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Abstract

In parametric copula setups, where both the margins and copula have parametric forms, two-stage maximum

likelihood estimation, often referred to as inference functions for margins, is used as an attractive alternative

to the full maximum likelihood estimation strategy. Exploiting the existing model robust inference of two-

stage maximum likelihood estimation, copula information criterion (CIC) for model selection is developed.

In a nutshell, CIC aims for the model that minimizes the Kullback–Leibler divergence from the real data

generating mechanism. CIC does not assume that the chosen parametric model captures this true model,

unlike what is assumed for AIC. In this sense, CIC is analogous to the Takeuchi Information Criterion (TIC),

which is defined for the full maximum likelihood. If the additional assumption that a candidate model is

correctly specified is made, then CIC for that model simplifies to AIC. Additionally, CIC can easily be

extended to the conditional copula setup where covariates are parametrically linked to the copula model.

As a numerical illustration, simulation studies were performed to show that the better model according

to CIC also has better prediction performance in general. The result also shows that the bias correction

term of CIC penalizes the misspecified model more heavily. This bias correction term has a strong positive

relationship with the prediction performance of the model. So, a model with bad prediction performance is

being penalized more by CIC. Although this behavior of the bias correction part is an important conceptual

advance of CIC, this is not sufficient to make CIC outperform AIC in practice. This is because each

misspecified model has the bias correction term and they grow at different speeds, depending on the model.

The difference between CIC and AIC becomes minimal as sample size grows because the log-likelihood part

outgrows the bias correction part.
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1. Introduction and copula models

One of the main practical issues in copula modeling is model selection. In the full parametric setup, where

both the copula and margins are assumed to have a parametric form, one often has multiple candidates for

both the copula and margins. As the dimension of the model increases, a list of possible combinations of

margins and copula grows rapidly. Hence, there is a need for a model selection criterion that can evaluate

each model systematically according to a certain philosophy or criteria and assign a score to each model. In

the end, one would choose the model with the best score.

Throughout this paper, we consider the full parametric setup. In this setup, one can simultaneously

estimate all parameters of the model (i.e. both copula parameters and margin parameters) by using maximum

likelihood (ML) estimation. In this ML estimation framework, one can for instance use AICML (Akaike, 1974)

or TIC (also known as model-robust AICML) (Takeuchi, 1976) as model selection criterion and select the

model with the best score. (Note that we denote the AIC under ML estimation as AICML to distinguish it

from the two-stage ML based AIC2ML, which we will derive in Section 2.3.) However, when the dimension

of the copula model gets high, the number of parameters increases quickly and the ML estimation is not

always feasible in terms of speed and numerical stability. Two-stage maximum likelihood (two-stage ML)

estimation, also often referred to as inference functions for margins (IFM), is a popular alternative estimation

strategy that is designed to overcome these drawbacks of the ML estimation. In stage 1 of the two-stage ML

estimation, the parameter vectors of each marginal distribution are estimated separately by ML. In stage

2, the estimates from stage 1 are plugged into the log-likelihood of the model. Then, the parameters of the

copula, which are now the only unknown parameters, are estimated by using ML estimation again. One of

the advantages of this multi-stage approach is that it is computation-wise much faster than estimating all

parameters simultaneously, because it does not have to search for the global maximum in high-dimensional

space. A drawback of the two-stage ML estimation method, however, is that we cannot use the classical

results based on ML estimation, which include model selection criteria such as TIC and BIC.

In practice, different sorts of goodness-of-fit testing are often used as substitutes, to choose the best

model (Genest and Favre, 2007). Another often used model selection strategy for the two-stage ML is that

one first evaluates candidates of each marginal distribution with AICML and consequently chooses the best

distribution for each margin. Once the margins are chosen, one fits different copulas and evaluates the copula

part with AICML. However, this piecewise model evaluation cannot evaluate the model as a whole.

In this paper, we develop the copula information criterion (CIC) for two-stage ML estimation, which has

the form

CIC = 2`n(η̃)− 2p̃∗η.

Here `n(η̃) is the maximized log-likelihood with the two-stage ML estimation method, in terms of the full

parameter vector η of the model in question, and p̃∗η is a suitable penalization factor, worked out in Section 2.2.
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The main advantage of CIC is that it can evaluate a parametric copula with parametric margins as a whole.

CIC is also a model-robust model selection criterion which means that it does not assume that the candidate

model contains the true model. As the overlap of the name already suggests, our CIC is analogous to the

CIC from Grønneberg and Hjort (2014), which is designed for copulas estimated with pseudo maximum

likelihood (PML). In the PML framework, margins are estimated empirically, i.e. nonparametrically, while

two-stage ML assumes parametric forms of margins.

Our technical setting, identical to Ko and Hjort (2019), is as follows. Let (Y1, · · · , Yd)T be a d-variate

continuous stochastic variable originating from a joint density g(y1, · · · , yd) and let yi = (yi,1, · · · , yi,d)T,

for i = 1, . . . , n, be independent observations of this variable. The true joint distribution g is typically

unknown. Let f(y1, · · · , yd, η) be our parametric approximation of g, with the parameter vector η, belonging

to some connected subset of the appropriate Euclidean space. In addition, G and F (·, η) indicate cumulative

distribution functions corresponding to g and f(·, η), respectively. Here Gj(yj) and Fj(yj , αj) indicate j-th

marginal distribution functions corresponding to G and F (·, η) respectively, with αj as the parameter vector

belonging to margin component j.

