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Abstract 9 

Climate change is expected to alter European floods and associated economic losses in various ways. 10 
Here we investigate the impact of precipitation change on European average winter and summer financial 11 
losses due to flooding under a 1.5°C warming scenario (reflecting a projected climate in the year 2115 12 
according to RCP2.6) and for a counterfactual current-climate scenario where the climate has evolved 13 
without anthropogenic influence (reflecting a climate corresponding to pre-industrial conditions). Climate 14 
scenarios were generated with the Community Atmospheric Model (CAM) version 5. For each scenario, 15 
we derive a set of weights that when applied to the current climate’s precipitation results in a climatology 16 
that approximates that of the scenario. We apply the weights to annual losses from a well-calibrated (to 17 
the current climate) flood loss model that spans 50,000 years and re-compute the average annual loss to 18 
assess the impact of precipitation changes induced by anthropogenic climate change. The method relies 19 
on a large stochastic set of physically based flood model simulations and allows quick assessment of 20 
potential loss changes due to change in precipitation based on two statistics, namely total precipitation, 21 
and total precipitation of very wet days (here defined as the total precipitation of days above the 95th 22 
percentile of daily precipitation). We compute the statistics with the raw CAM precipitation and bias-23 
corrected precipitation. Our results show that for both raw and bias-corrected statistics i) average flood 24 
loss in Europe generally tend to increase in winter and decrease in summer for the future scenario, and 25 
consistent with that change we also show that ii) average flood loss have increased (decreased) for 26 
winter (summer) from pre-industrial conditions to the current day. The magnitude of the change varies 27 
among scenarios and statistics chosen. 28 
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1. Introduction 38 

Inland flooding in Europe and worldwide affects the life of millions and causes large economic losses 39 
(Guha-Sapir et al., 2017). The number of severe flood events in Europe has increased over the last 35 40 
years and more than 1500 flood events have been registered in Europe since 1980, half of which 41 
occurred after the year 2000 (EEA, 2017). In the future this trend is expected to continue because of 42 
changes in land use, socio-economic factors and the potential impacts of climatic changes induced by 43 
anthropogenic greenhouse gas emissions (Winsemius et al., 2015). Changes in precipitation patterns and 44 
their extremes under global warming are expected to be one of the major drivers in future flood risk; the 45 
impact of temperature changes on precipitation has been the subject of many scientific contributions over 46 
the last decade leading to a deeper understanding of the mechanisms through which a warmer 47 
atmosphere can lead to changes in the rainfall distribution (Pfahl et al., 2017; O’Gorman and Schneider, 48 
2009; Allan, 2011; Haerter et al., 2010). Specifically, Pfahl et al. (2017) have shown how the response of 49 
extreme rainfall in the presence of temperature changes shows strong spatial variability due to energy 50 
availability in the atmosphere. Although it is widely accepted that precipitation and its extremes are likely 51 
to increase in a warmer world, the same is not true for flood frequency and magnitude. Several studies 52 
have explored long term river flow data sets to identify potential climate change trends showing how the 53 
inhomogeneity of available time series, human influence in shaping the streamflow distributions and 54 
statistical uncertainty do not allow a confident statement on present-day trends in flood peak frequency 55 
and magnitude over time (Mangini et al., 2018; Hodgkins et al., 2017; Bloschl et al., 2017). Therefore, 56 
there is significant uncertainty on the potential impacts of climatic changes on the economic damages 57 
associated with flood risk and there is no consensus yet around the magnitude and spatial distribution of 58 
change of average annual loss (an indicator of flood risk). 59 

Projections of future annual precipitation indicate wetting tendencies for Scandinavia and central-eastern 60 
Europe and drying tendencies for the southern parts of Europe (Maraun, 2013). This pattern has been 61 
observed in records of winter extreme precipitation (Donat et al., 2013). A strong increase in winter heavy 62 
precipitation (defined as precipitation above the 99th percentile for months December to February) over 63 
Scandinavia and eastern Europe has been reproduced with global climate models (Giorgi et al., 2014) 64 
and regional climate models (Rajczak et al., 2013). In southern parts of Europe, even though mean 65 
precipitation is projected to decrease, heavy precipitation is projected to increase (Sillmann et al., 2013). 66 
These studies generally quantify changes at relatively high levels of global warming (3 °C and more). At 67 
1.5 and 2 °C, King and Karoly (2017) showed increased intensity of extreme wet days (day with highest 68 
one day precipitation total within the season) in both summer and winter, in contrast to a weaker signal for 69 
mean changes over most of the continent. Vautard et al (2014) also found robust increases in mean 70 
winter precipitation in northern Europe, with extreme precipitation increase over eastern Europe and 71 
Scandinavia in summer and over southern Europe in winter. Dosio and Fischer (2018) found that locally 72 
the change in mean precipitation due to further warming is not significant but is accompanied by a robust 73 
change in extreme precipitation. 74 

