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Abstract: 

Advanced Fault Detection (FD), diagnosis, and isolation schemes are necessary to realize the required levels of 

reliability and availability and to minimize financial losses against failures, explicitly in modern Wind Turbine Systems 

(WTSs) which are designed to generate electrical energy as efficiently and reliably as possible. This paper presents the 

design of a novel and inclusive FD framework on the basis of data-driven methods, it is intended for the online early 

detection of involuntary anomalies of various types and locations. Conventional methods are based on the exact model 

and/or signal patterns or hardware redundancy, and generally fail to address this issue. On the contrary, the presented 

algorithm is motivated by the availability of fast sensors and powerful computers yielding big data which can be explored 

to extract and exploit useful information. In a typical WTS, FD procedures face particular challenges attributed to high 

levels of measurement noise and sparse changes due to the fast dynamics as well as the switching control strategy along 

with transient phases. In this scope, a minimum and informative set of measured variables is proposed to accurately and 

completely describe the system behavior under its entire operation range; datasets are hence defined for appropriate 

dimensions and sampling time to satisfactorily model the measured data patterns and variability. Among data-based 

strategies, multivariate and univariate statistical analysis tools are recommended for this approach. A method based on 

Principal Component Analysis (PCA) is used in this study for its capabilities of dimensionality reduction, information 

de-correlation, and noise rejection. Multi-PCA-models are consequently used to train parallel statistical models through 

the proposed set of fault-relevant variables and used for online FD. Moreover, this method is reinforced by an adaptive 

threshold scheme based on an efficient modified EWMA control chart, the overall algorithm is robust to outliers and 

highly sensitive to small abnormalities and abrupt changes. Static and dynamic applications are investigated for modern 

wind turbine systems under different operating zones, and faults having different severity levels are studied ranging from 

sensors to actuators and up to system faults. The overall constructed algorithm shows significant potential applications 

compared to several methods recently reported in the literature in terms of applicability potential, robustness, and 

detection sensitivity. 

1. Introduction 

Beside clean energy contribution, wind energy comprises a nonfinite renewable energy source and it is the most 

competitive source of new power generation; In 2016, the wind was the largest destination for power sector investments 

[1]. Wind energy already meets 10.4% of the EU’s power demand with high penetration levels in several countries 

(Denmark 42%; Spain 20%; Germany 13%; and UK 11%) [1]. In this direction, contemporary wind turbine size has 

increased up to more than 200 meters. The rated power of wind turbines was in the order of less than 1000 kW during the 

mid-1990s, while currently, the market of modern wind turbines is dominated by multi-megawatt machines. Nowadays, 

these are elevated to machines of 10 MW rated power, destined mainly to serve offshore wind energy applications. 

Moreover, machine capacity is expected to increase even more through future innovative concepts [2].  

A wind turbine system (WTS) usually operates continuously (24/7) under increasing challenges to satisfy high 

power demands matching the desired power quality. With its increased size, complex interactions, and numerous 

components operating at high power, a WTS is frequently subject to components as well as system failures at critical 
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rates [3, 4], as illustrated in Fig. 1 and Fig. 2, causing long downtime reparation periods up to several days in addition to 

huge financial losses due to its respective size. Fault Detection (FD) tasks hence play a crucial role in the production 

capacity as well as quality achieved by wind turbines and their financial outcomes. Poor monitoring system directly 

affects: (i) the outcome of a system through increased operational and maintenance costs [4, 7], and (ii) reduced 

availability to generate power as a result of turbine downtime. The two conditions certainly encourage WTS operators to 

employ the most advanced and adapted monitoring methods to reduce these failure rates and time to repair and to 

maximize the WTS output quality and performance.  

 
Fig 1. Failure rates and downtime per failure of onshore European wind turbines [3]. 

Accordingly, and for the sake of achieving resilient wind energy systems, extensive theoretical and experimental 

research have considered the problem of early detection of distinct WTS faults and abnormalities focusing mainly on the 

critical components. Authors in [8] present a comprehensive survey about fault ride through techniques for WTSs with 

proposed controllers, some techniques are also considered by [9] focusing on the WTS doubly-fed induction generator. 

Fault analysis and load monitoring are also considered in [10] and [11] respectively. Qualitatively, WTS health 

monitoring is considered in [12 – 15]; Authors in [12] considered the biocomposite material selection in a specific 

weather conditions and the impact on structural health and recommended the use of biocomposite green material instead 

of synthetic fiber; long-term operation and structural health related faults in WTS were addressed in [13] including 

blades [15], gearbox, bearing, and mechanical braking; Authors in [14] proposed the use of statistical pattern recognition 

for WTS health monitoring based on signals from ultrasonic/ acoustic emission, thermal imaging, fatigue and strain. 

Testing, inspection and monitoring technologies for WTS components such as turbine blades, rotor bearing conditions, 

and converter are considered separately in [16 – 18], respectively. A survey is provided in [16] on mechanical/ fatigue/ 

modal testing as well as inspecting and monitoring technologies; the authors arrived to the fact that full-scale testing must 

be performed. Bearing condition monitoring in WTSs was considered in [17] through offline acoustic/ temperature/ 

vibration monitoring. The diagnosis of converter faults was considered in a survey in [18], where common reasons of 

converter faults were listed with their mostly used diagnosis tools. In reality, all unit operations of a WTS are 

interconnected and their variables are strongly coupled. Since the occurrence of a particular anomaly generally affects all 

the remaining units, the global structure of the system must be considered for detecting possible anomalies of different 

types and low impacts in their very early stages. 

