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ABSTRACT
The quintessence model is one of the simplest and better known alternatives to Einstein’s theory
for gravity. The properties of the solutions have been studied in great detail in the background,
linear and non-linear contexts in cosmology. Here we discuss new phenomenology that
is induced by adding disformal terms to the interactions. Among other results, we show
analytically and using cosmological simulations ran with the code ISIS that the model possesses
a mechanism through which it is possible to obtain repulsive fifth forces, which are opposite
to gravity. Although the equations are very complex, we also find that most of the new
phenomenology can be explained by studying background quantities. We used our simulation
data to test approximate relations that exist between the metric and scalar field perturbations
as well as between the fifth force and gravity. Excellent agreement was found between exact
and approximated solutions, which opens the way for running disformal gravity cosmological
simulations using simply a Newtonian solver. These results could not only help us to find new
ways of testing gravity, but also provide new motivations for building alternative models.

Key words: gravitation – methods: numerical – dark energy – dark matter – large-scale struc-
ture of Universe – cosmology: theory.

1 IN T RO D U C T I O N

Observations of distant supernovae, quasars, and of the cosmic
microwave background are consistent with a universe with late-
time accelerated expansion (Riess & et al. 1998; Astier et al. 2006;
Risaliti & Lusso 2015; Planck Collaboration 2016a). Although this
effect can be mimicked by introducing a cosmological constant to
Einstein’s equations, the true nature of the expansion is still un-
known. Moreover, the apparent value of the cosmological constant
does not correspond to the vacuum energy predicted by particle
physics (e.g. Weinberg 1989). Among the several solutions to these
inconsistencies, there is the idea of modifying Einstein’s theory for
gravity. A comprehensive description of many of these theories and
their cosmological implications can be found in reviews by Clifton
et al. (2012), Amendola et al. (2018), Copeland, Sami & Tsujikawa
(2006), Silvestri & Trodden (2009), Weinberg et al. (2013), Joyce
et al. (2015), Lue, Scoccimarro & Starkman (2004), Koyama (2016),
Nojiri, Odintsov & Oikonomou (2017), and Li et al. (2018).

Many of these modified gravity (MG) theories can be interpreted
as having two geometries for space–time. One of these two ge-
ometries characterizes the curvature of space–time, while the other
describes the impact that this curvature has on the dynamics of
matter. The simplest way of relating these two metrics is through a
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conformal transformation (i.e. one metric is obtained from the other
with a rescaling). This rescaling factor is equal in all dimensions
and hence conserves shapes. The next step in complexity consists
in adding a dependence with the direction to this relation. This can
be done through so-called disformal transformations, which in the
case of scalar–tensor theories depend on the derivatives of a scalar
field (Bekenstein 1993). These kind of transformations have been
studied in several contexts in cosmology such as inflation (Kaloper
2004), dark matter (Skordis et al. 2006; Arroja et al. 2015), dark
energy (Koivisto 2008; Koivisto & Mota 2008; Sakstein 2015; van
de Bruck, Mifsud & Morrice 2017), screening of MG (Koivisto,
Mota & Zumalacárregui 2012; Ip, Sakstein & Schmidt 2015), non-
linear structure formation (Hagala, Llinares & Mota 2016), and
others (Barrow & Mota 2003; Bettoni & Liberati 2013; Brax et al.
2013; Deruelle & Rua 2014; Sakstein 2014; Sakstein & Verner
2015; Ben Achour, Langlois & Noui 2016; van de Bruck et al.
2016).

In this work, we will study the impact that the addition of a
disformal coupling has on the solutions of field equations and
the non-linear matter distribution. We give a concrete example
that we obtained by perturbing with a disformal coupling the
quintessence model, which is one of the best known extended
models of gravity. Contrary to other works in which the emphasis is
put on parameter estimation, here we are interested in finding novel
phenomenology associated with this coupling, independently of
the validity of the model from an observational perspective. Doing
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this is important because knowing what effects are associated with
this particular coupling could help to construct models with similar
phenomenology, but that are compatible with specific data sets. This
in turn may enable us to construct novel tests of gravity based on
this new phenomenology.

Among other characteristics of the solutions of the Klein–Gordon
equation for the quintessence field, we will discuss a very simple
relation that the disformal coupling induces between this field and
the gravitational potential, which can be translated into a similar
relation between the fifth force associated with the scalar field and
gravity. We will first analyse this and other effects analytically. We
will confirm these estimations a posteriori in a realistic set-up given
by fully non-linear cosmological simulations. These simulations
track the scalar field by means of a non-linear hyperbolic solver,
which takes into account time derivatives in the background as
well as in the perturbations and thus, provides the most accurate
solution that can be obtained, without assuming specific symmetries
or neglecting terms in the equations.

We present details of the model in Section 2. In Section 3, we
describe analytical properties of the evolution of the background and
perturbed scalar field as well as of the fifth force that arises from
it. Section 4 describes the cosmological simulation suit in which
we base our non-linear analysis. We present results from these
simulations on the scalar field and matter distributions in Sections 5
and 6, respectively. We summarize our results and conclude in
Section 7.

2 D ISFORMALLY COUPLED QU INTESSENCE

The model that we consider in this work can be defined with the
following action:

S =
∫ [√−g

(
R

16πG
+ X − V (φ)

)

+√−gLB + √−g̃L̃DM

]
d4x, (1)

where X is the kinetic energy density of the field, defined by

X ≡ −1

2
φ,aφ,a (2)

andLB and L̃DM are the Lagrangians of the baryonic and dark matter
fields, respectively. We assume that the coupling is non-universal
and that these two fields are coupled to the Einstein and Jordan
frames metrics gab and g̃ab, respectively, which are related through
the following disformal transformation:

g̃ab = gab + B(φ)φ,aφ,b. (3)

The reason for adopting a non-universal coupling is that the model
does not include a screening mechanism. With this assumption,
we ensure that only the dark matter component of the Universe
will be affected by the modification to gravity and that Solar
system constraints will be fulfilled. Furthermore, the choice of a
non-universal coupling also ensures that the model is compatible
with recent constraints on the speed of gravity waves that were
obtained through the detection of an optical counterpart of a black
hole collision (Abbott et al. 2017). Note that a similar approach
was followed by several authors already (Li & Barrow 2011; Xia
2013; Brevik, Obukhov & Timoshkin 2015; Skordis, Pourtsidou &
Copeland 2015; van de Bruck & Morrice 2015). Screening mecha-
nisms may be added by making appropriate choices of the conformal
part of the transformation, which we assume is equal to one. An
example of such a procedure was presented by Hagala et al. (2016),

who studied the effects of a disformal coupling included on top of
the symmetron model, which is defined by a conformal coupling
1 + φ2.

We choose the following form for the disformal coupling B and
the potential V

B(φ) = B0 exp(βφ/Mpl), (4)

V (φ) = V0 exp(−νφ/Mpl), (5)

which were already studied on several occasions by Koivisto (2008),
Koivisto et al. (2012), Zumalacárregui, Koivisto & Mota (2013),
van de Bruck & Morrice (2015), van de Bruck et al. (2016),
Zumalacárregui et al. (2010), and Sakstein (2015). This choice was
made not only because it provides simple equations from which
several analytical properties can be studied, but also because a
change of the initial value of the scalar field, φ → φinit + φ̄, can be
collected into a change of the parameters B0 and V0. Taking this into
account releases us from treating the initial value of the field as a
free parameter, allowing us to fix φinit = 0 without loss of generality.

We will restrict our analysis to positive values of B0, V0, and
ν. The potential V(φ) is thus a decreasing function of φ, which
will result in a background field rolling down the potential towards
infinity. Negative values of ν would simply make the field roll
towards negative values instead, and the analysis in this paper would
be identical after the transformation φ → −φ and β → −β. A
positive choice of B0 is needed to ensure B(φ) > 0. As mentioned
by Bekenstein (1993), a negative coupling B(φ) breaks causality
by allowing information in the scalar field to propagate faster than
the speed of light. We will look at three different general cases for
β: negative, positive, and zero. These correspond to a disformal
coupling B(φ) that is respectively decreasing with φ, increasing
with φ, or constant.

Variation of the action (1) with respect to the field φ yields the
following equation of motion for the scalar field:

φ̈ = 1

(1 + γ 2ρ)

[
c2

a2
∇2φ − 3Hφ̇ − B,φγ 2

2B
ρφ̇2 − V,φ

]
, (6)

where

γ 2 = B

1 + Bφ,aφ,a

, (7)

we assumed that matter is a pressureless perfect fluid and that the
Einstein frame metric takes the following form:

ds2 = −(1 + 2	)dt2 + a2(t)(1 − 2	)(dx2 + dy2 + dz2), (8)

where the Newtonian frame scalar perturbation 	 is the usual New-
tonian potential. Here and throughout this paper, a dot corresponds
to a partial derivative with respect to cosmic time t. Note that the
only differences that the equation of motion (6) has with respect to
the usual quintessence model are

(i) A factor (1 + γ 2ρ)−1 that changes both the speed at which
the scalar field evolves in the background and the speed of scalar
waves.

