σ2 is the m × (m + 1)

matrix

Σ2 =


σ2 0 . . . 0 σB
0 σ2 . . . 0 σB
...

...
. . . 0 σB

0 0 . . . σ2 σB

 .

We use Theorem 2.9 in Chapter 5.2 of Karatzas and Shreve [54] to prove existence and

uniqueness of the strong solution of (2.13), and that the second moments of the solution are

finite, see the proof of Proposition 5.2.3 in Mazzon [60].

When δ > 0, equation (2.13) becomes

dXt = b̄(Xt, Xt−δ)dt+ σ̄(Xt, Xt−δ)dW̄t, t ≥ δ, (2.16)

where σ̄(x, y) = σ(x) as in (2.15) and

b(x, y) =



1
n−1

∑n
j=2 f

P (yj − ȳ)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− x1,
...

1
n−1

∑n−1
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m

∑m+n
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− xn
1
n

∑n
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m−1

∑m+n
k=n+2 f

B(yk − ȳ)(xk − x̄) + x̄− xn+1

...

y 1
n

∑n
j=1 f

P (yj − ȳ)(xj − x̄) + 1
m−1

∑m+n−1
k=n+1 f

B(yk − ȳ)(xk − x̄) + x̄− xm+n

b̃(xm+n+1)


.
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By Theorem 3.1 in Mao [59, chapter 5], to prove existence and uniqueness of the solution it

suffices to show that the linear growth condition

‖b̄(x, y)‖2 ≤ C(1 + ‖x‖2 + ‖y‖2) (2.17)

holds and that b̄ is Lipschitz in the variable x uniformly in y, i.e. that there exists a constant

K̃ ∈ (0,∞) such that

‖b̄(x, y)− b̄(x′, y)‖2 ≤ K̃‖x− x′‖2 (2.18)

for all y ∈ R, x, x′ ∈ Rm+n. Property (2.17) can be proven by computations similar to the

ones used for δ = 0, see the proof of Proposition 5.2.3 in [60]. For the Lipschitz condition

we have

|b̄1(x, y)− b̄1(x′, y)| ≤ 1

n− 1

n∑
j=2

|fP (yj − ȳ)||(xj − x̄)− (x′j − x̄′)|

+
1

m

m+n∑
k=n+1

|fB(yk − ȳ)||(xk − x̄)− (x′k − x̄′)|+ |x̄− x̄′|+ |x1 − x′1|.

Hence, as fB and fP are bounded by K1, the computations to show (2.18) are identical to

the case for δ = 0.

In order to prove (2.11) and (2.12), we apply the same argument used in the proof of

Theorem 3.1 in Mao [59, chapter 5]: on [0, δ] we have by hypothesis a classic stochastic

differential equation, and by Theorem 2.9 in Chapter 5.2 of [54]

E[ sup
0≤s≤δ

‖Xs‖2] <∞. (2.19)

On the interval [δ, 2δ], we can write equation (2.16) as

dXt = b̄(Xt, ξt)dt+ σ̄(Xt, ξt)dWt, δ ≤ t ≤ 2δ,

where ξt = Xt−δ. Once the solution on [0, δ] is known, this is again a classic SDE (without

delay) with initial value Xδ = ξ0, so that again by Theorem 2.9 in Chapter 5.2 of [54], there

exists a constant C2δ > 0 such that

E[ sup
δ≤s≤2δ

‖Xs‖2] ≤ C2δ

(
1 + E[‖Xδ‖2]

)
e2δC2δ , (2.20)

which is finite by (2.19). Repeating this argument on the interval [2δ, 3δ], we obtain

E[ sup
2δ≤s≤3δ

‖Xs‖2] ≤ C3δ

(
1 + E[‖X2δ‖2]

)
e3δC3δ ≤ C3δ

(
1 + E[ sup

δ≤s≤2δ
‖Xs‖2]

)
e3δC3δ <∞
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by (2.20). Recursively we have

E[ sup
(k−1)δ≤s≤kδ

‖Xs‖2] <∞.

Then,

sup
0≤s≤t

E[‖Xs‖2] = sup
s∈[k̄δ,(k̄+1)δ]

E[‖Xs‖2] <∞, (2.21)

for some k̄ with [k̄δ, (k̄ + 1)δ] ⊆ [0, t]. 2

3 Mean field limit

We now study a mean field limit for the system of banks (2.1)-(2.2) for large n.

Define the processes ρ̃i = (ρ̃it)t≥0, i = 1, . . . , n, ρ̄k,B = (ρ̄k,Bt )t≥0, k = 1, . . . ,m, and ν = (νt)t≥0

as the solutions of the following system of SDEs for t ≥ δ:

dρ̃it = −λρ̃itdt+ σ1dW
i
t , (3.1)

dνt =

(
ϕ(t, t− δ) +

1

m

m∑
k=1

fB
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

)(
ρ̄k,Bt − νt − E[ρ̃it]

)
+ λE[ρ̃it]

)
dt,

(3.2)

dρ̄k,Bt =

(
ϕ(t, t− δ) +

1

m− 1

m∑
`=1,` 6=k

fB
(
ρ̄`,Bt−δ − νt−δ − E[ρ̃it−δ]

)(
ρ̄`,Bt − νt − E[ρ̃it]

))
dt

+
(
µt + λ(E[ρ̃it] + νt − ρ̄k,Bt )

)
dt+ σ2dW

k,B
t + σBt dB

1
t , (3.3)

with

ϕ(t, t− δ) := E
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)]
= E

[
E
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

) ∣∣ρ̃it−δ]]
= E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)
E
[
ρ̃it
∣∣ρ̃it−δ]]− E[ρ̃it]E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)]
= e−λδE

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)
ρ̃it−δ

]
− ρ0e

−λtE
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)]
, (3.4)

for t ≥ δ. For t ∈ [0, δ] we assume that (ρ̃t)0≤t≤δ, (νt)0≤t≤δ and (ρ̄k,Bt )0≤t≤δ satisfy (3.1)-(3.3)

for δ = 0, with initial conditions ρ̃i0 = ρ0 ∈ R, ν0 = 0, ρ̄k,B0 = ρk,B0 ∈ R.

Note that in equation (3.2) the expression of ϕ is independent of the choice of i since ρ̃i,

i = 1, . . . , n, are identically distributed. For the same reason, the process ν in (3.2) does not

depend on i.

Set

ρ̄i := ρ̃i + ν, i = 1, . . . , n. (3.5)
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In particular,

ρ̄it =ρ̄iδ +

∫ t

δ

(
ϕ(s, s− δ) +

1

m

m∑
k=1

fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])
(
ρ̄k,Bs − νs − E[ρ̃is]

)
+ λ(E[ρ̃is]− ρ̃is)

)
ds

+ σ1W
i
s , t ≥ δ. (3.6)

Remark 2. The processes (ρ̄it)t≥0, i = 1, . . . , n, are not independent, so a priori the strong

law of large numbers could not be applied. However, as shown in (3.5), ρ̄i can be written as

the sum of (ρ̃it)t≥0 from (3.1) and (νt)t≥0 from (3.2), respectively. In particular, the processes

ρ̃i, i = 1, . . . , n, are independent Ornstein-Uhlenbeck processes, and ν is independent of i

and common to all ρ̄i, i = 1, . . . , n. In this way, we obtain a decomposition of ρ̄i which

permits to apply the strong law of large numbers to the sum of ρ̃i, i = 1, . . . , n, and then

prove Theorem 3.2.

Proposition 3.1. Under Assumption 2.1, for every δ ≥ 0 there exists a unique strong

solution of the system of SDEs (3.1)-(3.3). In particular,

sup
0≤s≤t

E[|νs|2] <∞, 0 < t <∞, (3.7)

sup
0≤s≤t

E[|ρk,Bs |2] <∞, 0 < t <∞, k = 1, . . . ,m. (3.8)

Proof. For the sake of simplicity we take λ = 1 and σBt = σB > 0 for all t ≥ 0 as before.

It is well known that (3.1) admits a unique strong solution. For δ = 0, the system given by

(3.2), (3.3) and (2.6) can be written as an (m+ 2)-dimensional SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, t ≥ 0, (3.9)

where W = (WB,1
t , . . . ,WB,m

t , B1
t , B

2
t )t≥0, and

b(t, x) =


ϕ(t) + 1

m

∑m
k=1 f

B(xk − x1 − ψ(t))(xk − x1 − ψ(t)) + ψ(t),

ϕ(t) + 1
m−1

∑m+1
`=3 fB(x` − x1 − ψ(t))(x` − x1 − ψ(t)) + x1 + xm+2 − x2 + ψ(t),

...

