
 1 

Nonparametric Kullback-Divergence-PCA for intelligent mismatch detection and 

power quality monitoring for safe rooftop PV to grid integration 

Azzeddine Bakdi * a, Wahiba Bounoua b, Saad Mekhilef c, Laith M. Halabi c 

bkdaznsun@gmail.com, wb.bounoua@gmail.com, saad@um.edu.my, L.halabi@outlook.com 

 

a Department of Mathematics, University of Oslo, 0851 Oslo, Norway. 

b Signals and Systems Laboratory, Institute of Electrical and Electronics Engineering, University M’Hamed 

Bougara of Boumerdes, Avenue of independence, 35000 Boumerdès, Algeria. 

c Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical 

Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia. 

 

Abstract:  

In parallel to sustainable growth in solar fraction, continuous reductions in Photovoltaic (PV) module 

and installation costs fuelled a profound adoption of residential Rooftop Mounted PV (RMPV) installations 

already reaching grid parity. RMPVs are promoted for economic, social, and environmental factors where 

they not only improve energy performance and reduce greenhouse effects but also contribute to bill savings. 

RMPV modules and energy conversion units are frequently subject to various types of anomalies which 

compromise power quality and promote fire risk and safety hazards for the personnel for which reliable 

protection is crucial. This article analyses historical data and presents a novel design that easily integrates with 

data storage units of RMPV systems to automatically process real-time data streams for reliable supervision. 

Dominant Transformed Components (TCs) are online extracted through multiblock Principal Component 

Analysis (PCA), most sensitive components are selected and their time-varying characteristics are recursively 

estimated in a moving window using smooth Kernel Density Estimation (KDE). Novel monitoring indices are 

developed as preventive alarms using Kullback-Leibler Divergence (KLD). This work exploits data records 

during 2015-2017 from thin-film, monocrystalline, and polycrystalline RMPV energy conversion systems. 

Fourteen test scenarios include array faults (line-to-line, line-to-ground, transient arc faults); DC-side 
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mismatches (shadings, open circuits); grid-side anomalies (voltage sags, frequency variations); in addition to 

inverter anomalies and sensor faults. 
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1. Introduction 

Solar plants are continuously expanding as global solutions for clean energy. In the next few decades, 

renewable energy is going to contribute to a significant proportion of the world's electricity needs. According 

to financial reports, international businesses exhibit an increasing interest in buying more renewable energy 

to the extent that 36 corporations, government agencies, and universities have agreed to buy 3.3 Gigawatts 

(GW) of wind and solar power in 2018 alongside the deals of 4.8 GW in 2017 [1]. Google, the giant company, 

announced in 2017 that it had met the target made in 2012 to achieve a 100% consumption of clean energy by 

its establishments around the world [2]. This followed the deals closed to purchase 3 GW of renewable energy 

capacity that year [3]. In Europe, the five largest countries in electricity production (UK, Germany, France, 

Italy and Spain) produced 90.5 Terawatt-hours (TWh) from solar in 2015 and had 90.4 GW of installed solar 

capacity at the end of 2017. Worldwide, the New Policies Scenario of the World Energy Outlook 2017 is 

expecting a solar Photovoltaic (PV) capacity of 2067 GW by 2040, producing 3162 TWh. And in the 

Sustainable Development Scenario, a goal of 3246 GW solar PV capacity is set to be achieved [4].  

Many countries have already reached grid parity for solar Photovoltaics (PVs) [5], for which solar 

power plants will continue to get built at utility-scale, but in fact, the millions of Rooftop Mounted PV (RMPV) 

installations make the real potential for solar fraction [6]. RMPV installations are promoted for economic [7], 

social [8], and environmental [9] factors. By installing RMPV solar panels, consumers will pay less to the 

electric utility and may even become energy producers rather than consumers only. In addition to bill savings 

[10], RMPV systems contribute to lowering the demand for fossil fuels and greenhouse gas emissions [11], 

they also reduce the Levelized Cost Of Electricity (LCOE) and the dependency on the utility grid [12]. The 
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RMPV modules and energy conversion units are frequently subject to faults which if remain undetected, they 

cause safety hazards [13] for the personnel and fire risk [14],[15]. Moreover, distribution companies are 

anxious about what is being injected into their grids since local malfunctions in the system cause serious 

problems in the grid side. Grid connection faults compromise power quality [16] and cause many grid voltage 

regulation issues [17], these pose several protection-related challenges [18] to avoid islanding, tripping, and 

interference [19]. 

The fast growth of sustainable energy production relies on the developments in the technology 

involved. Besides, the economics of PV systems play an important role in making the technology available, 

where an economically valuable PV system is reliable, long-lasting, and rarely prone to malfunctions. Solar 

plants are degrading faster than expected as a result of various defects; prompt detection of such defects in 

RMPV systems can guarantee the continuous healthy operation and reduce energy losses. An inclusive survey 

on defects in grid-connected PV systems and the most recent fault diagnosis schemes proposed in the literature 

is provided in [20]. Grid-connected PV systems are subjected to defects that generally occur due to equipment 

failures such as PV array and Maximum Power Point Tracking (MPPT) faults at the DC side, faults on the AC 

side (or faults at the grid level), the DC/AC inverters interface, and sensors faults as classified by [21] for 

which nondestructive inspection, testing, and evaluation are highly required as reported by [22]. Most of the 

methods proposed so far for monitoring PV systems are summarised in a review paper [23]. The authors 

emphasized the importance of early fault detection to prevent the risks of energy loss and disastrous fires at 

PV installations. Satellite-based observations are used in a remote monitoring method and compared with the 

expected ones to detect small grid-connected PV systems failures [24]. This method utilises solar irradiance 

information derived from satellites to simulate the energy yield of a PV system, which is undoubtedly less 

accurate than on-site measurements. Another technique [25] is based on multiple online models corresponding 

to different ranges of solar irradiation to predict the AC power generation that requires climate measurements; 

hence, this method is cost-ineffective since it involves additional sensors. The last hardware-based approaches 

[24, 25] are known for their increased expenses of installing and maintaining such equipment and sensors 

which are also subject to failures and add to the complexity of the system. On the other side, the authors in 

[26] proposed a fault detection framework employing the fuzzy logic systems interface and artificial neural 
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networks (ANN) techniques to detect different types of faults. However, those methods need further 

specifications on the faulty data. Additionally, outlier detection rules were adopted for monitoring PV systems 

in [27] and [28]; under normal operation, these rules were found to trigger false alarms and were 

computationally expensive. A major drawback of Artificial Intelligence (AI) methods, such as [26, 27, 28], is 

the requirement of labelled data in training and calibration. This, however, is practically not feasible since 

representative data cannot be collected during faulty operations.  

