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Abstract This paper is concerned with properties of permutation matrices
and alternating sign matrices (ASMs). An ASM is a square (0,±1)-matrix
such that, ignoring 0’s, the 1’s and −1’s in each row and column alternate,
beginning and ending with a 1. We study extensions of permutation matrices
into ASMs by changing some zeros to +1 or −1. Furthermore, several prop-
erties concerning the term rank and line covering of ASMs are shown. An
ASM A is determined by a sum-matrix Σ(A) whose entries are the sums of
the entries of its leading submatrices (so determined by the entries of A). We
show that those sums corresponding to the nonzero entries of a permutation
matrix determine all the entries of the sum-matrix and investigate some of
the properties of the resulting sequence of numbers. Finally, we investigate
the lattice-properties of the set of ASMs (of order n), where the partial order
comes from the Bruhat order for permutation matrices.

Keywords Permutation matrix · alternating sign matrix · term rank · line
covering · Bruhat order

1 Introduction

An alternating sign matrix, abbreviated to ASM, is an n × n (0,±1)-matrix
such that, ignoring 0’s, the 1’s and −1’s in each row and column alternate,
beginning and ending with a 1. An n × n ASM A can be regarded as the
adjacency matrix of a signed bipartite graph B whose vertices in each set of its
bipartition have a specified order (to account for the alternating sign property).
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Thus, B has a vertex for each row and column of the matrix A = [aij ], and an
edge between a row vertex i and a column vertex j when the corresponding
entry aij is nonzero, and associated to that edge is the sign of the entry
aij . The set of n × n ASMs is denoted by An. Permutation matrices are the
ASMs without any −1’s. We denote by Pn the set of n × n permutation
matrices corresponding to the set Sn of permutations of {1, 2, . . . , n}. Thus
Pn ⊆ An. If π = (π1, π2, . . . , πn) ∈ Sn, the corresponding permutation matrix
has its ones in positions (i, πi) (i ≤ n). We will also use the shorter notation
π = (π1π2 · · ·πn). Some recent developments concerning ASMs, related objects
and generalizations may be found in [4], [5] and [6].

There is a partial order defined on the set Sn (and so on Pn) called the
Bruhat order and denoted by �B . If σ, τ ∈ Sn, then σ �B τ (read as, σ
precedes τ in the Bruhat order) provided σ can be obtained from τ by a se-
quence of transpositions (k, l) (interchanging k and l in a permutation) each
of which decreases the number of inversions. The cover relation in this partial
order results when one transposition is applied and it decreases the number
of inversions by exactly one. The unique minimal permutation in the partially
ordered set (Sn,�B) is the identity permutation, denoted as ιn = (1, 2, . . . , n),
and the unique maximal permutation is the so-called anti-identity permutation,
denoted as ζn = (n, n− 1, . . . , 1). If σ �B τ , and σ and τ have corresponding
permutation matrices P and Q, then we also write P �B Q. The minimal
permutation matrix and maximal permutation matrix are, respectively, the
n× n identity matrix In and n× n anti-identity matrix (with 1’s on the anti-
diagonal) Ln. For more on the Bruhat order, and the so-called Bruhat shadow
of a permutation matrix, see [3].

There is an equivalent, and computationally efficient, way to determine
whether or not two permutations are related in the Bruhat order, best de-
scribed in terms of their corresponding permutation matrices. It requires only
the comparison of (n − 1)2 pairs of integers, after having computed certain
sum-matrices, as defined next. For any m × n matrix A = [aij ], define the
sum-matrix of A, denoted Σ(A) = [σij ] to be the m× n matrix where

σij = σij(A) =
∑
k≤i

∑
l≤j

akl (1 ≤ i ≤ m, 1 ≤ j ≤ n),

the sum of the entries in the leading i × j submatrix of A. If P is an n × n
permutation matrix, then the entries in the last row and last column of Σ(A)
are 1, 2, . . . , n in that order. Note that if P is a permutation matrix, then
P−1 = PT , so Σ(P−1) = Σ(PT ) = Σ(P )T . Let the entrywise ordering of two
matrices A and B be written as A ≤ B. Let Σ(Pn) := {Σ(P ) : P ∈ Pn}. The
characterization of Bruhat order in terms of sum-matrices is stated next (see
[1] for a proof).

Lemma 1 Let P,Q ∈ Pn. Then P �B Q if and only if

Σ(P ) ≥ Σ(Q),

that is, Σ(P ) dominates Σ(Q) entrywise.
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The Bruhat order on Pn can be extended to a Bruhat order on alternating
sign matrices using sum-matrices: For A1, A2 ∈ An, then A1 �B A2 provided
Σ(A1) ≥ Σ(A2). In the next theorem we summarize some of the results of Las-
coux and Schützenberger [12] which, in particular, contain a characterization
of ASMs in terms of their sum-matrices. Let Σ(An) := {Σ(A) : A ∈ An}.

Theorem 1 The partially ordered set (An,�B) is a lattice and is the smallest
lattice extending the partially ordered set (Pn,�B), the MacNeille completion
of (Pn,�B). The set Σ(An) consists of the set Σn of all n × n nonnegative
integral matrices X = [xij ] satisfying the following properties for each i =
1, 2, . . . , n :

(LS-a) The integers in row i and in column i are taken from the set {0, 1, . . . , i},
beginning with a 0 or 1, and ending with i.

(LS-b) The integers in row i and in column i are nondecreasing.
(LS-c) Two consecutive entries in row i and in column i are equal or differ by 1.

There is a generalization of a permutation interchange that applies to n×n
ASMs, namely, adding an interchange-matrix T i,jn which is all zeros except for
its 2×2 matrix determined by rows i and i+ 1 and columns j and j+ 1 which
equals [

+1 −1
−1 +1

]
(1 ≤ i, j ≤ n− 1).

