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Chapter 1

Introduction
1.1 State of the art

Can we understand complex biological systems, such as bacterias, organelles and
cells, by considering their constituents, the atoms? Such a bottom-up approach
is attractive as it offers an understanding at the most fundamental level.

Already in 1929, Paul M. Dirac stated [1]:

The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus com-
pletely known, and the difficulty is only that the exact application of
these laws leads to equations much too complicated to be soluble.

Years of research have strengthened the validity of Dirac’s powerful statement.
Beyond a single hydrogen atom, the innate complexity of chemical systems
makes investigation by pen and paper an intractable endeavor. Since the in-
vention of the transistors and the ensuing informatics revolution in the fifties,
major effort has been put into developing reliable computational methods that
can deal with complicated chemical and biological systems. This effort has re-
sulted in the establishment of computational chemistry. Within this field, the
problem of investigating chemical systems by means of theoretical models is
solved by algorithms performed by the brute force of computers.

Figure 1.1: Accessible time- and size-scales for different computational methods in
routine studies using state of the art implementations and architectures. Reprinted
from [2].
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1. Introduction

The bottom-up approaches of computational chemistry are constituted by
a set of methods for modeling of biomolecular phenomena at different resolu-
tions (Figure 1.1). At the most fundamental level, ab initio approaches aim
to numerically solve the quantum mechanical problem of the Schrödinger equa-
tion for the electrons of atoms composing the molecular system. Within the
limitations of the validity of the Schrödinger equation (nonrelativistic approx-
imation), ab initio approaches offer a route with very few assumptions. The
major advances in both methodology (primarily computational cheap Density
functional theory (DFT) and highly reliable Coupled-cluster methods) and soft-
ware (such as Gaussian [3]), have resulted in an extensive adoption of ab initio
modelling. Nevertheless, solving the electronic structure problem for systems
beyond thousands of atoms acting over nanoseconds is still computationally ex-
pensive. Consequently, even a single biological molecule interacting with solvent
quickly becomes intractable1.

To treat larger molecules interacting with solvent, all atom parameterized
models (AA) are more appropriate [5]. In AA, the Born–Oppenheimer approx-
imation is used to consider the nuclei as point particles, and the interactions
between atoms are approximated by simple interaction potentials (force-field).
Even though AA reduces the number of degrees of freedom by about one order
of magnitude, well parameterized potentials, such as the CHARMM force-field
for proteins [6], are sufficiently reliable to predict the folding of proteins, and
are used by pharmaceutical companies in drug discovery. Sometimes even, as
is the case for liquid water models at room temperature, AA models achieve
better modeling water-structure than the ab initio DFT [5].

To date, world-leading groups in molecular simulations have pushed molec-
ular dynamics (MD) studies of proteins to reach time scales in the millisecond
range and sizes as big as 107 atoms. These technical progresses have allowed re-
searchers to investigate, for example, the folding of several globular proteins [7,
8], to elucidate signal transduction in G-protein coupled receptors [9], and to
achieve structural refinement of low-resolution Cryogenic electron microscopy
images of the HIV-1 capsid [10]. Nonetheless, these dimensionalities are on
one hand not accessible to the broad computational scientific community, and
on the other hand not sufficient to cover the scales pertinent to large in vivo
macromolecular complexes.

Similarly for lipid bilayers, the progress in both software and hardware has
allowed for the expansion of time scales reached by all-atom MD simulations
of membranes from the hundreds of picoseconds, reported in the first stud-
ies of fully solvated phospholipid bilayers [11], up to microseconds in current
simulations [12]. However, the lateral dimensions of MD simulations of lipid
bilayers have only marginally increased, remaining confined to box sizes of ap-
proximately 10 nm × 10 nm. This limitation not only prevents investigation of
large-scale membrane remodeling phenomena that are crucial in cellular pro-

1Such methods play however an important role in multiresolution methods, including the
QM/MMmethod [4], where a part of the molecular system is described by quantum mechanics
and the rest by classical physics. Multiresolution approaches allow us to simulate much larger
system sizes (see Figure 1.1).
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State of the art

cesses, but also does not permit a direct comparison between all-atom bottom-
up numerical simulations and continuum theories that historically have been
successful in investigating membrane properties at larger scales. Consequently,
this thesis considers coarse-grained (CG) modeling [13–15].

Figure 1.2: Resolutions of description of a Lipid, from AA to CG. Reprinted from [16]

In CG models, a lower resolution representation of the molecular system of
interest is obtained by clustering atoms into beads (Figure 1.2), which interact
through effective model potentials. While the detailed atomic resolution is lost,
some information on the topological structure of the molecular assembly is re-
tained. Computational efficiency is gained by lowering the number of degrees of
freedom, which reduces the amount of interactions needed to be computed. Fur-
thermore, the CG-procedure generally leads to a filtering out of high frequency
modes present in the AA, thereby speeding up the dynamics. These models can
efficiently represent molecular systems composed of several millions of atoms, for
effective times that can reach the second scale; they are therefore well-adapted
to investigate the structure and dynamics of large macromolecular assemblies
and multi-phase systems. Consequently, CG modeling opens up the possibility
of bridging the all-atom and mesoscopic scales. However, for the problems of
computational efficiency of AA that CG solves, CG introduces new problems
to the theoretical modeling: how should the the CG-beads be constructed, and
how do we model interactions among the CG-beads?

These questions are partly answered by statistical physics. Generally, the
statistical properties of a molecular system is determined by the partition func-
tion:

Z =
∫

dΓ exp [−βH (Γ)] , (1.1)

where Γ is the full set degrees of freedom describing a system subject to Hamil-
tonian H and β ≡ 1/kbT . A rigorous coarse-grained simulation aims at approx-
imating the partition function:

Z '
∫

dΓCG exp [−βHCG (ΓCG)] , (1.2)

where ΓCG are now the degrees of freedom in the coarse grained representation.
Theoretically, an exact relationship exists. Let M(Γ) be the mapping of the
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1. Introduction

fine grained positions to a CG-site. Using the δ function, we have

Z =
∫

dΓdΓCG δ(M(Γ)− ΓCG) exp [−βH (Γ)]

=
∫

dΓCG exp [−βHCG (Γ)] , (1.3)

where we define HCG by:

exp [−βHCG (ΓCG)] ≡
∫

dΓ δ(M(Γ)− ΓCG) exp [−βH (Γ)] , (1.4)

or

HCG(ΓCG) = − 1
β

ln
[∫

dΓ δ(M(Γ)− ΓCG) exp [−βH (Γ)]
]
. (1.5)

Although (1.5) is a simple formula from a simple derivation, this formula illus-
trates many of the complications faced when coarse-graining. Firstly, obtaining
HCG requires integrating out microscopic degrees of freedom. This means that
entropic contributions to the free energy are absorbed into HCG. Secondly, HCG
is a state-dependent function as it depends on temperature, pressure and other
system properties, such as concentration of salt and the pH. Finally, for CG to
be useful, HCG needs to be simpler and more efficient to compute than H. All
of these factors force us to apply approximations and modeling in the search for
HCG.

Approaches to CG can be divided into two classes: top-bottom and bottom-
up. In top-bottom approaches, HCG is parameterized to reproduce properties of
a higher level, such as experimental, thermodynamic and/or structural proper-
ties. For example, in the MARTINI [17], which is the most widely applied CG-
force-field, the Lennard-Jones potentials used to model nonbonded interactions,
are parameterized to reproduce water/oil-partitioning coefficients. Bottom-up
approaches use information from a lower molecular scale to construct HCG.
In implicit solvent models (no beads for solvent), salt-salt interactions can be
derived to reproduce the radial distribution function by iterative Boltzmann
Inversion [18] or by Inverse Monte Carlo [19]. Also, widely used is the force-
matching technique developed by, among others, the Voth group [14], where
HCG is parameterized to reproduce forces of the lower molecular scale, either
from electronic structure calculations or all-atom force fields.

While the usefulness of CG is related to how well HCG is able to accurately
approximate (1.2), it is also important to consider its computational efficiency.
An introduction of many-body interactions to model HCG can quickly become
less efficient than AA. For this reason, HCG is often limited to two-body pair
interactions, ignoring many-body terms. For example, the MARTINI force-
field models nonbonded interactions with all-atom Lennard-Jones potentials,
despite there being little physical justifications for it. Here, the main advantage
lies in the computational efficiency which the all-atom MD softwares, such as
GROMACS [20], can compute such interactions.
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Similar in spirit, and going even one step further in using computational
cheap potentials, is the single chain in mean field method (SCMF), which is
actively being developed in the group of Marcus Müller [21, 22]. The SCMF
method models polymers by particle-based coarse-grained polymer chains, sub-
ject to intramolecular interactions. Inspired by self-consistent field theory (SCFT)
for polymers [23–25], the intermolecular interactions between chains are mod-
eled by a purely density-dependent interaction energy. This gives rise to a
species-dependent instantaneous inhomogenous external potential, which acts
on the chains. Statistical sampling is achieved by Monte Carlo (MC) moves.
Since there are no pair interactions, the polymer chains can be efficiently di-
vided among processors, needing only to communicate for the update of the
external potential. Because the external potential is a slow changing variable,
a multiple time-step approach can be used, where the external potential is kept
constant across many MC moves. The achieved net effect is excellent scaling
with processors for small and large systems. Recently, a GPU-based implemen-
tation reached the milestone of 10 billion particles, outperforming in relaxation
of copolymer melts, the state of the art Lennard-Jones based HOOMD-blue
software [26, 27].

Inspired by the SCMFmethod, Giuseppe Milano proposed the hybrid Particle-
Field molecular dynamics method (hPF-MD) [28]. Instead of using MC moves,
molecular dynamics is performed by integrating equations of motion, with forces
computed from spatial derivatives of the external potential (particle-field forces).
This procedure retains many of the computational advantages present in the
SCMF method. From the dense polymer melts [29], that are prototypical appli-
cations of SCFT and SCMF, hPF-MD has found a wide range of applications,
including non-lamellar and lamellar phases of lipids [30–32], vesicles [33] and
percolation phenomena for carbon nanotubes in polymer melts [34], all paving
a way towards closing the gap between all-atom and mesoscopic dimensionalities
for biomolecular systems [2, 16, 35].

1.2 Scope, challenges and objectives

The scope of this thesis has been to develop new hPF-MD methods and mod-
els that can be used in the study of macromolecular biological systems. In
particular, the thesis aims to extend the capability of hPF-MD to represent:

• Polypeptides

• Electrostatics

• Multiphase electrolytic systems

• Constant-pressure simulations

CG modelling of polypeptides is generally considered a challenging task.
Contrary to simpler organic polymers, proteins exhibit complex local secondary
structures, for example α-helices and β-sheets, that assemble in more complex
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1. Introduction

tertiary folded structures. These motifs, that can involve only a few amino acids,
as well as tens to hundreds, are crucial not only as structural scaffold, but can be
directly involved in the protein function. As the folding of secondary structure
elements depends on the balance of both local and nonlocal interactions, their
stability is very difficult to capture when coarse-graining, as important infor-
mation can easily be lost. Given these challenges, the main research objective
for the work on polypeptides is to provide:

• A proof of principle hPF-MD model that can represent conformational
dynamics of polypeptides.

The polyelectrolyte nature of many biological molecules, such as proteins and
DNA, plays a crucial role in determining their function. Therefore, the modeling
of a large number of biological molecules requires an adequate description of
electrostatics. The efficiency of the hPF-MD approach requires not using pair
interactions, hence specialized methodology ans software is required. With this
in mind, one of the main research objectives is to develop:

• Efficient hPF-MD software for computing electrostatic interactions.

Achieving accurate modeling of electrostatics in CG models is particularly
challenging, as the molecular organization on a detailed level, which gives rise to
dielectrics and screening of electrostatic interactions, is lost in the coarse-grained
representation. This is especially detrimental for multiphase systems, where
the value of relative dielectric, can vary by almost two orders of magnitude.
Therefore a particular focus of this thesis is to develop:

• Accurate modeling of electrostatics in multiphase systems.

The utility of methodology and software development depend on applica-
tions. The hPF-MD method is particularly well suited to study multiphase
phenomena, such as aggregation and phase-separation. With electrostatics in
hPF-MD, we can model multiphase systems involving polyelectrolytes. There-
fore, a key research objective is to develop:

• New models for polyelectrolytes that can assist in understanding multiphase-
phenomena.

hPF-MD has yet to incorporate constant-pressure simulations. This is prob-
lematic for many biological systems, and in particular lipid membranes. The
properties of lipid membranes are typically defined at a given surface tension,
and this can only be obtained with constant-pressure simulations. With these
considerations in mind, it is crucial for the applicability of hPF-MD to develop:

• Methodology for constant-pressure simulations with hPF-MD.
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Structure of the thesis

1.3 Structure of the thesis

The thesis is composed of four chapters. Chapter 1 aims at providing a context,
as well as a motivation, for the work presented in this thesis. Chapter 2 in-
troduces hPF-MD methodology in detail. Chapter 3 presents the papers which
have resulted from the work of this thesis. Finally, chapter 4 sets out the main
conclusion and outlook of this thesis.
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Chapter 2

Methods
In this chapter we introduce the methods used throughout the thesis. While
molecular dynamics is a central part of this thesis, the novelty of the work lies
mostly in the use of density-field formalism to model intermolecular interactions
among molecules. Hence the focus is put on the hybrid particle-field (hPF)
part. For a thorough introduction into the foundations of molecular dynamics,
the interested reader is referred to the excellent books by Dennis C. Rapaport
[36] and by Daan Frenkel and Berend Smit [37].

2.1 Hybrid particle-field molecular dynamics

H0

{r, ṙ}m

W [φ]

A C

{r}

{φ}

{V }

{∇V }

Fi

Distribute

δW
δφ

Vi+1−Vi
∆x

Interpolate

C
B

φ11 φ12

φ21 φ22
×
∇xV 3

22

×
∇xV 3

21

×∇yV1 3
2

×∇yV2 3
2

Distribute
particles

Compute
Vk and
∇Vk

Interpolate
and

integrate
forces

t = t+ ∆t
corresponds
to update

frequency δt?

yes

no

Communication

No communication
D

Figure 2.1: Illustration of the hybrid particle-field molecular dynamics. (A) A Poly-
mer melt in which the polymer is subject to single-molecule Hamiltonian H0 and is
coupled to its environment through W [φ]. (B) Particle-mesh routine for obtaining
forces. (C) Relationship between the different variables needed for computing forces
on particles. (D) Flow-chart for the molecular dynamics.

The essence of the hPF-method (see Figure 2.1) is contained in the separation
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2. Methods

of the total energy of a molecular system into two terms:

H =
Nm∑
m=1

H0({r, ṙ}m) +W ([{φ}]). (2.1)

The first term is the sum over all Nm molecules of the single-molecule Hamilto-
nian H0({r, ṙ}m), which has an explicit dependence on particle positions {r}m
and velocities {ṙ}m. This includes the kinetic energy and the intramolecular
energy. Intermolecular interactions are modeled through the second term, an
interaction energy functional W ([{φ}]). The interaction energy functional is
dependent on particle positions only through their set of local number densities
{φ} = {φ1 . . . φk . . . φM} of the M particle species. The net effect of the inter-
action energy is a particle-specific external potential, which is given by (to be
explained in 2.1.2):

Vk(r) = δW [{φ}]
δφk(r) , (2.2)

and a corresponding force-contribution on particle i of type k:

Fi = −∇Vk(ri). (2.3)

Statistical properties for molecular systems with total energy expressed as (2.1),
can be estimated by applying sampling methods. The single chain in mean field
method (SCMF) [21] samples with Monte Carlo (MC), while hPF-MD method
samples with molecular dynamics (MD).

Remarks on MD, MC and dynamics In general, MD has the advantage over
MC, that it in addition to providing sampling, also can represent dynamics.
However, with hPF-MD care should be taken before concluding on dynam-
ics. One particular limitation lies within its limited ability to model sterics.
Contrary to ordinary MD with pair interactions (particle-particle), where the
intermolecular interactions keep particles from overlapping, sterics can only be
modeled in a limited sense1, and particles in hPF-MD can overlap. This implies
that effects on dynamics, by for instance entanglement2 or crowding, are not
captured. In some sense this is problematic, because such effects are highly
important for functionality. However, given the already ambitious goal of hPF-
methods achieving good statistics on large macromolecular systems, dynamics
should be addressed in future work. In some respects, the inaccurate modeling
of steric effects is useful, as sterics can slow down the dynamics and thereby
sampling. In fact, one of the keys to the success of SCMF is that molecules
are more easily moved by MC (less rejection) than in particle-particle based
methods [39].

