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Abstract

We prove a necessary and sufficient condition in terms of the barycen-
ters of a collection of polytopes for existence of coupled Kähler-Einstein
metrics on toric Fano manifolds. This confirms the toric case of a coupled
version of the Yau-Tian-Donaldson conjecture and as a corollary we ob-
tain an example of a coupled Kähler-Einstein metric on a manifold which
does not admit Kähler-Einstein metrics. We also obtain a necessary and
sufficient condition for existence of torus-invariant solutions to a system
of soliton type equations on toric Fano manifolds.

1 Introduction

Given a compact Kähler manifold (X,ω), an important question in complex
geometry is the problem of finding a metric of constant scalar curvature in the
Kähler class [ω]. It has been known for a long time that there are deep obstruc-
tions to existence of these metrics. In the case when [ω] = ±c1(X), constant
scalar curvature metrics coincide with Kähler-Einstein metrics, i.e. metrics that
are proportional to their Ricci tensor. It was recently showed [CDS15] that exis-
tence of such metrics is equivalent to a certain algebraic stability condition: K-
polystability (see also [Tia15]). A similar stability condition for general Kähler
classes is conjectured to be equivalent to existence of constant scalar curvature
metrics. However, except for some special classes of manifolds (see [Don09])
this is open. It should also be pointed out that even in the light of [CDS15], de-
termining if a given manifold admits a Kähler-Einstein metric is not a straight
forward task. The condition of K-polystability is not readily checkable. On
the other hand, a large class of manifolds where existence of Kähler-Einstein
metrics reduces to a simple criterion is given by toric Fano manifolds. Here, as
was originally proved in [WZ04], existence of Kähler-Einstein metrics is equiv-
alent to the condition that the barycenter of the polytope associated to the
anti-canonical polarization is the origin. In addition, [WZ04] proves that any
toric Fano manifold admits a Kähler-Ricci soliton, in other words a metric ω
such that

Ricω = LV (ω) + ω (1)

for a holomorphic vector field V . Here LV denotes Lie derivative along V .
These appear as natural long time solutions to the Kähler-Ricci flow and have
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attracted great interest over the years. (see for example [Ham93], [Ham95],
[Cao97] and [Tia97]).

In a recent paper Witt Nyström together with the present author introduced
the concept of coupled Kähler-Einstein metrics [HWN18]. These are k-tuples of
Kähler metrics (ω1, . . . , ωk) on a compact Kähler manifold X satisfying

Ricω1 = . . . = Ricωk = ±
∑
i

ωi. (2)

These generalizes Kähler-Einstein metrics in the sense that that for k = 1 this
equation reduces to the classical equation

Ricω1 = ±ω1

defining Kähler-Einstein metrics. Moreover, (2) implies a cohmological condi-
tion on ω1, . . . , ωk, namely ∑

i

[ωi] = ±c1(X). (3)

We see that, similarly as for Kähler-Einstein metrics, the theory splits into two
cases: c1(X) < 0 and c1(X) > 0. Now, as in [HWN18] we will say that a
k-tuple of Kähler classes (α1, . . . , αk) such that

∑
i αi = ±c1(X) is a decompo-

sition of ±c1(X) and given a decomposition of c1(X) we will say that it admits
a coupled Kähler-Einstein metric if there is a coupled Kähler-Einstein metric
(ω1, . . . , ωk) such that [ωi] = αi for all i. In [HWN18] it was shown that fixing
a decomposition of c1(X) imposes the right boundary conditions on (2) in the
sense that:

• If c1(X) < 0, then any decomposition of −c1(X) admits a unique coupled
Kähler-Einstein metric.

• If c1(X) > 0, then any coupled Kähler-Einstein metric admitted by a
given decomposition of c1(X) is unique up to the flow of holomorphic
vector fields.

Moreover, it was shown that if c1(X) > 0 and (ω1, . . . , ωk) is a coupled Kähler-
Einstein metric, then the associated k-tuple of Kähler classes ([ω1], . . . , [ωk])
satisfies a certain algebraic stability condition which, by analogy, was called K-
polystability. It was also conjectured that the converse of this holds, providing
a ”coupled” Yau-Tian-Donaldson conjecture:

Conjecture 1. [HWN18] Assume c1(X) > 0. Then a decomposition of c1(X)
admits a coupled Kähler-Einstein metric if and only if it is K-polystable.

Our main theorem confirms this conjecture in the toric case and provides a
simple condition for K-polystability in terms of the barycenters of a collection of
polytopes associated to (α1, . . . , αk). More precisely, consider the anti-canonical
line bundle −KX over a toric Fano manifold X. Fixing the action of (C∗)n on
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X, this defines a polytope P−KX in the vector space M ⊗ R where M is the
character lattice of (C∗)n. For a general Kähler class that arise as the curvature
of a toric line bundle, this correspondence is well defined up to translation of
the polytope (or equivalently, up to choice of action on the toric line bundle).
Moreover, the correspondence trivially extends to all Kähler classes that can be
written as linear combinations with positive real coefficients of Kähler classes
of this type. By general facts (see Lemma 7 and the discussion following it)
this holds for any Kähler class on a toric Fano manifold. This means that
a decomposition of c1(X) determines (up to translations) a set of polytopes
P1, . . . , Pk in Rn. Moreover, the condition

∑
i αi = c1(X) means the polytopes

can be chosen so that the Minkowski sum∑
i

Pi = P−KX . (4)

Enforcing this, we note that the polytopes associated to a decomposition of
c1(X) are well defined up to translations

(P1, . . . , Pk) 7→ (P1 + c1, . . . , Pk + ck)

where c1, . . . , ck ∈ Rn satisfies
∑
i ci = 0.

Now, given a polytope P in Rn we will let b(P ) be the (normalized) barycen-
ter of P

b(P ) =
1

Vol(P )

∫
P

pdp

where dp is the uniform measure on P and Vol(P ) =
∫
P
dp. Note that b(P+c) =

b(P )+c, hence, assuming (4), the quantity
∑
i b(Pi) is independent of the choices

of translation of P1, . . . , Pk. Our main theorem is:

Theorem 1. Let X be a toric Fano manifold. Assume (αi) is a decomposition
of c1(X) and P1, . . . , Pk are the associated polytopes. Then the following is
equivalent:

• (αi) admits a coupled Kähler-Einstein tuple

• (αi) is K-polystable in the sense of [HWN18]

•
∑
i b(Pi) = 0

Remark 1. One important point is
∑
i b(Pi) is not in general equal to

b

(∑
i

Pi

)
= b(P−KX ),

hence the condition on P1, . . . , Pk in Theorem 1 is not (a priori) equivalent to
existence of a classical Kähler-Einstein metric. In fact, non of these conditions
imply the other. By Corollary 1 below, there is an example of a manifold that
don’t admit Kähler-Einstein metrics but do admit coupled Kähler-Einstein met-
rics. Moreover, by Remark 3 there is an example of a Kähler-Einstein manifold
with decompositions of c1(X) that don’t admit coupled Kähler-Einstein metrics.
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Corollary 1. Let E be the rank 2 vector bundle

E = OP2(−1)⊕OP1(−1)

over P2 × P1 and consider the toric four-manifold X = P(E). Then X does
not admit a Kähler-Einstein metric. On the other hand, let π : X → P1 be the
natural projection onto P1 and β1, β2 ∈ H(1,1)(X) be the classes corresponding
to the divisors given by π−1(0) and π−1(∞), respectively. Then

α1 =
c1(X)

2
−

√
5
7 (β1 + β2)

4
, α2 =

c1(X)

2
+

√
5
7 (β1 + β2)

4
(5)

are Kähler and the decomposition of c1(X) given by (α1, α2) admits a coupled
Kähler-Einstein metric.

Remark 2. It would be interesting to see if there are simpler examples than
the one given in Corollary 1 of manifolds which admit coupled Kähler-Einstein
metrics but no Kähler-Einstein metrics. However, by Corollary 1.6 in [HWN18],
the automorphism group of any manifold that admits a coupled Kähler-Einstein
metric is reductive. Among other things, this rules out P2 blown up in one or
two points.

