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Abstract 

Principal Component Analysis (PCA) is a common tool in the literature and widely used for process monitoring and fault 

detection.  Traditional PCA is associated with the two well-known control charts, the Hotelling's T² and the Squared 

Prediction Error (SPE), as monitoring statistics. This paper develops the use of new measures based on a distribution 

dissimilarity technique named Kullback-Leibler Divergence (KLD) through PCA by measuring the difference between 

online estimated and offline reference density functions. For processes with PCA scores following a multivariate Gaussian 

distribution, KLD is computed on both principal and residual subspaces defined by PCA in a moving window to extract the 

local disparity information. The potentials of the proposed algorithm are afterwards demonstrated through an application on 

two well-known processes in chemical industries; the Tennessee Eastman process as a reference benchmark and three tank 

system as an experimental validation. The monitoring performance was compared to recent results from other Multivariate 

Statistical Process Monitoring (MSPM) techniques. The proposed method showed superior robustness and effectiveness 

recording the lowest average missed detection rate and false alarm rates in process fault detection. 

 

Key words: Kullback-Leibler divergence; principal component analysis; Tennessee Eastman process; fault detection; 
three tank system. 
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1. Introduction 

Process monitoring is becoming a major concern in modern industries, and particularly in chemical 

processes. This is due to the increasing system complexity and the need for improving productivity and saving 

machines from serious damages. For this sake, much research is being conducted continuously for developing 

new tools that enhance process Fault Detection and Diagnosis (FDD). These tools include the model-based 

approaches such as  (Chen & Patton, 1999) and (Ding, 2008) relying heavily on a priori knowledge about the 

mathematical and physical relationships of the system. The most common approaches include filters (Frank, et 

al., 2000; Zhuang, et al., 2014; Zhuang, et al., 2016), observers and parameter estimations (Alcorta García & 

Frank, 1997; Wang, 2012). These methods might be intricate because it is still difficult in numerous cases to 

set up the most adequate model and cannot be scaled to large-scale systems. Alternatively, more effective 

techniques recently emerged for complex processes are based on Multivariate Statistical Process Monitoring 

(MSPM) strategies that learn from huge historical data to build the FDD framework (Hauck, et al., 1999; Xiong, 

et al., 2007). The main advantages of these techniques are the ability to reduce the dimensionality of the data 

and deal with highly correlated variables to extract the most informative features, in addition to the flexibility 

in their derivation and implementation. Principal Component Analysis (PCA) (Jackson, 1991), the most 

commonly used MSPM method, projects the original data into a lower dimensional space while tracking the 

maximum variance and hence splitting the original space into an approximated principal subspace and a residual 

subspace. For fault detection PCA conventionally incorporates two control charts for the analysis, the 

Hotelling’s T² and the Squared Prediction Error (SPE), calculated based on an off-line PCA reference model 

for each new observation in on-line monitoring (Guo, et al., 2018; Venkatasubramanian, et al., 2013; Wade, et 

al., 2005). The Hotelling’s T² represents the approximate model that indicates how far each sample is from the 

centre of the model. On the other hand, SPE contributes to the lack-of-fit of the approximate model to the one 

it was originally brought from. As a matter of fact, diverse extensions have been introduced to PCA in order to 

overcome some of its limitations such as Nonlinear PCA (NLPCA) (Jia, et al., 1998), considering the system's 
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dynamics using Dynamic PCA (DPCA) (Ku, et al., 1995), Kernel PCA (KPCA) (Lee, et al., 2004; Zhongda, et 

al., 2016), and Multiscale PCA (MSPCA) (Mirin, 2013) that combines the PCA with wavelet analysis. 

However, the control charts still need more thoughtful attention from researchers in order to find new 

alternatives that further enhance the process monitoring efficiency.  As stated by Wang & Chen (2004), an 

increase in T² may not always be due to real faults, it might be just a shift in the operating region because 

changes in T² are consistent with the model. This gives rise to more false alarms under similar situations and 

makes the SPE a better fault indicator. However, it has been shown experimentally on real data that the Q-

statistic is more sensitive to the modelling errors (Harkat, et al., 2000). With such paradox, our intent is to 

provide a new approach for the monitoring statistics to achieve reliable monitoring rather than changing the 

data transformation technique. 

In the current paper, the Kullback-Leibler Divergence (KLD) is to be investigated as a control chart for fault 

indication. This divergence measure was heavily used recently and applied successfully in many different ways 

for process monitoring purposes. Aggoune, et al. (2016) examined Kullback-Leibler divergence in detecting 

abnormal modes after developing a NARMAX polynomial model to estimate the nonlinear behavior of the 

plant. In another study (Harmouche, et al., 2014), KLD was used in univariate analysis of individual principal 

scores obtained from PCA model of the data, where KLD showed better results over the T² statistic in detecting 

incipient faults. This study was pursued by the fault diagnosis phase and detecting incipient faults in a noisy 

environment (Harmouche, et al., 2015). The same logic was followed by Youssef, et al. (2016) with an optimal 

threshold established depending on the signal to noise ratio and the fault to noise ratio. In these studies, KLD 

was computed over single scores of the principal subspace only; therefore, they provide a number of fault 

detectors equivalent to the number of principal components while completely ignoring the residual subspace 

and losing the key advantage of dimension reduction of PCA. This could be a key problem for plant-wide 

processes where the number of variables is considerably large, besides neglecting the residual subspace that 

holds worthy information of the process state (Gertlert, et al., 1999).  To this end, we propose a new approach 
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for fault detection following the fact that when constructing an accurate PCA model, the changes in process 

measurements will appear primarily as changes in the PCA scores. Thereafter, two monitoring statistics based 

on KLD are used to measure the distance between the multivariate scores distributions in healthy and faulty 

states of the principal as well as the residual subspaces and their sensitivity is tested to the different types of 

faults. As a result, the overall monitoring of a large-scale process is reduced to controlling the two developed 

statistics which appear very potentially effective and complementing one another performance as demonstrated 

on a large realistic benchmark and an experimental application.  