1Due to the compressibility term, radial distribution functions obtained with hPF-MD
simulations generally show a low probability at overlap-distances [31].

2We note that one can add on top of hPF specific models for entanglement, such as in ref.
[38].

10



Hybrid particle-field molecular dynamics

2.1.1 Molecular dynamics
In MD, sampling is done by integration of Newton’s equations for the particles:

mi
d2ri
dt2 = Fi, (2.4)

where Fi is the total force acting on the particle i, and mi is its mass. The
integration of (2.4) is done by discretization of time into time steps. Using
specialized integrators3, such as velocity Verlet:

ri(t+ ∆t) = ri(t) + ṙi(t)∆t+ 1
2mi

Fi(t)∆t2, (2.5a)

ṙi(t+ ∆t) = ṙi(t) + 1
2mi

(Fi(t) + Fi(t+ ∆t)) ∆t, (2.5b)

the dynamics of the particles is propagated. Assuming the ergodic theorem,
estimates of averages of observables O are computed by time averaging:

〈O〉 = 1
t

t∫
0

dt′ O(t′), (2.6)

when the simulation time t→∞.

2.1.2 Derivation of hPF-MD and relationship with self-consistent
field theory

Equation (2.2) shows the relationship between the interaction energy and the
external potential which acts on the particles. This formula, which is at the
basis of hPF-MD, was first derived by following the same procedure as in self-
consistent field theory (SCFT) [24, 40]. Starting from the Hamiltonian [40,
p. 127]:

Ĥ(Γ) = Ĥ0(Γ) + Ŵ (Γ), (2.7)

where Γ specifies the microstate of the system, Ĥ0 is the energy of a noninter-
acting molecule, and Ŵ is the interaction energy. In the canonical ensemble,
we have:

Z =
∫

dΓ exp
[
−β
(
Ĥ0(Γ) + Ŵ (Γ)

)]
, (2.8)

where the integral over Γ is the the integral over the whole phase space:

dΓ =
N∏
i

dridpi. (2.9)

We then assume
Ŵ (Γ) = Ŵ (φ̂), (2.10)

3Integrators for MD are designed to conserve the symplectic structure of the Hamiltonian
dynamics. Most importantly, this entails conservation of the total energy.
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2. Methods

where φ̂ are particle densities:

φ̂(r,Γ) =
N∑
i

δ(r− ri). (2.11)

Using the δ function property:∫
[Dg(r)] δ(f(r)− g(r))F [g(r)] = F [f(r)], (2.12)

we can write (2.8) as:

Z =
∫

[Dϕ(r)]
∫

dΓ δ[ϕ(r)− φ̂(r,Γ)] exp
[
−β
(
Ĥ0(Γ) + Ŵ (ϕ(r))

)]
. (2.13)

The δ function can be rewritten by Fourier transformation as follows:

δ[ϕ(r)− φ̂(r,Γ)] =
∫

[Dw(r)] exp
[
i

∫
dr w(r)

(
ϕ(r)− φ̂(r,Γ)

)]
. (2.14)

Inserting (2.14) into (2.13), we get:

Z =
∫

dΓ
∫

[Dϕ(r)]
∫

[Dw(r)] exp
[
i

∫
dr w(r)

(
ϕ(r)− φ̂(r,Γ)

)]
exp

[
−β
(
Ĥ0(Γ) + Ŵ (ϕ(r))

)]
(2.15)

We define
V (r) ≡ i/βw(r), (2.16)

and the partition function of the molecules subject to V (r) as:

z(V (r)) ≡
∫

dΓ exp
[
−β
(
Ĥ0(Γ) +

∫
dr φ̂(r,Γ)V (r)

)]
. (2.17)

With definition (2.17) we get:

Z =
∫

[Dϕ(r)]
∫

[Dw(r)] exp
[
−β
(
− 1
β

ln z+

W (ϕ(r))−
∫

dr V (r)ϕ(r)
)]

(2.18)

or

Z =
∫

[Dϕ(r)]
∫

[DV (r)] exp [−βF([ϕ(r), V (r)])] , (2.19a)

F([ϕ(r), V (r)]) ≡ − 1
β

ln z +W (ϕ(r))−
∫

dr V (r)ϕ(r). (2.19b)
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Hybrid particle-field molecular dynamics

The partition function can be sampled by Field theoretic methods, such as the
ones being developed in the Fredrickson group [41]. In the self-consistent field
theory, the sum over the canonical ensemble is approximated by a Gaussian
integral around the most probable state that minimizes the argument of the
exponential function, also referred to as the method of steepest descent. The
condition determining the most probable state is given by:

δF
δϕ(r) = 0, δF

δV (r) = 0, (2.20a)

which gives

V (r) = δW [φ]
δφ(r) , and ϕ(r) = − 1

β

δz

δV (r) =
〈
φ̂(r,Γ)

〉
= φ(r). (2.21)

Although the derivation above was done with a single component, it is easily
generalized to multicomponent systems:

Vk(r) = δW [φ]
δφk(r) , and φk(r) = − 1

β

δz

δVk(r) , (2.22)

where k denotes the species.
The procedure for solving SCFT is illustrated in Figure 2.2. By using den-

sities φk(r), the external potential Vk(r) is computed. From the external po-
tential, the partition function for independent chains z is computed. From z, a
new set of averaged out densities φk is computed, and the procedure is repeated
until self-consistency is reached, corresponding to the minimal free energy of the
system at field configuration {φ∗k, V ∗k } [23, p. 204].

{φk} {Vk} z(Γ)

no Self-
consistent?

yes

O({φ∗k, V ∗k })

SCFT

Γ {φk} {Vk}

Sampling

〈O(Γ)〉

hPF
vs.

Figure 2.2: SCFT-procedure compared against hPF.
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While hPF and SCMF are similar to SCFT, they are not equivalent. The use
of the saddle-point approximation in SCFT amounts to considering mean-field
interactions, because the density-fields are averaged over the single molecule
partition function z. Therefore, one obtains only contributions from a single
field-configuration {φ∗k, V ∗k } when computing observables O({φ∗k, V ∗k }) [23, pp
204]. Instead, hPF-MD and SCMF consider the instantaneous external potential
from a single molecular configuration Γ, and by sampling different molecular
configurations, we obtain averages of O(Γ). Consequently, fluctuations that are
not present in SCFT, can be described by SCMF and hPF-MD [21].

An alternative manner of viewing hPF-MD is by considering the force di-
rectly from [38]:

Fi = −∂W
∂ri

, (2.23)

which gives:

Fi = −
∫

dr δW

δφk(r)
∂φk(r)
∂ri

, (2.24)

or
Fi = −

∫
dr Vk(r)∂φk(r)

∂ri
, (2.25)

Here the force is related to an integral over the same external potential found
in our derivation by SCFT. There are multiple ways of computing this integral
(such as in [38]); in the hPF-MD procedure proposed in [28], it is estimated by:

Fi ' −∇Vk(ri), (2.26)

i.e. the derivative of the external potential at the position of the particle. In
practice this is done by interpolation of derivatives of the external potential onto
the particles (see 2.3.1).

2.2 Interaction energies

The most important interaction-energies employed in hPF-MD are in the form
of:

W [{φ(r)}] =
∫

dr w({φ(r)}), (2.27)

where w({φ(r)}) is the local interaction energy density. Interaction energies of
this particular form give rise to external potentials:

Vk(r) = ∂w({φ(r)})
∂φk(r) . (2.28)

2.2.1 Partitioning: The Flory-Huggins term
In analogy with Flory-Huggins lattice theory, and assuming each particle occu-
pies a space of v0 = 1/ρ0, we describe interaction between densities with the
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following interaction energy density [23, p. 151]:

wχ̃({φ}) = 1
2ρ0

∑
k`

χ̃k`φk(r)φl(r), (2.29)

where χ̃k` is analogous to the Flory χ parameter4. However, unlike in ideal
theory, where χ̃kl is related to the potential of mean force or the partition coef-
ficient between two species, here it is purely energetic and a phenomenological
constant used to model contacts between particles. The corresponding external
potential of wχ̃ is given by:

Vχ̃,k(r) = 1
ρ0

∑
`

χ̃k`φl(r). (2.30)

2.2.2 Homogeneity: The excluded volume term
To control local fluctuations and avoid nonphysical accumulation of particles, a
local energy density which is dependent on the sum of particle densities is often
used [40, p. 164]:

wκ(φ) = 1
2ρ0κ

(∑
`

φ` − ρ0

)2

, (2.31)

where κ is referred to as a compressibility parameter. The external potential of
(2.31) felt by a particle of species k, is given by:

Vκ,k = 1
ρ0κ

(∑
`

φ` − ρ0

)
, (2.32)

Note that the second term is only a constant, and therefore it does not contribute
to forces. Consequently, we can relate the two terms to the Vχ̃(r) through the
following relation:

χ̃k` = 1
κ
, (2.33)

where the κ term is effectively an added constant to the whole χ̃kl matrix.

2.3 Computational procedures for hPF-MD

Having introduced the hPF-MD formalism, we now consider the computational
procedures needed to perform hPF-MD. All the procedures that are presented
here have been implemented in the hPF-MD code OCCAM, which was used for
obtaining the results of thesis. As is emphasized later in 2.3.4, these procedures
are not unique, but they are designed to exploit the efficiencies which the hPF-
MD formalism allow for.
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ỹx̃

z̃

lx
ly

lz

φ

dV
dx

dV
dz

dV
dy

Figure 2.3: Distribution of a particle with CIC-procedure. Grid of density is indi-
cated by black balls, while the staggered grid of the derivatives of the external potential
is indicated by coloured balls.

2.3.1 Computation of densities and forces

In hPF-MD the forces due to the density-dependent interaction potential are
computed through a particle-mesh approach [42]. First, the simulation box of
Lx × Ly × Lz is divided into mx × my × mz cells (regular grid) of size lx =
Lx/mx, lx = Lx/my, ly = Lz/mz. The N particles are then distributed onto
M grids for each of the M types of particles. In particle-mesh methods, the
most commonly used ways of distributing particles are the nearest-grid-point
(NGP) and cloud-in-cell (CIC), which differ by considering nearest grid point
and grid points of the cell, respectively. In the current version of OCCAM, the
CIC method, as illustrated in Figure 2.3, is used:

W (x̃, ỹ, z̃) = w(x̃)w(ỹ)w(z̃), w(x̃) = 1− x̃, x̃ ≡ x/lx − floor (x/lx), (2.34)

where W (x̃, ỹ, z̃) is the weight prescribed to neighboring vertices. The dis-
cretized densities are then obtained by summing the contributions of all the
particles onto discretized densities φixiyizk . Using φ

ixiyiz
k , the corresponding

external potential V ixiyizk is computed. The force on particle i requires the gra-
dient of the external potential at position ri. These gradients are computed on
a staggered grid with central finite-difference approximation at the mid-points
of the edges (see Figure 2.3):

dVk
dx ix+1/2,iy,iz

= 1
lx

(
V
ix+1,iy,iz
k − V ix,iy,izk

)
(2.35)

4Throughout this thesis we use χ̃ with unit energy, which in Flory-Huggins-theory would
correspond to χ̃ = kbT · χ.
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Finally, forces can be computed directly from the staggered grid as follows [28,
43]:

Fi,x = −w(x̃i + 1/2)dVkdx ix+1/2,iy,iz
− w(1/2− x̃i))

dVk
dx ix−1/2,iy,iz

, (2.36a)

Fi,y = −w(ỹi + 1/2)dVkdy ix,iy+1/2,iz
− w(1/2− ỹi)

dVk
dy ix,iy−1/2,iz

, (2.36b)

Fi,z = −w(z̃i + 1/2)dVkdz ix,iy,iz+1/2
− w(1/2− z̃i)

dVk
dz ix,iy,iz−1/2

. (2.36c)

2.3.2 Quasi-instantaneous external potential
One of the most important rules for numerical solution of partial differential
equations is the Courant–Friedrichs–Lewy condition (CFL) [44]. It states that
the time step used for propagating explicit time-integration schemes is limited
by

∆t < C∆x, (2.37)

where C is a number describing how fast the solution travels in space. Anal-
ogously for hPF-MD and SCMF, the densities are computed on a coarse grid,
and their speed “C” is low. The quasi-instantaneous approximation exploits this
fact by keeping the external potential constant over multiple time steps. Sys-
tematic benchmarks, and in particular the extensive phospholipid simulations
in [29], show that the computed properties remain largely unaltered for hun-
dreds of time steps, depending on the size of the grid. The quasi-instantaneous
approximation significantly boots the efficiency of hPF-MD by reducing the
amount of computation per time step. Moreover, it allows for a more efficient
parallelization.

2.3.3 Parallelization
The main advantage of the hPF-MD compared to ordinary MD methods lies
within the computational efficiencies that the particle-field formalism allows
for. This is best understood when contrasted by MD. In ordinary MD, the most
expensive routines are generally the computation of intermolecular interactions.
The main computational cost lies in the computation pair interactions which are
of order N2. Years of development has resulted in methods that overcome this
scaling, such as Verlet lists [37, p. 545], truncation schemes [37, p. 98] and Ewald
summation-schemes [45], reducing it to O(N log(N)). State of the art MD-
Packages, such as NAMD [46] and GROMACS [20], use domain decomposition
as a parallelization strategy. In domain decomposition, the simulation box is
divided into spatial domains, and molecules are assigned to processors according
to which domain they reside. This not only reduces the memory usage but
also communication among processors, as long-range interactions are computed
by only considering the neighboring domains. Nonetheless, computing pair-
interactions still remains the most expensive part of the simulation.
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MPI-1
{r, ṙ}1

. . . MPI-N
{r, ṙ}N

Molecular system: {r, ṙ}

{φ}1 . . . {φ}N

MPI_ALLREDUCE

Shared variables: {φ,∇V }

Figure 2.4: Parallelization strategy for hPF-MD. Molecules are assigned to MPI-
tasks at the start of the simulation. Each MPI-task n contains only information
{r, ṙ}n on its molecules throughout the whole simulation. The global density-field is
obtained by computing density-contributions from each MPI-Task {φ}n, which are
then combined by a single MPI_ALLREDUCE command. From the shared densities, the
external potential and its derivative are computed on each MPI-task and are identical
for all MPI-tasks.

In hPF-MD, since H0 only involves intramolecular interactions and inter-
molecular interactions are computed by a particle-mesh approach, molecules
naturally decouples, significantly reducing the amount of needed communica-
tion. In fact, domain decomposition is not necessary, and a simpler strategy
where each MPI-task has a copy of global variables, such as the density grid,
can be adopted. With this strategy, molecules are divided and assigned to MPI-
tasks at the start of the simulation (Figure 2.4). Each MPI-task only contains
information on its molecules (the positions and velocities of the particles). On
each MPI-task, densities are computed, and by a single MPI_allreduce com-
mand, the densities from all the MPI-tasks are combined. This is the only major
event requiring communication among all of the processors in use.

The algorithm for propagating hPF-MD and the effect of the paralleliza-
tion strategy are illustrated in Figure 2.5. The algorithm is separated into two
parts: one requiring communication and the second not requiring communica-
tion. This separation captures the essential features determining the overall
computational efficiency. The cost of the communication part is controlled by
the quasi-instantaneous update frequency δt ≡ m∆t and is reduced as 1/m,
where commonly m ∼ 100. The second part, by requiring no communication,
is trivially parallelizable, and its contribution to computation-time is reduced
as 1/N , where N is number of MPI-tasks. This algorithm formally5 exhibits

5One of the limitations of domain decomposition based codes is that the smaller the
system, the fewer CPUs can be used before performance levels off. This is caused by the
domains becoming too small, and resulting in increased communication.
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Distribute
particles

Compute
Vk and
∇Vk

Interpolate
and

integrate
forces

t = t+ ∆t
corresponds
to update

frequency δt?

yes

no

Communication

No communication

Figure 2.5: Algorithm for time propagation of hPF-MD and which parts that require
communication.