  

Fig 2. Several types of WTS faults, if undetected, may lead to severe damages and power losses [5, 6]. 
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Data-driven frameworks are proposed in this paper for global monitoring of modern WTSs and early detection 

of involuntary faults of different types, impacts, and locations. Traditional FD methods in WTSs are model-based, signal-

based, and some techniques based on hardware redundancy. Model-based methods [19 - 21] include the use of analytical 

relations [19] and state observers or parameter estimators assuming the structure is given and the system is observable; 

Set-membership approaches are used in [20] with Bayesian reasoning for FD in WTSs, this method assumes bounded 

errors and bounded noise levels with known distributions; in a quite similar way, fuzzy membership functions are used in 

[21] to construct a Takagi-Sugeno fuzzy model for a WTS for FD purposes. Model-based techniques often rely on a 

complete and exact analytical/ statistical/ AI model which cannot be accurately obtained for modern WTSs which are 

complex and large in size. Signal-based FD techniques generally involve Kalman/ 𝐻∞ filtering and observers [22], or 

fuzzy identifications [23]; these techniques require prior known signals with their models and patterns and they are used 

for local monitoring such as drive-train and converter. In the same direction, the major drawback for hardware 

redundancy strategies is the increased cost, maintenance efforts, complexity, and failure probabilities caused by installing 

extra sensing devices. Nowadays, with fast computing and sensing technologies having the ability to acquire and process 

big datasets, data-based methods are receiving an increasing attention for many applications in complex systems such as 

WTSs control and monitoring [24, 25]. In general applications, multivariate statistical data-driven methods make a 

superior alternative solution for semi-supervised FD, these methods include Principal Component Analysis (PCA) [26], 

Independent Component Analysis (ICA) [27], Partial Least Squares (PLS) [28], Higher-Order Cumulants Analysis 

(HCA) [29], Fisher Discriminant Analysis (FDA) [30], and Slow Feature Analysis (SFA) [31]. On the basis of large size 

multivariate data of low statistical rank, these methods are very efficient in extracting few independent sources carrying 

most of the information and describing dominant variation in the overall system.  

The use of multivariate statistics for big data analysis aiming at detecting wide range of anomalies in WTSs has 

not been reported so far. The aforementioned model-based [19 - 21] and signal-processing-based [22, 23] techniques are 

hard to be designed and generalized for different types of WTSs in real-time applications. Related works dealing using 

data-based FD techniques in WTSs include Monte-Carlo analysis [24], Gibbs sampling algorithm [25], and support 

vector machines (SVM) [37, 38] classification; These approaches, however, appear to be fully supervised since they are 

trained through extra labeled data with sufficient measurements collected during faulty operations. Unfortunately, such 

data cannot be obtained in practice. Another drawback of these approaches can be seen through the high dependability on 

the training datasets which consequently narrows their application scope, since SVM is limited to classifying future 

scenarios similar to training data. These classifiers are also highly sensitive to noise, authors in [37, 38] proposed the use 

of low pass filters for signal de-noising. However, such filtering destroys some of the signals details and therefore delays 

the detection and reduces the sensitivity against small deviations.  

PCA and other multivariate statistical analysis techniques are commonly used for monitoring processes which 

are generally stationary and operate under deterministic conditions, fixed set-points, and slow dynamics. On the contrary, 

several challenges arise in the scope of FD in WTSs, which have particular types of signals and data patterns; (i) The 

high levels of measurement signal-to-noise-ratio (SNR) cause many outliers that mislead the detection algorithm causing 

many false alarms and/or mask some faults leading to missed detections; (ii) The switching control strategy of WTSs 

cause another difficulty making the system highly nonlinear and operating under continuously changing modes; (iii) Fast 

dynamics of such a system hence often cause frequent transient stages which also contributes to the difficulty of 

extracting the statistical information and estimating the monitoring parameters. In this work, a minimum and informative 

set of fault-relevant variables is defined to construct a reliable FD scheme through multivariate statistical analysis. The 

appropriate datasets are hence spanned through this variables with adequate dimensions and sampling intervals to 

properly model the data and extract the statistical parameters.  

PCA [32, 33] is mainly used in this work to efficiently construct parallel (multi) statistical models for the WTS 

under different operation zones. In addition, Dynamic PCA (DPCA) method [34 - 36] is used to capture serial correlation 

and consider the dynamics of the WTS which operates under varying dynamic loads due to environmental conditions. 

Data-driven and particularly PCA methods were proved powerful in detecting anomalies. These methods, however, rely 

on basic assumptions such as data normality and stationarity, which is not the case for WTSs. The continuously evolving 

operation during normal conditions raise a major challenge of discriminating changes due to anomalies from those 

normal evolutions. Furthermore, WTSs operate in a switching manner under multi-modes which are further continuous 

and joint. Hence, learning a global statistical model results in a biased and poor representation for the system 

functionality; on the other hand, constructing discrete models for the variability of such big data is computationally heavy 

and not feasible to the objective of fast detection. In this direction, multi-model PCA-based strategy is proposed for 
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efficient and accurate modeling of the covariance structures under both operating zones. From a data analysis point of 

view, sparse changes due to switching control and transients in addition to the high SNR toughen both tasks of statistical 

modelling and analysis. Even under a distinct set-pint, the noise-decoupling aspect of PCA is not well achieved, both 

principal and residual subspaces defined by PCA include noise features in addition to main features describing natural 

variability. Under such imperfect decomposition, discriminating sparse changes from noise-related outliers is inflexible 

in both subspaces. To cope with data uncertainties and their impact on training and statistical analysis and evaluation, the 

algorithm is reinforced with an adaptive threshold scheme to increase the robustness and FD sensitivity and maintain a 

stable monitoring performance over long operation periods.  

On the basis of maximum information extraction and appropriate statistical analysis and evaluation, the 

developed algorithm can be generalized to any WTS which exhibits increased challenges inherited from any 

electromechanical system including nonlinear and complex interactions with dynamic behavior. Due to systems large 

scale, faults can reside at any level across its numerous units, leading to electrical or mechanical abnormalities. These 

faults also have different severity levels and impacts on the system and exhibit different behaviors to be detected. Fqults 

in sensors generally lead to wrong measurements and system reconfiguration in feedback closed loops, and thus they 

have a low influence on the WTS performance making them harder to be detected. However, faults in actuators have a 

higher severity on the system performance and safety such as slow control actions for pitching the blades and non-

optimal power generation, this definitely imposes instantaneous or fast detection. System faults including drive train 

vibrations also have a remarkable severity with increased detection challenges. Under these circumstances, the objective 

of the presented algorithm is the early detection of several types of faults according to their given constraints and severity 

levels. This certainly provides an invaluable warning time to implement the appropriate counteractions and prevent fault 

evolution and system failure, and therefore increases the WTS lifetime as well as reliability and reduces maintenance 

costs.  

