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In this paper, we extend the focused information criterion (FIC)
from Claeskens and Hjort (2008) and Jullum and Hjort (2017) to
copula models. copulas are often used for applications where the
joint tail behavior of the variables is of particular interest, and
selecting a copula that captures this well is then essential. Tra-
ditional model selection methods, such as the AIC and BIC aim
at finding the overall best fitting model, which is not necessarily
the one best suited for the application at hand. The FIC, on the
other hand, evaluates and ranks candidate models based on the
precision of their point estimates of a context-given focus param-
eter. This could be any quantity of particular interest, e.g. the
mean, a correlation, conditional probabilities, or measures of tail
dependence. We derive FIC formulae for the maximum likeli-
hood estimator, the two-stage maximum likelihood estimator and
the so-called pseudo-maximum-likelihood estimator (PML) com-
bined with parametric margins. Further, we confirm the validity
of the AIC formula for the PML estimator combined with para-
metric margins. To study the numerical behavior of FIC, we have
carried out simulation study, and we have also analyzed a multi-
variate abalone data set. The results from the study show that the
FIC successfully ranks candidate models in terms of their perfor-
mance, defined as how well they estimate the focus parameter.
In terms of estimation precision, FIC clearly outperforms AIC,
especially when the focus parameter relates to only a specific part
of the model, like the conditional upper tail probability.
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two-stage maximum likelihood

1 | INTRODUCTION AND COPULA MODELS

Model selection is inarguably an important part of modern statistics. Most model selection criteria work by evaluating ‘overall’
fit of the models, in a suitable sense, as opposed to their performance related to a specific use. For example, the AIC and TIC aim
for the model that minimizes the Kullback–Leibler (KL) divergence from the real data-generating mechanism to the candidate
model. However, in practice, the model itself is often not the final goal. The model is to be used for some specific tasks such as
estimating the mean, a quantile, correlation or the tail dependence.

Copula models are frequently used for applications within for instance finance and insurance, as well as hydrology, where
the tail behavior of the joint distribution is particularly important. Measures of interest are then typically the Value-at-Risk, the
Expected Shortfall or conditional upper quantiles of the distribution of sea and river levels. Selecting a copula that captures the
joint tail behavior well is then essential. It is by no means certain that this is obtained with traditional model selection methods.
On the other hand, the focused information criterion (FIC), proposed by Claeskens and Hjort (2003), is a model selection method
that evaluates candidate models based on the precision of their estimate of a quantity of interest, measured in terms of the mean
squared error (MSE). This quantity of interest is called the ‘focus parameter’ and hence the name ‘focused information criterion’.
One of the drawbacks of the original FIC (Claeskens and Hjort, 2003) is that it assumes all the models to be parametric and
nested. Jullum and Hjort (2017) extend the FIC to a more general setting by using a nonparametric model to estimate the bias
part of the decomposedMSE. Their new FIC machinery is designed for maximum likelihood (ML) estimated parametric models
and nonparametric models. Further, the candidate models do not have to be nested. We extend this new FIC to copula models
that are estimated with maximum likelihood (ML), two-stage ML or pseudo ML combined with parametric margins (PMLpm).

Our technical setting is as follows. Let y1,⋯ , yn be independent and identically distributed d-dimensional observations
from a joint density g(y1,⋯ , yd ). The data generating model g is typically unknown. Suppose f (y1,⋯ , yd , �) is our parametric
approximation of g, with the parameter vector � belonging to some connected subset of the appropriate Euclidean space. Let G
and F (⋅, �) denote cumulative distribution functions corresponding to g and f (⋅, �), respectively. Further, Gj (yj ) and Fj (yj , �j )
indicate j-th marginal distribution functions corresponding toG and F (⋅, �), respectively, �j being the parameter vector belonging
to margin component j.

According to Sklar’s theorem (Sklar, 1959), there always exists a copula C(u1,… , ud , �) that satisfies

F (y1,⋯ , yd , �) = C(F1(y1, �1),⋯ , Fd (yd , �d ), �)

with the full parameter vector

� = (�T, �T)T = (�T1 ,⋯ , �d
T, �T)T.

Under the assumption that F1(y1, �1),⋯ , Fd (yd , �d ) are absolutely continuous and strictly increasing, C(⋅, �) can be differentiated.
This gives

f (y1,⋯ , yd , �) = c
(

F1(y1, �1),⋯ , Fd (yd , �d ), �
)

d
∏

j=1
fj (yj , �j ),

where c(u1,… , ud ) = )dC(u1,… , ud , �)∕)u1⋯ )ud and fj (yj , �j ) = )Fj (yj , �j )∕)yj . Similarly, the true density g can also be
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decomposed into marginal densities and copula density

g(y1,⋯ , yd ) = c0
(

G1(y1),⋯ , Gd (yd )
)

d
∏

j=1
gj (yj ),

with c0(⋅) the density of the true copula. For more details on copula modeling, see Joe (1997, 2014) and Nelsen (2006).

Three of the most commonly used estimation procedures for parametric copulas are full ML, two-stage ML and PML. When
full ML is employed for the copula and margins, the theory of AIC, BIC and FIC holds directly. For PML estimated copula,
combined with nonparametric margins, Grønneberg and Hjort (2014) develop a copula information criterion (CIC) and Chen
and Fan (2005) suggest a pseudo likelihood ratio test. Ko and Hjort (2019a) propose a different CIC, for the two-stage ML.
The present paper concerns extending the FIC theory to these different estimation procedures. This partly follows the line of
arguments used in Jullum and Hjort (2017, 2018), but by necessity involves certain extra efforts, as we work with more complex
estimation strategies than the pure nonparametric and the maximum likelihood.

The further structure of this paper is as follows. In Section 2, the focused information criterion (FIC) for copula models under
ML, two-stage ML and PMLpm estimator is derived and defined. Further, we present the AIC formula for PMLpm estimator in
Section 3 and cover the average weighted FIC (AFIC), designed for the situations where multiple focus parameters are of interest,
in Section 4. In Section 5, the behavior of the FIC is investigated in a simulation study. Moreover, we apply the FIC to a dataset
on multiple measurements on abalones in Section 6. Finally, Section 7 contains concluding remarks and suggestions for future
work.