Figure 2.6: Benchmark of hPF-MD (particle-field) against GROMACS (Lennard-
Jones) for monoatomic fluid systems. Left) Speedup of OCCAM with the number
of processors for 50 000 particles (MF1) and 100 000 particles (MF2) and update fre-
quency 100 and 300. Right) Performances of OCCAM program as steps/s for a system
of 500 000 particles (MF3) in comparison to a Lennard-Jones fluid simulation with
GROMACS 4.5.4. Results of OCCAM were obtained by using 39 304 and 238 328
lattice points with update frequency of 100 and 300. Figure is reprinted from ref. [47].
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strong scaling: linear scaling for large and small systems [27]. However, for
many MPI-tasks and large systems involving large grids, combining densities
can become computationally expensive. Secondly, operations on the grid, such
as finding the derivative of the external potential, are also computationally
costly as these operations are only performed by a single MPI-task. For small
systems, such operations are cheap, while for larger systems such computation
can lead to a flatting out of performance. A benchmark plot of hPF-MD imple-
mented into OCCAM [47] is presented in Figure 2.6. We recognize several of the
main features which is formally exhibited by hPF-MD: close to linear scaling,
and increased efficiency with lower update frequency and fewer grid points.

2.3.4 The OCCAM code
All the methods presented in this thesis were implemented into the OCCAM
code6. The OCCAM code is a specialized molecular dynamics software for run-
ning hPF-MD. The first serial version was developed by Milano and Kawakatsu
in 2009 [28] and included all the basic ingredients needed for MD and force
calculation. The code was eventually extended to MPI parallelization, where
molecules are divided among processors [47]. As a result of the work in this the-
sis, the code has been extended to include electrostatics and constant-pressure
simulations. Additionally, there is an unofficial version of OCCAM including
multiple-particle collisions [43].

Similar approaches and codes While we have stressed the connection be-
tween hPF-MD with SCMF, there are additional related methods and codes.
GALAMOST [48], a GPU-based MD package aimed at coarse-grained simula-
tions, has an implementation of hPF-MD with the interaction energies described
in 2.2 and electrostatics [49]. Recently, Doros Theodorou [38] has developed a
hPF-BD/kMC method where particles are propagated by Brownian dynamics
or kinetic Monte Carlo.

6http://www.occammd.org/
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Chapter 3

Introduction to the papers
This thesis contains six papers, three of which have been published in peer-
reviewed journals, two have been accepted after peer-review and one is a manuscript
that has been submitted for peer-review. The papers are introduced in thematic
order.

3.1 Polypeptides

Paper I: Hybrid Particle-Field Model for Conformational Dynamics of
Peptide Chains
Sigbjørn Løland Bore, Giuseppe Milano and Michele Cascella
Journal of Chemical Theory and Computation 14, 1120–1130
(2018)

Summary

Conformational dynamics of proteins is very important in biology and medicine
(protein folding, protein regulation, peptide-mediated signaling, antimicrobial
peptide action, etc.), but it is also very difficult to represent by all-atom simu-
lations. Speeding up peptide studies by reliable CG models is crucial. Paper I
proposes the first ever hPF model for polypeptides. In accordance with the
hPF formalism, an underlying model for the single-molecule Hamiltonian H0 is
required. The model for H0 is based on a two-bead representation of each amino
acid, with one bead being placed at the Cα-position and another placed at the
center of mass of the sidechain. It is known that directional interactions are
necessary to stabilize protein secondary structures [50]. To introduce this into
our model we employ the dipole reconstruction method, developed by Cascella
and coworkers [51], for the dipole moment of the peptide bond. Due to the
rigidity of the peptide bonds, the fundamental degrees of freedom determining
the conformation of the polypeptide, are the bending and torsional angles of
the Cαs. It has been shown by Tozzini et al. [50] that these angles exhibit
strong correlations. To take this into account, we employ a combined torsional-
bending potential. On top of this, we introduce a propensity potential which
models the specific amino-acid propensity towards certain conformations. The
intermolecular interactions are modeled by the interaction energy with mixing
and compressibility terms as described in Section 2.2. In particular, we adopt
a hydrophobic-polar (HP) model, in which side chains are categorized as ei-
ther hydrophobic or polar by their χ̃ parameter with water. The model was
implemented into OCCAM.

Through a series of test cases, we demonstrated that the model is able to re-
produce key elementary structural elements, such as α-helices and β-structures.
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Furthermore, we explored the phase diagram of homo sequence polypeptide in
terms of the propensity and χ̃ parameters, and showed that the χ̃ parame-
ter is able to signal environmental effects on conformations. Using amphiphilic
sequences, we showed that the χ̃ parameter can facilitate super secondary struc-
tures, with tertiary and quaternary structures requiring the χ̃ interactions. Fi-
nally, when combining the polypeptide model with the model for dioleoylphos-
phatidylcholine (DOPC) [31], we found that by only having χ̃ interactions be-
tween the polypeptide and the membrane, the multiphase environment stabilizes
secondary structures that are unstable in a homogeneous environment.

Statement of significance

In the past, the hPF formalism has predominantly been applied on simpler
molecules. Therefore, its application onto polypeptides constitute a major
widening of the scope of hPF modeling towards complex biological molecules.
At the present stage, the model is a toy model and should not be used to
model specific sequences. However, with careful parameterization of propensity
and the χ̃ matrix, chemically specific models can be made. Lastly, by having
this model within the hPF approach opens up for studying large assemblies of
polypeptides and combining them with other hPF models.

Contributions

Paper I The model was primarily developed by Michele Cascella and me, and
I implemented it into OCCAM. The paper was written by Michele Cascella and
me with corrections and suggestions from Giuseppe Milano.

3.2 Electrostatics

Paper II: Hybrid Particle-Field Molecular Dynamics Simulations of Charged
Amphiphiles in Aqueous Environment
Hima Bindu Kolli, Antonio De Nicola, Sigbjørn Løland Bore,
Ken Schäfer, Gregor Diezemann, Jürgen Gauss,
Toshihiro Kawakatsu, Zhongyuan Lu, You-Liang Zhu, Giuseppe
Milano and Michele Cascella
Journal of Chemical Theory and Computation 14, 4928–4937
(2018)

Paper III: Mesoscale Electrostatics Driving Particle Dynamics in
Nonhomogeneous Dielectrics
Sigbjørn Løland Bore, Hima Bindu Kolli, Toshihiro Kawakatsu,
Giuseppe Milano and Michele Cascella
Journal of Chemical Theory and Computation 15, 2033 (2019)
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Summary

The polyelectrolytic nature of biological molecules, such as polypeptides, DNA,
charged surfactants, and lipids, is an important factor determining key prop-
erties, including phase behavior, structure and function. Since the use of pair
interactions slow down the hPF approach, specialized methods which model
electrostatics with particle-field interactions are needed. Paper II and III con-
cern two complementary models for electrostatics within the hPF-approach.

Paper II is on an implementation and application of the hPF method for
computing electrostatic interactions. The method was first developed by Zhu
et al. [49] and is an adaptation of the Particle-Mesh-Ewald approach [52, 53],
which replaces short-range pair interactions with short-range particle-density
interactions. The combination of long and short-range interactions results in
an external potential which acts on charged particles. A benchmark of the
method and the implementation was carried out through applications on palmi-
toyloleoylphosphatidylglycerol (POPG) lipid membrane and sodium dodecyl
sulfate (SDS) surfactants. We demonstrated that upon proper calibration of
simulation parameters, in particular the relative dielectric constant, we achieve
an excellent POPG lipid bilayer structure and concentration dependence of the
SDS assembly into microtubular aggregates.

For multiphase systems, and in particular lipid bilayers, the effective relative
dielectrics can change by almost two orders of magnitude. This has a profound
effect on the screening of electrostatic interactions. Therefore, the use of a
constant dielectrics constitutes a major approximation. Paper III expands on
Paper II by considering a density dependent dielectrics and a electrostatic poten-
tial governed by the generalized Poisson equation. From the total electrostatic
energy of the system and following the procedure as described in Section 2.1,
the external potential is obtained. The external potential acting on particles
contains, not only the Coulomb term, but also a polarization term acting on
all particles. Through a series of applications, we verified the model’s ability to
correctly reproduce partition phenomena of ions in multiphase systems, bench-
marking against the Born model for solvation of ideal ions. Lastly, applications
on ion distribution around lipid bilayers show that the use of density-dependent
dielectrics correctly predicts low penetrability of ions into the POPG lipid bi-
layer.

Statement of significance

The extension of software and methodology to polyelectrolytes significantly ex-
pands the applicability of the hPF approach. This is evidenced by the appli-
cations presented in Paper V on lipid A and in study in Paper VI on SDS,
which before this work was beyond the scope for the OCCAM code. While
the density-dependent dielectric method of Paper III was derived within the
hPF formalism, it is applicable to all coarse-grained models employing explicit
solvation. In particular, it could be used with MARTINI [17] on the standard
nonpolarizable water model.
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Contributions

Paper II My main contribution to the work presented in Paper II was to test
the code by computing the forces between two charged point particles against
analytic forces. I discovered a major bug in the original implementation which
was related to the ordering of wavenumbers in the FFTW library [54] (fast
Fourier transform). Finally, I produced the data for the benchmark of forces
and assisted in writing the manuscript.

Paper III The method was derived by me and Michele Cascella. I implemented
the method, on top of code developed by Hima Bindu Kolli, in addition to
conducting the simulations. The manuscript was written by me and Michele
Cascella with corrections from the co-authors.

3.3 Multiphase electrolytic systems

Paper IV: Aggregation of Lipid A Variants: a Hybrid Particle-Field Model
Antonio De Nicola, Thereza A. Soares, Denys E. S. Santos,
Sigbjørn Løland Bore, G. J. Agur Sevink, Michele Cascella
and Giuseppe Milano
BBA – General Subjects, in press (2020)

Paper V: Beyond the Molecular Packing Model: Understanding Morpho-
logical Transitions of Charged Surfactant Micelles
Ken Schäfer, Hima Bindu Kolli, Mikkel Killingmoe Christensen,
Sigbjørn Løland Bore, Gregor Diezemann, Jürgen Gauss,
Giuseppe Milano, Reidar Lund and Michele Cascella
Submitted for peer-review (2020)

Summary

Despite the growing sophistication and availability of experimental methods for
probing multiphase soft matter and biological systems, primarily scattering ex-
periments, it is at present, beyond regular or simple shapes, difficult to interpret
what the assembled structure is like on a molecular level. From the standpoint
of a theoretical chemist, multiphase electrolytic systems are particularly chal-
lenging. First, their multiphase nature is caused by collective interactions, and
therefore an understanding cannot be ascertained by only considering the con-
stituents in isolation. Second, the phase behavior is dictated by the long-range
electrostatics, and therefore nonlocal effects and salt dependency must be ac-
counted for. The mesoscale length and time scales prohibit the study by high
resolution computational methods, such as quantum mechanical and even all-
atom approaches, but are however perfectly suited for CG modeling.

Paper IV develops a hPF model for Lipid A. This lipid is particularly relevant
in biology, as it is one of three components of bacterial lipopolysaccharides which
comprise the outer membrane of Gram-negative bacteria. It is a complex lipid
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with four tails and two negatively charged heads. We use the electrostatics code
developed in Paper II and parameterize the model to be consistent with the all-
atom lipid A model developed by Thereza A. Soares [55]. As parameterization
procedure, we compared density profiles of all-atom simulations of solvated lipid
A bilayer and tuned model parameters, mainly the relative dielectric and the χ̃
matrix, to reproduce the density profiles. Upon calibration, we found that our
model reproduces the structural properties of all-atom simulations and that it
gives a description of phase behavior which is consistent with experiments.

Paper V continues the work of Paper II by considering in detail the phase
diagram of SDS in terms of concentration of SDS and salt. In particular, we
use SDS as a model system to study the validity of the packing model in sys-
tems with long range electrostatic interactions. The phase diagram is explored
by scattering experiments, SAXS and SANS, and simulations with hPF-MD
using the code and model developed in Paper II. The simulations and exper-
iments are in qualitative agreement, exhibiting the same phase diagram, but
with transitions from spherical to tubular micelles at quantitatively different
concentrations. We find by examining the molecular structures in the simu-
lations that the transition is not signaled by a change in packing parameter,
but rather a change in the distribution of counterions near the charged heads
of the SDS. On this basis, we developed a simple electrostatics model for the
coordination of ions close to the SDS heads. The model suggests that at high
concentration of salt, counterions transition from localized to unlocalized bind-
ing between the heads of SDS. From this insight, we propose a mechanism for
the transition where the fundamental packing piece changes from a single SDS
(packing parameter of a cone) to two SDS (packing parameter of cake piece).
With such a transition, the packing model adequately explains the transition.

Statement of significance

Lipid A is the prototypic example of a complex, slow-diffusing lipid, for which
an accelerated method like hPF is particularly suited. Having developed and
benchmarked our model, it is now ready to be further applied on larger systems
and to explore the phase diagram in detail. One possibility is to couple this
new model with a density-dependent dielectric. This will likely require a repa-
rameterization of the χ̃ matrix, but opens up for treating electrostatics more
accurately.

Paper V further strengthens the validity of the SDS model, proposed in Pa-
per II, in accurately representing the phase diagram of SDS. While this molecule
has been studied for more than a century, the molecular mechanism dictating
their morphology is unknown. This paper proposes a simple model for the tran-
sition for SDS and gives a general insight to how electrostatics can affect the
morphological transitions of small charged copolymers.
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Contributions

Paper IV My main contribution to Paper IV was in supervising the use of
the electrostatics code, and incorporating and testing of the rotational invariant
gradient used for the vesicle simulations. I also contributed to the writing of
the paper, with particular focus on the methods part.

Paper V I supervised the use of electrostatics code in the simulations by Ken
Schäfer, and contributed with corrections and suggestions to the manuscript.

3.4 Constant-pressure simulations

Paper VI: Hybrid Particle-Field Molecular Dynamics Under Constant Pres-
sure
Sigbjørn Løland Bore, Hima Bindu Kolli, Antonio De Nicola,
Maksym Byshkin, Toshihiro Kawakatsu, Giuseppe Milano and
Michele Cascella
The Journal of Chemical Physics, in press (2020)

Summary

The investigation of multiphase systems often requires probing the system at
constant pressure. For example, lipid membranes are typically studied under
constant tension conditions and is only obtained with a barostat. So far, hPF
simulations have been limited to constant-volume conditions. Paper VI presents
the first ever constant-pressure simulations with hPF. This development was
enabled by reformulating the interaction energy, by introducing an equation
of state parameter and a square-gradient density term which models interfa-
cial energy. We first considered the model for water (four water molecules
per CG-bead) and parameterized the equation-of-state parameter, such that it
reproduced the correct density of water at ambient conditions. Using this pa-
rameterization, we explored the behavior of binary fluids, demonstrating that χ̃
interaction results in strong excess volume effects and that the square-gradient
term controls the shape of a phase separated droplet. Moreover, we considered
the already developed model for DPPC by de Nicola [31], and added a square-
gradient interaction between carbon and water. We found that the square-
gradient term is necessary to obtain the correct area per lipid for a DPPC lipid
bilayer. Moreover, initial simulations of a small lipid vesicle indicate that it
improves the agreement of all properties with what has been reported for the
MARTINI model [56].

Statement of significance

Paper VI expands the applicability of hPF simulations. With this new for-
malism, one can equilibrate simulation boxes and study a range of phenomena
requiring constant-pressure simulations. The incorporation of square-gradient
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has a large potential for extending the capability of hPF-models to more ac-
curately represent surface phenomena. Despite the very simplified parameter-
ization with square-gradient interactions between only carbon and water, we
obtained remarkable improvement on many properties of the lipid model. A
full reparameterization is a promising route towards hPF models with chemi-
cal specificity and accurate modeling of surface phenomena. Finally, since the
method was derived for hPF-methods in general, it is also applicable for the
single chain mean field method.