ϕ(t) + 1
m−1

∑m
`=2 f

B(x` − x1 − ψ(t))(x` − x1 − ψ(t)) + x1 + xm+2 − xm+1 + ψ(t),

b̃(xm+2)


(3.10)

with ψ(t) = E[ρ̃it] and

ϕ(t) := E
[
fP
(
ρ̃it − E[ρ̃it]

) (
ρ̃it − E[ρ̃it]

)]
, t ≥ 0. (3.11)
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The (m+ 2)× (m+ 2) matrix σ(x) has the form

σ(t, x) =



0 0 . . . 0 0 0

σ2 0 . . . 0 σB 0

0 σ2 . . . 0 σB 0
...

...
. . . 0 σB 0

0 0 . . . σ2 σB 0

0 0 . . . 0 0 σ̃(xm+2)


. (3.12)

Computations similar to the ones in Proposition 2.3 guarantee existence and uniqueness of

the solution of (3.9) and that the second moments exist finite by Theorem 2.9 in Chapter

5.2 of [54], see [60].

The proof for the case δ > 0, based on Theorem 3.1 in Mao [59, chapter 5], is analogous

to the one of Proposition 2.3. 2

We now present the main theoretical result of the paper, which guarantees that, in the

setting of Assumption 2.1, the system (2.1),(2.2) can be approximated by (3.6), (3.3) for

large networks. Denote |x− y|∗t = sups≤t |xs − ys|. We have the following

Theorem 3.2. Fix i ∈ N. Under Assumption 2.1, for any t ∈ [0,∞) and δ ≥ 0 it holds

lim
n→∞

(
E
[
|ρi,n − ρ̄i|∗t

]
+ E[|ρk,B − ρ̄k,B|∗t ]

)
= 0, k = 1, . . . ,m,

where ρi,n, ρ̄i, ρk,B, ρ̄k,B are defined in (2.1), (3.6), (2.2), (3.3) respectively.

Remark 3. We now interpret the results of Theorem 3.2. Note that the influence of the

bubble on the limit system is twofold: it rules out propagation of chaos and increases systemic

risk. Indeed, the bubble makes the banks of the core mutually dependent at the limit, as

they share a common stochastic source. Furthermore, their impact does not vanish in the

limit. As a consequence, all banks in the system remain dependent on each other in large

networks as well. This breaks down the propagation of chaos, that is the property by which

the system decouples more and more as the network gets larger. On the contrary, the bubble

acts as a driving force of the system in the limit, too.

The term
1

m

m∑
k=1

fB
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

)(
ρ̄k,Bt − νt − E[ρ̃it]

)
(3.13)

in (3.2) makes this influence explicit: also the banks not holding the bubble are affected by

its evolution, through the robustness of the banks with the bubbly asset. Moreover, again

by (3.13) it can be seen how the bubble increases systemic risk: when the bubble bursts,

also the banks in the periphery suffer a loss, because they are not able to promptly disinvest

12



due to the delay δ in (3.13). In this way the most systemic banks (i.e., the most connected

institutions in the network) are the most exposed to the shock as well.

We also note that the mean reverting term λ(E[ρ̃it] + νt− ρ̄k,Bt ) in (3.3), which is the limit

of λ(An,mt −ρk,Bt ) in (2.2), reduces the risk since it slows down the fall of ρ̄k,B after the burst.

For further details, we refer to Section 4.3, where numerical simulations are performed

in order to investigate the behaviour of the system after the burst of the bubble.

We provide the proof of Theorem 3.2 in the Appendix. In order to prove Theorem 3.2,

we give the following

Proposition 3.3. Under Assumption 2.1, for 0 ≤ δ <∞,

lim
n→∞

∫ δ

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0,

(3.14)

and

lim
n→∞

∫ t

δ

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0,

for 0 ≤ δ ≤ t <∞, where ρ̃i and ρ̄i satisfy (3.1) and (3.6), respectively, and

Ān,mt =
1

m+ n

(
n∑
r=1

ρ̄rt +
m∑
h=1

ρ̄h,Bt

)
, t ≥ 0. (3.15)

Proof. We limit ourselves to prove the second limit, since the first one follows as a

particular case. Let us write, for t ≥ δ > 0,

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄it−δ − Ā
n,m
t−δ )(ρ̄it − Ā

n,m
t )− E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)] ∣∣∣]
≤ 1

n

n∑
i=1

E

[∣∣∣fP (ρ̄it−δ − Ā
n,m
t−δ )(ρ̄it − Ā

n,m
t )− fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃

i
t − E[ρ̃it])

∣∣∣]
+ E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃
i
t − E[ρ̃it])− E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)] ∣∣∣],
since ρ̄i, i = 1, . . . , n are identically distributed and the same holds for ρ̃i, i = 1, . . . , n.

By (3.5) we have that

Ān,mt =
1

m+ n

(
n∑
r=1

ρ̄rt +
m∑
h=1

ρ̄h,Bt

)
=

1

m+ n

(
nνt +

n∑
r=1

ρ̃rt +
m∑
h=1

ρ̄h,Bt

)
,
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so that

lim
n→∞

Ān,mt = νt + lim
n→∞

1

m+ n

n∑
r=1

ρ̃rt = νt + E[ρ̃it], a.s.,

by (2.12) and the strong law of large numbers, as ρ̃i, i = 1, . . . , n, are independent and

identically distributed. Then we have

lim
n→∞

fP (ρ̄it−δ − Ā
n,m
t−δ )(ρ̄it − Ā

n,m
t ) =fP

(
νt−δ + ρ̃it−δ − (νt−δ + E[ρ̃it−δ])

) (
νt + ρ̃it − (νt + E[ρ̃it])

)
= fP

(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)
a.s. (3.16)

We now prove that the family of random variables { 1
n

∑n
i=1 f

P (ρ̄is−δ−Ā
n,m
s−δ)(ρ̄

i
s−Ān,ms )}n∈N is

uniformly integrable for every s ∈ [δ, t], so that convergence almost surely implies convergence

in L1.

By point (iii) of Theorem 11 in Protter [66, chapter 1] it is enough to prove that for every

s ∈ [δ, t],

sup
n

E

( 1

n

n∑
i=1

fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )

)2
 <∞. (3.17)

For every s ∈ [δ, t], we have that

E

[( 1

n

n∑
i=1

fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )

)2
]
≤ (K1)2E

[( 1

n

n∑
i=1

|ρ̄is − Ān,ms |
)2
]

≤ (K1)2E

[(
(1− n/(m+ n))|νs|+

∣∣ρ̃is∣∣+
1

m+ n

n∑
r=1

|ρ̃rs|+
1

m+ n

m∑
h=1

∣∣ρ̄h,Bs ∣∣ )2
]

≤ (K1)2E

[(
|νs|+

∣∣ρ̃is∣∣+
1

n

n∑
r=1

|ρ̃rs|+
1

m

m∑
h=1

∣∣ρ̄h,Bs ∣∣ )2
]

≤ 4(K1)2

(
E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1

|ρ̄k,Bs |2
]

+ E
[( 1

n

n∑
r=1

|ρ̃rs|
)2])

≤ 4(K1)2

(
E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1

|ρ̄k,Bs |2
]

+
1

n
E

[ n∑
r=1

|ρ̃rs|2
])
.

≤ 4(K1)2

(
E
[
|νs|2 + |ρ̃is|2 +

m∑
k=1

|ρ̄k,Bs |2
]

+ E[|ρ̃is|2]

)
<∞,

by (3.7) and (3.8) and because E|ρ̃is|2] <∞. Hence, { 1
n

∑n
i=1 f

P (ρ̄is−δ− Ā
n,m
s−δ)(ρ̄

i
s− Ān,ms )}n∈N

is uniformly integrable and we obtain therefore by (3.16) that

lim
n→∞

E

[∣∣∣fP (ρ̄it−δ − Ā
n,m
t−δ )(ρ̄it − Ā

n,m
t )− fP (ρ̃it−δ − E[ρ̃it−δ])(ρ̃

i
t − E[ρ̃it])

∣∣∣] = 0.
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Moreover, for δ ≤ s ≤ t,

E

[∣∣∣fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )− fP (ρ̃is−δ − E[ρ̃is−δ])(ρ̃

i
s − E[ρ̃is])

∣∣∣]
≤ K1(E[|ρ̄is − Ān,ms |] + E[|ρ̃is − E[ρ̃is|]),

where the second term belongs to L1 ([δ, t]) and does not depend on n. On the other hand,

we have∫ t

0

E[|ρ̄is − Ān,ms |]ds ≤
∫ t

0

E

[
|ρ̃is|+ (1− n/(m+ n)) |νs|+

1

m+ n

n∑
r=1

|ρ̃rs|+
1

m+ n

m∑
h=1

|ρ̄h,Bs |

]
ds

≤
∫ t

0

E
[
2|ρ̃is|+ |νs|+ |ρ̄h,Bs |

]
ds

≤ t sup
0≤s≤t

E
[
2|ρ̃is|+ |νs|+ |ρ̄h,Bs |

]
<∞, (3.18)

by (3.7) and (3.8). We can then apply the dominated convergence theorem to obtain, for

t ∈ [δ,∞),

lim
n→∞

∫ t

δ

E

[∣∣∣fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )− fP (ρ̃is−δ − E[ρ̃is−δ])(ρ̃

i
s − E[ρ̃is])

∣∣∣]ds = 0, t ≥ δ.