Remark 3. The following is an example of a decomposition of c1(X) on an
Einstein manifold that does not admit a coupled Kähler-Einstein metric. Let
X be the toric Fano manifold acquired by blowing up P2 in three points and D
be the (S1)n-invariant divisor in X that corresponds to the ray generated by
(1, 1) in the fan of X. Let Dt = −KX/2 + tD. We have Dt + D−t = −KX .
Computer calculations shows that

b (PDt) + b
(
PD−t

)
6= 0

for small t, in other words the decomposition of c1(X) given by (c1(Dt), c1(D−t))
does not admit a coupled Kähler-Einstein metric for small t.

Remark 4. As discussed in [HWN18], fixing a Kähler class α on X we get a
family of decompositions of c1(X)

{(tα, c1(X)− tα) : t ∈ (0, tα)},

where tα = sup{t : c1(X) − tα > 0}. Assuming they admit coupled Kähler-
Einstein metrics (ηt1, η

t
2) we get a canonical family of metrics {ωt := ηt1/t} in α.

Now, let X be a toric Fano surface. By Theorem 1, (tα, α − c1(X)) admits a
coupled Kähler-Einstein metric if and only if

tb(PLα) + b(P−KX−tLα) = 0 (6)

where Lα is a toric (R-)line bundle such that c1(Lα) = α. On the other hand, it
was proven in [Don09] that α admits a constant scalar curvature metric if and
only if ∫

∂PLα
fdσ∫

∂PLα
dσ
−

∫
PLα

fdp∫
PLα

dp
≥ 0 (7)
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for every convex function f on the closure of PLα , with equality if and only if f
is affine linear. Here dσ is the measure on ∂PLα defined by the identity

d

dt

(∫
PLα+tP−KX

hdp

)∣∣∣∣∣
t=0

=

∫
∂PLα

hdσ

for all functions h continuous in a neighbourhood of P . In particular, for affine
linear functions f , (7) reduces to the barycenter condition

b(PLα) = b(dσ) =

∫
∂PLα

σdσ∫
∂PLα

dσ
. (8)

It would be interesting to understand the relationship of (6) with the conditions
(7) and (8).

Our second result considers a more general (soliton type) version of (2),
namely, given holomorphic vector fields V1, . . . , Vk

Ricω1 − LV1
(ω1) = . . . = Ricωk − LVk(ωk) =

∑
i

ωi. (9)

We will say that a k-tuple of Kähler metrics satsifying (2) is a coupled Kähler-
Ricci soliton. When k = 1, (9) reduces to (1) and defines classical Kähler-Ricci
solitons. As mentioned above these appear as natural solutions to the Kähler-
Ricci flow. In fact, a similar interpretation in terms of natural solutions to a
geometric flow can be given for (9). Given k Kähler metrics ω0

1 , . . . , ω
0
k we may

consider the flow defined by

d

dt
ωt1 = Ricωt1 −

∑
i

ωti

...
d

dt
ωtk = Ricωtk −

∑
i

ωti , (10)

for t ∈ [0,∞). Stationary solutions to (10) are given by coupled Kähler-Einstein
metrics, i.e. solutions to (2). On the other hand, putting V1 = . . . = Vk = V
and letting (ωti) be the flow along V of a k-tuple (ω0

i ) satisfying (9) means (ωti)
will satisfy (9) for each t. Plugging this into the right hand side of (10) gives

Ricωtj −
∑
i

ωti = LV
(
ωtj
)

for all j. By definition d
dtω

t
j = LV (ωtj) for all j, hence (ωti) satisfies (10).

To state our second result we need some terminology. Note that a point
in the vector space that is dual to M ⊗ R, namely N ⊗ R where N is the lat-
tice consisting of one parameter subgroups in (C∗)n, determines a holomorphic
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vector field on X. We will call any holomorphic vector field on X that arise
in this manner a toric vector field. These can be given a concrete description
in the following way: By definition, the action of (C∗)n on X admits an open,
dense and free orbit. Identifying (C∗)n with this orbit and letting σ1, . . . , σn be
the standard logarithmic coordinates on (C∗)n the toric vector fields are simply
the vector fields that arise as linear combinations of the coordinate vector fields
∂
∂σ1

, . . . , ∂
∂σk

. We will often identify a toric vector field with its associated point
in N ⊗ R.

In this context there is a natural vector valued invariant AV (P ) determined
by a polytope P in Rn = M ⊗R and a point V in the dual vector space N ⊗R.
To define it we first introduce the V -weighted volume of P

VolV (P ) =

∫
P

e〈V,p〉dp.

Then AV (P ) is given by

AP (V ) =
1

VolV (P )

∫
P

pe〈V,p〉dp. (11)

With respect to this we have:

Theorem 2. Let V1, . . . , Vk be toric vector fields on a toric Fano manifold
X. Assume (α1, . . . , αk) is a decomposition of c1(X) and P1, . . . , Pk are the
associated polytopes. Then there is a (S1)n-invariant solution (ω1, . . . , ωk) to
(9) such that ωi ∈ αi for each i if and only if∑

i

APi(Vi) = 0. (12)

Remark 5. Similarly as in Theorem 1, the polytopes P1, . . . , Pk associated to
(α1, . . . , αk) are only well defined up to translations Pi → Pi + ci for ci ∈ Rn
satisfying

∑
i ci = 0. On the other hand, similarly as the barycenter, AV (P )

satisfies
AP+c(V ) = AP (V ) + c,

hence the left hand side of (12) is invariant under such translations.

Remark 6. Theorem 2 is a generalization of Wang and Zhu’s theorem on
existence of Kähler-Ricci solitons on toric manifolds [WZ04]. See also [BB13]
and [Del17] for generalizations in other directions.

A straight forward corollary of Theorem 2, using that (11) is the gradient of
a strictly convex and proper function on Rn, is:

Corollary 2. Let (αi) be a decomposition of c1(X) on a toric Fano mani-
fold. Then there is a unique toric vector field V such that (αi) admits a (S1)n-
invariant coupled Kähler-Ricci soliton where V1 = . . . = Vk = V .
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Remark 7. Naturally, we expect solutions of the flow (10) to converge to the
Kähler-Ricci solitons in Corollary 2. This parallels the theory in the case k = 1
(see [TZ07]). On the other hand, it is interesting to note that by Theorem 2
there exist a large class of solitons that does not appear as natural solutions to
(10) in the sense discussed above (this happens whenever Vi 6= Vj for some i
and j). This suggests that there is a more general flow, which includes (10) as
a special case, and where the solitons of Theorem 2 appear as natural solutions.

A second corollary of Theorem 2 is related to the corresponding real Monge-
Ampère equation. Let f1, . . . , fk be twice differentiable convex functions on Rn.
Let ∇fi denote the gradient of fi. Then, given a decomposition (α1, . . . , αk)
and associated polytopes P1, . . . , Pk, existence of coupled Kähler-Ricci solitons
is equivalent to the solvability of the equation

e〈V1,∇f1〉

VolV1
(P1)

det

(
d2f1

dxldxm

)
= . . . =

e〈Vk,∇fk〉

VolVk(Pk)
det

(
d2fk
dxldxm

)
= e−

∑
i fi (13)

under the boundary conditions

∇fi(Rn) = Pi (14)

where the left hand side of (14) denotes the closure of the image of ∇fi in Rn.
We will say that a k-tuple of polytopes in Rn is toric Fano if it is defined by a
decomposition of c1(X) on a toric Fano manifold.

Corollary 3. Assume P1, . . . , Pk is a toric Fano k-tuple of polytopes and V1, . . . , Vk ∈
Rn. Then (13) admits a solution satisfying (14) if and only if∑

i

APi(Vi) = 0.

In particular, if V1 = . . . = Vk = 0 then (13) admits a solution satisfying (14)
if and only if ∑

i

b(Pi) = 0.

Theorem 1 essentially follows from considering the case V1 = . . . = Vk = 0 in
Theorem 2. Doing this gives that the third point in Theorem 1 implies the first
point. As mentioned above, by a previous result (Theorem 1.15 in [HWN18])
the first point implies the second point. Finally, an explicit formula for the
(coupled) Donaldson-Futaki invariant of test configurations induced by toric
vector fields shows that the second point implies the third point. To be more
precise, if V is a toric vector field and (αi) is a decomposition of c1(X) with
associated polytopes P1, . . . , Pk, then the test configuration for (αi) induced by
V has Donaldson-Futaki invariant〈

V,
∑
i

b(Pi)

〉
.
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It follows that if
∑
i b(Pi) 6= 0, then there is a test configuration for (αi) with

negative Donaldson-Futaki invariant. By definition, this means (αi) is not K-
polystable (see Section 3.2 for a detailed argument).