Then it follows from [12] (see also Lemma 2 in [8]) that if A1, A2 ∈ An, then
A1 �B A2 if and only if A1 can be obtained from A2 by sequentially adding
matrices of the form T i,jn where the result of each addition is also an ASM.

A matrix is uniquely determined by its sum-matrix since we can recover
A = [aij ] from Σ(A) = [σij ] as follows:

aij = σij − σi−1,j − σi,j−1 + σi−1,j−1

where σ0,j = σi,0 for all i and j. Thus the mapping Σ : An → Σn given by
A→ Σ(A) is a bijection. The sum-matrices of the minimal and maximal n×n
ASMs have the special forms shown for n = 6:

Σ(I6) =


1 1 1 1 1 1
1 2 2 2 2 2
1 2 3 3 3 3
1 2 3 4 4 4
1 2 3 4 5 5
1 2 3 4 5 6

 and Σ(L6) =


0 0 0 0 0 1
0 0 0 0 1 2
0 0 0 1 2 3
0 0 1 2 3 4
0 1 2 3 4 5
1 2 3 4 5 6

 .

Thus the sum-matrix of every n × n ASM lies entrywise between Σ(Ln) and
Σ(In), that is, each entry of Σ(In), respectively, Σ(Ln), is at least as large (at
most as large) as the corresponding entry of the sum-matrix of every A ∈ An.

Let Σ̂(An) be the convex hull of Σ(An). From a proof in connection with
the notion of sum-majorization in [4] we get the following characterization of

the polytope ̂Σ(An).
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Theorem 2 The polytope ̂Σ(An) equals the set of n×n real matrices S = [σij ]
satisfying

0 ≤ σij − σi−1,j ≤ 1 (1 ≤ i, j ≤ n)
0 ≤ σij − σi,j−1 ≤ 1 (1 ≤ i, j ≤ n)

σi,n = i (1 ≤ i ≤ n)
σn,j = j (1 ≤ j ≤ n)

(1)

where we define σ0,j = σi,0 = 0 for all i and j. The set of extreme points of̂Σ(An) equals the set Σ(An) of sum-matrices of the n× n ASMs.

This paper is organized as follows. In Section 2 we study extensions of
permutation matrices to ASMs obtained by changing some zeros (possibly
none) into +1 or −1. König properties of ASMs are studied in Section 3 where,
by this, we mean the term rank and the structure of minimum line coverings
of such matrices. In Section 4, we investigate in more detail sum-matrices and
show that in the case of n × n permutation matrices, at most n entries of
the sum-matrix are needed to recover the permutation matrix from its sum-
matrix. In Section 5 we investigate certain lattice properties of the Bruhat
order.

2 ASM-extensions

Let P be an n×n permutation matrix. Let αn(P ) denote the number of ASM-
extensions of P , defined to be n×n ASMs obtained from P by replacing some
0’s (possibly none) by +1 or −1. In such an ASM-extension of P , the number
of new +1’s equals the number of new −1’s. It is natural to ask for

α∗n := max{αn(P ) : P ∈ Pn}

and those n× n permutation matrices P that satisfy αn(P ) = α∗n.
If n = 3, there is only one non-permutation ASM and it does not contain

1’s in a permutation set of places. So α∗3 = 1. The 4× 4 permutation matrices
1

1
1

1

 and


1

1
1

1


have ASM-extensions with two −1’s:

1
1 −1 1

1 −1 1
1

 and


1

1 −1 1
1 −1 1

1

 .
(As usual, empty positions are assumed to contain a 0.) It is straightforward
to verify that α∗4 = 2 and that the above two 4× 4 permutation matrices are
the only ones achieving equality.
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Consider the special n× n permutation matrix

Q∗n = Qdn2 e ⊕Qbn2 c,

where Qm is the m × m permutation matrix with 1’s on its anti-diagonal
running from the lower left to the upper right. For instance, for n = 5 and 6
we have

Q∗5 =


1

1
1

1
1

 and Q∗6 =



1
1

1
1

1
1

 .

There is a ‘canonical’ symmetric ASM-extension A∗n of Q∗n as illustrated below
for n = 7 and n = 8:

0 0 0 1 0 0 0
0 0 1 −1 1 0
0 1 −1 1 0

1 −1 1 0

0 1 −1 1
0 1 −1 1 0
0 0 0 0 1 0 0


,



0 0 0 1 0 0 0 0
0 0 1 −1 1 0
0 1 −1 1 0
1 −1 1 0

0 1 −1 1
0 1 −1 1 0
0 1 −1 1 0 0
0 0 0 0 1 0 0 0


,

where the 0’s that are explicitly displayed are required in any extension of Q∗n
to an ASM. In these canonical extensions, the −1’s are in the positions of the
1’s of a Q∗n−2. In addition, the middle (n − 2) × (n − 2) principal submatrix
contains all 1’s on its anti-diagonal. The sum-matrices of A∗7 and A∗8 are given
by

Σ(A∗7) =



0 0 0 1 1 1 1
0 0 1 1 1 2 2
0 1 1 1 2 3 3

1 1 1 2 3 4 4

1 1 2 3 4 4 5
1 2 3 4 4 5 6
1 2 3 4 5 6 7


and Σ(A∗8) =



0 0 0 1 1 1 1 1
0 0 1 1 1 1 2 2
0 1 1 1 1 2 3 3
1 1 1 1 2 3 4 4

1 1 1 2 3 4 4 5
1 1 2 3 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8


. (2)

Let An(Q∗2m) denote the set of n× n ASM-extensions of Q∗2m, that is, ASMs
containing 1’s in those positions that are 1 in Q∗2m. Then a matrix in An(Q∗2m)
has the form

A =

[
Q′m Xm

Ym Q′′m

]
,

where Q′m and Q′′m have 1’s wherever Qm has 1’s. It is straightforward to check
that Q′m must have all zeros above its anti-diagonal and Q′′m must have all zeros
below its anti-diagonal. We conjecture that α∗n = αn(Q∗n). We remark that in
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[6] completions of certain (0,−1)-matrices to ASMs are considered where the
matrices Q∗n also occur, and there is a related conjecture.