In this paper, a data-driven algorithm is proposed to detect the different types of faults in grid-

connected RMPV systems. Measured data of several years of operation is used for three interconnected 

systems, namely thin-film, monocrystalline, and polycrystalline RMPV energy conversion systems. The 

datasets available from the RMPV sub-systems are statistically modelled using Multiblock Principal 

Component Analysis (MPCA). MPCA [29] [30] consists of calculating the multivariate models of each block 

using the standard PCA method after dividing the variables into relevant blocks. The blocking technique 

utilizes just the correlations between the features in the particular block to estimate the scores, while the whole 

number of variables is used to estimate the scores in the standard PCA. Constructing the blocks typically 

depends on the system structure, [31] considered the process sections to divide the variables into blocks that 

describe a unit or a specific physical or chemical operation. The measured data is projected on the MPCA 

model to obtain reference and online Transformed Components (TCs) which describe the amount and 

direction of variation in a large d-dimensional space which is orthogonal. The traditional PCA and its variants 

are proved effective and computationally efficient for monitoring and fault detection purposes [32, 33], 

however, they rely on heavy assumptions such as system linearity and time-invariance (process stationarity) 

in the construction stage while the analysis of the principal components is based on the assumption of data 

following a multivariate Gaussian distribution. Unfortunately, the three assumptions do not hold in practice 

as it will be verified and proved experimentally in this paper.  

Therefore, the most sensitive features are selected to detect and measure any operation deviation using 

an information gain named Kullback-Leibler (KL) divergence. Recently, KL divergence has proved its 

effectiveness in a considerable number of research items in multivariate process monitoring [34]. However, 

the KL divergence method is inefficient due to its high computational complexity that limits the application 
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scope to low frequency (3-minutes sampled) data as reported in [34]. [35] and [36] employed univariate KL 

divergence on multivariate principal scores obtained from a PCA model, this procedure was extended in [37] 

to incipient faults. In this work, such techniques are referred to as parametrised approximations to KL 

divergence since they are based on assumptions of Gaussian distributions [35-37] and Gamma distributions 

[38] for the original data and extracted scores. The divergence in such parametrised approaches is turned into 

a simple detection of changes in statistical parameters such as the process mean shift and statistical dispersion 

which deteriorates the design sensitivity and robustness. The presented experimental analysis will prove that 

such approximations are inaccurate and practically far in grid-tied RMPV systems, for which a nonparametric 

but computationally-efficient method must be adopted. In this work, the scores are online evaluated through 

a sliding window approach employing KL measure through the non-parametric smooth Kernel Density 

Estimation (KDE) without any assumptions on the real system or its collected data. The developed approach 

is based on multiblock PCA decomposition and sensitive components selection followed by actual recursive 

KDE and accurate KL divergence. It is proved very efficient and effective since it respectively avoids the 

computation burden of multivariate KL divergence and escapes the basic assumptions of PCA. To this end, a 

wide range of tests are implemented in this article through fourteen scenarios based on real data records. A 

deep analysis reflects the violation of theoretical assumptions associated with traditional approaches. The 

obtained results prove the potential application of the proposed developments compared to state-of-the-art 

methods in fault detection [39, 40].  

The rest of this article is organised as follows; Section 2 details the scope of this work with descriptions 

of the different PV systems under study as well as their collected data and test scenarios; Section 3 then 

summarizes the design procedure of the proposed algorithms, which are then applied on the given systems in 

Section 4 and tested on the fourteen scenarios, the obtained results are discussed and compared; and finally, 

important remarks are drawn in a conclusion in Section 5. 

 

2. Systems description and scope  

Today’s rooftop solar arrays do not only generate clean energy and reduce the dependency on grid 

power, but they must also provide a long-term sustainable and reliable power source, and they need to have a 



 6 

long-lasting solid foundation. On the dark side, distribution companies are anxious about what is injected in 

their grids and mainly the power quality. Moreover, safety hazards of the system are mapped into unsafety of 

the personnel working or living under such utilities. Minor drawbacks of rooftop solar systems are due to the 

technical standards of connectivity, accessibility, and increased maintenance costs. Because of these 

peculiarities, RMPV systems need to be equipped with the most reliable protection schemes and need to be 

continuously monitored. Despite the abundant methods available in the literature, not all of them can 

accurately address this problem in practice.  

 
Figure 1. Overview of the three connected subsystems 

 

A rooftop mounted PV system connected to a microgrid, is considered in this article, with collected 

data records over the three years 2015-2017. This medium-size installation can be seen as a collection of three 

main interconnected subsystems as shown in Figure 1. Their solar PV arrays are Poly-Crystalline, Mono-

Crystalline, and thin film, they respectively consist of 16, 27, and 20 units as shown in the rooftop installations 

is Figure 2(a), their rated power is 2 kW, 2.025 kW, and 2.7 kW, respectively. In this article, 𝑆", 𝑆#, and 𝑆$ 

refer to the three subsystems in their respective order. The three blocks are connected to a microgrid, powering 

various loads of the research laboratory and synchronized with local sources and with the main grid lines 

though two SUNNY BOY 1600TL inverters, and SUNNY BOY 2500HF inverter as shown in Figure 2(b). 

Technical specifications of the SUNNY BOY 1600TL inverter can be found in its operating manual [41] and 
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its ratings are listed in the technical datasheet [42].  Technical specifications and ratings of the SUNNY BOY 

2500HF inverter are also provided in [43, 44]. 