The main point in the proof of Theorem 2 is to establish a priori C0-estimates
along an associated continuity path. More precisely, let θ1, . . . , θk be Kähler
metrics such that [θi] = αi. Assume, using the Calabi-Yau theorem, that ω0 is a
Kähler form such that Ricω0 =

∑
i θi and

∫
X
ωn0 = 1. For each i, let gi = gθi,Vi

be a θi-plurisubharmonic function on X such that

ddcgi = LVi(θi)

and
∫
X
egiθni = 1 (see Lemma 1). For t ∈ [0, 1] we will consider the equation

eg1+V1(φ1) (θ1 + ddcφ1)
n

= . . . = egk+Vk(φk) (θk + ddcφk)
n

= e−t
∑
i φiωn0 . (15)

Moreover, fixing a point x0 ∈ X we will assume solutions to (15) are normalized
according to

φ1(x0) = . . . = φk(x0). (16)

The significance of these equations is that for t = 1, a k-tuple of functions
φ1, . . . , φk such that each φi is θi-plurisubharmonic solves (15) if and only if the
k-tuple of Kähler metrics (θi + ddcφi) is a coupled Kähler Ricci soliton. We
prove:

Theorem 3. Let Vi, αi and Pi be as in Theorem 2 and assume (12) holds.
Let x0 be the point in X that, under the identification of (C∗)n with its open,
dense and free orbit, corresponds to the identity element in (C∗)n. Then, for
any t0 > 0 there is a constant C such that any solution (φ1, . . . , φk) of (15) for
t ≥ t0, normalized according to (16), satisfies

sup
X
|φi| < C

for all i.

In [Pin18] Pingali reduces existence of coupled Kähler-Einstein metrics to
a priori C0-estimates. This means that Theorem 2 in the special case when
V1 = . . . = Vk = 0, and thus Theorem 1, follows from Theorem 3 above and
Pingali’s work. For the general case we adapt the argument of Pingali to the soli-
ton setting, essentially following the computations by Tian and Zhu in [TZ00].
Letting Aut(X) be the automorphism group of X we prove:

Theorem 4. Let X be a Fano manifold and V1, . . . , Vk be holomorphic vector
fields in the reductive part of the Lie algebra of Aut(X) such that ImVi generate
a compact one parameter subgroup in Aut(X) for each i. Let (αi) be a decompo-
sition of c1(X) with representatives θ1, . . . , θk such that ImLViθi = 0 for all i.
Assume also C0-estimates hold for (15), in other words, for each t0 > 0, there
is a constant C such that any solution (φi) to (15) at t > t0 satisfies

sup
X
|φi| < C

for all i. Then (αi) admits a solution to (9).
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We get that the positive part of Theorem 2 follows directly from Theorem 3
and Theorem 4. The negative part of Theorem 2 follows directly from a change
of variables in (13) (see Lemma 12).

Remark 8. In [BB13] Berndtsson and Berman use a variational approach to
prove existence of Kähler-Ricci solitons on toric log Fano varieties. They give
a direct argument for coercivity of the associated Ding functional on (S1)n-
invariant metrics. It would be interesting if this coercivity estimate could be
extended to the coupled setting. This would provide a stronger result than this
paper in two respects: First of all, it would cover the singular setting of log Fano
varieties. Secondly, since this bypasses the higher order a priori estimates from
complex geometry it would provide a version of Corollary 3 that is valid for all
k-tuples of polytopes, not only the ones that are defined by decompositions of
c1(X) on toric Fano manifolds.

This paper is organized in the following way: Section 2.1 and Section 2.2 are
devoted to the proof of Theorem 4. In Section 2.1 we prove openness along the
continuity path and solvability at t = 0. In Section 2.2 we prove C2,α-estimates
assuming C0-estimates, thus finishing the proof of Theorem 4. In Section 3 we
set up the real convex geometric framework and in Section 3.1 we use this to
prove the C0-estimate of Theorem 3. Finally, at the end of Section 3.1 we prove
Theorem 2, Corollary 2 and Corollary 3 and in Section 3.2 we prove Theorem 1.

Acknowledgements The author would like to thank David Witt Nyström
for many fruitful discussions relating to this paper and Thibaut Delcroix for
his suggestion to allow the k vector fields in equation (9) to be different from
one another. Moreover, the author would like to thank Yanir Rubinstein for
directing him to [Fut83] when looking for an example of a manifold with nonzero
Futaki invariant but reductive automorphism group. The latter suggestion led
to Corollary 1. Finally, the author would like to thank Erlend F. Wold for
discussions related to the combinatorial aspects of Corollary 4.

2 Openness and higher order estimates

This section is devoted to proving Theorem 4.
The following lemma is well known. However, as a courtesy to the reader

we include a proof of it.

Lemma 1. Assume X is a Fano manifold, V a holomorphic vector field on
X and θ a Kähler form on X such that the imaginary part of LV (θ) vanishes.
Then there is a smooth real valued function g on X such that

ddcg = LV (θ).

Proof. Since V is a holomorphic vector field, the contraction operator iV anti-
commutes with ∂̄, hence iV θ is a ∂̄-closed (0, 1)-form. By the Kodaira Vanishing
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Theorem, since X is Fano, the sheaf cohomology group

H1(X,O) = H1(X,−KX +KX) = 0.

This means the Dolbeault cohomology group

H(0,1)(X) ∼= H1(X,O) = 0,

hence iV θi is also ∂̄-exact. Let g be a smooth function such that
√
−1∂̄g = iV θ.

As LV (θ) is real, so is g. Moreover,

ddcg = i∂∂̄g = ∂iV θ = LV (θ).

This proves the lemma.

For each i, let PSH(X, θi) be the space of θi-plurisubharmonic functions on
X, in other words the space of upper semi-continuous and locally integrable
functions φi satisfying ddcφi + θi ≥ 0. Note that if φi is a smooth function in
PSH(X, θi), then

LVi(dd
cφ) = ∂iVi

√
−1∂∂̄φi =

√
−1∂∂̄iVi∂φi = ddcVi(φi)

hence ddc(gi + Vi(φi)) = LV (θi + ddcφi). This means that, similarly as in
[HWN18], we get:

Lemma 2. Let X be a Fano manifold, V1, . . . , Vk holomorphic vector fields on
X and (αi) a k-tuple of Kähler classes on X such that

∑
αi = c1(X). Assume

each class αi has a representative θi such that ImLV (θi) = 0 and, for each i, let
φi be a smooth function in PSH(X, θi). Then (φ1, . . . , φk) is a solution to (15)
at t = 1 if and only if the k-tuple of Kähler metrics (θi + ddcφi) is a coupled
Kähler-Ricci soliton.

2.1 Openness

Here we will prove the first part of Theorem 4, namely that the set of t such
that (15) is solvable is open.

We will use the following Banach spaces

A =
{

(φ1, . . . , φk) : φi ∈ C4,α(X)
}

and
B =

{
(v1, . . . , vk) : vi ∈ C2,α(X)

}
.

Moreover, let APSH be the open subset of A given by

APSH =
{

(φ1, . . . , φk) : φi ∈ C4,α(X) ∩ PSH(X, θi)
}
.

Let F : R×APSH → B be defined by

F (t, (φi)) =


log (θ1+ddcφ1)n

ωn0
+ g1 + V1(φ1) + t

∑
φi

...

log (θk+ddcφk)n

ωn0
+ gk + Vk(φk) + t

∑
φi

 .
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Note that F (t, (φi)) = 0 if and only if (φi) defines a solution to (15) at t.
Moreover, in this case the measure

µ := (θi + ddcφi)
n
egi+Vi(φi)

is independent of i.

Lemma 3. The Fréchet derivative of F at (t, (φi)) with respect to the second
argument is given by H : A→ B defined by

H(v1, . . . , vk) =

−∆ω1v1 + V1(v1) + t
∑
vi

...
−∆ωkvk + Vk(vk) + t

∑
vi

 . (17)

where ωi = θi + ddcφi and ∆ωi is the associated Laplace-Beltrami operator.
Moreover, H is elliptic. Finally, assume F (t, φ) = 0 and let 〈·, ·〉 be the inner
product on B given by

〈(ui), (vi)〉 =
∑
i

∫
X

uiviµ.