2 | FIC FOR COPULA MODELS

2.1 | General idea and derivation of the FIC

In this subsection, we briefly summarize the idea behind the focused information criterion (FIC) of Jullum and Hjort (2017), and
reach a general formula. The actual details for implementing this FIC formula depend on the specific estimation scheme, which
we return to later in Sections 2.2, 2.3 and 2.4.

Most model selection criteria like AIC, BIC and TIC measure how close a candidate model is to the true model in terms of a
certain divergence measure. However, in many cases, the model itself is not the goal, but rather a means to estimate a specific
quantity, such as the mean or the probability of certain event. The main idea behind the FIC, first introduced by Claeskens and
Hjort (2003) and later modified by Jullum and Hjort (2017, 2018), is that one wants to select a model that is good for a specific
task. In our setting, we quantify this specific task as that of estimating a focus parameter, say T (G), a functional of the data
generating distribution. The functional needs to have a clear statistical interpretation across candidate models. With FM the
distribution associated with such a candidate modelM , T (FM ) is the ensuing approximation to the Ttrue = T (G). We also need
the functional to be smooth, in the sense of admitting an influence function leading to limiting normality with a

√

n rate. This
involves certain regularity conditions, as (C1)–(C4) of Jullum and Hjort (2017, Section 2).

In our setting, the estimated focus parameter via the use of a candidate model is denoted as T̂cnd or T (F̂ ), with F̂ the estimated
distribution via this model. We are looking for candidate models such that T̂cnd is close to Ttrue. As with Jullum and Hjort (2017,
2018), we use a quadratic loss function, leading by definition to the mean squared error (MSE) as the criterion of closeness. We
hence define the focused information criterion (FIC) as the estimatedMSE

FIC = M̂SE(T̂cnd) = V̂arG(T̂cnd) + b̂ias
2
(

T̂cnd, Ttrue
)

. (1)
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We return to estimates for the variance of T̂cnd below, with different recipes for different estimators. For estimating the bias, we
use the fact that the nonparametrically estimated T , which we denote as T̂np, is asymptotically unbiased. This suggests using

b̂ias2
∗ (
T̂cnd, Ttrue

)

=
(

T̂cnd − T̂np
)2

which however tends to overestimate its estimand. By correcting for the overestimation and possible negative values, we obtain
the final squared bias estimator

b̂ias2
(

T̂cnd, Ttrue
)

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
{

0,
(

T̂cnd − T̂np
)2
− V̂arG

(

T̂cnd
)

if the model is (semi)parametric

−V̂arG
(

T̂np
)

+ 2ĈovG
(

T̂np, T̂cnd
)}

0 if the model is nonparametric.

(2)

Note that this derivation of the FIC is done without specifying the estimation scheme. As long as T̂cnd, T̂np, V̂arG
(

T̂cnd
)

,

V̂arG
(

T̂np
)

and ĈovG
(

T̂np, T̂cnd
)

can be obtained, the FIC can be defined for any model and estimation scheme.

2.2 | FIC under maximum likelihood

The ML estimator �̂ML is defined as the maximizer of ln(�), the log-likelihood function of a chosen model with given observations.
Its properties are covered in classic references such as White (1982) and Le Cam (1990).

Let T̂ML = T (F (�̂ML)) denote a focus parameter, estimated based on a given parametric model and using the ML. Further, let
T0,ML indicate the focus parameter associated with the least false parameter value �ML0 , which minimizes the KL–divergence from
the true model to the candidate model. If the candidate model captures the true model, we have T0,ML = Ttrue.

Under the regularity conditions (C1)–(C4) (Jullum and Hjort, 2017), the joint distribution of T̂ML and T̂np, can in our copula
setting be written as

√

n

(

T̂np − Ttrue
T̂ML − T0,ML

)

d
→

⎛

⎜

⎜

⎝

Λnp

ṡT�
(

ML�
)−1

Λ�ML

⎞

⎟

⎟

⎠

∼ N

((

0
0

)

,

(

Vnp Vnp,ML
V Tnp,ML VML

))

(3)

where

Vnp = VarG
(

IFT (y, G)
)

= EG
[

IF(y, G) IF(y, G)T
]

,

Vnp,ML = QML

(

ML�
)−1

ṡ� , QML = EG
[

IFT (y, G) ⋅ �ML� (y, �ML0 )T
]

, ṡ� =
)s�
)�

=
)T (F (�))

)�
,

VML = ṡT�
(

ML�
)−1

KML
�

(

ML�
)−1

ṡ� , K
ML
� = EG

[

�ML� (y, �ML0 )�ML� (y, �ML0 )T
]

,

�ML� (y, �) =
)
(

∑d
j=1 fj (yj , �j ) + log c

(

F1(y1, �1),⋯ , Fd (yd , �d ), �
)

)

)�
,

ML� = −EG
[

H�(y, �ML0 )
]

= −∫ g
)2

(

∑d
j=1 fj (yj , �

ML
0,j ) + log c

(

F1(y1, �ML0,1 ),⋯ , Fd (yd , �ML0,d ), �
ML
0

))

)� )�T
dy

and IFT (y, G) is the influence function associated with the focus parameter. Based on (3), the FIC for ML estimated parametric
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models is defined as

FICML =
1
n
V̂ML + max

{

0,
(

T̂ML − T̂np
)2
− 1
n

(

V̂ML + V̂np − 2V̂np,ML
)

}

, (4)

where

V̂np,ML = Q̂ML

(

̂ML�
)−1

ṡ�̂ , V̂ML = ṡT�̂ V̂
ML
�
̂̇s = ṡT�̂

(

̂ML�
)−1

K̂ML
�

(

̂ML�
)−1

ṡ�̂ .

Here V̂np, Q̂ML, ̂ML� , K̂ML
� indicate empirical analogues of Vnp, QML, ML� , KML

� respectively.

2.3 | FIC under two-stage maximum likelihood

When the dimension d of the model grows, the length of the total parameter vector � increases rapidly and ML estimation is not
always feasible. Shih and Louis (1995) proposed two-stage ML (a.k.a. inference functions for margins, IFM) as an alternative.
This consists in first estimating �j separately for each margin by ML. Then, one plugs the resulting �̂2ML into the log-likelihood
and obtains �̂2ML by maximizing the log-likelihood with respect to �. The asymptotic properties of the two-stage ML estimator
are given in Ko and Hjort (2019b) for the general case or Joe (2005) for the situation where one assumes that the parametric
model covers the true data generating mechanism.