(3.19)

It remains to show that for t ≥ δ it holds

lim
n→∞

∫ t

δ

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̃is−δ−E[ρ̃is−δ])(ρ̃
i
s−E[ρ̃is])−E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds = 0.

(3.20)

Since ρ̃i, i = 1, . . . , n, are independent and identically distributed, we have that, for δ ≤ s ≤
t,

lim
n→∞

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̃is−δ − E[ρ̃is−δ])(ρ̃
i
s − E[ρ̃is])− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣] = 0.

Then limit (3.20) follows by the dominated convergence theorem, by Assumption 2.1 and

since the Ornstein-Uhlenbeck process has finite moments, see the computations in (3.18).

2

4 Liquidity induced bubbles: theory and numerics

4.1 Liquidity induced bubbles in an information network

We now provide more details on the theory of asset price bubbles and our model choice

for β in this paper.
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The formation of asset price bubbles has been thoroughly investigated from an economical

point of view, see e.g. Tirole [71], Allen and Gale [2], Choi and Douady [20, 21], Harrison and

Kreps [42], Kaizoji [53], Earl et al. [30], DeLong et al. [25], Scheinkman and Xiong [68, 69],

Xiong [72], Abreu and Brunnermeier [1], Föllmer [35], Miller [63], Zhuk [73].

Different causes have been indicated as triggering factors for bubble birth, such as het-

erogenous beliefs between interacting agents (as in [35], [42], [68], [69], [72], [73]), a breakdown

of the dynamic stability of the financial system ([21], [20]), the diffusion of new investment

decision rules from a few expert investors to larger population of amateurs (see [30]), the ten-

dency of traders to choose the same behaviour as the other traders’ behaviour as thoroughly

as possible (see [53]), the presence of short-selling constraints (see [63]).

From the mathematical point of view, financial asset bubbles have been mainly studied via

the martingale theory of bubbles, introduced by Cox and Hobson [24] and Loewenstein and

Willard [57] and mainly developed by Jarrow and Protter [47, 48], Jarrow et al. [49, 50, 51],

Protter [67]. In this setting a Q-bubble is defined as the difference between the market price

of a given financial asset and its fundamental value, given by the expectation of the future

cash flows under an equivalent local martingale measure Q.

Furthermore, other constructive approaches have been proposed, where the fundamental

value is exogenously given, whereas the market value is endogenously determined, see Jarrow

et al. [52] and Biagini et al. [10].

We here follow the approach of [10] and [52] and assume that the market wealth is

determined by the trading activity of investors and studied through the analysis of the

liquidity supply curve. In particular, the stock is traded through a limit order book, so that

limit orders and market orders are possible. Market orders, which deplete or fill in the limit

order book, produce a variation in the price over a small interval of time. If new market

orders quickly enter before the price has time to decay again to the fundamental value, these

short-term price variations may accumulate and result in a deviation from the fundamental

wealth with a consequent bubble birth2.

Motivated by the above analysis, the bubble is supposed to follow the dynamics

dβt = MtΛt(−kβtdt+ 2dXt), t ≥ 0, (4.1)

where M = (Mt)t≥0 and Λ = (Λt)t≥0 are respectively a measure of illiquidity and the so called

resiliency of the limit order book, which takes values in [0, 1]. The process X = (Xt)t≥0 is

the signed volume of market orders, defined as the cumulated difference between the buy

market orders and the sell market orders. Moreover, in agreement with the approach of [52],

k > 0 is the speed of decay, which is assumed to be strictly positive since the market price

is supposed to go back to the fundamental value in the long term.

2For more details about the economical motivation of this setting, we refer to [10] and [52].
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We consider that X satisfies the following dynamics

dXt = µ̄tdt+ σ̄tdB
2
t , t ≥ 0, (4.2)

where µ̄ = (µ̄t)t≥0 and σ̄ = (σ̄t)t≥0 are progressively measurable processes satisfying some

integrability conditions. In this way,

dβt = ΛtMt

[
(−kβt + 2µ̄t)dt+ 2σ̄tdB

2
t

]
, t ≥ 0, (4.3)

i.e. β solves (2.4) with

µt = MtΛt(−kβt + 2µ̄t), σBt = 2σ̄tMtΛt, t ≥ 0.

In the simulations below, the illiquidity M is supposed to be a geometric Brownian motion,

whereas Λ is taken constant.

In [10], the evolution of X is modelled through a contagion process within an information

network of investors. Traders may imitate neighbours in the network that have successfully

bought the bubbly asset, and place as a consequence a buy market order on the asset.

This eventually leads to some self-exciting herding effect, which in turn blows up the signed

volume of market orders and then generates the bubble. The analysis of the contagion mech-

anism is based on some epidemiological studies describing virus diffusion in a population. In

particular, virus diffusion is reinterpreted as trading contagion, and modelled through the

SIS model, studied for example by Pastor-Satorras and Vespignani [64, 65].

The evolution of the bubble is then characterised by two different phases: in the first

one the bubble blows up, since the quick increase of the signed volume of market orders X

dominates in equation (4.1). In this phase, the essential force of the bubble is given by the

contagion mechanism driving X. The contagion accelerates to a maximum and then slows

down, since it tends towards an equilibrium. At this point, the drift of X gets smaller, and

the mean reverting term of equation (4.1) starts to dominate. This leads to the burst of the

bubble, here identified by a stopping time time τ , and to the second phase, i.e. the decrease

of the bubble towards zero. In particular, in the next subsections we characterise τ as the

first time when the drift in (4.3) gets negative.

4.2 Risk analysis for the finite case

We now study by numerical simulations how the system described in Section 3 reacts to

the growth and the burst of a bubble. In particular, we investigate how a bank not holding

the bubbly asset can be affected by a bubble burst through contagion mechanisms. We first

consider the case of (2.1)-(2.2), i.e. of a network with a finite number of banks, and then we

analyse the limit system (3.1)-(3.3).
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We choose the same function f for both core and periphery banks in (2.1)-(2.2), i.e. fB =

fP = f . In particular, we take f(x) = 1 + 2 arctan(x)/π, as in Example 2.2. We investigate

how the first bank reacts when banks holding the bubble are in trouble. Specifically, we here

introduce and compute the risk measure

Riski,∆α = − sup

{
x ∈ R :

[
1

Ns

Ns∑
k=1

1{
ρi,n,kτk+∆−ρ

i,n,k
τk
≤x

}
]
≤ α

}
, (4.4)

with α > 0, where Ns is the number of simulations of the processes in (2.1)-(2.2), τk is the

value at the k-th simulation of the bursting time τ of the bubble, and ρi,n,kt is the value of

ρi,nt computed in the k-th simulation. Here ∆ represents a time interval after bubble burst,

which can be considered as an exogenously given risk management time horizon.

The risk measure Riski,∆α as defined in (4.4) measures the impact of realised distress of the

institutions holding the bubble on the system, at the moment of the burst. In this sense, it

can be seen as the CoVar of a bank without the bubbly asset when banks holding the bubbly

asset suffer a loss (for a definition of CoVar see e.g. Biagini et al. [8] and Brunnermeier and

Oehmke [15]). Note that, since the banks not holding the bubble are identically distributed,

we only compute the risk for one bank.

From now on, we set α = 0.05 in (4.4). We perform Ns = 10000 simulations of Risk1,∆
0.05

in the case when there are n = 6 banks not holding the bubble and m = 2 banks holding it.

We consider different values of λ and of the delay δ.

