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Abstract. We compare three different models of two phase flow in a porous
medium; the standard Darcy/Buckley-Leverett model, the Brinkman model
and the Helmholtz model. These three models are all singular perturbations of
the inviscid Darcy model, and thus have the same formal limits. The existence
of such limits have not been proved mathematically, and in this paper we
investigate numerically whether limits exist, and whether they are similar.

1. The macroscopic models

In this article, a (macroscopic) porous medium is defined through its porosity
and permeability. If x denotes the spatial coordinate (usually in Rd for d = 1, 2, 3,
we shall assume that the porous medium is fixed in time, so that the porosity
and permeability do not depend on time. The porosity is denoted by φ(x), and
represents the available pore volume. Thus if the medium is not porous at x, φ(x) =
0, while if it is extremely porous φ(x) ≈ 1. Roughly speaking the permeability
measures the tendency of fluids to move through the porous medium in different
directions. The precise definition of the permeability depends on the model. For
simplicity and clarity of exposition, whenever possible, we shall assume that the
permeability is 1.

We shall derive some commonly used idealized models of two phase flow in a
porous medium. We assume that we have a porous medium containing two im-
miscible phases, for simplicity we call these oil and water. The primary quantities
of interest here are the saturations of of each phase. The saturation of a phase is
defined to be the fraction of the available pore volume occupied by that phase. So
if sw denotes the saturation of water, and so that of oil, we have

(1.1) so + sw = 1.

If vi, i = o,w, denotes the velocity of phase i, the two phases are transported by
their velocities, and conservation of each phase is described by

(1.2) (φsi)t + divx (vi) = 0.

In order to focus on the two phase aspect of these models, we assume that φ(x) = φ0,
where φ0 is a positive constant, then we use units such that φ0 = 1. Using (1.1),
we can add (1.2) for i = w, o to get

(1.3) divx (vT ) = 0, vT = vo + vw.

The quantity vT is called the total velocity.
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1.1. The standard models. The phase velocities in an isotropic homogeneous
porous medium are often assumed to obey Darcy’s law for two phase flow [22],

(1.4) vi = −λi∇xpi + λiρigk,

where g is the constant gravitational acceleration, k is a unit vector pointing “down-
wards” and ρi denotes the constant density of phase i. The quantity λi = λi(si)
is called the relative permeability of phase i, and pi is the pressure of phase i. We
shall assume that the relative permeabilities are known functions with some given
properties, but λi is often determined experimentally, assuming that (1.4) holds.

Since we can eliminate one of the saturations we use only the water saturation
and write s = sw. Then the total velocity reads

vT = − (λw(s)∇xpw − λw(s)ρwG+ λo(s)∇xpo − λw(s)ρoG) ,

with G = gk. Introducing the capillary pressure pcow = po − pw, and assum-
ing that this is a known function of the saturation, we then define the so-called
complementary pressure, see [1],

pc(s) =

∫ s

0

λw(σ)

λw(σ) + λo(σ)

∂pcow

∂s
(σ) dσ.

We shall define

λT (s) = λw(s) + λo(s) and f(s) =
λw(s)

λT (s)
.

With this notation we have that

∇xpc = f(s) (∇xpo −∇xpw) .

Now we introduce the so-called global pressure p by po−pc, so that the total velocity
is written

(1.5) vT = −λT∇xp+ (λwρw + λoρo)G.

The condition (1.3) reads

(1.6) − divx [λT (s)∇xp− (λw(s)ρw + λo(s)ρo)] = 0.

This is a second order equation for the (global) pressure. We assume that λw(s) is
a continuously non-decreasing function with λw(0) = 0 and λw(1) = 1, and λo(s)
is a non-increasing function of s such that λo(0) = 1 and λo(1) = 0. We also
assume that these functions are such that 0 < λ∗ ≤ λT (s) ≤ 1 for all s ∈ [0, 1]. An
illustrative example is λw(s) = s2 and λo(s) = (1 − s)2. With these assumptions
(1.6) is an elliptic equation.