This work is commenced by describing the different notions and definitions of the utilized techniques in 

Section 2. Section 3 is dedicated to explaining the proposed methodology. Section 4 summarizes the application 

procedure. Simulation and discussions of the results on the TEP and three tank system are presented in Section 

5 and Section 6, respectively. And finally, section 7 draws some concluding remarks and lists some hints for 

future work. 

2. Preliminaries 

2.1. PCA-based modelling 

Considering the acquired data in the form of a matrix 𝑿0, collected from a process in normal operation with 

𝑁 samples of 𝑚 variables, the data matrix 𝑿0	is first normalized to zero mean and unit variance giving the 

normalized matrix 𝑿:  

 𝑿 = [𝒙)	𝒙* 	⋯𝒙,] ∈ ℛ0×, (1)      

PCA transforms this data matrix into a new matrix  𝑻 ∈ ℛ0×,	 named the score matrix of uncorrelated 

variables 	𝒕1, 𝒕2, ⋯ , 𝒕𝑚	: 

 𝑻 = 𝑿𝑷 (2)      

𝑷 is the loading matrix with orthogonal components i.e. 𝑷𝑷8 = 𝑰 constructed by the eigenvectors that represent 

the variation directions, it is obtained by an orthogonal transformation of the covariance matrix 𝚽 through the 
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Singular Value Decomposition (SVD). The SVD is a generalization of the eigen-decomposition and orthogonal 

decomposition when dealing with symmetric matrices. Performing the SVD on the sample covariance matrix 

is given as: 

 𝚽 =
1

𝑁 − 1	𝑿
8𝑿 = 𝑷𝚲𝑷8 (3) 

where 𝚲 = diag(λ), λ*,⋯ , λ,)		  is the diagonal eigenvalue matrix, in a decreasing order representing the 

amount of variance 		λ) ≥ λ* ≥ ⋯ ≥ λ, ≥ 0.  

Data dimensionality reduction can be achieved by splitting 𝑷	and	𝚲 into modeled and non-modeled 

variations, the first part 𝑷𝑝𝑐 	 ∈ 	 ℛ𝑚×𝑙	and	𝜦𝑝𝑐 ∈ 	ℛ𝑙×𝑙	  spanning the principal subspace and the other part is 

𝑷𝑟𝑒𝑠 	 ∈ 	 ℛ𝑚×(𝑚−𝑙)	and	𝜦𝑟𝑒𝑠 ∈ 	 ℛ(𝑚−𝑙)×(𝑚−𝑙)	    spanning the residual subspace:  

 𝜦 = M
𝜦NO 0
0 𝜦PQR

S						 , 𝑷 = [𝑷NO 𝑷PQR] (4) 

      Hence, the score matrix T can be rewritten as: 

 𝑻 = 𝑿𝑷 = 𝑿[𝑷NO 𝑷PQR] (5) 

giving,  

 𝑻T = 𝑿𝑷NO												𝑎𝑛𝑑											𝑿T = 𝑻T𝑷NO8 (6) 

𝑻X represents the projection of 𝑿 on the first 𝑙 largest eigenvectors of the sample covariance matrix. And 𝑻Y  is the 

projection of 𝑿 on the last 𝑚− 𝑙 eigenvectors. 

 𝑻Z = 𝑿𝑷PQR											𝑎𝑛𝑑											𝑿Z = 𝑻Z𝑷PQR8 (7) 

where 𝑿[ represents the matrix of residuals denoted by 𝑬. As a result, PCA decomposes the original data set 𝑿 

into: 

 𝑿 = 𝑿T + 𝑬 (8)   
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2.2. PCA model selection 

Various methods have been suggested for determining the appropriate number of principal components that 

split up the informative subspace and the residual one (Valle, et al., 1999). Most of these methods are subjective 

because they use a monotonically decreasing index for analysis. The Variance of Reconstructed Error (VRE) 

and the Cumulative Percentage of Variance (CPV) techniques are chosen in our work and applied on the fault-

free dataset to select the adequate number of components to keep for constituting the PCA-model. Unlike most 

other methods reported in the literature, the VRE method has a guaranteed minimum over the number of scores 

corresponding to the best reconstruction. Therefore, it avoids the arbitrariness of other methods with monotonic 

indices (Qin & Dunia, 2000). In addition to that, the CPV criterion is chosen as being the most used standard 

method that allows selecting the number of scores for a predetermined variance percentage. 

2.2.1. Variance of Reconstruction Error 
 
The Variance of the Reconstruction Error (VRE) (Dunia & Qin, 1998) selects the number of principal 

components based on the best reconstruction of the process variables. VRE index has an important characteristic 

as it reaches a minimum value corresponding to best reconstruction. When the PCA model is used for faulty 

sensors reconstruction, the VRE would be a function of the number of Principal Components (PCs). The 

minimum then found through VRE calculation determines the optimal number of PCs. This criterion utilizes 

certain notions brought up by Dunia, et al (1996) that define the principle of reconstruction. 

The principle of reconstruction consists of estimating the ith variable from the remaining variables in 

measurement vector	𝑿 ∈ ℛ0×,. Dunia, et al. (1996) consider that the sensor measurement is corrupted with a 

fault along a direction		𝝃𝑖 ∈ ℛ
𝑚	 of magnitude ℎ, thus, the actual sensor measurement is 

 𝒙 = 𝒙∗ + ℎ𝝃b (9) 
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with 𝒙∗ denotes the normal sample vector and 	‖𝝃b‖ = 1	corresponds to the ith column of an identity matrix. 

The aim is to find an estimate for 𝒙∗ along the direction of the fault	𝝃𝑖	that best correct the effect of the fault. 