The results are given in Tables 1, 2 and 3 for ∆ = 0.05, 0.1, 0.2 respectively.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.109 0.150 0.292 0.289 0.290 0.288 0.286

λ = 1 0.083 0.135 0.252 0.251 0.245 0.245 0.249

λ = 0.5 0.083 0.119 0.230 0.227 0.226 0.225 0.222

Table 1: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2), with parameters

σ1 = σ2 = 0.2, ∆ = 0.05, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.125 0.176 0.441 0.672 0.886 0.864 0.863

λ = 1 0.121 0.163 0.301 0.540 0.777 0.758 0.751

λ = 2 0.120 0.130 0.246 0.485 0.703 0.686 0.684

Table 2: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2), with parameters

σ1 = σ2 = 0.2, ∆ = 0.1, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.
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δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.261 0.294 0.493 0.753 1.085 2.070 2.007

λ = 1 0.190 0.215 0.382 0.585 0.893 1.900 1.879

λ = 2 0.170 0.181 0.330 0.535 0.785 1.812 1.806

Table 3: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2), with parameters

σ1 = σ2 = 0.2, ∆ = 0.2, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

We note a non-monotonic behaviour with respect to the delay δ: when the delay is small,

banks are able to quickly disinvest when other institutions holding the bubble are in trouble,

reducing the loss. However, in all the three cases ∆ = 0.05, ∆ = 0.1 and ∆ = 0.2, we observe

that for delays larger than ∆, the risk is still big but it decreases. This depends on the fact

that we check the robustness of the banks at time τ + ∆: at this time, when δ > ∆, f is

smaller than in the case δ = ∆ because banks are cross investing on each other according to

a value of the robustness, which is realised much before the bubble’s burst.

Moreover, the risk is decreasing with λ. Indeed, it follows by (2.1) that ρi,n reverts to

An,mt +
1

λ

(
1

n

n∑
i=1

f(ρi,nt−δ − A
n,m
t−δ )(ρi,nt − A

n,m
t ) +

1

m− 1

m∑
`=1,`6=k

f(ρ`,Bt−δ − A
n,m
t−δ )(ρ`,nt − A

n,m
t )

)
,

so that for large λ the term involving the network, and then the direct effects of the banks

holding the bubbly asset, is less significative.

Remark 4. By (4.1), we note that the mean reversion term −kβt is the main driving force

of the shock at the moment of the bubble’s burst. This term dominates when the contagion

mechanism triggering the bubble slows down. Since it is a linear function of the bubble, we

see that the size of the bubble at the moment of the burst affects the risk in two ways:

• it amplifies the shock suffered by the banks holding the bubbly asset, through the

above mentioned term −kβt;

• it makes the network more centralised towards the banks detaining the bubbly asset.

This is due to the fact that bubble’s size also influences the term f(ρk,Bτ−δ − A
n,m
τ−δ) in

(2.1), so that banks in the periphery have a strong connection with the banks that

suffer the shock. This makes the system more prone to systemic risk.

In order to investigate this last phenomenon, we now consider (2.1)-(2.2) when β is

replaced by β̄, where

β̄t =

{
0 for t ≤ τ,

βt − βτ for t > τ.
(4.5)
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In this way we model the case when the banks that hold the bubbly asset are subject at

time τ to the same shock, but without having experienced the growth of the bubble.

Remark 5. Note that we assume the same shock size in the scenario with and without the

bubble. This is a conservative assumption, as the shock size would be expected to be smaller

when there is no bubble. Considering the same shock in both scenarios allows to isolate the

impact on systemic risk due to the distortion of the network’s shape caused by the bubble.

We see that even under this conservative assumption, the risk is smaller when there are no

banks holding the bubbly asset.

The results are given in Tables 4, 5 and 6 for ∆ = 0.05, 0.1, 0.2 respectively.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.113 0.143 0.279 0.277 0.276 0.276 0.274

λ = 1 0.085 0.130 0.224 0.222 0.221 0.220 0.217

λ = 2 0.079 0.111 0.202 0.196 0.191 0.190 0.190

Table 4: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2) with no bubble in

the system, but with the same shock at time τ , for parameters σ1 = σ2 = 0.2, ∆ = 0.05,

ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.138 0.172 0.320 0.500 0.773 0.765 0.760

λ = 1 0.122 0.160 0.259 0.434 0.641 0.611 0.600

λ = 2 0.127 0.126 0.193 0.343 0.524 0.511 0.506

Table 5: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2) with no bubble in

the system, but with the same shock at time τ , for parameters σ1 = σ2 = 0.2, ∆ = 0.1,

ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.268 0.290 0.425 0.680 0.999 1.773 1.765

λ = 1 0.187 0.210 0.356 0.480 0.695 1.449 1.412

λ = 2 0.173 0.180 0.202 0.447 0.570 1.269 1.262

Table 6: Risk1,∆
0.05 in the case when the robustness is given by (2.1)-(2.2) with no bubble in

the system, but with the same shock at time τ , for parameters σ1 = σ2 = 0.2, ∆ = 0.2,

ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.
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Remark 6. We note that, also in this case, the risk is maximum when δ = ∆. This means

that the risk first increases and then (slightly) decreases with respect to the delay not because

of the presence of the bubble, but due to the nature of the system (2.1)-(2.2). Of course when

the delay is small, the risk is also smaller, because banks can promptly disinvest when the

others are hit by the shock. However, the behaviour for delays larger than ∆ is more subtle.

Even if there is no bubble, the robustness of some banks in the system may be bigger than

the rest, because of the random effect of Brownian motions. In the case under examination,

the worst scenarios occur when ζt,δ := ρk,Bt−δ −A
n,m
t−δ is big for t ∈ [τ, τ + ∆], so that the banks

have a stronger link towards the ones hit by the shock. This happens for the choice α = 0.05

in (4.4), if δ ≥ ∆. Moreover, ζt,δ is slightly smaller for large delays, if t − δ ≤ τ (which is

the case for every t ∈ [τ, τ + ∆] if δ ≥ ∆). For this reason, Risk1,∆
0.05 is smaller when δ > ∆

compared to the case δ = ∆.

We now compare the results to the case when there is a bubble in the system. Note

that for δ = 0 there is not any significant difference, since the banks are able to disinvest

immediately at the time when the shock hits the banks with the bubble. Anyway, this

difference increases with the delay. When the delay is big, the banks with no bubble are

much more in trouble in the first case, i.e when they are attached to banks holding the

bubbly asset.

We can then conclude that the increase of the value of the bubbly asset can put the

network in trouble, because it makes the system more centralised on the riskier banks, due

to the preferential attachment mechanism implied by (2.1)-(2.2).

This can also be seen by considering a static network, i.e. by taking fB = fP = 1 in

(2.1)-(2.2), see Table 7.

∆ = 0.05 ∆ = 0.1 ∆ = 0.2

λ = 0.5 0.251 0.702 1.821

λ = 1 0.191 0.533 1.754

λ = 2 0.158 0.437 1.765

Table 7: Risk1,∆
0.05 in the case of a static network, with fB = fP = 1 and with parameters

σ1 = σ2 = 0.2, ρi,60 = ρk,B0 = 0.5, i = 1, . . . , 6, k = 1, 2.

Note that in this case the delay plays no role since it only affects the dynamics through fB

and fP . Comparing this result with Tables 1, 2 and 3, we see that, when δ < ∆, the fact that

banks are able to disinvest before the risk management time horizon ∆ makes the measure

Risk1,∆
0.05 smaller than in the case of a static network. On the other hand, for big values of

δ, a centralised network towards the banks holding the bubbly asset and the impossibility

to quickly disinvest after the burst give rise to a more dangerous system than in the static

case.
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4.3 Risk analysis for the mean field limit

We now consider the case of the limit system (3.1)-(3.3). We compute

Risk1,∆
0.05 = − sup

{
x ∈ R :

[
1

Ns

Ns∑
k=1

1{
ρ̄1,k
τk+∆−ρ̄

1,k
τk
≤x

}
]
≤ 0.05

}
, (4.6)

where Ns and τk are the number of simulations and the time of the burst of the bubble in

the k-th simulation, respectively, and ρ̄1,k
t is the value of ρ̄1

t computed in the k-th simulation.

As before, we consider m = 2 banks holding the bubble and we make Ns = 10000

simulations of (3.1)-(3.3) taking different values of λ, δ and ∆.