From Darcy’s law for each phase we get

λwvo = −λwλo∇xpo + λwλoρoG

λovw = −λwλo∇xpw + λwλoρwG.

Subtracting the second of these from the first

λwλo∇xpcow = −λwvo + λovw + λwλo(ρo − ρw)G

= λTvw − λwvT + λwλo(ρo − ρw)G.

We can solve for vw

vw = f(s)vT +
λw(s)λo(s)

λT (s)
(ρw − ρo)G+

λw(s)λo(s)

λT (s)
∇xpcow(s).

Rewriting the continuity equation (1.2) for s we find that

(1.7) st + divx [f(s)vT + λo(s)f(s)(ρw − ρo)G] = divx [λo(s)f(s)∇xpcap(s)] ,
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where pcap = −pcow. It is assumed that the mapping s 7→ pcap(s) is non-decreasing.
Furthermore, the right hand side of (1.7) vanishes when s = 1 or s = 0. This
equation is therefore a degenerate convection-diffusion equation. If we define

a(s) = λo(s)f(s)p′cap(s) and A(s) =

∫ s

0

a(σ) dσ,

then the standard Darcy model for two phase flow in an isotropic homogeneous
porous medium reads

(1.8)
divx vT = 0, vT = −λT (s)∇xp+ (λw(s)ρw + λo(s)ρo)G,

st + divx [f(s)vT + λo(s)f(s)(ρw − ρo)G] = ∆A(s),

with ∆ denoting divx∇x. These two equations are often referred to as the pressure
equation and the saturation equation respectively. Of course, (1.8) is supposed to
hold in some domain Ω ⊂ Rd, and one must prescribe initial and boundary values.
Since A′(s) vanishes for some s, one can expect discontinuities or sharp gradients
in s to form, even for smooth initial data. Therefore (1.8) must be considered in
the weak, or rather entropy, sense. Due to the expected low regularity of s, one
cannot expect that p is regular, say H1. Therefore the total velocity field vT will
probably not be sufficiently regular so that weak solutions can be easily defined.

Due to such difficulties, the problem of proving well-posedness of global weak
solution to (1.8) has remained open for many decades. The total velocity vT plays
the role of a coefficient in the saturation equation. Although conservation laws,
and degenerate convection diffusion equations, with space dependent coefficients
have been extensively studied, see [2, 3, 6, 8, 10, 12, 14, 15] and references therein,
the best results to this date require that the coefficient is of bounded variation.
There have been many attempts to prove that vT is a BV function, or lies in some
Sobolev space, but none of these have been successful. Partial results, with strong
assumptions on the solution or the velocity field have been proved in [19, 21].

Due to these difficulties with the standard model (1.8), it is tempting to consider
alternative models, or modifications of (1.8). In many situations, the capillary pres-
sure pcow is quite small compared with other quantities in (1.8), as a consequence
the diffusion A is ignored, in which case the saturation equation is a scalar conser-
vation law with a (possibly) irregular coefficient vT . The usual Kruzkov entropy
condition for scalar conservation laws is chosen by requiring that the entropy solu-
tion is the limit of vanishing viscosity solutions, i.e., the limit as ε ↓ 0 of solutions
of (1.8) with the right hand side of the saturation equation replaced by ε∆s. The
viscous regularization of the standard Darcy model reads

(1.9)
divx v

ε
T = 0, vεT = −λT (sε)∇xp

ε + (λw(sε)ρw + λo(sε)ρo)G,

sεt + divx [f(sε)vεT + λo(sε)f(sε)(ρw − ρo)G] = ε∆sε.

Due to the regularizing effect of ∆s, this system of equations is well-posed, see
[17, 16, 11]. Although it has not been proved that sε → s as ε ↓ 0, it is generally
believed that for small ε, sε is close to a solution of (1.8) with A ≡ 0.