According to Sklar’s theorem (Sklar, 1959), there always exists a copula C(u1, . . . , ud, θ) that satisfies

F (y1, · · · , yd, η) = C(F1(y1, α1), · · · , Fd(yd, αd), θ),

where the full parameter vector η is now blocked as

η = (αT, θT)T = (αT
1 , · · · , αdT, θT)T.

By assuming the regularity conditions from Ko and Hjort (2019), C(·, θ) can be differentiated,

f(y1, · · · , yd, η) = c (F1(y1, α1), · · · , Fd(yd, αd), θ)
d∏
j=1

fj(yj , αj),

where c(u1, . . . , ud) = ∂dC(u1, . . . , ud, θ)/∂u1 · · · ∂ud and fj(yj , αj) = ∂Fj(yj , αj)/∂yj . For further details of

copula modeling, see Joe (1997) and Nelsen (2006). Analogously, the true density g can also be decomposed

into marginal densities and the copula density

g(y1, · · · , yd) = c0 (G1(y1), · · · , Gd(yd))
d∏
j=1

gj(yj),

with c0(·) the true copula.

Note that the theories of CIC and AIC2ML, which we will develop in Section 2, should hold for both

continuous and discrete variables since the two-stage ML estimation keeps its properties in case of discrete
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variables. In this paper, however, we only consider the case of continuous variables for simpler notation and

exposition.

The further structure of this paper is as follows. In Section 2.1, we briefly explain Kullback–Leibler

divergence and its relationship to TIC and AICML. In Section 2.2, we derive and define our copula information

criterion. In Section 2.3, we prove that the AIC2ML formula holds under the two-stage ML estimation. In

Section 2.4, we summarize the relationship between TIC, CIC, AICML and AIC2ML. In Section 2.5, we

illustrate what CIC looks like in the two-dimensional setting and show how CIC easily can be extended

to the conditional copula setting. In Section 3, we study the numerical behavior of those model selection

criteria. In our final Section 4, we offer a few concluding remarks and suggestions for future research.

2. The copula information criterion for two-stage maximum likelihood estimation

2.1. Kullback–Leibler divergence

The Kullback–Leibler (KL) divergence from g to f measures how the density f diverges from g (Kullback

and Leibler, 1951) and is defined as

KL(g, f) =

∫
g(y) log

g(y)

f(y)
dy =

∫
g(y) log g(y)dy −

∫
g(y) log f(y)dy.

It is well known that the ML estimator aims for parameter values that minimize the Kullback–Leibler

divergence (Akaike, 1998).

Consider a case where one has competing models for certain data and the parameters are estimated by

ML. An arbitrary candidate model with ML parameter estimates can be denoted as f(y, η̂). (Throughout

this paper, we use ‘̂’ to indicate that a quantity is estimated with ML and ‘˜’ to indicate that a quantity is

estimated with two-stage ML.) Since g(y) is the same across all candidate models, minimizing KL divergence

is equal to maximizing Q(η̂) =
∫
g(y) log f(y, η̂)dy. This quantity is, however, not directly observable since

g(y) is unknown. As an alternative, one may use the empirical equivalent of Q(η̂):

Q̂(η̂) =
1

n
`(η̂) =

1

n

n∑
i=1

[
log f1(yi,1, α̂1) + · · ·+ log fd(yi,d, α̂d) + log c

(
F1(yi,1, α̂1), · · · , Fd(yi,d, α̂d), θ̂

)]
.

Yet, this estimator of Q(η̂) is a biased estimator. By identifying and subtracting the bias, we obtain an

approximately unbiased estimator of Q(η̂):

Q̂∗(η̂) =
1

n
`(η̂)− 1

n
tr
(
Î−1
η K̂η

)
.

where Îη is the observed information and K̂η is the estimated covariance matrix of the score vector.
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The TIC (Takeuchi, 1976) aims for the model that maximizes Q̂∗(η̂) and is defined as

TIC = 2`(η̂)− 2p̂∗η,TIC, (1)

where p̂∗η,TIC = tr
(
Î−1
η K̂η

)
. This shows that TIC is basically a scaled version of Q̂∗(η̂).

When one boldly makes the assumption that the candidate model is correct, i.e. contains the true data

generating mechanism, TIC simplifies to AICML, possibly the most well known model selection criterion in

statistics, which is defined as

AICML = 2`(η̂)− 2pη, (2)

where pη is the length of the parameter vector η. Note that the formula of TIC and AICML are only valid

if the parameters are estimated by the ML estimator. For more details about TIC and AICML, see chapter

2 of Claeskens and Hjort (2008).

2.2. Derivation of the copula information criterion

When the copula model is estimated with the two-stage ML, the bias correction term of TIC, i.e. p̂∗η,TIC,

is not valid. We derive the copula information criterion (CIC) which is analogous to TIC and is made for

copula models estimated with the two-stage ML.

When the copula model is estimated with the two-stage ML, the non-constant part of the KL divergence

is

Q(η̃) =

∫
g(y)

{
log f1(y1, α̃1) + · · ·+ log fd(yd, α̃d) + log c

(
F1(y1, α̃1), · · · , Fd(yd, α̃d), θ̃

)}
dy.