Note that, calling µρ̃,s = ρ0e
−λs and σρ̃,s = (σ1)2

2θ
(1 − e−2θs) the expectation and the

variance of ρ̃is, we can directly compute ϕ(t, t− δ) in (3.4) with fp(x) = 1 + 2
π

arctan(x) as

ϕ(t, t− δ) = e−λδ
[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)
ρ̃it−δ

]
− µρ̃,tE

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

)]
= e−λδ

∫ ∞
−∞

1√
2σρ̃,t−δπ

e−(x−µρ̃,t−δ)2/(2σρ̃,t−δ)
(

1 +
2

π
arctan(x− µρ̃,t−δ)

)
xdx

− µρ̃,t
∫ ∞
−∞

1√
2σρ̃,t−δπ

e−(x−µρ̃,t−δ)2/(2σρ̃,t−δ)
(

1 +
2

π
arctan(x− µρ̃,t−δ)

)
dx

= e−λδ
2

π

∫ ∞
−∞

1√
2σρ̃,t−δπ

e−(x−µρ̃,t−δ)2/(2σρ̃,t−δ) arctan(x− µρ̃,t−δ)(x− µρ̃,t−δ)dx

+
2

π
(e−λδ − 1)µρ̃,t−δ

∫ ∞
−∞

1√
2σρ̃,t−δπ

e−(x−µρ̃,t−δ)2/(2σρ̃,t−δ) arctan(x− µρ̃,t−δ)dx

= e−λδ
2

π

∫ ∞
−∞

1√
2σρ̃,t−δπ

e−x
2/(2σρ̃,t−δ) arctan(x)xdx

= e−λδ+1/(2σρ̃,t−δ)√σρ̃,t−δ

√
2

π
Erfc(1/

√
2σρ̃,t−δ), 0 ≤ δ ≤ t, (4.7)

with Erfc(x) = 2√
π

∫∞
x
e−t

2
dt, where we have used the fact that

∫∞
−∞ e

−x2/(2σ2
ρ̃,t−δ) arctan(x)dx =

0.

The results of the simulations are gathered in Tables 8, 9 and 10 for ∆ = 0.05, 0.1, 0.2,

respectively.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.078 0.169 0.331 0.320 0.318 0.315 0.313

λ = 1 0.087 0.168 0.327 0.315 0.311 0.311 0.308

λ = 2 0.085 0.160 0.325 0.313 0.309 0.307 0.302

Table 8: Risk1,∆
0.05 with ∆ = 0.05 of the mean field limit (3.1)-(3.3), with parameters σ1 =

σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.
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δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.134 0.210 0.442 0.762 1.043 1.041 1.040

λ = 1 0.131 0.215 0.428 0.739 1.015 1.011 1.010

λ = 2 0.128 0.213 0.425 0.663 0.918 0.909 0.909

Table 9: Risk1,∆
0.05 with ∆ = 0.1 of the mean field limit (3.1)-(3.3), with parameters σ1 =

σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.218 0.297 0.512 0.827 1.192 2.764 2.710

λ = 1 0.215 0.295 0.510 0.815 1.152 2.586 2.547

λ = 2 0.215 0.286 0.488 0.736 1.027 2.377 2.307

Table 10: Risk1,∆
0.05 with ∆ = 0.2 of the mean field limit (3.1)-(3.3), with parameters σ1 =

σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.

As before, the risk is increasing with the delay until δ = ∆ and decreasing with λ, since

ρ̄it reverts to

1

λ

(
ϕ(t, t− δ) +

1

m

m∑
k=1

f
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

)(
ρ̄k,Bt − νt − E[ρ̃it]

))
+ E[ρ̃it]− ρ̃it,

so that a large λ diminishes the influence of the banks holding the bubbly asset.

We can also see that the risk is bigger at the limit by comparing (2.1) and (3.6): since

νt−δ + E[ρ̃it] < An,mt−δ , because the first term is the average robustness of banks not holding

the bubble, the argument of f is bigger in (3.6). This leads to a bigger weight multiplying

the loss at the moment of the burst at the limit.

In Tables 11, 12 and 13 we report the results for the case when β is replaced by β̄ as in

(4.5), i.e. when there is no bubble in the network, and ∆ = 0.05, 0.1, 0.2, respectively.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.087 0.152 0.281 0.279 0.274 0.274 0.269

λ = 1 0.091 0.152 0.280 0.277 0.274 0.273 0.268

λ = 2 0.088 0.151 0.275 0.272 0.270 0.267 0.264

Table 11: Risk1,∆
0.05 with ∆ = 0.05 of the mean field limit (3.1)-(3.3) with no bubble in the

system, but with the same shock at time τ , with parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5,

k = 1, 2.
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δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.142 0.200 0.369 0.583 0.801 0.799 0.791

λ = 1 0.137 0.205 0.359 0.579 0.790 0.788 0.770

λ = 2 0.140 0.203 0.357 0.559 0.759 0.753 0.740

Table 12: Risk1,∆
0.05 with ∆ = 0.1 of the mean field limit (3.1)-(3.3) with no bubble in the

system, but with the same shock at time τ , with parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5,

k = 1, 2.

δ = 0 δ = 0.025 δ = 0.05 δ = 0.075 δ = 0.1 δ = 0.2 δ = 0.3

λ = 0.5 0.229 0.294 0.445 0.670 0.919 2.011 1.976

λ = 1 0.219 0.285 0.443 0.655 0.897 1.882 1.858

λ = 2 0.219 0.280 0.433 0.630 0.875 1.735 1.724

Table 13: Risk1,∆
0.05 with ∆ = 0.2 of the mean field limit (3.1)-(3.3) with no bubble in the

system, but with the same shock at time τ , with parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5,

k = 1, 2.

As before, it can be seen that, when the delay is large enough, the preferential attachment

mechanism, that takes place during the ascending phase of the bubble, creates a network

more exposed to systemic risk at the time of the shock. This is made explicit by the term

f
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

)
in (3.2), which is big in the presence of a bubble, see also Remark

3. If we consider a a static network, with fB = fP = 1, the results, shown in Table 14,

agree with the ones obtained in the case of the finite network: for small delays the dynamic

network is less exposed to systemic risk with respect to the static one, whereas when the

delay increases and the banks in the dynamic network are slower in disinvesting, the risk is

bigger than for the static network.

∆ = 0.05 ∆ = 0.1 ∆ = 0.2

λ = 0.5 0.256 0.690 1.754

λ = 1 0.248 0.677 1.750

λ = 2 0.235 0.675 1.681

Table 14: Risk1,∆
0.05 in the case of a static network with fB = fP = 1 of the mean field limit,

with parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5, k = 1, 2.

Remark 7. By comparing the tables of Section 4.2 and Section 4.3, we see that the choice

of the risk management time horizon ∆ does not strongly impact the qualitative behaviour
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of the results: for every choice of ∆, Risk1,∆
0.05 is bigger in the presence of the bubble, and is

decreasing with respect to the parameter λ. For all values of ∆, Risk1,∆
0.05 is maximum when

δ = ∆, see also Remark 6.

In order to further display the effects of the bubble and of the delay, we present some

graphics as well. Figures 1 and 2 show the evolution of a bank in periphery (for the same

realisation of the driving Brownian motion, i.e. for the same ω ∈ Ω) in the case when the

banks of the core own a bubbly asset and in the case when they suffer the same shock at the

time of the burst, but without having experienced the growth of the bubble. The value of

the robustness of the bank in the periphery at the time when the shock hits the banks in the

core is marked with a black cross. We see that, immediately after the burst, the robustness

of the bank continues to grow, because core banks’ robustness is higher than the average in

the term
1

m

m∑
k=1

fB
(
ρ̄k,Bt−δ − νt−δ − E[ρ̃it−δ]

)(
ρ̄k,Bt − νt − E[ρ̃it]

)
. (4.8)

However, after a while, (4.8) gets negative and the bank is also indirectly impacted by the

shock. The decrease of the robustness is higher in the case with the bubble, and for δ = ∆.
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Figure 1: Evolution of the robustness of a

bank of the periphery in the limit system,

with and without a bubble in the market,

but with the same shock at time τ , with

parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5,

δ = 0.1 and ∆ = 0.2.
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Figure 2: Evolution of the robustness of a

bank of the periphery in the limit system,

with and without a bubble in the market,

but with the same shock at time τ , with

parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5,

δ = 0.2 and ∆ = 0.2.

The impact of the delay δ on the risk is further illustrated by Figure 3, where the

robustness of a bank in the periphery is plotted for different values of δ, again for the same
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ω ∈ Ω. Here we can see the behaviour described in Remark 6: when δ = 0 the bank can

immediately disinvest when the banks in the core get in trouble, and thus its robustness does

not decrease after the shock. However, when δ gets bigger, the decline of the robustness is

more pronounced: for example, the decrease for δ = 0.1 and δ = 0.2 is the same up to τ+0.1,

but after τ + 0.1 the bank disinvest and stops the decrease if δ = 0.1, whereas it continues

to sink if δ = 0.2.
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Figure 3: Evolution of the robustness of a bank of the periphery in the limit system, with

parameters σ1 = σ2 = 0.2, ρk,B0 = 0.5, ∆ = 0.2 and different values of the delay δ.