Then 〈H(u1, . . . , uk), (vi)〉 = 〈(ui), H(v1, . . . , vk)〉 for any (ui), (vi) ∈ B.

Proof. Equation (17) follows from straight forward differentiation and the well
known identity

d

ds
log

(θi + ddc(φi + svi))
n

θni

∣∣∣∣
s=0

= n
ddcv(θi + ddcφi)

n−1

(θi + ddcφi)n
= ∆ωivi.

Now, H takes the following form in local coordinates:

(ui) 7→ (vj) =

∑
i,l,m

almij (x)
∂2ui

∂xl∂xm
+ lower order terms


where almij = 0 if i 6= j and {almii }l,m are the coefficients for the Laplace operator
∆ωi . Recall that H is elliptic if the matrix∑

l,m

almij (x)ξlξm

 (18)

is invertible for all p ∈ X and all non-zero ξ =
∑
ξl

∂
∂xl
∈ TpX. But this follows

immediately. To see this note that∑
l,m

almij (x)ξlξm

is 0 if i 6= j and, by ellipticity of ∆ωi , positive if i = j. This means (18) is a
diagonal matrix with positive entries on the diagonal, hence it is invertible.
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We will now prove the last statement in the lemma. It is a consequence of
the following identity for functions u, v ∈ C2,α(X) (see Lemma 2.2 in [TZ00]):∫

X

(∆ωiv + Vi(v))uµ = −
∫
X

〈dv, du〉ωiµ. (19)

We get

∑
i

∫
X

∆ωivi + Vi(vi) +
∑
j

vj

uiµ

= −
∑
i

∫
X

〈dvi, dui〉µ+
∑
i,j

∫
X

vjuiµ

=
∑
i

∫
X

vi

∆ωiui + Vi(ui) +
∑
j

uj

µ,

and the last statement in the lemma follows.

Lemma 4. Assume t ∈ [0, 1) and (vi) ∈ A are not all constant and satisfies

∆ω1
v1 + V1(v1) = . . . = ∆ωkvk + Vk(vk) = λ

∑
i

vi (20)

for a k-tuple ω1, . . . , ωk satisfying

Ricω1 − LV1
(ω1) = . . . = Ricωk − LVk(ωk) = t

∑
i

ωi + (1− t)
∑
i

θi. (21)

Then λ > t.

Proof. Let ∂ωiv denote the gradient of v with respect to the metric ωi. Moreover,
we will use the notation Ricωi = Ric(ωi). The proof is based on the following
Weitzenböck identity (see [TZ00], equation 2.7, page 277):

−
∫
X

〈d(∆ωiv + Vi(v)), dv〉ωiµ ≥
∫
X

(Ricωi −LV (ωi))
(
∂ωiv, ∂ωiv

)
µ.

Combining this with (21) and (20) gives

λ2

∫
X

∑
j

vj

2

µ =

∫
X

(∆ωivi + Vi(vi))
2µ

= −
∫
X

〈d(∆ωivi + Vi(vi)), dv〉ωiµ

≥
∫
X

(Ricωi +LV (ωi))
(
∂ωivi, ∂ωivi

)
µ

≥ t

∫
X

∑
j

|∂ωivi|2ωjµ. (22)

12



Moreover, we claim that (20) implies∫
X

|∂ωivi|2ωjµ ≥
∫
X

|dvj |2ωjµ (23)

for any i and j. Assuming that this is true we see that (22) implies

λ2

∫
X

∑
j

vj

2

µ ≥ t

∫
X

∑
j

|∂ωjvj |2ωjµ

= t

∫
X

∑
j

|dvj |2ωjµ

= t

∫
X

∑
j

(
∆ωjvj + Vi(vj)

)
vjµ

= tλ

∫
X

∑
j

(∑
i

vi

)
vjµ

= tλ

∫
X

∑
j

vj

2

µ.

We conclude that λ ≥ t. Moreover, if λ = t then equality holds in all inequalities
above. In particular, equality holds in the last inequality of (22), hence, by (21),

0 =

∫
X

(Ricωi −LV (ωi))
(
∂ωivi, ∂ωivi

)
µ− t

∫
X

∑
j

|∂ωivi|2ωjµ

= (1− t)
∫
X

∑
j

|∂ωivi|2θjµ

from which it follows that vi is constant for every i. This means that to finish
the proof of the lemma it suffices to prove (23). To do this, note that for any i
and j, by (20) ∫

X

|dvj |2ωjµ =

∫
X

(∆ωjvj + Vi(vj))vjµ

=

∫
X

(∆ωivi + Vi(vi))vjµ

=

∫
X

〈dvi, dvj〉ωiµ.

Moreover, choosing coordinates (z1, . . . , zn) that are normal with respect to ωj

13



and such that ωi is diagonal with eigenvalues β1, . . . , βn at a point p we get

|〈dvi, dvj〉ωi | =

∣∣∣∣∣∑
l

1

βl

∂vi
∂zl

∂vj
∂zl

∣∣∣∣∣
≤

√√√√∑
l

∣∣∣∣ 1

βl

∂vi
∂zl

∣∣∣∣2
√√√√∑

l

∣∣∣∣∂vj∂zl

∣∣∣∣2
= |∂ωivi|ωj |dvj |ωj .

Combining this with the Cauchy-Schwarz inequality we get∫
X

|dvj |2ωjµ =

∫
X

〈dvi, dvj〉ωiµ

≤
∫
X

|∂ωivi|ωj |dvj |ωjµ

≤

√∫
X

|∂ωivi|2ωjµ

√∫
X

|dvj |2ωjµ,

and (23) follows.

We can now prove the first part of Theorem 4.

Proof of Theorem 4. First part: Openness and the case t = 0. The theorem is
proved using the continuity method along the path defined by (15). Here we
will prove that the set of t such that (15) is solvable is nonempty and open in
[0, 1]. At the end of Section 2.2 we will prove that it is also closed in [0, 1], hence
that (15) is solvable for all t ∈ [0, 1].

First of all, to see that the set of t such that (15) is solvable is nonempty,
note that for t = 0, (15) reduces to the collection of equations

(θj + ddcφj)
n
egj+Vj(φj) = ωn0 . (24)

This means that for each i we can apply the Main Theorem in [Zhu00] to get
φi such that

(θj + ddcφj)
n
egj+Vj(φj)+cj = ωn0 (25)

for some cj ∈ R. Integrating both sides of this and using the fact that∫
X

egi+Vi(φi) (θi + ddcφi)
n

=

∫
X

egiθni = 1 =

∫
X

ωn0 (26)

for all smooth φi ∈ PSH(X, θi) we see that cj = 0 for all j, in other words
(φ1, . . . , φk) provides a solution to (15) at t = 0.

Now, (26) is well known but for completeness we provide an argument for it
here. Consider the variation of the left hand side of (26) with respect to φi∫

X

(
∆ωi φ̇i + V (φ̇i)

)
µi (27)

14



where we use the notation µi = egi+Vi(φi) (θi + ddcφi)
n
. By (19),∫

X

(
∆ωi φ̇i + V (φ̇i)

)
(φ̇i + 1)µi =

∫
X

|dφ̇|2ωiµi =

∫
X

(
∆ωi φ̇i + V (φ̇i)

)
φ̇iµi, (28)

hence (27) vanishes. This proves (26).
The fact that the set of t such that (15) is solvable is open follows from

Lemma 3, Lemma 4 and a standard application of the Implicit Function The-
orem. More precisely, H is elliptic by Lemma 3. This means the image of
H : (W 2,2(X))k → (L2(X))k is closed (see for example Theorem 10.4.7 in
[Nic17]). Taking (vi) in the orthogonal complement of the image of H gives

〈(vi), H(ui)〉 = 0

for all (ui) ∈ (W 2,2(X))k. In particular, it holds for all (ui) ∈ (C∞(X))k. By
the last point in Lemma 3 this means H(vi) = 0 as a distribution. By ellip-
tic regularity (see for example Corollary 10.3.10 in [Nic17]) (vi) ∈ (C∞(X))k

and hence, by Lemma 4, (vi) = (Ci) for constants C1, . . . Ck. As H(Ci) = 0
we get

∑
Ci = 0. Using this and elliptic regularity again (see for exam-

ple Theorem 10.3.11b in [Nic17]), we may conclude that the kernel of H is
{C1, . . . Ck :

∑
Ci = 0} and the image of H is

B̂ =

{
(vi) ∈ B :

∫
X

v1µ = . . . =

∫
X

vkµ

}
. (29)

It follows that H is invertible as a map from

Â = {(vi) ∈ A : v1(x0) = . . . = vk(x0)}

to B̂. Moreover, the derivative of F with respect to t, (t, (φi)) 7→ (
∑
φi, . . . ,

∑
φi)

trivially maps to B̂. Thus, applying the Implicit Function Theorem to F re-
stricted to Â ∩APSH completes the proof of the theorem.