The empirical equivalent is

Q̃(η̃) =
1

n

n∑
i=1

[
log f1(yi,1, α̃1) + · · ·+ log fd(yi,d, α̃d) + log c

(
F1(yi,1, α̃1), · · · , Fd(yi,d, α̃d), θ̃

)]
.
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Now we check the bias of Q̃(η̃):

EG
[
Q̃(η̃)

]
−Q(η̃) = EG1

[
1

n

n∑
i=1

log f1(yi,1, α̃1)

]
−
∫
g(y1) log f1(y1, α̃1)dy1

+ · · ·

+ EGd

[
1

n

n∑
i=1

log fd(yi,d, α̃d)

]
−
∫
g(yd) log fd(yd, α̃d)dyd

+ EG

[
1

n

n∑
i=1

log c
(
F1(yi,1, α̃1), · · · , Fd(yi,d, α̃d), θ̃

)]

−
∫
g(y) log c

(
F1(y1, α̃1), · · · , Fd(yd, α̃d), θ̃

)
dy.

Since the parameters of marginals from stage 1 (α̃js) are obtained with ML estimation, we can directly use

the results from the derivation of TIC and obtain

EGj

[
1

n

n∑
i=1

log fj(yi,j , α̃j)

]
−
∫
g(yj) log f(yj , α̃j)dyj =

1

n
tr
(
I−1
αj
Kαj

)
+ o(n−1) =

1

n
p̃∗αj

+ o(n−1),

where

Kαj
= EGj

[
Uαj

(yj , α0,j)Uαj
(yj , α0,j)

T
]
,

Uαj (yj , αj) =
∂ log fj(yj , αj)

∂αj

and

Iαj = −EGj

[
∂2 log fj(yj , α0,j)

∂α0,j∂αT
0,j

]
.

In a nutshell, Iαj
is the Fisher information of j-th margin and Kαj

is the covariance matrix of the score

vector that belongs to j-th margin.

Further, let

Qc(η̃) =

∫
g(y) log c

(
F1(y1, α̃1), · · · , Fd(yd, α̃d), θ̃

)
dy

and

Q̃c(η̃) =
1

n

n∑
i=1

log c
(
F1(yi,1, α̃1), · · · , Fd(yi,d, α̃d), θ̃

)
.
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So, we can write

EG

[
Q̃(η̃)

]
−Q(η̃) =

1

n

d∑
j=1

tr
(
I−1
αj
Kαj

)
+ EG

[
Q̃c(η̃)

]
−Qc(η̃) + o(n−1).

Now, EG

[
Q̃c(η̃)

]
−Qc(η̃) is the only element that should be evaluated. Let

Qc(η0) =

∫
g(y) log c (F1(y1, α0,1), · · · , Fd(yd, α0,d), θ0 ) dy,

Zi = log c (F1(yi,1, α0,1), · · · , Fd(yi,d, α0,d), θ0 )−Qc(η0),

and

Aη =
√
n (η̃ − η0) =

√
n

 Iα 0

ITα,θ Iθ

−1 Un,α(α0)

Un,θ(α0, θ0)

+

op(1)

op(1)

 ,

which stems from Proposition 1 in Ko and Hjort (2019), and furthermore

Un,η(η) =
1

n

n∑
i=1

Uη(yi, η) =
1

n

n∑
i=1

∂ log c (F1(yi,1, α1), · · · , Fd(yi,d, αd), θ)
∂η

,

Hn,η(η) =
1

n

n∑
i=1

Hη(yi, η) =
1

n

n∑
i=1

∂2 log c (F1(yi,1, α1), · · · , Fd(yi,d, αd), θ)
∂η∂ηT

,

and

I∗η = −EG [Hη(y, η0)] = −
∫
g(y)Hη(y, η0) dy,

which, incidentally, should not be confused with Iη in Proposition 1 of Ko and Hjort (2019). Then we have

E[Zn] = 1
n

∑n
i=1 E[Zi] = 0, along with

Q̃c(η̃) =
1

n

n∑
i=1

log c(yi, η̃)

=
1

n

n∑
i=1

[
log c(yi, η0)−Qc(η0) +Qc(η0) + (η̃ − η0)TUη(yi, η0) +

1

2
(η̃ − η0)THη(yi, η0)(η̃ − η0)

]
+ op(n

−1)

=
1

n

n∑
i=1

[Zi] +Qc(η0) + (η̃ − η0)TUn,η(η0) +
1

2
(η̃ − η0)THn,η(η0)(η̃ − η0) + op(n

−1)

= Qc(η0) + Zn +
1√
n
AT
η Un,η(η0) +

1

2n
AT
ηHn,η(η0)Aη + op(n

−1),
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Qc(η̃) =

∫
g(y) log c

(
F1(y1, α̃1), · · · , Fd(yd, α̃d), θ̃

)
dy

=

∫
g(y)

[
log c(y, η0) + (η̃ − η0)TUη(y, η0) +

1

2
(η̃ − η0)THη(y, η0)(η̃ − η0)

]
dy + op(n

−1)

=

∫
g(y) log c(y, η0) dy + (η̃ − η0)T

∫
g(y)Uη(y, η0) dy +

1

2
(η̃ − η0)T

∫
g(y)Hη(y, η0) dy · (η̃ − η0) + op(n

−1)

= Qc(η0) + (η̃ − η0)T · 0 +
1

2n

√
n(η̃ − η0)T

∫
g(y)Hη(y, η0) dy ·

√
n(η̃ − η0) + op(n

−1)