Let F2m be the so-called 2m×2m diamond ASM, the ASM with the largest
number of nonzeros [7]. Then F2m ∈ An(Q∗2m). For instance, with m = 4,

F8 =



1
1 −1 1

1 −1 1 −1 1
1 −1 1 −1 1 −1 1

1 −1 1 −1 1 −1 1
1 −1 1 −1 1

1 −1 1
1


.

Let F
(1)
2m be the (0, 1)-matrix withm(m−1) 1’s, obtained from F2m by replacing

all its −1’s with 0’s. Then Q∗2m ≤ F
(1)
2m and it is straightforward to check that

no other permutation matrix P satisfies P ≤ F
(1)
2m . Indeed, it is easily seen

that, after permutations of rows and columns,

F
(1)
2m =

[
Tm Om
Om Tm

]
where Tm is the m ×m matrix with 1’s on and below its main diagonal and
0’s elsewhere; the 1’s on the main diagonal of Tm are those corresponding
to the 1’s of Q∗2m. In particular, the permutation matrix Q∗2m is the only
permutation matrix of which F2m is an ASM-extension. Since the matrix F2m

has the maximum number of nonzeros among all matrices in A2m, F2m is the
unique ASM-extension of Q∗2m with the maximum number of nonzeros.

The matrix Σ(F2m) has a special form which is illustrated for Σ(F8) below
with Σ(A∗8)−Σ(F ∗8 ) also given:

Σ(F8) =



0 0 0 1 1 1 1 1
0 0 1 1 2 2 2 2
0 1 1 2 2 3 3 3
1 1 2 2 3 3 4 4

1 2 2 3 3 4 4 5
1 2 3 3 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8


, Σ(Q∗8)−Σ(F8) =



1
1 1 1

1 1 2 1 1

1 1 1
1


.

Thus Σ(Q∗8) ≥ Σ(F ∗8 ), and hence F8 �B Q∗8. (We remark that the odd case
is different, since we have Σ(A∗7) 6≤ Σ(F7) and Σ(F7) 6≤ Σ(A∗7): see (2) for
Σ(A∗7).)
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Example 1 We calculate that

Σ(Q∗8) =



0 0 0 1 1 1 1 1
0 0 1 2 2 2 2 2
0 1 2 3 3 3 3 3
1 2 3 4 4 4 4 4

1 2 3 4 4 4 4 5
1 2 3 4 4 4 5 6
1 2 3 4 4 5 6 7
1 2 3 4 5 6 7 8


.

Using our calculation of Σ(A∗8), we get

Σ(Q∗8)−Σ(A∗8) =



1 1 1
1 2 2 1

1 2 3 2 1

1 2 2 1
1 1 1


.

In general, we have

Σ(Q∗2m) =

[
C1 C2

CT2 C1 + Jm

]
,

where C1 is a m×m matrix with 0’s above the anti-diagonal, 1’s on the anti-
diagonal, and 2’s, 3’s, . . . on the diagonals below it, C2 is an m ×m matrix
whose row i contains all i’s (1 ≤ i ≤ m), and Jm is the m × m all-ones
matrix.

Lemma 2 Let A be an n×n ASM with n = 2m. Then A ∈ A2m(Q∗2m) if and
only if

Q∗2m �B A �B A∗2m,

that is, if and only if

Σ(A∗2m) ≤ Σ(A) ≤ Σ(Q∗2m),

a certain interval in the Bruhat order on the permutations in S2m.

Proof. We first show that if A ∈ A2m(Q2m), then Σ(A) ≤ Σ(Q∗2m). But this
is clear from the form of Σ(Q∗2m) given in Example 1. The reason is that any
ASM-completion of Q∗2m has only 0’s above the anti-diagonal in its leading
m ×m submatrix and the other entries in the upper m × 2m submatrix are
as large as they can be in any such ASM. A similar conclusion holds for the
lower m× 2m submatrix.
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We next verify that if A ∈ A2m(Q∗2m), then Σ(A∗2m) ≤ Σ(A). Partition
A∗2m into m×m matrices as

A∗2m =

[
A∗1 A

∗
2

A∗3 A
∗
4

]
.

The matrix A∗1 has all 0’s above the anti-diagonal, all 1’s on the anti-diagonal,
and all −1’s on the diagonal immediately below the anti-diagonal. These −1’s
occur as early as possible in rows 2, 3, . . . ,m of A∗2m. The matrix A∗2 has
1’s on its anti-diagonal except for a 0 in its upper right corner. These 1’s
occur as late as possible in rows 2, 3, . . . ,m of A∗2m. It follows from this that
σij(A2m∗) ≤ σij(A) for 1 ≤ i ≤ m and 1 ≤ j ≤ 2m and, similarly, for
1 ≤ i ≤ 2m and 1 ≤ j ≤ m. Since an ASM remains an ASM under a 180
degree rotation (that is, reading an ASM from the lower right corner from
leftwards and upwards also gives an ASM), the theorem now follows.

Corollary 1 Let n = 2m. Then the cardinality of A(Q∗2m) equals the num-
ber of n × n nonnegative integral matrices X with Σ(A∗2m) ≤ X ≤ Σ(Q∗2m)
(entrywise) satisfying (LS-a), (LS-b), and (LS-c).