A Proof of Theorem 3.2

We suppose by simplicity λ = 1 and we proceed by steps, starting from the case when

0 ≤ t < δ, i.e. when there is no delay in equations (2.1)-(2.2) and (3.2)-(3.3).

First step: case 0 ≤ t < δ.

For every i = 1, . . . , n and t ∈ [0, δ), we have

ρi,nt − ρ̄it =

∫ t

0

∆n
sds,

where

∆n
s =

1

n− 1

n∑
j=1,j 6=i

fP (ρj,ns − An,ms )(ρj,ns − An,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)]
+

1

m

m∑
k=1

(
fB(ρk,Bs − An,ms )(ρk,Bs − An,ms )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄

k,B
s − νs − E[ρ̃is])

)
− (ρi,ns − ρ̄is) + (An,ms − Ān,ms ) + (Ān,ms − E[ρ̃is]− νs).
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Thus

|ρi,n − ρ̄i|∗t = sup
s≤t

∣∣∣∣∫ s

0

∆n
udu

∣∣∣∣ ≤ sup
s≤t

∫ s

0

|∆n
u| du =

∫ t

0

|∆n
u| du.

Therefore, for every i = 1, . . . , n and t ≥ 0, we have

E[|ρi,n − ρ̄i|∗t ] ≤ E

[∫ t

0

|∆n
s |ds

]
≤
∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns − An,ms )(ρj,ns − An,ms )− fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms ))
∣∣∣]ds

+

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ t

0

E

[∣∣∣ 1

m

m∑
k=1

(
fB(ρk,Bs − An,ms )(ρk,Bs − An,ms )− fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )

) ∣∣∣]ds
+

∫ t

0

E

[
1

m

m∑
k=1

∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds
+

∫ t

0

E[|ρi,ns − ρ̄is|]ds+

∫ t

0

E[|An,ms − Ān,ms |]ds+

∫ t

0

E
[
|Ān,ms − E[ρ̃is]− νs|

]
ds.

(A.1)

By (2.9),∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns − An,ms )(ρj,ns − An,ms )− fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms ))
∣∣∣]ds

≤ 1

n− 1

n∑
j=1,j 6=i

∫ t

0

E

[∣∣∣fP (ρj,ns − An,ms )(ρj,ns − An,ms )− fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )
∣∣∣]ds

≤ K1
1

n− 1

n∑
j=1,j 6=i

∫ t

0

E

[∣∣∣(ρj,ns − An,ms )− (ρ̄js − Ān,ms )
∣∣∣]ds

≤ K1
1

n− 1

n∑
j=1,j 6=i

∫ t

0

E
[∣∣ρj,ns − ρ̄js∣∣+

∣∣An,ms − Ān,ms
∣∣] ds

= K1

∫ t

0

E
[∣∣ρi,ns − ρ̄is∣∣] ds+K1

∫ t

0

E
[∣∣An,ms − Ān,ms

∣∣] ds, t ≥ 0. (A.2)

By (2.3) and (3.15) we have that∫ t

0

E
[∣∣An,ms − Ān,ms

∣∣] ds ≤ ∫ t

0

E
[ 1

m+ n

n∑
r=1

|ρr,ns − ρ̄rs|
]
ds+

∫ t

0

E
[ 1

m+ n

m∑
k=1

∣∣ρh,Bs − ρ̄h,Bs
∣∣ ]ds

27



≤
∫ t

0

E
[∣∣ρi,ns − ρ̄is∣∣] ds+

∫ t

0

E
[∣∣ρk,Bs − ρ̄k,Bs

∣∣] ds, t ≥ 0, (A.3)

because all ρi, i = 1, . . . , n, and ρk,B, k = 1, . . . ,m, are identically distributed.

We can conclude by (A.2) and (A.3) that∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns − An,ms )(ρj,ns − An,ms )− fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms ))
∣∣∣]ds

≤ 2K1

∫ t

0

E
[∣∣ρi,ns − ρ̄is∣∣] ds+K1

∫ t

0

E
[∣∣ρk,Bs − ρ̄k,Bs

∣∣] ds
≤ 2K1

∫ t

0

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+K1

∫ t

0

E
[∣∣ρk,B − ρ̄k,B∣∣∗

s

]
ds, t ≥ 0. (A.4)

Similarly,∫ t

0

E

[∣∣∣ 1

m

m∑
k=1

(
fB(ρk,Bs − An,ms )(ρk,Bs − An,ms )− fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )

) ∣∣∣]ds
≤ K1

∫ t

0

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ 2K1

∫ t

0

E
[∣∣ρk,B − ρ̄k,B∣∣∗

s

]
ds t ≥ 0. (A.5)

From (A.1), (A.3), (A.4) and (A.5) we have that

E[|ρi,n − ρ̄i|∗t ]

≤ (3K1 + 2)

∫ t

0

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (3K1 + 1)

∫ t

0

E
[∣∣ρk,B − ρ̄k,B∣∣∗

s

]
ds

+

∫ t

0

E

[ ∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ t

0

E
[
|Ān,ms − E[ρ̃is]− νs|

]
ds, t ≥ 0. (A.6)

Proceeding as before, we find

E[|ρk,B − ρ̄k,B|∗t ]

≤ (3K1 + 1)

∫ t

0

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (3K1 + 2)

∫ t

0

E
[∣∣ρk,B − ρ̄k,B∣∣∗

s

]
ds

+

∫ t

0

E

[ ∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
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+

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is|]

]
ds, (A.7)

so that, summing up (A.6) and (A.7), we have

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,B − ρ̄k,B|∗t ]

≤ (6K1 + 3)

∫ t

0

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (6K1 + 3)

∫ t

0

E
[∣∣ρk,B − ρ̄k,B∣∣∗

s

]
ds

+ 2

∫ t

0

E

[ ∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νns − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is|]

]
ds, t ≥ 0. (A.8)

We can now apply Gronwall’s Lemma and obtain

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,Bt − ρ̄k,Bt |∗s]

≤ e(6K1+3)t

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ e(6K1+3)t

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2e(6K1+3)t

∫ t

0

E

[ ∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νs − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds
+ 2e(6K1+3)t

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is|]

]
ds, t ≥ 0. (A.9)

We can write∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
≤
(

1

n− 1
− 1

n

)∫ t

0

E

[∣∣∣ n∑
j=1,j 6=i

fP (ρ̄js − Ān,ms )(ρ̄js − Ān,ms )
∣∣∣]ds

+

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )− E
[
fP
(
ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
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+
1

n

∫ t

0

E
[∣∣fP (ρ̃is − E[ρ̃is]

) (
ρ̃is − E[ρ̃is]

) ∣∣] ds t ≥ 0,

with (
1

n− 1
− 1

n

)∫ t

0

E

[∣∣∣ n∑
j=1,j 6=i

fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )
∣∣∣]ds

≤ 1

n(n− 1)

∫ t

0

n∑
j=1,j 6=i

E[|fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )|]ds

=
1

n

∫ t

0

E[|fP (ρ̄is − Ān,ms )(ρ̄is − Ān,ms )|]ds ≤ K1

n

∫ t

0

E[|ρ̄is − Ān,ms |]ds, t ≥ 0,

where the last term tends to zero when n→∞ by (3.18).

Since it can be shown, for t ≥ 0, that

lim
n→∞

∫ t

0

E

[ ∣∣fB(ρ̄k,Bs − Ān,ms )(ρ̄k,Bs − Ān,ms )− fB(ρ̄k,Bs − νs − E[ρ̃is])(ρ̄
k,B
s − νs − E[ρ̃is])

∣∣ ]ds = 0,

and

lim
n→∞

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is|]

]
ds = 0, t ≥ 0, (A.10)

with the same proof as for (3.18), then by (3.14) we obtain the result for t ∈ [0, δ).

Second step: case t ∈ [δ, 2δ).