= Qc(η0)− 1

2n
AT
η I∗ηAη + op(n

−1),

and

n
(
Q̃c(η̃)−Qc(η̃)

)
= nZn +

√
nAT

η Un,η(η0) +
1

2
AT
ηHn,η(η0)Aη +

1

2
AT
η I∗ηAη + op(1).

Further, note that

Un,η(η0) =
1

n

n∑
i=1

∂ log c (F1(yi,1, α0,1), · · · , Fd(yi,d, α0,d), θ0)

∂η0

has the following convergence, by the central limit theorem:

√
nUn,η(η0) =

√
n (Un,η(η0)− E [Uη(Y, η0)])

d→ Λ∗
η ∼ N

(
0,K∗

η

)
,

where K∗
η = Var (Uη(y, η0)) = E

[
Uη(y, η0)Uη(y, η0)T

]
. (Here Λ∗

η and K∗
η should not be confused with Λη

and Kη in Proposition 1 of Ko and Hjort (2019).)

Now we evaluate EG

[
n(Q̃c(η̃)−Qc(η̃))

]
:

EG

[
n
(
Q̃c(η̃)−Qc(η̃)

)]
= EG

[
nZn +

√
nAT

η Un,η(η0) +
1

2
AT
ηHn,η(η0)Aη +

1

2
AT
η I∗ηAη

]
+ o(1)

p→ EG

[(
I−1
η Λη

)T
Λ∗
η

]
= EG

[
tr
(
I−1
η Λη

(
Λ∗
η

)T)]
= tr

(
I−1
η EG

[
Λη(Λ∗

η)T
])

= tr
(
I−1
η K◦

η

)
= p∗θ,

where

K◦
η = EG

[
Λη(Λ∗

η)T
]

= EG

Λα (Λ∗
α)

T
ΛαΛT

θ

Λθ (Λ∗
α)

T
ΛθΛ

T
θ

 =

 K◦
α Kα,θ(

K∗
α,θ

)T
Kθ

 .
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It is practical to note that

tr
(
I−1
η K◦

η

)
= tr


 Iα 0

ITα,θ Iθ

−1 K◦
α Kα,θ(

K∗
α,θ

)T
Kθ




= tr

 I−1
α K◦

α I−1
α Kα,θ

−I−1
θ ITα,θI−1

α K◦
α + I−1

θ

(
K∗
α,θ

)T
−I−1

θ ITα,θI−1
α Kα,θ + I−1

θ Kθ


= tr

I−1
α K◦

α 0

0 −I−1
θ ITα,θI−1

α Kα,θ + I−1
θ Kθ

 .

Consistent estimators for I−1
αj

, Kαj
, I−1

η and K◦
η can be obtained by using plug-in sample averages. The

consequent estimators are denoted as Ĩ−1
αj

, K̃αj
, Ĩ−1

η , K̃◦
η . For regularity conditions that ensure convergence

in probability, see Jullum and Hjort (2017).

Thus, the unbiased estimator of Q(η̃) is

Q̃∗(η̃) =
1

n
`n(η̃)− 1

n

 d∑
j=1

tr
(
Ĩ−1
αj
K̃αj

)
+ tr

(
Ĩ−1
η K̃◦

η

) .

By defining p̃∗αj
= tr(Ĩ−1

αj
K̃αj ), p̃∗θ = tr(Ĩ−1

η K̃◦
η ), p̃∗η =

∑d
j=1 p̃

∗
αj

+ p̃∗θ and scaling Q̃∗(η̃), we can finally define

the copula information criterion as

CIC = 2`n(η̃)− 2p̃∗η. (3)

2.3. AIC for two-stage maximum likelihood estimator

The CIC, derived in Section 2.2, is a model robust model selection criterion. This means that the CIC

does not assume that the parametric model includes the true model that generated data. In this section

we show that, if we do make such a true model assumption, the CIC simplifies to the AIC2ML. To our

knowledge, this is the first time that the validity of the AIC2ML formula is proven for the two-stage ML

estimator.

Lemma 1. Under the assumption that the margins and copula are correctly specified, it holds that K◦
α =

Iα −Kα.

Proof. Assume the candidate model worked with contains the true data generating mechanism, i.e. that
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f = g at the relevant parameter point. Then

0 =
∂EG [Uα(y, α0)]

T

∂α0

=
∂

∂α0

∫
f
∂
∑d
j=1 log fj

∂αT
0

dy

=

∫
∂f

∂α0

∂
∑d
j=1 log fj

∂αT
0

+ f
∂2
∑d
j=1 log fj

∂α0∂αT
0

dy

=

∫
f
∂ log f

∂α0

∂
∑d
j=1 log fj

∂αT
0

+ f
∂2
∑d
j=1 log fj

∂α0∂αT
0

dy

=

∫
f

(
∂
∑d
j=1 log fj

∂α0
+
∂ log c

∂α0

)
∂
∑d
j=1 log fj

∂αT
0

+ f
∂2
∑d
j=1 log fj

∂α0∂αT
0

dy

=

∫
f
∂
∑d
j=1 log fj

∂α0

∂
∑d
j=1 log fj

∂αT
0

dy +

∫
∂ log c

∂α0

∂
∑d
j=1 log fj

∂αT
0

dy +

∫
f
∂2
∑d
j=1 log fj

∂α0∂αT
0

dy

= EG
[
Uα(y, α0)Uα(y, α0)T

]
+ EG

[
U∗
α(y, α0)Uα(y, α0)T

]
− EG [−Hα(y, α0)]

= Kα +K◦
α − Iα.