We now consider n×n permutation matrices P satisfying αn(P ) = 1, that
is, permutation matrices having no ASM-completions other than itself. We call
such permutation matrices isolated. For instance, the following permutation
matrix P is isolated:

P =


1

1
1

1
1

 . (3)

Let P = [pij ] be a permutation matrix. Assume that i1 < i2 < i3 < i4 and
j1 < j2 < j3 < j4 be such that either

(i) P has 1’s in each of the positions (i1, j3), (i2, j4), (i3, j1), (i4, j2),
or
(ii) P has 1’s in each of the positions (i1, j2), (i2, j1), (i3, j4), (i4, j3).
If (i) or (ii) holds, we say that P has an open square.

Lemma 3 Let P be a permutation matrix. Assume that P has an open square.
Then αn(P ) > 1.

Proof. Assume that case (i) above holds. Let the matrix A be obtained from
P by changing the two entries in positions (i2, j3) and (i3, j2) (from 0) into
−1, and also changing the two entries in positions (i2, j2) and (i3, j3) (from
0) into 1. Then A is an ASM, and it is an ASM completion of P . Thus, P
has at least two ASM completions, so αn(P ) > 1. The proof in case (ii) is
similar.

Note that having an open square is equivalent to saying that either (i)
the permutation σ of {1, 2, . . . , n} corresponding to the permutation matrix P
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contains the pattern 3, 4, 1, 2 (corresponding to j3, j4, j1, j2) or (ii) the permu-
tation σ of {1, 2, . . . , n} corresponding to the permutation matrix P contains
the pattern 2, 1, 4, 3 (corresponding to j2, j1, j4, j3). Thus, P not having an
open square is equivalent to the corresponding permutation in Sn being a
3412-avoiding and 2143-avoiding permutation. Note that 2143 and 3412 are
reverses of one another, and so the number of 3412-avoiding permutations
equals the number of 2143-avoiding permutations. It follows from results on
pattern-avoidance permutations (see e.g. page 154 of [2]) that the number of
2143-avoiding (resp. 3412-avoiding) permutations of {1, 2, . . . , n} is the same
as the number of 1234-avoiding permutations, that is, that do not contain an
increasing subsequence of length 4. By a theorem of Gessel (see page 176 of
[2]), this number equals

1

(n+ 1)2(n+ 2)

n∑
k=0

(
2k

k

)(
n+ 1

k + 1

)(
n+ 2

k + 1

)
. (4)

Example 2 The following permutation matrix P , corresponding to the permu-
tation (3, 5, 1, 2, 4), contains an open square, shown with the corresponding
ASM extension A. With 3, 5, 1, 2, it is not 3412-avoiding.

P =


1
∗ ∗ 1

1 ∗ ∗
1

1

 , A =


1

1 −1 1
1 −1 1

1
1

 .
Note that the matrix P is obtained from the matrix in (3) by a transposi-
tion.

Theorem 3 Let P be an n×n permutation matrix corresponding to a permu-
tation σ ∈ Sn. Then αn(P ) = 1, that is, P is an isolated permutation matrix,
if and only if P does not have an open square, that is, if and only if σ is both
a 3412-avoiding and 2143-avoiding permutation.

Proof. This follows directly from Lemma 3 and Corollary 6.2 of [7].
Since a permutation can be both 3412-avoiding and 2143-avoiding, we can

only say that the number of n×n permutation matrices P that have only one
ASM-completion is bounded above by twice the number in (4).

Consider again the n×n permutation matrix Q∗n = Qdn2 e⊕Qbn2 c. Then Q∗n

contains
(dn2 e

2

)(bn2 c
2

)
open squares. If e.g. n = 2m is even, then Q∗n corresponds

to the permutation

σ2m = (m,m− 1, . . . , 2, 1, 2m, 2m− 1, . . . ,m+ 2,m+ 1).

We believe that σ2m contains the largest number of patterns 2143, namely(
m
2

)2
and thus has the largest number of completions to an ASM with two −1’s,

but this does not yet mean that αn(Q∗n) is maximum, although we expect it
is.
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3 König properties of a class of ASMs

Consider again the question of extensions of a permutation matrix P to ASMs
A where A has 1’s where P has 1’s. A “dual” viewpoint is to ask, for a given
ASM A, if there exists a permutation matrix P such that P has all its 1’s
where A has a 1. This leads to a related question concerning term ranks. The
term rank of ASMs was studied in [7]. We now consider the term rank of the
nonnegative part of ASMs. For a real matrix A, let A+ denote the matrix
max{A,O} in which all negative entries are replaced with 0’s; we call A+ the
nonnegative part of A. Let ρ(B) denote the term rank of a matrix B, i.e.,
the largest number of nonzeros in B with no two of these in the same row or
column.

The maximum of ρ(A+) among all ASMs of order n is clearly n, and it is
attained for permutation matrices.

The next result determines the minimum of ρ(A+) among all ASMs of
order n.

Theorem 4 The minimum of ρ(A+) among ASMs of order n is d2
√
n+ 1−

2e.

Proof. Let A be an ASM of order n and let t = ρ(A+). By König’s theorem
there are t lines that cover (contain) all 1s in A, say e rows and f columns,
where e+f = t. Permute rows such that these e rows become first, and permute
columns such that these f columns become first. Note that this affects the ASM
property of the ±1’s alternating. Then the permuted A has the form

A =

[
A1 A2

A3 A4

]
(5)

where A1 has size e × f . The matrix A4 contains only −1’s and 0’s. Let pi
and ni (resp.) be the number of 1’s and −1’s in the submatrix Ai (i ≤ 4). So,
p4 = 0. Then, as line sums are not changed by the permutations,

(p1 − n1) + (p2 − n2) = e, (p1 − n1) + (p3 − n3) = f.
p3 − n3 − n4 = n− e, p2 − n2 − n4 = n− f.