Contributions

Paper VI The new formalism, derivations and its implementation, that al-
lowed for constant-pressure simulations with hPF, were developed by me. The
applications were conducted by me. The paper was written by Michele Cascella
and myself, with corrections from the other coauthors.
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Chapter 4

Conclusion and outlook
This thesis has considered hPF methods for biological systems. The primary re-
search output of this work lies in its advancement of computational methodology,
modeling and software. These advancements allow us to use the hPF method
to study new biological systems with complex electrostatics and multiphase be-
havior, which prior this work were beyond the scope of existing methods and
implementations. This is demonstrated by the new applications of hPF-MD on
a wide range of new systems, including polypeptides, charged membranes, SDS
and Lipid A.

However, since the hPF-MD method is quite new, there are still many av-
enues to explore. In addition to the new developments, much experience has
been gained on the limitations of hPF-MD. From this I strongly believe that the
following lines of research can extend the capabilities of the hPF-MD approach.

Systematic parameterization procedures One of the major challenges when
developing new models within the hPF-MD approach, lies in choosing the χ̃
matrix for the coarse-grained beads. In the models that have been developed
thus far, two main approaches have been applied for obtaining χ̃ matrix: from
Flory-Huggins lattice theory using data (either experimental or simulation) or
from optimization by hand to reproduce some statistics. It is difficult for a
specific CG bead, such as a part of the protein, to estimate the value of χ̃.
Moreover, the value of χ̃ depends on the modeling, for example whether there is
electrostatic interactions or not. I have therefore started to explore systematic
procedures for choosing χ̃ in collaboration with PhD student Morten Ledum,
who is continuing this work. The idea is to focus less on the theory and inter-
pretation behind the simulation parameters and more on the output of these
parameters in terms of statistical properties which determine the fitness of the
CG model. In particular, we have started a project on developing global op-
timization routines, based on machine learning of the simulation parameters,
focusing on χ̃ with the test case of phospholipids. This is also a promising route
for obtaining chemically specific parameterization of polypeptides, lipids and
ions. Moreover, it will make it less difficult to incorporate new methods and
develop new models in the future when using this approach.

New interaction energies In the hPF models discussed in this thesis, we have
employed mixing and compressibility terms. These terms are on one hand very
simple, but on the other hand limited in their capability to represent physical
phenomena. In particular, the compressibility term promotes all particles to
occupy the same volume, which can be detrimental for multiphase systems where
particles do not necessarily occupy the same volume. One worthwhile route (for
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4. Conclusion and outlook

NV T -simulations) is to use the equivalence between the κ and the χ̃ in (2.33)
to add diagonal terms to the χ̃ matrix. Such an approach should be able to
capture particles occupying different molar volumes. Another approach is to
leave behind this simplified compressibility model and move towards a more
complex functional dependency on densities for the interaction energies, such as
in the hPF method of Theodorou [38]. These models are also likely to be more
suitable to studying the response of a system under changing thermodynamic
conditions.

Rigorous force computation The computation of the forces in hPF-MD is in
my opinion a topic which should be examined in detail. It is known that the
shape of large vesicles are affected by the grid. For example using the standard
central finite differences produces for a large vesicle with a cubic shape oriented
according to the grid [43]. This can be remedied by using finite-differences
stencils with rotational invariance. Derivatives computed with the fast Fourier
transform might produce even better results, but it is dependent on a smooth
density to avoid producing spurious oscillations. Also important is the interpo-
lation of densities and forces. There is an extensive literature on particle-mesh
methods [42], which can serve as starting point for this. A benchmark of the
force computation should determine what is needed to obtain forces on particles
(due toW ) which are translation invariant, rotational invariant and conserve the
energy. Improving these aspects will likely result in an improved method with
less numerical artifacts. Also, the quasi-instantaneous approximation should
be revisited more in detail. Which artifacts does it produce? Can we make
it more efficient by not interpolating forces onto particles every time step? A
multiple time step algorithm separating bonded forces and particle-field forces
is a promising route for increasing the computational efficiency of the hPF-MD.

Coupling differential equations to hPF The procedure that was used to derive
the forces on the particles in density-dependent dielectric method of Paper III, is
generalizable. It tells us how we, given an interaction energy and a correspond-
ing partial differential equation, compute the forces on the particles composing
the density. While solving partial differential equations with high frequency ap-
pears computationally expensive on the surface, there are several factors which
reduces the computational cost. First, the density of the particles is not an
unknown, thus the complexity of many partial differential equations is reduced.
For example, we only had to consider the generalized Poisson equation and not
the Poisson-Boltzmann equation in Paper III. Lastly, since most methods for
solving partial differential equations are based on iterations on an initial trial
solution, one can reuse the previous solution to reduce the amount of needed
iterations. In particular, it would be very interesting to obtain correlation be-
tween the motion of particles through hydrodynamic interactions.

Improved software The parallelization in Zhao et al. [47] drastically increased
the capability of OCCAM to simulate large systems. However, given the huge
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increase of computational resources, it is now in need of modernization. The
newly developed SCMF code by Schneider and Müller [27] tells us how this
can be carried out. First and foremost, the current version of OCCAM uses
an MPI-parallelization with one CPU per MPI-task. This is problematic for
large systems, as some large operations are conducted on a single CPU. This
can to a large degree be fixed by an hybrid MPI and openMP parallelization.
In this strategy, each MPI-task uses many CPUs (typically a whole node) and
are parallelized by openMP. This alone will improve the capability of OCCAM
to simulate systems that are about 40 times larger (depending on the amount of
CPUs per node). Another promising route is to develop a GPU-version. The low
level communication in the hPF-MD approach will make such an implementa-
tion easier than for particle-particle approaches and indeed more efficient. Such
a code will allow for very cheap investigation of large systems.

Closing remarks
Limiting ourselves to the hPF-MD, we now revisit the question posed at the
beginning of this thesis: “Can we understand complex biological systems, such
as bacterias, organelles and cells, by considering their constituents, the atoms?”
First, whether hPF-MD simulations can provide an understanding on these
systems is dependent on its capability of describing the chemistry dictating
the behavior of these systems. The developments presented in this thesis, in
particular on electrostatics, surface tension, and in models for polypeptides and
Lipid A, provide us with many of the necessary ingredients needed to model,
though simplified, such systems. However, whether these models provide an
understanding is dependent on their quality, and, in particular, the polypeptide
model will require further parameterization. Second, in terms of size these
systems are on the micrometer scale, and involve of the order billions to trillions
of atoms. By the level of coarse-graining that has been adopted in this thesis,
the number of degrees of freedom is reduced by a factor of about 12. With the
current version of OCCAM, we have simulated systems up 20 million beads or
200 million atoms. Therefore, these systems are currently too large. However,
with the development of the software as outlined in the previous paragraph, we
should be able to approach dimensions of relevance for organelles, viruses, and
even parts of a cell. To conclude, we are not there yet, but the work of this
thesis has led us closer, and many extremely interesting systems are within the
horizon of hPF-MD.
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Abstract 

 

We develop and test specific coarse-grained models for charged amphiphilic systems such as 

palmitoyloleoyl phosphatidylglycerol (POPG) lipid bilayer, and sodium dodecyl sulphate (SDS) 

surfactant in aqueous environment, to verify the ability of the hybrid particle-field method to provide a 

realistic description of polyelectrolyte soft-matter systems. According to the hybrid approach, the 

intramolecular interactions are treated by a standard molecular Hamiltonian and the non-electrostatic 

intermolecular forces are described by density fields. Electrostatics is introduced as an additional 

external field obtained by a modified particle-mesh Ewald procedure, as recently proposed in [Phys. 

Chem. Chem. Phys 2016, 18, 9799]. Our results show that, upon proper calibration of key parameters, 

electrostatic forces can be correctly reproduced. Molecular dynamics simulations indicate that the 

methodology is robust with respect to the choice of the relative dielectric constant, yielding the same 

correct qualitative behavior for a broad range of values. In particular, our methodology reproduces well 

the organization of the POPG bilayer, as well as the SDS concentration-dependent change in the 

morphology of the micelles from spherical to microtubular aggregates. The inclusion of explicit 

electrostatics with good accuracy and low computational costs paves the way for a significant extension 

of the hybrid particle field method to biological systems, where the polyelectrolyte component plays a 

fundamental role for both structural and dynamical molecular properties.  
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1. Introduction 
Amphiphiles are macromolecules characterized by well-defined hydrophobic and hydrophilic regions. 

Depending on the molecular shape and on the hydrophobic/hydrophilic balance, they tend to self-

assemble into a variety of aggregates, like micelles and vesicles, lamellar structures like mono- and 

bilayers and structures with high aspect ratio like nanotubes and nanofibers.1-4 These supramolecular 

structures are used in many industrial and biotechnological processes such as drug delivery systems,5 

micro- and nanoscale micellar reactors,6 dispersants, detergents, emulsifiers, and coatings. The 

determination of the supramolecular structural organization of the amphiphilic molecule depends on a 

variety of factors, including the shape and flexibility of the single molecular structure the interplay of 

intra- and inter-molecular forces, and external thermodynamic factors like temperature, pressure, 

concentration, or ionic strength. Due to such complexity, the prediction and determination of the shape 

and size of amphiphiles, as well as their aggregation mechanisms, remains a challenging task both for 

experimentalist and computational scientists.  

In recent times, scattering techniques such as small-angle X-ray scattering (SAXS)7 or small-angle 

neutron scattering (SANS)8,9 have been widely used for the quantitative characterization of the shape, 

internal structure, and interactions of macromolecular aggregates, like protein complexes in 

solution10,11 as well as for micellar transformation studies.12 Light scattering techniques are widely used 

to determine the shape of micelles in solution and Fluorescent spectroscopy is used to measure the 

aggregation number and the critical micelle concentration (CMC).  Unfortunately, these techniques, 

having shortest temporal resolutions in the order of the millisecond, are not fast enough to capture the 

structural changes during the aggregation process.13 Moreover, at lower concentrations, the interplay 

between shape variations and polydispersity complicates the data interpretation and could lead to 

ambiguous conclusions regarding the shape of surfactant micelles.   

 The picture is even more complex when studying biological amphiphilic systems like bio-membranes.  

Such bilayer structures present a chemically complex composition, being mostly formed by mixtures of 

phospholipids, with the addition, at very diverse stoichiometric ratios, of a variety of sphingolipids, 

cholesterol and the presence of both peripheral and transmembrane proteins.14,15 Due to both their 

chemical complexity and their disordered nature, it is hardly possible t follow their dynamics and 

interactions in detail at the atomistic level.16,17 

Computer modeling offers, in principle, an effective complementary way of exploring self-assembly 

processes at molecular resolution, and at highly controlled thermodynamic and stoichiometric 

conditions.  Unfortunately, the assembling process occurs at the mesoscopic time- (>µs) and length- 
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scales (>100 nm), which are computationally expensive in a molecular dynamics framework employing 

explicit all-atom models.18-24 For this reason, the use of coarse-grained (CG) simulations has become an 

alternative that aims to bridge the time and length scales involved in self-assembly phenomena.  

The underlying assumption for the study of self-assembly phenomena at the CG scale is that neither the 

molecular structure at atomistic length scales nor its fast motion are relevant to the dynamics of the 

slow aggregation process. Therefore, molecular moieties can be conveniently described by a smaller 

number of order parameters considering just key properties like the amphiphilic nature of the individual 

molecular segments. CG models in both explicit and implicit solvent display a great potential for 

capturing critical phase behaviour of surfactants, phospholipid bilayers and generally in soft matter, as 

demonstrated, for example, in several studies available in the literature.25-35 

Standard CG approaches are, in fact, subject to analogous technical computational bottlenecks of all 

atom models, produced by the need of the evaluation of distance-dependent intermolecular 

interactions.36 As a consequence, unless massively parallel architectures are available, common CG 

simulations are limited to systems with sizes not larger than 100 nm length- and ~1-100 µs time 

scales.37,38 These numbers are still too small compared to mesoscopic dimensionalities with length 

scales in the order of 100-1000 nm and time scales in the order of the millisecond.39 

An alternative approach which is not bound to such limitation is the continuous field representation. In 

the framework of self-consistent field theory, the model systems are not represented by particles but by 

density fields and the mutual interactions between segments are decoupled and replaced by interactions 

with static external fields. These field-based approaches allow to simulate materials on scales much 

larger than the ones attainable with particle-based simulations. In recent years, the hybrid particle-field 

(hPF) approach combining a microscopic molecular representation to density-based potential has been 

introduced.40-42 In particular, the determination of an analytical expression for local potential energy 

gradients, and consequently for the forces acting on the individual particles, allowed Milano and 

Kawakatsu to reformulate the hPF method within a molecular dynamics (MD) framework (hPF-MD 

hereafter).43,44 The hPF-MD method was validated for different molecular models including molecular 

surfactants, atomistic models of polymers and bio membranes.45-51 

More recently, an efficient electrostatic treatment based on the Ewald summation in the framework of 

hPF-MD has been proposed by Zhu et al.52 Like for the density field, charged molecules are interacting 

with an external electrostatic field derived from the charge density. The long-range part of the Coulomb 

interaction is evaluated in reciprocal space using Fourier series just like in the standard particle-mesh 

Ewald method. The short-range part is evaluated by collecting the contributions of short range energy 

from the surrounding charges and matching with the Flory Huggins interaction parameter.  

The explicit treatment of electrostatics opens up the possibility of using hPF schemes to investigate 
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major biological processes that are dominated by such interactions – for example ion-membrane 

permeation, membrane electroporation, protein/protein and protein/membrane interactions, or assembly 

and dynamics of nucleic acids. In fact, the hPF-MD method with electrostatics has been validated 

against particle-based simulations for model polyelectrolytes only.52 In this work, we present the first 

application of hPF-MD to realistic soft matter models. The aim of the paper is to validate the models 

for charged amphiphile systems. Specifically, we investigated the ability of hPF-MD in describing both 

the structural properties of a constituted charged palmitoyloleoyl phosphatidylglycerol (POPG) bilayer, 

and the aggregation dynamics of sodium dodecyl-sulphate (SDS) in water. Our analysis provides a 

critical assessment of the quality performances of hPF-MD as a function of different external 

parameters, like the dielectric constant and χ parameters defining the effective interactions between 

particles and density field. The hPF-MD has been implemented in both serial and parallel versions of 

the OCCAM code.47 

 

In section 2.1, a brief description of hPF-MD method is given. The treatment of the short- and long-

range parts of the electrostatics interaction in hPF-MD is shown in the section 2.2. In section 2.3, the 

POPG and SDS models along with simulation details are given respectively. We discuss the calibration 

of the Ewald convergence parameter in section 3.1 and the simulation results on POPG bilayer and 

SDS aggregation are presented and discussed in sections 3.2 and 3.3. Final remarks and conclusions are 

presented in section 4. 

 

2. Methods 
 

2.1 The Hybrid Particle-Field approach  

 

The hPF-MD method and its application to coarse-grained and atomistic models has been introduced in 

a series of former publications.43-48,50,51 Here we only briefly recall the main ideas. In hPF-MD, a 

discrete particle based representation of several molecules interacting through pair forces between non-

bonded particles, is formally transformed into a set of decoupled molecules subject to an external 

potential depending on density fields.  

Under this transformation and considering the following functional form for the potential energy, 

  

  𝑊 𝜙 𝒓 = !
!!

𝑑𝒓 !!!
!

𝜒!"𝜙!!" 𝒓 𝜙! 𝒓 +  !
!!

 ( 𝜙!(𝒓)! −  𝜙!)!                     (1) 
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applying the saddle point approximation, by functional differentiation it is possible to obtain the mean-

field external potential 𝑉!!"# 𝒓  acting on an individual particle of type i at position 𝒓, which takes the 

form: 

 

           𝑉!!"# 𝒓 = !" ! 𝒓
!!! 𝒓

 = !
!!

𝑘!𝑇 𝜒!"𝜙! 𝒓! + !
!

𝜙! 𝒓 −!  𝜙!                        (2) 

 

In equations 1, 2 kB is the Boltzmann constant, T is the temperature of the system, 𝜙!(𝒓) is the coarse-

grained number density of the species i at position r, 𝜒!" is the mean field interaction strength between 

particles of type i and j, κ is a compressibility parameter acting against local density inhomogeneity, 

and 𝜙! is the total number density of the system. 