The rest of this paper is organized as follows; Section 2 provides a detailed description of the continuous and 

joint operating modes of a typical WTS according to its overall control strategy, and main signals used for monitoring 

application as well as all considered sensor, actuator, and system faults. Section 3 brings forward different stages of the 

developed FD algorithm considering PCA based statistical learning for static and dynamic modelling followed by a 

developed adaptive threshold scheme for statistical evaluation. FD application on the WTS is described in Section 4 and 

drawn results are discussed. Finally, major findings and potential applications are given as a general conclusion in 

Section 5. 

2. Wind turbine 

2.1. Wind turbine system description 

 A horizontal-axis variable-speed wind turbine with a rated power of 𝑃𝑟 = 4.8 𝑀𝑊 is considered in this work. 

This system has three blades and it consists of four main unit operations as indicated in fig. 3 [37]: blade and pitch 

system (hydraulic), drive train, generator and converter, and controller. The drive train is used to increase the rotational 

speed from the rotor 𝜔𝑟 to the generator 𝜔𝑔, and the full converter is coupled to the generator which converts the 

mechanical wind energy applied on the blades to electrical energy. Based on the wind speed 𝑣𝑤, the aerodynamics of the 

turbine are controlled for optimal power generation 𝑃𝑔. The system controls the three pitch systems (𝛽1, 𝛽2, 𝛽3) and the 

convertor to allow respectively pitching the blades and setting the generator torque 𝜏𝑔 to control the rotational speed of 

the generator and the rotor. The overall system is nonlinear with switching control structure and the measurements are 

noisy. 

 
Fig 3. Simplified schematic diagram of the wind turbine system illustrating main unit operations and relevant signals 

[38]. 
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Due to increased academic and industrial interests in control design, performance analysis, and monitoring of 

modern wind turbines, a generic and realistic benchmark was proposed and developed [37, 38] for monitoring studies 

and comparisons of results. Based on the Benchmark model and faults, an international competition on fault detection 

and isolation in wind turbines was released in 2010 by kk-electronic with MathWorks and Aalborg University. This 

benchmark was also used for several research applications [39 - 41]. It allows simulating the wind turbine system under 

power production operation modes (based on the mean wind speed), namely zone II and zone III which are indicated in 

fig. 4. Zone II corresponds to optimal power generation (or partial load) during insufficient wind speed, and Zone III 

represents constant power generation. The wind turbine is at standstill for very low wind speed (bellow cut-in level), and 

it is pitched out of the wind stopping the rotation and the energy production at very high wind speed (above cut-out 

level). These two modes are excluded from the benchmark model and no monitoring task is required. The operational 

zones are considered for data acquisition, statistical modelling, and monitoring, as will be presented in sections 3 and 4. 

 
Fig 4. Wind turbine operation zones.  

 

Table 1. Process variables for the wind turbine system. 

Variable  Description Unit 

𝑣𝑤, 𝑣𝑤,𝑚 Real wind speed acting on the turbine blades and its measured value, 

respectively. 
𝑚/𝑠 

𝜏𝑟, 𝜏𝑔 Real rotor and generator torques, respectively. 𝑁 𝑚 

𝜏𝑔,𝑟, 𝜏𝑔,𝑚 Generator reference and measured torques, respectively. 𝑁 𝑚 

𝜔𝑟 , 𝜔𝑔 Real rotor and generator rotational speed. 𝑟𝑎𝑑/𝑠 

𝜔𝑟,𝑚𝑗 , 𝜔𝑔,𝑚𝑗 Measured rotational speed of the rotor and the generator, respectively. Two 

measurements for each one. 𝑗 = 1, 2.  

𝑟𝑎𝑑/𝑠 

𝑃𝑟 , 𝑃𝑔,𝑚 Rated and measured generated power, respectively. 𝑊 

𝛽𝑖,𝑟 Reference to the pitch position (three blades). 𝑖 = 1, 2, 3. ° 

𝛽𝑖,𝑚𝑗 Measured pitch position (three blades, two measurements for each one). 𝑖 =
1, 2, 3. 𝑗 = 1, 2. 

° 

 

 A real acquired sequence of varying wind speed with significant measurement noises is used to study the system 

under both operation zones. The system is equipped with duplicated sensors to measure the three pitch positions 

(𝛽𝑖,𝑚𝑗 , 𝑖 = 1,2,3, and 𝑗 = 1,2) as well as the speeds of the generator and rotor 𝜔𝑔,𝑚𝑗  and 𝜔𝑟,𝑚𝑗 (𝑗 = 1,2), respectively. 

Measured and reference system variables are also described in Table 1. Random measurement noise is considered in this 

work, it is associated with all measurement sensors, and it is initialized through a random seed generator to ensure 

randomness and independence of data acquisition. A total of ten sensors are therefore used and they are all subject to two 

kinds of faults: fixed value and gain factor as listed in Table 2 [37].  

Table 2. Sensor, actuator, and system benchmark faults in the wind turbine process [37]. 

Fault Type Description Severity DTC 
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3b) Gain factor reconfigure system 

 

Actuators 

faults   

4a) Offset Bad torque control, none optimal power 

generation 

Medium < 5 𝑇𝑠 

5a) Changed 

dynamics 

Slow control actions due to problems with 

pump or leakage 

High < 8 𝑇𝑠 

5b) Changed 

dynamics 

Slow control actions due to air in oil Medium < 600 𝑇𝑠 

System 

fault 

6) Changed 

dynamics 

Increased level of drive train vibration Medium free 

DTC: Detection time delay condition, where  𝑇𝑠 = 10 𝑚𝑠is the sampling time. 

 The controller operates according to the average wind speed, it generates the three reference angular positions 

𝛽𝑖,𝑟 , 𝑖 = 1,2,3, and the reference generator torque 𝜏𝑔,𝑟. The hydraulic pitch system is modelled by a second-order transfer 

function, specifying the relationship between the real pitch angles 𝛽𝑖and their reference values 𝛽𝑖,𝑟, (𝑖 = 1,2,3): 

𝛽𝑖(𝑠)

𝛽𝑖,𝑟(𝑠)
=

𝜔𝑛
2

𝑠2 + 2 𝜉 𝜔𝑛 𝑠 + 𝜔𝑛
2
                                                                                       (1) 

With [𝜔𝑛, 𝜉] = [11.11, 0.6] during normal operation (normal response of the actuator to the controller reference value). 