Strictly speaking, we try to find ℎ𝑖 such that 

 𝒙bPQO = 𝒙 − ℎb𝝃b   (10)   

is most consistent with the PCA model or has a minimum model error in the sense of the least-squares method. 

The variance of reconstruction error is then defined by Qin & Dunia (2000) as: 

 𝑢b(𝑙) = 𝑣𝑎𝑟(𝝃b8𝒙 − 𝒙bPQO) (11) 

The task of finding the number of PCs is to minimize 𝑢𝑖 with respect to 𝑙. Considering all data dimensions, 

the VRE to be minimized is defined as: 

 VRE(𝑙) =i
𝑢b(𝑙)

𝑣𝑎𝑟(𝝃b8𝒙)

,

bj)

=i
𝑢b(𝑙)
𝝃b8𝑹𝝃b

,

bj)

 (12) 

𝑹 is the correlation matrix and 𝑙 is the number of retained PCs.  

Although this criterion was derived for fault reconstruction, it is applicable for other purposes, just by using 

normal data only without requiring actual faults to occur.   

2.2.2. Cumulative Percent of Variance 
 
CPV (Malinowski, 1991) is a straightforward criterion for estimating the number of nontrivial components 

by including all components up to a predetermined percentage of the total variance. The CPV captured by the 

first	𝑙 PCs is calculated by (Xia, et al., 2013): 

 CPV(𝑙) = 100n
∑ 𝜆qr
qj)

∑ 𝜆q,
qj)

s 	% (13) 

Hence choosing those l PCs turns out to a matter of choosing the percentage of total variance we desire to 

keep. 
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2.3. Kullback-Leibler Divergence 

2.3.1. Definition 
 

    Kullback-Leibler (KL) divergence, also called relative entropy, information divergence or I-divergence, is a 

special case of the f-divergence family for dissimilarity computations that was introduced by Kullback & 

Leibler (1951). KL divergence is an information-based measure of dissimilarity between two probability 

distributions 𝑓v and 𝑓wv	defined over the same random variable Y. Typically, 𝑓v represents the true distribution 

and 𝑓wv represents a model or approximation of 𝑓v (Wang, et al., 2014). In other words, KL divergence can be 

interpreted as a measure of the inefficiency of assuming that the distribution is 𝑓wv	when the true distribution is 

𝑓v (Cover & Thomas, 1991). 

    The Kullback-Leibler divergence between two probability density distributions from 𝑓wv	 to 𝑓v is defined as 

the expectation over the distribution 𝑓v, it is given by: 

 𝐷yz(𝑓v||𝑓wv} = 𝐸�� �𝑙𝑜𝑔
𝑓v(𝑦)
𝑓wv(𝑦)

� (14) 

- For the discrete case: 

 𝐷yz(𝑓v||𝑓wv	} =i 𝑓v(𝑦)	𝑙𝑜𝑔
𝑓v(𝑦)
𝑓wv	(𝑦)��v

 (15) 

- For the continuous case: 

 𝐷yz(𝑓v||𝑓wv	} = �𝑓v(𝑦)	𝑙𝑜𝑔
𝑓v(𝑦)
𝑓wv	(𝑦)

	𝑑𝑦 (16) 

2.3.2. KLD for Multivariate Normal Distribution 
 
The multivariate normal distribution is a multivariate extension of the normal distribution of a single variable 

to a random vector of normally distributed elements, considering the correlation among those elements. 
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Recalling that the Probability Density Function (PDF) for a normally distributed random variable Y, with mean 

µ and variance σ2, is given by: 

 𝑓v(𝑦) =
1

√2𝜋𝜎
exp	 n−

(𝑦 − 𝜇)*

2𝜎* s (17) 

In case of n-dimensional random vector	𝒀 = [𝒚)	𝒚* 	…	𝒚�]𝑇, Equation Error! Reference source not found. 

is extended to take the form of: 

 

 𝑓𝒀(𝒚) =
1

(2𝜋)�/*
|𝜮|�)/*𝑒𝑥𝑝 �

−(𝒚 − µ𝒀)8𝜮�)(𝒚 − µ𝒀)
2 � (18) 

The notation 𝒀~𝑁�(𝒚; µ, 𝜮) is used to denote the multivariate normal distribution of the 𝑛-dimension random 

vector Y, where µ𝒀 is the n-dimensional mean vector: 

 µ𝒀8 = 𝐸(𝒀) = [𝐸(𝒚))	𝐸(𝒚*)	… 	𝐸(𝒚�)] (19) 

and 𝜮 ∈ 	𝑅�×� represents the symmetric positive definite covariance matrix, whose (𝑖, 𝑗)𝑡ℎ entry is 

𝐶𝑜𝑣[𝒚b, 𝒚q]. It is defined as: 

 𝜮 = 𝐶𝑜𝑣(𝒀) = 𝐸[(𝒀 − µ𝒀)(𝒀 − µ𝒀)8] = 𝐸[𝒀𝒀8] − µ𝒀µ𝒀8 (20) 

Having two multivariate normal distributions 𝑓𝒀 = 𝑁)¢𝒚; µ𝒀), 𝜮1} and	𝑓£𝒀 	= 𝑁
2
¤𝒚; µ𝒀2, 𝜮2¥, the KL 

divergence between these distributions is: 

 𝐷yz(𝑓𝒀||𝑓w𝒀	} = 	
1
2 �𝑡𝑟

(𝜮*�)𝜮)) + (µ𝒀* − µ𝒀))
8𝜮*�)¢µ𝒀* − µ𝒀)} − 𝑛 + 𝑙𝑜𝑔

|𝜮*|
|𝜮)|

� (21) 

Where 𝑡𝑟(. ) denotes the trace of a given matrix. 