Proposition 1 Under regularity conditions (C1)–(C4) from Jullum and Hjort (2017) and (A1)–(A5) from Ko and Hjort (2019b),

√

n

(

T̂np − Ttrue
T̂2ML − T0,2ML

)

d
→

⎛

⎜

⎜

⎝

Λnp

ṡT�
(

2ML�

)−1
Λ�2ML

⎞

⎟

⎟

⎠

∼ N

((

0
0

)

,

(

Vnp Vnp,2ML
V Tnp,2ML V2ML

))

where

Vnp,2ML = Q2ML
�

(

(

2ML�

)−1
)T

ṡ� ,

V2ML = ṡT� V�2ML ṡ� ,

V�2ML =
(

2ML�

)−1
K2ML
�

(

(

2ML�

)−1
)T

and other quantities are defined in the proof.

The proof is given in Appendix A.
In practice, V2ML and Vnp,2ML can be estimated by taking empirical analogues and using the plug-in principle. We write those

estimates as V̂2ML and V̂np,2ML. The FIC for two-stage ML estimated parametric models is then

FIC2ML =
1
n
V̂2ML + max

{

0,
(

T̂2ML − T̂np
)2
− 1
n

(

V̂2ML + V̂np − 2V̂np,2ML
)

}

. (5)

2.4 | FIC under pseudo maximum likelihood combined with parametric margins

One of the drawbacks of (two-stage) ML estimation is that the estimation of the copula parameter � is affected by the choice of
parametric distribution for the margins. Even when the copula is correctly specified, possible misspecifications of the margins can
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lead to suboptimal values of �̂ML and �̂2ML. Genest et al. (1995) propose the PML estimator that overcomes this shortcoming. In
this semi-parametric estimation scheme, one first uses the pseudo-observations Gn,j (yj ) = (n + 1)−1

∑n
k=1 I{yk,j ≤ yj}, which

are nonparametric probability integral transforms of the data. Subsequently, one plugs these into the copula log-likelihood and
maximizes it with respect to � to obtain �̂PML. For details concerning the PML estimator, see Tsukahara (2005), Chen and Fan
(2005) and Kim et al. (2007).

Once � is estimated, one can keep the nonparametric margins. However, parametric margins are often used instead, estimating
�j separately for each margin by ML, just like in stage 1 of two-stage ML estimation (Hobæk Haff et al., 2015; Bevacqua et al.,
2017). Below, we derive the FIC formula for this ‘PML combined with parametric margins’ and abbreviate the estimation scheme
by ‘PMLpm’ throughout this paper.

Proposition 2 Under regularity conditions (C1)–(C5) from Chen and Fan (2005) and (C1)–(C4) from Jullum and Hjort (2017),

√

n

(

T̂np − Ttrue
T̂PMLpm − T0,PMLpm

)

d
→

(

Λnp
ṡT�

(

PMLpm�
)−1 Λ�PMLpm

)

∼ N

((

0
0

)

,

(

Vnp Vnp,PMLpm
V Tnp,PMLpm VPMLpm

))

where

Vnp,PMLpm = QPMLpm
�

(

PMLpm�

)−1
ṡ� ,

VPMLpm = ṡT� V�PMLpm ṡ� ,

V�PMLpm =
(

PMLpm�

)−1
KPMLpm
�

(

PMLpm�

)−1

and other quantities are defined in the proof.

The proof is given in Appendix A.
In practice, VPMLpm and Vnp,PMLpm can be estimated by plug-in estimators. ForKPMLpm

� and(u, �), one can use the consistent
estimators suggested in Remark 2 of Chen and Fan (2005). The resulting estimated variance and covariance are written as V̂PMLpm
and V̂np,PMLpm. Plugging these into (1) and (2) gives the FIC for PMLpm

FICPMLpm =
1
n
V̂PMLpm + max

{

0,
(

T̂PMLpm − T̂np
)2
− 1
n

(

V̂PMLpm + V̂np − 2V̂np,PMLpm
)

}

. (6)

3 | AIC FOR PSEUDO MAXIMUM LIKELIHOOD WITH
PARAMETRIC MARGINS

Since the eventual model form of PMLpm is fully parametric, we can use the Kullback–Leibler (KL) divergence to evaluate the
relative closeness of the candidate model to the true model. Minimizing KL divergence is equal to maximizing

Q(�) = ∫ g(y)
{

log f1(y1, �1) +⋯ + log fd (yd , �d ) + log c
(

F1(y1, �1),⋯ , Fd (yd , �d ), �
)}

dy.

The empirical equivalent is

Q̂(�) = 1
n

n
∑

i=1

[

log f1(yi,1, �1) +⋯ + log fd (yi,d , �d ) + log c
(

F1(yi,1, �1),⋯ , Fd (yi,d , �d ), �
)]
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which is biased. AIC is defined as bias corrected and rescaled estimator of Q(�) under the true model assumption. We derive
AIC for PMLpm estimated parametric model.

Lemma 3 Assuming that the parametric model captures the model that generated the data, i.e. f (⋅, �0) = g(⋅) for an appropriate
�0, an approximately unbiased empirical estimator of 2n ⋅Q(�̂PMLpm), widely known as Akaike information criterion (AIC), is

AIC = 2ln(�̂PMLpm) − 2 dim(�).

The proof is given in Appendix A.
Since the AIC for the ML, two-stage ML and PMLpm estimators are all aiming for the same quantity under the model

conditions, they are compatible. This means that AIC can be used to compare closeness to the true model for different estimation
schemes.

4 | AVERAGE WEIGHTED FOCUSED INFORMATION CRITERION

The FIC apparatus is designed to select the best model for estimating a chosen focus parameter precisely. However, there are
cases where one is interested in multiple focus parameters. Jullum and Hjort (2017) developed an averaged weighted FIC (AFIC)
which aims for the model that obtains lowest risk for a set of focus parameters Ttrue(t), with t in some index set. This set of focus
parameters is specified with a cumulative weight functionW (t). Under this setting, they use the weighted quadratic loss function

L = ∫

(

T̂cnd(t) − Ttrue(t)
)2
dW (t),

which results in the following risk:

EG [L] = ∫ EG

[

(

T̂cnd(t) − Ttrue(t)
)2
]

dW (t).