 
(a)         (b) 

Figure 2. Main components of the rooftop-mounted PV system. (a) Photovoltaic modules, (b) Grid-tied 
solar inverters 

 

The three subsystems are also connected to SMA SUNNY SENSSORBOX [45, 46] to measure 

environmental conditions such as solar irradiance, wind speed, ambient temperature, and module temperature. 

The sensor box is powered through SMA power injector and integrated through a communication bus with 

SMA SUNNY WEBBOX [47, 48] which records data from all connected devices (sensor box and grid-tied 

inverters). The latter is connected to a local network and desktops to store and monitor data measurements.  

    
Figure 3. One-day variation of environmental conditions. 

 

Table 1. Description of the selected monitoring variables of the PV system. 
Sb # Name Detailed description  Unit 

Se
ns

or
 

Bo
x 

1 IntSolIrr Total irradiation on sensor surface W/m² 
2 TmpAmbC Environment (Ambient) temperature °C 
3 TmpMdulC PV module temperature °C 
4 WindVelms Wind speed m/s 

Su
bs

ys
te

m
 1

 

5 Fac Power frequency Hz 
6 IacIst Grid current mA 
7 Ipv DC current input mA 
8 Pac AC active power across all phases W 

Polycrystalline 

Monocrystalline Thin Film 

SUNNY BOY 
1600TL 

SUNNY BOY 
1600TL 

SUNNY BOY 
2500HF 
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9 Uac AC voltages (average of all string voltages) V 
10 Upv-Ist DC voltage input V 
11 UpvSoll Reference voltage V 

Su
bs

ys
te

m
 2

 
 

12 Fac1 Power frequency Hz 
13 IacIst1 Grid current mA 
14 Ipv1 DC current input mA 
15 Pac1 AC active power across all phases W 
16 Uac1 AC voltages (average of all string voltages) V 
17 UpvIst1 DC voltage input V 
18 UpvSoll1 Reference voltage V 

Su
bs

ys
te

m
 3

 

19 AMsAmp DC current input in A A 
20 AMsVol DC voltage input in V V 
21 AMsWatt DC power input in W W 
22 GridMsAphsA Grid current phase L1 in A A 
23 GridMsHz Grid frequency in Hz A 
24 GridMsPhVphsA Grid voltage phase L1 in V A 
25 GridMsTotVA Total apparent power in VA VA 
26 GridMsWphsA Active power phase L1 in W W 
27 Pac2 Delivered active power in W (total) W 

 
  

Recorded data include measurements of over 60 system variables (referred to as “measured values” in 

the technical description [49, 50]), operating parameters, log events, and messages. These are listed and 

described in [49, 50] for both inverter types. In the developed monitoring algorithm, monitoring variables are 

limited to the 27 fault-relevant signals as summarized in Table 1. Variables one to four are the environmental 

conditions measured through the sensor box, this set of variables is common for the three blocks. In addition 

to the external measurements, subsystems 𝑆", 𝑆#, and 𝑆$ are respectively monitored by variables 5 to 11, 12 

to 18, and 19 to 27.  

     
Figure 4. One-day variation of the module measurements.  

 

Analysis of a PV system performance is highly dependent on the environmental conditions, and mainly 

the actual solar irradiance as well as ambient and module temperature. The influence of variations in 

temperature and irradiance on the PV module parameters are discussed in [51] and thermal performance of 
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PV modules is discussed in [52]. Authors in [15] demonstrated the strong correlation between an increase in 

the temperature and the change in energy production by rooftop integrated PV panels. In practice, a key aspect 

of environmental signals is their large (natural) variability, measurement errors, and noise as demonstrated in 

fig. 3 which represents the actual measurements recorded over one day. The DC-side signals, as shown in fig. 

4, are highly and nonlinearly correlated with the latter variables and consequently exhibit large variability as 

well. In addition to the large variability within electrical signals over a day, the energy produced by the 

different PV arrays also exhibits a non-negligible variation over a year as shown in fig. 5 for 2017.  

  
Figure 5. Variation of the monthly-mean DC-current over the year 2017. 

 

Such strong correlations, large variations, and uncertainties cannot be ignored in practice when 

designing a monitoring device. Moreover, these conditions play a major role in masking symptoms of possible 

mismatches in the system operation, small anomalies, or unmatched power quality. These observations receive 

particular attention in section 3 when modelling the primary correlations of those variable with internal and 

grid signals through a nonparametric design. Comparisons with conventional schemes, ignoring some of such 

major factors, are drawn in section 4 to demonstrate the significance of such recommendations.  

 Table 2. PV array, Inverter, Grid, and Sensor faults. 
Type Number Fault location Behaviour 

 
 
Array faults (DC- 
side faults) 

F1 Ground fault 𝑆" Abrupt 

F2 Line to line fault 𝑆# Abrupt 

F3 Parallel arc faults 𝑆$ Abrupt 

F4 Series arc faults 𝑆" Abrupt 

F5 Partial shading faults 𝑆# Abrupt 

F6 Short circuit 𝑆$ Abrupt 
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F7 Open circuit  𝑆" Abrupt 

Inverter faults F8 Frequency control (overshoot) 𝑆# Incipient 

F9 Slow frequency control (transient) 𝑆$ Incipient 

Grid faults (AC- 
side faults) 

F10 Voltage sag 𝑆", 𝑆#, 𝑆$ Intermittent 

F11 Frequency variation 𝑆", 𝑆#, 𝑆$ Random 

 
Sensor faults 

F12 Voltage sensor fault 𝑆" Random 

F13 Temperature sensor fault 𝑆# Bias 

F14 Current sensor fault 𝑆$ Random 
 

 

In this article, data records of the described system span three years of continuous operation during 

2015-2017. Various scenarios are investigated in this article, as summarized in Table 2. These scenarios span 

physical as well as electrical and environmental faults and mismatches at the PV arrays, inverters, and grid 

levels. Due to the prementioned factors, the DC-side faults are hard to be detected however they have a 

medium severity level because of the bounded voltage and current of the PV modules. On the contrary, AC-

side faults are less challenging to detect, however being highly severe, they need to be detected at their very 

early stages to ensure a safe microgrid integration and match the technical requirements and desired power 

quality. [53] provides a comprehensive review of a wide range of faults in grid-connected PV systems, causes, 

symptoms, and their respective protection schemes. [54] highlighted the power quality issues for building 

integrated renewables such as PV systems. Line to line, line to ground, and short circuit faults, in general, 

occur between two points of different potentials. These faults occur due to breakdown of insulation, corrosion 

of inductors, maintenance errors, and damage inside the PV arrays. Arc faults [55] are short-term versions of 

those faults and may cause permanent faults. These faults contribute to serious fire threats and safety hazards 

[53]. Open circuit faults may occur after some of the previous faults, and together with shading faults are 

considered as mismatches. Those scenarios are discussed in section 4, showing a correlation between the 

detection delay and the severity of each situation. 