Climate change is expected to alter European flood risk and, specifically, average annual losses in 75 
various ways. Rojas et al. (2013) conducted an ensemble-based pan-European flood hazard assessment 76 
for present and future conditions and found that with no adaptation to climate change the average annual 77 
loss by 2080 with 3 °C global warming (SRES A1B emission scenario) would be about 17 times greater 78 
than in the present; with adaptation the increase would be ten-fold. In earlier studies, Kundzewicz et al. 79 
(2010) showed projected annual losses for the countries in Europe to be between 2 to 10 times greater by 80 
2080 compared to 1970 (again for the SRES A1B scenario), and Ciscar et al. (2011) found the increase in 81 
annual loss from river floods in Europe more than doubles for the same period and employing similar 82 
scenarios. In a recent study which considers natural correlation between events, Jongman et al. (2014) 83 



found an almost five-fold increase in annual loss by 2050 for a 3 °C global warming, whereas Alfieri et al. 84 
(2015) found for the same period an increase of 4 to 8 times for a 4 °C global warming scenario. More 85 
recently, Alfieri et al. (2018) reported changes in annual loss for three warming levels (1.5, 2 and 3 °C) 86 
and three independent studies to be roughly in a range between 2 to 4 times of the present. The latter 87 
three studies do not include the effect of future socio-economic changes on population, economy, and 88 
land use, so flood risk was estimated assuming present-day exposure and vulnerability. Because flood 89 
risk is a non-linear function of hazard, exposure, and vulnerability (e.g. de Moel et al., 2015), relative 90 
changes in average annual loss including future adaptation measures and socio-economic impacts due to 91 
climate change can vastly differ. Here we focus on average annual losses that would occur in a world 92 
where only the climatic (i.e. hazard) variables have changed, and particularly the precipitation. 93 

Flood risk assessments at pan-European scale under different degrees of warming typically rely on multi-94 
model ensembles encompassing several climate and hydrological models (e.g. Rojas et al., 2012; Alfieri 95 
et al., 2015; Gosling et al., 2016). Donnelly et al. (2017) compared runoff, discharge, and snowpack in 96 
Europe for climate change at 1.5, 2 and 3 °C global warming above pre-industrial level. They employed 97 
five hydrological models forced with multi-model ensembles of climate projections to calculate changes in 98 
hydrological indicators. They found robust increases in runoff over the Scandinavian mountains and 99 
robust decreases in Portugal at 1.5 °C, with extents further increasing over Norway and Poland and the 100 
Iberian coast, Balkan coast, and parts of the French coast at 3 °C. A robust increase of discharge with 101 
warming level was found only in Scandinavia. Thober et al. (2018) also assessed the impacts of climate 102 
change employing a multi-model ensemble of three hydrological models forced by five Coupled Model 103 
Intercomparison Project Phase 5 (CMIP5) general circulation models (GCMs) under three Representative 104 
Concentration Pathways (RCPs 2.6, 6.0, and 8.5). They found decreases for high flows and annual 105 
maxima in the Mediterranean and Eastern Europe, mostly related to decreases in total annual 106 
precipitation.  They also found increases in high flows in Northern regions due to increasing precipitation, 107 
but with annual maxima decreasing due to less snowmelt. Alfieri et al. (2018) compared three studies of 108 
flood hazard and risk projections based on ensemble projections of expected damage and population 109 
affected at country level. They found a substantial increase in flood risk over most of Central and Western 110 
Europe at all warming levels. In this study, we do not attempt to simulate flood risk under climate change 111 
scenarios. Instead, we employ annual losses from a fully calibrated flood model of the current climate and 112 
translate these losses to the future or counterfactual world by reweighting the annual losses. Even though 113 
this approach is simple by design, it relies on a long stochastic set of physically based simulations 114 
produced with a stochastic rainfall generator, which is not the case in the other studies as they normally 115 
use only a hundred years of simulation and extreme value theory for extrapolation to higher return levels. 116 

The objective of this study is to present a simple approach to assess potential changes in European flood 117 
risk due to relative changes in precipitation driven by climate change. The proposed approach combines 118 
the potential change in flood risk from river and pluvial flooding due to relative changes in precipitation. 119 
We apply this approach to assess the impact of relative changes in precipitation on European flood 120 
damages for two climate change scenarios produced with the Community Atmospheric Model version 5 121 
(CAM). Precipitation fields are obtained from ensembles generated with CAM for two climate change 122 
scenarios. Scenarios include future global warming at 1.5 °C above pre-industrial conditions, and a 123 
hypothetical present-day counterfactual scenario where the climate has evolved without anthropogenic 124 
influence. The flood risk response to changes in precipitation relies on the RMS European Flood Model: A 125 
Monte Carlo model for the simulation of flood risk in Europe for the insurance market. This model has 126 
been calibrated and validated in its hazard and damage components with the goal to reproduce economic 127 
and insured flood damages and is employed here to evaluate changes in this variable under current 128 
climate. The model uses a probabilistic set of flood events to model flood risk, and the approach adopted 129 
in this study involves the creation of an alternative probabilistic set, by reweighting the stochastic model 130 



precipitation to mimic the precipitation statistics of the climate scenarios produced by the GCM. This 131 
paper is organized as follows: Section 2 describes the methods including the model runs, reweighting 132 
method, stochastic precipitation, loss tables and bias-correction methodology; Section 3 describes the 133 
relative changes in two precipitation statistics for the scenarios using raw input and bias-corrected input, 134 
along with the loss changes; Section 4 discusses the results; Section 5 concludes this paper.  135 