Then, they define the AFIC as

AFIC = ∫ V̂arG
(

T̂cnd(t)
)

dW (t) + b̂ias2cnd,true. (7)

where the bias term is defined as

b̂ias2cnd,true =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

max
{

0,∫

(

T̂cnd(t) − T̂np(t)
)2
− V̂arG

(

T̂cnd(t)
)

if (semi)parametric

−V̂arG
(

T̂np(t)
)

+ 2ĈovG
(

T̂np(t), T̂cnd(t)
)}

dW (t)

0 if nonparametric.

(8)

Note that when the set of estimands Ttrue(t) is finite and the weight function is not stochastic, the integral with respect toW (t)
simply becomes a weighted sum. For a practical illustration of AFIC, see the supplementary material of Jullum and Hjort (2017).

5 | SIMULATION STUDY

To study the behavior of FIC, we have carried out a simulation study in two parts. The performance of the FIC with a joint box
probability as focus parameter is assessed in the Part 1 simulations. The purpose of the Part 2 simulations is to evaluate the FIC
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TABLE 1 Description of the models used in Part 1 of the simulations.

Copula Margin 1 Margin 2 Margin 3 Margin 4

Data generating

model

Gumbel

� = 3

Gamma

�1 = (1, 2)T

(shape, rate)

Gamma

�2 = (3, 1)T

(shape, rate)

Weibull

�3 = (1, 2)T

(shape, scale)

Log-normal

�4 = (−1, 0.5)T

(mean, sd)

Model 1 Gumbel Gamma Gamma Weibull Log-normal

Model 2 Gumbel Weibull Weibull Gamma Gamma

Model 3 Survival Clayton Gamma Gamma Weibull Log-normal

Model 4 Survival Clayton Weibull Weibull Gamma Gamma

Model 5 Frank Gamma Gamma Weibull Log-normal

Model 6 Frank Weibull Weibull Gamma Gamma

with other focus parameters, more specifically conditional probabilities, as well as the AFIC.

5.1 | Part 1: Evaluation of the FIC

We have generated datasets from a model consisting of a Gumbel copula, two Gamma, one Weibull and one log-normal margins
and fitted 6 candidate models for each dataset using the ML, two-stage ML and PMLpm estimators. Further, the sample size
is either n = 100 or n = 1000. The data generating and candidate models are described in Table 1. With each fitted candidate
model, we have computed the focus parameter T (G) = P (q0.8 < Y ) where q0.8 is a vector that contains the 0.8-quantile value
of each margin according to the true model. i.e. q0.8 =

(

G−11 (0.8),⋯ , G−14 (0.8)
)

. In addition, we have estimated the focus
parameter nonparametrically, which is necessary for the FIC machinery. We have repeated this process 100 times and the results
are averaged. Since the natural empirical estimator for from Chen and Fan (2005), needed for PMLpm, is computationally
very expensive for a large sample size, we have estimated the asymptotic variance from Proposition 2 numerically with jackknife
(Efron, 1982). We have compared the jackknife estimated variance to the Chen and Fan (2005) based estimate for small sample
sizes, and they produced comparable results.

The results from the simulations can be found in Tables 1 and 2 from the supplementary material (Ko et al., 2019). The
result is also visualized in Figure 1 for n = 100 and in Figure 2 for n = 1000.

The top left panel of Figure 1 is a plot of the estimated focus parameter T̂ against
√

FIC, which is on the same scale as T̂ .
We see that the models with smaller

√

FIC value tend to give focus parameter estimates that are closer to the true focus parameter
value. This tendency becomes clearer as the sample size increases (see Figure 2).

In the top right panel of Figure 1, we have plotted
√

MSE against
√

FIC. We can observe that the FIC provides a good
estimate of theMSE. As the sample size increases (Figure 2), the correspondence is even better.

The two panels at the bottom of Figure 1 show the AIC plotted against the FIC (left panel) and theMSE (right panel) for
n = 100. Note that models with large scores are preferred when using the AIC. We see that both the AIC and the FIC pick the
correctly specified model (model 1) as the best model. The AIC rank for models 5 and 6 indicate implies that those are overall
rather close to the true model (relatively to other candidates). However, the FIC suggests that they do not estimate P (q0.8 < Y )
well (again in comparison to the other candidate models). The estimated focus parameter values andMSEs indicate that this is
indeed the case. This illustrates that the FIC does choose models that are good at a specific task, as intended. Figure 2 shows that
the same holds when the sample size increases.
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FIGURE 1 Results from Part 1 of the simulations for n = 100. The colored numbers refer to the model numbers in Table 1.
The nonparametric model is denoted “np”.

One of the noticeable changes as the sample size increases from n = 100 to n = 1000 is that the rank of the nonparametric
model decreases from 13 to 5. The reason is that the (co)variance terms shrink toward 0, such that the asymptotic unbiasedness
of nonparametric model becomes stronger advantage. When n is large enough, the (co)variance terms will be negligible and the
nonparametric model will be the overall ‘winning’ model.

Further, the focus parameter values from models estimated with two-stage ML and PMLpm tend to be better than the ones
obtained with ML when the model is misspecified, with correspondingly lower FIC scores. The differences are less systematic
when we compare two-stage ML and PMLpm.
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FIGURE 2 Results from Part 1 of the simulations for n = 1000. See Figure 1 for an explanation of symbols.

5.2 | Part 2: Evaluation of the AFIC

In Part 2 of the simulations, we have generated data sets from a two-dimensional model consisting of a Gaussian copula and
log-normal margins and fitted 12 candidate models by using ML, two-stage ML and PMLpm estimators. The data generating and
candidate models are described in Table 2 and the sample size is n = 1000. With each fitted candidate model, we have computed
a set of focus parameters T (F ) = P (G−11 (p) < Y1

|

|

|

G−12 (p) < Y2) for p = 0.90, 0.91,⋯ , 0.95. When p is close to 1, a reasonable
precision of the nonparametric estimate of this conditional probability requires a very large sample size to ensure that there are
enough observations that satisfy the inequality conditions. Therefore, we did not include probabilities that are even closer to 1. In
addition, we have computed the AFIC by assigning equal weights to each p. The whole process was repeated 100 times and the
results are averaged. As for the Part 1 simulations, the asymptotic variance of PMLpm is estimated with jackknife.