 

3. Data analysis and monitoring algorithms 

 In long terms, digitized PV plants generate vast amounts of data which reflects the historical behaviour 

and sharpest details within the system. Such valuable information can be exploited for artificial modelling of 

the PV system [56], parameter estimation and monitoring [57], and even PV power generation forecasting 
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[58]. A common fact is that such high-dimension data exhibits a lower statistical rank and it varies in a lower-

dimensional space. Moreover, the PV system data is multivariate and includes weak as well as strong parallel 

and serial correlations among its variables; the data also exhibits large (DC-side) and small (grid-side) 

variations which are all of a significant importance and in which various anomalies exhibit different patterns 

to be detected by a protection system. Such information can be extracted using PCA while decorrelating the 

initial space to reduce the dimension of the treated problem and therefore its computational cost while 

considering a univariate analysis of the most sensitive TCs. Multiblock decomposition [59, 60] is used in this 

work for factorization and decentralized monitoring. Instead of statistical preferences, the system variables 

are divided into 3 blocks according to the given structure of the rooftop mounted solar system, as demonstrated 

in the previous section. Each subsystem is represented by a block (𝑆%	for	𝑏 = 1,2,3), several datasets are 

acquired for analysis purposes, one healthy set is recorded for constructing the basic model which is then 

validated and tested on a set of 14 scenarios of design and quality mismatches that the system is subject to. 

The healthy set, recorded during fault-free operation, is denoted as 𝑿𝒽% with 𝑁𝒽 observations and 𝑙% variables, 

while the very large data samples are used for validation and testing.  

3.1. Multiblock PCA for PV systems modelling  

Considering a raw dataset 𝑿𝒽% , collected from a sub-system 𝑆% in normal operating mode with 𝑁𝒽		samples 

of 𝑙% measured variables. Primarily, this large data matrix is scaled to bring all the variables, measured with 

different scales and units, down to zero mean (𝜇) and unit variance (𝜎#), and hence all the variables can be 

treated equally during the analysis [61]. The auto-scaled data matrix is obtained as: 

 𝑿ℵ𝒽% = 9
𝒙%" − 𝜇%,"

𝜎%,"
;
𝒙%# − 𝜇%,#
𝜎%,#	

; 	⋯ ;
	𝒙%>? − 𝜇%,>?

𝜎%,>?
@ (1) 

 

where 𝜇A and 𝜎A are the mean and the standard deviation of the 𝑖CD variable of the healthy data set in subsystem 

𝑆%, these can be directly estimated or updated at any stage as follows:  

𝜇%,A =
1
𝑁𝒽
	E𝒙%A

F𝒽

AG"

					for		𝑏 = 1,2,3, 𝑖 = 	1,⋯ , 𝑙%																								(2) 
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𝜎%,A# =
1

𝑁𝒽 − 1
	EH𝒙%A − 𝜇%,AI

#
F𝒽

AG"

					for		𝑏 = 1,2,3, 𝑖 = 	1,⋯ , 𝑙%									(3) 

For simplicity, the normalized data matrix 𝑿ℵ𝒽% is denoted 𝑿𝒽% and is given by: 

𝑿𝒽% 	= J𝒙%"	𝒙%# 	⋯𝒙%>?K ∈ ℛ
F?×>?																																																		(4) 

The data transformation is based on the sample covariance matrix 𝜱% of the data, where: 

𝜱% =
1

𝑁% − 1
	𝑿𝒽%

Q𝑿𝒽%																																																																					(5) 

through the spectral decomposition of the later as: 

𝜱% = 𝑷%𝜦%𝑷%Q																																																																													(6) 

henceforth, the block loading matrix 𝑷% is obtained with orthogonal components, i.e. 𝑷%𝑷%Q = 𝑰%, 

constructed by the eigenvectors which represent the variations directions. 𝜦% = 𝑑𝑖𝑎𝑔 Z𝜆%", 𝜆%#,⋯ , 𝜆%>?\		is a 

diagonal matrix constructed of the eigenvalues in a decreasing order {𝜆%" ≥ 𝜆%# ≥ ⋯ ≥ 𝜆%>? ≥ 0}, each 

eigenvalue represents the amount of variance per the corresponding direction.  

Subsequently, the data collected from the PV system blocks is transformed by PCA projection into a new 

matrix 	𝑻𝒽% ∈ ℛ
F𝒽×>? named as block score matrix of uncorrelated variables	{𝒕𝒽%", 𝒕𝒽%#,⋯ , 𝒕𝒽%>?}: 

𝑻𝒽% = 𝑿𝒽%	𝑷%																																																																																	(7) 

PCA allows the provision of a set of uncorrelated variables from the original set of correlated variables. These 

are called Transformed Components (TCs). At this stage, 𝑙% reference TCs components are obtained for each 

subsystem 𝑆%, for 𝑏 = 1,2,3. PCA results in a statistical model that describes the PV system data patterns and 

correlations given the reference data profile. Moreover, the resulting TCs (combinations of the correlated data) 

are independent and can be monitored individually in real-time. 