Observe that the presence of a degenerate diffusion term does not necessarily
make the standard models more amenable to analysis, for clarity and brevity of
exposition, therefore we shall assume that the capillary pressure is zero in the
remainder of this paper.

1.2. The Brinkman model. The difficulties in obtaining well-posedness of the
standard model raise a fundamental question – Is Darcy’s law correct? In 1949,
Brinkman [5] suggested the following modification of Darcy’s law

(1.10) − µ∆vi + vi = −λi(s)∇xp+ λi(s)ρiG, for i = o,w,
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where µ is a (small) positive constant, which we for simplicity assume is the same
for both phases, and p denotes the (common to the two phases) pressure. In [5]
(1.10) was put forward for a single phase, but it has also been used in the two-phase
setting [4].

Adding the two velocities, and applying the divergence operator to the result
yields

0 = divx [λT (s)∇xp− (λo(s)ρo + λw(s)ρw)G] .

With Brinkman’s law replacing Darcy’s, the pressure pµ and the water saturation
sµ satisfy

(1.11)

divx v
µ
T = 0, vµT = −λT (sµ)∇xp

µ + (λo(sµ)ρo + λw(sµ)ρw)G,

−µ∆vµw + vµw = −λw(sµ)∇xp
µ + λw(sµ)ρwG,

sµt + divx v
µ
w = 0.

In order to be well-posed, also this system must be coupled with initial and bound-
ary conditions. In contrast to the standard model, and due to the regularizing
effect of the Helmholtz operator −µ∆ + Id, the saturation sµ is differentiable and
continuous for µ > 0. The limit of the system (1.11) as µ vanishes is (1.8), never the
less, we shall see that the limits of the corresponding solutions are quite different.

1.3. Helmholtz reguarization. Now we shall present yet another model, the
basis for which is the assumption that on a scale much smaller than the pores
themselves, the two phases “see each other” much like a single phase sees the pores.
In order to motivate this, we first recall the standard motivation for Darcy’s law
for one phase flow [20].

Derivation of Darcy’s law for one phase flow. Assume that we have an incompress-
ible single phase flow in a porous medium, with a velocity v. Assume furthermore
that v satisfies Stokes equation (potential flow)

∆v = ∇xp.

The continuity equation divx v = 0 then implies that

(1.12) ∆p(x) = 0.

for x in the porous space. This porous space consists of innumerable twisty chan-
nels, confined by an outer boundary ∂Ω, where Ω is the domain of interest. Let Ωφ
denote the porous space, so that

Ω = Ωφ ∪ {the impermeable part of Ω.}

Let χφ denote the characteristic function of the porous space, and let N be some
averaging kernel. Then define the porosity

φ(x) =

∫
Ω

N(x− y)χφ(y) dy.

We assume that the porous medium is homogenenous, hence φ is constant. For a
quantity f = f(x) we define the averages

〈f〉 =

∫
Ω

N(x− y)χφ(y)f(y) dy.

Next we have the relation

〈∇xf〉(x) =

∫∫
Ω∩Ωφ

N(x− y)∇yf(y) dy

= ∇x〈f〉(x) +

∫
∂Ωφ

N(x− y)f(y)n(y) dS(y),
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where n(y) denotes the unit normal to ∂Ωφ at a point y. Since p is harmonic in
Ω ∩ Ωφ, see (1.12), then we have

p(x) =

∫
∂(Ω∩Ωφ)

pb(y)∇xH(x− y) · n(y)dS(y),

where H is the Green’s function on Ω ∩ Ωφ with pb the imposed boundary value.
Observe that p, and hence also v, are linearly dependent on the boundary values.
Hence we can apply a scaling argument as in [20] to show that

v = A〈v〉
for some symmetric matrix A which is independent of the boundary conditions.
Applying the Laplacian and the averaging operator 〈·〉 to this, we obtain

〈∇xp〉 = 〈∆v〉 = 〈∆ (A〈v〉)〉 ≈ 〈∆A〉〈v〉,
or

∇x〈p〉+

∫
∂Ωφ

N(x− y)p(y)n(y) dS(y) ≈ 〈∆A〉〈v〉.