The results from the simulations with the AFIC, as well as with the FIC with single focus parameter for p = 0.90 and
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TABLE 2 Description of the models used in Part 2 of the simulations.

Copula Margin 1 Margin 2

Data generating

model

Gaussian

� = 0.6

Log-normal

�1 = (1, 0.8)T

(mean, sd)

Log-normal

�2 = (0.4, 0.7)T

(mean, sd)

Model 1 Gaussian Log-normal Log-normal

Model 2 Gaussian Gamma Gamma

Model 3 Gaussian Weibull Weibull

Model 4 Frank Log-normal Log-normal

Model 5 Frank Gamma Gamma

Model 6 Frank Weibull Weibull

Model 7 Gumbel Log-normal Log-normal

Model 8 Gumbel Gamma Gamma

Model 9 Gumbel Weibull Weibull

Model 10 Survival Clayton Log-normal Log-normal

Model 11 Survival Clayton Gamma Gamma

Model 12 Survival Clayton Weibull Weibull

p = 0.95 can be found in Tables 3, 4 and 5 from the supplementary material (Ko et al., 2019). The results are also visualized in
Figures 3 and 4, together with Figure 1 from the supplementary material (Ko et al., 2019). The top left panel of Figure 3 is a plot
of

√

FIC against the focus parameter estimates T̂ for the FIC with p = 0.9, and the top right panel shows
√

FIC against
√

MSE.
The bottom left and right panels display AIC against FIC and AIC againstMSE, respectively. Figures 4 show corresponding
results for the FIC with p = 0.95. The corresponding result for AFIC is displayed in Figure 1 from the supplementary material
(Ko et al., 2019).

When we consider a single focus parameter with p = 0.90, the models with smaller
√

FIC score tend to have T̂ values closer
to the true focus parameter value, as anticipated. Moreover, the FIC is overall a good estimate of the MSE. When p = 0.95,
the patterns are the same. However, the wrongly specified models now have larger FIC andMSE values. This is logical since
the upper conditional probability, which becomes upper tail dependence when p→ 1, differs highly from model to model as p
increases. Further, there is little correspondence between the models preferred by the AIC and the FIC, except that they both pick
the true model as the best model. Again, the models that are favored by the AIC are not necessarily good at estimating the upper
tail conditional probability, though they may be overall closer to the true model. This confirms that there is a clear gain in using
the FIC when the model is to be used for estimating a specific quantity. The results for the AFIC are in line with the previous
results with a single focus parameter.

6 | EXAMPLE: THE ABALONE DATA

As a real-life data example, we applied our FIC model selection method to the abalone data set (Asuncion and Newman, 2011),
which has previously been used to illustrate different dependence modeling methods e.g. Ma et al. (2012) and Hobæk Haff et al.
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FIGURE 3 Results from Part 2 of the simulations for the FIC with p = 0.90. The colored numbers refer to the model
numbers in Table 2.

(2016). Abalone is an edible sea snail, the harvest of which is subject to quotas. The quotas should reflect the age distribution
of abalones and is based on among others their size. As the age of an abalone is cumbersome to determine, one would like to
estimate the age based on some physical measurements such as weight and height. The dataset consists of 4177 samples of 9
variables. We focus on the dependence relations among the 4 variables ‘diameter’, ‘height’, ‘shell weight’ and ‘rings’. According
to the description of the dataset, the age in years is given by the number of rings + 1.5. So we convert the variable ‘ring’ into
‘age’ by adding this constant. Further, we make the ‘age’ variable continuous by adding Gaussian noiseN(0, 0.012).

Since the harvest quotas are related to the age of abalones as well as their size, an interesting focus parameter to consider is
the probability that an abalone is under certain age given that physical measurements are smaller than certain bounds. More
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FIGURE 4 Results from Part 2 of the simulations for the FIC with p = 0.95. The colored numbers refer to the model
numbers in Table 2.

specifically, we used the focus parameter

T (F ) = P (age < 8 ||
|

diameter < 0.325, height < 0.105, shellweight < 0.109).

Here, 0.325, 0.105 and 0.109 were sample 20%-quantiles values of ‘diameter’, ‘height’ and ‘shell weight’, respectively, whereas
8 is the 27%-quantile of ‘age’.

We have tried the 9 candidate models described in Table 3. To choose adequate candidate margins, we fitted a set of well-
known univariate distributions with ML estimator. We then evaluated them by AIC. For copula, we fitted different copula models
with the PML estimator and looked at maximized likelihood values. We composed Table 3 by choosing certain combinations of
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TABLE 3 Description of the models used to fit the abalone data set.

Copula Margin 1 Margin 2 Margin 3 Margin 4

Model 1 t Weibull Weibull Weibull NIG

Model 2 t Weibull Weibull Weibull Log-normal

Model 3 t Normal Normal Normal Log-normal

Model 4 Gaussian Weibull Weibull Weibull NIG

Model 5 Gaussian Weibull Weibull Weibull Log-normal

Model 6 Gaussian Normal Normal Normal Log-normal

Model 7 Clayton Weibull Weibull Weibull NIG

Model 8 Clayton Weibull Weibull Weibull Log-normal

Model 9 Clayton Normal Normal Normal Log-normal

copula and margins. Each model in Table 3 is estimated with the two-stage ML and the PMLpm estimators. The ML estimator
encountered numeric problems for some models.

The results are shown in Table 6 from the supplementary material (Ko et al., 2019) and also visualized in Figure 5. We see a
similar pattern to the ones from the simulation study. One of the notable differences is that the nonparametric model is now the
winning model. This seems reasonable considering that the nonparametric model becomes quite precise when the sample size is
large enough. This is also in line with results from Part 1 of the simulations, where the FIC rank of the nonparametric model
decreased from 13 to 5 when the sample size increased from 100 to 1000. Further, scatter plots of the pseudo-observations (not
shown here) indicate that the copula is rather different from well-known 4-dimensional parametric copulas, with both asymmetric
dependence and large differences between pairs. This also explains the preference for the nonparametric model. The winning
models among the parametric ones, according the the FIC, are the ones based on the Gaussian or the t copula, that, as opposed to
the Clayton, allow for different dependence between different pairs. Finally, the right panel shows a moderate agreement between
the AIC and the FIC.