The converter dynamics on the other side are modeled by a first-order transfer function, relating the real generator torque 

𝜏𝑔 to its reference value (generated by the controller) 𝜏𝑔,𝑟: 

𝜏𝑔(𝑠)

𝜏𝑔,𝑟(𝑠)
=

1

𝜏 𝑠 + 1
                                                                                               (2) 

With 𝜏 = 20 𝑚𝑠. 

2.2. Benchmark faults  

Different types of faults are studied within this WTS, including sensors, actuators, and system faults. Actuator 

faults 4a), 5a), and 5b) as described in Table 2, are simulated with a constant offset of the generator torque to emulate 

bad torque control as well as changing the dynamics 𝜔𝑛 and𝜉 for the case of  slow control actions due to pump problems 

such as leakage and air in oil. 

 Since the system is operating under feedback (closed loops) control and duplicated measurement system is 

adopted through physical redundancy, sensors faults have a lower severity with a relatively larger Detection Time 

Constraint (DTC) as indicated in Table 2. Yet, they must be handled within this limited DTC before becoming critical. 

On the other hands, actuator faults have a medium to high severity on the system’s performance and safety since these 

controllers are expected to execute the main control actions governing the overall process and its performance. Thus, 

abrupt controller faults must be detected within a smaller time period. Lastly, increased level of vibration in drive train 

unit with long-term operation will lead to system wearing and reduced lifetime, thus, this fault has no detection time 

constraint, but it causing a medium severity on the system in terms of downtime reparation and maintenance costs. 

3. Constructed WTS FD Algorithm 

Monitoring and FD algorithms are effectively designed through an appropriate set of fault-relevant variables 

that should be selected. Minimum set is required since the redundancy of sensory devices is usually avoided due to cost 

and complexity. It is also vital to limit the monitoring variables to those signals with relevant information on the system 

behavior and capable of reflecting faults symptoms. Out of this set, additional variables may unnecessarily increase the 

time and computation complexity of the algorithm and even worsen the detection performance. On the other hands, 

describing the system functionality requires a complete set of informative signals. The best dataset must be acquired and 

used for statistical modelling, information extraction, and abnormalities detection. Among 23 WTS signals indicated in 

section 2 and listed in Table 1, only measured variables are used for FD in the developed approach, including these 13 

variables: 𝑣𝑤,𝑚, 𝜔𝑟,𝑚1, 𝜔𝑟,𝑚2, 𝜔𝑔,𝑚1, 𝜔𝑔,𝑚2, 𝜏𝑔,𝑚, 𝑃𝑔,𝑚, 𝛽1,𝑚1, 𝛽1,𝑚2, 𝛽2,𝑚1, 𝛽2,𝑚2, 𝛽3,𝑚1, and 𝛽3,𝑚2. 

3.1. PCA/ DPCA-based FD 

This set of relevant monitoring signals, acquired at a fixed sampling time, form a big data matrix 𝑿𝟎 ∈  𝑅
𝑛×𝑚 of 

𝑛 samples and 𝑚 WTS variables. The well-known optimal dimensionality reduction technique PCA is used to transform 
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the original large-size multivariate data from a correlated high dimensional space into a lower dimensional space. This 

space has an orthonormal basis of uncorrelated components capturing most of the variation as present in the original data.   

In order to extract information from variables having different units and different trends, the original signals are 

first auto-scaled to have zero-mean and unity-variance so to avoid their weighting and bias, this results in an auto-scaled 

data matrix 𝑿 ∈  𝑅𝑛×𝑚 of the same dimension. Through singular value decomposition, the amounts and orthogonal 

directions of variation in this data are obtained. PCA is often applied on the covariance matrix 𝑺 representing the 

covariance structure among the WTS signals. 

𝑺 =
𝟏

𝒏−𝟏
𝑿𝑻𝑿 =  𝑷𝜦𝑷𝑻                                                                (3) 

This structure is decomposed into 𝑷 and 𝜦 matrices where: 𝑷 ∈ 𝑹𝑚×𝑚 is the loadings matrix and it contains the 

𝑚 orthonormal loadings (eigenvectors), and 𝜦 ∈ 𝑹𝑚×𝑚 is the diagonal descending-order eigenvalues matrix. The 

loadings represent the directions of variation in the auto-scaled signals, and their associated eigenvalues represent the 

variance as the amount of variation per each particular direction. PCA dimensionality reduction is therefore achieved by 

defining a barrier between main useful information which is retained to represent the statistical WTS model and the 

rejected information representing noise. Among 𝑚 loadings, also called components, only 𝑙 << 𝑚 of the first significant 

Principal Components (PCs) having large dominant eigenvalues are retained. And thus explain the highest variances. 

Several techniques are generally used to determine 𝑙 such as: Kaiser-Guttman method by retaining only those 

components whose eigenvalues are greater than the average of all components, which is one in the case of auto-scaled 

data; And Cumulative Percent Variance method which is commonly used by retaining minimum 𝑙 components having 

their sum of variances greater than a preselected Percentage Variance (PV). 

The loadings and diagonal eigenvalues matrices 𝑷 and 𝜦 are respectively decomposed, and define the two PCA 

subspaces according to the number of principle components 𝑙: 

{
𝑷 = [�̂�|�̃�]

𝜦 = [�̂� 𝟎
𝟎 �̃�

]
                                                                               (4)  

where �̂� ∈ 𝑹𝑚×𝑙 and �̃� ∈ 𝑹𝑚×(𝑚−𝑙) are respectively the projection operators onto the principal and residual subspaces 

defined by the modeled and non-modeled variations in the WTS. In the same manner, �̂� ∈ 𝑹𝑙×𝑙and �̃� ∈ 𝑹(𝑚−𝑙)×(𝑚−𝑙) are 

the diagonal matrices describing retained and ignored variances, respectively. 