If we make the true model assumption (i.e. f = g), we have from the classical results of maximum

likelihood theory that Iαj
= Kαj

. This implies that we have for the bias correction term in the marginal

parameters p∗αj
= tr(I−1

αj
Kαj ) = dim(αj), for each j.

For the bias correction term in the copula parameters part, the true model assumption results in Lemma 1.

Combining Lemma 1 with Lemmas 3 and 5 from Ko and Hjort (2019) gives

tr
(
I−1
η K◦

η

)
= tr

I−1
α K◦

α 0

0 −I−1
θ ITα,θI−1

α Kα,θ + I−1
θ Kθ


= tr

I − I−1
α Kα 0

0 I


= tr

0 0

0 I

 = dim(θ).

Thus, the unbiased estimator Q̃∗(η̃) can be simplified as

Q̃∗(η̃) =
1

n
`n(η̃)− 1

n

 d∑
j=1

dim(αj) + dim(θ)

 .
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By defining pη =
∑d
j=1 dim(αj) + dim(θ) = dim(η) and scaling Q̃∗(η̃), we obtain AIC2ML for the two-stage

ML estimated copula models

AIC2ML = 2`n(η̃)− 2pη. (4)

Compared to AICML from Section 2.1, the only difference is that the log-likelihood is now estimated under

the two-stage ML instead of ML, i.e. we use η̃ instead of η̂.

2.4. Relationship between the model selection criteria

So far, we have discussed four model selection criteria for copula models. Table 1 offers an overview of

the relationship between them. When the model (i.e. both copula and margins) is correctly specified, CIC

and AIC2ML become equal, and the same happens between TIC and AICML. Thus, one can compare CIC

and AIC2ML (or TIC and AICML in case of ML estimation) to check whether the model is correctly specified.

Further, since both CIC and TIC are estimating the same part of the KL divergence under the same

model robust environment, they are compatible. This implies that one can compare CIC to TIC to measure

how much one loses in terms of KL divergence by using two-stage ML estimation instead of ML estimation.

The same can be done by comparing AIC2ML to AICML when one believes in the model. However, one

should not compare CIC with AICML (or TIC with AIC2ML) since they are based on two different model

beliefs (i.e. presence of the true model assumption). Figuratively speaking, one would in that situation be

comparing comparing apples with pears.

Model robust

Yes No

Estimation
ML TIC AICML

2ML CIC AIC2ML

Table 1: An overview of the relationship between model selection criteria discussed in this paper.

2.5. Illustration for two-dimensional case and extension to the conditional copula regression.

To make things more concrete, we now give an example of the two-dimensional case with (Y1, Y2) from

the unknown g(y). As candidate margins we choose a two-parameter distribution (e.g. normal, gamma,

Weibull, etc.) for both F1 and F2. For the copula part, we choose a one-parameter copula (e.g. Gumbel,

Frank, Clayton, etc.). The candidate model then has the form

f(y1, y2, η) = c (F1(y1, α1), F2(y2, α2), θ) · f1(y1, α1) · f2(y2, α2),

11



where η = (α1,1, α1,2, α2,1, α2,2, θ)
T. The ingredients for the CIC can then be written down by using the

block matrix form, in line with Ko and Hjort (2019):

Kη =


Kα1 Kα1,α2 Kα1,θ

Kα2,α1
Kα2

Kα2,θ

KT
α1,θ

KT
α2,θ

Kθ

 , Iη =


Iα1 0 0

0 Iα2
0

ITα1,θ
ITα2,θ

Iθ

 , K◦
η =


K◦
α1

K◦
α1,α2

Kα1,θ

K◦
α2,α1

K◦
α2

Kα2,θ(
K∗
α1,θ

)T (
K∗
α2,θ

)T
Kθ

 .

We consequently have

p∗η = p∗α1
+ p∗α2

+ p∗θ

= tr
(
I−1
α1
Kα1

)
+ tr

(
I−1
α2
Kα2

)
+ tr

(
I−1
η K◦

η

)
= tr

(
I−1
α1
Kα1

)
+ tr

(
I−1
α2
Kα2

)
+ tr

(
I−1
α1
K◦
α1

)
+ tr

(
I−1
α2
K◦
α2

)
+ tr

(
−I−1

θ I
T
α1,θ I

−1
α1
Kα1,θ − I−1

θ I
T
α2,θ I

−1
α2
Kα2,θ + I−1

θ Kθ

)
.

More generally, we can consider the conditional copula regression where all marginal distributions and

copula are conditioned on the k-variate covariate X parametrically. Patton (2002) extends the existing

theories of copula to the conditional copula setting, including the conditional version of Sklar’s theorem,

which gives conditional copula density

f(y1, · · · , yd, η|x) = c (F1(y1, α1|x), F2(y2, α2|x), θ|x) · f1(y1, α1|x) · f2(y2, α2|x).

For simplicity, we consider the case where the copula parameter θ is modeled by the linear calibration

function with θ = Xβ where β = (β0, · · · , βk)
T

is a k + 1 dimensional parameters. We can then consider

β as the copula parameter instead of θ, which results in η = (α1,1, α1,2, α2,1, α2,2, β0, · · · , βk)T. One can

easily define matrices Kη, Iη and K◦
η accordingly. For details about conditional copula regression, see Patton

(2006), Acar et al. (2013) and Palaro and Hotta (2006).