7 | CONCLUSIONS AND FURTHER RESEARCH

In this paper, we have developed the FIC for copula models partly based on the general methods of Jullum and Hjort (2017) for
three different estimators, namely the ML, two-stage ML and PMLpm. This is a model selection criterion that aims for the model
that minimizes the estimatedMSE of a chosen focus parameter, and has the advantage that it can be used to compare models
that are estimated under different estimation schemes, including the nonparametric one. It can also easily be extended to other
estimation schemes as long as the joint asymptotic distribution with the nonparametric focus parameter estimate can be derived.
In addition, it is a model-robust model selection criterion since it does not assume that any of the candidate model captures the
data generating model.

We performed a series of simulations to study the behavior of the FIC. We also applied our method to the abalone data set.
The results show that models with lower FIC values give focus parameter estimates that are closer to the true parameter value,
which is the aim of the method. Further, it turns out that FIC also fulfills its role as an estimator of theMSE. Moreover, when the
focus parameter is heavily based on a specific part of the distribution, in particular the tails, the models favored by the AIC does
not necessarily give good estimates of the focus parameter. This seems natural since AIC aims for the model that minimizes
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FIGURE 5 Results from the models fitted to the abalone data. The colored numbers refer to the model numbers in Table 3.

overall closeness to the true model in terms of KL–divergence, and also demonstrates that there is a clear advantage in using the
FIC instead of the AIC in such situations.

Even though the FIC machinery can be applied to many different kinds of focus parameters, a limitation of the method is
that it needs the focus parameter to be a smooth functional of the full distribution G, so that an influence function can be derived.
For some functionals, like the density itself, or the copula function c0 in a given location, there is no influence function, and more
elaborate estimators are called for, involving smoothing parameters. Versions of FIC may still be put up, but requires further
elaboration; see Jullum and Hjort (2017, Section 7).

As we see from the FIC plots (Figures 1, 2, 3 and 4), often the estimates from the best models are in reasonable agreement,
and a final estimate can be based on a suitable average over these. Claeskens and Hjort (2008, Chapter 7) propose and develop
machinery for such model average estimators, and suggest using weights proportional to exp (−� ⋅ FIC), with � a tuning parameter.
We do not pursue that theme in this paper, however.

In this paper, we have only considered parametric copula models with parametric margins and i.i.d. variables. One can
for example extend the FIC framework to the PML estimator where margins are nonparametric, as well as to time series and
vine models. Furthermore, it is possible to derive another variant of FIC by using another loss function than the quadratic loss
function (e.g. absolute loss).
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APPENDIX A: PROOFS

| Proof of Proposition 1

Proof Under the assumed regularity conditions, we have from Theorem 5.5 in Shao (2003) and Proposition 1 in Ko and Hjort
(2019b) that
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(

IFT (y, G), �2ML� (y, �2ML0 )
)

= EG
[

IFT (y, G) ⋅ �2ML� (y, �2ML0 )T
]

,

K2ML
� = VarG

(

�2ML� (y, �2ML0 )
)

= EG
[

�2ML� (y, �2ML0 )�2ML� (y, �2ML0 )T
]

.

Now by applying the delta method with transformation function sx,�(x, �) = (x, s�)T = (x, T (F (�)))T, we obtain

√

n

(

T̂np − Ttrue
T̂2ML − T0,2ML

)

d
→

⎛

⎜

⎜

⎝

Λnp

ṡT�
(

2ML�

)−1
Λ�2ML

⎞

⎟

⎟

⎠

∼ N

((

0
0

)

,

(

Vnp Vnp,2ML
V Tnp,2ML V2ML

))

.

| Proof of Proposition 2

Proof Under the assumed regularity conditions, we have from Theorem 5.5 in Shao (2003), Lemma 1 in Ko and Hjort (2019b)
and Proposition 2 from Chen and Fan (2005) that

T̂np − Ttrue =
1
n

n
∑

i=1
IFT (yi, G) + op(n−1∕2),

�̂2ML − �2ML0 = (2ML� )−1�2MLn,� (�
2ML
0 ) + op(n−1∕2),

�̂PML − �PML0 = (PML� )−1�PMLn,� (�
PML
0 ) + op(n−1∕2),

where

�PMLn,� (�) =
1
n

n
∑

i=1
�PML� (Gn,1(yi,1),⋯ , Gn,d (yi,d ), �),

Gn,j (yj ) =
1

n + 1

n
∑

k=1
I{yk,j ≤ yj},

�PML� (u, �) =
) log c

(

u1,⋯ , ud ), �
)

)�
,

PML� = −EC0
[

HPML
� (u, �PML0 )

]

= −∫[0,1]d
c0 (u)

)2 log c
(

u, �PML0
)

)� )�T
du,

u =
(

u1,⋯ , ud
)

=
(

G1(y1),⋯ , Gd (yd )
)

.

Applying Lemma 2 from Chen and Fan (2005), which becomes the central limit theorem when one holds the empirical
process in the marginal parts constant, yields the joint distribution

√

n

(

T̂np − Ttrue
�̂PMLpm − �PMLpm0

)

d
→

(

Λnp
(

PMLpm�
)−1 Λ�PMLpm

)

∼ N
⎛

⎜

⎜

⎝

(

0
0

)

,
⎛

⎜

⎜

⎝

Vnp Vnp,�PMLpm
(

Vnp,�PMLpm
)T

V�PMLpm

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠
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where

�̂PMLpm =
(

(�̂2ML)T, (�̂PML)T
)T
,

�PMLpm0 =
(

(�2ML0 )T, (�PML0 )T
)T ,

PMLpm� =

(

2ML� 0
0 PML�

)

,

Vnp,�PMLpm = Q
PMLpm
�

(

PMLpm�

)−1
,

V�PMLpm =
(

PMLpm�

)−1
KPMLpm
�

(

PMLpm�

)−1
,

QPMLpm
� = CovG

(

IFT (y, G), �PMLpm� (y, �PMLpm0 ) +∗(y, �PML0 )
)

= EG

[

IFT (y, G) ⋅
(

�PMLpm� (y, �PMLpm0 ) +∗(y, �PML0 )
)T

]

,

KPMLpm
� = VarG

(

�PMLpm� (y, �PMLpm0 +∗(y, �PML0 ))
)

= EG

[

(

�PMLpm� (y, �PMLpm0 ) +∗(y, �PML0 )
)

⋅
(

�PMLpm� (y, �PMLpm0 ) +∗(y, �PML0 )
)T

]

,

�PMLpm� (y, �) =

(

�2ML� (y, �)
�PML� (∗(

(

G1(y1),⋯ , Gd (yd )
)

, �)

)

,

∗(y, �) =

(

0dim(�)


((

G1(y1),⋯ , Gd (yd )
)

, �
)

)

,

(u, �) =
d
∑

j=1
j (uj , �) =

d
∑

j=1
∫[0,1]d

c0 (v)
)2 log c (v, �)
)� )vTj

(

I(uj ≤ vj ) − vj
)

dv.