In order to model the WTS dynamics and consider the autocorrelation among its measured variables, Dynamic 

PCA (DPCA) method is used. Every single variable is augmented by adding time-lagged values and thereby expanding 

the data matrix, resulting in a data matrix with 𝑙𝑔 time shifted lags which generally depend on the dynamics order and 

given an appropriate sampling time. One of the common methods used to determine the lag structure was given in [35] 

where linear correlations are treated as linear relationships (LRs). This method is based on the number of LRs within an 

extended covariance matrix, this number is generally deduced from the matrix rank deficiency. Due to the presence of 

noise in data, this method suggests the use of the number of PCs as the matrix rank, and therefore the approximate nullity 

of the matrix can be determine and considered as the number of LRs. This method recursively adds one more lag to all 

variables in the original data matrix as long as it yields new extra LRs. According to [35], the resulting number of lags 

for this method is usually 1 or 2, depending on the order of the system dynamics, and it could be higher to offer a better 

linear approximation of the nonlinear correlations in case of highly nonlinear systems. 

The augmented data matrix 𝑿𝒅 ∈  𝑅
𝑛×𝑚 consists of 𝑛 observations and 𝑚 = (𝑙𝑔 + 1) ×

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠, and each row vector is given at kth instance as:  

𝑿𝒅(𝑘) = [𝑿𝟎(𝑘), 𝑿𝟎(𝑘 − 1), … , 𝑿𝟎(𝑘 − 𝑙𝑔)]                                                                        (5) 

where 𝑿.(𝑘) is a row vector representing one measurement of all variables at sample k. Note in this stage that the second 

dimension of the augmented data matrix is multiples of the number of WTS variables. The augmented data matrix 𝑿𝒅 is 

also auto-scaled and decomposed according to the previous equations (3) and (4), resulting in a dynamic statistical model 

for the WTS. 

In either static or dynamic case, when a sample measurement from the WTS (one raw vector) 𝒙 ∈ 𝑹1×𝑚 is acquired, it can 

be decomposed into: 

𝒙 = 𝒙 �̂��̂�𝐓 + 𝒙 �̃��̃�𝐓 = 𝒙 𝑪 + 𝒙(𝑰 − 𝑪) = 𝒙 +  𝒆                                                                     (6) 
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where 𝒙 and 𝒆 are referred to respectively as the projection of 𝒙 onto the principal and residual subspaces. Consequently, 

𝑄 and 𝑇2statistics measure the variability of this measurement within the residual and the principal subspaces, 

respectively.  

The Squared Prediction Error (SPE) or 𝑄 statistic is defined as: 

𝑄 = 𝒙(𝑰 − 𝑪)(𝑰 − 𝑪)T𝒙T = ‖𝒆‖2                                                                                      (7) 

and its upper control limit 𝑄𝛼  is given as a fixed threshold at a given significance level 𝛼 as: 

{
 
 

 
 
𝑄𝛼 = 𝜃1 [

𝑧𝛼ℎ0√2 𝜃2
𝜃1

+ 1 +
ℎ0𝜃2(ℎ0 − 1)

𝜃1
2 ]

1

ℎ0

𝜃𝑖 = ∑ 𝜆𝑗
𝑖

𝑗=𝑚

𝑗=𝑙+1

, 𝑖 = 1,2,3 and   ℎ0 = 1 − 
2𝜃1𝜃3

3𝜃2
2

                                                                      (8) 

where 𝑧𝛼 is the critical value for an appropriately chosen confidence level (1 − 𝛼) of the standard normal distribution. 

While the Hotelling 𝑇2 statistic is defined as: 

𝑇2 =  𝒙�̂��̂�−1�̂�T𝒙T                                                                                          (9) 

with a fixed upper control limit 𝑇𝛼 defined for a significance level 𝛼 as:  

𝑇𝛼 = 
(𝑛2 − 1) 𝑙

𝑛(𝑛 − 𝑙)
𝐹𝛼(𝑙, 𝑛 − 𝑙)                                                                               (10) 

where 𝐹𝛼 (𝑙, 𝑛 − 𝑙) is the critical value at the confidence level (1 − 𝛼) of the Fisher–Snedecor distribution with 𝑙 and (𝑛 −
𝑙) degrees of freedom. 

At this stage, monitoring the system functionality is reduced to monitoring the two resulting statistics. The WTS 

is considered faulty whenever the variability from each of the two subspaces is too large, in other words, when one of the 

two statistics exceeds its associated control limit, i.e. 𝑄 > 𝑄𝛼  or 𝑇2 > 𝑇𝛼. 

3.2. Improved FD Algorithm through adaptive threshold 

For adaptive FD in the WTS, we further propose to reinforce SPCA and DPCA methods with an adaptive 

threshold scheme having the following advantages [32, 33]: (i) stable monitoring performance over long operation 

periods by dynamically updating the control limits to new appropriate values; (ii) wide range of values as control limits 

to accurately measure the deviation and increase fault detection sensitivity of different types of wind turbine faults while 

significantly increasing robustness to false alarms; (iii) exploit the use of historical statistics to properly evaluate the 

system deviation from previous normal operation and ensure a reliable and effective WTS FD algorithm. 

Adaptive thresholds are developed for the observed sequence statistics 𝑄 = [𝑞1, 𝑞2, … , 𝑞𝑘] and 𝑇2 =
[𝑡1, 𝑡2, … , 𝑡𝑘]. Instantaneous thresholds for these statistics are developed on the basis of Exponentially Weighted Moving 

Average (EWMA) control chart. In its conventional version, the EWMA 𝑌𝜆[𝑘]at time sample 𝑘 of the observed value 

𝑌[𝑘] is given as:  

𝑌𝜆[𝑘] = 𝜆 𝑌[𝑘] + (1 − 𝜆)𝑌𝜆[𝑘 − 1]                                                                       (11) 

where λ is a smoothing constant between 0 and 1. However, a modified EWMA version with a limited window length is 

used to develop dynamic control limits for FD in the WTS: 

𝑌𝑐
𝑤[𝑘] =

∑ 𝑐𝑖  𝑌[𝑘 − 𝑤 + 𝑖]𝑤
𝑖=1

∑ 𝑐𝑖𝑤
𝑖=1

                                                                                      (12) 

where𝑤 is the window length and 𝑐 > 1 is the exponential weighting factor. The instantaneous value at kth sample of 

adaptive threshold 𝑄𝐴𝑑[𝑘] for the 𝑄 statistic is given as:  