The forces acting on the individual particles are computed as the spatial gradients of the same potential 

in equation 2. The density field and its gradient are computed on a spatial grid and updated with a time 

interval τ > Δt, where Δt is the MD time-step. This ensures fast computation of forces, in an 

embarrassingly parallel implementation. More details about the derivation of equation 2 and its 

implementation in MD simulations are reported in references 43,44,47.  

 

2.2 The hybrid Particle-Field method with electrostatics  

The electrostatic potential 𝜓 𝒓  produced by a distribution of charges 𝜌(𝒓) is computed by solving the 

Poisson equation: 

−∇!𝜓 𝒓  =  ! 𝒓
!!!!

                                                                         (3) 

where 𝜀! is the vacuum permittivity, and 𝜀! is the relative dielectric constant of the medium. Adopting 

periodic boundary conditions, the solution of the equation 3 yields the potential field 𝜓 𝒓 : 

       𝜓 𝒓 = !
!!!!!!

!!
𝒓!𝒓𝒋!𝒏𝑳

!
!!!𝒏                                            (4) 

Here, the vector L = (𝐋𝟏,𝐋𝟐,𝐋𝟑) defines the simulation box, and n𝐋 =  n!𝐋𝟏 +  n!𝐋𝟐 + n!𝐋𝟑  is the 

translation over a generic periodic image. Recently, an efficient method based on the particle-mesh 

Ewald summation was implemented in hybrid particle field simulations to compute the electrostatic 

potential shown in equation 4.47 The short-range and long-range parts of the electrostatic potential in 

conventional Ewald sum are written as: 

                                                     𝜓!(𝒓) = !
!!!!!!

!!!"#$(!|𝒓!𝒓𝒋!!𝑳|)
|𝒓!𝒓𝒋!!𝑳|

 
!!                                              (5) 

                                𝜓!(𝒓) =  𝜓! 𝐦 exp(𝑖 𝒎 ⋅ 𝒓)!!!                                                 (6) 

where 𝜓! is the short-range part, and 𝜓! is the long-range part of the electrostatic potential. 𝜓!  
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denotes  𝜓! in the reciprocal space, and it is given by:  

𝜓!(𝒎)  =   !"#(!𝐦
!/!!!)

!!!!!𝐦!  𝑞!  exp(−𝑖 𝒎 ⋅ 𝑟!)!
!!!                     (7) 

where V is the volume of the simulation box, m is the reciprocal space vector, and α is the Ewald’s 

convergence parameter. 

In hPF-MD, the charge density is expressed in terms of Q(l) = 𝑄(𝑙!, 𝑙!, 𝑙!)  , the distribution of charges 

at the lattice points. The long-range part of the electrostatic potential at the lattice point  𝒍, is computed 

using forward (F) and backward (F-1) discrete Fourier transforms:  

 

   𝜓! 𝒍 =   𝜓! 𝒎 exp 2𝜋𝑖 !!!!
!!

+ !!!!
!!

+ !!!!
!!

!!!!
!!!!

!!!!
!!!!

!!!!
!!!!         

    

                                      = 𝐹!!
!"# !𝒎

!

!!!

!!!!!𝒎!  𝐹𝑄  (𝑙!,𝑙!,𝑙!)                                                        (8) 

 

 The short-range part of the electrostatic potential at the lattice point of spatial position l  is given by: 

 

                  𝜓!(𝒍) =  !!"
!!!!!!

!"#$(!")
!

𝑄(𝒍)                                             (9) 

 

where the parameter zCN is the coordination number which takes a value of 6 for a three-dimensional 

cubic lattice and σ is the particle diameter. Instead of the pairwise short-range electrostatic interactions 

like in classic Ewald summation, the interactions are now transmitted through the mean field. The 

charge density and the electrostatic potential are computed on the same grid as the one used for the 

density field. 

 

 

 

 

2.3 Simulation Details   

 

2.3.1 POPG bilayer The POPG bilayer model was composed of 1216 POPG lipids (608 lipids for each 

layer), 64448 water beads, each with a density of 4 water molecules, and 1216 Na+ counterions 

necessary for charge neutralization in a 20.18×20.18×23.29 nm3 periodic box. The CG mapping of 

POPG is explained in Figure 1. Each POPG has a polar head (P) with net charge -1. The bead type D 
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mimics the presence of a double-bond in one of the aliphatic tails. The intramolecular parameters for 

POPG were taken from the literature.25,53 

 

First, the POPG bilayer was relaxed over 2 µs of particle-particle (PP) CG simulations, using the 

MARTINI force field.53 The CG simulations were run in the NpT ensemble at 301.15K and 1 bar, 

using semi-isotropic pressure coupling. Electrostatic interactions were computed via particle-mesh 

Ewald summation, using a dielectric constant ɛr = 15, and a grid of 0.3 nm mesh. A cut-off of 1.5nm 

was used to truncate the van der Waals terms. The PP-CG simulations were run using the GROMACS 

4.5.4 package.54 

 

The final configuration obtained from the PP-CG run, was used as the starting configuration for the 

hPF-MD simulations. All intramolecular interactions were treated in the same manner as in the PP-CG 

simulations. The particle field parameters  𝜒!"  =   𝜒!"𝑅𝑇 (where R is the gas constant) needed to 

Figure 1. CG model and particle field interaction parameters of POPG/water and SDS/water. Top left: Structure of 

POPG and CG mapping. Top right: Table showing the particle–field interaction parameters for the POPG/ water 

system. Bottom left: Structure of SDS and CG mapping. Bottom right: Table showing the particle–field interaction 

parameters for the SDS/water system. 

 Interaction matrix 𝝌!𝒊𝒋  =   𝝌𝒊𝒋.𝑹𝑻  (kJ mol-1) for 
POPG/water system 

Interaction matrix  𝝌!𝒊𝒋  =   𝝌𝒊𝒋.𝑹𝑻 (kJ mol-1) for 
SDS/water system 
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calculate the intermolecular interactions between particle types i and j are listed in figure 1. The value 

of the incompressibility parameter κ-1 was set to 4 RT, in agreement with previous simulations of 

water/lipid mixtures.45,46,48 We consider the same grid size (32×32×36) for both particle and charge 

fields. The size of the grid has been chosen to keep the cell length, b ≈ 0.65nm and the explanation for 

this choice is given in section 3.1. The hPF-MD simulations were run using a time step of 0.03 ps in 

NVT ensemble, at a temperature of 301.15 K using an Andersen thermostat55 with collision frequency 

of 7 ps-1.  A density-field update time interval τ = 100 Δt was employed for both particle and charge 

densities.  

 

2.3.2 SDS aggregation The SDS molecules were represented by a chain of four beads as shown in 

Figure 3.  Each chain consists of one hydrophilic polar head bead (S) with a charge of -1 charge units 

and three hydrophobic beads (C1, C2 and C3), each one representing four CH2/CH3 units. The SDS 

bonded parameters are taken from ref. 56 The interaction matrix 𝜒!" used for hPF-MD are given in 

Figure 1. The value of the compressibility was set to κ-1 = 4 RT. The density update was set to τ  = 100 

Δt. 

The hPF-MD simulations were performed at four different SDS concentrations: CSDS = 50 mM, 72 

mM, 182 mM and 400 mM, using a cubic periodic box of edge 33.2 nm, containing 1120, 1600, 4000, 

and 8815 SDS molecules, respectively. The chosen concentrations are all significantly higher than the 

CMC for SDS, which is 8 mM. An equal number of Na+ beads were added to act as counterions; 

roughly ~300,000 water beads were used in all simulations. All the four systems and their compositions 

are shown in table 1. We consider a grid size of 50×50×50 for both charge and particle fields. 

Initially, SDS, Na+, an water were placed at random positions in the simulation box.  All MD runs were 

performed in the NVT ensemble using Δt = 0.03 ps keeping the temperature constant at 298 K using 

the Andersen thermostat55 with a collision frequency of 7 ps-1.  

All the hPF-MD simulations of both POPG and SDS systems were run using the parallel version of 

OCCAM code.47 
Table 1. SDS systems simulated and the composition of the systems 

 

 

 

 

 

 

CSDS Total no. of 

particles in the box 

Number of 

SDS molecules 

 No. of 

Na+ ions 

 No. of 

water beads 

50 mM 309600 1120 1120 304000 

72 mM 304000 1600 1600 296000 

182 mM 306000 4000 4000 286000 

400 mM 317075 8815 8815 273000 
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3. Results and discussion 
3.1 Calibration of Ewald parameters and grid size 

 

The hPF-MD implementation relies on a modified particle-mesh Ewald treatment to determine the 

short- and long-range components of the electrostatic potential. The accuracy of this approach is 

dependent on the grid spacing and the spread of the auxiliary Gaussian charge distribution α (equation 

7). To assess this dependence, we used a model system comprised of two oppositely unit charged 

particles at a distance d along the z-axis in a large simulation box of edge L= 20.0 nm. Figure 2 reports 

the intensity of the electrostatic forces acting on the two charges as a function of the grid spacing and 

α, as well as the theoretical Coulomb force FC. The profiles indicate that for values of α larger than 

2.35 nm-1, our implementation consistently reports similar values of the forces. For a grid of 0.65 nm, 

the corresponding average relative errors are 4%, while for smaller α, the error on the forces increases 

to 10 %. This is due to the fact that the Gaussian spread of the charge is inconsistently represented by 

the actual distribution of the charges on the mesh points.  Furthermore, by grid refinement to a spacing 

of 0.45 nm, greater accuracy, especially at short distances, is achieved with an average relative error of 

Figure 2. Electrostatic forces acting on two unit charges as a function of the distance between charges 
using different α values, and different grid spacing as reported in the legend. Top: electrostatic force for α = 
0.75 nm-1. Middle: electrostatic force for α = 2.35 nm-1. Bottom: electrostatic force for α = 4.5 nm-1. All 
values are compared to the theoretical Coulomb force FC.  
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3%. In agreement with these findings, all the simulations were run using a value of grid spacing of 0.65 

nm and α = 2.35 nm-1. 

 

3.2 POPG bilayer 

 

The bilayer structure of POPG was simulated using different values of the relative dielectric constant εr 

in the NVT ensemble by hPF-MD simulations. Figure 3 shows the number density profile of the 

POPG/water system at ɛr = 5, 15 and 80 obtained from the last 1µs out of a 2 µs long hPF-MD run 

along the direction normal to the plane of the bilayer. For very small values of εr, we observed the 

formation of strong ion-pairs between the positively charged Na+ ions and the negatively charged P 

beads of POPG. The localization of Na+ in the neighborhood of the lipid heads reduced drastically the 

effective charge at the surface of the lipids, thus enhancing the tendency of POPG to aggregate. As a 

result, the lateral tension of the membrane produced poration of the membrane.  

In fact, the organization of POPG in a self-assembled structure is the result of the balance among 

competing interactions, in particular, the attractive collapse of the hydrophobic tails, the electrostatic 

repulsion of the charged heads, and the entropy. The electrostatic repulsion is screened by the 

formation of ion pairs, thus favoring the collapse of the lipids. At NVT conditions, and in periodic 

boundary conditions, stable flat bilayers are observed only if the global free-energy balance between 

such interactions produces POPG aggregates characterized by a surface area-per-lipids close to a value 

Figure 3. Left: The number density profile of POPG, Na+ and water obtained from 1 µs long hPF-MD 
simulations with ɛr = 5, 15, and 80. Right: Snapshots with top and side-view of the bilayers. Water is not 
shown for clarity. The green circles evidence the formation of pores.  
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A=NPOPG/(LiLj), where NPOPG is the number of lipids in one leaflet, and Li, Lj are the lengths of two 

edges of the box.  

Values of ɛr higher than 10 yielded a stable bilayer structure. In these cases, the lipid moiety showed an 

organized lamellar structure, with a symmetric distribution of the components in the two leaflets.  

Overall, the thickness of the bilayer DHH given appears less pronounced than in other molecular 

models,57-60 and in very good agreement with experimental data (Table S1, in Supporting Information 

(SI)).  The rather broad distribution of the G beads indicates that the membrane is quite disordered, 

with appearing fast-dissipating undulations, clearly observable by visual inspection of the simulation 

trajectory. The appearance of local distortions is correlated to the binding dynamics of the Na+ 

counterions on the membrane surface. As expected, the increase in the dielectric constant, and the 

consequent weakening of the electrostatic forces, results into a reduced adsorption of the counterions 

(Figure S1, SI), and a different binding dynamic for the ions.  

At very low value of the dielectric constant, we observe different shape fluctuations of the membrane.  

A quantitative measure of such distortions can be obtained using the Helfrich continuum model61-65, as 

explained in detail in SI.  

 

  

Figure 4 reports the fluctuation spectrum of the POPG membrane computed over the last 100 ns of the 

simulations. In all systems, undulations dominate at wavenumbers q smaller than 1.5 nm-1. 

Figure 4. Frequency spectrum of POPG undulations. Intensity of the 
vibrational frequencies as a function of the wave number q obtained from 
hPF-MD simulations using three different values of ɛr = 5, 15, 80. 
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Nonetheless, simulations at εr = 5 show a suppression of the low-frequency modes, and some activation 

of modes at higher frequency compared to simulations at εr = 15, and 80. Simulations at εr = 15 and 80 

show instead a different distribution of the amplitude in the low-frequency regions, in particular, with 

the activation of fluctuations at wavenumbers (q < 2 nm-1), with similar values of the amplitudes. This 

confirms that the morphology of the membrane is stable in a broad range of dielectric values, with the 

increased screening of the dielectric compensating for the unbinding of the ions from the membrane 

surface.   

 

3.3 SDS Self-assembly 

 

We simulated four different SDS/water systems with SDS concentrations CSDS = 50 mM, 72 mM, 182 

mM, and 400 mM for different values of ɛr, over up to 5 µs, starting from a randomly dispersed 

distribution of the SDS molecules and the Na+ ions in water.  Figure 5 shows the average aggregation 

number of SDS 𝑁!""  plotted with respect to time. Nagg is computed by counting the number of 

micelles and the molecules in each micelle with cut-off distance 1.7 σ for each configuration using the 

linked list algorithm. The cut-off distance was defined as 0.8 nm, corresponding to the first minimum 

of the radial distribution function between the P-N species. In all cases, we observed an almost 

instantaneous formation of small SDS aggregates, corresponding to a continuous increase of Nagg. With 

time, such small moieties fuse together to form progressively larger and larger micelles. These events 

correspond to a continuous rather than step-wise increase of the Nagg value.  

The size and the shape of the micelle are directly dependent on the SDS concentration and the value of 

the dielectric constant. In particular, for medium values of the dielectric constant (ɛr = 45), regular 

spherical micelles were formed when the concentration of SDS was relatively low (CSDS = 50, 72 mM). 

Increasing the SDS concentration (CSDS = 182 mM) led to spheroidal micelles with a prolate character, 

and eventually to the formation of nanotubular structures (CSDS = 400mM), in agreement with 

experiment, and previous calculations using different models.66-68 On the contrary, high values of the 

dielectric constant (ɛr = 80) yielded smaller micelles that are of spherical shapes also at higher 

concentrations of SDS. For smaller values of ɛr (~15) , the hPF-MD simulations did not produce regular 

assemblies, but systematically predicted a phase of irregularly-dispersed aggregated surfactants, which 

does not correspond to any experimentally observed assembly. 
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The aggregation mechanism of SDS observed in our simulations is in qualitative agreement with the 

kinetic mechanism proposed by Lund et al. 69 First individual SDS units rapidly accumulate to form 

small assemblies. The fast depletion of monomeric SDS from the solution leads to formation of rather 

regular spherical micelles, of diameter 0.3 nm - 0.4 nm, corresponding to roughly twice the contour 

length of a single SDS molecule. At this point, further growth of the micelle occurs by fusion of such 

aggregates rather than by accumulation of individual SDS units. The growth produces prolate 

spheroidal micelles that eventually fuse to form nano-tubular structures. This mechanism can be 

quantified following the evolution of the asphericity parameter δ of the micelle introduced by Rudnick 

and Gaspari.70 This value is bounded between 0 and 1, with δ taking the values close to 0 for spherical 

assemblies, and reaching 1 if all the particles lie on a line (see SI).  