It turns out that the matrix 〈∆A〉 is invertible, we call its inverse, K, the perme-
ability. Furthermore, it is often reasonable to assume that the porous channels are
so twisty that the integral along their boundary vanishes. In this case we are left
with Darcy’s law for one phase flow

〈v〉 = K∇x〈p〉.

Motivation of the Helmholtz model. In order to motivate an alternative to Darcy’s
law for two phase flow we can argue as follows. Assume that we have two phases,
oil and water, these are chemically inert and do not dissolve. However on the scale
of the pores, they are sufficiently mixed so that we can define the saturation. In
Figure 1 this is called the “saturation scale”. On a very small scale, much smaller
than that of the pores, one phase will act similarly to the way the porous walls act
on the fluid for single phase flow. This is called the “two phase scale” in Figure 1.
On the saturation scale we therefore postulate two Darcy’s laws

Darcy scaleSaturation scaleTwo phase scale

rock mixture

Figure 1. The three scales.

〈vi〉N = Ki∇x〈pi〉N , i = o,w,

where we have indicated the dependence on the averaging kernel N . If the two
fluids are uniformly mixed in each direction, then Ki = λiI. The coefficient λi will
be a function of the saturation. The continuity equations for each phase then read

divx [λi∇x〈pi〉N ] = 0, x ∈ Ωφ,

with boundary conditions{
λi∇x〈pi〉N = 0, x ∈ ∂Ωφ,

λi∇x〈pi〉N = fi x ∈ ∂Ω ∩ Ωφ.
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The phase velocities are linearly dependent on these boundary conditions, so scale
arguments lead to the relation

〈vi〉N = Ai〈〈vi〉N 〉M , i = o,w,

where M is (another) averaging kernel. We now assume that the porous walls do
not discriminate between the two phases, this means that Aw = Ao = A. Then we
have

〈〈vi〉N 〉M = 〈A−1λi∇x〈pi〉N 〉M
≈ 〈A−1λi〉M 〈∇x〈pi〉N 〉M

= 〈A−1λi〉M∇x〈〈pi〉N 〉M + 〈A−1λi〉M
∫
∂Ωφ

〈pi〉N (y)M(x− y)n(y) dS(y).

We assume that the above integral is zero due to the mixing of the phases. We also
assume that the saturation changes rapidly compared with the size of the support
of M . We are interested in p̃i = 〈〈pi〉N 〉M . The continuity equation then implies

divx

(
〈A−1λi〉M∇xp̃i

)
= 0.

Let us for simplicity set A = I, and choose M to be the Helmholtz kernel (−η∆ +
Id)−1. We define Λi = (−η∆ + I)−1λi, or

−η∆Λi + Λi = λi.

. We then end up with the usual saturation equation, but the pressure is more
regular than usual.

Concretely, the “Helmholtz” model for two phase flow in porous media reads

(1.13)


divx v

η
T = 0, −vηT = −ΛT∇xp

η + (Λoρo + Λwρw)G,

−η∆Λi + Λi = λi(s
η), i = o,w,

ΛT = Λo + Λw,

sηt + divx (f(sη)vηT + (λo(sη)f(sη)(ρw − ρo))G) = 0.

The first three lines above constitute the pressure equation, and the last is called the
saturation equation. For this model, the coefficient in the saturation equation, vηT
is smooth, entropy solutions are easily defined for η > 0. As in the standard model,
discontinuities in the saturation will typically occur. Hence, if one thinks that it is
important for models to capture discontinuities in s, one may prefer the Helmholtz
model over the viscous regularization (1.9) or the Brinkman model (1.11). The
Helmholtz regularization was first introduced and analyzed in [7]. Observe that
formally, (1.13) reduces to the inviscid standard model (2.1) as η → 0.