2. Methods 136 

In the present work we assess the impact of climate change on flood risk by incorporating a climate 137 
change signal, derived from state-of-the-art climate model simulations (Section 2.1) into a European 138 
probabilistic flood loss model (Section 2.2). The coupling of the models is done by means of a 139 
methodology devised to apply the spatially variable climate change signal to the stochastic flood losses 140 
produced by the RMS European Flood Model for the present climate (Section 2.3). Given the large 141 
uncertainties involved in climate model outputs and in modelling the hydrologic response in a changing 142 
climate (highlighted in the wide literature review discussed above) this paper focuses on the impact of 143 
precipitation changes and applies these to a time series of modelled European flood losses. This 144 
simplified approach, whilst not targeting changes in the frequency and magnitude of extreme events and 145 
their effect on the tail of the economic loss distribution, allows to represent the potential effect of changes 146 
in wetness condition over the continent which are reflected on the average annual loss (ie. the mean of 147 
the flood loss distribution). 148 

2.1. Climate model runs 149 

Simulations were carried out with CAM version 5.3 (Neale et al. 2010), a dynamical model of the 150 
atmosphere run at approximately quarter degree spatial resolution (Wehner et al. 2018) under the 151 
protocols of the Half a Degree Additional warming, Prognosis, and Projected Impacts (HAPPI) experiment 152 
(Mitchell et al. 2017) and of the C20C+Detection and Attribution Project (Stone et al. in preparation). 153 
(Note the model is listed as “CAM5.1.2-0.25degree” under the archive portal for both projects. See 154 
http://portal.nersc.gov/c20c/). The HAPPI project was designed to provide model output data describing 155 
climate and weather changes under stabilized 1.5 and 2.0°C levels of global warming, as compared to 156 
preindustrial conditions (1861-1880). CAM was run under three time-slice experiments to generate five 157 
10-year simulations for the present climate (2006-2015) and six simulations each for potential future 158 
climate under stabilized 1.5°C and 2°C levels of global warming (nominally 2106-2115). We use daily 159 
resolution output in this paper. 160 

Present climate simulations include observed forcing conditions for sea surface temperatures (SSTs) and 161 
sea-ice cover. Each simulation differs from the others in the initial weather state, and they are limited to 162 
10 years in length to avoid long-term trends dominating the variability. The 2006-2015 runs use realistic 163 
observation-based time-varying conditions for all climate drivers during that time. These drivers are 164 
atmospheric greenhouse gas concentrations, tropospheric aerosol concentrations, atmospheric ozone 165 
concentrations, solar luminosity, SSTs, and sea-ice cover. SSTs in scenarios of the future are prescribed 166 
by summation of the observed 2006-2015 SSTs and an offset, estimated between decadal-averages of 167 
the 2006-2015 period and the projected warmer global conditions for the 2091-2100 period (Mitchell et al. 168 
2017). The 1.5°C scenario was constructed following SST warming according to the response to the 169 
RCP2.6 in CMIP5 model simulations (which results in a global warming of approximately 1.5°C), with sea 170 
ice concentration modified accordingly.  Greenhouse gas, aerosol, and ozone concentrations are set 171 
according to RCP2.6. More implementation details can be found in Mitchell et al. (2017) and Wehner et 172 
al. (2018). 173 



An additional set of four 10-year simulations corresponds to the counterfactual historical scenario of the 174 
C20C+ Detection and Attribution project (Stone et al. in preparation).  This ‘naturalised’ climate scenario 175 
represents hypothetical counterfactual time-varying conditions for climate drivers during the 2006-2015 176 
period whereby industrial anthropogenic emissions had not occurred over the course of history. It is 177 
constructed by setting the Present-scenario greenhouses gases, aerosols, and ozone to pre-industrial 178 
(year 1855) values and adjusting SSTs and sea ice accordingly. The SST adjustment is based on the 179 
difference of temperatures from CMIP5 climate models run with and without anthropogenic influence 180 
(Stone and Pall in preparation). Here we will make use of the natural scenario simulations as well as 181 
those for present climate and future climate at 1.5°C global warming, we will refer to these simulations as 182 
NAT, Present and Plus15, respectively. 183 