21

Figure 5. Average aggregation number versus time for CSDS = 50 mM, 72 mM, and 182 mM. 〈𝑁𝑎𝑔𝑔〉 is plotted for each 
concentration at ɛr  = 45 (dashed lines), and ɛr  = 80 (solid lines). The inset shows the aggregation behaviour at high SDS 
concentration CSDS = 400mM. 
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Figure 6. Final snapshots taken after 5µs of the simulations for CSDS = 50 mM, 72 mM, 182 mM, and 
400mM at ɛr = 45 and 80. Water is not shown for visual clarity. 

Figure 7. Asphericity parameter δ with respect to time for CSDS = 50mM, 
72mM, 182 mM, and 400 mM  at ɛr = 45 (top panel) and ɛr = 80 (bottom 
panel). 
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Regardless of the dielectric, at all concentrations δ rapidly develops to values close to 0, indicating the 

initial formation of regular spherical structures (Figure 7); for higher concentrations, with ɛr = 45, δ 

then increases over time, signaling the metamorphosis from spherical to spheroidal (δ ~ 0.2, CSDS = 182 

mM) or nano-tubular aggregates (δ ~ 0.4, CSDS = 400 mM). This phenomenon occurs by fusion of 

smaller spherical units rather than by continuous aggregation of monomeric SDS. The mechanism of 

fusion into tubular moieties occurs at the poles of the prolate axis of the SDS micelle, as also proposed 

by Lund et al. 71,69 

  

The average aggregation number of the spherical SDS micelles predicted by our model is somewhat 

smaller than the experimentally measured one (Nagg = 54 for CSDS = 50mM, and Nagg = 68 for CSDS = 

72mM).72 In fact, our samples were constituted by a very broad dispersion of micelles of different  size, 

as evident from Figure 8 including micelles as big as those reported by the experiment, which formed 

in the last microseconds of simulations. It is thus likely that the smaller sizes of the micelles that we 

observed is a consequence of both the initial conditions (random dispersion of SDS) very far from the 

thermodynamic equilibrium, and the relatively short sampling time, which promotes the formation of 

smaller metastable micelles, which may require some activation in order to fuse into larger aggregates. 

 

4. Final remarks and conclusion 

This work showed how our new implementation of grid-based electrostatic solvers for particle-field 

simulations can be used to investigate realistic models of polyelectrolyte soft-matter systems. In 

Figure 8. Probability distribution of number of micelles versus micelle size for 
different concentrations of SDS and value of the relative dielectric constant. 
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particular, we demonstrated that the hPF-MD approach is capable of treating amphiphilic systems 

either in extended aggregates, like a lipid bilayer, or in finite micellar forms. In particular, the model 

predicts in a qualitatively correct manner the effect of charge interactions over the morphology of the 

aggregates in terms of either area per lipid in bilayers, or shape and size of micelle aggregates. The 

predicted results are affected by the appropriate choice of the relative dielectric constant, as previously 

reported in other coarse-grained simulations. In fact, the behavior of these systems is dominated by the 

formation of ion pairs and their stability, which strongly depends on the relative hydration of the region 

where they occur.   

The behavior of the two POPG and SDS systems is influenced by the choice of the relative dielectric 

constant in different ways. In particular, the assembly of the POPG bilayer seems to be loosely 

influenced by the choice of ɛr, yielding very good results already at relatively low values of ɛr. On the 

contrary, the assembly dynamics and the stability of different phases of SDS seem to be strongly 

dependent on the values of ɛr, and requiring relatively high ɛr values to avoid the appearance of 

gelatinous phases that are inconsistent with experiment. 

The ability of hPF models to treat explicit electrostatics in good agreement with experiment opens up 

the possibility of simulating efficiently biological moieties where the polyelectrolyte character is 

dominant; for example, combining it to proposed models for polypeptides with explicit electrostatics.73-

76 Finally, our analysis points to the importance of carefully calibrating ɛr in studies that aim to 

determine dynamic or structural properties of soft-matter assemblies, especially in very specific 

thermodynamic conditions.  
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Table S1.  Thickness (DHH) of POPG bilayer from different references 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

System Temp. 

(K) 

DHH (nm) 

Atomistic simulations by Elmore et al.57 310 5.61 

Atomistic simulations by Zhao et al.58 310 4.39 

Atomistic simulations by Dickney et al.59 310 4.30 

Experiments by Kucerka et al.60 303 3.73 

PP-CG simulations (present work) 301 4.07 

hPF-MD/e at εr = 5 301 4.71 

hPF-MD/e at εr = 15 301 3.85 

hPF-MD/e at εr = 80 301 3.85 
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Computation of undulation spectrum:  
 

The power spectrum of undulations can be derived from for which the Helfrich continuum model. In 

this model, the bilayer shape can be described as a vibrating membrane u(r), obtained as the sum of the 

surfaces of the two lipid surface layers. Any deformation mode 𝑢(𝑞) having wave number q can be 

obtained from the Fourier transform of u(r). The fluctuation spectrum S(q) is defined as: 

 

     𝑆 𝑞 ≡ 𝑢 𝑞 ! ≅  !!!
! !!!!

 

 

Where a is the projected area per lipid and kc is the bending modulus. Spectra analyses reported in the 

main text have been performed on the last 100 ns of the hPF-MD trajectories, by fitting a grid to each 

monolayer with the position of each lipid, according to the procedure described by IssraelachevliS1,S2   

Two-dimensional Fourier transform of this grid have been calculated to yeld the q-space mode 

amplitudes, the square of which is the intensity. The average intensity per mode have been calculated 

by binning over wavenumbers q. 
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Number density  

 
 

 

Comparison of the number density of Na+ in POPG simulations for two different values 

of the dielectric constant. The 0 position corresponds to the centre of the membrane, the 

position -2 corresponds to of the average level of the P beads. The graph shows the 

reduced binding of Na+ and the dispersion into the solvent  for high values of the 

dielectric.  
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Definition of the asphericity parameter 
The asphericity parameter of the micelle, characterized in terms of the invariants of a shape tensor G 

whose eigenvalues are the squares of the principal radii of gyration.  

 

                                    𝐺!" =
!
!

(𝒓!" − 𝑅!)(𝒓!" − 𝑅!)!
!   (𝑚,𝑛 = 𝑥,𝑦, 𝑧)                                (1) 

 

The three eigenvalues of G are denoted by g1, g2, and g3, N is the number of molecules in the aggregate 

and R is the centre of mass of the aggregate. The ratio of these three eigenvalues determines the shape 

of the aggregate. The definition for asphericity introduced by Rudnick and Gaspari  (reference in main 

text) is:  

 

                                                                        𝛿 = 1− 3 ⟨!!⟩
⟨!!!⟩

                                                                 (2) 

 

where Ii are the respective invariant of the gyration tensor and is given by I1 = g1 + g2 + g3, I 2 = g1 g2 + 

g2 g3 + g3 g1, and I 3= g1 g2 g3. This value is bounded between zero and one.  For spherical objects δ = 

0 and  δ = 1 if all the particles lie on a line. 
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Abstract

We introduce a density functional-based formalism to compute the electrostatic

energy and forces for a mesoscopic system in the condensed phase, described with

molecular resolution. The dielectric permittivity is variable in space, and it is de-

pendent on the density fields of the individual particles present in the system. The

electrostatic potential is obtained from standard numerical solutions of the generalized

Poisson equation. The presence of a particle-dependent varying dielectrics produces

the appearance of mesoscopic polarization forces, which are dependent on the local

fluctuations of the permittivity, as well as of the electrostatic field. The proposed im-

plementation is numerically robust, with an error on the Coulomb forces that can be

systematically controlled by the mesh of spatial grid used for solving the generalized

Poisson equation. We show that the method presented here is able to reproduce the

concentration-dependent partitioning of an ideal salt in water/oil mixtures, in partic-

ular, reproducing the ∝ 1/ε dependency of the partition coefficient for the free ions

predicted by Born theory. Moreover, this approach reproduces the correct electrostatic

features of both dipolar and charged lipid bilayers, with positive membrane and dipole

potentials. The sum of both Coulomb and polarization interactions inside the mem-

brane yields a globally repulsive potential of mean force for the ions, independently on

their charge. The computational efficiency of the method makes it particularly suitable

for the description of large-scale polyelectrolyte soft-matter systems.
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1 Introduction

Polyelectrolytic soft matter systems are associated to a large number of important phe-

nomena in nature, including surfactant action,1 self-assembly of viral capsids,2 packing of

the genetic code,3 or membrane electrochemical potentials.4 Any computational description

of polyelectrolytes is complicated by a series of factors, including the R−1 slowly decaying

Coulomb potential, the presence of free diffusing ions and a non-homogeneous dielectric en-

vironment. These hurdles sum on the general issue that phase-separated systems appear

due to selective crowding and self-assembly of the different molecular species composing the

systems. This makes any computational model with molecular resolution intrinsically ex-

pensive, as the stability of such assemblies require the presence of a non-reducible number

of individual components.5

Models comprising an all-atom resolution have benefited from years of development of

efficient computer algorithms that aim for accurate and efficient computation of electrostatic

forces.6,7 This in turn has led to accurate modelling biological systems, like proteins,8–10

lipids11,12 or nucleic acids.13 Nonetheless, atomistic modelling becomes computationally not

feasible when addressing phenomena in the mesoscale (i.e., with size, time characteristic

dimensions in the order of at least 100 nm, and milliseconds).14,15 This is due to both the

diverging number of degrees of freedom and inter-molecular interactions that need to be

treated, and the relatively short integration timesteps (typically 1 − 2 fs) imposed by the

presence of fast vibrational modes.

In coarse-grained models (CG), a low-resolution representation of the molecular structure,

is obtained by mapping multiple atoms into single beads.16 This lower resolution description

not only reduces the number degrees of freedom, thereby reducing computation, but also fil-

ters out high frequency modes, allowing for longer time steps. Thus, CG models offers a route

to study large-scale systems while maintaining the information (albeit, at low-resolution) on

the molecular structure.

Coarse-graining results in an acceleration of the dynamics, making the direct study of

3
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time evolution and kinetics problematic. Nevertheless a variety of approaches to CG mod-

elling,17–22 allow us today to obtain insights on different dynamic phenomena for soft matter

and biological systems, including the complex morphology of lipid membranes,23–34 also in-

teracting with membrane proteins34–38 the phase behavior of surfactants ,39,40 as well as the

structural fluctuations and folding of proteins ,17,41–51 or DNA.52–59,59

Nonetheless, the reduction of the degrees of freedom used to describe the molecular

systems poses direct limitations in the capability of accurately describing all electrostatic

features, and in particular the dielectric screening by the environment.

Through the years, several simplified methods aiming for modeling accurately electro-

statics while keeping the computational advantage over atomistic approaches have been

developed. Existing models can be grouped into three main categories: (i) implicit solvent

models, which aim to describe the properties of solutes only, introducing implicitly the pres-

ence of the solvent as a background; (ii) explicit non-polarizable solvent models, which treat

the solvent as a non-polarizable medium with specific dielectric/electrostatic properties; and

(iii) polarizable solvent models, which introduce the dielectric response of the environment

via explicit polarization.

In implicit solvent models,60 such as Generalized Born Implicit Solvent, the screening

effect of solvent molecules is modeled by representing the solute within a cavity inside a

homogeneous continuum dielectric, representing the solvent. The electrostatic potential

inside the cavity is then obtained by solving the generalized linearized Poisson-Boltzmann

equation. Such methods can accurately model electrostatic interactions inside the bulk, but

are problematic at interfaces or inside membranes. Moreover, they do not account for the

entropic effects of solvent molecules.

In approaches adopting molecular mechanics-like effective CG potentials,23 a uniform

background dielectric is used to model the screening of electrostatics. This on one hand,

greatly decreases computational cost due to the computation of Coulomb interactions of

all the solvent molecules present in all atom simulations, but requires the calibration of

4
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effective interactions to mimic the presence of higher-order electrostatic forces than charge-

charge ones, appearing especially between charged and polar moieties. These problems are

partly remedied by the model of Hess,61 in which a salt concentration-dependent dielectrics

accounts for many body effects, reproducing osmotic and coordination properties up to a

2.8 M concentration of NaCl. Nonetheless, as in implicit solvent, the use of uniform dielectric

is particular poor near interfaces, making modelling of partitioning phenomena of charged

species challenging.62

To obtain higher accuracy, solvent coarse grained models with explicit electrostatic prop-

erties have been developed.63 The dominant approach has been to map the solvent, and in

particular water, into a minimal set of bodies that mimic the existence of and environment

prone to polarization by dipole orientation. From the original idea by Warshel of introduc-

ing polarizable Langevin dipoles on a grid surrounding the solute,64 Borgis65 proposed the

use of solvating pseudoparticles carrying dipoles which are sensitive to and get polarized

by the electric field of the solute. Similarly, in extended coarse-grained dipole model for

water,66 the water molecule is represented by a dipole constituted by two oppositely sites.

Others recently introduced an even coarser CG mapping with four water molecules into three

connected beads with opposite charges,67 five water molecules into two charged beads,68 or

eleven water molecules into four beads in a tetrahedral arrangement, carrying each a par-

tial charge.69 The introduction of charges increases accuracy, but at the cost of diminishing

computational gain obtained by coarse-graining.

Breaking the bottleneck of simulations of systems at molecular resolution toward the

mesoscopic scale relies therefore in the definition of efficient potentials that retain the effect

of a spatially variable polarizable environment without the introduction of computationally

heavy electrostatic features in the solvent model.

The structural and thermodynamic properties of soft condensed systems in the mesoscale

are dominated by weak interactions of order kbT .70 For this reason, they can be rather

accurately described by density functional based potentials in the mean-field limit.29,71–79 In
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this work, we propose a description for electrostatic interactions based on the same logic.

In particular, we present a formulation of electrostatics for molecular-resolved models in

the condensed phase based on the dielectric screening, the macroscopic effect of molecular

polarization, rather than the molecular polarization itself. We do this by introducing a

spatially resolved dielectric that depends on the local density field of the different molecular

species. Our approach has the advantage of treating all the multipolar interactions that

are higher in order than the direct Coulomb terms via an effective screening controlled by

a smooth function, keeping the computational advantages of continuum dielectric models,

and avoiding the introduction of additional degrees of freedom into the system, thus offering

optimal computational performance.

2 Electrostatics in a dense molecular system

2.1 Electrostatic energy and forces

In a dense system, the total electrostatic interaction energy is expressed by the formula:80,81

Welec[{φ(r)}] =
1

2

∫
dr

D(r) ·D(r)

ε(r)
, (1)

where D(r), ε(r) are the electrostatic displacement field and the dielectric function,each

dependent on the set of number densities {φ(r)} of all particle species (including solvent

and ions). The displacement field is particularly useful in the context of non-homogeneous

dielectrics because its governing equation, the Maxwell equation for the displacement field,

only involves free charges and not polarized charges.

Considering now the case of a molecular system composed by M species {φ(r)} =

{φ1, ..., φk, ..., φM} for each k type. The mean-field potential felt by a particle of type k

6
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at point r, is derived through the saddle point approximation82 as the functional derivative

Vext,k(r) =
δWelec

δφk(r)
, (2)

which involves two terms, dependent on D(r) and ε(r):

Vext,k(r) =

∫
dr′
(
δWelec

δD(r′)

δD(r′)

δφk(r)
+
δWelec

δε(r′)

δε(r′)

δφk(r)

)
. (3)

Computing explicitly the two functional derivatives (SI 1 for detailed derivation), we obtain

the mean-field potential experienced by a particle of type k as:

Vext,k(r) = qkψ(r)− 1

2

∂ε(r)

∂φk(r)
|E(r)|2, (4)

where the first term of the integrand in equation (3) yields the potential energy felt by a

charged particle qk in the electrostatic potential of the system ψ(r), and the second term

of the integrand in equation (3) defines the potential energy due to the polarization of the

medium.