2.4. The Chi-square Q-Q plot 

The Chi-square Q-Q plot (Korkmaz, et al., 2014) is used as a graphical tool to check the assumption of 

multivariate distribution for a given data. The squared Mahalanobis distance has an approximate chi-squared 
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distribution for large samples of data that follows the multivariate normal distribution with 𝑛-degrees of 

freedom. The procedure includes the following steps: 

1. Calculate the squared Mahalanobis distances to the centre of the points that have a chi-squared 

distribution with 𝑝-degrees of freedom as: 

 𝑀¨(𝒚©) = (𝒚© − µ𝒀)8𝜮�)(𝒚© − µ𝒀) (22) 

 

𝒚© = [𝑦),©, 𝑦*,©,⋯ , 𝑦�,©]8 for 𝑘 = 1:𝑁R, where 𝑁R is the number of samples.  

2. Arrange the distances in ascending order as 𝑀¨
) ≤ 𝑀¨

* ≤ ⋯ ≤	𝑀¨
𝑁𝑠 

3. Compute the expected quantiles from the chi-squared distribution 𝒳* that correspond to the Mahalanobis 

distances as: 

 𝓆© = 𝒳* ¯
𝑘 − 1/2
𝑁R

° 	𝑓𝑜𝑟	𝑘 = 1:𝑁R (23) 

 

4. The Chi-square Q-Q plot is then obtained by sketching the distances 𝑀¨(𝒚©) versus the quantiles 𝓆© 

𝑓𝑜𝑟	𝑘 = 1:𝑁R 

The plot resembles a straight line through the origin for data following multivariate normal distribution while 

a curved pattern indicates non-normality (Ramzan, et al., 2013). 

3. KLD based PCA Monitoring Scheme 

The proposed fault detection technique aims at detecting the presence of anomalies that cause process failures 

using KLD applied to a PCA model of the process data. The basic idea is based on computing the divergence 

between the multivariate probability density functions of the fault-free and faulty states of the scores through 

the calculation of KLD between the corresponding distributions. The block diagram in Figure 1 shows the main 

steps of our developed FD algorithm, the procedure was applied on both PCA subspaces, Principal Subspace 
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(PS) and Residual Subspace (RS), resulting in two fault indicators entitled KLDPS and KLDRS. it can be 

summarized as: 

1) PCA model subspaces 𝑷NO	and	𝑷PQR	 (Equation 4) are identified from a training data set acquired 

under a healthy operating condition. 

2) Reference score components matrices 𝑻TPQ� and  𝑻ZPQ� (Equations 6 and 7) are then obtained by 
projecting the fault-free data into both PCA subspaces. Subsequently, the reference probability 
distributions are established as 𝑓w𝑻T±²³ and 𝑓w𝑻Z±²³	(Equation 18): 

 
𝑓w𝑻T±²³ =

1
(2𝜋)r/* ´𝜮𝑻T±²³´

�)/*
𝑒𝑥𝑝 µ

−¤𝒕 − µ𝑻T±²³¥
8
𝜮𝑻T±²³

�)(𝒕 − µ𝑻T±²³)
2 ¶ (24) 

 
𝑓w𝑻Z±²³ =

1
(2𝜋)(,�r)/* ´𝜮𝑻Z±²³´

�)/*
𝑒𝑥𝑝 µ

−¤𝒕 − µ𝑻ZPQ�¥
8
𝜮𝑻Z±²³

�)(𝒕 − µ𝑻ZPQ�)
2 ¶	 (25) 

where 𝑓w𝑻T±²³ = 𝑁 ¤𝒕; µ𝑻T±²³, 𝜮𝑻T±²³¥ is estimated for the 𝑙	principal scores and 𝑓w𝑻Z±²³ = 𝑁 ¤𝒕; µ𝑻ZPQ�,

𝜮𝑻Z±²³¥ for the (𝑚 − 𝑙) residual scores evaluated for a window frame under healthy conditions. 

3) The online scores (𝑻T	and	𝑻Z)	are calculated using the referenced PCA subspaces for the following 

set of measurements, and the corresponding probability density functions 𝑓𝑻T	and	𝑓𝑻Z	(Equation 18) 

are estimated at each time instant through a moving window. 

4) KLD is calculated between the reference and the new probability densities according to Equation 

Error! Reference source not found. such that KLDPS = 𝐷yz(𝑓𝑻T ∥ 	 𝑓w𝑻T±²³) and KLDRS =

𝐷yz(𝑓𝑻Z ∥ 	 𝑓w𝑻Z±²³	) are given by: 

 
KLDPS =

1
2µ𝑡𝑟 ¤𝜮𝑻T±²³

�) 𝜮𝑻T¥ + (µ𝑻TPQ� − µ𝑻T)
8𝜮𝑻T±²³

�) ¤µ𝑻TPQ� − µ𝑻T¥ − 𝑙 + 𝑙𝑜𝑔
´𝜮𝑻T±²³´
|𝜮𝑻T|

¶ (26) 

 
KLDRS =

1
2µ𝑡𝑟 ¤𝜮	𝑻Z±²³

�) 𝜮𝑻Z¥ + (µ𝑻ZPQ� − µ𝑻Z)
8𝜮	𝑻Z±²³

�) ¤µ𝑻ZPQ� − µ𝑻Z¥ − (𝑚 − 𝑙) + 𝑙𝑜𝑔
´𝜮𝑻Z±²³´
|𝜮𝑻Z|

¶	 (27) 
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5) As a final point, the obtained KLDPS and KLDRS are compared to appropriate thresholds to infer 

the state of the process. 

Notice that the healthy scores and their PDFs are calculated only once in the offline stage from sufficient 

training data, and their statistics (KLDPS, KLDRS) are used to determine the thresholds. On the 

contrary, the online scores are updated through the projection of any new measurement and collected in 

a moving window to estimate their current approximate PDFs and calculate their KLD values which are 

compared to the established thresholds.    