3. Simulation studies

To study the behavior of CIC, we have performed a set of simulation studies. Simulation 1 studies the

similarity between CIC and AIC2ML and whether the models with higher CIC or AIC2ML scores are indeed

‘better’ models in practice. Simulation 2 focuses on the difference in the behavior of CIC and AIC2ML. In

particular, we analyze whether CIC outperforms AIC2ML in practice.

12



3.1. Simulation 1

In simulation 1, we generated a dataset of size n = 1000 with the model described in Table 2. We then,

with this dataset, fitted 324 different copula models, which are based on the possible combinations of the

candidate copulas and margins described in Table 3. Further, P(q0.7 < Y ) was computed from every fitted

model. Here, q0.7 is a vector that contains the 0.7-quantile value of each margin according to the true model.

i.e. q0.7 =
(
G−1

1 (0.7), · · · , G−1
4 (0.7)

)
. We repeated this process 1000 times and averaged the results.

Table 2: Description of the data generating model used in simulation 1.

Copula Margin 1 Margin 2 Margin 3 Margin 4

Data generating

model

Gumbel

θ = 3

Weibull

α1 = (1.5, 4)T

(shape, scale)

Weibull

α2 = (2, 3)T

(shape, scale)

Gamma

α3 = (2, 1)T

(shape, rate)

Gamma

α4 = (3, 1)T

(shape, rate)

Table 3: List of the candidate copulas and margins used in simulation 1

Candidates

Copula Gumbel, Gaussian, Frank, Survival Clayton

Margin 1 Weibull, Gamma, Log-normal

Margin 2 Weibull, Gamma, Normal

Margin 3 Gamma, Weibull, Log-normal

Margin 4 Gamma, Weibull, Log-normal

Figure 1 displays the relationship between mean squared error of estimated P(q0.7 < Y ) and CIC and

AIC2ML. We can see that both model selection criteria evaluate the models that have lower mean squared

error as better models. The difference between CIC and AIC2ML in this perspective is minimal. This is

because the log-likelihood, the element that is shared by both model selection criteria, has much bigger

absolute value than the bias correction term and dominate the criteria. The difference between CIC and

AIC2ML (the misalignment between the black triangles and the red crosses in the figure) is caused by the

difference in their bias correction part alone. Further, the model ranks determined by CIC and AIC2ML

are highly similar and both model selection criteria successfully picked the true data generating model as

the best model in all 1000 repetitions. In short, Figure 1 illustrates that the KL-divergence based model

selection criteria that we introduced for two-stage ML estimation (e.g. CIC and AIC2ML) show the desired

behavior in practice.
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Figure 1: Result from simulation 1. On the x-axis is the value of CIC or AIC2ML. The 324 different copula models, defined

by using the candidate copulas and margins described in Table 3, are fitted to the dataset generated from the data generating

model described in Table 2. The y-axis is the mean squared error of P̃(q0.7 < Y ), which indicates the two-stage ML estimated

joint probability that each marginal variable has larger value than its 0.7-quantile value, defined by the data generating model.

Figure 2 uses the same mean squared error as in Figure 1, but the x-axis is now the bias correction

term (p̃∗η for CIC and pη for AIC2ML). The difference between CIC and AIC2ML is now more clear. While

pη (dimension of the parameter vector η) for AIC2ML is either 9 or 14 depending on the total number of

parameters in the model, p̃∗η tends to penalize misspecified models more and forms a strong relationship with

the mean squared error of estimated P(q0.7 < Y ).

14



10 15 20 25

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Bias correction term (p*η or pη)

10
3

×
 M

S
E

(P
)

CIC
AIC2ML

CIC (trend)

Figure 2: Result from simulation 1. The 324 different copula models, defined by using the candidate copulas and margins

described in Table 3, are fitted to the dataset generated from the data generating model described in Table 2. The y-axis is the

mean squared error of P̃(q0.7 < Y ). The x-axis is the value of the bias correction terms in model selection criteria (p̃∗η for CIC

and pη for AIC2ML).

3.2. Simulation 2

In simulation 1, we observed that CIC penalizes misspecified models more in its bias correction part,

which is a feature that AIC2ML does not have. Does it imply that CIC should outperform AIC2ML when

they disagree on the model? To find an answer to this question and to study the difference in the behavior of

AIC2ML and CIC in detail, we performed simulation 2. Although we tried different combinations of copulas

and margins, they all led to the same conclusion. Hence, we only display some chosen representative results.

Like we saw in Section 3.1, the difference between CIC and AIC2ML is fairly small because of the domi-

nance of the log-likelihood part. This means that there are not that many situations in practice where CIC

and AIC2ML disagree, especially when the sample size is large. So, we have to look into situations where the

difference between two competing models is relatively small. We mimicked such a situation by letting the

data come from a mixture of the two models. Another advantage of this simulation design is that it allows us
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to study the situation where there is no ‘true model’ on the candidate model list (when the ‘contamination’

parameter δ is away from its boundaries).

In simulation 2, we generated datasets of 4 different sizes (n = 100, 200, 500, 1000) from the two models

described in Table 4. The data generating algorithm generated (1 − δ) · 100% of data points from model 1

and δ · 100% of data points from model 2. So, δ can be seen as the degree of ‘contamination’ to model 1 by

model 2. Then, we fitted both model 1 and model 2 to these data by using two-stage ML. This process was

repeated 10000 times. We used δ = 0, 0.05, · · · , 0.95, 1.