Thus
n1 − p1 = (p2 − n2)− e = n4 + n− f − e = n4 + n− t.

But n1−p1 is at most the number of nonzeros in A1, so n1−p1 ≤ ef ≤ (t/2)2

as e+ f = t. Therefore,

n− t ≤ n4 + n− t = n1 − p1 ≤ t2/4

so that t2 + 4t ≥ 4n and (t+ 2)2 ≥ 4n+ 4. This implies that

t ≥ d2
√
n+ 1− 2e.

It follows that

min{ρ(A+) : A ∈ An} ≥ d2
√
n+ 1− 2e.
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On the other hand, Corollary 4.2 in [7] shows that

min{ρ(A) : A ∈ An} = d2
√
n+ 1− 2e

where ρ(A) denotes the term rank of A. Clearly ρ(A) ≥ ρ(A+) for any matrix
A, so it follows that min{ρ(A+) : A ∈ An} = d2

√
n+ 1− 2e.

The previous theorem and its proof show the surprising fact that the min-
imum term rank among n × n ASMs is the same as the minimum term rank
of the matrices obtained by replacing all negative entries with zeros. In [7], for
each n, an ASM A is given which attains the minimum term rank in An, and
therefore also the minimum rank of A+ in that class.

We now study the term rank and line covers of certain ASMs. In a matrix
A a line cover is a set of lines (rows and columns) that contain all nonzeros
of A. The minimum number of lines in a line cover of A is called the line
cover number and it is denoted by τ(A). A classical theorem of König says
that τ(A) = ρ(A), i.e., that the line cover number equals the term rank of A.

Let D3 denote the unique ASM of order 3 with a single −1, so

D3 =

 1
1 −1 1

1

 .
Consider an ASM A of order n. Let B be a matrix obtained from A by iden-
tifying a single +1 of A, say in position (i, j), with a single +1 of D3 and
inserting two new rows and two new columns such that D3 is embedded in the
resulting matrix. These new rows, and the new columns, may not be consecu-
tive, but they must retain the same relative order as in D3 and maintain the
alternating sign property. We call the mentioned position (i, j) the insertion
position. Such a matrix is an ASM and will be denoted by A ∗D3 and called
an D3-extension of A. A row of a matrix with a unique nonzero (which must
be 1) will be called a unit row, otherwise it is called a non-unit row. We define
a unit column and a non-unit column similarly.

We now consider two specific types of such D3-extensions B where, as
above, the insertion position is (i, j):

(∗a) Row i is a non-unit row of A. Moreover, the −1 of the inserted D3 is
in the corresponding row of B. A similar type is obtained when column j is a
non-unit row and the inserted −1 is in the corresponding column.

(∗b) Row i is a unit row with its nonzero (a +1) in column j. Moreover, the
−1 of the inserted D3 is in row i. A similar type is obtained by interchanging
the roles of rows and columns in the previous sentence.

For instance, D3 itself is a D3-extension of J1 = [1] of type (∗b). Let A∗
denote the class of ASMs that may be obtained from J1 using a finite number
of D3-extensions of type (∗a) or (∗b). Observe that every matrix except J1
in A∗ has the property that every +1 is in a non-unit row or column. This is
seen from the structure of the extension.
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Example 3 The matrix B1 below is obtained by a D3-extension of type (∗a)
of D3, using column 2 and insertion position (3, 2). B2 is a D3-extension of
type (∗b) of D3, using column 3 and insertion position (2, 3).

D3 =

 +
+ − +

+

 , B1 =


+

+ − +
+

+ − +
+

 , B2 =


+

+ − +
+

+ − +
+

 .

For an ASM A let n−r (A) (resp. n−c (A)) denote the number of rows (resp.
columns) of A that contain at least one negative entry, i.e., the number of
non-unit rows (resp. columns).

Lemma 4 Let A be an ASM which is not the direct sum of a permutation
matrix and a smaller ASM. Then

ρ(A) ≤ n−r (A) + n−c (A).

Proof. Let L be the set of lines in A that contain at least one −1. So,
|L| = n−r (A) + n−c (A). Moreover, by assumption, there is no 1 in A that lies
both in a unit row and a unit column (because then A would be the direct sum
of [1] and a smaller ASM). Therefore L covers all the ones in A, and clearly
all the −1’s. So, L is a line cover, and

ρ(A) = τ(A) ≤ |L| = n−r (A) + n−c (A).

The next result gives a simple expression for the term rank of each matrix
in A∗, namely that it is equal to the upper bound established in Lemma 4.

Theorem 5 Let A be an ASM in A∗ of order n ≥ 3. Then

ρ(A) = ρ(A+) = n−r (A) + n−c (A). (6)

Moreover, a minimum line cover of A consists of all rows and columns that
contain at least one entry equal to −1, and the corresponding set of lines in
A+ is a minimum line cover of A+.

Proof. We prove the result by induction on the number k of D3-extensions.
If k = 1, then A = D3, and the result trivially holds. Assume that the theorem
holds for up to k D3-extensions, for some k. Let A be obtained from J1 by
k+ 1 successive D3-extensions, and let A′ be the matrix obtained by the first
k of these D3-extensions. Then

τ(A′) = ρ(A′) = ρ((A′)+) = n−r (A′) + n−c (A′).
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So, A is obtained by a D3-extension of A′. Moreover,

τ(A′) + 1 ≤ τ(A+) ≤ τ(A′) + 2 (7)

as the added nonzeros (in A) can be covered by at most two lines, and at least
one line is needed. There are two possible cases. Let the insertion position be
(i, j).