3.2. Smooth KDE & Kullback-Leibler divergence  

Considering the high-level uncertainty and the large variability in the PV system data compared to symptoms 

of anomalies as mentioned in the previous section, the Kullback-Leibler divergence (KL-divergence) [62] is 

adopted in this article. The idea is to develop robust and sensitive measures of any deviation in the overall PV 

system performance at time instance 𝑛 from the nominal operation described explicitly by historical data. For 
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feasible computation time and resources, and for accurate monitoring purposes, this measure is calculated in 

the decorrelated space and selecting only the most sensitive components. The KL-divergence is an 

information-based measure of dissimilarity between two probability distributions 𝑓𝑿(𝒙) and 𝑓f𝑿(𝒙)	defined 

over the same random variable 𝑿. KL-divergence is a special case of 𝛼-divergence functions and it is 

asymmetrical non-negative quantity i.e. 𝐷𝐾𝐿H𝑓𝑿(𝒙): 𝑓f𝑿(𝒙)I ≠ 𝐷𝐾𝐿H𝑓f𝑿(𝒙): 𝑓𝑿(𝒙)I ≥ 0 [63]. 

The KL-divergence between two probability density distributions 𝑓𝑿(𝒙) and 𝑓f𝑿(𝒙)	is defined as the 

expectation over 𝑓𝑿, and it is given by: 

𝐷𝐾𝐿H𝑓𝑿(𝒙): 𝑓f𝑿(𝒙)I = 𝔼n𝑿 9𝑙𝑜𝑔
𝑓𝑿(𝒙)
𝑓f𝑿(𝒙)

@																																																	(8) 

If 𝑿 is a discrete random variable then Eq. (8) reduces to: 

𝐷𝐾𝐿H𝑓𝑿(𝒙): 𝑓f𝑿(𝒙)I =E 𝑓𝑿(𝒙)	𝑙𝑜𝑔
𝑓𝑿(𝒙)
𝑓f𝑿(𝒙)𝒙q𝑿

																																										(9) 

And for continuous Random Variable 𝑿: 

𝐷𝐾𝐿H𝑓𝑿(𝒙): 𝑓f𝑿(𝒙)I = s𝑓𝑿(𝒙)	𝑙𝑜𝑔
𝑓𝑿(𝒙)
𝑓f𝑿(𝒙)

	𝑑𝑥																																													(10) 

It is a measure of the inefficiency of assuming that the distribution is 𝑓f𝑿 when the true distribution is 𝑓𝑿. In 

this work, 𝑓𝑿 represents the reference density function created in an offline stage through the reference TCs, 

while 𝑓f𝑿 is the online-estimated test density function. The idea is used in this article to measure the divergence 

of a prevailing PV system behaviour and characteristics according to its most recent measurements for a 

reference data profile.  

KL-divergence is widely proved efficient for monitoring purposes, authors in [37] have obtained a closed- 

form approximation for this measure across variables following Gaussian distribution [64]. Unfortunately, the 

highly sensitive information gain, in this situation, is turned into measuring deviation in the mean and variance 

only, this heavy assumption deteriorates the performance of this measure since data in practice does not follow 

a Gaussian distribution, particularly during the occurrence of anomalies. Further assumptions are made in the 

prementioned approach such as the limitations to linear static (time-invariant) systems. A second drawback is 

the density ratio estimation involves multiple parameters with optimization functions, this approach is 

computationally infeasible for large-scale systems, especially if the system has fast dynamics. Alternatively, 
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another approximation of such measure is widely used in the literature based on direct density ratio estimation, 

called the importance estimation, used in [65, 66]. This approach reduces relatively the computation cost with 

light assumptions however the estimated ratio is still multivariate and demanding, furthermore, the ratio could 

explode to infinity.  

The prementioned lacks promote motivations of this article to design a novel approach to measure the 

KL-divergence to preserve its high sensitivity which is highly crucial for identifying early signs of anomalies 

during power generation. The multivariate problem is turned into a univariate analysis which greatly reduces 

the computation time and resources, moreover, monitoring only sensitive TCs greatly improves the algorithm 

performance.  

Without any assumptions on the system or its data, the Probability Density Functions (PDFs) are 

recursively estimated for the block TCs by a means of a non-parametric estimation method called the Kernel 

Density Estimation (KDE), also knowns as Parzen windows [67] that provides a smooth estimate based on 

sufficient amount of data. Given a set of offline-estimated reference block TCs, represented as follows: 

𝑻𝒽% = u𝑡𝒽%A
wx
wG";						AG"

wGF𝒽;		AG>? = 	{𝒕𝒽%", 𝒕𝒽%#,⋯ , 𝒕𝒽%>?}			, 𝒕𝒽%A ∈ ℛ
F𝒽×"						(11) 

for all subsystems, where 𝑘 is the time index. Hence 𝑡𝒽%A
w is the 	𝑖CD reference TC of sub-block 𝑆% at time 𝑘, 

and the reference PDFs 𝑓C𝒽?z(𝑡; 	ℎ) can be estimated through KDE as: 

𝑓|C𝒽?z(𝑡; 	ℎ) =
1
𝑁𝒽ℎ

EΚ~
𝑡 − 𝑡𝒽%A

w

ℎ �
F𝒽

wG"

																																																								(12) 

for 𝑖 = 1,⋯ , 	𝑙% for the three subsystems 𝑏 = 1,⋯ , 3 using the smoothing kernel function: 

Κ(𝑥) =
1
√2𝜋

	𝑒𝑥𝑝 ~−
𝑥#

2 �																																																									(13) 

ℎ > 0 is the bandwidth that controls the smoothing and the estimation. This work adopts a bandwidth that 

minimizes the Mean Integrated Squared Error (ΜΙSΕ) [68]: 

ΜΙSΕ(ℎ) = 𝔼 9s �𝑓|C𝒽?z(𝑡; 	ℎ) − 𝑓C𝒽?z(𝑡; 	ℎ)�
#
𝑑𝑡@																						(14) 

3.3. Performance monitoring indices 
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At any time index 𝑛, the measured data is first scaled using Eq. (1), however, using the same parameters 

obtained in Eq. (2) and Eq. (3). The scaled measurement is projected on the multiblock PCA models to 

estimate the online block TCs. The test TCs at a time index 𝑛, are formed by augmenting the 𝑁𝓉 most recent 

samples of the TCs.  