For every i = 1, . . . , n and t ≥ δ, we have

|ρi,nt − ρ̄it| ≤
∣∣∣∣∫ δ

0

(ρi,ns − ρ̄is)ds+

∫ t

δ

∆δ,n
s ds

∣∣∣∣ ,
where

∆δ,n
s =

1

n− 1

n∑
j=1,j 6=i

fP (ρj,ns−δ − A
n,m
s−δ)(ρ

j,n
s − An,ms )− E

[
fP
(
ρ̃it−δ − E[ρ̃it−δ]

) (
ρ̃it − E[ρ̃it]

)]
+

1

m

m∑
k=1

(
fB(ρk,Bs−δ − A

n,m
s−δ)(ρ

k,B
s − An,ms )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄

k,B
s − νs − E[ρ̃is])

)
− (ρi,ns − ρ̄is) + (An,ms − Ān,ms ) + (Ān,ms − E[ρ̃is]− νs|).

Thus

|ρi,n − ρ̄i|∗t = sup
s≤t

∣∣∣∣∫ δ

0

(ρi,nu − ρ̄iu)du+

∫ s

δ

∆δ,n
u du

∣∣∣∣ ≤ ∫ δ

0

|ρi,nu − ρ̄iu|du+ sup
δ≤s≤t

∫ s

δ

∣∣∆δ,n
u

∣∣ du
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=

∫ δ

0

|ρi,nu − ρ̄iu|du+

∫ t

δ

∣∣∆δ,n
u

∣∣ du, δ ≤ t. (A.11)

For every i = 1, . . . , n, we have

E

[∫ t

δ

|∆δ,n
s |ds

]
≤
∫ t

δ

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ − A
n,m
s−δ)(ρ

j,n
s − An,ms )− fP (ρ̄js−δ − Ā

n,m
s−δ)(ρ̄

j
s − Ān,ms ))

∣∣∣]ds
+

∫ t

δ

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n,m
s−δ)(ρ̄

j
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ t

δ

E

[∣∣∣ 1

m

m∑
k=1

(
fB(ρk,Bs−δ − A

n,m
s−δ)(ρ

k,B
s − An,ms )− fB(ρ̄k,Bs−δ − Ā

n,m
s−δ)(ρ̄

k,B
s − Ān,ms )

) ∣∣∣]ds
+

∫ t

δ

E

[
1

m

m∑
k=1

∣∣∣fB(ρ̄k,Bs−δ − Ā
n,m
s−δ)(ρ̄

k,B
s − Ān,ms )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄

k,B
s − νs − E[ρ̃is])

∣∣∣ ]ds
+

∫ t

δ

E[|ρi,ns − ρ̄is|]ds+

∫ t

0

E[|An,ms − Ān,ms |]ds+

∫ t

0

E
[
|Ān,ms − E[ρ̃is]− νs|

]
ds, δ ≤ t.

(A.12)

By (2.10),∫ t

δ

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ − A
n,m
s−δ)(ρ

j,n
s − An,ms )− fP (ρ̄js−δ − Ā

n,m
s−δ)(ρ̄

j
s − Ān,ms ))

∣∣∣]ds
≤ 1

n− 1

n∑
j=1,j 6=i

∫ t

δ

E

[∣∣∣fP (ρj,ns−δ − A
n,m
s−δ)

(
(ρj,ns − An,ms )− (ρ̄js − Ān,ms )

) ∣∣∣]ds
+

1

n− 1

n∑
j=1,j 6=i

∫ t

δ

E

[∣∣∣(ρ̄js − Ān,ms )
(
fP (ρj,ns−δ − A

n,m
s−δ)− f

P (ρ̄js−δ − Ā
n,m
s−δ)

) ∣∣∣]ds
≤ K1

∫ t

δ

E[|ρi,ns − ρ̄is|]ds+K1

∫ t

δ

E[|An,ms − Ān,ms |]ds

+

∫ t

δ

E
[∣∣ρ̄is − Ān,ms ∣∣ ∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣] ds. (A.13)

We have that for δ ≤ t∫ t

δ

E
[∣∣ρ̄is − Ān,ms ∣∣ ∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣] ds
≤
∫ t

δ

(
E
[∣∣ρ̄is − Ān,ms ∣∣2]ds)1/2 (

E
[∣∣fP (ρi,ns−δ − A

n,m
s )− fP (ρ̄is−δ − Ān,ms )

∣∣2])1/2

ds
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≤
(∫ t

δ

E
[∣∣ρ̄is − Ān,ms ∣∣2] ds)1/2(∫ t

δ

E
[∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣2] ds)1/2

≤
(∫ t

δ

E
[∣∣ρ̄is − Ān,ms ∣∣2] ds)1/2(∫ t

δ

E
[∣∣fP (ρi,ns−δ − A

n,m
s−δ)

2 − fP (ρ̄is−δ − Ā
n,m
s−δ)

2
∣∣] ds)1/2

≤
√

2K1

(∫ t

δ

E
[∣∣ρ̄is − Ān,ms ∣∣2] ds)1/2(∫ t

δ

E
[∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣] ds)1/2

,

where we have used that |a− b|2 ≤ |a2 − b2| for a, b ∈ R+.

Then, setting Gn
1 (t) :=

(∫ t
δ

E
[∣∣ρ̄is − Ān,ms ∣∣2] ds)1/2

, by (A.13) we have

∫ t

δ

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ − A
n,m
s−δ)(ρ

j,n
s − An,ms )− fP (ρ̄js−δ − Ā

n,m
s−δ)(ρ̄

j
s − Ān,ms ))

∣∣∣]ds
≤ K1

∫ t

δ

E[|ρi,ns − ρ̄is|]ds+K1

∫ t

δ

E[|An,ms − Ān,ms |]ds

+
√

2K1G
n
1 (t)

(∫ t

δ

E
[∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣] ds)1/2

, δ ≤ t. (A.14)

For δ ≤ t < 2δ,∫ t

δ

E
[∣∣fP (ρi,ns−δ − A

n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣] ds = E

[∫ t

δ

(∣∣fP (ρi,ns−δ − A
n,m
s−δ)− f

P (ρ̄is−δ − Ā
n,m
s−δ)

∣∣) ds]
= E

[∫ t−δ

0

(∣∣fP (ρi,nu − An,mu )− fP (ρ̄iu − Ān,mu )
∣∣) du] ≤ ∫ δ

0

E[
∣∣fP (ρi,nu − An,mu )− fP (ρ̄iu − Ān,mu )

∣∣]du,
thus we can rewrite (A.14) as∫ t

δ

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

(fP (ρj,ns−δ − A
n,m
s−δ)(ρ

j,n
s − An,ms )− fP (ρ̄js−δ − Ā

n,m
s−δ)(ρ̄

j
s − Ān,ms ))

∣∣∣]ds
≤ K1

∫ t

δ

E[|ρi,ns − ρ̄is|]ds+K1

∫ t

δ

E[|An,ms − Ān,ms |]ds

+
√

2K1G
n
1 (t)

(∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − Ān,ms )

∣∣] ds)1/2

, δ ≤ t ≤ 2δ. (A.15)

Similarly,∫ t

0

E

[∣∣∣ 1

m

m∑
k=1

(
fB(ρk,Bs−δ − A

n,m
s−δ)(ρ

k,B
s − An,ms )− fB(ρ̄k,Bs−δ − Ā

n,m
s−δ)(ρ̄

k,B
s − Ān,ms )

) ∣∣∣]ds
≤ K1

∫ t

δ

E[|ρk,Bs − ρ̄k,Bs |]ds+K1

∫ t

δ

E[|An,ms − Ān,ms |]ds
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+
√

2K1G
n
2 (t)

(∫ δ

0

E
[∣∣fB(ρi,ns − An,ms )− fB(ρ̄is − Ān,ms )

∣∣] ds)1/2

, δ ≤ t. (A.16)

with Gn
2 (t) :=

(∫ t
δ

E
[∣∣ρ̄k,Bs − Ān,ms

∣∣2] ds)1/2

. From (A.3), (A.11), (A.12), (A.15) and (A.16)

we obtain

E[|ρi,n − ρ̄i|∗t ]

≤ (3K1 + 2)

∫ t

δ

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (3K1 + 1)

∫ t

δ

E[|ρk,B − ρ̄k,B|∗s]ds

+
√

2K1G
n
1 (t)

(∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − Ān,ms )

∣∣] ds)1/2

+
√

2K1G
n
2 (t)

(∫ δ

0

E
[∣∣fB(ρi,ns − An,ms )− fB(ρ̄is − Ān,ms )

∣∣] ds)1/2

+

∫ t

0

E

[ ∣∣∣fB(ρ̄k,Bs−δ − Ā
n,m
s−δ)(ρ̄

k,B
s − Ān,ms )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄

k,B
s − νs − E[ρ̃is])