Case 1 : The extension is of type (∗a). Assume the extension is as described
in the first part of (∗a); the other case is similar. Then

n−r (A) = n−r (A′), and n−c (A) = n−c (A′) + 1.

Consider the minimum line cover of A′ consisting of all rows and columns of A′

that contain a −1. The corresponding lines in A+ cover all 1’s of A+ except two
+1 entries in the same column (that were added in producing A). Therefore,
by adding this column, one gets a line cover of A+ with τ(A′) + 1 lines, and,
by (7), that must be a minimum line cover of A+. The corresponding lines in
A also cover all the negative entries, so it is a minimum line cover of A. Thus,

ρ(A+) = τ(A+) = τ(A) = τ(A′)+1 = (n−r (A′)+n−c (A′))+1 = n−r (A)+n−c (A).

as desired.
Case 2 : The extension is of type (∗b). Assume the extension is as described

in the first sentence of (∗b); the other situation is treated similarly. (See the
matrix A2 in Example 3 where (i, j) = (2, 3).) Then

n−r (A) = n−r (A′) + 1, and n−c (A) = n−c (A′) + 1.

Let p = τ(A+), so there is a set S of p positions of 1’s in A′ such that no pair
of these positions in S are in the same line. Then S corresponds to a matching
in the bipartite graph G corresponding to A+.

Assume first that (i, j) 6∈ S. Then S together with two of the +1’s that
were added in the construction of A is a matching of size p+2 in G. Otherwise,
S contains (i, j). Then A+ contains another 1 in either row i or column j, but
not both, such that this 1 is in a unit row or column. Let S′ be obtained from
S by adding the position of such a 1 and removing position (i, j). Thus, S′ is
also a matching in G and |S′| = |S|. Then we can proceed as just described
and add two positions and obtain a matching of size p+ 2 in G. Therefore

ρ(A+) = τ(A′) + 2 = (n−r (A′) + n−c (A′)) + 2 = n−r (A) + n−c (A)

as desired. Moreover, we obtain a line cover of size equal to ρ(A+) by taking
the line cover of A′ and add the two lines containing the added −1 of A. By
induction, this line cover consists of all rows and columns that contain a −1
in A. The theorem now follows.

In Example 3, a minimum line cover for B1 consists of rows 2 and 4, and
column 3. A minimum line cover for B2 consists of rows 2 and 4, and columns
3 and 4. Matchings of corresponding sizes are easy to find.
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We remark that the result above also holds for some more general D3-
extensions than those specified in (∗b).

The ASM class A∗ studied above has the special property that

ρ(A) = ρ(A+)

for every A ∈ A∗. In other words, covering the negative entries as well does
not require any more lines than just covering the positive entries. We now give
an example which shows that this property does not hold for all ASMs.

Example 4 Let k be a positive integer, and consider the matrix B(k) given by

B(k) =


v1

+ v2
+ − +

v4 +
v3

 ,
where each vi is a vector with p = 2k components; here v2 and v4 are row vec-
tors while v1 and v3 are column vectors. The components of each vi alternate
between +1 and −1 such that (i) the rows in B(k) corresponding to v2 and
v4 are alternating, starting and ending with +1, and (ii) the columns in B(k)

corresponding to v1 and v3 are alternating, starting and ending with +1. Now
we extend B(k) into an ASM A(k) by adding rows and columns containing a
single nonzero, a +1, in suitable positions. For instance, for every −1 in v2
we introduce two new rows, one on top and one at the bottom of the present
matrix, and containing a +1 in the same column as the mentioned −1.

Let C denote the column of A(k) containing v1. Moreover, let S be the set
of positions of the nonzeros in C as well as the +1’s in the rows of the −1’s in
column C. Let L be a line cover of A(k). In particular, L covers S and there
are two possibilities:

Case 1: L contains C. Then the set S may be covered by column C and
one row for each −1 in v1, so k+ 1 lines all together, and this is the minimum
number of lines to cover S.

Case 2: L does not contain C. Then the set S can not be covered by less
than 2k + 1 lines, and this minimum is attained when we use the 2k + 1 rows
that contain the nonzeros of column C.

It follows that any minimum line cover L of A(k) must contain the column
C. Similarly, one shows that L must contain the column corresponding to v3
and each of the rows corresponding to v1 and v2. It follows from this that

|L| = 4(k + 1) + 1 = 4k + 5.

Here the additional 1 is due to the fact that we must cover the −1 in the center
of B(k). Thus, ρ(A(k)) = 4k+ 5. It also follows from this discussion that there
is a line cover of (A(k))+ of cardinality 4k+4, because we do not need to cover
the −1 in the center of B(k). In fact,

ρ((A(k))+) = 4k + 4 < 4k + 5 = ρ(A(k)).

Thus we have a class of ASMs A for which ρ(A+) < ρ(A).
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4 Sum-matrices and primary sum-sequences of permutations

Let P be an n×n permutation matrix. Then clearly each row of Σ(P ) contains
exactly one increase in a column that did not contain an increase in a previous
row, and this increase determines where the 1 in a row occurs (in P ). For
example, consider the permutation (5, 2, 7, 4, 1, 6, 3) with corresponding 7× 7
permutation matrix P given below:

P =



1
1

1
1

1
1

1


→ Σ(P ) =



0 0 0 0 1 1 1
0 1 1 1 2 2 2
0 1 1 1 2 2 3
0 1 1 2 3 3 4
1 2 2 3 4 4 5
1 2 2 3 4 5 6
1 2 3 4 5 6 7


. (8)

where we have shaded the cells where an increase first occurs and then those
above it. As we see from (8), the set of shaded columns form a nested sequence
of subsets of {1, 2, 3, 4, 5, 6, 7}, from the top row down to the corresponding
positions of the 1’s of P:

∅ = X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ X7 where |Xk| = k for k = 1, 2, . . . , 7:

X1 = {5}, X2 = {2, 5}, X3 = {2, 5, 7}, X4 = {2, 4, 5, 7}, X5 = {1, 2, 4, 5, 7},

X6 = {1, 2, 4, 5, 6, 7}, X7 = {1, 2, 3, 4, 5, 6, 7}.