Remark. It is worth looking at what these models are in one spatial dimension.
In this case the continuity equation 0 = divx v = vx implies that v = constant. If
we use units so that this constant is one, and assume that the densities are equal,
the three different models read

sεt + f(sε)x = εsεxx, viscous regularization,

sµt − µs
µ
xxt + f(sµ)x = 0, the Brinkman model,

sηt + f(sη)x = 0, the Helmholtz model.

We see that the Helmholtz model is independent of η, and indeed constitutes a
scalar conservation law whose entropy solutions are the limit of sε as ε ↓ 0. As
shown in [9], the limits as µ ↓ 0 of sµ can contain so-called “non-classical” shocks,
see [18] for a definition of this. Thus for small µ, sµ is not necessarily close to sη.
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2. Numerical experiments

In this section we study two phase flow in a two (space) dimensional setting.
The inviscid variant of (1.9) then reads

(2.1)
divx vT = 0, vT = −λT (s)∇xp+ (λw(s)ρw + λo(s)ρo)G,

st + divx [f(s)vT + λo(s)f(s)(ρw − ρo)G] = 0.

This is supposed to hold for t > 0 and for x in some domain Ω ⊂ R2, and supple-
mented with initial and boundary conditions.

In several space dimensions the convergence as µ ↓ 0 of solutions to the Helmholtz
model to solutions of (2.1) is not known. From the examples in [9] we know that
solutions of the Brinkman model will not always converge to solutions of (2.1).
As mentioned before, it is generally believed that solutions of (1.9) converge to
solutions of (2.1) as ε ↓ 0, and this convergence has also been studied extensively
for numerical approximations. In this section we shall therefore compare numerical
solutions to (2.1) with numerical solutions to (1.11) and (1.13) in two dimensions
and for different values of µ and η.

2.1. A quarter five spot. The “quarter five spot” setup is commonly used is
reservoir simulation. Here we shall use it to simulate injection of water into a porous
medium filled with mainly oil. The setting is horizontal (G = 0) and periodic in
the plane, with “injections wells” are centered at lattice points in N2 with both
coordinates even, and “production wells” at lattice points with both coordinates
odd. An injection well situated at (k, l) is described by a source term qkl = q̃(r),
where r is the distance from (k, l). We also assume that the production well situated
at (k + 1, l + 1) is described by the source term −qkl. In this case we can reduce
the setting to the domain Ω = (0, 1)2 and the inviscid model reads

(2.2)

divx (λT (s)∇xp) = q,

vT = −λT (s)∇xp,

st + divx [vT f(s)] = max {q, 0} − f(s) min {q, 0} ,

 t > 0, x ∈ Ω,

∇xp · n = 0

∇xs · n = 0

}
, t > 0, x ∈ ∂Ω,

s(0, x) = s0(x), x ∈ Ω,

where q = q0,0 − q1,1 and n is a unit normal to ∂Ω. The pressure is normalized so
that

∫∫
Ω
p dx = 0. For the source term, we choose

q̃(r) = C


1 r < σ,
1
2

(
cos
(
π r−σσ

)
+ 1
)

σ ≤ r < 2σ,

0 2σ ≤ r,
σ =

√
2

15
,

and C is chosen such that
∫∫

q̃ dx = 4.
The Brinkman and the Helmholtz models for this situation read

(2.3)

divx (λT (sµ)∇xp
µ) = q,

−µ∆vµw + vµw = −λw(sµ)∇xp
µ

sµt + divx [vµw] = max {q, 0} − f(sµ) min {q, 0} ,

 t > 0, x ∈ Ω,

∇xp
µ · n = 0

∇xs
µ · n = 0

[∇xv
µ
w]n = 0

 , t > 0, x ∈ ∂Ω,

sµ(0, x) = s0(x), x ∈ Ω,
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and

(2.4)

−η∆Λi + Λi = λi(s
η), i = o,w,

divx (ΛT (sη)∇xp
η) = q,

vηT = −ΛT (sη)∇xp
η, ΛT = Λo + Λw,

sηt + divx [vηT f(sη)] = max {q, 0} − f(sη) min {q, 0} ,

 t > 0, x ∈ Ω,

∇xp
η · n = 0

∇xs
η · n = 0

∇xΛi · n = 0

 t > 0, x ∈ ∂Ω,

sη(0, x) = s0(x), x ∈ Ω,

respectively. The models (2.3) and (2.4) use the same normalization for the pres-
sure,

∫∫
Ω
p dx = 0.