(ii) The addition of a term (B,φγ 2)/(2B)ρφ̇2 (i.e. an additional
force acting on the field).

These two additional terms are not exclusive to the base model we
choose (in this case the quintessence model), but are characteristic
of the disformal coupling. The aim of this paper is to understand
the consequences that these terms have in both the solutions of the
Klein–Gordon equation and the non-linear distribution of matter in
the Universe.
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3 A NA LY TICAL PROPERTIES OF THE MO DEL

This section describes analytical solutions of the Klein–Gordon
equation for the scalar field. We will study separately the time
evolution of the scalar field in the background (for an Einstein–de
Sitter universe) and its perturbations. Furthermore, we will discuss
properties of the fifth force that arise from it.

3.1 Disformal field dynamics: background evolution in an
Einstein–de Sitter universe

Before studying properties of the solutions, it is convenient to write
the Klein–Gordon equation (6) with dimensionless variables. In the
limit γ 2 → B, the equation takes the following form:

∂2
t̃ χ̃ = −2

t̃

t̃2 + D exp(F χ̃)
∂t̃ χ̃ − 1

2

FD

t̃2 + D exp(F χ̃)
(∂t̃ χ̃)2

+ t̃2

t̃2 + D exp(F χ̃)
exp(−χ̃ ), (9)

where we used the following dimensionless variables:

χ̃ ≡ ν
φ

MP
, (10)

t̃ ≡ √
v0νH0t (11)

and the following dimensionless parameters:

b0 ≡ H 2
0 M2

plB0, D ≡ 4

3
b0v0ν

2, (12)

v0 ≡ V0

H 2
0 M2

pl

, F ≡ β

ν
. (13)

Cosmological energy scales are of the order of H 2
0 M2

pl, meaning
that these rescalings will give cosmological consequences for
model parameters b0 and v0 close to unity. Since details of the
background evolution of the metric are not expected to change the
phenomenology provided by the disformal terms, we will study
the simplest case: a flat universe with no cosmological constant.
Thus, we derived equation (9) by assuming the following relations
between time and expansion factor:

a(t) =
(

3H0t

2

)2/3

(14)

and the following evolution of the background density:

ρ(a) = ρ(a = 1)

a3
= 3H 2

0 M2
P

a3
. (15)

Note that this solution is not strictly valid in disformal gravity. How-
ever, taking into account corrections associated with the disformal
coupling will add a new layer of complexity that is beyond the scope
of this paper. We briefly discuss these solutions in Appendix B.

These definitions show that the four original free parameters V0,
ν, B0, and β are degenerate and that the shape of the background
solutions depends only on two free parameters D and F. The limit
(D, F) → 0 corresponds to the usual quintessence model that does
not depend on any free parameter (all the information provided
by the two original parameters V0 and ν can be condensed in the
rescaling of the time and the scalar field). The limit F → 0 is
associated with a constant disformal coupling, where β = 0. We
will study these two limits first separately and then the most general
case with β �= 0.

3.1.1 Quintessence

The quintessence limit is defined by assuming (D, F) → 0 and gives
rise to the following Klein–Gordon equation for the evolution of the
background field:

∂2
t̃ χ̃ = −2

t̃
∂t̃ χ̃ + exp(−χ̃). (16)

The solution is shaped by the presence of a damping term and a
non-linear regime, which is triggered when the field is large enough
to reach the non-linear part of the exponential function. In order
to understand consequences of two effects, we study four different
cases that correspond to equations that are and are not linearized
with respect to the field and with and without the addition of the
damping term. Table A1 in Appendix A summarizes properties of
these four solutions. The definition of the time-scales that appear
in these results is given in Table 1 in this section. The left-hand
panel of Fig. 1 shows the evolution of the field in these four special
cases.

The complete solution of the quintessence equation of motion
(equation 16; red curve in Fig. 1) has a characteristic time-scale that
divides the linear regime at early times from the non-linear regime at
late times. At early times, the damping term interacts with the force
that induces the field to roll down the potential in such a way that
only the normalization of the solution is changed with respect to the
undamped solution. This regime is characterized by a logarithmic
slope ( d log χ̃

d log t̃
= t̃

χ̃
∂t̃ χ̃ ) equal to two. During the transition to the non-

linear regime, the force that accelerates the field becomes negligible
and thus, the evolution of the field is damped and approaches a
solution with a logarithmic slope equal to zero.

3.1.2 Disformal gravity with constant disformal coupling

We now study solutions of the Klein–Gordon equation in the limit
F → 0 and D �= 0:

∂2
t̃ χ̃ = −2

t̃

t̃2 + D
∂t̃ χ̃ + t̃2

t̃2 + D
exp(−χ̃). (17)

Properties of the solutions for the same four special cases discussed
in the previous section are summarized in Table A2 in Appendix A.
These solutions are shown in the three right-hand panels of Fig. 1
for three different values of the only free parameter D. The red curve
in these panels corresponds to the solution of the complete equation
(equation 17).

These results can be summarized as follows. The evolution of
the field at early times can be described analytically by linearizing
the equation with respect to time and the field itself. Since the
coefficient that appears in front of the time derivative in the damping
term approaches zero at early times, it is possible to neglect it in this
regime (note that this cannot be done in the quintessence model, for
which this coefficient diverges at t̃ = 0). The solution for the early
universe is then a power law with a logarithmic slope equal to four,
which is higher than in the quintessence case and thus, implies a
slower evolution at early times. Once this early stage is finalized,
three different processes dictate the further evolution:

(i) The two explicit functions of time that exist in the two terms
in the right-hand side of equation (17) approach the quintessence
value (1/t̃ and 1, respectively).

(ii) The damping term increases with time.
(iii) The term that forces the field to roll down the potential

(second term on the right-hand side of the equation) drops (i.e. the
non-linear regime is reached).
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Table 1. Characteristic time-scales that arise in the background solutions of the Klein–Gordon equation for
Einstein–de Sitter cosmology. Note that the non-linear regimes mentioned here are associated with the moment
in which the background equation for the scalar field becomes non-linear (and not to the non-linear regime
usually studied in cosmology). The superscript nd makes reference to ‘non-damped’ solutions.

Type of transition Without damping With damping

Quintessence linear → quintessence non-linear T nd
a ≡ 2

√
2 Ta ≡ 5.7 (numerical)

Disformal linear → quintessence linear T nd
b ≡ √

6D Tb ≡ √
2D

Disformal linear → disformal non-linear T nd
c ≡ 37/12�1/3(3/4)

√
2D1/4 Tc ≡ T nd

c

Figure 1. Background evolution of the field for quintessence model (left-hand panel) and disformal model with constant coupling (for three different values
of the free parameter D and F = 0). Each panel contains four curves that correspond to the four models described in Tables A1 and A2 in Appendix A. The
vertical lines correspond to the different time scales defined in Table 1 for the case that includes damping. The numerical values of these time-scales are very
close to the values that do not include damping.

Three possible solutions exist depending on which of these pro-
cesses is activated first, which in turn depends on the amplitude
of D. For small values of D (red curve in the second panel from
left to right of Fig. 1), the transition towards the quintessence limit
occurs first (i.e. Tb < Ta and Tb < Tc). In this case the equation
is transformed into the same equation that defines the quintessence
model and thus the evolution continues following the solutions
described in the previous section and in Table A1 in Appendix A.

For intermediate values of D (red curve in the third panel from
left to right of Fig. 1), the damping term dominates before the
occurrence of the transition to the quintessence regime. In this case
the acceleration of the field becomes negative and the field loses
kinetic energy. The solution becomes flat with a logarithmic slope
equal to zero.

Finally, for very large values of D (red curve in the fourth panel
from left to right of Fig. 1), the evolution of the field stays in
the disformal regime until the exponential function in the potential
starts decaying. The equation of motion becomes the equation of a
free particle, whose solution has a logarithmic slope equal to one.
Once this happened, the field continues evolving unperturbed until
the damping term dominates. At this moment, the field decelerates
and the slope becomes equal to zero.

These apparently complex solutions can be summarized in a
simple way by plotting their logarithmic slope as a function of D
and t̃ , which we calculated numerically and show in Fig. 2. The
transition between different regimes is given by the characteristic
time-scales defined in Table 1.

3.1.3 Disformal gravity with exponential disformal coupling

Assuming β (which is equivalent to F in the parametrization studied
here) is different than zero has two effects in the equation of motion
(equation 9). First, it gives an additional dependence with the

Figure 2. Colour coded is the logarithmic slope of the solution of the
background Klein–Gordon equation for the disformal model with β = 0
and an Einstein–de Sitter universe. The three lines correspond to the three
time-scales defined in Table 1 (for the case that includes damping).

field χ̃ to the coefficients that control the transition between the
disformal and quintessence regimes. This new dependence converts
the parameter D into an effective parameter D̃ = D exp(F χ̃ ).
Positive or negative values of F will result in D̃ increasing or
decreasing with time, which in turn, will delay or accelerate the
transition to the quintessence regime (defined by Tb). Secondly,
assuming F �= 0 will add a new term to the equation of motion,
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which will act as an additional damping term or external force on
the field depending on the sign of F.