D(r) = −ε(r)∇ψ(r) = ε(r)E(r). (5)

The corresponding force acting on a particle k positioned at r is straightforwardly obtained

by the spatial derivative of the potential energy in equation (4):

Fk(r) = qkE(r) +
1

2
∇
(
∂ε(r)

∂φk(r)
|E(r)|2

)
. (6)

From the force on the different particles, it is possible to define the force density (force per

unit volume) acting on a volume element placed at r. In particular, the force density due to

the polarization of the medium is:

fpol(r) ≡
M∑

k

φk(r)
1

2
∇
(
∂ε(r)

∂φk(r)
|E(r)|2

)
, (7)
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which is equivalent to the polarization part of the Helmholtz force density defined in a

continuous medium83 (see SI 2):

fpol(r) =
1

2
∇
(

M∑

k

φk(r)
∂ε(r)

∂φk

|E(r)|2
)
− 1

2
∇ε(r)|E(r)|2. (8)

The explicit formulation of the polarization term in equation (4) depends on the modeling

of the functional dependence of ε(r) on the particle densities {φ(r)}. Various types of

modelling exist; for example, in Levy et al.84 the local dielectrics has been assumed to

depend on the ion density. Here, we model such relationship by a weighted average of the

dielectric constants for each species k present in r, similarly to what proposed in refs:85–87

ε({φ(r)}) =

∑M
k εkφk(r)

φ0(r)
, (9)

where φ0(r) is the sum of all particle densities: φ0(r) =
∑

k φk(r). Assuming equation (9),

equation (4) becomes:

Vext,k(r) = qkψ(r)− 1

2

εk − ε(r)

φ0(r)
|E(r)|2 , (10)

and the corresponding force on a particle positioned at r:

Fk(r) = qkE(ri) +
1

2
∇
(
εk − ε(r)

φ0(r)
|E(r)|2

)
. (11)

The polarization component of the force on the particle is thus formed by two contributions:

Fk,pol(r) = −1

2
∇ε(r)

( |E(r)|2
φ0(r)

)
+

1

2
(εk − ε(r))∇

( |E(r)|2
φ0(r)

)
, (12)

Assuming homogeneous density (φ0(r) = φ̃0), the polarization force can be interpreted as

follows. The first term corresponds to a force acting on all particles that, in the presence of

an external electrostatic field, seeks to homogenize the spatial distribution of the dielectrics.
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The second term tends to separate the dielectric, attracting the more polar particles (and

repelling the less polar ones) towards the regions of the space characterized by a stronger

electrostatic field.

2.2 Numerical solution for ψ(r)

The computation of forces through equation (11), requires the electrostatic potential ψ(r)

and is obtained by solving the generalized Poisson equation (GPE):

∇ · (ε(r)∇ψ(r)) = −ρ(r). (13)

In the context of molecular dynamics, the GPE is a linear equation as ε(r) and ρ(r) are

predetermined by particle densities. Numerous methods exist for solving the linear GPE.88

We employ a finite difference scheme (which has been used in MD with implicit solvent,89

or in the reaction field method90) on regular grid and solve the linear system of equations

iteratively using the Successive over relaxation method.91 For typical grids (∼0.6-8 nm) and

potential update times (δt ' 0.3 ps) used in hPF calculations, the routine spends only 10% of

the total simulation time even using an overly tight convergence criterion for the electrostatic

potential (average change per iteration lower than 10−6 mV). By loosening the criterion of

convergence by one order of magnitude (10−5 mV), the time spent by the same routine drops

to 3% of total time. More details on details on the procedure are provided in SI 3.

2.3 Implementation within the hybrid particle-field molecular dy-

namics approach

In this study, we tested the present formulation for electrostatic interactions in combination

with the hybrid particle field (hPF) method coupled to molecular dynamics.82 In this ap-

proach, a molecular system is described by a coarse grained representation for both the solute

and the solvent. The intermolecular forces are not computed by direct many-body interac-
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tion terms. On the contrary, each independent particles is coupled to a density-dependent

interaction energy energy functional W . The total energy of the system is written as:

H = H0({r}) +W [{φ}]. (14)

Here, H0({r}) is the intramolecular Hamiltonian of non-interacting chains that is dependent

on the set of particle positions {r}. W [{φ}] is an interaction term built so that the partition

function of the non-interacting system that is being simulated reproduces the correct parti-

tion function of the target interacting one.82 Here, we split the interaction energy functional

into two parts:

W = Wnon−elec +Welec, (15)

where the electrostatic interaction energy has already been described. The non-electrostatic

interaction can be modelled in multiple ways. As in previous publications,82 here we use:

Wnon−elec [{φ}] =
1

φ̃0

∫
dr

[
kbT

2

∑

k,`

χk`φk(r)φ`(r) +
1

2κ

(∑

k

φk(r)− φ̃0

)2

 , (16)

where χk` is the mean field coupling term between particles of type k and `, κ is the com-

pressibility constant controlling local fluctuations of densities in the system, and φ̃0 is the

average number density of the whole system. The particle densities φk(r) for the different

species k are obtained from the individual particle positions distributing over a grid.82 The

external potential felt by a particle of type k at position r is obtained, as in equation (2),

by the saddle point approximation:

Vext,k(r) =
δWnon−elec
δφk(r)

=
1

φ̃0

[
kbT

∑

l

χk`φ`(r) +
1

κ

(∑

`

φ`(r)− φ̃0

)]
. (17)
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The corresponding force acting on a particle of type k positioned at r is obtained by the

spatial derivative of Vext,k:

Fext,k(r) = − 1

φ̃0

[∑

`

(
kbTχk` +

1

κ

)
∇φ`(r)

]
. (18)

The density gradients are numerically computed on the grid, obtaining the forces for each

individual particle by linear interpolation of the nearest grid points (for a detailed description,

see ref:82).

Having a direct definition of the forces acting on the particles from equation (18), the

time-evolution of the system can be computed by numerical integration of the equations of

motion using standard molecular dynamics algorithms.

The method here introduced was implemented in the OCCAM hybrid particle field molec-

ular dynamics software.92 Next, we present three examples to benchmark the performance of

the presented scheme for electrostatics coupled to hybrid particle-field molecular dynamics

(hPF-MD/e hereafter).

2.4 Benchmarking of the implementation

We verified the accuracy on the calculation of the forces for a simple model system composed

of two oppositely unit charged particles placed in a large box (20×20×20 nm3) separated by

a distance d under uniform dielectric εr = 1. Figure 1 reports benchmarking of the accuracy

(Top and middle panels). The force between two charges shows an excellent agreement

with theoretical Coulomb force. For inter-particle distance approaching the grid size, the

force gores towards zero. This is due to having distributed charges and not point particles.

The primary determining factor of accuracy is the grid size b used for solving the GPE.

The inset panel shows how the relative error of the computed force depends on the grid

resolution b. The electrostatic forces can be systematically improved by increasing the grid

mesh to the required precision (Figure 1). Already, using a grid size between 0.6 and 0.7 nm,
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Figure 1: Benchmark on Coulomb interactions with hPF-MD/e. The main plot (panel a)
reports the intensity of the forces acting on two charged particles of opposite signs as a
function of the relative distance computed numerically by hPF-MD/e, FhPF−MD/e for a grid
of 0.65 nm compared to the analytic values, Fanalytic. The inset (panel b) presents the mean
relative error in the 1-5 nm range as a function of grid size b.

good accuracy is obtained. It is worth noting that, a similar grid size has been prescribed

to correctly describe several non charged systems by using a density field description for

non-charged matter systems by hPF-MD.24,93

3 Results and discussion

3.1 Partitioning of ions in a bi-phase system

AB A++B−

AB A++B−

Oil phase

Water phase

εo

εw = 80

+ − + −

+ − + −
Kw

Ko

P ip
o/w

P±
o/w

Figure 2: Partitioning and dissociation equilibria for an ideal ion couple A+B− in a binary
phase-separated liquid composed of oil and water.

12

86



As a first test, we investigated the ability of our model to reproduce the behavior of

an ideal monovalent binary salt A+B− dissolved in a bi-phase solution composed by water,

characterized by a dielectric εw = 80, and an oil of dielectric εo ≤ εw. The salt species are

expected to distribute between the two solvents according the chemical equilibria shown in

Figure 2, which include the thermodynamic dissociation constants Kw and Ko in the water

and the oil phases, and the partition coefficients P ip
o/w and P±o/w for the ion couples and for

the free ions, respectively. Here we assume that, for ideal ions, the partition coefficients of

the positive and negative free ions are identical. The distribution coefficient, which is the

most easily attainable quantity in experiments,94 measures the total partitioning of the salt,

irrespective of its protolytic state, and it is given by:

Do/w =
co
cw
, (19)

where co and cw are the total concentrations of salt [AB]+[A+], where [A+] accounts for the

concentration of salt present in an ionized form, in oil and water respectively. Contrary to

the individual equilibrium constants (Kw, Ko, P
ip
o/w, P±o/w), Do/w is dependent on the nominal

salt concentration in the whole system c. Considering the stationary state concentrations of

the various chemical species are bound to the coexisting chemical equilibria as depicted in

Figure 2, it is possible to derive an exact relationship for Do/w, dependent on the various

equilibrium constants, and c (see ref.94) for a full derivation):

Do/w =
P ip
o/w + α(P±o/w − P

ip
o/w)

1 + α(P ip
o/w − P±o/w)

, (20)

where

α =
−A+

√
A2 + 4A(1 + P ip

o/w)c

2(1 + P ip
o/w)(1 + P±o/w)c

, (21)

and

A = Kw(1 + P±o/w)2. (22)
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Figure 3: Partition coefficient and dissociation constants for an ideal salt in an oil/water
mixture from hPF-MD/e. (Top) Distribution coefficient Do/w as function of the total salt
concentration at different values of the dielectric constant for the oil εo. (Bottom) Partition
coefficients of unpaired ions and paired ions, obtained by fitting equation (20) on the data
in the top graph. The black line is obtained by fitting γ in equation (23) from data points of
P±o/w. (Bottom inset) Dissociation constants of the ion pair in water and oil. The continuous

black line is the prediction obtained from equation (25), using γ obtained from fitting (23)
and assuming P ip

o/w = 1.

Figure 3 reports Do/w obtained from hPF-MD/e simulations for different concentrations

c and values of εo (simulation details in SI 4.1). In agreement with equation (20), by in-

creasing the total salt concentration we observe a decrease in the partitioning between the

two phases. The concentration-independent constants can be extrapolated by fitting equa-

tion (20) against c. Figure 3 also reports the corresponding equilibrium constants for a range

of dielectric values obtained by our fitting. In particular, Born theory predicts

logP±o/w = γ

(
1

εw
− 1

εo

)
, (23)
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where

γ ≡ e2

8πε0kbT ln(10)r0
. (24)

Here r0, the ionic radius, is dependent on the type of the ion. Fitting γ to the P±o/w values

obtained with hPF-MD/e, we find an excellent correspondence with the hyperbolic εo depen-

dence predicted by Born theory. The fitted value of γ = 12.15 corresponds to an ionic radius

of r0 ≈ 1.0 nm, which is in the order of the spread of the charge on the density grid. It should

be noted that the Born expression is an approximate relation which assumes homogeneous

dielectric, and that it ignores important effects around the ion, such as dielectric saturation

and electrostriction.87

P ip
o/w, the partition coefficient for the ion pairs, takes values near 1, and varies little with

εo. This is due to the fact that the ion pairs, having a zero net charge, are not affected as

much as the free ions by the difference in the dielectric between the two media. The ion

dissociation Ko is determined by the thermodynamic cycle in Figure 2:95

logKo = logKw − logP ip + 2γ

(
1

εw
− 1

εo

)
, (25)

which is also in good agreement with the data from the hPF/e simulations.

3.2 Ion permeation in charged and polar membranes

After having verified the correct behavior of the bulk charge distribution in two liquids, we

now consider the simulation of a concentration of 100 mM of ideal salt in the presence of

model membranes. Specifically we take into consideration the two cases of (i) a dipolar

lipid bilayer of palmitoyloleoyl phosphatidylcholine (POPC), and (ii) a negatively-charged

membrane consisting of palmitoyloleoyl phosphatidylglycerol (POPG). The lipid molecules

are represented using a coarse-grained mapping analogous to that of the Martini CG force-

field,23 as presented in previous works,96 restraining the lipids to an ideal packing structure.

This is done to provide optimal comparison for the different systems, as differences in the
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Figure 4: Scheme of the structure of the constituted lipid bilayers. The indigo region is
occupied by the hydrophobic lipid tails, the gray spheres represent the polar or charged lipid
heads. Ions distribute in the surrounding water. Water is not shown for clarity. The red
plot reports the average dielectric value along normal axis of the lipid bilayer, as obtained
from equation (9).

observed results are necessarily due to the different electrostatic treatment only. Details on

the system setup are provided in SI 4.2.

In a first set of simulations, a uniform dielectric value was assigned to all beads. In

particular, we tested both a uniform value of ε80 ≡ 80, corresponding to the relative dielectric

constant of water, as well as ε15 ≡ 15 which is a commonly used value in the literature in CG

studies on constituted lipid bilayers.23 In a second set of simulations, water and ions were

assigned a dielectric εr = 80, while a low dielectric value (εr = 1) was used for the lipids

(ε1,80).

As depicted in Figure 5, the electrostatic potentials obtained for both the uniform and

varying dielectric conditions contain the expected key features of charged and zwitterionic

membranes. In particular, the potentials always feature a global minimum at the quota

of the negatively charged phosphorous, the dipole potential (the electrostatic potential at

the midpoint of the membrane) features a local maximum, and the surface potential (the

potential difference between the bulk and the membrane) is positive. The intensity of the

surface potential obtained for charged membranes is consistent with past Poisson-Boltzmann
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Figure 5: Average electrostatic potential ψ along the normal axis to the membrane z from
its midpoint. The graph reports values of ψ obtained for the charged (panel a) and polar
membranes (panel b), using varying (ε1,80) or constant values (ε15, ε80) of the dielectric.

calculations (in the order of 100-200 mV).97 We observe that for both systems, the use

of a varying dielectric produces systematically higher values for both the dipole and the

surface potentials. In particular, in Zwitterionic membranes the dipole potential raises up

too ∼300 mV, falling within the experimentally observed range of 200− 1000 mV.98

The polarization forces acting on the individual particles are about two orders of magni-

tude weaker than the Coulomb ones (for the charged lipid bilayer 〈|Fpol|〉 = 0.07 kJ mol−1 nm−1

and 〈|FCoul|〉 = 6.92 kJ mol−1nm−1). Nonetheless, as they act on the totality of the parti-

cles present in the system, they contribute to the σzz component of the stress tensor with

a comparable magnitude to the one of the Coulomb term (Figure 6). As also previously

reported,99 the contribution to the stress profile due to the electrostatic forces in the pres-

ence of a constant dielectric is reduced to a peak at the quota of the polar/charged heads.

On the contrary, in the presence of variable dielectric, the Coulomb and polarization forces

contribute differently to the stress, also depending on the electrostatic nature of the lipid

head yielding an inner value different from the one at the solvent quota.

Figure 7 reports the statistical distribution of the positive and negative ions as a function
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of z, which results from the combined effect of both the Coulomb and polarization force

contributions. In the presence of a zwitterionic dipolar head, the use of a constant dielectric

systematically produces a rather flat potential of mean force (PMF) for the positive ions,

which can almost freely diffuse through the membrane. On the contrary, the permeation in

a varying dielectric environment is hindered, with a concentration of positive charges inside

the membrane two orders of magnitude lower than in the bulk solvent. The permeation

of the negative ions is strongly influenced by the surface potential, which for all dielectric

values, is high enough to keep negatively charged ions away from the membrane and out in

the bulk. The distribution of the ions in the system depends on the combined action of both

the electrostatic and the polarization forces. Remarkably, only the use of a varying dielectric

produces a significant increase of the potential of mean force w for both the positive and

negative ions inside the membranes, which is consistent with an expected low ion permeation

through the bilayer. On the contrary, the use of a constant dielectric is less capable of

producing a partitioning between the aqueous and lipid phases, regardless of the dielectric

value. In particular, we observe a systematic underestimation of w for the positive ions, and

a consequent excessive diffusion of the same ions into the lipid bilayer.