𝑻%,� = u𝑡%A
wx
wG��;		AG"

wG�;				AG>? = {𝒕%�,�, 𝒕%�,�,⋯ , 𝒕%�?,�}			, 𝒕%z,� ∈ ℛ
F𝓉×"						(15) 

where 𝑛� = 𝑛 − 𝑁𝓉 + 1, for the three system blocks 𝑏 = 1, 2, 3. 

The test block TCs are observed within a sliding window of length 𝑁𝓉, these projections (Eq. (7)) are stacked 

with their respective most-recent historical projections any time instance 𝑛. These online components are 

obtained through the online projection of PV observations on the loading vectors obtained in Eq. (6), i.e.  

𝒕𝒃A,� = [𝒕%A(𝑛), 𝒕%A(𝑛 − 1), ⋯ , 𝒕%A(𝑛 − 𝑁𝓉 + 1)]
�. The window length is simply selected just large enough 

so that one TCs block can describe the instantaneous behaviour of the PV system. In other words, the number 

of samples in an online TC 𝒕𝒃A,� should yield a correct and representative estimation of its probability density 

function.  

The online test density 𝑓𝒕?z,�(𝑡; 	ℎ) of the 	𝑖CD reference TC of sub-block 𝑆%	at	time	𝑛 is estimated through 

KDE as: 

𝑓|𝒕?z,�(𝑡; 	ℎ) =
1
𝑁𝓉ℎ

EΚ~
𝑡 − 𝒕%z,�

w

ℎ �
F𝓉

wG"

																																																								(16) 

This estimation follows the same steps of the KDE of the reference block TCs as in Eq. (12,13,14). 

In order to reach decisions on the state of the PV system, it is required to set up statistical hypotheses on the 

basis of the KL-divergence (Eq. (8,9,10)) as a monitoring statistic. The normal state, defined by the null 

hypothesis ℋ�, is characterized by a region of non-significance where the real-time divergence is within a 

pre-established threshold 𝛿. Whenever 𝐷𝐾𝐿 diverges significantly from the region of acceptance, the owner 

of the RMPV system or a supervision platform would be inclined to reject the null hypothesis and accept the 

alternative hypothesis ℋ� . The latter situation indicates the departure from nominal to the abnormal state of 

the PV system. Consequently, the following decision rule is formulated: 
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𝐷𝐾𝐿 J𝑓|C𝒽?z(𝑡; 	ℎ): 𝑓
|𝒕?z,�(𝑡; 	ℎ)K	

ℋ�
≷
ℋ�

	𝛿																																																																											(17) 

Through this statement, a decision is made over the KL-divergence of the score components of each sub-block 

as follows: 

¡
ℋ�:		𝐷𝐾𝐿 J𝑓|C𝒽?z(𝑡; 	ℎ): 𝑓

|𝒕?z,�(𝑡; 	ℎ)K 		≤ 𝛿%A
ℋ�:			𝐷𝐾𝐿 J𝑓|C𝒽?z(𝑡; 	ℎ): 𝑓

|𝒕?z,�(𝑡; 	ℎ)K 		> 𝛿%A
			for	𝑏 = 1,2,3		𝑎𝑛𝑑		𝑖 = 1,⋯ , 𝑙%		 			(18) 

The user can also get an insight into the level of severity for a particular malfunction by how from from zero 

is the KL-divergence at an instance. In addition to those decisions based on hypothesis tests, the following 

performance monitoring indices are defined for a given sample measurement at time instance 𝑛:  

𝐷%z(𝑛) = 𝐷𝐾𝐿 J𝑓|C𝒽?z(𝑡; 	ℎ): 𝑓
|𝒕?z,�(𝑡; 	ℎ)K																																			(19) 

for	𝑏 = 1,2,3		𝑎𝑛𝑑		𝑖 = 1,⋯ , 𝑙%, with respective control limits 𝐶𝐿¤%z = 𝛿%A. The previous hypothesis of Eq. 

(17,18) will be adapted at time 𝑛 to: 

¥
ℋ�(𝑛):		𝐷%z(𝑛) 	≤ 𝐶𝐿¤%z
ℋ�(𝑛):			𝐷%z(𝑛) 		> 𝐶𝐿¤%z

			for	𝑏 = 1,2,3		𝑎𝑛𝑑		𝑖 = 1,⋯ , 𝑙%		 			(20) 

Notice that the null hypothesis is violated whenever any of the online block components has its test density 

function 𝑓|𝒕?z,�(𝑡; 	ℎ) diverged considerably (above the control limit) from its respective reference function 

𝑓|C𝒽?z(𝑡; 	ℎ). Moreover, it will be shown in the next section that monitoring the entire RMPV system is reduced 

to monitoring the first and last TCs which are sensitive to large variability (in DC-side and mismatches) and 

small variations (AC-side and quality deviation), respectively.  

The sensitive indices are observed during nominal operation conditions and their control limits are constructed 

through nonparametric confidence intervals based on their estimated cumulative distribution functions. 

Allowing a tolerable level 𝛼 of false alarms (𝛼 = 1%), the control limits are selected to ensure a coverage 

probability of (1 − 𝛼)% of the measured samples during healthy operation conditions are flagged as safe. The 

thresholds of such indices are established empirically such that the PV system is considered to be operating in 

normal mode if KL-divergence between the estimates of the reference density function and the online test 

density function is approximately zero i.e. the two distributions are similar. While any dissimilarity between 
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the distributions will appear as a departure of DKL from the threshold and this will be regarded as an 

abnormality. 

4. Experimental results and discussion  

This section is based on the real records measured during the three years 2015 to 2017 from the three 

interconnected RMPV systems, installed on the roof of Power Electronics and Renewable Energy Research 

Laboratory (PEARL) of MALAYA University. The three blocks of the system, as described in Section 2, are 

connected to a microgrid, powering various loads of the research laboratory and synchronized with local 

sources and with the main grid lines depicted in Figures 1 and 2 above. Huge datasets are available where 27 

fault relevant signals are selected as detailed in Table 1, this covers all the modules, inverters, and grid 

measurements for the three systems. The rich datasets are filtered to remove records with erroneous and 

missing values and pre-processed for noise reduction, the available data is then exploited to analyse the system 

behaviour and used for the design and implementation and validation of the proposed algorithms as well as 

tests and comparisons. Single and multiple events are investigated in 14 scenarios as described in Table 2; 

these are injected in different locations with various behaviours.  