We remark that in the rest of this paper we use the following expression for the
relative permeabilities

λw(s) = s2, λo(s) = (1− s)2,

and the notation (x, y) = x.
To solve these equations numerically, we replace the derivatives with finite dif-

ferences. Choose an integer N ≥ 2, and set ∆x = ∆y = 1/(N + 1), set xi =
(i − 1/2)∆x, yj = (j − 1/2)∆y for i, j = 1, . . . , N . We use the common notation
that uij ≈ u(xi, yj) for any sought function u. We also introduce the discrete
derivatives

D±x uij = ±uij − ui∓1,j

∆x
, and D±y uij = ±uij − ui,j∓1

∆y

With this notation, the scheme for the boundary value problem

−ε∆u+ u = f, x ∈ Ω, ∇xu · n = 0, x ∈ ∂Ω,

reads

(2.5)
−ε
(
D+
xD
−
x +D+

y D
−
y

)
uij + uij = fij , i, j = 1, . . . , N,

D−x u1,j = D+
x uN,j = D−y ui,1 = D+

y ui,N = 0.

We write the solution uij = Hε[f ]ij . To solve the pressure equation

divx [l∇xp] = h x ∈ Ω, ∇xp · n = 0, x ∈ ∂Ω,

∫∫
Ω

p dx = 0

we use the scheme

(2.6)
D−x

[
li+1/2,jD

+
x pij

]
+D−y

[
li,j+1/2D

+
y pij

]
= hij , i, j = 1, . . . , N,

D−x p1,j = D+
x pN,j = D−y pi,1 = D+

y pi,N = 0,

with the extra condition
∑
ij pij = 0, and where

li+1/2,j =
2lij li+1,j

lij + li+1,j
,

and li,j+1/2 is defined analogously. We write the solution pij = P l[h]ij . It remains
to define a scheme for the conservation law.

st + divx [vf(s)] = q, x ∈ Ω, ∇xs · n = 0, x ∈ ∂Ω.

To this end, set v = (u, v), and let F = F (w; s, σ) be a two point numerical flux, see
[13], such that F (w; s, s) = wf(s), and F is continuous and non-decreasing in s, and
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continuous non-increasing in σ. The (finite volume) scheme for the conservation
law then reads

(2.7)

Dt
+s

n
ij+D

−
x

[
F (ui+1/2,j ; s

n
ij , s

n
i+1,j)

]
+D−y

[
F (vi,j+1/2; snij , s

n
i,j+1)

]
= qnij

i, j = 1, . . . , N,

D−x s
n
1,j = D+

x s
n
N,j = D−y s

n
i,1 = D+

y s
n
i,N = 0, s0

ij = s(0, xi, yj).

where

Dt
+s

n
ij =

sn+1
ij − snij

∆t
,

for some small positive ∆t. We write the solution sn+1 = Cv[sn].
To solve the equation

st + divx v = q, x ∈ Ω, ∇xs · n = 0, x ∈ ∂Ω,

we propose the simple scheme

(2.8)
Dt

+s
n
ij +D−x ui+1/2,j +D−y vi,j+1/2 = qij , i, j = 1, . . . , N,

D−x s
n
1,j = D+

x s
n
N,j = D−y s

n
i,1 = D+

y s
n
i,N = 0, s0

ij = s(0, xi, yj),

and we use the notation sn+1 = T v[sn].
The schemes (2.5), (2.6), (2.7) and (2.8) can be combined to yield schemes for

(2.2), (2.3) and (2.4). The scheme for the standard Darcy model (2.2) is defined by
repetition of the following steps:

(2.9)

Step 1: p = PλT (sn)[qn],

Step 2:

{
ui+1/2,j = λT (sn)i+1/2,jD

+
x pij ,

vi,j+1/2 = λT (sn)i,j+1/2D
+
y pij ,

Step 3: sn+1 = C(u,v)[sn].