 

 
Figure 1 KLD-based PCA for fault detection procedure 
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4. Application 

Generally, MSPM techniques are tested and verified by application to certain industrial plants. Various data 

sets under specific faulty states can be collected from simulation or real operation in order to test the validity of 

the diverse proposed techniques. In this paper, two processes are used to testify the proposed method, the 

Tennessee Eastman Process (TEP) which is a simulated process and a real system composed of three tanks. 

TEP was chosen to be utilized in our work as it is an available realistic simulation program of a well-known 

plant in chemical engineering. It is widely accepted as a benchmark for evaluating process control and 

monitoring methods. Many research on process monitoring for fault detection and diagnosis have used the TEP 

as a source of data for comparing various approaches (Deng, et al., 2016; Rato & Reis, 2013; Wang, et al., 

2008). Similarly, the three tank system, consisting of tanks, pumps, and pipelines used in chemical industries, 

serves as typical benchmark process in control laboratories. The real data collected from the system and 

corrupted by faults is suitable to demonstrate the monitoring framework. The proposed FD method was verified 

by investigating the False Alarm Rate (FAR) and the Missed Detection Rate (MDR) defined as the probabilities 

of type I and type II errors, respectively (Ding, 2008; Zhang, et al., 2017a), in addition to the fault detection 

Time Delay (TD) for different data sets containing the fault-free operation part (𝐹 = 0) and faulty state part 

(𝐹 ≠ 0). 

 FAR% = ℙ(KLD > KLDÂÃ|𝐹 = 0)% (28)      

 

 MDR% = ℙ(KLD < KLDÂÃ|𝐹 ≠ 0)	%     (29) 

 

 TD =	 𝑡¨ − 𝑡Ç     (30) 

where	𝑡¨ is the fault detection time and 𝑡Ç is the fault occurrence time.  
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The FAR reflects the robustness of the FD technique; the MDR quantifies the sensitivity to every fault that 

could possibly occur in the process, whereas the fault detection time delay of these faults defines the promptness 

of the FD system. 

5. Tennessee Eastman Process 

The TEP, proposed by Downs and Vogel as a benchmark for the Eastman Chemical Company, is well 

described in (Downs & Vogel, 1993).  the full flow diagram of the process is shown in Figure 2 (Chiang, et al., 

2004). The measured variables include various measurements such as: pressures, levels, temperatures, 

concentrations, etc., while the manipulated variables include 11 valves’ positions in addition to the reactor 

agitator speed. 

 

 

A simulation code that imitates the real process was created by Downs and Vogel that was originally open-

loop unstable. For this application, a plant-wide control structure recommended using decentralized control 

open and closed multi-loop controllers. The MultiLoop_mode3.mdl model, designed to run at Mode 3 

Figure 2 Tennessee Eastman diagram. (Chiang, et al., 2004) 
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conditions, is adopted to generate the simulated process data (Bathelt, et al., 2015). The simulation code was 

used to record 23 data sets of the process measurements for 130 operation hours. Two datasets correspond to a 

normal operating condition for training and testing purposes; the remaining 21 sets are faulty and each 

corresponds to a preprogrammed fault. These benchmark faults are listed in table 1 among which, 5 faults are 

of an unknown nature. In each faulty set, the fault is introduced after 40 operating hours. The sampling time 

was selected as 3 min. 

 

5.1. Analysis 

The KLD fault indicator is evaluated for the principal and the residual subspaces obtained from the PCA 

model of the TEP. Each subspace scores can be thought of as random vectors of independent identically 

distributed (iid) random variables. The illustration of the divergence concept will be shown later with the three 

tank system where the number of variables is small since it is impossible to visualize a changing 𝑛-variate 

distribution using demonstration tools for 𝑛 > 2. Nevertheless, the assessment of a heavy assumption 

considering the multivariate normality of the scores is first provided in the following. Figure 3 shows the Chi-

square Q-Q plot as described in subsection 2.4. This normality test is verified for the training samples of the 

Table 1 Process faults for the Tennessee 
Eastman process simulator 

Fault 
Number Description Type 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

16-20 
21 

A/C feed ratio, B composition constant (Stream4) 
B composition, A/C ratio constant (Stream4) 

D feed (Stream2) 
Reactor cooling water inlet temperature 

Condensor cooling water inlet temperature 
A feed loss (Stream1) 

Cheader pressure loss – reduced availability (Stream4) 
A, B and C composition (Stream4) 

D feed temperature (Stream2) 
C feed temperature (Stream4) 

Reactor cooling water inlet temperature 
Condensor cooling water inlet temperature 

Reaction kinetics 
Reactor cooling water valve 

Condensor cooling water valve 
Unknown 

Stream 4 valve 

          Step 
Step 
Step 
Step 
Step 
Step 
Step 

Random 
Random 
Random 
Random 
Random 

Slow drift 
Sticking 
Sticking 

- 
Constant position 
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principal as well as the residual score subspaces (𝑻T (Equation 6) and  𝑻Z (Equation 7)) of dimensions 𝑁ÈP × 𝑙 

and 𝑁ÈP × (𝑚 − 𝑙), respectively, where 𝑁ÈP is the number of measurements in the training dataset. Figure 3 

indicates that the majority of the points in the graph, defined by the Mahalanobis distance (Equation 22) versus 

the Chi-square quantile (Equation 23), tend to fall into the reference line which proves that the multivariate 

normality assumption holds. Only few points exhibit a negligible deviation which is acceptable and it is 

attributed to measurement noise. 

 

 

5.2. TEP Fault Monitoring 

 
 
 
 
 
 
 
5.2 TEP fault monitoring  

In this section, the proposed algorithm of KLD-based PCA is applied for FD in Tennessee Eastman process. 