The data is first randomly divided into regions, the training regions for the global as well as the 

multiblock PCA models are of 500 samples for each signal 𝑿𝒽	 ∈ ℛ
§��×#¨, while a 40000 long set is used for 

validation 𝑿𝓉 ∈ ℛ©����×#¨, while each of the 14 test scenarios includes 5000 samples 𝑿𝓉 ∈ ℛ§���×#¨. 

Multiblock PCA models are first constructed for the RMPV systems, each block data 𝑿𝒽%§�� is first autoscaled 

as given in Eq. (1,2,3), and the multiblock PCA decomposition is achieved through Eq. (4,5, 6) for the three 

blocks 𝑏 = 1,2,3. The resulting TCs have their reference densities estimated through Eq. (12) with all samples 

of projected training data 𝑁𝒽 = 500, the respective online TCs have their PDFs estimated at each time instance 

through KDE as in Eq. (16) with 𝑁𝓉 = 300 samples, the online TCs are compared to their reference ones and 

evaluated based on the dissimilarity between their PDFs through KL divergence through Eq. (10 and 17). The 

traditional KLD approach is expelled from performance comparison since it is completely impractical to 

consider recursive estimation of online to reference density ratio for such 27-dimensional space. The 

approximation multivariate KLD approach [34] is of high complexity for this RMPV system and data with a 

computation time measured around weeks in addition to out-of-memory problems.   
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(a)        (b) 

Figure 6. Normal and faulty data visualization in (a) last TCs of S1 and (b) first TCs of S2. 
 

Figure 6 demonstrates some of the online block Transformed Components (TCs), obtained through 

projecting the online measurements from the RMPV systems on the reference artificial models, during normal 

and faulty operations of different scenarios. Notice the poor capability of the block TCs in discriminating the 

faulty (𝐹.) and fault-free (H) situations, more importantly, the components of the residual subspace are even 

more sensitive than those of the principal subspace showing some sort of separation of fault clusters. While 

the principal subspace describes the dominant variation due to natural behaviour, the residual subspace 

contains the negligible variation, which in most of the cases, is considered as attributed to noise and anomalies. 

The evaluation of the TCs in both subspaces must be very accurate for robust monitoring. MPCA decorrelates 

multivariate data from a high-dimensional space into univariate one-dimensional TCs which still describe the 

original covariance (variations and correlations). This is extremely advantageous but unfortunately cannot 

detect faults and quality deviations. The limitation of conventional PCA [32, 39] and parametrised KL 

approaches [35 - 38] is investigated in the following, while nonparametric KL divergence of the same TCs in 

Figure 6 will be proved very effective in the detection.   

 
(a)       (b)      (c) 

Figure 7. The poor detection performance of conventional PCA through 𝑄 and 𝑇# charts of [32, 39]. 
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Figure 8. Reference and online densities of TCs before (BF), during (DF), and after (AF) faults. 
 

A comparison of conventional PCA statistics such as 𝑄 and 𝑇# [32, 39] is made in Figures 7 and 8 

across scenarios 2, 7, and 8 which respectively stand for line-to-line fault, open circuit fault, and current sensor 

fault in subsystems 2, 1, and 3, respectively. Figure 7 demonstrates the poor performance of both PCA 𝑄 and 

𝑇# statistics [32, 39] to show any symptoms before and after faults are introduced at the 1500th sample, even 

though these statistics combine all the TCs. Figure 8 shows how far are the actual densities form Gaussian or 

Gamma distributions, it also highlights the time-varying characteristics of the PDFs across principle and 

residual block TCs. The Figure shows the real data projection histograms (H) during fault-free operation, and 

some smooth Kernel Density Estimates (KDE), as given in Eq. (11 to 14), at a few instances. Those KDEs are 

given for the indicated TCs including their PDFs during Healthy mode (P̄ ) that was used for training, these 

are the reference densities for those TCs of their corresponding subsystems, notice their overlapping with H 

due to the accuracy of smooth KDE. The PDF KDEs are also given in this Figure at other independent 

instances: Before the Fault (P°±), During Fault (P²±), and After Fault (P³±) for the three situations. Notice first 

that the distributions are not normal, a condition that violates a heavy assumption of PCA and its statistics, 

notice also that these faults are characterized by distortions is the obtained PDFs rather than devotions of the 

squared distance in one direction. Approximating the PDFs of TC1, TC9, and TC11 with a Gaussian distribution, 

the parametrised KL approaches of [35,37] failed to detect fault F2 through TC1 since there is no clear mean 

shift from and no change in variance during various experiments before and after the fault. TC9 produces a 

false alarm due to the natural variation of density before the fault (𝑃µ¶). The same results are obtained if the 

parametrised Gamma distribution-based KL approach [38] is applied.  

Recall Figure 6(a) where F7 cannot be classified from H along 𝑇𝐶·, and Figure 6(b) where 𝑇𝐶" cannot 

discriminate F2 from H. Figure 8 shows that the dissimilarity between the PDFs at different instances 
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successfully discriminates the same faults along the same TCs, such little dissimilarities can be measured 

through the nonparametric KL divergence approach. This can be seen in the following through the clear 

detection of F7 through 𝐷·. 

 

Figure 9. Response of sensitive indices 𝐷.(𝑡) to faults in subsystem 𝑆" 
 

This distortion and any small deviations, which PCA statistics failed to capture, can be accurately 

measured using the developed measures based on KL divergence. The PDFs of the online block TCs are 

estimated in the same manner as their reference densities, however, at each time new variable measurements 

are recorded through Eq. (15) and (16). Consequently, the KL divergence between the reference estimated 

PDFs of the reference TCs and their online block counterparts is evaluated each time through Eq. (10) and 

(19). The monitoring performance of the developed method is tested against all the scenarios as shown in 

Figures 9, 10, and 11 for RMPV subsystems 𝑆", 𝑆#, and 𝑆$ respectively, including those shown in Figures 7 

and 8 where any performance deviation across the RMPV systems is measured with high accuracy.   