Similarly, we propose the following scheme for (2.3):

(2.10)

Step 1: p = PλT (sµ,n)[qn],

Step 2: vw = Hµ [−λw(sµ,n)∇xp] ,

Step 3: sµ,n+1 = T vw [sµ,n],

and for (2.4)

(2.11)

Step 1: Λi = Hη [λi(s
η,n)] , i = o,w,

Step 2: p = PΛT [qn],

Step 3:

{
ui+1/2,j = (ΛT )i+1/2,jD

+
x pij ,

vi,j+1/2 = (ΛT )i,j+1/2D
+
y pij ,

Step 4: sn+1 = C(u,v)[sn].

In all cases, we assume that ∆x and ∆t are related via a so-called CFL-condition
∆t = c∆x. For sufficiently small c, we can use similar arguments to those put
forward in [9] and [7], to show that as ∆x to zero, the approximate solutions gener-
ated by the schemes (2.10) and (2.11) converge to weak solutions of (2.3) and (2.4)
respectively. This holds for µ and η strictly positive. There is presently no proof
showing that approximate solutions generated by the algorithm (2.9) converge.

Here, we are interested in determining, via numerical experiments, how close
the approximations generated by the three schemes (2.9), (2.10) and (2.11) are for
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small µ and η. From now on we use µ = η = ε. As initial data we set

(2.12) s0(x, y) =


1 r < σ,
1
2

(
cos
(
π r−σσ

)
+ 1
)

σ ≤ r < 2σ,

0 2σ ≤ r,
σ =

√
2

15
.

In Figure 2 we show approximate solutions for t = 0.5 for the three schemes, with
ε = 0.1 and ∆x = 1/101. We observe that the Darcy model and the Helmholtz

Figure 2. ε = 0.1, left: (2.9), middle: (2.10), right: (2.11)

model give quite similar results, and that the water saturation computed by the
Brinkman model is quite different. To investigate this further we compute the
approximates solutions using ∆x = 1/251 for ε = 0.1, ε = 0.005 and ε = 0.0001
for the Brinkman and the Helmholtz models. Figure 3 shows the diagonal of the
saturation (snii) at t = 0.5. We see that the Helmholtz approximation seems to

Figure 3. Saturation on the diagonal, left: ε = 0.1, middle: ε =
0.005, right: ε = 0.0001.

converge to the Darcy approximation, whereas the Brinkman approximation seems
to converge to a non-classical shock. This is in agreement with the one-dimensional
numerical results reported in [9].

2.2. Gravity driven flow. Next we consider a situation where the dynamics are
driven solely by gravity. The initial data consists of a heap of water in a vertical,
two dimensional, homogeneous porous medium otherwise filled with oil. The upper
and the lower boundary are impermeable, and the right so that after some (?) time,
the all the water will be situated along the bottom of the domain.

To model this we use the domain Ω = (0, 1/2)× (0, 1), and initial data

(2.13) s0(x, y) =


1 r < σ,
1
2 (cos(π r−σσ ) + 1) σ ≤ r < 2σ,

0 2σ ≤ r,
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where σ = 0.24 and r =
√

(x− 1/2)2 + (y − 1/2)2. We assume that the domain is
vertical in the y-direction, and let

G = (0, 1) and ρo = 1, ρw = 4.