The algorithm is tested and evaluated by investigating False Alarm Rate (FAR), Missed Detection Rate (MDR) 

(Zhang, et al., 2017a) and the fault detection Time Delay (TD) for data being collected for the 21 benchmark 

faults. The developed method is also tested on different PCA models based on two different criteria. The number 

of retained components in the PCA model (Equations 3 and 4) was found to be 6 scores when using the VRE 

method (Equations (9 to 12)), while 37 scores are retained if a 90% CPV is used instead (Equation (13)). Despite 

the huge difference in the appropriate number of PCs (6 vs 37), which stands for an unsolved dilemma where 

each of the different criteria is claimed to be the optimum (Zwick & Velicer, 1989), the developed algorithm is 

less dependent on the exact choice of 𝑙 according to its overall performance. The window size, another 

parameter that should be tuned, was set by testing the data for minimum average MDR and FAR in order to 
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Figure 3 Chi-square Q-Q plot for assessing multivariate normality of (a) the principal scores and (b) 
the residual scores 
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have a large enough window length that ensures the obtained densities at a given time are really descriptive to 

the local distributions. For the PCA model based on VRE, the window size was 630 samples for the KLDPS 

and 660 samples for KLDRS. The same approach was followed for the subspaces obtained from the CPV 

method giving that the best window size for the KLDPS is 690 samples versus 510 samples for the KLDRS. As 

expected, the window length is relatively related to the subspace dimension and the amount of captured noise. 

The two monitoring statistics are evaluated over a moving window that includes current and most recent 

samples. The use of a moving window approach gives more importance to the local information while 

disregarding old observations, this generally makes the monitoring more effective (Russell, et al., 2000). 

Moreover, with no update on PCA model parameters, this approach avoids an unnecessary increase in the 

computational complexity with a fixed PCA model. More importantly, the moving window approach allows 

the estimation of local density functions (Equations 18, 19, and 20) of both subspaces of the scores at any given 

time. The offline training data is then used as in an online approach and scanned with a moving window, the 

KLD is evaluated for each window with respect to the reference distribution; The resulting collections of the 

KLDRS and  KLDPS, as described in section 3,  are used to define their proposer thresholds during the given 

healthy operation conditions. The thresholds were established statistically based on the chosen confidence level. 

It consisted of alignment of the detection thresholds to correspond to a 1% FAR that stands for the effects of 

noise and mismatches while increasing the sensitivity. This tuning is achieved through the training data that 

corresponds to normal operating conditions by using the percentile approach for limits correction (Aldrich & 

Auret, 2013). Zero FAR was achieved using both statistics on the testing data which proves the high robustness 

of the FD system.  

The performance parameters related to the 21 faulty sets are calculated for both fault indicators and 

summarized in Table 2. (where und refers to undetected faults) 

Recall that the most robust FD scheme is the one that minimizes the FAR as defined by Equation (28), while 

the most effective FD scheme is the one associated with the lowest MDR defined by Equation (29) and the 
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shortest TD by Equation (30) which are sensitivity parameters. The most reliable FD scheme is therefore 

selected to be the one associated with the lowest parameters reported in Table 2. Corresponding to 99% 

confidence level, Table 2. shows the performance of KLDPS and KLDRS statistics in detecting different faults, 

in terms of the FAR, MDR and fault detection TD. According to Russel, et al. (2000) and Zhang (2009), 

detection of faults 3, 9, 15, 16 and 21 is very difficult because there are no noticeable changes in the 

observations. This problem has been overcome to an appreciable extent for faults 3 and 9 by considering the 

use of both statistics. However, fault 15 was detected by the KLDRS of the retained components from the CPV 

analysis. Furthermore, the detection of fault 16 was improved upon by both KLDRS statistic. These 

improvements may be considered as proof of the efficacy of the proposed method.  

 

Taking an overview of the obtained results leads to a preliminary conclusion that the proposed FD system 

can be considered as a suitable technique for detection. The KL divergence statistics are sensitive to the 

Table 2 The FAR, MDR and time delay for the 21 faults at 99% confidence level 

FAR (%)/MDR (%)/TD(samples) 
VRE 6 PCs 90% CPV 37 PCs 

KLDPS Statistic KLDRS statistic KLDPS Statistic KLDRS statistic 
IDV1 0/ 1.17/21 0/0.67/12 0/1.11/19 0/0.39/7 
IDV2 0/ 3.22/58 0/3.89/70 0/4.77/86 0/2.83/51 
IDV3 0/ 84.79/422 0/19.99/350 0/34.37/463 0/6.55/118 
IDV4 0/ 9.55/172 0/0.22/4 0/2.22/40 0/0.17/3 
IDV5 4.09/0/0 0/0.06/1 0/0.06/1 0/0.06/1 
IDV6 0/7.2/9 0/0.8/1 0/9.6/12 0/0.8/1 
IDV7 0/0.17/3 0/0.06/1 0/0.28/5 0/0.06/1 
IDV8 0/1.61/29 0/0.83/15 0/1.44/26 6.87/0.67/12 
IDV9 0/81.45/333 0/29.48/429 0/81.23/454 0/14.05/253 
IDV10 0/7.50/135 0/2.22/40 0/9.05/163 0/1.72/31 
IDV11 0/8.88/160 0/0.67/12 0/1.22/22 0/0.61/11 
IDV12 0/0.22/4 0/0.17/3 0/0.22/4 0/0.11/2 
IDV13 0/9.55/172 0/6.55/118 0/8.60/155 0/6.61/119 
IDV14 0/16.10/290 0/0.50/9 0/1.05/19 0/0.44/8 
IDV15 0/100/und 0/100/und 0/100/und 0/72.4/358 
IDV16 0/100/und 0/96.72/621 0/100/und 5.79/29.09/186 
IDV17 0/1.99/36 0/1.11/20 0/1.50/27 0/0.83/15 
IDV18 0/3.72/67 0/3.16/57 0/3.55/64 0/2.89/52 
IDV19 0/1.33/24 0/0.94/17 0/1.28/23 0/0.72/13 
IDV20 0/6.27/113 0/5.44/98 0/6.55/118 0/5.1/92 
IDV21 0/100/und 0/100/und 0/100/und 0/100/und 