 21 

 

 
Figure 10. Response of sensitive indices 𝐷.(𝑡) to faults in subsystem 𝑆# 

 

 Table 3. Detection time delay (samples) across the RMPV system scenarios. 
Subsystem 1  Subsystem 2  Subsystem 3 

Fault DTD 𝐷A  Fault DTD 𝐷A   Fault DTD 𝐷A 

F1 31 9  F2 14 9  F3 67 3 
F4 112 9  F5 128 9  F6 91 3 
F7 146 9  F8 74 2  F9 98 2 
F10 47 9  F10 47 10  F10 87 11 
F11 66 8  F11 0 3  F11 29 11 
F12 75 9  F13 66 10  F14 21 11 

 

Figures 9 to 11 show the high sensitivity of the proposed deviation measures in addition to high 

robustness that can be tuned with some Control Limits of the Divergence (𝐶𝐿¤.). The fault detection alarms 

are then designed for the RMPV system based on the hypothesis tests as given in Eq. (17) and (18) according 

to their offline constructed thresholds tuned though an independent data set (Eq. (20)). The designed control 

limits allow for some negligible divergence attributed to measurement noise and training inaccuracies so that 

only a considerable divergence which is out of control at a given time point will trigger an alarm of a near-

hazardous situation. The event Detection Time Delay (DTD) is then calculated as the faulty operation time 

before the fault is truly reported, this performance index is reported in Table 3 in addition to which monitoring 

index (𝐷A) had first triggered a fault alarm. Since the 𝑖CD index (𝐷A) has firstly detected the 𝑗CD fault, the 𝑖CD 

block TC is most sensitive to that fault and worth monitoring through nonparametric KL divergence for proper 

detection of that fault in the future.     
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Figure 11. Response of sensitive indices 𝐷.(𝑡) to faults in subsystem 𝑆$ 

 

While the conventional methods [32, 39] and [35 to 38] failed to detection dangerous faults F2 (line 

to line fault), F7 (open circuit fault), and F14 (feedback current sensor fault), as shown in Figures 7 and 8, 

these faults are successfully detected by the proposed method as demonstrated in Figures 9, 10, and 11. In 

addition to this superior detection performance, the proposed Kullback-divergence-MPCA approach ensures 

other potential applications over state-of-the-art methods as summarized in Table 4.  

Table 4. Comparison of potential applications in real grid integrated RMPV.  
 Proposed [32] [39] [34] [33] [40] [26] [27] [28] 
Assumption-free ✓ C C ✓ C ✓ ✓ C - 

Real application ✓ C ✓ C C C ✓ ✓ ✓ 

Long term reliability ✓ ✓ ✓ ✓ C C ✓ C ✓ 

Not supervised ✓ ✓ ✓ ✓ ✓ ✓ C C - 

Efficient ✓ ✓ ✓ C ✓ ✓ C ✓ - 

Array mismatches ✓ C C C ✓ ✓ ✓ ✓ ✓ 

Inverter faults ✓ C C C C C C C C 

Grid perturbations ✓ C C C C C C C C 

 

 Table 4 compares the proposed and different methods according to eight practical criteria. 

Assumption-free methods do not rely on any analytical models or theoretical assumptions on the system and 

its collected data which are reflected if an approach is investigated through real applications. Another criterion 

is if the approach is investigated for long term reliability and the ability to handle a large amount of data to 

ensure satisfactory results independently from the training instance (refer to monthly variations in Figure 5). 

A major concern is the requirement of labelled data for training on different types of mismatches and power 

quality deviations, this is an aspect of supervised approaches while the “not supervised” class includes semi-
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supervised and unsupervised approaches only. Due to the fast dynamics and high-frequency high-dimensional 

data of grid-integrated RMPV systems, computation efficiency is important to realize the online real-time 

mismatch detection and power quality monitoring. A KL method such as [34] requires a computation time of 

several weeks in such applications with out-of-memory problems and it cannot be used in reality even if it is 

theoretically proved effective. More importantly, any approach must be checked for its proved reliability of 

detecting different types of RMPV system faults such as array mismatches, inverter faults, and grid 

perturbations. The different approaches are compared according to these criteria for which ✓, C, and (-) stands 

for positive, negative, and not-given evaluations, respectively. Notice that the presented approach outperforms 

the state-of-the-art methods and exhibits the most potential applications. 

 

Conclusion  

This article considers the safe operation of rooftop-mounted PV installations to avoid hazardous events 

and ensure a smooth injection to microgrid with good power quality. The work exploits several years of real 

measurements of three interconnected RMPV systems: Poly-Crystalline, Mono-Crystalline, and thin-film 

modules with their energy conversion systems with respective capacities of 2 kW, 2.025 kW, and 2.7 kW. 

Performance deviation is investigated through fourteen test scenarios which span array faults such as line to 

line, ground, and transient arc faults; DC-side mismatches in form of shadings and open circuits; grid-side 

anomalies such as voltage sags and frequency variations; in addition to inverter anomalies and sensor faults. 

 For this purpose, novel data-driven methodologies are developed for long-term performance 

monitoring and deviation measurement. Multiblock PCA is used in this article for statistical modelling and 

multivariate data decomposition and decorrelation to project the online measurements into block transformed 

components which are more sensitive and computationally efficient to analyze. Novel significant extensions 

are also proposed for accurate evaluation and robust alarm generation using Kullback-Leibler divergence 

through smooth kernel density estimation in a moving window approach.  

 The designed algorithms are explicitly based on multivariate analysis and information gain measure, 

these were applied to the analysis of large datasets of real measurements and tested against the fourteen 

different scenarios in the RMPV systems. While theoretical methods completely failed to detect line to line, 
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open circuit, and feedback current sensor faults in RMPV system, the presented design was proved highly 

effective for its assumption-free approach which successfully detected all faults in the experimented scenarios 

with acceptable performance. At the same time, the computationally-efficient algorithm is easily realized for 

online applications in RMPV systems. Moreover, the obtained results demonstrate the potential applications 

of the proposed strategies and outperform their conventional counterparts in terms of reliable indication of 

performance deviation with increased robustness and sensitivity. 
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