Modelled precipitation is bias-corrected with respect to observations (E-OBS, Haylock et al, 2008) for the 184 
period 1961-2011, using quantile mapping. Specifically, we adopt a non-parametric approach, termed 185 
quantile delta mapping (Cannon et al., 2015). First, future (or natural) climate model outputs are bias 186 
corrected to observations by quantile mapping. Second, model-projected relative changes in quantiles are 187 
superimposed on the bias-corrected model outputs. The method preserves model-projected relative 188 
changes in quantiles, while at the same time correcting systematic biases in quantiles of a modeled 189 
series with respect to observed values – one of the reasons for discrepancy in flood risk assessments, as 190 
pointed out by Thober et al. (2018). 191 

2.2. The RMS European Flood Model 192 

The RMS European Inland Flood Model is a probabilistic, high resolution, flood catastrophe model that is 193 
widely used in the insurance industry to estimate flood risk for a given portfolio of insured exposures. The 194 
model currently covers 15 countries: Austria, Belgium, Czech Republic, France, Germany, Hungary, 195 
Ireland, Italy, Liechtenstein, Luxembourg, Monaco, Poland, Slovakia, Switzerland, and the United 196 
Kingdom. In this study we exclude the Republic of Ireland, Italy, and Northern Ireland, which were under 197 
development while doing this analysis, and we also exclude Liechtenstein, Luxemburg, and Monaco 198 
because of their small size relative to the model domain. The model includes three main components: a 199 
hazard module, a damage module, and a financial module. The hazard module simulates precipitation-200 
driven flood risk and risk from major river flooding with a physically based approach. The damage module 201 
relies on detailed building inventories and a comprehensive catalogue of damage functions to describe 202 
the vulnerability of buildings to flood risk. The financial model quantifies the economic loss of exposure to 203 
flooding. 204 

Here we focus on the hazard module and the methodology used to simulate probabilistic flood risk maps 205 
from a stochastic rainfall simulation. The flood hazard model relies on a continuous 50,000-year Europe-206 
wide stochastic precipitation dataset which has been generated with a stochastic rainfall generator based 207 
on the main modes of variability of gridded precipitation data through Principal Component Analysis 208 
(Bouvier et al., 2003; Westra et al., 2007). Observed gridded precipitation (E-OBS, Haylock et al., 2008) 209 
was available for the period 1961-2011 (daily resolution at quarter-degree spatial resolution) while the 210 
other atmospheric variables relevant for runoff generation were obtained from the GLDAS dataset 211 
(https://ldas.gsfc.nasa.gov/gldas/) for the same period (3 hourly resolution at one-degree spatial 212 
resolution). 213 

Stochastic monthly rainfall fields, obtained as a linear combination of stochastic Principal Components 214 
(PCs) and main modes of variability of the monthly rainfall anomalies (EOFs), were subsequently 215 
disaggregated in space and time to 3-hourly, 6km resolution grids. Spatial disaggregation was performed 216 
through the scaling properties of standardized rainfall fluctuations with statistical scaling parameters 217 
related to elevation and convective available potential energy (CAPE) (Perica and Foufoula-Georgiou, 218 



1996). Temporal disaggregation is performed through a bootstrapping methodology. The stochastic 219 
rainfall generator considers the relationship between rainfall and the state of the atmosphere by 220 
incorporating the correlation between the rainfall principal components and the North Atlantic Oscillation 221 
(NAO), which is simulated in the stochastic model as an AR (1) process calibrated on monthly NAO data 222 
in the available observation period (data from National Weather Service http://www.cpc.ncep.noaa.gov/).  223 

The modelling domain is subdivided into 8546 catchments, based on standard catchment delineation 224 
routines (Metz et al., 2011); catchment size varies between 50 and 500 km2. Rainfall-runoff processes are 225 
modelled with a semi-distributed rainfall-runoff approach based on TOPMODEL (Beven and Freer, 2001), 226 
with a runoff generation module that accounts for evapotranspiration, canopy interception, snow 227 
accumulation and melting, formulated by 15 parameters. The hydrological model is calibrated to 228 
observations for approximately 2000 gauges employing time series of up to 30 years in length (minimum 229 
10 years) using a genetic algorithm to appropriately cover the parameter space (Deb et al., 2002). We 230 
employ two cost functions in the optimization, one for the overall bias and another for the discharge 231 
peaks. After performance assessment we retain about 1400 gauges. Parameters are redistributed to 232 
upstream catchments when gauges are not available. Discharge at the outlet of the catchments is 233 
obtained through the Muskingum-Cunge routing technique. Again, we perform calibration of the routing 234 
model for the same gauges. The model is therefore designed to capture the temporal evolution (e.g. 235 
antecedent conditions and clustering of events) and the spatial correlation of inland flood risk within and 236 
between countries.  237 

We employ a 50 m resolution digital terrain model (DTM) for computing flood depths on major rivers as 238 
well as surface flooding induced by precipitation. Manning coefficients are obtained from land use land 239 
cover data (https://land.copernicus.eu/pan-european/corine-land-cover). We compute fluvial and pluvial 240 
inundation maps for several return periods using the river discharge and surface runoff, respectively. 241 
Inundation maps are obtained by solving the shallow water equations. More details about model 242 
implementation and validation can be found in Zanardo et al. (2019). 243 