The standard Darcy model in this case reads

(2.14)

−divx [λT (s)∇xp] =
∂

∂y
[λo(s)ρo + λw(s)ρw] ,

vT = −λT (s)∇xp+ (λw(s)ρw + λo(s)ρo)G,

st + divx [vT f(s)] +
∂

∂y
[λo(s)f(s)(ρw − ρo)] = 0,

 t > 0, x ∈ Ω

vT · n = 0, vT · ν = 0,

∇xs · n = 0,

}
t > 0, x ∈ ∂Ω,

s(0,x) = s0(x), x ∈ Ω,

where ν is a unit vector tangential to ∂Ω. Similarly, the Brinkman and the
Helmholtz models with µ = η = ε read

(2.15)

−divx [λT (sε)∇xp] =
∂

∂y
[λo(sε)ρo + λw(sε)ρw] ,

vεT = −λT (sε)∇xp+ (λw(sε)ρw + λo(sε)ρo)G,

−ε∆vεw + vεw = −λw(sε)∇xp+ λw(sε)G,

sεt + divx [vεw] = 0,


t > 0, x ∈ Ω

vεT · n = 0, vεT · ν = 0,

vεw · n = 0, [∇xv
ε
w]n = 0,

∇xs
ε · n = 0,

 t > 0, x ∈ ∂Ω

s(0,x) = s0(x), x ∈ Ω,

and

(2.16)

−ε∆Λεi + Λεi = λi(s
ε), i = o,w,

−divx [ΛεT∇xp] =
∂

∂y
[Λεoρo + Λεwρw] ,

vεT = −ΛT∇xp+ (Λwρw + Λoρo)G,

sεt + divx [vεT f(sε)] +
∂

∂y
[λo(s)f(s)(ρw − ρo)] = 0,


t > 0, x ∈ Ω

∇xΛi · n = 0, i = o,w,

∇xp · n = 0,

∇xs
ε · n = 0,

 t > 0, x ∈ ∂Ω

s(0,x) = s0(x), x ∈ Ω,

respectively.
It is straightforward to define schemes for the three models, (2.14), (2.15) and

(2.16), by combining the schemes (2.5), (2.6), (2.7) and (2.8) with appropriate
boundary conditions. As before, we have that for ε > 0, the schemes produce
approximate solutions for (2.15) and (2.16) which converge as ∆x ↓ 0.

We have tested the schemes on a 150 × 300 grid (∆x = ∆y, for ε = 10−2 and
ε = 10−5. Figure 4 shows the approximations for t = 0.3, t = 0.6 and t = 0.9 using
ε = 10−2 We see that the Darcy model and the Helmholtz model produce fairly
similar results, but that results produced by the Brinkman model are very different.
It remains to investigate whether this holds for the much smaller ε = 10−5.

Figure 5 shows the same simulation results as Figure 4, but with ε = 10−5. We
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Darcy Brinkman Helmholtz

t = 0.3

t = 0.6

t = 0.9

Figure 4. Approximate solutions with gravity driven flow. ε = 10−2.

see that for ε = 10−5, the Darcy model and the Helmholtz model produce virtually
identical results, but again, the Brinkman model behaves differently. There are
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Darcy Brinkman Helmholtz

t = 0.3

t = 0.6

t = 0.9

Figure 5. Approximate solutions with gravity driven flow. ε = 10−5.

several visible fine scale results, reminiscent of the characteristic “viscous fingering”
often seen in simulations using the Darcy model. Such viscous fingering is usually
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attributed to heterogeneous rock permeability affecting the (probable) intrinsic in-
stability in the model. From Figure 5 we can conclude that the Brinkman model
with homogeneous rock properties can produce similar results.

Remark. To remain physically meaningful, the saturation s should remain inside
the interval [0, 1]. One can show that both the standard Darcy model (1.8) and
the Helmholtz model (1.13) have [0, 1] as an invariant region for the saturation.
For the Brinkman model (1.11) this is not the case, as has been demonstrated
for one-dimensional examples in [9]. In the numerical examples in this paper the
calculations for the Brinkman model always gave nonnegative saturations, but some
values were larger than one. It is not clear how to augment the Brinkman model
so that [0, 1] becomes an invariant region for the saturation.
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