Note that the copulas used in model 1 and 2 are easily distinguishable with reasonable sample size (e.g.

200), since Clayton copula has stronger lower tail dependence than Frank copula. This enables us to observe

different degrees of misspecification with varying δ values.

Table 4: Description of the models used in simulation 2.

Dependence measure Copula Margin 1 Margin 2

Model 1
Kendall’s τ = 0.56

Spearman’s ρ = 0.76

Frank

θ = 7

Log-normal

α1 = (0.9, 0.8)T

(mean, SD)

Log-normal

α2 = (0.3, 0.8)T

(mean, SD)

Model 2
Kendall’s τ = 0.60

Spearman’s ρ = 0.79

Clayton

θ = 3

Weibull

α1 = (1.5, 4)T

(shape, scale)

Gamma

α2 = (2, 1)T

(shape, rate)

From Figure 3, we can first confirm our theoretical finding from Section 2.3 that CIC and AIC2ML become

equal when the model is correctly specified. (For model 1, it is when δ = 0 and for model 2, it is when

δ = 1.) As the degree of model misspecification grows (for model 1, it is when δ moves towards 1 and for

model 2, it is when δ moves towards 0), the two model selection criteria diverge from each other. To be

more specific, CIC always has smaller value than AIC2ML. Since the only difference between the two model

selection criteria is the bias correction part and the bias correction part of AIC2ML is constant for all values

of δ, this can only imply that p̃∗η gets larger as the degree of misspecification grows. The divergence between

CIC and AIC2ML gets smaller and smaller as the sample size (n) grows. This is because the size of the

log-likelihood part of grows linearly with the sample size while the bias correction part does not.
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Figure 3: Result of simulation 2. The y-axis is the value of CIC or AIC2ML. The x-axis is δ, the proportion of data points

generated by model 2 described in Table 4. The remaining (1−δ) ·100% data points were generated by model 1. The simulation

was repeated 10000 times and the results were averaged. The blue dashed vertical line is δ = 0.5.

Figure 4 shows how often each model is chosen as the best model by each model selection criterion. One

could intuitively think that CIC should choose the ‘more correct’ model (which is model 1 for δ < 0.5 and

model 2 for δ > 0.5) more often than AIC2ML since CIC is a model robust model selection criterion and the

misspecified model gets penalized by p̃∗η. However, the result shows that this is not the case. Figure 4 shows
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that CIC always prefers model 1 above model 2, both when δ < 0.5 and δ > 0.5. We tried many different

copulas and margins and CIC always preferred a certain model across all range of δ. Which model was

preferred, depended on the combinations of copula and margins. Figure 5, where we plot the bias correction

term against δ, explains this phenomenon. At a first glance, we can observe that p̃∗η and pη are equal when

the model is correctly specified and that p̃∗η grows as the degree of model misspecification increases. The

key thing is that this growth happens in both models and that each model has its own speed of growth for

p̃∗η. Back to AIC2ML, since both model 1 and 2 have same number of parameters, the model with higher

log-likelihood value becomes the ‘winning model’. In other words, whether AIC2ML choose model 1 or 2 as

winning model, depends on

sgn
(˜̀
n,M1 − ˜̀n,M2

)
,

where ˜̀n,Mj indicates the under two-stage ML maximized log-likelihood value of model j. So, CIC and

AIC2ML disagree on the winning model if and only if

sgn
(˜̀
n,M1 − ˜̀n,M2

)
6= sgn

(˜̀
n,M1 − ˜̀n,M2 − (p̃∗η,M1 − p̃∗η,M2)

)
, (5)

where p̃∗η,Mj indicates the bias correction term of model j, as in (3). Thus, if p̃∗η,M1 < p̃∗η,M2, CIC chooses

model 2 more often as winning model (relatively to AIC2ML). If the inequality holds in opposite direction,

CIC chooses model 1 more often as winning model (again, relatively to AIC2ML). From Figure 5, we see that

both p̃∗η,M1 and p̃∗η,M2 have value close to 5, when the model is correctly specified, but as the misspecification

appears, p̃∗η,M2 grows faster than p̃∗η,M1. (This is also visible by the fact that the point where p̃∗η,M1-curve

and p̃∗η,M2-curve cross each other lies far more right to δ = 0.5.) Combining this growth speed difference

with (5), it is logical that CIC chooses model 1 more often as winning model compared to AIC2ML.

To sum up, CIC, compared to AIC2ML, chooses the model with smaller value of p̃∗η more often as winning

model, which in practice is not necessarily more correct model as we noticed in Figure 4.
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Figure 4: Result of simulation 2. The y-axis is what we call ‘winning rate (WR)’, the proportion among 10000 repetitions that

the concerning model (model 1 or model 2) is picked as the best model according to the model selection criterion of choice

(CIC or AIC2ML). The x-axis is δ, the proportion of data points generated by model 2 described in Table 4. The remaining

(1 − δ) · 100% data points were generated by model 1. The blue dashed vertical line is δ = 0.5.
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Figure 5: Result of simulation 2. The y-axis is the value of bias correction term (p̃∗η for CIC and pη for AIC2ML). The x-axis

is δ, the proportion of data points generated by model 2 described in Table 4. The remaining (1 − δ) · 100% data points were

generated by model 1. The simulation was repeated 10000 times and the results were averaged. The blue dashed vertical line

is δ = 0.5.