In the case F > 0, the parameter D̃ will grow exponentially
with the value of the field. This will decrease the time required to
reach the transition to the non-linear regime as well as decrease
the importance of the damping terms. Since the new damping term
decreases faster with time than the usual one, it will not have any
impact on the overall shape of the solutions. Fig. 3 shows the
logarithmic slope of the solution in the plane (D, t̃) for different
values of F. For small values of D and intermediate values of F
(second panel from the left), the damping term kicks in before
the transition to the non-linear regime is reached and thus, the
solution gets flat, with a logarithmic slope equal to zero. However,
the dependence of D̃ with χ̃ will force the damping to decrease faster
than the usual case, thus giving the chance to the potential term to
resurge and change the logarithmic slope of the solution back to
one. Afterwards, all the terms on the right-hand side will disappear,
which let the field evolve as a free particle, with a slope equal to
one. For large values of F, the transition to the non-linear disformal
regime is faster than the transition to the linear quintessence regime,
and so the slope of the solution has a direct transition from four to
one.

To analyse the case F < 0, it is convenient to re-write the equation
of motion (equation 9) as follows:

∂2
t̃ χ̃ = −1

4

[
4t̃ + FD∂t̃ χ̃

t̃2 + D exp(F χ̃ )

]
∂t̃ χ̃ + t̃2

t̃2 + D exp(F χ̃)
exp(−χ̃ ).

(18)

Here, it becomes evident that the condition for the first term of the
right-hand size to be negative (and thus, to act as a damping term
instead of an external force) is

4t̃ + FD∂t̃ χ̃ > 0. (19)

By substituting the possible asymptotic limits discussed in Table A2
(i.e. t̃4, t̃2, t̃ , and log(t̃)), we can see that the equation of motion
will eventually become unstable for negative values of F. In the
particular regime in which χ̃ ∝ t̃2, the solution is unstable for all t̃ .

3.2 Disformal field dynamics: perturbations

The model we are dealing with does not include conformal or
explicit couplings. However, the disformal coupling that we allowed
for can generate perturbations in the field by itself. The mechanism
by which these perturbations originate is based on the fact that,
thanks to the term (1 + γ 2ρ)−1 in the Klein–Gordon equation
(equation 6), the field rolls down the potential V at different rates in
regions that have different densities (slower rate in higher density
regions). The shape of these perturbations can be summarized in a
simple relation between the metric perturbation 	 and the scalar
field φ, which can be translated (after appropriate approximations)
into a similar relation between the fifth force associated with the
scalar field and gravity.

We can determine the exact form of field perturbations by re-
writing the Klein–Gordon equation (equation 6) as follows:

∇2φ = a2

c2

γ 2

B

[
Bφ̈ + 1

2
B,φφ̇2

]
δρ + ε, (20)

where we decomposed the density in a background value plus a (not
necessarily small) perturbation

ρ(x, t) = ρ0(t) + δρ(x, t) (21)

and we defined

ε ≡
[

(1 + γ 2ρ0)φ̈ + 3Hφ̇ + B,φγ 2

2B
ρ0φ̇

2 + V,φ

]
a2

c2
, (22)

which is equal to zero in the background. By substituting the factor
δρ that appears in equation (20) with the corresponding value
that can be obtained from the Poisson’s equation for the metric
perturbation

∇2	 = a2

2M2
P

δρ, (23)

we can relate the Laplacian of the scalar field and the metric
perturbation:

∇2φ = ξ∇2	 + ε, (24)

where we have defined

ξ ≡ 2M2
P

c2

γ 2

B

(
Bφ̈ + 1

2
B,φφ̇2

)
. (25)

We now substitute all the dependences with the scalar field and its
time derivatives with background values. The term ε will disappear
and we will end up with an equation that can be integrated and
whose solution is

φ = ξ0	 + φ0 + υ, (26)

where υ is a solution of the Laplace equation, which, together with
the background value of the field φ0, acts as an integration constant.
We will test this relation in the following sections by comparing
results obtained from non-linear simulations which do not rely on
approximations. Since it will be used a posteriori, we show here
the explicit form that the coefficient ξ acquires when assuming an
exponential potential as in equations (4) and (12):

ξ0 = 2b0

H 2
0 c2

(
φ̈0 + β

φ̇2
0

2Mp

)
exp(βφ0/Mp)

1 − b0
H 2

0 M2
P

φ̇2
. (27)

The sub-index zero in these expressions highlights the fact that these
are background quantities. The relation between the fields given by
equation (26) depends on the model parameter b0 and β and thus,
breaks the degeneracy between parameters that enabled us to define
D and F (equations 12 and 13). In the following section, we will
study the consequences of breaking this degeneracy by simulating
models that have the same background parameters D and F, but
different b0.

An important characteristic of equation (26) is that the sign of the
coefficient ξ 0 depends in part on the sign of the second derivative of
the field. This means that at the moment in which the background
field transitions towards the non-linear regime described in previous
section (i.e. the moment in which its second derivative becomes
negative), the scalar field perturbations will be able to flip; their
usual distribution will thus be inverted and local minima of the field
will correspond to local minima in the density distribution. The
physical mechanism responsible for this phenomenon is related to
the fact that the term (1 + γ 2ρ)−1 in the Klein–Gordon equation
(equation 6) increases the efficiency of the damping term in low-
density regions. Thus, at the moment in which the damping term
grows to the point in which it can affect the evolution of the field, the
values in the haloes overshoot that of the voids and invert the sign of
the perturbations. Since the fifth force has an explicit dependence
on the potential V (and thus, on the scalar field itself), the flip in the
perturbations will have a direct impact on the distribution of forces
and the evolution of matter that is defined by it.
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Disformal quintessence 1873

Figure 3. Colour coded is the logarithmic slope of the solution of the background Klein–Gordon equation for the disformal model for different values of F in
an Einstein–de Sitter universe.

3.3 The fifth force

The acceleration of a test particle in scalar–tensor theories can
be found by studying the Jordan frame geodesics equations (Zu-
malacárregui et al. 2013; Hagala et al. 2016). In the weak field limit
of a general theory with a purely disformal coupling, the geodesic
equation for a non-relativistic test particle is given by

ẍ + 2H ẋ + (ζ · ẋ)∇φ + ∇	

a2
+ c4

2M2
P

ξ

gφ

∇φ

a2
= 0, (28)

where we have defined

gφ ≡ 1 − 2BX (29)

to simplify the notation and the 3-vector ζ is a function of derivatives
of φ. Equation (28) is equivalent to Newton’s second law, where
the acceleration of a body is proportional to the sum of forces
acting on it. The second term on the left-hand side of the equation
corresponds to a damping force induced by the expansion of the
Universe; the third term is second order and the last two correspond
to the Newtonian and fifth forces, which we define as

F	 ≡ −∇	

a2
, (30)

Fφ ≡ − c4

2M2
P

ξ

gφ

∇φ

a2
. (31)

These two force fields can be related to each other by taking into
account the connection that exists between the scalar field and the
metric perturbation discussed in the previous section. As the version
of that relation that does not rely on approximations applies to
the Laplacian of the fields (equation 24), it is convenient to study
the divergence of these force fields. Thus, by taking into account
definitions (30) and (31), and equation (24), we can write

∇ · Fφ = (1 − δd) η2∇ · F	, (32)

where the quantity

δd ≡ gφ

ξ 2∇ · F	

[
∇
(

ξ

gφ

)
· ∇φ + ξ

gφ

ε

]
(33)

is exactly zero in the background and we defined

η2 ≡ c2

2M2
P

ξ 2

gφ

. (34)

The sign of η2 depends exclusively on the sign of gφ , which
must be positive for the theory to be stable. This is because the
disformal transformation (equation 3) becomes singular when gφ =
0 (i.e. g̃μ

μ = 0 and thus, the metric becomes not invertible), so

this crossing must be avoided. Furthermore, Koivisto et al. (2012)
showed that the evolution of the field will naturally avoid this
singularity by progressively freezing the field before 2BX reaches
unity. We can therefore assume gφ > 0, which results in η2 being
positive.

Equation (32) can be integrated after evaluating the coefficient
(1 − dδ)η2 in the background, which is the same as we did in the
previous section when integrating equation (24) to connect the field
with the metric perturbations. The end result is

Fφ = η2
0 F	 + ∇ × k, (35)

where the curl field k is an integration constant (in the sense that its
divergence is zero) and we took into account that δd is equal to zero
in the background. The properties of ∇ × k are very well known in
the context of modified newtonian dynamics (MOND). In particular,
it has been shown that it is exactly zero for particular symmetries
and that behaves at least as r−3 for non-symmetric configurations
(Bekenstein & Milgrom 1984). Its effects in structure formation
(in the context of MOND, which deals with a universe without
dark matter) were studied in detail by Llinares, Knebe & Zhao
(2008) [additional results associated with this paper can be found
in Llinares (2011)].