Now by applying the delta method with transformation function sx,�(x, �), we obtain

√

n

(

T̂np − Ttrue
T̂PMLpm − T0,PMLpm

)

d
→

(

Λnp
ṡT�

(

PMLpm�
)−1 Λ�PMLpm

)

∼ N

((

0
0

)

,

(

Vnp Vnp,PMLpm
V Tnp,PMLpm VPMLpm

))

.

| Proof of Lemma 3

Proof When the copula model is estimated with the pseudo maximum likelihood with parametric margins, the non-constant part
of the KL divergence is

Q(�̂PMLpm) = ∫ g(y)
{

log f1(y1, �̂2ML1 ) +⋯ + log fd (yd , �̂2MLd ) + log c
(

F1(y1, �̂2ML1 ),⋯ , Fd (yd , �̂2MLd ), �̂PML
)}

dy.

The empirical equivalent is

Q̂(�̂PMLpm) = 1
n

n
∑

i=1

[

log f1(yi,1, �̂2ML1 ) +⋯ + log fd (yi,d , �̂2MLd ) + log c
(

F1(yi,1, �̂2ML1 ),⋯ , Fd (yi,d , �̂2MLd ), �̂PML
)]

.
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Now we check the bias of Q̂(�̂PMLpm):

EG
[

Q̂(�̂PMLpm)
]

−Q(�̂PMLpm) = EG1

[

1
n

n
∑

i=1
log f1(yi,1, �̂2ML1 )

]

− ∫ g(y1) logf1(y1, �̂2ML1 )dy1

+⋯

+ EGd

[

1
n

n
∑

i=1
log fd (yi,d , �̂2MLd )

]

− ∫ g(yd ) logfd (yd , �̂2MLd )dyd

+ EG

[

1
n

n
∑

i=1
log c

(

F1(yi,1, �̂2ML1 ),⋯ , Fd (yi,d , �̂2MLd ), �̂PML
)

]

− ∫ g(y) log c
(

F1(y1, �̂2ML1 ),⋯ , Fd (yd , �̂2MLd ), �̂PML
)

dy.

Since the parameter estimates �̂2MLj for the margins are obtained with ML estimation, we can use the results from the derivation
of the TIC (Claeskens and Hjort, 2008) directly and obtain

EGj

[

1
n

n
∑

i=1
log fj (yi,j , �̂2MLj )

]

− ∫ g(yj ) logf (yj , �̂2MLj )dyj =
1
n
tr
(

−1�j K�j
)

+ op(n−1).

In a nutshell, �j is the Fisher information of the j-th margin and K�j is the covariance matrix of the score vector that belongs to
the j-th margin. If one assumes that the model is correctly specified (i.e. f = g), we have �j = K�j (White, 1982; Le Cam,

1990; Hardin, 2003). So, tr
(

−1�j K�j
)

= dim(�j ).

Further, let

Qc (�̂PMLpm) = ∫ g(y) log c
(

F1(y1, �̂2ML1 ),⋯ , Fd (yd , �̂2MLd ), �̂PML
)

dy

and

Q̂c (�̂PMLpm) = E

[

1
n

n
∑

i=1
log c

(

F1(yi,1, �̂2ML1 ),⋯ , Fd (yi,d , �̂2MLd ), �̂PML
)

]

.

So, we can write

EG
[

Q̂(�̂PMLpm)
]

−Q(�̂PMLpm) = 1
n

d
∑

j=1
tr
(

−1�j K�j
)

+ EG
[

Q̂c (�̂PMLpm)
]

−Qc (�̂PMLpm) + o(n−1).

Now, EG
[

Q̂c (�̂PMLpm)
]

−Qc (�̂PMLpm) is the only element that has to be evaluated. Let

Qc (�
PMLpm
0 ) = ∫ g(y) log c

(

F1(y1, �2ML0,1 ),⋯ , Fd (yd , �2ML0,d ), �
PML
0

)

dy,

Zi = log c
(

F1(yi,1, �2ML0,1 ),⋯ , Fd (yi,d , �2ML0,d ), �
PML
0

)

−Qc (�
PMLpm
0 ),

A� =
√

n
(

�̂PMLpm − �PMLpm0
)

=
√

n
(

PMLpm�

)−1
�PMLpm� (y, �PMLpm0 ) +

(

op(1)
op(1)

)

,
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which stems from the proof of Proposition 2, and furthermore

�∗n,�(�) =
1
n

n
∑

i=1
�∗� (yi, �) =

1
n

n
∑

i=1

) log c
(

F1(yi,1, �1),⋯ , Fd (yi,d , �d ), �
)

)�
,

H∗
n,�(�) =

1
n

n
∑

i=1
H∗
� (yi, �) =

1
n

n
∑

i=1

)2 log c
(

F1(yi,1, �1),⋯ , Fd (yi,d , �d ), �
)

)�)�T
,

∗� = −EG
[

H∗
� (y, �

PMLpm
0 )

]

= −∫ g(y)H∗
� (y, �

PMLpm
0 ) dy.