4 Conclusion

The development of a density field-mediated particle potential for electrostatics allows a

computationally inexpensive treatment of electrostatic interactions which is able to take

into account the spatial distribution of individual particles producing a non-homogeneous

dielectric screening. In particular, the present model describes the effect of polarization

into the motion of the individual particles composing the system without the need of treat-

ing this term via additional degrees of freedom like charge-resolved solvent models, Drude-

polarization charges or induced dipoles.65,67,68 Our tests show how this model describes well

the mesoscopic behaviour of ideal ions in the presence of phase-separated solvents, or at
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water/lipid interfaces. In the latter case, the model is able to predict the appearance of

membrane potentials that prevent both positive and negative ions from diffusing through

it. This is a result that is not easily attainable in the absence of a spatially-varying di-

electric, in which case reproducing the correct ion permeation requires the introduction of

additional non-electrostatic effective potentials acting between the ions and the membrane

or the solvent. The combined effect of the Coulomb and polarization forces produce a more

complex stress profile along the normal axis of a lipid bilayer, which is absent when using a

constant effective dielectric background. The appearance of such features in the stress profile

implies the presence of additional physical features into the systems, which can be exploited

in future calibrations of lipids and surfactants with improved structural properties like the

average area-per-head or the lateral diffusion in self-assembled structures such as micelles or

vesicles.

In this work, we restricted our analysis to systems containing ideal ions. This choice

was done to determine with clarity what features are directly captured by the proposed

electrostatic model. In fact, the description of the chemical variability of different species can

be straightforwardly included by other non-electrostatic terms of the potential, for example

by the standard hPF functionals described so far in the literature.82,100–102

In this perspective, the proposed model provides an excellent route toward an improved

description of very large and complex polyelectrolytic multi-phase systems like those found

in biological environments, consistently with the definition of hPF-consistent CG models for

bio-polymers where the electrostatic features are explicitly taken into account.51
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grouard, J.; Möller, J.; Zeghal, M.; Tresset, G. Nonequilibrium self-assembly dynamics

of icosahedral viral capsids packaging genome or polyelectrolyte. Nat. Commun. 2018,

9, 3071, DOI: 10.1038/s41467-018-05426-8.

(3) Schiessel, H. The physics of chromatin. J. Phys.: Condens. Matter 2003, 15, R699,

DOI: 10.1088/0953-8984/15/19/203.

(4) Cevc, G. Membrane electrostatics. Biochim. Biophys. Acta, Rev. Biomembr. 1990,

1031, 311–382, DOI: 10.1016/0304-4157(90)90015-5.

(5) Jacobson, K.; Mouritsen, O. G.; Anderson, R. G. Lipid rafts: at a crossroad between

cell biology and physics. Nat. Cell Biol. 2007, 9, 7, DOI: 10.1038/ncb0107-7.

(6) Davis, M. E.; McCammon, J. A. Electrostatics in biomolecular structure and dynam-

ics. Chem. Rev. 1990, 90, 509–521, DOI: 10.1021/cr00101a005.

21

95



(7) Sagui, C.; Darden, T. A. MOLECULAR DYNAMICS SIMULATIONS OF

BIOMOLECULES: Long-Range Electrostatic Effects. Annu. Rev. Bioph. Biom. 1999,

28, 155–179, DOI: 10.1146/annurev.biophys.28.1.155.

(8) Vlachakis, D.; Bencurova, E.; Papangelopoulos, N.; Kossida, S. Adv. Protein

Chem. Struct. Biol.; Elsevier, 2014; Vol. 94; pp 269–313, DOI: 10.1016/

b978-0-12-800168-4.00007-x.

(9) Karplus, M.; Kuriyan, J. Molecular dynamics and protein function. Proc. Natl. Acad.

Sci. U. S. A. 2005, 102, 6679–6685, DOI: 10.1073/pnas.0408930102.
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1 Derivation of external electrostatic potential

The total electrostatic energy of a system can be written as:

Welec[{φ(r)},D(r)] =
1

2

∫
dr

D(r) ·D(r)

ε({φ(r)}) , (1)

where D is the electrostatic displacement field. In hPF, pairwise interactions are replaced

by an interaction with an external field Vext,k(r), specific for the particle type. This potential

is obtained through:

Vext,k(r) =
δW

δφk(r)
. (2)

To take the functional derivative we must take into account dependence on density through

ε(r) = ε({φ(r)}) and D(r). This is done by applying the chain rule:

Vext,k(r) =

∫
dr′
(
δWelec

δD(r′)

δD(r′)

δφk(r)
+
δWelec

δε(r′)

δε(r′)

δφk(r)

)
(3)
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or

Vext,k(r) = A(r) +B(r), (4)

where

A(r) ≡
∫

dr′
δWelec

δD(r′)

δD(r′)

δφk(r)
, (5a)

B(r) ≡
∫

dr′
δWelec

δε(r′)

δε(r′)

δφk(r)
. (5b)

A(r) is composed of two functional derivatives. The first part, the functional derivative

of the interaction energy with respect to D, we derive as follows:

δWelec

δD(r′)
=

∫
dr

δ

δD(r′)

D(r)D(r)

2ε(r)
=

∫
dr

D(r)

ε(r)

δD(r)

δD(r′)

=
D(r′)

ε(r′)
= −∇′ψ(r′),

(6)

where ∇′ is the gradient with respect to r′. Here, we have assumed a linear dielectric, and

we have used that the displacement field can be written in terms of ψ(r) as follows:

D(r) = −ε(r)∇ψ(r). (7)

Next, using (6) and integration by parts, we can rewrite A(r):

A(r) = −
∫

dr′∇ψ(r′)
δD(r′)

δφk(r)
=

∫
dr′ψ(r′)∇ · δD(r′)

δφk(r)
. (8)

The Maxwell equation for displacement field, with explicit density dependence of charge

density ρ(r) gives:

∇ ·D(r) = ρ(r) =
M∑

k=1

φk(r)qk. (9)
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From (9), assuming operations commute, we apply functional derivative and obtain:

∇ · δD(r)

δφk(r′)
= qkδ(r− r′). (10)

Using (10), we get the full expression:

A(r) =

∫
dr′ψ(r′)qkδ(r− r′) = qkψ(r). (11)

Assuming local dependence of ε on φk, (5) can be written as:

B(r) =
∂ε(r)

∂φk(r)

δWelec

δε(r)
, (12)

The functional derivative in (12) is obtained by:

δWelec

δε(r)
=

δ

δε(r)

1

2

∫
dr′

D(r′) ·D(r′)

ε(r′)

=
1

2

∫
dr′D(r′) ·D(r′)

∂

∂ε(r′)

(
1

ε(r′)

)
δε(r′)

δε(r)

= −1

2

∫
dr′

D(r′) ·D(r′)

ε(r′)2
δ(r− r′)

= −1

2

D(r) ·D(r)

ε(r)2
,

(13)

where we used that

δε(r′)

δε(r)
= δ(r− r′). (14)

Inserting (13) into (5a), we find:

B(r) = −1

2

∂ε(r)

∂φk(r)

D(r) ·D(r)

ε(r)2
(15)

Finally, the external potential can be written as:

Vext,k = qkψ(r)− 1

2

∂ε(r)

∂φk(r)
(∇ψ(r))2. (16)
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2 Relationship to the Helmholtz force density

Focusing on polarization term, the force contribution to a volume can be written as:

F =
1

2

∫
dr
∑

k

φk(r)∇
(
∂ε(r)

∂φk

(∇ψ(r))2

)
, (17)

Using the product rule, we obtain

F =
1

2

∫
dr
∑

k

(
∇(φk(r)

∂ε(r)

∂φk

(∇ψ(r))2)−∇φk(r)
∂ε(r)

∂φk

(∇ψ(r))2

)
. (18)

Equation (18) can be rewritten, by using

∇ε(r) =
∑

k

∇φk(r)
∂ε(r)

∂φk

, (19)

as:

F =
1

2

∫
dr

(
∇
(∑

k

φk(r)
∂ε(r)

∂φk

(∇ψ(r))2

)
−∇ε(r)(∇ψ(r))2

)
. (20)

The force density per volume is given by the integrand:

fpol =
1

2
∇
(∑

k

φk(r)
∂ε(r)

∂φk

(∇ψ(r))2

)
− 1

2
∇ε(r)(∇ψ(r))2, (21)

which for a single-component fluid is the Helmholtz force density.S1 We note that, for a

weighted average for ε(r), the first term sum to zero.

3 Numerical solution of GPE

A regular grid with periodic boundary conditions is used with box of size Lx × Ly × Lz

discretized by Nx, Ny and Nz points in each direction respectively. The position of the

nodes are given by xi = i ·∆x, yj = j ·∆y, zk = k ·∆z, where ∆x ≡ Lx/Nx, ∆y ≡ Ly/Ny

and ∆z ≡ Lz/Nz. On the nodes, ε(r), ρ(r), ψ(r) are discretized as εi,j,k, ρi,j,k, ψi,j,k. We
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derive a finite difference scheme by approximating derivatives in GPE with central differences

on half points between nodes:

1

∆x

((
ε
∂ψ

∂x

)

i+1/2,j,k

−
(
ε
∂ψ

∂x

)

i−1/2,j,k

)
+

1

∆y

((
ε
∂ψ

∂y

)

i,j+1/2,k

−
(
ε
∂ψ

∂y

)

i,j−1/2,k

)
+

1

∆z

((
ε
∂ψ

∂z

)

i,j,k+1/2

−
(
ε
∂ψ

∂z

)

i,j,k−1/2

)
=− ρi,j,k,

(22)

which gives
1

∆x2

(
εi+1/2,j,k(ψi+1,j,k − ψi,j,k)−

εi−1/2,j,k(ψi,j,k − ψi−1,j,k)
)

+

1

∆y2

(
εi,j+1/2,k(ψi,j+1,k − ψi,j,k)−

−εi,j−1/2,k(ψi,j,k − ψi,j−1,k)
)

+

1

∆z2

(
εi,j,k+1/2(ψi,j,k+1 − ψi,j,k) −

εi,j,k−1/2(ψi,j,k − ψi,j,k−1)
)

= −ρi,j,k,

(23)

where

εi+1/2,j,k ≡
1

2
(εi+1,j,k + εi,j,k) . (24)

GPE can be rewritten in finite difference form as follows:

a1ψi+1,j,k + a2ψi−1,j,k+

a3ψi,j+1,k + a4ψi,j−1,k+

a5ψi,j,k+1 + a6ψi,j,k−1−

a0ψi,j,k =− ρi,j,k,

(25)
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where we identify the ak from equation (23) as:

a1 =
1

2∆x2
(εi−1,j,k + εi,j,k) , (26a)

a2 =
1

2∆x2
(εi,j,k + εi+1,j,k) , (26b)

a3 =
1

2∆y2
(εi,j−1,k + εi,j,k) , (26c)

a4 =
1

2∆y2
(εi,j,k + εi,j+1,k) , (26d)

a5 =
1

2∆z2
(εi,j,k−1 + εi,j,k) , (26e)

a6 =
1

2∆z2
(εi,j,k + εi,j,k+1) , (26f)

and

a0 = a1 + a2 + a3 + a4 + a4 + a6. (27)

Solving equation (25) is equivalent to solving a system of banded linear equations, for

which many methods exist (note that the accuracy is not related to the method for solving

the set of equations, but the finite difference discretization). Widely used methods include

Multigrid method,S2 Conjugate gradient,S3 or relaxation methods like Jacobi, Gauss-Seidel

and successive over relaxation (SOR).S3 Here, we employ SOR because of good efficiency

and ease of implementation.

The SOR-method solves GPE iteratively by:

ψn+1
i,j,k = (1− ω)ψn

i,j,k +
ω

a0

(
ρi,j,k + a1ψ

n
i+1,j,k + .a2ψ

n
i−1,j,k + a3ψ

n
i,j+1,k + a4ψ

n
i,j−1,k+

a5ψ
n
i,j,k+1 + a6ψ

n
i,j,k−1

)
, (28)

where n is marks the number of iterations and ω is a relaxation parameter crucial for the

convergence-rate. We use ω = 2.0/(1.0 + sin(π/Nx)) in accordance with.S4 As convergence

criteria we employ:
〈∣∣ψn+1

i,j,k − ψn
i,j,k

∣∣〉 < 1× 10−6 mV. (29)
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The number of iterations required for for convergence is dependent on system and the time

δt between potential updates. Figure S1 provides the number of iterations Nit required for

achieving (29) for a charge lipid bilayer.

101

102

10−4 10−3 10−2 10−1 100 101

N
it

δt/ps

Figure S1: Mean number of steps required for convergence as function of time δt between
potential updates. This particular convergence test was performed on a equilibrated charged
lipid bilayer with ε1,80. Details on this system are reported in Appendix 4.2.

4 Simulation details

Settings used for molecular dynamics are provided in Table S1. All simulations are done

under periodic boundary conditions

Table S1: Settings used in OCCAM simulations.

∆ta/ps δtb/ps δtc/ps fcol
d/ps−1 T/K b/nm κ−1/kJ mol−1

0.03 3 0.3 7 301.15 0.65 20

aTime step.
bTime between grid update for partitioning simulations.
cTime between grid update for membrane simulations.
dCollision frequency of Andersen thermostat.
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Figure S2: Random snapshot from a hPF-MD/e simulation of a 200 mM salt concentration
in a oil/water bi-phase solution, using εo = 10. The oil beads are colored in dark green,
the water beads in red; positive and negative ions are represented by light green and blue
spheres.

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80

〈 χ
2
〉

εo

Figure S3: The 〈χ2〉 of fitting for concentration dependence of Do/W for different εo.

4.1 Partitioning simulations

The partitioning simulations are done in a box of dimensions 29.8 nm× 14.9 nm× 14.9 nm,

starting phase separated with oil on left side (x < 14.9 nm) and water on right side (14.9 nm <

x < 29.8 nm). The initial phase separation is maintained throughout the simulation by

χo,w×RT = 30 kJ mol−1. Ions are only subject to compressibility condition and electrostatic

interactions χion,j × RT = 0. The simulations are performed with εw = 80, εion = 80

and εo = {5, 10, 15, 20, 25, 35, 40, 45, 50, 60, 80}. All beads are set to a mass 72 amu. The

simulations last for a total time t = 0.97 µs. The distribution coefficient is calculated by the
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time average:

Do/w =
1

nframes

nframes∑

i=1

N i
A+o +N i

B−o

N i
A+w +N i

B−w

, (30)

where the number of ions in each phase are counted away from the interface. The corre-

sponding standard deviations of the mean are estimated using block averaging.S5 For each

εo from concentration dependence of Do/w, equilibria constants are obtained by optimizing:

〈
χ2
〉

=

〈(
(logDo/w − logDo/w,fit

σlogDo/w,

)2〉
(31)

for equilibria constants, constraining Kw = 250 mM. The 〈χ2〉 for different εo are reported

in Figure S3.

Table S2: System setup for ion concentration dependence of partitioning. The simulation
box is 29.8× 14.9× 14.9 nm3 and there are 55200 solvent beads (27600 oil and 27600 water
beads). NA+B− denotes number of A+ and B− ions.

cion/mM 5 10 25 50 100 150 200
NA+B− 20 40 100 200 400 600 800

4.2 Membrane simulations

Table S3: χij ×RT/kJ mol−1-matrix for membrane simulations.

L P G C D A+ B− W
L 0.00 -3.60 4.50 13.25 9.30 0.00 0.00 0.00
P -3.60 0.00 4.50 13.50 11.70 0.00 0.00 -3.60
G 4.50 4.50 0.00 6.30 6.30 0.00 0.00 4.50
C 13.25 13.50 6.30 0.00 0.00 0.00 0.00 33.75
D 9.30 11.70 6.30 0.00 0.00 0.00 0.00 23.25
A+ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
B− 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
W 0.00 -3.60 4.50 33.75 23.25 0.00 0.00 0.00

The ion membrane simulations are performed with lipid positions frozen in time. The

initial setup for the bilayer are made using insane,S6 a tool for creating initial setup for
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Figure S4: Snapshot of membrane simulation for charged lipid bilayer with salt. εmem = 1
and εw = 80. Water beads are colored in red, A+ and B− ions are represented by light green
and blue spheres. The lipids are represented in sticks.

membranes. The polar/charged bilayers are composed of 391/392 lipids, respectively, placed

along the xy-plane of a simulation box of 10.18× 10.18× 23.29 nm3 dimensions. The polar

membrane was simulated in the presence of 145 A+B− ion couples, and 15887 water beads.

The charged system contained 537 A+ and 145 B− ions, as well as 15495 waters. The χij-

matrix used for modeling intermolecular interactions is provided in Table S3. A snapshot of

the simulation setup for a charged membrane is shown in Figure S4.
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