The results described in this section and the previous one can be
used to define two different simulation methods that will depend
on two different approximations. First, it is possible to neglect
the effects induced by the term υ in equation (26). Assuming
also that ξ 0 is independent of the position (which we actually
did to derive that equation), we can discretise the space and
time derivatives that appear in the definition of the fifth force
(equation 31). Thus, the fifth force can be calculated as a linear
combination of values of φ in space and time. We will discuss in the
following section the impact that making these approximations has
in the estimation of the scalar field by comparing with exact results
obtained from cosmological simulations. A companion paper will
also contain a detailed estimation of how the error associated with
these approximations translates into the predictions of observable
quantities.

A different simulation approach that can be defined from these
results consists in neglecting the curl term in equation (35) to find a
relation between the Newtonian and fifth force fields. This second
case is equivalent to assume that all the gravitational effects can be
condensed in an effective gravitational constant Geff = G(1 + η2

0),
which is assumed to be independent of the position. Note that similar
approximations were discussed in Sakstein (2014) in the context of
Solar system tests.
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3.4 Achieving a repulsive fifth force

The presence of non-canonical kinetic terms in the definition of a
scalar tensor theory, can give rise to repulsive forces (Amendola
2004). Since disformal gravity fulfils this condition when written
in the Jordan frame, it may be worth investigating how repulsive
forces can be achieved in this model. The possibility of obtaining
repulsive fifth forces is not only interesting from a theoretical
perspective, but becomes relevant in the context of the discrepancy
found by the Planck collaboration between the normalization of
density perturbations σ 8 that can be inferred from the CMB and
from lensing (Planck Collaboration 2016b). Although the measured
discordance could be due to unknown biases or even statistical
fluctuations (Addison et al. 2016; Kitching et al. 2016; Couchot
et al. 2017), these results could also be a signal of new physics. A
repulsive MG force will delay clustering with respect to GR and
thus could help in reducing the tension.

The necessary condition for the fifth force to be opposite to
gravity can be obtained from the relation between these two force
fields provided by equation (35). However, since approximations
where made when deriving this equation, a more appropriate starting
point for this analysis is the divergence of this relation, for which
we present an exact expression in equation (32). This equation tells
us that the only way in which the divergence of the two force fields
can have different sign is by having

δd > 1. (36)

Since this quantity is equal to zero in the background, the disformal
fifth force is parallel to gravity at order zero. At first order in
perturbations of the field, δd takes the following form:

δd ∼
(
1 + γ 2ρ0

)
¨δφ + 3H ˙δφ + V0ν

2/M2
P δφ

ξ 2∇ · F	

, (37)

where we assumed β = 0 for simplicity. Since the sign of δd depends
on the sign of the perturbations, this quantity can certainly be
positive. It will also become larger than one at least in the specific
redshifts in which ξ changes sign and in regions where ∇ · F	

changes sign (i.e. in the transition between voids and overdense
regions). So we can be certain that repulsive forces do exist in
this model at least as a transient and in specific regions of space.
This result show that the approximations that we made to obtain
equation (35) from equation (32) may be important in specific
situations and thus cannot be taken by granted in general. This may
be important in particular because voids and their outer limits, where
∇ · F	 approaches zero, were discussed in several opportunities as
relevant probes of MG (Llinares 2011; Barreira et al. 2015; Cai,
Padilla & Li 2015; Voivodic et al. 2017; Falck et al. 2018).

An additional result that comes from equation (37) is that the
fifth force has an explicit dependence with the potential V, and
thus with the absolute value and sign of the perturbations. This
may be important since we showed in Section 3.2 that the scalar
field perturbations are proportional to the metric perturbations
(equation 26) and that they can flip following the sign of the
coefficient ξ 0. So the moment in which the field perturbations
flip, will be associated with a change in the amplitude of the fifth
force.

4 N- B O DY SI M U L AT I O N S

We summarize in this section technical aspects of the 3D cosmo-
logical simulations that we run to both confirm the results presented
above in a realistic set-up and quantify the impact that the fifth force

has in the matter distribution in the non-linear regime. This section
also describes in detail our motivation for choosing the particular
set of model parameters that we simulated.

4.1 Set-up of the simulations

The simulations were run with the MG N-body cosmological code
ISIS (Llinares, Mota & Winther 2014), which is based on the
particle mesh code RAMSES by Teyssier (2002). The code includes a
solver for the non-linear MG elliptic equations that can be obtained
after assuming the quasi-static approximation. However, since in
disformal gravity the time derivatives play a central role in both the
Klein–Gordon and geodesics equations (equations 6 and 28), the
validity of this approximation is not guaranteed. Thus, we made use
of the non-static solver of ISIS (Llinares & Mota 2014; Hagala et al.
2016), which relies on a non-linear hyperbolic solver that can take
into consideration time derivatives of the background and perturbed
fields.

To be consistent with the simulation code ISIS/RAMSES, we will
use the supercomoving time τ , which relates to cosmic time t
through dτ = dt/a2 (Martel & Shapiro 1998). We will denote
derivatives with respect to this new time with a prime. We will
also work with the following normalized scalar field

χ ≡ φ

Mpl
. (38)

The code variables associated with the time derivatives φ̇ and φ̈

are

q ≡ aχ ′, (39)

q ′ = a′χ ′ + aχ ′′. (40)

We performed N-body simulations with 2563 particles in a
cubic box with a comoving side length of 256 Mpc h−1. The
background cosmology is assumed to be the same for all the runs
and given by Planck 2015 best-fitting � cold dark matter (�CDM)
parameters (Planck Collaboration 2016a): (H0, ��, �m, σ 8) =
(67.74 km s−1 Mpc−1, 0.6911, 0.3089, 0.8159). The assumption
behind this selection for the background expansion is that the
energy of the scalar field is compatible with a cosmological constant
with the value required by observations. Thus, from the numerical
point of view, taking into account the energy of the scalar field is
equivalent to adding a cosmological constant. We note that not all
the models that we simulated possess this property. However, in this
paper, rather than finding the best-fitting disformal parameters, we
are interested in looking for new phenomenology that may provide
us with novel ways of looking at the data. This may potentially lead
to a detection of deviations from GR in the data, which does not
necessarily correspond exactly to the model studied here, but that
share observable signatures with it. Taking into account the energy
of the scalar field will complicate the analysis, but will not provide
additional information on the disformal effects associated with the
perturbations.

The initial conditions for the N-body particles were generated
assuming that the impact of the scalar field at high redshift is
negligible. Thus, all the simulations use the same initial conditions,
which were generated with the Zeldovich approximation with the
code GRAFIC2 (Bertschinger 2001). These sets of initial conditions
share not only the power spectrum, but also the phases. By doing
this, we ensure that differences found between the various simulated
models are induced by the presence of a fifth force and not the initial
particle distribution.
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Disformal quintessence 1875

Table 2. Model parameters used for the N-body runs. See Section 4 for explanation.

Model v0 ν b0 β D F v0ν Notes

GR – – – – – – – �CDM with Planck 2015 parameters
DDE 3.055 0.4 1 (−10, 0, 10) 0.65 (−25, 0, 25) 1.22 Correct amount of Disformal Dark Energy
Fiducial 1 1 1 0 1.3 0 1 –
VF 10 1 0.1 0 1.3 0 10 Velocity flips in less than a Hubble time
Steep 10−3 103 0.01 0 1.3 × 101 0 1 V is steep ⇒ fast transition to non-linear phase
FF 0.1 100 1 (−10, 0, 10) 1.3 × 103 (−0.1, 0, 0.1) 10 Field flips in less than a Hubble time

The codes RAMSES and quasi-static ISIS include adaptive mesh
refinements (AMR), which means that they can increase the resolu-
tion locally as required by the complexity of the solutions. However,
the non-static version of ISIS does not include this technique. Thus,
our analysis will only be valid up to the Nyquist frequency of
the domain grid which covers the whole simulation box and has
256 nodes per dimension. The three-dimensional particle data was
output at nine different snapshots, at z = 2.33, 1.00, 0.43, 0.25,
0.11, 0.081, 0.053, 0.026, and 0. In addition, the code outputs all
the available fields (density, metric perturbation, scalar field, and its
derivatives) in a two-dimensional slice that crosses the centre of the
box at 200 different points in time, ranging from z = 16 to z = 0.

4.2 Simulated models

Table 2 lists the model parameters that we chose for the simulations.
We also included the derived background parameters D and F
defined in Section 3.1 and the product v0ν which will be useful to
interpret results in the following sections. Note that the background
parameters D and F were original defined for an Einstein-de Sitter
universe, so they must be taken only as indicative. The slope of the
disformal coupling β is set to zero for all the runs except the models
Disformal Dark Energy (DDE) and Field Flipping (FF), for which
we made two additional runs with β = ±10. A brief explanation of
the motivation for each set of parameters follows.