2.2 Higher order estimates

We begin with

Lemma 5. Assume (φi) satisfies (15) for some t ∈ [0, 1]. Then

sup
X
|∆θjφj | ≤ C

where C depends only on supi ||φi||C0(X).

We will use the following lemma from [Zhu00] (page 768, Corollary 5.3):

Lemma 6. Let X be a compact Kähler manifold, ω a Kähler form on X and V
a holomorphic vector field on X. Assume φ ∈ PSH(X,ω) is smooth and X(φ)
is a real-valued function. Then

sup
X
|V (φ)| < C

for a constant C that is independent of φ.
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Proof of Lemma 5. We start with the following inequality originating in [Yau78]
(see for example equation 2.3 on page 1587 in [CH12]): Assume ω is a Kähler
form and v is a smooth function satisfying

(ω + ddcv)n = eFωn.

Then there are constants C1, C2 and C3, independent of v, such that

∆ω+ddcv

(
e−C1v(n+ ∆ωv)

)
≥ e−C1v∆ωF + C2(n+ ∆ωv)

n
n−1 − C3. (30)

For each j, we have that φj satisfies the equation

(θj + ddcφj) = e−gj−Vi(φj)−t
∑
i φi+log(ωn0 /θ

n
j )θnj . (31)

Applying (30) to this and letting

uj = e−C1φj (n+ ∆θjφj),

for all j we get

∆ωjuj ≥ e−C1φj∆θj

(
−gj − Vj(φj)− t

∑
i

φi + log(ωn0 /θ
n
j )

)
+C2(n+ ∆θjφj)

n
n−1 − C3. (32)

Note that ddcφi > −θi, hence

∆θjφj = n
(ddcφj) ∧ θn−1

j

θnj
> −n.

This means uj > 0 for all j. Moreover, uj − e−C1φj∆θjφj = ne−C1φj . Hence,
adjusting C2 and C3 in a way which only depends on supi ||φi||C0(X), we get

∆ωjuj ≥ −e−C1φj∆θj (gj + Vj(φj))− t
∑
i

ui + C2u
n
n−1

j − C3. (33)

Now, let Vj =
∑
V jm

∂
∂zm

and θj =
∑
θj
ml̄
dzmdz̄l. As in [TZ00], we compute

∆θj (gj + Vj(φj)) =
∑
m,l

∂

∂zl

(
V jm

(
θj
ml̄

+
∂φj

∂zm∂z̄l

))

=
∑
m,l

∂V jm
∂zl

(
θj
ml̄

+
∂2φj
∂zm∂z̄l

)
+ V jm

(
∂θj
ml̄

∂zl
+

∂3φj
∂zm∂zl∂z̄l

)
.

(34)

We will be interested in this at a point, p, where uj attains its maximum.
Choosing coordinates around p that are normal with respect to θj and such
that ωj = θj + ddcφj is diagonal, (34) reduces to∑

m

∂V jm
∂zm

(
1 +

∂2φj
∂zm∂z̄m

)
+ Vj(∆φj).
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The first term of this can be bounded by

sup
m

∣∣∣∣∂V jm∂zm

∣∣∣∣ (1 + ∆θjφj).

Moreover, as uj is stationary at p we get that

Vj(uj) = C1Vj(φj)uj − e−C1φjVj(∆θjφj)

vanishes at p, hence(
e−C1φjVj(∆θjφj)

)∣∣
p

= (C1Vj(φj)uj) |p.

We conclude that

e−C1φj∆θj (gj + Vj(φj)) ≤
(

sup
m

∣∣∣∣∂V jm∂zm

∣∣∣∣+ C1Vj(φj)

)
uj .

By Lemma 6 this is bounded by Cuj for a uniform constant C.
We will now plug this into (33). By the maximum principle ∆ωjuj ≤ 0 at p.

Letting Mi = maxX ui ≥ 0 we get

0 ≥ −Cuj − t
∑
i

Mi + C2u
n
n−1

j − C3

at p. Summing over j and using Young’s inequality a ≤ εan/(n−1) + C(n, ε) we
get, after adjusting C3,

0 ≥ −C
∑

Mi − kt
∑

Mi +
C2

ε

∑
Mi − C3

=

(
−C − kt+

C2

ε

)∑
Mi − C3.

Choosing ε small enough that the expression in the parenthesis is positive gives
an upper bound on

∑
Mj . Since Mi ≥ 0 for all i, this implies a bound on

supMi = sup |ui|. This proves the lemma.

Proof of Theorem 4. Second part: C2,α − estimates. Here we will prove that
the set of t such that (15) is solvable is closed.

By Lemma 5, |∆θiφi| is bounded by a constant that depends only on ||φi||C0(X)

for all i. We wish to apply Theorem 1 in [Wan12]. To do this we need uniform
bounds on the Hölder norms of φi and Vi(φi). These are implied by the uniform
bounds on ∆θiφi. To see this, choose coordinates that are normal with respect
to θi and such that θi + ddcφi is diagonal at a point p. Since

θi + ddcφi =
∑(

1 +
∂2φi

∂zm∂z̄m

)
dzmdz̄m > 0

we get that ∂2φi
∂zm∂z̄m

> −1 for all m. Together with the bound

∆θiφi =
∑
m

∂2φi
∂zm∂z̄m

≤ C
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this gives uniform bounds on
∣∣∣ ∂2φi
∂zm∂z̄l

∣∣∣ for all m and l and the bounds on the

Hölder norms follow.
Combining this with the argument at the end of Section 2.1, we conclude

that the set of t such that (15) is solvable is non-empty, open and closed in [0, 1].
It follows that (15) has a solution (φi) at t = 1. Consequently, by Lemma 2
(θi + ddcφi) solves (9).

3 C0-estimates

In this section X will always be a toric Fano manifold. In other words c1(X) > 0
and, letting n = dimX, there is an n-dimensional complex torus (C∗)n acting
on X by bi-holomorphisms such that the action admits an open, dense and free
orbit. The purpose of the section is to prove Theorem 3. We will begin by
recalling the well known correspondence between metrics on line bundles over
toric varieties and convex functions in Rn. As in the introduction we fix an
action of (C∗)n on X and identify (C∗)n with its open, dense and free orbit.
Let θ be an (S1)n-invariant Kähler form on X that arise as the curvature of a
metric || · || on a toric line bundle over X. Let P be the polytope associated to
this toric line bundle. Assume s0 is the (C∗)n-invariant section corresponding
to the point 0 ∈ P . By the invariance s0 is nonvanishing on (C∗)n and the
metric can be represented by a plurisubharmonic function ψ on (C∗)n by

ψ = − log ||s0||2.

Then ψ satisfies ddcψ = θ. Using toric coordinates

(x1, . . . , xn) = (log |z1|, . . . , log |zn|) ∈ Rn

ψ defines a convex function on Rn

f(x1, . . . , xn) := ψ(ex1 , . . . , exn)

which will have the property∇f(Rn) = P . Moreover, in logarithmic coordinates
σi = log zi we have ∑

ij

∂2f

∂xi∂xj
dσidσ̄j = ddcψ = θ. (35)

Now, for a convex polytope P , let E(P ) be the space of smooth, strictly convex
functions f such that

∇f(Rn) = P.

Then it is well known (see for example Proposition 3.3, page 687 in [BB13]) that
(35) gives a one to one correspondence between the (S1)n invariant elements in
[θ] and E(P ).

As noted in the introduction, the correspondence above extends trivially to
any θ such that [θ] can be written as a linear combination with positive real
coefficients of Kähler classes that arise as the curvature of toric line bundles.
On the other hand, we have the following general principle which we record for
the convenience of the reader:
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Lemma 7. Let α be a Kähler class on a Fano manifold X. Then there are some
ample line bundles L1, . . . , Lm over X and positive real coefficients λ1, . . . , λm
such that

α =
∑
i

λic1(Li). (36)

Proof. First of all, any Kähler class α can be written as (36) where the line
bundles Li are not necessarily ample and the constants λi are not necessarily
positive. To see this, recall that the map

c1 : H1(X,O∗)→ H2(X,Z)

is part of the following exact sequence

H1(X,O∗) c1−→ H2(X,Z)→ H2(X,O).