Avr MDR 25.94 17.78 22.29 11.72 
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abnormality since they introduce considerably low values for the factors characterizing the FD system 

performance which is the case for most of the faults with high robustness to false alarms. Also, it is noted that 

the CPV method for separating the two subspaces gave better results of the performance parameters than the 

VRE technique due to the suitable separation between the subspaces.  
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Figure 5 Monitoring results for fault 9 using 
KLDPS and KLDRS at 99% CL obtained from 
the VRE technique 
  

Figure 4 Monitoring results for fault 5 using 
KLDPS and KLDRS at 99% CL obtained from 
the VRE technique 
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Figure 7 Monitoring results for fault 3 using 
KLDPS and KLDRS at 99% CL obtained 
from the CPV technique 
  

Figure 6 Monitoring results for fault 11 using 
KLDPS and KLDRS at 99% CL obtained from 
the VRE technique 
  

Figure 9 Monitoring results for fault 14 
using KLDPS and KLDRS at 99% CL 
obtained from the CPV technique 
  

Figure 8 Monitoring results for fault 4 using 
KLDPS and KLDRS at 99% CL obtained from 
the CPV technique 
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To visualize these results and confirm the supposition of efficiency, different figures were plotted that show 

process faulty state operation monitoring using the two fault indicators for 6 different faults. The horizontal red 

line corresponds to 99% confidence level threshold and the vertical green line indicates the fault occurrence 

time. 

For the statistics obtained from the VRE technique process faulty operation monitoring for the step fault 5 

and the random faults 9 and 11 are shown in Figure 4, 5 and 6, respectively, while the step faults 3 and 4 are 

depicted in Figure 7 and Figure 8 and the sticking fault 14 in Figure 9 for the analysis done using CPV method. 

Process faults can affect one indicator differently with respect to the other. In both cases, employing VRE and 

CPV, the KLDRS gave better results than the KLDPS for almost all the faults. This can be observed from Figure 

6 and Figure 9 where both faults 11 and 14 are promptly detected by KLDRS better than the KLDPS. This is 

also clearly noticed in Figure 5 and Figure 7 in which Faults 3 and 9 are barely detected using KLDPS while 

KLDRS was capable of providing satisfactory results. As a result, the KLDRS in the proposed methodology is 

considered to be the best fault indicator since it provides optimal performance factors for an adequate FD 

system.  

5.3. Comparison study on TEP 

A comparative study is conducted between multivariate data analysis methods results from Yu (2016) and 

Zhang, et al. (2017b) and those obtained from our proposed method with 99% confidence level to show its 

proficiency and advantages. This FD statistics comparison is pursued in terms of the missed detection rate as 

listed in Table 3 where the minimum MDR is highlighted in red boldface.  

 The MDR values of each method are nearly similar in the cases of faults 1, 2, 6, 7, 8, 12, 13 and 14 since 

the values are so small that they can be easily detected. A high percentage of the MDR indicates the 

undetectability of a certain fault which is noticeable in faults 15 for all the listed FD methods. The noteworthy 

improvement that the proposed method makes can be seen in reducing significantly the values of the MDR 

percentage of other faults specifically for faults 3 and 9 which present, in general, a weak spot for most statistical 
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FD techniques, proving the KLD capacity of detecting small process shifts that are difficult to detect. Process 

faults that must be pointed out to are faults 15, 17 and 18 where the lowest values of the MDR are achieved 

using the KLDRS. These results indicate the high sensitivity of the proposed technique to the process faults. In 

general, KL divergence shows a better performance compared to the MMP-based D statistic, LGPCA-based D 

and SPE statistics, LGP, T² using PLS and DDPLS and DPLC-ICA approach. Additionally, the total average 

of MDR was computed for all the methods and the KL divergence-based monitoring provides the best MDR 

average value among all the FD techniques by considering the KLDRS fault indicator. 

 

 

Jianbo Yu Kai Zhang et.al. Proposed method 

MMP JLGLPP LGP PLS DDPLS DPLC- 
ICA KLD-PCA 

D D SPE  T² T²  KLDPS KLDRS 
IDV1 0 0 1 0 0.4 0.2 0 1.11 0.39 
IDV2 3 2 2 2 1.8 1.2 0 4.77 2.83 
IDV3 99 93 99 89 100 100 100 34.37 6.55 
IDV4 28 76 40 55 100 100 100 2.22 0.17 
IDV5 0 0 76 0 100 100 100 0.06 0.06 
IDV6 0 0 0 0 0.6 0 0 9.6 0.8 
IDV7 0 3 0 0 0 0 0 0.28 0.06 
IDV8 13 2 3 2 5.7 1.3 0 1.44 0.67 
IDV9 99 96 99 95 100 100 100 81.23 14.05 
IDV10 17 9 63 6 23.8 12.8 1.2 9.05 1.72 
IDV11 53 69 45 33 20.4 5 0.6 1.22 0.61 
IDV12 2 0 2 0 49 34 12.4 0.22 0.11 
IDV13 5 5 6 5 100 100 100 8.6 6.61 
IDV14 0 2 0 0 11.6 0 0 1.05 0.44 
IDV15 99 89 97 88 100 100 100 100 72.4 
IDV16 12 12 80 9 100 100 100 100 29.09 
IDV17 6 6 18 4 14.4 11.2 3.7 1.5 0.83 
IDV18 10 10 11 10 23.2 13.6 13.4 3.55 2.89 
IDV19 13 11 98 10 1.7 1.7 0.5 1.28 0.72 
IDV20 16 9 59 9 7.8 8.4 1.9 6.55 5.1 
IDV21 88 40 62 42 100 100 100 100 100 

Av MDR 26.81 25.42 41 21.85 45.73 42.35 39.7 22.29 11.72 
 

Table 3 MDR (%) of MMP, JLGLPP, LGP, PLS, DDPLS, DPLC-ICA and the proposed method (KLDPS 
and KLDRS) 
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6. Three tank system 

The three tank system introduced in this paper is the laboratory setup DTS200 (AMIRA-DTS200, 1996). 