In the Fiducial run, all three free parameters of the model are set
to one. These values give a background evolution that is very close
to that of the �CDM model. To confirm this, we also run the DDE
simulation with parameters that were specifically tuned to recover
the �CDM expansion rate. The parameters of this simulation are
such that the potential V(φ) gives the observed amount of Dark
Energy at redshift zero and at the same time stays within constraints
obtained in the linear regime by van de Bruck & Mifsud (2018).
We find that their upper limit for the coupling, B0 = (0.2 meV)4,

is equivalent to B0 ≈ 1/
(
H 2

0 M2
pl

)
in the units used in this work.

Consequently, using a dimensionless coupling b0 = O (1) will give
a model that is within the constraints given in that study. The
initial potential, v0 = 3.055, was found with a shooting algorithm,
following van de Bruck & Mifsud (2018). Combining this with
a small value for ν (i.e. a flat potential) results in V ∼ 3H 2

0 M2
pl

today, and hence gives rise to a dark energy component similar
to a cosmological constant. Most of the results that come out of
these two simulations (Fiducial and DDE) are similar. Thus, we
will show only results of the Fiducial run and point out differences
when needed.

The parameters of the FF and Velocity Flipping (VF) models
were chosen to present a broad spectrum of phenomenology. The
FF simulation enters the non-linear background phase discussed
in Section 3.1.2 before redshift zero. The analysis presented in
Section 3.2 shows that this will induce a flip in the scalar field

perturbations. Once this happens, the distribution of the field
perturbations will contradict the usual profile for a coupled scalar
field and will associate high-density regions with local maxima in
the field. In the VF case, a Hubble time is enough to get the flip
in the time derivative of the field, but not in the field itself. The
parameters of this model were chosen to study how the degeneracy
that exists between background parameters D and F can be broken
by looking at the perturbations in the fields. Thus, the simulation
shares the values of D and F with the Fiducial simulation, however,
it has a different value of b0.

The Steep model was run using parameters that correspond to a
steep potential V, and thus undergoes an early transition towards the
non-linear regime (i.e. corresponds to a small value Tc). The aim
of this simulation is to analyse the consequences of a field that is
active only at high redshift and is damped afterwards.

5 SIMULATION R ESULTS: PRO PERTIES O F
THE FI ELDS

We discuss in this section several aspects of the distribution of
the simulated fields as well as a comparison with the analytic
estimations presented in Section 3.

5.1 Background evolution of scalar field

Given that the simulations track the scalar field χ rather than its
perturbations δχ on a background χ0, it is worth asking if the mean
value of the simulated scalar field agrees with the background value
that can be calculated, for instance, with a Runge–Kutta solver. We
show such a comparison in Fig. 4. The lines in the left and right
panels are Runge–Kutta solutions for the background scalar field
and its time derivative respectively. The points are the mean values
obtained from the N-body simulations in slices that pass through the
centre of the box. The abrupt decline towards zero at high redshift
is related to the fact that the initial conditions are not given at a =
0, but at the starting redshift of the simulations, when we assumed
that the field is equal to zero. Both solutions agree very well, which
is a confirmation of a reliability of the code.

5.2 Qualitative behaviour of scalar field perturbations

Fig. 5 shows the time evolution of scalar field perturbations as found
in 2D slices that pass through the centre of the 3D box. Different
rows correspond to different redshifts (shown to the left of the
colour bar). The first column shows the density distribution, while
the other four correspond to the perturbation in the scalar field. In
this section we are only interested in a qualitative description of the
effects associated with the disformal coupling, thus we normalized
the perturbations with the maximum value reached in each model
separately. When using this normalization, the perturbations lie
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1876 C. Llinares, R. Hagala and D. F. Mota

Figure 4. Background evolution of the scalar field (left) and its time derivative (right) for the simulated models as a function of the expansion factor a.
The continuous curves are Runge–Kutta solutions of the order zero Klein–Gordon equation and the points are the mean values obtained from the non-linear
simulations in slices that pass through the centre of the box. Results of the DDE run are very similar to those of the Fiducial run, so we exclude them to avoid
overcrowding the plots.

always between minus one and one. A quantitative description will
be presented in following sections. Since the Fiducial and DDE
models have almost identical evolution, we show only one of these
two models.

The panels show that scalar field perturbations can do more that
simply grow with time as happens in other scalar tensor theories.
The only model that has a monotonic growth of perturbations is the
Fiducial one. In the VF model, the perturbations grow until redshift
of about z = 0.82 and then wash out until being completely absent
at redshift z = 0. In the Steep model, the perturbations grow very
rapidly at early times, reaching their maximum at z ∼ 5. Then the
field flips, developing maxima in the position of the haloes and
minima in the voids. After the flip occurs, the perturbations washed
out as happened in the VF model. Finally, the FF model has a
behaviour which is similar to the Steep model: a maximum of the
perturbations at z ∼ 1.38, followed by a flip at z ∼ 0.48. In this
particular case, the perturbations continue being almost constant
until z = 0.

The solutions shown in these panels seem very complex, but can
be easily explained with the relation between the scalar field φ

and the gravitational potential 	 that we discussed in Section 3.2
(equation 26). Assuming that the integration constant υ in that
equation is zero, we find that both fields are related through the
parameter ξ 0, whose time dependence is shown in Fig. 6 for the
same models presented in Fig. 5. Two pairs of models have identical
behaviour at high redshift. This has the consequence that the early
evolution of ξ 0:1

ξ0(t  1) = 3MpH 2
0

c2
t2

[
v0ν

4
+ MP H 4

0

85

v2
0ν

2β

b0
t4

]
exp(βφ0/Mp)

(41)

depends on the product v0ν, which is the same for the two pairs
of models (Fiducial, Steep) and (VF, FF) (see specific values in
Table 2). This degeneracy is broken at later times, and thus models
that agreed at high redshift depart from each other later on. The
reason for this degeneracy to be absent in different columns of
Fig. 5 is that the normalization chosen for these panels is different

1We derived this special case by taking into account the early redshift
solution (equation A5) together with the definitions provided in Section 3.1
and the definition of ξ0.

for different models. Finally, Fig. 6 also shows that ξ 0 becomes
larger for smaller values of b0. This may seem to contradict the fact
that the solutions provided in Section 3, which depend only on D,
are independent of b0. However, one must take into account that
there is an additional factor b0 in the definition of t̃ used in that
section.

Comparison of Figs 5 and 6 unveils the close relation that exists
between the evolution of the perturbations and ξ 0. The maxima in
the perturbations agree with the maxima in ξ 0. Also the moment in
which the flips occur in the field agree with the change in the sign
of ξ 0.

The fact that the scalar field perturbations shown in Fig. 5 go back
and forth in the FF simulation may open the question of the possi-
bility of obtaining sustained oscillations in the field perturbations.
However, these changes in the perturbations are associated with
transitions between different regimes in the background evolution
of the field, which are condensed in the evolution of ξ 0. The analysis
presented in Section 3.1 shows that after the second oscillation
occurred, the perturbations cannot do more than to approach zero.

5.3 Testing analytic predictions for field perturbations

A more quantitative comparison between the scalar field that
we extracted from the self-consistent N-body simulations and
the predictions that we can obtain by assuming that υ = 0 in
equation (26) is shown in Fig. 7. The blue curves are the maximum
relative difference between these two fields as found in 2D slices
that pass through the centre of the box and as a function of redshift.
Different panels correspond to different simulations. The fields that
we used for this comparison are the fully non-linear scalar field
φ and the solution of the Poisson’s equation 	 that are used to
calculate the forces while the simulations run. In other words, these
are the most accurate fields (φ and 	) that we have at hand. The
plots show that there is a very good agreement between the exact
field provided by the simulations and our prediction: differences are
below 0.1 per cent at all times after z = 1. The larger differences
that occur at high redshift are related to the fact that we did not
take into account perturbations of the scalar field in the initial
conditions for the simulations (instead, we approximated them
by zero). Thus, there is a transient in which the field evolves
from zero to a field that has a power spectrum compatible with
equation (26).
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Disformal quintessence 1877

Figure 5. The first column shows the evolution of the density distribution. The rest of the columns show the time evolution of scalar field perturbations for
different models. The colours correspond to the scalar field perturbations normalized to the maximum reached in each model, which means that the values go
from −1 (dark blue) to +1 (dark red). The scaling of the colours is symmetric-log. The numbers next to the colour bar correspond to the redshift of each row.
For reasons of space, we show only the bottom half of each slide.
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1878 C. Llinares, R. Hagala and D. F. Mota

Figure 6. Time evolution of the coefficient ξ0 that relates metric pertur-
bations 	 with the scalar field χ (equation 26) for the simulated models.
The DDE model is similar to the Fiducial one, and thus not shown to avoid
overcrowding the plot. The sharp transitions between positive and negative
values are produced by the symlog scaling that we used for the vertical axis.
See Section 5.2 for explanation.