The time sequence of flood damages is obtained in the form of a Monte Carlo set of stochastic flood 244 
events resulting from the estimation of economic damages to buildings, for a given portfolio of exposed 245 
assets. The damage simulation is performed at the building level by leveraging the high-resolution flood 246 
maps and a detailed model of the building stock and their vulnerabilities to a given level of flood depth. 247 
The results of the Monte Carlo simulation are outputted to a year-loss table (YLT), where each simulated 248 
year has a uniform probability of occurrence equal to the inverse of the length of the simulation. The 249 
model contains an average of about 30 damage producing flood events per year over the 50,000 years of 250 
simulation. The 30 events are domain wide and a single event can affect multiple countries. For example, 251 
the UK has 4.2 events per year. Each event is identified with time and date, duration, and location. We 252 
compute the annual loss by aggregating the loss of events occurring in each year. The average annual 253 
loss (normally referred as AAL) is obtained by computing the mean of the annual losses over the length of 254 
the simulation. Note that in this paper we make the distinction of winter and summer losses, in which case 255 
the annual loss is based on winter and summer events separately. 256 
 257 

2.3. Reweighting method 258 
 259 

We present a method to derive a set of weights that, when applied to a given statistic of the stochastic 260 
precipitation dataset, produces a climatology that approximates the statistic of an imposed climate 261 
change scenario. We then apply the weights to the YLT and re-compute the AAL to assess the loss 262 
change due to precipitation under climate change. Here we introduce the method in terms of yearly 263 
calculations whereas in the results section we will adopt a seasonal approach, in which case, the 264 



statistics are computed separately for each season of each year and similarly, for the losses. We compute 265 
two statistics: total precipitation (SUM) is the sum of all days that belong to the year; and the contribution 266 
of very wet days to the total precipitation (R95pTOT), here defined as the sum of all days with 267 
precipitation greater than the 95th percentile of the daily precipitation. 268 
 269 
In the following, pcy is the stochastic precipitation statistic for catchment c and year y and pc is the 270 
reference climatological mean of the statistic for catchment c. If the mean precipitation statistic varies 271 
linearly with time, the expected value N years from the reference period is given by  272 

(Equation 1)     273 

with kc the annual rate of change in the statistic for catchment c. We derive a set of annual weights ωy, 274 
such that when the mean precipitation statistic is calculated using the weighted ωypcy, the latter 275 
approximates the expected value given by the above equation. The pc quantities are computed for each 276 
year in the stochastic precipitation dataset whereas the rate of change kc is computed as the long-term of 277 
lumped climate model simulations. 278 

The approach to obtain the weights involves two steps: first, for each year in the stochastic precipitation 279 
we calculate a climate change index λy. This index gives the year relative to the reference period for 280 
which the chosen climate change scenario most closely resembles a given year in the stochastic 281 
precipitation. The reference period here is 1961-2011 and corresponds to the observation period over 282 
which measured rainfall data were available for the creation of the European Flood HD model’s stochastic 283 
precipitation set. The minimization is performed across all catchments: 284 

(Equation 2)    285 

where Ac is the catchment area and σc is the standard deviation of the precipitation statistic of catchment 286 
c. We normalize with the standard deviation to avoid high-precipitation catchments dominating the terms 287 
in the summation. Because λy does not depend on c, the value that minimizes the expression can be 288 
found analytically and is given by:  289 

(Equation 3)           290 

Second, we find the weights ωy that minimize the following expression: 291 

(Equation 4)   292 

where NY is the number of years (or individual seasons) in the stochastic precipitation. We use the 293 
climate change index λy to inform the weight function ωy. The expression above is optimized numerically 294 
to allow for weight functions of different types.  295 



Here, we employ a two-parameter function such that  for positive λy and  296 
for negative λy , with α1 and α2 two positive scalars. The two-parameter function allows for different 297 
weights in the two regions of the frequency domain above and below unity; this means that weighting 298 
towards drier years can have a different scale coefficient than weighting towards wetter years. 299 

 300 

3. Results 301 

To compare results between the different climate scenarios, simulations within the respective ensembles 302 
are first concatenated. This results in 50-year time series in the case of the future to present comparison 303 
(5 simulations of 10 years each for Plus15 and Present), and 40-year time series in the case of the 304 
natural to present comparison (4 simulations of 10 years each for NAT and Present). We compute all 305 
quantities for winter (DJF) and summer (JJA) seasons. 306 