𝑄𝐴𝑑[𝑘] = max{
1

𝑐𝑞
𝑤𝑞
(𝑄𝛼∑𝑐𝑞

𝑖

𝑤𝑞

𝑖=1

− ∑ 𝑐𝑞
𝑖

𝑤𝑞−1

𝑖=1

𝑞𝑘−𝑤𝑞+𝑖) , 0.2𝑄𝛼}                                                       (13) 

with the following associated condition: 

𝑞𝑘−𝑤𝑞+𝑖 < 𝑄𝐴𝑑[𝑘 − 𝑤𝑞 + 𝑖] for 𝑖 = 1, 2, … , 𝑤𝑞 − 1                                                       (14) 
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And in the same manner, The instantaneous value at kth sample of adaptive threshold 𝑇2𝐴𝑑  for the 𝑇2 statistic is given as: 

𝑇2𝐴𝑑[𝑘] = max{
1

𝑐𝑡
𝑤𝑡
(𝑇𝛼∑𝑐𝑡

𝑖

𝑤𝑡

𝑖=1

− ∑ 𝑐𝑡
𝑖

𝑤𝑡−1

𝑖=1

𝑡𝑘−𝑤𝑡+𝑖) , 0.2𝑇𝛼}                                                       (15) 

such that: 

𝑡𝑘−𝑤𝑞+𝑖 < 𝑇2𝐴𝑑[𝑘 − 𝑤𝑡 + 𝑖] for 𝑖 = 1, 2, … , 𝑤𝑡 − 1                                                       (16) 

where𝑐. and 𝑤. are respectively the exponential adaptation factor and the adaptation window length for the  associated 

threshold. And the WTS is considered faulty whenever one of the 𝑄 and 𝑇2 statistics exceeds its instantaneous threshold. 

These adaptive thresholds, given by equations (13 to 16), consist of a fixed part that controls the deviation from the 

preset fixed limits and a dynamic part on the basis of a modified EWMA control chart. The exponential filtering 

increases the reliability and robustness against data outliers and thus it greatly reduces false alarms in the FD system. 

Besides, this method keeps the core information carried in each statistic since it gives greater importance to recent data 

while still considering previous values with the most recent value having the highest weight and thus it correctly ensures 

fast detection of small and abrupt abnormalities with a high detection sensitivity. Moreover, associated conditions for 

these thresholds make the adaptation based on the normal operation statistics only, so additionally, the thresholds 

measure the deviation of the WTS from previous normal operation mode. 

 

 

4. Application setup 

 

Table 3. Fault scenarios applied in the wind turbine benchmark model [37, 38, 39].  

Scenario Type Scenario Description 

1 1a) Pitch angle sensor, stuck A fixed value of 𝛽1,𝑚1 equal to 5° 

2 1b) Pitch angle sensor, scale A gain factor on 𝛽2,𝑚2 of 3.2 

3 4a) Torque offset An offset on 𝜏𝑔 

4 2a) Speed sensor, stuck A constant value of 𝜔𝑟,𝑚1 equal to 1.4 rad/s 

5 2b), 

3b) 

Speed sensors, scale A gain factor on 𝜔𝑟,𝑚2 and 𝜔𝑔,𝑚1 of 1.2 and 0.8, respectively 

6 5a) Slow control  Change in the dynamics (ξ,𝜔𝑛) due to the hydraulic pressure drop of pitch 

actuator 2 

7 5b) Slow control Change in the dynamics (ξ, 𝜔𝑛) due to increased air content in the oil on 

pitch actuator 2 

8 1a) Pitch angle sensor, stuck A fixed value of 𝛽3,𝑚1 equal to 10° 

9 6 Drive train Change in the friction in the drive train 

10 3a) Generator speed sensor, stuck A fixed value of 𝜔𝑔,𝑚1 equal to 70 rad/s 

  

Using a real measured wind speed, the system is studied in both functional zones, and static as well as dynamic 

monitoring tasks are performed. In this direction, PCA models are constructed for both operation modes where the 

switching between them is carried out following the system control, based on input mean wind speed and output 

generated power. Among the signals indicated in Table 1, which are in general used for FD, only measured signals are 

used in our application to avoid extra hardware redundancy. Namely the duplicated measurements of the three pitch 

positions 𝛽𝑖,𝑚𝑗  as well as the generator and the rotor speeds 𝜔𝑔,𝑚𝑗 and 𝜔𝑟,𝑚𝑗  respectively (𝑖 = 1,2,3, and 𝑗 = 1,2), in 

addition to the single measurements of wind speed 𝑣𝑤,𝑚, generator torque𝜏𝑔,𝑚, and generated power 𝑃𝑔,𝑚 are retained. 

This results in 13 measured variables, indicated in Fig. 3 and well described in section 2, which are used here to train a 

statistical model for the wind turbine system and used for FD analysis and performance evaluation. Thus each 

measurement dataset 𝑿. is constructed in this form: 
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𝑿𝟎 = [𝑣𝑤,𝑚, 𝜔𝑟,𝑚1, 𝜔𝑟,𝑚2, 𝜔𝑔,𝑚1, 𝜔𝑔,𝑚2, 𝜏𝑔,𝑚, 𝑃𝑔,𝑚, 𝛽1,𝑚1, 𝛽1,𝑚2, 𝛽2,𝑚1, 𝛽2,𝑚2, 𝛽3,𝑚1, 𝛽3,𝑚2]                      (17) 

 Different datasets are acquired for statistical learning, model validation, as well as test and evaluation. For each 

operation zone, both static and dynamic PCA models are trained through 500 samples collected within 500 seconds (with 

one second sampling time) during normal system operation under the associated mode, 𝑿𝟎 ∈ 𝑹
500×13. The overall 

adaptive threshold schemes are also tuned using training datasets along with model parameters. Each constructed scheme 

is then tested and validated online through a testing dataset of 100000 samples collected with 10 ms sampling time and 

spanning 1000 seconds operation period, 𝑿𝟎 ∈ 𝑹
100,000×13. The difference in duration and sampling time of the training 

and validation datasets ensure both application generality and independence of the monitoring performance from training 

data. 