Then we have E[Zn] =
1
n
∑n
i=1 E[Zi] = 0, along with

Q̂c (�̂PMLpm) =
1
n

n
∑

i=1
log c(yi, �̂PMLpm)

= 1
n

n
∑

i=1

[

log c(yi, �
PMLpm
0 ) −Qc (�

PMLpm
0 ) +Qc (�

PMLpm
0 ) + (�̂PMLpm − �PMLpm0 )T�∗� (yi, �

PMLpm
0 )

+ 1
2
(�̂PMLpm − �PMLpm0 )TH∗

� (yi, �
PMLpm
0 )(�̂PMLpm − �PMLpm0 )

]

+ op(n−1)

= 1
n

n
∑

i=1

[

Zi
]

+Qc (�
PMLpm
0 ) + (�̂PMLpm − �PMLpm0 )T�∗n,�(�

PMLpm
0 )

+ 1
2
(�̂PMLpm − �PMLpm0 )TH∗

n,�(�
PMLpm
0 )(�̂PMLpm − �PMLpm0 ) + op(n−1)

= Qc (�
PMLpm
0 ) +Zn +

1
√

n
AT��

∗
n,�(�

PMLpm
0 ) + 1

2n
AT�H

∗
n,�(�

PMLpm
0 )A� + op(n−1),

Qc (�̂PMLpm) = ∫ g(y) log c
(

F1(y1, �̂2ML1 ),⋯ , Fd (yd , �̂2MLd ), �̂PML
)

dy

= ∫ g(y)
[

log c(y, �PMLpm0 ) + (�̂PMLpm − �PMLpm0 )T�∗� (y, �
PMLpm
0 )

+1
2
(�̂PMLpm − �PMLpm0 )TH∗

� (y, �
PMLpm
0 )(�̂PMLpm − �PMLpm0 )

]

dy + op(n−1)

= ∫ g(y) log c(y, �PMLpm0 ) dy + (�̂PMLpm − �PMLpm0 )T ∫ g(y)�∗� (y, �
PMLpm
0 ) dy

+ 1
2
(�̂PMLpm − �PMLpm0 )T ∫ g(y)H∗

� (y, �
PMLpm
0 ) dy ⋅ (�̂PMLpm − �PMLpm0 ) + op(n−1)

= Qc (�
PMLpm
0 ) + (�̂PMLpm − �PMLpm0 )T ⋅ 0

+ 1
2n

√

n(�̂PMLpm − �PMLpm0 )T ∫ g(y)H∗
� (y, �

PMLpm
0 ) dy ⋅

√

n(�̂PMLpm − �PMLpm0 ) + op(n−1)

= Qc (�
PMLpm
0 ) − 1

2n
AT� 

∗
�A� + op(n

−1)

and

n{Q̂c (�̂PMLpm) −Qc (�̂PMLpm)} = nZn +
√

nAT��
∗
n,�(�

PMLpm
0 ) + 1

2
AT�H

∗
n,�(�

PMLpm
0 )A� +

1
2
AT� 

∗
�A� + op(1).

We now assume that the margins are correctly specified, i.e. Fj (yj , �2ML0,j ) = Gj (yj ). This implies that �PML0 = �2ML0 and



KO ET AL. 23

consequently �PMLpm0 = �2ML0 . Then, the central limit theorem gives

√

n�∗n,�(�
PMLpm
0 ) =

√

n�∗n,�(�
2ML
0 ) =

√

n
{

�∗n,�(�
2ML
0 ) − E

[

�∗� (Y , �
2ML
0 )

]} d
→ Λ∗� ∼ N

(

0, K∗
�

)

,

where K∗
� = Var

(

�∗� (y, �
2ML
0 )

)

= E
[

��(y, �2ML0 )��(y, �2ML0 )T
]

.

Now we evaluate EG[n{Q̂c (�̂PMLpm) −Qc (�̂PMLpm)}]:

EG
[

n
(

Q̂c (�̂PMLpm) −Qc (�̂PMLpm)
)]

= EG
[

nZn +
√

nAT��
∗
n,�(�

PMLpm
0 ) + 1

2
AT�H

∗
n,�(�

PMLpm
0 )A� +

1
2
AT� 

∗
�A�

]

+ op(1)

p
→ EG

[

(

(

PMLpm�

)−1
Λ�2ML

)T
Λ∗�

]

= EG

[

tr
(

(

PMLpm�

)−1
Λ�PMLpm

(

Λ∗�
)T

)]

= tr
(

(

PMLpm�

)−1
EG

[

Λ�PMLpm
(

Λ∗�
)T

])

= tr
(

(

PMLpm�

)−1
K◦
�

)

,

where

K◦
� = EG

[

Λ�PMLpm (Λ
∗
� )
T
]

= EG

[(

Λ�2ML
(

Λ∗�
)T Λ�2ML

(

Λ∗�
)T

Λ�PML
(

Λ∗�
)T Λ�PML

(

Λ∗�
)T

)]

=

(

K◦
� K◦

�,�

K◦
�,� K◦

�

)

.

Further, we assume that c = c0 such that the wholemodel is correctly specified. According to Genest et al. (1995), the truemodel as-
sumption yieldsCovC0

(

�PML� (u, �PML0 ),(u, �PML0 ))
)

= 0 andPML� = ΣPML� whereΣPML� = EC0
[

(

�PMLpm� (u, �PMLpm0 )
)

⋅
(

�PMLpm� (u, �PMLpm0 )
)T].

Since we also assumed true margins, we have

log c
(

F1(y1, �2ML0,1 ),⋯ , Fd (yd , �2ML0,d ), �
)

= log c
(

G1(y1),⋯ , Gd (yd ), �
)

.

This leads to K◦
� = PML� . In addition, Lemma 1 of Ko and Hjort (2019a) gives K◦

� = 2ML� −K2ML
� .

By using those results, we have

tr
(

(

PMLpm�

)−1
K◦
�

)

= tr
⎛

⎜

⎜

⎝

(

2ML� 0
0 PML�

)−1(
K◦
� K◦

�,�

K◦
�,� K◦

�

)

⎞

⎟

⎟

⎠

= tr

((
(

2ML�
)−1 K◦

�
(

2ML�
)−1 K◦

�,�
(

PML�
)−1 K◦

�,�
(

PML�
)−1 K◦

�

))

= tr

((

(

2ML�
)−1 (2ML� −K2ML

�
)

0
0

(

PML�
)−1 K◦

�

))

= tr

((

0 0
0 Idim(�)

))

= dim(�).
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Thus, the unbiased estimator of Q(�̂PMLpm) is

Q̂(�̂PMLpm) = 1
n
ln(�̂PMLpm) −

1
n
dim(�)

By scaling this unbiased estimator with 2n such that it is one the same scale as the AIC for maximum likelihood (Akaike, 1974),
we define the AIC for the copula model estimated with PML with parametric margins

AIC = 2ln(�̂PMLpm) − 2 dim(�).
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