3.1.1.  Mean seasonal precipitation 307 
 308 
When compared with E-OBS precipitation, the CAM generally tends to overestimate precipitation in winter 309 
months and underestimate precipitation in summer months (Figure 1). The winter bias can be seen 310 
mainly in mountainous areas; Barcikowska et al. (2018) argues that these differences can be due to both 311 
model and observational biases because observations are less representative in orographic conditions 312 
and because topography is too smooth in the comparatively lower resolution model. However, the 313 
general large-scale wet bias particularly over western Europe could also be indicative of stronger zonal 314 
winds in the model, suggesting more storminess and moisture brought particularly into the UK, Benelux, 315 
and Germany. The summer bias may be explained by insufficient resolution in the model to capture heavy 316 
convective storms, particularly in inland and mountainous regions. 317 
 318 
At 1.5 °C global warming winter precipitation is generally greater throughout Europe compared to the 319 
present; summer precipitation shows slightly wetter conditions in Eastern Europe and drier in Northern 320 
Europe. These results agree with a consensus towards wetter winters in most parts of Europe. The 321 
present to natural comparison mostly shows wetter conditions in winter and drier in summer, which is akin 322 
to the future to present comparison since in the present the climate is generally warmer than in the 323 
naturalised scenario. 324 

 325 
3.2. Relative changes in precipitation statistics 326 

Relative changes are computed with respect to present climate simulations. Figure 2 shows the spatial 327 
distribution of the relative changes of the two winter statistics for the two climate change scenarios. The 328 
Plus15 scenario generally shows positive changes throughout Europe and with the largest magnitudes of 329 
the two scenarios. The NAT scenario shows mostly negative changes for eastern Europe and some small 330 
areas with positive changes in western Europe, particularly for R95pTOT. Each scenario shows a smooth 331 
spatial pattern for the total precipitation and a slight increase in patchiness and spikiness for the total 332 
precipitation from very wet days. This could be attributed to sampling uncertainty because given the same 333 
amount of underlying data, extreme metrics are less well sampled than the total. Additionally, since 334 
patchiness is concentrated toward southern Europe, we hypothesize that there may be an increased 335 
influence of convective cells producing patchy extreme precipitation embedded within large-scale 336 
southerly flow due to a warmer Mediterranean under climate warming. In general, patterns are spatially 337 
coherent for the different statistics and do not change sign, however, magnitudes generally tend to 338 
decrease when looking at the more extreme statistics.  339 



Figure 3 shows the spatial distribution of the relative changes of the two summer statistics for the two 340 
climate change scenarios. Gray areas indicate areas with too few rainy days to compute a meaningful 341 
change. Relative changes can easily be greater than 100% because summer precipitation is generally 342 
noisier than winter precipitation (we have capped these to avoid extending the limits in the color bar 343 
plots). Patchiness is much more characteristic in the summer spatial patterns too. Like winter, spatial 344 
patterns are generally coherent when looking at the different statistics. The 1.5°C scenario generally 345 
shows a tendency for drier conditions in northern Europe and parts of Italy, whereas both statistics seem 346 
to agree on wetter conditions over southern and Eastern Europe. These results are not in full agreement 347 
with previously published results. Reasons for discrepancy could have to do with scenario design and 348 
model resolution. In terms of scenario design, most of the studies mentioned in the introduction concern 349 
about +1% CO2 per year emissions scenarios, where CO2 increases dominate any aerosol changes. The 350 
Plus15 scenario exhibits an aggressive CO2 ramp-down and aerosol ramp-down, where the effects of 351 
any aerosol ramp-down rival that of any further CO2 increase. The NAT scenario also shows drier 352 
conditions over northern Europe, and wetter conditions over eastern Europe, France, and parts of the UK.  353 

We bias-correct the CAM simulations by preserving the relative change in precipitation quantiles of 354 
modelled precipitation (i.e. trend in modelled projections, see Figure 4). The bias correction is performed 355 
for winter and for summer separately, and for days with precipitation greater than 1 mm/day only to avoid 356 
changing the wet/dry sequence of the underlying precipitation. Figure 5 shows spatial plots of the mean 357 
seasonal precipitation difference between scenarios, after bias-correction. Spatial patterns are 358 
comparable to those before bias-correction and differences between scenarios tend to be smaller. Some 359 
areas of high precipitation in Plus15 (e.g. France), particularly for winter, are missing after bias-correction. 360 
Summer changes for Plus15 indicate drier conditions in GB and Benelux. Winter spatial patterns in the 361 
relative change of both statistics after bias-correction (Figure 6) are very similar to the ones computed 362 
with the raw precipitation. In the summer (Figure 10), spatial patterns before and after bias correction also 363 
compare well.  364 

3.3. Relative changes in average annual loss 365 

In what follows we present the negated results for the NAT scenario so that both Plus15 and NAT 366 
scenarios appear with the same sign in the plot. Figure 8 shows the relative change in winter AAL 367 
obtained with the raw and bias-corrected (BC) winter precipitation statistics and both climate change 368 
scenarios, for the EUFL domain and split by country. The Plus15 scenario results in a positive loss 369 
change with both statistics; R95pTOT generally yields a lower magnitude, which is a direct consequence 370 
of the smaller relative change of R95pTOT compared to the total precipitation (Figure 6). The NAT 371 
scenario shows reduced magnitudes in the relative change of the AAL by country and for the entire 372 
domain when compared to the Plus15 scenario. This is because the relative changes of both statistics in 373 
the NAT scenario are milder than in the Plus15 scenario. Discrepancies in AAL change arising from both 374 
statistics are minor in the NAT scenario, generally showing a slightly higher magnitude with R95pTOT. 375 