∣∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n,m
s−δ)(ρ̄

j
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ δ

0

E[|ρi,ns − ρ̄is|]ds+

∫ t

0

E
[
|Ān,ms − E[ρ̃is]− νs|

]
ds, δ ≤ t < 2δ. (A.17)

At the same way, by (2.2) and (3.3) we have

E[|ρk,B − ρ̄k,B|∗t ]

≤ (3K1 + 1)

∫ t

δ

E
[∣∣ρi,n − ρ̄i∣∣∗

s

]
ds+ (3K1 + 2)

∫ t

δ

E[|ρk,B − ρ̄k,B|∗s]ds

+
√

2K1G
n
1 (t)

(∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − Ān,ms )

∣∣] ds)1/2

+
√

2K1G
n
2 (t)

(∫ δ

0

E
[∣∣fB(ρi,ns − An,ms )− fB(ρ̄is − Ān,ms )

∣∣] ds)1/2

+

∫ t

0

E

[ ∣∣∣fB(ρ̄k,Bs−δ − Ā
n,m
s−δ)(ρ̄

k,B
s − Ān,ms )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄

k,B
s − νs − E[ρ̃is])

∣∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ δ

0

E[|ρk,Bs − ρ̄k,Bs |]ds+

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is]|

]
ds, δ ≤ t < 2δ. (A.18)

Summing up (A.17) and (A.18) we find

E[|ρi,n − ρ̄i|∗t ] + E[|ρk,B − ρ̄k,B|∗t ]
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≤ (6K1 + 3)

∫ t

0

(
E[|ρi,n − ρ̄i|∗s] + E[|ρk,B − ρ̄k,B|∗s]

)
ds

+ 2
√

2K1G
n
1 (t)

(∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − Ān,ms )

∣∣] ds)1/2

(A.19)

+ 2
√

2K1G
n
2 (t)

(∫ δ

0

E
[∣∣fB(ρi,ns − An,ms )− fB(ρ̄is − Ān,ms )

∣∣] ds)1/2

(A.20)

+

∫ t

0

E

[ ∣∣∣fB(ρ̄k,Bs−δ − Ā
n,m
s−δ)(ρ̄

k,B
s − Ān,ms )− fB(ρ̄k,Bs−δ − νs−δ − E[ρ̃is−δ])(ρ̄

k,B
s − νs − E[ρ̃is])

∣∣∣ ]ds
+

∫ t

0

E

[∣∣∣ 1

n− 1

n∑
j=1,j 6=i

fP (ρ̄js−δ − Ā
n,m
s−δ)(ρ̄

j
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+

∫ t

0

E

[∣∣∣ 1
n

n∑
i=1

fP (ρ̄is−δ − Ā
n,m
s−δ)(ρ̄

i
s − Ān,ms )− E

[
fP
(
ρ̃is−δ − E[ρ̃is−δ]

) (
ρ̃is − E[ρ̃is]

)] ∣∣∣]ds
+ 2

∫ t

0

E
[
|Ān,ms − νs − E[ν̃is|]

]
ds, δ ≤ t < 2δ. (A.21)

With the same computations used in the first step of the proof, we show that the last four

terms of (A.21) converge to zero when n→∞ by the proof of Proposition 3.3.

It remains to show that (A.19) and (A.20) tend to zero. We write∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − Ān,ms )

∣∣] ds
≤
∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − νs − E[ρ̃is])

∣∣] ds
+

∫ δ

0

E
[∣∣fP (ρ̄is − νs − E[ρ̃is])− fP (ρ̄is − Ān,ms )

∣∣] ds. (A.22)

We now show that the terms in (A.22) tend to 0 by the dominated convergence theorem. To

this purpose, we first note that we have∫ δ

0

E[|ρi,ns − An,ms − (ρ̄is − νs − E[ρ̃is])|]ds ≤
∫ δ

0

E[|ρi,ns − ρ̄is|]ds+

∫ δ

0

E[|An,ms − νs − E[ρ̃is]|]ds

≤
∫ δ

0

E[|ρi,ns − ρ̄is|]ds+

∫ δ

0

E[|An,ms − Ān,ms |]ds+

∫ δ

0

E[|Ān,ms − νs − E[ρ̃is]|]ds

≤ 2

∫ δ

0

E[|ρi,ns − ρ̄is|]ds+

∫ δ

0

E[|ρk,Bs − ρ̄k,Bs |]ds+

∫ δ

0

E[|Ān,ms − νs − E[ρ̃is]|]ds

by (A.3). By the first step of the proof, the first two integrals above tend to zero when

n→∞, since ∫ δ

0

E[|ρi,ns − ρ̄is|]ds ≤
∫ δ

0

E[|ρi,n − ρ̄i|∗δ ]ds = δE[|ρi,n − ρ̄i|∗δ ], (A.23)
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whereas

lim
n→∞

∫ δ

0

E[|Ān,ms − νs − E[ρ̃is]|]ds = 0

by (A.10). Moreover,∫ δ

0

E[|ρ̄is − νs − E[ρ̃is]− (ρ̄is − Ān,ms )|]ds =

∫ δ

0

E[|Ān,ms − νs − E[ρ̃is]|ds, (A.24)

which goes to zero when n→∞ as shown above.

We have then proved that for all m, (ρi,ns − An,ms )n∈N and (ρ̄i,ns − Ān,ms )n∈N convergence to

ρ̄is − νs − E[ρ̃is] in L1([0, δ]× Ω, dt ⊗ P ). This implies that for all m, (ρi,ns − An,ms )n∈N and

(ρ̄i,ns − Ān,ms )n∈N converge to ρ̄is − νs − E[ρ̃is] in measure with respect to dt⊗ P on [0, δ]×Ω.

By the continuous mapping theorem, since fP is continuous it follows that
(
fP (ρi,ns − An,ms )

)
n∈N

and
(
fP (ρ̄i,ns − Ān,ms )

)
n∈N

converge to fP (ρ̄is − νs − E[ρ̃is]) in measure with respect to dt⊗P
on [0, δ] × Ω. By (2.10), we can apply the dominated convergence theorem, see Theorem 2

in Chapter 6 of Chow and Teicher [23], and obtain that∫ δ

0

E
[∣∣fP (ρi,ns − An,ms )− fP (ρ̄is − νs − E[ρ̃is])

∣∣] ds −−−→
n→∞

0

and ∫ δ

0

E
[∣∣fP (ρ̄is − νs − E[ρ̃is])− fP (ρ̄is − Ān,ms )

∣∣] ds −−−→
n→∞

0.

Hence (A.19) converges to zero when n → ∞, by (A.22). Analogously, we can prove the

same for (A.20).

Then applying Gronwall’s Lemma to (A.21) we prove the result for t ∈ [δ, 2δ). The result

then follows by proceeding in the same way for all the steps t ∈ [kδ, (k + 1)δ), k ≥ 2. 2
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[11] G. Bianconi and A.L. Barabàsi. Competition and multiscaling in evolving networks.

Europhys, Lett, 54(4):436–442, 2001.

[12] D. Bisias, M. Flood, A. W. Lo, and S. Valavanis. A survey of systemic risk analytics.

Annual Review of Economics, 4(1):255–296, 2012.

[13] L. Bo and A. Capponi. Systemic risk in interbanking networks. SIAM Journal on

Financial Mathematics, 6(1):386–424, 2015.

[14] M.K. Brunnermeier. Bubbles. New Palgrave Dictionary of Economics, Second Edition,

2008.

[15] M.K. Brunnermeier and M. Oehmke. Bubbles, financial crises, and systemic risk. In

Handbook of the Economics of Finance, volume 2, pages 1221–1288. Elsevier, 2013.

[16] M.K. Brunnermeier and I. Schnabel. Bubbles and central banks: Historical perspectives.

2015.

[17] R. Carmona, J.-P. Fouque, and L.-H. Sun. Mean field games and systemic risk. Com-

munications in Mathematical Sciences, 13(4):911–933, 2015.

36



[18] R. Carmona, J.-P. Fouque, S.M. Mousavi, and L.-H. Sun. Systemic risk and stochastic

games with delay. Journal of Optimization Theory and Applications, pages 1–34, 2016.

[19] C. Chen, G. Iyengar, and C. C. Moallemi. An axiomatic approach to systemic risk.

Management Science, 59(6):1373–1388, 2013.

[20] Y. Choi and R. Douady. Chaos and Bifurcation in 2007-08 Financial Crisis. Management

Science, 2011.

[21] Youngna Choi and Raphael Douady. Financial crisis and contagion: A dynamical sys-

tems approach. Handbook on systemic risk, page 453, 2013.
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