This nested property holds in general. So the matrix Σ(P ) can be said to
represent the usual way in which a permutation of {1, 2, . . . , n} is identified as
a saturated chain from ∅ to {1, 2, . . . , n} in the lattice of subsets of {1, 2, . . . , n}
ordered by set-inclusion. We define the nest N (P ) of the permutation matrix
P to be this nested sequence X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn = {1, 2, . . . , n} where
|Xk| = k for k = 0, 1, . . . , n. By the above discussion the k × k submatrix of
P given by P [{1, 2, . . . , k}, Xk] is a permutation matrix.

Let π = (π1, π2, . . . , πn) be a permutation of {1, 2, . . . , n} with corre-
sponding n × n permutation matrix P . We define the primary sum-sequence
χ(P ) = χ(π) of P and π to be the sequence (c1, c2, . . . , cn) where ck equals the
(k, πk) entry of the sum-matrix Σ(P ) for k = 1, 2, . . . , n. Thus ck equals the
number of 1’s of P in its leading k×πk submatrix (which therefore contains a
1 in its lower right corner), equivalently, the rank of this submatrix. In terms
of the permutation π,

ck = |{i ≤ k : πi ≤ πk}|.

Thus we have a mapping χn : Pn → Cn where Cn is the set of all sequences of
length n with entries in {1, 2, . . . , n}. We have χ(ιn) = χ(In) = (1, 2, . . . , n)
and χ(ζn) = χ(Ln) = (1, 1, . . . , 1) where ιn = (1, 2, . . . , n) and ζn = (n, n −
1, . . . , 1) with corresponding permutation matrix Ln. In Figure 1 we give the
Hasse diagram of (S3,�B) with the primary sum-sequences given in brackets.
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I3 =

[
1 0 0
0 1 0
0 0 1

]
: (1, 2, 3), [1, 2, 3]

[
1 0 0
0 0 1
0 1 0

]
: (1, 3, 2), [1, 2, 2](2, 1, 3), [1, 1, 3] :

[
0 1 0
1 0 0
0 0 1

]
(2, 3, 1), [1, 2, 1] :

[
0 1 0
0 0 1
1 0 0

] [
0 0 1
1 0 0
0 1 0

]
: (3, 1, 2), [1, 1, 2]

L3 =

[
0 0 1
0 1 0
1 0 0

]
: (3, 2, 1), [1, 1, 1]

Figure 1: Hasse diagram of (S3,�B) with primary sum-sequences in brackets.

Example 5 Let n = 9 and let π = (3, 7, 2, 4, 9, 1, 8, 5, 6). Then computation
shows that the primary sum-sequence of π is χ(π) = (1, 2, 1, 3, 5, 1, 6, 5, 6).

Theorem 6 Let n be a positive integer. The mapping χn : Pn → Cn is in-
jective, that is, a permutation (matrix) is determined by its primary sum-
sequence.

Proof. Let P be an n×n permutation matrix and let χ(P ) = (c1, c2, . . . , cn).
The following recursive algorithm shows how to reconstruct P from χ(P ).

– Begin with an n× n array X in which every position is empty.
– Consider cn. This is computed from the 1 in the last row of P . Thus cn

determines which column the 1 in row n of P is located, namely column
cn. Put a 1 in position (n, cn) of X and a 0 in all other positions of row n.

– Now consider cn−1. Ignoring column cn and using the fact that the (n− 1)
remaining columns of P contain a 1 in rows 1, 2, . . . , n−1, cn−1 determines
which column t the 1 in row (n − 1) is. Put a 1 in row n − 1 of X in this
column t and a 0 in all other positions of X in row n− 1.

– Continue like this to construct a unique (0, 1)-matrix, and this matrix is
P .

The proof above implies that when χ(π) = (c1, c2, . . . , cn), then π =
(π1, π2, . . . , πn) may be expressed in terms of (c1, c2, . . . , cn) as follows

πk = min{s : s ≥ ck + |{l > k : cl ≤ ck}|, s 6= πl (l > k)} (k ≤ n). (9)

Theorem 6 also follows from the facts: (i) there is a bijection between the
set of n × n permutation matrices and the set Σ(Pn) of their corresponding
sum-matrices, and (ii) these sum-matrices are uniquely determined by their
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increases in rows that are not increases in previous rows. Thus the primary
sum-sequence determines the permutation matrix.

Example 6 Let c = (1, 2, 1, 4, 2). Then using the procedure in Theorem 6, or
the expression (9), we get

1

→
 1

1

→
1

1
1

→


1
1

1
1

→


1
1

1
1

1

 .
Thus c = (1, 2, 1, 4, 2) is the primary sum-sequence of a permutation ma-
trix.

It follows from Theorem 6 that if P is an n × n permutation matrix
corresponding to a permutation π = (π1, π2, . . . , πn), then the sum-matrix
Σ(P ) = [σij ] is determined by its values at the positions corresponding to the
positions of the 1’s of P , that is, by the sequence (σi,πi

: 1 ≤ i ≤ n). Now con-
sider two n×n permutation matrices P and Q corresponding to permutations
π and τ with primary sum-sequences χ(P ) and χ(Q), respectively.

Example 7 Let n = 4 and consider the two permutations π1 = (2, 4, 1, 3)
and π2 = (2, 4, 3, 1) where π1 �B π2. Then χ(π1) = (1, 2, 1, 3) and χ(π2) =
(1, 2, 2, 1).