By the Kodaira Vanishing Theorem, since X is Fano,

H2(X,O) = H2(X,KX −KX) = 0.

It follows that c1 is surjective, hence any element in H2
DR(X) ∼= H2(X,R) can

be written as a linear combination over R of elements in the image of c1. Note
that this means the set of rational classes, in other words the set of classes of
the form qc1(L) for some rational number q and some line bundle L, is dense in
H(1,1)(X).

Now, the cone of Kähler classes K is open in H(1,1)(X). This means we
can take a set of rational classes η1, . . . , ηj in K that span H(1,1)(X) over R.
Moreover, these classes define an open subcone of K,

C =

{∑
i

λiηi : λi ∈ R+

}
.

For any α ∈ K we may take a rational class η0 in the open set (α − C) ∩ K
which is nonempty since α is in the interior of K. This means α = η0 +κ where
κ ∈ C and (36) follows.

Noting that any divisor on a toric manifold is linearly equivalent to an (S1)n-
invariant divisor, Lemma 7 and the discussion preceding it gives:

Lemma 8. Let α be a Kähler class on X and P be the polytope corresponding
to α. Then (35) gives a one to one correspondence between the (S1)n invariant
elements in α and E(P ). Moreover, if α = c1(L) where L is a toric line bundle
over X, then this correspondence is given by θ 7→ f where

f(log |z1|, . . . , log |zn|) := − log ||s0||2

where s0 is the (S1)n-invariant (meromorphic) section corresponding to the
point 0 ∈M⊗ R and || · || is the metric on L with curvature θ.
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For each i, let hi : Rn → R be defined by

hi(x) = log
1

NP

∑
y

e〈y,x〉

where the sum is taken over all vertices of the polytope Pi and NP is the number
of vertices of the polytope Pi. These functions are smooth, strictly convex and
satisfy ∇hi(Rn) = Pi, hence hi ∈ E(Pi). For each i, let θi be the element in αi
corresponding to hi. Then there is a one to one correspondence between E(Pi)
and the smooth (S1)n-invariant elements of PSH(X, θi) given by

fi(x)− hi(x) = φi(e
x). (37)

Moreover, hi(0) = 0 for each i. This means the normalization (16) is equivalent
to

f1(0) = . . . = fk(0). (38)

Using the correspondence in (37), it is possible to rewrite (15) to a real Monge-
Ampère equation.

Lemma 9. Assume (φi) and (fi) are related as in (37). Then, for t ∈ [0, 1],
(φi) satisfies (15) if and only if (fi) satisfies

e〈V1,∇f1〉

VolV1
(P1)

det

(
∂2f1

∂xm∂xl

)
= . . . =

e〈Vk,∇fk〉

VolVk(Pk)
det

(
∂2fk

∂xm∂xl

)
= e−t

∑
i fi−(1−t)

∑
i hi . (39)

Proof. First of all, using (35) we see that

(θi + ddcφi)
n =

∑
m,l

∂2fi
∂xm∂xl

dσjdσ̄l

n

= det

(
∂2fi

∂xm∂xl

)
dσdσ̄, (40)

where dσdσ̄ = dσ1 . . . dσndσ̄1 . . . dσ̄n.
Abusing notation, we may think of fi and hi as (S1)n-invariant plurisubhar-

monic functions on (C∗)n ⊂ X. We will show that

e−t
∑
i φiωn0 = e−t

∑
i(fi−hi)ωn0 = e−t

∑
i fi−(1−t)

∑
i hidσdσ̄. (41)

This will follow if we show that

e
∑
hiωn0 = dσdσ̄. (42)

To do this, we note that by convexity

∇

(∑
i

hi

)
(Rn) =

∑
i

∇hi(Rn) =
∑

Pi = P−KX .
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By Lemma 8,
∑
hi defines a metric on −KX of curvature

∑
θi by the relation

||s0||2∑hi
= e−

∑
hi

where s0 is the unique (C∗)n-invariant section of −KX , in other words

s0 =
∂

∂σ1
∧ . . . ∧ ∂

∂σk
= dσ−1.

Moreover, the volume form ωn0 defines a metric on −KX by the relation

||dσ−1||2ωn0 =
ωn0
dσdσ̄

.

The curvature of || · ||ωn0 is Ricω0 =
∑
θi. By uniqueness in the Calabi-Yau

Theorem || · ||∑hk = || · ||ωn0 and (42) follows.
It remains to show that

e〈Vi,∇fi〉

VolVi(Pi)
= egi+Vi(φi). (43)

We will first show that

〈Vi,∇fi〉+ Ci = gi + Vi(φi), (44)

for some Ci ∈ R. Abusing notation again, and thinking of fi as an (S1)n-
invariant plurisubharmonic function on (C∗)n ⊂ X, we compute

ddc〈Vi,∇fi〉 = ddc

(∑
m

∂fi
∂xm

am

)

=
∑
m,j,l

∂3fi
∂xj∂xl∂xm

amdσjdσ̄l

= ∂iV

∑
m,l

∂2fi
∂xm∂xl

dσmdσ̄l


= ∂iV (θi + ddcφi)

= LV (θi)

= ddc(gi + Vi(φi))

and (44) follows by the maximum principle. To get (43), note that the push
forward of dσdσ̄ under the map (z1, . . . , zn) 7→ (log |z1|, . . . , log |zn|) is the Eu-
clidean measure dx on Rn. This means, by (40) and (44),∫

X

egi+Vi(φi) (θi + ddcφi)
n

=

∫
Rn

det

(
∂2fi

∂xm∂xl

)
e〈Vi,∇fi〉+Cidx. (45)

Performing the change of variables ∇fi = p we get

(45) = eCi
∫
Pi

e〈Vi,p〉dp.
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By (26) ∫
X

egi+Vi(φi) (θi + ddcφi)
n

=

∫
X

egiθni = 1

This means C = log VolVi(Pi) and (43) follows.
Using (40), (41) and (43) we conclude that (fi) satisfies (13) if and only

if (φi) satisfies (15) on (C∗)n. As (φi) is assumed to be smooth, the lemma
follows.

3.1 Estimates

To prove Theorem 3 we need to prove that for all t0 > 0 there is a constant
C such that any solution (fi) to (39) at t > t0, normalized according to (38),
satisfies

sup
X
|fi − hi| ≤ C (46)

for all i.
For each i, let ui be the Legendre transform of fi. Recall that fi is a smooth,

strictly convex function on Rn such that ∇fi(Rn) = Pi. This means each ui is
a smooth, strictly convex function on Pi. Moreover, a standard property of the
Legendre transform is that

sup
Rn
|fi − hi| = sup

Pi

|ui − h∗i |

where h∗i is the Legendre transform of hi. Since h∗i is bounded on Pi (this is
easy to verify) we have that (46) is equivalent to a uniform bound on supPi |ui|.

We will use a variant of the method of Wang and Zhu [WZ04] (see also
[Don08]). The first step is to establish bounds on the function

w = wt =
∑
i

(tfi + (1− t)hi) .

Since w is strictly convex and 0 is in the interior of P−KX = ∇w(Rn) we have
that w is bounded from below and attains its minimal value at a unique point.
Let m = inf w and let xw be the minimal point of w.

Lemma 10. Assume t0 > 0 and (12) holds. Then there are constants C and ε
such that if (fi) is a solution to (39) at t > t0, then

w ≥ ε|x− xw| − C (47)

and
|xw| ≤ C. (48)

The proof of Lemma 10 follows one of the arguments in [Don08] which is
based on [WZ04]. The main point is the following convex geometric fact (see
Proposition 2 in [Don08])
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Lemma 11. Assume f is a convex function on Rn attaining minimal value 0,
and suppose

det

(
∂2f

∂xm∂xl

)
≥ λ

on K = {f ≤ 1}. Then
Vol(K) ≤ Cλ−1/2

for some constant C depending only on the dimension n.

Using Lemma 11 we can prove Lemma 10.

Proof of Lemma 10. The proof proceeds in four steps:

Step 1: m is bounded from below. Let ρ−KX be the support function of
P−KX defined by

ρ−KX (x) = sup
p∈P−KX

〈x, p〉.