The system consists of three tanks interconnected by two pipes that are equipped by two transfer valves (transfer 

valve 1 and 3). Two pumps are used to supply the water from the central reservoir to tank 1 and 2 with flow 

rates 𝑞) and 𝑞*, respectively. The water levels at the three tanks are measured through piezo-resistive pressure 

transducers (level sensor 𝐿), 𝐿* and 𝐿Ë). The observations provided from the flow rates and water levels are 

acquired using NI DAQ-6024E acquisition card interfaced with MATLAB software. The collected healthy data 

set contains 9000 samples while the faulty sets contain 2400 samples with sampling time equals to 0.2 seconds, 

each of 5 variables corresponding to the three tanks water levels (𝐿), 𝐿*, 𝐿Ë) and the two pump flows (𝑞), 𝑞*) 

(Kouadri, et al., 2013). 

6.1. Analysis and results 

The aforementioned criterion, CPV, was applied to determine the number of retained PCs since it provided 

better results than VRE in the TEP. The results revealed 3 principal components expressing 90% of CPV to 

define the split between the principal and residual subspaces. Hence, the residual subspace contains two 

variables; to enhance the concept of distribution disparity, an inclusive example is used to illustrate the principle 

of our proposed technique. Figure 10 displays the difference between the distributions before and after fault 

occurrence using the two score components obtained from the residual subspace of the three tank system.  

   The window size, on the other hand, was set by testing the data for minimum average MDR and FAR. The 

window size was found to be 350 samples for KLDPS and 450 samples for KLDRS. Lastly, the thresholds were 

established statistically based on 99% confidence level according to the same principle adopted earlier.  

The data gathered from the laboratory three tank system introduce two cases of sensor faults: 

Case 1: 10% of failure on the sensor level 1 occurring at sample 653, 

Case 2: 10% of failure on the sensor level 3 occurring at sample 901. 
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The performance indices (MDR and FAR) corresponding to the two fault modes are computed for both fault 

indicators (KLDPS and KLDRS) and summarized in table 4 along with the results obtained through the static 

PCA control charts (T² and SPE). It is noticeable that the proposed framework can be considered as a suitable 

technique for fault detection. The sensitivity of the KLD statistics to abnormal events is readily discernible 

through the values of MDR and FAR recorded. Furthermore, it is noted from the stated table that KLDRS gave 

better results of the performance parameters than the other statistics especially for fault case 2, which confirms 

the superiority of KLDRS concluded before from the TEP. In order to visualize the results, the monitoring plots 

were depicted using the proposed method and static PCA for the two faults cases (Figure 11, 12, 13 and 14). 

Comparing the probability distributions of the online observations with the training ones through Kullback-

Leibler divergence proved its efficiency by achieving the trade-off between the detectability of failures and the 

false alarm rates. 

 

Figure 10 Comparison between PDFs of bivariate scores before (a) and after (b) fault occurrence 

obtained from the residual subspace of the three tank system in fault case 1 

(a) (b) 

       Reference 
       Before Fault 

       Reference 
       After Fault 
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7.  Conclusion 

A probabilistic measure, called the Kullback-Leibler Divergence (KLD) based on PCA is introduced in this 

paper.  PCA was used as a modeling framework describing data variation in the principal and the residual 

 KLD-PCA Static PCA 
KLDPS KLDRS T² SPE 

Case FAR(%) MDR(%) FAR(%) MDR(%) FAR(%) MDR(%) FAR(%) MDR(%) 
1 17.43 0 0.98 0 22.24 0 9.35 0 
2 0 100 0 11.95 4.45 93.67 8.01 79.81 

 

Table 4 MDR (%) and FAR (%) of static PCA and the proposed method (KLDPS and KLDRS) 

Figure 11 Monitoring results of fault case 2 using 
KLDPS and KLDRS at 99% CL 
  

Figure 12 Monitoring results of fault case 2 using 
KLDPS and KLDRS at 99% CL 
  

Figure 13 Monitoring results of fault case 1 
using T² and SPE at 99% CL 

Figure 14 Monitoring results of fault case 2 
using T² and SPE at 99% CL 
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subspaces. The obtained scores of both subspaces follow a multivariate Gaussian distribution and their 

approximate PDFs were sequentially estimated in a moving window approach then evaluated through the KLD 

which measures all kinds of dissimilarity between the probability distributions among the cores in both 

subspaces during normal and faulty operating modes. Instead of the traditional squared distance charts such as 

𝑄 and 𝑇* statistics, more accurate fault indicators are developed for a robust and sensitive measure of deviation 

within the two PCA-defined subspaces.  

The developed methods were first validated through the well-known TEP benchmark and then put to a 

realistic challenge in an experimental application against real faults using real data. The obtained results 

revealed that the proposed method has aptly proven its capability and efficacy in detecting several faults in a 

simulated as well as realistic processes as it afforded minimum values of the performance factors, namely the 

MDR, the FAR and the FD time delay that are mostly used as standard measurements characterizing the utility 

and the validity of the FD approach. 

Another approach that was followed within the study is the comparison between the KLD-based PCA and 

some other MSPM methods for FD including MMP, JLGLPP, LGP, PLS, DDPLS, and DPLC-ICA. The idea 

was handled by comparing the Hotelling’s T², SPE and D statistics to the developed KLDPS and KLDRS 

statistics.  

As future work, we suggest extending the proposition of using the KLD based PCA algorithm to other 

industrial processes subject to different types of faults. Also, the disparity measure can be obtained by the use 

of other MSPM methods such as the PLS. Moreover, the technique in our work discussed only the fault detection 

phase, hence, the KLD is recommended to be set into a classification analysis in which the complete process of 

fault detection and isolation is to be considered. 
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