Interestingly, there does exist a situation where, theoretically at least, the difference in p̃∗η between

two competing models always favors the correct model: When one of the two model is the ‘true model’.

i.e. δ = 0 or 1. In this case, as one can see in Figure 5, p̃∗η of the correct model will be (almost) equal to pη,

while p̃∗η of the misspecified model will outgrow pη. So, there is no issue of growth speed difference. However,
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in this situation, the log-likelihood of the ‘true model’ will be much higher than that of the misspecified

model. So, the AIC2ML would also be able to point the true model as winning model. (e.g. Winning rate

close to 1 in Figure 4 when δ = 0 or 1.) So, in practice, there will be no noticeable advantage of CIC in this

situation.

Furthermore, the fact that p̃∗η gets lower than pη in lower sample sizes is because of the estimation errors

involved in estimating matrices as mentioned in Section 2.3 of Burnham and Anderson (2003).

4. Conclusions and further research

In this paper, we have developed the copula information criterion (CIC), which is a TIC-like model

robust model selection criterion for two-stage ML estimated copulas. When we make an assumption that

the parametric candidate model contains the true model, CIC becomes equal to AIC2ML. This validates the

use of AIC2ML for the two-stage ML estimated copula models. To our knowledge, this is the first time that

AIC2ML formula is analytically justified. Further, since both TIC and CIC are estimating the same part of

the KL divergence, without the presence of the true model assumption, they are compatible to each other

and can be used to check possible disadvantages caused by the two-stage ML estimation. The same can be

done by comparing AICML and AIC2ML, when one believes in the model.

Regarding the assumption that a candidate model is correct, one can compare p̃∗η (bias correction term of

CIC) and pη (bias correction term of AIC2ML) to check whether the model severely diverges from the data

generating model, i.e. as a separate goodness-of-fit test. It may be noted that the job of the CIC is to rank

models according to a sensible criterion, and to identify the best ones, but doing well in this ranking is not

the same as claiming that the model passes goodness-of-fit tests. In yet other words, the winning model,

using the CIC, may still not be a perfect model, perhaps since the list of candidate models has not been the

best.

We performed a set of simulation studies. In the first simulation study, we observed that CIC and

AIC2ML have strong agreement in how they rank the model and that the ‘better models’ according to CIC

and AIC2ML show better prediction performance (measured in MSE). In addition, p̃∗η alone has a strong

correlation with the prediction performance. So, one could consider to utilize p̃∗η as an extra tool to evaluate

the model. (We showed earlier that p̃∗η can be used to measure the divergence of a candidate model from

the true model.)

In the second simulation study, we showed that CIC and AIC2ML are indeed identical when the model is

correctly specified. The two model selection criteria diverge from each other as the degree of misspecification

gets larger. The difference between CIC and AIC2ML however becomes smaller and smaller as sample size

increases, because the log-likelihood part grows much faster than the bias correction part.

Further, we showed that when CIC and AIC2ML disagree on the winning model, CIC does not necessarily
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outperforms AIC2ML. CIC has tendency to prefer a model that shows slow growth p̃∗η of when the degree

of model misspecification increases. Further, CIC should theoretically outperform AIC2ML in the situation

when there is true model on the candidate model list. However, in practice, this effect is shadowed by the

log-likelihood term which dominates the criterion because the fit of the true model is much better than the

misspecified model. In this regard, AIC2ML already picks the true model as the best model and there is

almost no space for CIC to outperform AIC2ML. Hence, no real practical advantage of CIC over AIC2ML.

Moreover, CIC requires large sample sizes to estimate its bias correction elements accurately and when sample

size is large, the dominance of log-likelihood term gets even larger. In this sense, AIC2ML is a parsimonious

approach to CIC. These practical issues are also the reason why TIC is rarely applied in practice for ML

estimated models (Burnham and Anderson, 2003).

Because of the large number of possible models in high dimensional settings, the number of situations

that we could examine was limited. (In case of a 4-dimensional copula model with 5 candidate copulas and

3 candidate margins for each variable, there are 324 models that we have to test.) Another problem was

that we could not try all copulas and margins on the simulated data since fitting a heavily misspecified

copula and margins would cause numerical problems. A further large-scale simulation study that examines

the behavior of different types of copulas in variety of situations would be fruitful.

Furthermore, CIC is computationally expensive mainly because K̃◦
α, K̃α,θ and K̃θ require score functions

for every data point separately. For example, for Ĩ−1
α and Ĩθ, one can avoid this by swapping the order of

summation and differentiation, but for K̃◦
α, K̃α,θ and K̃θ, this is not possible. A numerical technique that

can make CIC less computationally extensive would be appreciated.

Theoretically, CIC can be directly applied to pair-copula constructions as long as one uses two-stage ML

for estimation. A pair-copula construction is after all just a special case of high-dimensional copula (Aas

et al., 2009). However, in practice, it can be difficult to estimate all the necessary components due to the

large number of parameters.

Although CIC and AIC2ML perform decently well in selecting a good model that fits the data best in

terms of KL divergence, there are situations where one is interested in a model that is suitable for specific

tasks. The task of interest could be for example estimating tail probabilities, the mean, or the median. The

authors of this study are currently developing a model selection criterion that can take this into account, for

copula models under the two-stage ML scheme (Ko et al., 2019).
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