Since ∇w(Rn) = P−KX we have w ≤ m + ρ−KX . Moreover, by the change of
variables p = ∇fi

1 =

∫
Pi
e〈Vi,p〉dp

VolVi(Pi)

=

∫
Rn

e〈Vi,∇fi〉

VolVi(Pi)
det

(
∂2fi

∂xm∂xl

)
dx

=

∫
Rn
e−wdx

≥ Ce−m
∫
Rn
e−ρ−KX dx

≥ Ce−m,

possibly changing C in the last inequality. This means m is bounded from below
by a uniform constant.

Step 2: m is bounded from above. By monotonicity of the determinant
function and convexity we have

det

(
∂2w

∂xm∂xl

)
= det

[
t
∑
i

(
∂2fi

∂xm∂xl

)
+ (1− t)

∑
i

(
∂2hi

∂xm∂xl

)]

≥ tn0 det

(
∂2fj

∂xm∂xl

)
= tn0 VolVj (Pj)e

−〈Vj ,∇fj〉−w

≥ Ce−wdx,
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where the last inequality follows from the fact that ∇fj(Rn) = Pj is bounded.

This means det
(

∂2w
∂xm∂xl

)
≥ Ce−m−1 on K = {w ≤ m + 1}. By Lemma 11,

possibly redefining C,
Vol(K) ≤ Cem/2. (49)

Convexity of w and the co-area formula gives

1 =

∫
Rn
e−wdx ≤ Ce−m/2.

This means m is bounded from above.

Step 3: w ≥ ε| · −xw| − m + 1 for uniform constants ε and C. Since
∇w(Rn) = P−KX and P−KX is bounded we have that there is a uniform constant
r > 0 such that K contains a small ball centered at xw of radius r. If there was
a point in K far from xw then the volume of K would be very big, contradicting
(49). This means K is contained in a ball centered at xw of radius R for some
uniform constant R. Convexity of w gives

w(x) ≥

{
R−1|x− xw|+m if x /∈ K
m if x ∈ K.

Moreover, R−1|x− xw| ≤ 1 on K. This means putting ε = 1/R finishes Step 3.

Step 4: |xw| is bounded. In this step we will use the assumption (12). By
the Divergence Theorem, since e−w → 0 exponentially as |x| → ∞,∫

Rn
∇we−wdx =

∫
Rn

div∇
(
e−w

)
dx = 0.

Moreover,∫
Rn
∇

(∑
i

fi

)
e−wdx =

∑
i

∫
Rn
∇fie−wdx

=
∑
i

1

VolVi(Pi)

∫
Rn
∇fie〈Vi,∇fi〉 det

(
∂2fi

∂xm∂xl

)
dx

=
∑
i

1

VolVi(Pi)

∫
Pi

pe〈Vi,p〉dp = 0,

where the last two equalities are given by performing the change of variables
p = ∇fi(x) in each summand and (12). This means∫

Rn
∇

(∑
i

hi

)
e−wdx = 0. (50)
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Recall that
∑
hi is convex and hence ∇ (

∑
i hi) is monotone. Hence, if |xw|

is large then, putting v = xw/|xw|, we get that 〈x, v〉 is positive and bounded
away from 0 on some large ball centered at xw. By (47) the mass of e−wdx is
concentrated around xw. This contradicts (50).

We can now prove Theorem 3.

Proof of Theorem 3. First of all, by the change of variables x = ∇ui(p) and
(15) we have ∫

Pi

|∇ui|qdp =

∫
Rn
|x|q det

(
∂2fi

∂xm∂xl

)
dx

≤ VolVi(Pi)

∫
Rn
|x|qe−〈Vi,∇fi〉−wdx

≤ C

∫
Rn
|x|qe−wdx

≤ Cq (51)

where the second inequality follows from the fact that ∇fi(Rn) = Pi is bounded
and the last inequality follows from Lemma 10. Put q = n+ 1 and

ûi =
1

Vol(Pi)

∫
Pi

uidp.

By Morrey’s inequality (see [HS09]) we have

||ui − ûi||C0,γ(Pi) ≤ C||ui − ûi||W 1,q(Pi)

= C||ui − ûi||Lq(Pi) + C||∇ui||Lq(Pi). (52)

where γ = 1− n/q. By the Poincaré-Wirtinger inequality this can be bounded
by

C||∇ui||Lq(Pi)
for some C. This is bounded by (51). Since Pi is bounded we may conclude
from this that

sup
p1,p2∈Pi

|ui(p1)− ui(p2)| ≤ C||ui − ûi||C0,γ(Pi) ≤ C. (53)

This means it suffices to bound each ui in some point.
To bound each ui in some point, note that by general properties of Legendre

transform fi(0) = −ui(∇fi(0)). This means

|ui(∇fi(0))| = |fi(0)| = 1

k

∣∣∣∣∣∣
∑
j

fj(0)

∣∣∣∣∣∣ =
1

k
|w(0)|

where the last two equalities follow from (38) and the fact that hi(0) = 0 for all i.
Since |xw| is bounded and ∇w ∈ P−KX is bounded we have that |w(0)−w(xw)|
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is bounded. By Lemma 10, |w(xw)| = |m| is bounded. This means |ui(∇fi(0))|
and hence, by (53), supPi |ui| is bounded for each i. By the discussion following
(46) this proves the theorem.

Proof of Theorem 2. Assuming (12) holds, existence of coupled Kähler-Ricci
solitons follow directly from Theorem 3 and Theorem 4. Indeed, any toric
holomorphic vector field Vi is in the reductive part of the Lie algebra of Aut(X).
Moreover, ImVi generates a compact one-parameter subgroup of Aut(X) and,
since θi is (S1)n-invariant, ImLV (θi) = 0.

Assume that (αi) admits a coupled Kähler-Ricci soliton. By Lemma 2 and
Lemma 9, (13) admits a solution. Then (12) follows from Lemma 12 below.

Lemma 12. Assume (13) admits a solution. Then∑
i

APi(Vi) = 0.

Proof. Let (fi) be a solution to (13). As in the proof of Lemma 10, by the
Divergence Theorem, since e−

∑
fi → 0 exponentially as |x| → ∞,∫

Rn

(∑
i

∇fi

)
e−

∑
i fidx =

∫
Rn

div∇
(
e−

∑
i fi
)
dx = 0. (54)

On the other hand, by (13)

(54) =
∑
i

∫
Rn
∇fie−

∑
i fidx =

∑
i

∫
Rn
∇fi

e〈Vi,∇fi〉

VolVi(Pi)
det

(
∂2fi

∂xm∂xl

)
dx.

Performing the change of variables ∇fi = p in each summand gives that the
right hand side of this equals∑

i

1

VolVi(Pi)

∫
Pi

pe〈Vi,p〉dp =
∑
i

APi(Vi).

This proves the lemma.

Proof of Corollary 2. Note that ∑
i

APi(V ) (55)

is the gradient of the function on Rn defined by

V 7→
∑
i

log

∫
Pi

e〈V,p〉dp.

This is strictly convex and proper (in fact, its gradient image is
∑
i Pi = P−KX

which contain zero as an interior point), hence it admits a unique minimum.
Letting V be this minimum means (12) is fulfilled. The corollary then follows
from Theorem 2.

Proof of Corollary 3. The corollary follows from Theorem 2 and Lemma 9.
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3.2 Toric test configurations and proof of Theorem 1

Theorem 1 will follow from Theorem 2 combined with Theorem 1.15 in [HWN18]
and an explicit calculation of the Donaldson-Futaki invariant of test configura-
tions induced by toric vector fields.

In [HWN18] a type of test configurations for decompositions of c1(X) was
defined. The data defining them is essentially given by k test configurations
(X1,L1), . . . , (Xk,Lk) where X1 = . . . = Xk =: X , such that (X ,

∑
i Li) defines

a test configuration for (X,−KX). The Donaldson-Futaki invariant associated
to this data is defined as the intersection number

DF (X , (Li)) = −
∑
i

Ln+1

|αi|
− (n+ 1)

(
−KX/P1 −

∑
i Li
)
· (
∑
i Li)

n

(−KX)n
(56)

where |αi| =
∫
X
θn for any θ such that [θ] = α. We point out that the no-

tation here differs from [HWN18] in that here (X ,Li) are the (C∗-invariantly)
compactified test configurations over P1.