Figure 7. The blue curves correspond to the maximum relative difference
between the scalar field values obtained from the N-body simulations and
the ones we obtained from the gravitational potential by assuming υ is
zero in equation (26). The gravitational potential was obtained by solving
Poisson’s equation with the same solver that was used to run the simulations.
The orange curves are the maximum ratio between the fifth force F	 and
gravity Fφ . By comparing blue and orange curves, we can confirm that the
times where the relative error associated with the approximation is large, the
force is small and thus, no measurable effect should appear in the density
distribution. We show results from 2D slices that pass through the centre of
the 3D box. See Section 5.3 for explanation.

These high-redshift differences can be reduced by choosing more
accurate initial conditions (for instance, generated as a realization
of a linear power spectrum). However, given that they occur at
a moment in the history of the Universe when the fifth force is
negligible, is it likely that they will not affect the matter distribution.
We confirmed this by plotting the maximum ratio between the
fifth force Fφ and gravity F	 on the 2D slices as a function of
time (orange curves in Fig. 7). As expected, the fifth force is

sub-dominant at high redshift. By the moment in which the fifth
force goes above 1 per cent of the Newtonian force, the error in
our prediction of the scalar field is already below 0.1 per cent and
continues decreasing from there.

The good agreement that we found between exact and approx-
imate solutions shows that it does make sense to run disformal
gravity cosmological simulations by using equation (26) instead of
a hyperbolic solver (as described at the end of Section 3.2). This
will largely reduce the overhead associated with the MG solver and
will make disformal simulations competitive in terms of speed. The
impact of this approximation in the predicted power spectrum of
density perturbations will be presented in a companion paper.

5.4 Direction of the fifth force

In Section 3.4, we discussed a sufficient condition for the presence of
repulsive fifth forces (i.e. opposite to gravity), which is condensed
in equations (36) and (37). Given that our simulations track the
evolution of the scalar field without making any approximations or
simplifications in the equations, it is possible to use the simulated
force field to confirm if repulsive forces do exist in a realistic set-
up. Fig. 8 shows the cosine of the angle between the Newtonian
and fifth forces in the same slices and for the same redshifts and
simulations we presented in Fig. 5. Dark red and blue correspond
to parallel and antiparallel forces and the numbers to the left of the
colour bar make reference to the redshift of each slice.

The panels show that all the simulations produce repulsive forces
at high redshift, however these occur during the warm up phase of
the simulation in which the scalar field transitions from the initial
condition (φ = 0) to a distribution that is consistent with the density
field (see discussion in the previous section). Moving forward in
time, we see that repulsive forces appear only at specific redshifts.
These redshift values are consistent with the discussion presented
in Section 3.4, where we found that repulsive forces will occur in
the zeros of the function ξ 0. This is confirmed in Fig. 9, where we
show the fifthpercentile of the distribution of the angle between the
forces as a function of scale factor for the 2D slices. The vertical
arrows are the zeros of ξ 0, which are consistent with the moments
in which the forces become antiparallel.

6 SI MULATI ON R ESULTS: IMPAC T O F T H E
F I F T H FO R C E O N T H E MATT E R
DI STRI BU TI ON

We describe now the effects that the presence of the fifth force has
on the distribution of matter. We do this by studying differences
between the power spectrum of dark matter density perturbations
of the GR and MG simulations. We do firstly the analysis for the
models that have β = 0 and discuss a posteriori the differences
induced by adding a dependence of the coupling with the scalar
field through β.

6.1 Power spectrum of models with β = 0

Fig. 10 shows the time evolution of the relative difference between
the MG and GR power spectra for the models that have a constant
disformal coupling (i.e. with β = 0). Different panels correspond
to the different models that we simulated and different lines within
each panel to different redshifts. In the Steep run, the evolution is
very close to GR, and thus we multiplied these curves by 104. As
the curves have positive and negative values, we show their absolute
values and highlight the negative parts with dotted lines.
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Disformal quintessence 1879

Figure 8. Cosine of the angle between Newtonian and fifth force as a function of time and simulated model. Dark red and blue correspond to force fields that
are parallel or antiparallel, respectively. The numbers to the left of the colour bar correspond to the redshift of each row.
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Figure 9. Percentile five of the distribution of the cosine of the angle
between the Newtonian and fifth force as found in the 2D slides of our 3D
simulations. We show only the models for which we expect repulsive forces
associated with the zeros of ξ0: VF, FF, and Steep. The vertical arrows show
the zeros of ξ0 for these models.

The models can be divided in two different categories: those in
which the fifth force produces a monotonic increase of power with
respect to GR (models DDE and Fiducial) and those that have a
monotonic increase until some specific redshift and then continue
increasing at large scales, but have a slower evolution than GR at
small scales (models FF, VF, and Steep).

Some insight on the phenomenology associated with these curves
can be gained by comparing the amplitude of the fifth force with
the gravitational force. By assuming that δd is second order in
equation (32), we can obtain equation (35). If we further assume
∇ × k  1, we find that the amplitude of the fifth force for a
particular set of parameters depends exclusively on the background
quantity η2

0, which we show in Fig. 11 for all the simulated models
as a function of the expansion factor a. Since the values of the
DDE run are very close to those of the Fiducial run, we excluded
them from this plot. The discontinuities in the derivatives of these
curves are not real, but related to the log scaling of the vertical axis.
However, these discontinuities do have a physical meaning, since
they occur at moments when the parameter ξ 0 changes sign (see
Fig. 6).

From these curves, we can see that the pairs of models
M1 = (Fiducial, Steep) and M2 = (VF, FF) have identical forces
at high redshift and so it is expected that their early-time evolution
will be identical. The fact that η2

0 of the models M2 is more than two
orders of magnitude larger than that of the modes M1 is responsible
for the large differences found in Fig. 10: models M2 have a much
faster evolution, reaching differences with respect to GR of more
than 10 per cent at large scales. Note that the model FF has a
smaller coupling constant than the Fiducial model. Naively, one
will expect that a smaller coupling constant will be associated with
a slower evolution, however, the particulars of the definition of η2

0

(in particular, the functions ξ and gφ) give stronger forces in the FF
case.

Comparison between the Steep and Fiducial values of η2
0 show

that even if both models share the same force fields at high redshift,
they depart from each other later on. In the Steep simulation, the
forces stay always close to zero and thus differences in the power
spectrum with respect to GR are minimal.

Fig. 11 can also help us understand why the power spectrum of
the MG simulations goes below the GR values at low redshifts. In
particular, it is possible to see that the moment in which (PMG −
PGR)/PGR starts moving back to zero corresponds to the moment in
which η2

0 starts decreasing and approaches zero. Also, this change in
the behaviour of the power spectrum occurs at small scales, where
the structure of the haloes dominates the signal. These facts are
consistent with a decrease of power in MG simulations induced by
an expansion of the haloes when the fifth force disappears and the
kinetic energy of the dark matter particles dominates.

Finally, we would like to point out that late evolution of the
models DDE and Fiducial is almost scale independent. After an
initial shape is given to the difference between MG and GR, that
shape is almost conserved later on. Departure from scale invariance
evolution of these curves occurs close to the Nyquist frequency of
the simulations, and thus higher resolution simulations should be
run in order to confirm this result.

Note that our analysis based on η2
0 does not take into account

the back-reaction that the presence of the fifth force has on the
metric perturbations (through changes in the density distribution).
However, this effect was taken into account in the simulations,
which are fully self-consistent.

6.2 Response of the power spectrum to changes in β

In this section, we discuss the impact that the parameter β, which
determines the slope of the disformal coupling, has on the power
spectrum of density perturbations. Fig. 12 shows a comparison
between simulations that were run with β = 0 and β = ±10.
The left-hand and right-hand panels correspond to the base models
DDE and FF, respectively. Continuous and dotted lines correspond
to positive and negative values of β.

The left-hand panel shows that allowing β to be different than zero
in the DDE model has a monotonic effect with frequency. Positive
values of β force the coupling to go up with the value of the field
(see equation 4), which in turn increases the power with respect
to the base model defined by β = 0. As in this model, the power
increases with respect to GR, the net effect is a faster evolution
with respect to GR. The opposite happens when β is negative: the
coupling decreases as the field rolls down the potential, and thus
reduces the impact of MG in the power spectrum. This decrease
in power is relevant when it comes to use perturbations to further
constrain the parameter space of this model. In the previous section,
we showed that even if the DDE model is compatible with CMB
observations (van de Bruck & Mifsud 2018) it gives an increase in
the power spectrum of about 10 per cent at k ∼ 3 h Mpc−1, which
might be too large for it to be compatible with galaxy surveys.
This being a problem or not will naturally depend on the galaxy
formation model used to connect these predictions with the actual
distribution of galaxies. In case this is indeed a problem, we show
here that it can be alleviated by choosing negative values for β.
In fact, the relative difference between the simulation that was run
with β = −10 and β = 0 at the Nyquist frequency is of the same
order than the effect that the base model with β = 0 has with respect
to GR and thus can reduce the MG effects by a factor of about 2.