 The robustness of each scheme to outliers caused by the measurement devices noise and inaccuracies is first 

checked online through normal operation testing datasets. False Alarms Rate (FAR) performance index is used in this 

purpose to assess the robustness of the scheme; the FAR index is defined as the rate of normal operation samples which 

are falsely identified as faults 𝑁𝑓 over the total number of evaluated samples during normal operation𝑁𝑛.  

𝐹𝐴𝑅 = 100
𝑁𝑓

𝑁𝑛
%                                                                                        (18) 

 The constructed schemes are then evaluated for online fault detection. The 10 fault scenarios described in Table 

3 are independently and successively simulated in different operation zones. Each faulty set is simulated over a 200 

seconds operation period and consists of 20000 samples; one fault scenario is introduced in each set after 50 seconds of 

normal operation, thus each faulty set consists of 5000 normal operation samples followed by 15000 faulty samples, 

𝑿𝟎 ∈ 𝑹
20,000×13. In this case, the fault Detection time Delay (DD) is used to assess the FD performance, it represents the 

time delay between the detection and real occurrence of the fault.  

𝐷𝐷 = 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 − 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑡𝑖𝑚𝑒                                                             (19) 

 The resulting schemes are compared in terms of robustness and FD performance. A more robust scheme has the 

lowest FAR since any false alarm may cause an unnecessary shut down of the system and thus reduces the monitoring 

reliability of the scheme. At the same time, the objective of an effective FD scheme is to detect possible system faults as 

fast as possible with minimum delay to prevent the fault from evolving and causing overall system failure as well as to 

ensure sufficient time to do necessary counteractions. Thus the overall performance is assessed by achieving the 

minimum FAR and lowest DD to ensure respectively robustness and efficiency.    

 5. Results and discussion 

Data from WTSs form two particular and challenging backgrounds for analysis; the noisy environment due to 

measurements acquisition through electromechanical sensors, in addition to recurrent transient phases. These properties 

result in a non-stationary and unsteady process. Under such particular conditions, the representation and estimation of 

signals patterns are challenging. Moreover, the switching control strategy of the WTS and its fast dynamics both 

contribute to this challenge leading to continuously chattering modes. Discriminating changes due to anomalies from 

those due to evolution of normal operation and sparse changes is not an easy task. In this direction, figure 5 illustrates the 

main physical input and generated output over just 2 hours of normal operation. The real measured sequence of wind 

speed driving the system has a considerable signal-to-noise-ratio and changing trends forcing the system to switch 

operation and undergo many transient phases. This can be seen through the output generated power with fluctuating 

amplitude as well as a significant level of measurement noise. Notice that the operation modes of the system are 

continuously switching. The data in its whole range, of just these two variables, do not follow a particular pattern. 

Furthermore, substantial changes may evolve over longer operation periods; System functionality in its whole range and 

signals maximum variations must therefore be well considered in both statistical modelling and evaluation. 
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Fig 5. Trends and variations of the input wind speed and the output generated power over 2 hours of WTS operation 

under normal conditions. 

Such particular conditions in WTS pose hard challenges for the design of a reliable FD approach in its offline 

training stage and online detection. Training an efficient PCA model generally applies to linear processes with data 

approaching a multivariate Gaussian distribution which is clearly not the case for this system. For this reason, multi-

PCA-models are used to monitor the system under each operation zone. The training datasets from both zones are 

collected according to the controller action to ensure correct statistical modeling. Even though PCA is a powerful noise 

decoupling tool, the projection of new measurements on the trained models will still cause many outliers. A solution to 

this issue is the use of the adaptive threshold scheme based on a modified EWMA low-pass filter, validation of the 

detection algorithm and analysis of its robustness to outliers are provided below.  

Table 4. False alarms contribution (lower is better) of different schemes during normal operation modes.  

Method 
Contributed FAR (%) 

Training set  Testing set 

  

PCs 

 

PV% 

 

Statistic 

Fixed 

threshold 

Adaptive 

threshold 

 Fixed 

threshold 

Adaptive 

threshold 

S
P

C
A

 Model1 5 73 
𝑄 0.4 0  2.9 0.001 

𝑇2 0.2 0  0.24 0 

Model2 2 84 
𝑄 1 0  0.87 0 

𝑇2 1 0  0.44 0.9 

D
P

C
A

 Model1 12 73 
𝑄 0.41 0 7.42 0.04 

𝑇2 0.61 0  0.04 0 

Model2 3 83 
𝑄 1.02 0  0.83 0.14 

𝑇2 1.83 0  0.08 0.03 

 

The recommended training datasets are acquired during normal conditions of the WTS under both functional 

zones, these datasets are then used to train parallel statistical models. Both static and dynamic PCA models are 

constructed using Kaiser’s rule for retaining the appropriate number of principal components. Kaiser’s rule is also used to 

conclude the number of nonzero eigenvalues and thus the number of linear relationships to determine the number of lags 

in DPCA method. As a result, DPCA models of zone II and zone III are constructed with two lags to capture serial 

correlation and model the system dynamics. The resulting parameters of each model such as the number of retained PCs 

and the captured percentage variance (PV%) are listed in Table 4, where Model1 and Model2 respectively correspond to 

zone II and zone III for both static (SPCA) and dynamic (DPCA) cases. This table also lists the 𝑄 and 𝑇2 contributions of 

FAR (lower is better) of each model in both training and testing datasets. A conclusion can be drawn regarding the 

validity and applicability of the proposed framework, this ensures a stable performance as demonstrated with a tolerable 

FAR (type I error) in both training and testing steps with a FAR of 0% to 7.41%. It is also noted that the integration of 

the proposed adaptive threshold scheme with each of the constructed models has a great effectiveness in 

eliminating/reducing the excessive numbers of false alarms contributed by the conventional fixed thresholds, and thus 

ensuring the FD robustness through both statistics with less than 1% false alarms. 
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Fig 6. SPCA_AD Model_1 monitoring results during Zone_II operation mode, Scenario_1: fixed-value single sensor fault, and 

Scenario_5: gain-factor multiple sensors faults. 