Summer changes in AAL (Figure 7) generally show an opposing trend for the two climate change 376 
scenarios, except for France in the Plus15 scenario that shows a positive trend with the bias-corrected 377 
total precipitation. Magnitudes of the summer AAL change in the Plus15 scenario can be compared with 378 
winter; however, summer AAL changes are generally more sensitive to R95pTOT than in winter, showing 379 
greater changes in AAL. The NAT scenario shows greater magnitudes of loss change when compared to 380 
winter. These observations stem from the fact that in general winter changes are spatially smooth 381 
compared to summer changes (Figures 6 and 7); for summer we observe positive and negative changes 382 
within the domain, and even within countries. Furthermore, summer changes in statistics show greater 383 
magnitudes and more patchy features. It is important to note that for winter differences between SUM and 384 
R95pTOT are less prominent than for summer. 385 



4. Discussion 386 

The method we presented assumes that the precipitation statistic varies linearly with time from the 387 
present to the time where the climate change scenario applies (either future or pre-industrial). This may 388 
limit the application of the method if we consider a hypothetical timeline where global warming, and the 389 
precipitation response to that warming, displays a non-linear trajectory. For instance, this is the case of 390 
the 2°C global warming (Plus20) simulations of the HAPPI project (Barcikowska et al., 2018; Li et al., 391 
2018). One way of circumventing this limitation would be to compute the changes in AAL by splitting the 392 
timeline into two (or more) parts: first compute the changes from Present to Plus15, then apply the 393 
weights to Present conditions to obtain a stochastic precipitation for Plus15 climate, and finally compute 394 
the changes from Plus15 to Plus20. This results in double-weighing the reference loss estimate. The 395 
limitation of this method is that the intermediate stochastic precipitation results from an approximation of 396 
the projected climate and further iterations would necessarily imply an accumulation of errors that may 397 
render subsequent loss estimates less accurate.  398 

Our methodology relies on the assumption that precipitation alone is a good indicator of changes in the 399 
flood loss distribution. This is certainly a simplifying assumption considering that other climatological 400 
drivers are likely to have an impact as well (Kay et al. 2011; Schaller et al. 2016), and that feedback 401 
mechanisms may exist that are unaccounted for (e.g., increasing mean temperatures leading to 402 
increasing evapotranspiration). However, because precipitation acts as a first-order control on flood 403 
losses, we believe the approximations made in this paper still provide useful insights. Although at event 404 
level, changes in precipitation cannot directly be translated to changes in inundation patterns and flood 405 
losses, we believe that the methodology proposed is suitable to capture changes in wetness conditions 406 
that translate into an increased/decreased propensity to flooding. Given the non-linearities involved we 407 
suggest that these insights should be translated into an average annual loss change rather than impacts 408 
on the full probability distribution of flood losses.  409 

Furthermore, the assumptions made need to be evaluated in the context of other approximations in 410 
similar research. The observation that a full-fledged impact assessment of climate change on flood risk 411 
can carry significant uncertainty due to factors such as climate model choice (Deser et al., 2012), 412 
downscaling and bias-correction procedures, hydrological model choice and parameter estimation 413 
(Donnely et al., 2017) are examples of such approximations. Moreover, Alfieri et al. (2018) concluded that 414 
climate projections are the main driver influencing future trends of flood risk under global warming 415 
because model error is small than the difference between different scenarios of future climate change. 416 
These factors are further complicated by a small number of flood events, as they correspond to climate 417 
simulations that typically span no more than 100 years, similarly to the observed record. Because flood 418 
loss time series have a large natural variability, the estimation of an AAL based on a relatively short 419 
record (e.g., less than 100 samples) of annualised losses also introduces considerable sampling error. In 420 
our case, a fully-fledged approach would require bias-correcting the precipitation and the other 421 
atmospheric variables to generate a stochastic dataset that is consistent with the one employed in the 422 
RMS European Flood HD Model. 423 

In addition to the already mentioned unmodelled feedbacks, the AAL estimates presented here do not 424 
consider the effects of adaptation and other indirect socio-economic impacts and are based on the 425 
potential change in the flood hazard only. Population projections suggest that EU population has a mild 426 
decreasing trend (UN report, 2017). Jongman et al. (2012) suggest a constant or decreasing exposed 427 
population but an increase in exposed assets. The assumptions in this study allow for a reduction of the 428 
uncertainty involved in the modelling exercise (eg. bias correction of multiple meteorological variables 429 
from the climate model output, uncertainties in simulating the hydrologic response under varying climate, 430 



uncertainties in the estimate of socio-economic changes) and therefore to investigate the connection 431 
between projected changes in precipitation and projected changes in loss. On the other hand they do not 432 
allow us to investigate the full probability distribution of financial losses and the effect of potential changes 433 
in the frequency of extremes and the effect of future changes of population and/or economic assets which 434 
would likely have a positive effect on AAL. In a recent study on paired flood events, Kreibich et al. (2017) 435 
showed that the lower damage caused by a second event was mainly due to significant reductions in 436 
vulnerability via raised risk awareness, preparedness, and improvements of organizational emergency 437 
management. Furthermore, the observed increase in flood damage in many regions of the world is 438 
generally dominated by exposure increase (e.g. Bouwer, 2011), so it is possible a balance between the 439 
effects of exposure and vulnerability that could eventually cancel each other out in the future.  440 