The effects of β in the FF model are more complex. A positive
coupling constant β has the same effect in the power spectrum as in
the DDE model at large scales (i.e. it induces an increase in power).
However, at small scales, the impact of MG in the power spectrum
decreases with respect to the base model with β = 0. Note that the
same happens when comparing the base model with GR, however
the transition between positive and negative MG effects occurs at
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Figure 10. Relative difference between MG and GR dark matter power spectrum from all the simulations. The values obtained from the Steep simulation are
much smaller than the scale used for the other models, and thus we multiplied them by 104 for presentation purposes only.

Figure 11. Time evolution of the dimensionless coefficient η2 that relates
Newtonian and fifth force fields when calculated with background quantities
for the simulated models. The DDE model is similar to the Fiducial one and
thus, is not shown to avoid overcrowding the plot. The discontinuities in the
derivatives are not real, but produced by the log scaling.

different frequency k. The net effect of assuming positive β is to
increase even more the power with respect to GR at large scales and
reduce it at small scales. The opposite occurs when β is assumed
to be negative: there is a reduction of power at large scales and an
increase at small scales. As in the DDE case, allowing β to move
away from zero may help in reducing the problem that we found in
previous section with excessive increase in power at large scales.
However, in this case, the effects of β are one order of magnitude
below the effect produced by the base model with β = 0 and thus,

including β cannot save the model (at least not with the parameter
we choose, which is equal to −10).

7 C O N C L U S I O N S

We studied new phenomenology that arises when adding a disformal
coupling to a very simple and well-known extension to general
relativity (GR) such as the quintessence model. The paper is
divided in two main parts. We first discuss analytical properties
of the solutions of the field equation for the background as well
as the perturbations. In the second part, we present cosmological
non-linear simulations that we run with the code ISIS (Llinares
et al. 2014), which is based on the particle mesh code RAMSES

(Teyssier 2002). We use the simulated data to show how our analytic
predictions perform in realistic situations associated with the non-
linear regime of cosmological evolution.

We start by describing background solutions of the Klein–Gordon
equation for an Einstein–de Sitter cosmology. We found that the
shape of the solution depends on only two parameters D and F (see
equations 12 and 13), which are combinations of the original four
free parameters (V0, ν, B0, and β). In the case F = 0, we identified
three different characteristic time scales (shown in Table 1 and
Fig. 2), which determine the structure of the solution. These scales
consist in a transition between a disformal regime and a quintessence
regime and a transition between these two regimes and a non-linear
regime that occurs when the fields grow to the point that it is not
possible to linearize the potential V. Assuming F �= 0 changes the
definition of these time scales for F > 0 and induces an instability
in the case F < 0, for which we provide a condition on its associated
time-scale.

The first part of the paper also deals with analytic properties
of the perturbed Klein–Gordon equation. In particular, we show
that there is an approximate proportionality relation between the
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Figure 12. Relative difference between dark matter power spectra of simulations with β equal and different than zero. The left-hand and right-hand panels
correspond to the DDE and FF models, respectively. Different colours are different redshifts and different line styles correspond to simulations run with β =
−10 and β = 10. The sharp transition between positive and negative values in the right-hand panel is generated by the symlog scaling that we use to be able to
plot positive and negative values.

perturbed scalar field and the scalar perturbations of the metric. The
relation can be simplified by substituting the fields that constitute
the proportionality factor with background quantities. By analysing
the modified geodesics equation, we also show that a similar relation
exists between the Newtonian force and the fifth force that arises
from the scalar field. We close the analytic section by discussing
the conditions under which the fifth force can be repulsive. This is
relevant in the context of the tension that is known to exist between
measurements of the normalization of density perturbations in the
universe using high and low-redshift data sets (Addison et al. 2016;
Kitching et al. 2016; Planck Collaboration 2016b; Couchot et al.
2017).

In the second part of the paper, we first used our N-body
simulations to study properties of the field distribution. Very good
agreement was found between the exact solution obtained by the
non-linear hyperbolic solver of the cosmological code (which can
solve the equation without relying on any assumptions or approxi-
mations) and the prediction obtained following the proportionality
relation with the metric perturbations. This shows that, although
the model is very complex, it can be simulated with a very simple
algorithm based on the solution of the Poisson’s equation, which
exists in any standard gravity cosmological code. We will present in
a companion paper a detailed analysis of the accuracy with which
the method can predict the evolution of matter.

An additional result associated with the simulated fields is that the
perturbations do not grow monotonically with time, but can undergo
oscillations. Combining these results with our analytic results,
we show that these oscillations cannot be sustained, but that field
perturbations can have at most one maximum and one minimum
and that ultimately will decrease towards zero. The time-scale for
these oscillations naturally depends on the model parameters.

Our simulations also show that the repulsive forces that we
predicted analytically do emerge in realistic situations. We found
that depending on the model parameters, repulsive forces can appear
as transients that occur only at specific redshifts or be sustained
in time. In both cases, the existence of forces is related with the

zeros of the function ξ 0, which connects metric and scalar field
perturbations.

It is worth mentioning that repulsive forces may arise in lab-
oratory experiments aimed to the detection of fifth forces (e.g.
Burrage, Copeland & Hinds 2015; Brax & Davis 2016; Burrage &
Copeland 2016; Burrage, Copeland & Stevenson 2016a; Burrage
et al. 2016b; Jaffe et al. 2017; Llinares & Brax 2019). Since these
effects are encoded in the term ∇ × k defined in equation (35)
and this term is exactly zero in spherical symmetry, a spherically
symmetric experiment will not give rise to repulsive forces. More
complex matter distributions are needed to give the desired effect.
In other words, the presence of repulsive forces (which are opposite
to gravity independently of the force that is associated with the walls
of the experiment) can be tested by comparing results obtained with
different distributions of matter (e.g. spherical versus cubic). Note
that this reasoning can be done only after evaluating the coefficient
(1 − δd)η2 in the background (see derivation of equation 32).
Relaxing this assumption may give additional mechanisms for the
realization of repulsive forces.

We complete the analysis of our simulations by studying how
the fifth force that arises from the scalar field affects the matter
distribution. In particular, we focus on the power spectrum of density
perturbations. For the models that have β = 0 (i.e. a constant
disformal coupling), we show that models with weak coupling
produce an increase of power at small scales, which is almost scale
invariant at late times. Models with larger coupling have an early
increase in power, which is followed by a decrease. In these cases,
the fifth force is such that it reduces the clustering with respect to
GR. We also studied the impact of β in the density perturbations.
We found that positive or negative β, increase or decrease the effects
of the fifth force at all scales.

Only one of all the simulated models (the DDE model) provides a
background cosmology that is consistent with CMB data. However,
the aim of this work is not to provide best parameters, but to highlight
new phenomenology. The effects that we describe here may also
appear in similar models which may be consistent with background
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data for different sets of parameters. In other words, it may be
possible to build models with effects similar to those discussed here
and that at the same time provide a background that is consistent
with data.
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APPENDI X A : A SYMPTOTI C SOLUTI ONS FO R
BAC K G RO U N D F I E L D S FO R A N E I N S T E I N – D E
SITTER UNIVERSE

Tables A1 and A2 summarize solutions of the Klein–Gordon
equation described in Sections 3.1.1 and 3.1.2. These are solutions
for the limits (D, F) → 0 (Table A1) and F → 0 (Table A2) for
small and large values of the field and with and without including
the damping term in the equation.
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Table A1. General properties of background solutions of the quintessence model. See Section 3.1.1 for explanation.

Q1. Quintessence, linear (χ̃ << 1), without damping:

∂2
t̃
χ̃ = 1 ⇒ χ̃ = t̃2

2
(A1)

The equation of motion is linear; its solution is a power law.

Q2. Quintessence, linear (χ̃ << 1), with damping:

∂2
t̃
χ̃ = − 2

t̃
∂t̃ χ̃ + 1 ⇒ χ̃ = t̃2

6
(A2)

The damping term is present at all times and changes only the normalization of the solution (not the slope).

Q3. Quintessence, non-linear (χ̃ ∼ 1), without damping:

∂2
t̃
χ̃ = exp(−χ̃) ⇒ χ̃ = log

[
cosh2

(
t̃√
2

)]
∼

{
t̃2/2 if t̃ � T nd

a ,
√

2t̃ if t̃ � T nd
a

(A3)

Taking into account the exponential definition of the potential gives a non-linearity to the equation that is active only for large enough values of
χ̃ . This non-linearity is negligible at early times and thus, the solutions behave as the linear solutions Q1 and Q2. At late times, the force
responsible for the evolution of the field decreases with time, giving a different slope to the solution. The transition time T nd

a between the linear
and non-linear regimes can be calculated as the moment in which the two asymptotes of the solution cross each other.