Now, recall that if L is a toric line bundle over a toric manifold X, then a
toric vector field V induces a test configuration (X V ,LV ) for (X,L). This can
be described in the following way: Let d1, . . . , dk ∈ N ⊗ R and c1, . . . , ck ∈ R
be the data defining the polytope PL, i.e.

PL = {〈di, ·〉 ≥ −ci}.

Then, the polytope of LV can be arranged to be

PLV = {〈di, ·〉 ≥ −ci} ∩ {〈d0 + V, ·〉 ≥ 0} ∩ {〈−d0, ·〉 ≥ −CLV }.

where d0 corresponds to the divisor given by the central fiber of X and CLV is a
number that can be modified without changing the Donaldson-Futaki invariant
by adding a multiple OP1(1) to LV . In particular, as long as CLV is big enough
for LV to be ample,(

LV
)n+1

= Vol(PLV ) = Vol(PL) (CLV + 〈V, b(PL)〉) .

This also gives

(n+ 1)OP1(1) ·
(
LV
)n

=
d

dt

(
LV + tOP1(1)

)n+1

=
d

dt
Vol

(
PLV +tOP1 (1)

)
= Vol(PL). (57)

Finally, we note that if L = −KX then LV is the relative canonical bundle of
X V up to a twist determined by CLV .

LV = −KXV /P1 + CLV OP1(1). (58)
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Proof of Theorem 1. Putting V1 = . . . = Vk = 0 gives∑
i

APi(Vi) =
∑
i

b(Pi),

hence it follows from Theorem 2 that the third point of the theorem implies the
first point. Moreover, the first point implies the second point by Theorem 1.15
in [HWN18]. Thus, to finish the proof of Theorem 1, it suffices to prove that
the second point implies the third point.

We will prove the contrapositive. Assume
∑
i b(Pi) 6= 0, in other words∑

i〈V, b(Pi)〉 < 0 for some toric vector field V . Let (X V , (LVi )) be the associated
test configuration. As (X V ,

∑
i LVi ) is a test configuration for−KX we get, using

(58) and |αi| = Vol(Pi)

DF
(
X V ,

(
LVi
))

=
∑
i

(LVi )n+1

Vol(Pi)
− (n+ 1)

(∑
i CLVi

)
OP1(1) ·

(∑
i LVi

)n
Vol (P−KX )

.

=
∑
i

(
CLVi + 〈V, b(PL)〉

)
−
∑

CLVi

=
∑
i

〈V, b(Pi)〉 < 0, (59)

hence (αi) is not K-polystable.

3.3 Proof of Corollary 1

Proof of Corollary 1. First of all, by [FMS90] (see also [Fut83] and [WAN91])
the Futaki invariant of X is non-zero, hence X does not admit a Kähler-Einstein
metric. To prove the rest of the corollary, we fix a (C∗)4-action on X in the
following way: Consider the standard embeddings of OP2(−1) and OP1(−1) in
to C3 × P2 and C2 × P1 respectively:

OP2(−1) = {((z0, z1, z2), (a0 : a1 : a2)) z0a1 = z1a0, z1a2 = z2a1}

and
OP1(−1) = {((w0, w1), (b0 : b1))w0b1 = w1b0} .

We get an embedding of X = P(E) into P4 × P2 × P1 as

X = { ((z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1)) :

z0a1 = z1a0

z1a2 = z2a1

w0b1 = w1b0 }

We define a (C∗)4-action by letting an element (t1, t2, t3, t4) ∈ (C∗)4 act on X
by

((z0 : z1 : z2 : w0 : w1), (a0 : a1 : a2), (b0 : b1))

7→
((z0 : t1z1 : t2z2 : t4w0 : t4t3w1), (a0 : t1a1 : t2a2), (b0 : t3b1)).
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The invariant divisors are

D1 = {z0 = a0 = 0}
D2 = {z1 = a1 = 0}
D3 = {z2 = a2 = 0}
D4 = {w0 = b0 = 0}
D5 = {w1 = b1 = 0}
D6 = {z0 = z1 = z2 = 0}
D7 = {w0 = w1 = 0}

corresponding to the following elements in the lattice N ∼= Z4 of one parameter
subgroups of (C∗)4:

d1 = (−1,−1, 0,−1)

d2 = (1, 0, 0, 0)

d3 = (0, 1, 0, 0)

d4 = (0, 0,−1, 1)

d5 = (0, 0, 1, 0)

d6 = (0, 0, 0,−1)

d7 = (0, 0, 0, 1).

The divisor corresponding to −KX is
∑7
i=1Di. For c ∈ (1/4, 3/4), we will be

interested in divisors on the form

D(c) = c(D4 +D5) +
∑
i 6=4,5

Di/2.

corresponding to polytopes

P (c) = {y ∈ R4 : 〈y, di〉 ≤ 1/2, i 6= 4, 5, 〈y, di〉 ≤ c, i = 4, 5}. (60)

Note that the two classes in (5) are given by D(c) and D(1− c), for

c =
1

2
+

√
5
7

4
∈
(

1

4
,

3

4

)
. (61)

To prove the corollary we will verify the following two facts:

• As long as c ∈ ( 1
4 ,

3
4 ), none of the conditions in (60) is redundant. (By

standard theory for toric varieties this implies D(c) and D(−c) are ample
and hence β1 and β2 are Kähler.)

• The quantity ∫
P (c)

ydy∫
P (c)

dy
+

∫
P (1−c) ydy∫
P (1−c) dy

= 0.

when c is given by (61)
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Note that both these conditions are invariant under linear transformations of
Rn. Applying the following linear transformation to the generators d1, . . . , d7

A =


1 0 0 −2
0 1 0 −2
0 0 1 3
0 0 0 6


gives new generators

d′1 = (−1,−1, 0,−2)

d′2 = (1, 0, 0,−2)

d′3 = (0, 1, 0,−2)

d′4 = (0, 0,−1, 3)

d′5 = (0, 0, 1, 3)

d′6 = (0, 0, 0, 6)

d′7 = (0, 0, 0,−6).

And a new polytope

P ′(c) = {y ∈ R4 : 〈y, d′i〉 ≤ 1/2, i 6= 4, 5, 〈y, d′i〉 ≤ c, i = 4, 5}. (62)

It is straight forward to check that as long as c ∈ (1/4, 3/4), non of the condi-
tions in (62) is redundant, hence D(c) is ample for any c ∈ (1/4, 3/4). Moreover,
the sets {d′1, d′2, d′3, d′6, d′7} and {d′4, d′5} are both invariant under the linear trans-
formation

B =


0 −1 0 0
1 −1 0 0
0 0 −1 0
0 0 0 1

 .
It follows that P ′(c) and hence the barycenter of P ′(c) is invariant under B. As
any fixpoint of B is paralell to (0, 0, 0, 1) we conclude that∫

P ′(c)

y1dy =

∫
P ′(c)

y2dy =

∫
P ′(c)

y3dy = 0.

Moreover, we denote by S2 the two-dimensional simplex corresponding to the
anti-canonical bundle of P2

S2 = {y ∈ R2 : y1 ≤ 1, y2 ≤ 1,−y1 − y2 ≤ 1}
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and note that (y1, . . . , y4) ∈ P ′(c) if and only if y4 ∈ (−1/12, 1/12), |y3| ≤ c−3y4

and (y1, y2) ∈ (1/2 + 2y4)S2. We get∫
P ′(c)

y4dy =

∫
1
12 [−1,1]

y4

(∫
( 1
2 +2y4)S2

dy1dy2

)(∫
(c−3y4)[−1,1]

dy3

)
dy4

= 2 Vol(S2)

∫
1
12 [−1,1]

y4

(
1

2
+ 2y4

)2

(c− 3y4)dy4

=
5c− 2

720

and similarly∫
P ′(c)

dy = 2 Vol(S2)

∫
1
12 [−1,1]

(
1

2
+ 2y4

)2

(c− 3y4)dy4

=
56c− 3

144
.

It follows that∫
P ′(c)

y4dy∫
P ′(c)

dy
+

∫
P ′(1−c) y4dy∫
P ′(1−c) dy

=
1

5

(
5c− 2

56c− 3
+

5(1− c)− 2

56(1− c)− 3

)
=

(112c2 − 112c+ 23)

(56c− 53)(56c− 3)
, (63)

which vanishes as

c =
1

2
±

√
5
7

4
∈
(

1

4
,

3

4

)
.
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