     

Fig 7. SPCA_AD MODEL_2 monitoring results during Zone_III operation mode, Scenario_8: sensor fault, and Scenario9: system 

fault. 

After validation and robustness analysis, the constructed framework is tested for its online detection 

performance across all types of faults using both static and dynamic models for each operation zone. Monitoring results 

of both 𝑄 and 𝑇2 statistics are illustrated in Figures 6 to 9 across different faults; the resulting statistics are indicated in 

green with their fixed thresholds with blue and adaptive thresholds in red, also a fault indicator for the adaptive threshold 

is added to demonstrate the detection of a particular fault. These figures are plotted with a 1s sampling time for clarity  

purposes while the real sampling rate is 10 ms. Recall that a fault is detected once a statistic exceeds its threshold, and 

that the faults are introduced after 50 seconds of normal operation.  
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Fig 8. DPCA_AD MODEL_1 monitoring results during Zone_II operation mode, Scenario_2: sensor fault, and Scenario_3: offset 

actuator fault. 

Figures 6 and 7 include results of static modelling of multi-PCA-models for zones II and III respectively, while 

figures 8 and 9 represent those of dynamic modelling. All figures demonstrate the successful detection of all faults, the 

detection time delay can be measured knowing the time of occurrence for each fault. These figures demonstrate the 

robustness of the proposed framework, this can be deduced from the number of false alarms during the first 50 seconds 

of normal behavior since no statistic is supposed to exceed its threshold. A comparison of fixed and adaptive thresholds 

shows that the later one is more robust. The detection sensitivity is also seen during faulty region through early fault 

detection and detection rate; each statistic here is supposed to exceed its threshold. These figures show that the 𝑄 statistic 

has a better detection performance. 

    

Fig 9. DPCA_AD MODEL_2 monitoring results during Zone_III operation mode, Scenario_6: Actuator fault, and Scenario_10: sensor 

fault. 

Table 5. Fault detection performance results and comparisons across benchmark fault scenarios. 

‘-’ means the fault is not detected/reported. Best results are indicated in bold. 

 The obtained results are also summarized in Table 5, which lists the detection performance of static and 

dynamic PCA-based schemes across the different scenarios as previously described in Table 3. Since the use of fixed 

control limits contributes excessive numbers of false alarms making the detection indefinite, Table 5 lists only those 

results obtained through adaptive thresholds. The results indicate that the 𝑄 statistic has a better detection performance 

 Detection delay (samples) 

Methods Scenario: 1 2 3 4 5 6 7 8 9 10 

P
ro

p
o

se
d

 

m
et

h
o

d
 SPCA-

AD 

𝑄 0 32 19 1 3 0 0 19 9 0 

𝑇2 2 2843 12424 47 6389 0 0 - 14 3 

DPCA-

AD 

𝑄 0 21 3 1 3 0 0 5 10 0 

𝑇2 2 656 1382 16 - 0 0 - 16 4 

[37] SVM 2 261 2 2 67 - - - 2835 2 

 

 

[38] 

GKSV 2 4724 1 11 2590 0 0 2 - - 
EB 2 4465 1 33 1 1131 2607 54 - - 

UDC 3 6912 2 2 296 1181 1293 4 - - 
COK 1032 1924 1 18 3132 2380 3400 1035 - - 
GFM 4 1370 792 10 949 1552 3170 5 - - 

 

[19] 

IBAO 3 18 3 3 3 375 33 6 3 3 

SVMO - 3 35 44 11 - 12 34 - 22 

SVMR - 6 3 6 2 2 2 6 36 1 

 

[22] 

Cas. Kal. Fil. - - - 10 10 10 - - 700 - 
Ded. Obs. Sch. - - - 820 8300 1 - - 2500 - 
Par. Eq. Sch. - - - 3 10 1 - - 11600 - 

[23] FPRG 2 8 5 2 3 303 507 2 30 - 
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compared to the 𝑇2 statistic as it detects the faults earlier; similarly, including the system dynamics through DPCA-AD 

method has shown better detection performance. Table 5 also includes comparisons with results reported by [19, 22, 23, 

37, 38]. Some faults are detected instantaneously (with zero DD). Some scenarios corresponding to faults in sensors are 

detected with larger detection delays, such as the second scenario where the fault is detected after 21 faulty samples. 

Recall that sensor faults have a low severity as mentioned before, such a detection delay is acceptable. The rest of the 

faults are detected with very small detection delay, and they are within the detection time constraints as listed in Table 2 

above. In addition to the fact that the proposed FD framework is semi-supervised and independent of its training data, the 

obtained DD results across the different benchmark faults prove the effectiveness and reliability of the developed 

schemes. 

6. Conclusions 

In this paper, a novel data-driven framework is presented for online fault detection in modern wind turbine 

systems. A minimum set of fault-relevant monitoring variables is recommended to achieve better performance and avoid 

redundancy of sensory devices. Informative datasets are therefore constructed to statistically model the system 

functionality under a highly noisy environment and chattering modes. Parallel multivariate statistical models are hence 

suggested to deal with the multi-model operations of the WTS and its switching control strategy as well as recurrent 

transient stages due to its fast dynamics. One presented algorithm incorporates static and dynamic PCA methods for data 

dimensionality reduction and parallel statistical modelling, and it is reinforced through a modified EWMA-based 

adaptive threshold for proper evaluation of the resulting statistics and the operation status. Moreover, a case study on a 

4.8 MW benchmark was carried out analyzing the detection/detectability of common faults in sensors and actuators as 

well as system faults. The study included both functional zones during maximum and constant rated power generation 

depending on the available wind speed. The benchmark reflects real-time measurements under realistic conditions and it 

is used as a source of data to design the proposed strategy which can be easily generalized to practical applications. The 

proposed FD framework forms an effective semi-supervised approach which is independent of both faulty information 

and training data during offline learning and online FD stages, respectively. Compared to other methods in the literature, 

it is worth to mention that this algorithm shows superior results in terms of robustness to outliers and high detection 

sensitivity. Another remarkable advantage of the proposed method is its higher potential applications since it can be 

generalized to wind turbine systems of different sizes and control structures. 
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