Q4. Quintessence, non-linear (χ̃ ∼ 1), with damping:

∂2
t̃
χ̃ = − 2

t̃
∂t̃ χ̃ + exp(−χ̃) ⇒ χ̃ ∼

{
t̃2/6 if t̃ � Ta,

log
(
t̃2/2

)
if t̃ � Ta (this is an exact solution)

(A4)

A combination of the presence of the damping term and the reduction of the potential with time changes the slope of the solution in the
non-linear regime, which becomes logarithmic at large times. This changes slightly the transition time Ta, which we estimated numerically as
the moment in which the logarithmic slope of the solution is the mean of the two asymptotes. Note that the transition between linear and
non-linear regimes and undamped and damped regimes occurs approximately at the same time.
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Table A2. General properties of background solutions of models with conformal coupling.

D1. Disformal, β = 0, linear (χ << 1), without damping:

∂2
t̃
χ̃ = t̃2

t̃2 + D
⇒ χ̃ = t̃2

2

[
1 − 2

√
D

t̃
tan−1

(
t̃√
D

)
+ D

t̃2
log

(
t̃2 + D

D

)]
∼

{
t̃4/(12D) if t̃ � T nd

b ,

t̃2/2 if t̃ � T nd
b

(A5)

The disformal coupling gives a time dependence to the term associated with the external force, which is such that it approaches zero at early
times. This changes the logarithmic slope of the solution with respect to the equivalent solution of the quintessence model (model Q1 in
Table A1) at early times. At late times, the time dependence approaches a constant and thus, the evolution of the field is as in the quintessence
model Q1. The transition time T nd

b can be estimated as the moment where the two asymptotes cross each other.

D2. Disformal, β = 0, linear (χ << 1), with damping:

∂2
t̃
χ̃ = −2

t̃

t̃2 + D
∂t̃ χ̃ + t̃2

t̃2 + D
⇒ χ̃ = t̃2

6

[
1 − D

t̃2
log

(
t̃2 + D

D

)]
∼

{
t̃4/(12D) if t̃ � Tb,

t̃2/6 if t̃ � Tb

(A6)

The damping term of the disformal equation differs with respect to the one we find in the quintessence case (model Q2 in Table A1) in that it
approaches zero at early times. Thus, the early time solution is not affected by the presence of this term (i.e. it is a power law with a logarithmic
slope equal to four as in D1). At late times, the solution switches to the solution for the quintessence model that includes damping (model Q2).
The transition occurs at a slightly earlier time Tb.

D3. Disformal, β = 0, non-linear (χ ∼ 1), without damping:

∂2
t̃
χ̃ = t̃2

t̃2 + D
exp (−χ̃) ⇒⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

D  1(
T nd

c � T nd
b

) ⇒ χ ∼
⎧⎨
⎩

t̃4/(12D) if t̃ � T nd
b

t̃2/2 if T nd
b � t̃ � T nd

a√
2t̃ if t̃ � T nd

a

D � 1(
T nd

c � T nd
b

) ⇒ χ ∼ 3[e−t̃4/(12D) − 1] − 33/4

√
2D1/4

�

[
3/4,

t̃4

12D
, 0

]
t̃ ∼

⎧⎨
⎩

t̃4/(12D) if t̃ � T nd
c

33/4�(3/4)√
2D1/4 t̃ if t̃ � T nd

c

(A7)

For D  1, the equation can be linearized with respect to D and becomes a perturbed quintessence equation: ∂2
t̃
χ̃ = (

1 − D/t̃2
)

exp (−χ ).
Since the disformal effects are a perturbation, the transition to the quintessence regime occurs before anything else happens. Thus, the solution
transitions first from the linear disformal to the linear quintessence regimes at T nd

b (as in solution D1) and then towards the non-linear
quintessence regime at T nd

a (as in solution Q3).
For D � 1, the transition towards the non-linear regime occurs before the transition to the quintessence regime. We can obtain a good
approximation of the solution by linearizing the equation with respect to time and substituting the early time solution in the exponential function
{i.e. by solving ∂2

t̃
χ̃ = t̃2 exp

[−t̃4/(12D)
]
}. After the transition to the non-linear regime occurred, the field behaves as a free particle and thus,

no more transitions occur.

D4. Disformal, β = 0, non-linear (χ ∼ 1), with damping:

∂2
t̃
χ̃ = t̃2

t̃2 + D
exp(−χ̃) ⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D  1(
Tc � Tb

) ⇒ χ ∼
⎧⎨
⎩

t̃4/(12D) if t̃ � Tb

t̃2/6 if Tb � t̃ � Ta

log
(
t̃2/2

)
if t̃ � Ta

D � 1(
Tc � Tb

) ⇒ χ ∼

⎧⎪⎪⎨
⎪⎪⎩

t̃4/(12D) if t̃ � Tc

33/4�(3/4)√
2D1/4

t̃ if Tc � t̃ � Tb

log(t̃2/2) + 35/4�(3/4)D1/4 if t̃ � Tb

(A8)

For D  1, the solution has a quick transition towards the linear quintessence regime as in D3. Since damping was taken into account in these
solutions, the transition is towards Q4 instead of Q3.
For D � 1, we have again (as in D3) that the transition towards the non-linear regime occurs before the transition to the quintessence regime.
The transition can be obtained by patching solutions of the different regimes, but taking into account that damping affects the quintessence
regime at large t̃ and adding an appropriate constant to ensure continuity at Tc.

A P P E N D I X B: N O N - E D S BAC K G RO U N D
S O L U T I O N S

We discussed in Section 3.1 solutions of the Klein–Gordon for an
Einstein–de Sitter universe (i.e. a flat universe with �m = 1). This

simplification in the energy content of the Universe enabled us to
obtain analytic solutions for several models from which general
properties can be understood. In the more realistic case, in which
the energy of the scalar field is taken into account, the solutions are
far more complex. An example of these solutions is presented in
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Figure B1. Colour coded is the logarithmic slope of the solution of the background Klein–Gordon equation for the disformal model with β = 0 and three
different models for the background expansion: Einstein–de Sitter, �CDM (with a cosmological constant) and disformal model with ν = 100. The EDS model
is the same as shown in Fig. 2, with the difference that here we used expansion factor as independent variable and thus, the exact values of the slopes are
different.

Fig. B1, were we show colour coded the logarithmic slope of the
scalar field

d log χ̃

d log a
= a

χ̃da/dt̃

dχ̃

dt̃
(B1)

as a function of expansion factor and the free parameter D for three
different models.

The model presented in the left-hand panel assumes the back-
ground metric is EDS. The solutions are the same that we presented
in Fig. 2; although here we show derivatives with respect to log (a)
instead of time and thus, the exact numbers of the slope in different
regimes are different. The central panel shows the result of assuming
a �CDM background. The presence of a dark energy component
changes the behaviour of the model for large values of D: instead
of a transition to the disformal non-linear regime (see Fig. 2 for
nomenclature), we have a transition to the quintessence linear
regime, which occurs at values of a that are independent of D.
The right-hand panel shows an example of the complete solution,
in which the energy of the scalar field is included in the Friedmann
equations (which results in additional terms in the equation for the
density parameter �m). Here, the new transition that occurred at
large values of D in the previous case is not only delayed, but also
has a complex dependence with D. Different solutions occur for
different values of ν.

A complete analysis of the fully self-consistent background
evolution is beyond the scope of this paper. In order to simplify
the work of those who want to move forward in the understanding
of these solutions, we provide the complete set of equations that
need to be solved in convenient variables for the case β = 0:

∂2
t̃ χ̃ = 1

1 + 3
4 D�̃m

[−3H̃ ∂t̃ χ̃ + exp(−χ̃)] (B2)

∂t̃ �̃m = −3H̃ �̃m − D

ν2

∂t̃ χ̃

1 + 3
4 D�̃m

[
3H̃ ∂t̃ χ̃ − exp(−χ̃)

]
�̃m

(B3)

H̃ 2 = �̃m + 1

3ν2

[
∂t̃ χ̃

2
+ exp(−χ̃)

]
, (B4)

where we used a renormalized density parameter:

�̃m ≡ �m

v0ν2
. (B5)

The equation of motion for this quantity (equation B3) can be
obtained by combining equation (B4) (i.e. the component 00 of
the background Einstein’s equations) and the ii equation:

H 2 − ä

a
= − 1

M2
P

[
φ̇2

2
− V (φ)

]
. (B6)

The equations can be further simplified by defining q ≡ ∂t̃ χ̃ and
using u = ln a instead of t̃ as integration variable:

∂uχ̃ = q

H̃
(B7)

∂uq = 1

1 + 3
4 D�̃m

[
−3q + exp(−χ̃)

H̃

]
(B8)

∂u�̃m = −3�̃m − D

ν2

q�̃m

1 + 3
4 D�̃m

[
3q − exp(−χ̃ )

H̃

]
(B9)

H̃ 2 = �̃m + 1

3ν2

[
q2

2
+ exp(−χ̃)

]
. (B10)

The initial conditions for the scalar field and its derivative are
defined as equal to zero at very high redshift. To define the initial
condition for �̃m, it is possible to use a shooting method, and force
the solution to be equal to 0.3 (approximately the �CDM value) at
a = 1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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