We conducted a sensitivity analysis into the effect of raising defences, based on current adaptation 441 
literature (Alfieri et al., 2016). The AAL for winter and summer together is reduced by about 2, 12 and 442 
20% for an increase in the defence return period standard of protection of 5, 25 and 50% respectively. If 443 
we assume these adaptation measures occur within the coming 50-100 years, the values obtained here 444 
are comparable to the changes in AAL that we estimate are due to climate change only. Although it is 445 
unlikely all countries in Europe would have raised their standard of protection at the same rate, more 446 
complicated adaptation scenarios could be easily assessed under the proposed evaluation setup. 447 

5. Conclusions 448 

Climate change threatens to increase the frequency and magnitude of high precipitation events with an 449 
associated risk for flood insurance. This has the potential to lead to year-on-year increase in the cost of 450 
flood insurance. In this contribution we assess the potential impact of climate change on Average Annual 451 
Loss (AAL) due to floods. We consider two climate change scenarios: one corresponding to a 1.5 °C 452 
global warming above pre-industrial level, and one corresponding to a naturalised world where climate 453 
has evolved without anthropogenic effects. We introduce a framework to reweight the current precipitation 454 
patterns such that the resulting climatology matches with the future or naturalised precipitation 455 
climatology. Climatology is understood here as the long-term mean of any precipitation statistic (here the 456 
total precipitation and the total precipitation of wet days, for raw and bias-corrected climate model 457 
simulations). The weights were determined by minimization of the squared root differences at catchment 458 
level and apply to the entire model domain and for each simulated year. We employed the weights to 459 
scale the annual loss of events simulated with an in-house European Flood HD model, which is a fully 460 
calibrated (to current climate) flood loss model which consists of a 50,000 year-long stochastic simulation. 461 
Based on derived weights, the annualized losses were weighted and a corresponding AAL was 462 
calculated, to assess the impacts of climate change on flood losses. AAL estimates vary with scenario 463 
and precipitation statistic used, with magnitudes typically within 5% per decade for winter and 10% for 464 
summer. AAL for the future scenario generally tends to increase in winter and decrease in summer, 465 
although the latter shows a magnitude differences when considering the different precipitation statistics. 466 
For the naturalised scenario, flood losses in winter are lower than for current-day conditions, and for 467 
summer they are larger; magnitudes of change are comparable to the magnitude of change between 468 
current-day losses and those for the future scenario. These results are consistent for both raw and bias-469 
corrected precipitation statistics. Moreover, our results show that adaptation measures (included here as 470 
updates to the current standard of protection of the flood defences) in an idealised scenario that does not 471 
require a cost benefit analysis, could potentially play a role in reducing climate change impacts on 472 
European flood risk. 473 
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 672 

Figure 1. Difference of mean winter precipitation (top) and mean summer precipitation (bottom) for 673 
Present minus E-OBS (period 1961-2011), Plus15 minus Present and Present minus NAT scenarios; 674 
units are in mm. 675 



 676 

Figure 2. Relative change of winter total precipitation and R95pTOT for future climate (Plus15) and 677 
natural climate (NAT). 678 



 679 

Figure 3. Relative change of summer total precipitation and R95pTOT for future climate (Plus15) and 680 
natural climate (NAT). 681 
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 686 

Figure 4. Example of cumulative distributions of winter daily precipitation for E-OBS (period 1961-2011), 687 
raw simulations and bias-corrected simulations. 688 
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 693 

Figure 5. Difference of mean winter precipitation (top) and mean summer precipitation (bottom) for Plus15 694 
minus Present and Present minus NAT scenarios, after bias-correction; units are in mm. 695 



 696 

Figure 6. Relative change of winter total precipitation (SUM) and R95pTOT for future climate (Plus15) and 697 
natural climate (NAT) after bias-correction. 698 



 699 

Figure 7. Relative change of summer total precipitation (SUM) and R95pTOT for future climate (Plus15) 700 
and pre-industrial climate (NAT) after bias-correction. 701 



 702 

Figure 8. Relative change in winter losses expressed as percentage change per decade by country and 703 
for the entire domain (denoted with EUFL), based on the relative change in the raw and bias-corrected 704 
precipitation statistics for the Plus15 and NAT scenarios. 705 



 706 

Figure 9. Relative change in summer losses expressed as percentage change per decade by country and 707 
for the entire domain (denoted with EUFL), based on the relative change in the raw and bias-corrected 708 
precipitation statistics for the Plus15 and NAT scenarios. 709 