Lemma 5 Let P1 and P2 be two n × n permutation matrices such that P1

covers P2 in the Bruhat order. Then there exists k and l with 1 ≤ k < l ≤ n
and a nonnegative integer r such that χ(P2) = (b1, b2, . . . , bn) is obtained from
χ(P1) = (a1, a2, . . . , an) by decreasing bk by r and increasing bl by r + 1.

Proof. Let π1 = (i1, i2, . . . , in) and π2 = (j1, j2, . . . , jn) be the permutations
corresponding to P1 and P2, respectively. Then π1 covers π2 in the Bruhat
order so that π1 has exactly one more inversion than π2. Hence there exists
k and l with k < l such that ik > il where for each t with k < t < l,
it > il or it < ik and π2 is obtained from π1 by switching jk and jl. It is
easy to check that χ(P2) is obtained from χ(P1) by decreasing al by some
nonnegative integer r and increasing ak by r + 1.

If a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) are two arbitrary sequences
of nonnegative integers, then b is obtained from a by a pseudoswitch, denoted
as a ` b, provided that there exists integers k < l and a nonnegative integer r
such that b is obtained from a by decreasing ak by r and increasing al by r+1.
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Denote the sum of the entries of a vector x by σ(x). If a ` b, σ(b) = σ(a) + 1.
The level of a permutation (matrix) in the Bruhat order is its number of
inversions.

Theorem 7 Let P1 and P2 be two n×n permutation matrices where P1 is at
level k and P2 is a level l in the poset (Pn,�B) where 0 ≤ k < l ≤

(
n
2

)
. Then

P1 �B P2 if and only if χ(P1) can be obtained from χ(P2) by a sequence of
(l − k) pseudoswitches.

Proof. This theorem is an immediate consequence of Lemma 5 and the fact
that if π1 and π2 are two permutations of {1, 2, . . . , n} such that π2 �B π1, then
π2 can be obtained from π1 by a sequence of σ(χ(P )) − σ(χ(P2)) transforms
each of which increases the number of inversions by 1, that is, increases the
level by 1 in (Pn,�B).

Example 8 In the poset (S4,�B) we have the saturated chain of permutations
(written compactly)

1234, 1324, 3124, 3142, 3412, 4312, 4321,

with corresponding primary sum-sequences (also written compactly)

1234, 1133, 1124, 1132, 1212, 1112, 1111.

The next result characterizes the primary sum-sequences of permutation
matrices.

Theorem 8 The set χ(Pn) of primary sum-sequences of n × n permutation
matrices P is the set of integral vectors c = (c1, c2, . . . , cn) satisfying

1 ≤ ci ≤ i (i ≤ n). (10)

Proof. Assume first that (c1, c2, . . . , cn) = χ(P ) for some permutation matrix
P with corresponding permutation (j1, j2, . . . , jn). By definition, for each k ≤
n we have ck ≥ 1. Since the first k rows of P up to column jk contain at most
k 1’s, we have that ck ≤ k.

We prove the converse by induction on n. Assume the result holds for
smaller values than n, and let c = (c1, c2, . . . , cn) be an integral vector satisfy-
ing (10). Let k = cn. So 1 ≤ k ≤ n. By induction there exists an (n−1)×(n−1)
permutation matrix P ′ such that

χ(P ′) = (c1, c2, . . . , cn−1).

Let P be the matrix obtained from P ′ by adding a row, as row n, and a
column, as column k, and place a 1 in position (n, k) of P . Then, clearly, P
is a permutation matrix of order n. Moreover, (χ(P ))i = (χ(P ′))i = ci for
i ≤ n− 1, and (χ(P ))n = k since the previous k − 1 columns each have a 1 in
one of the first n− 1 rows. Thus, χ(P ) = c, as desired.
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We remark that Theorem 6 is also a consequence of Theorem 8, as the
set of integral vectors satisfying (10) has cardinality 1 · 2 · · · · · n = n!. Thus
the map P → χ(P ) is surjective between two sets of the same size, and it is
therefore also injective.

Let P be an n×n permutation matrix with primary sum-sequence χ(P ) =
(c1, c2, . . . , cn). The corresponding n×n (0, 1)-matrix C(P ) with exactly n 1’s
where these 1’s are in positions (k, ck) (1 ≤ k ≤ n) is called the primary sum-
matrix of P . Let Cn be the set of primary sum-matrices of n× n permutation
matrices. By Theorem 8, Cn is the set of all n× n (0, 1)-matrices with exactly
n 1’s where, for each k = 1, 2, . . . , n, the 1 in row k is in column i ≤ k. The
primary sum-matrix of the identity ιn is the identity matrix In; the primary
sum-matrix matrix of the anti-identity permutation ζn is the matrix whose
first column is the all ones vector, and all other columns are zero. It is easy
to see that no other primary sum-matrix than the one associated with ιn is a
permutation matrix.

Example 9 Let P be the 5× 5 permutation matrix corresponding to the per-
mutation (3, 5, 2, 1, 4). Then its primary sum-sequence equals (1, 2, 1, 1, 4) and
its primary sum-matrix is

C(P ) =


1

1
1
1

1

 .

The column sum vector of a matrix A is denoted by SA. Let S be a non-
negative integral vector of length n and define

Cn(S) = {C ∈ Cn : SC = S},
Pn(S) = {P ∈ Pn : C(P ) ∈ Cn(S)}

as the set of primary sum-matrices with column sum vector S and the corre-
sponding set of permutation matrices, respectively.

Theorem 9 Let S = (s1, s2, . . . , sn) be a nonnegative, integral vector. Then
S = SC for some primary sum-matrix C if and only if

s1 ≥ 1,
si ≥ 0, (2 ≤ i ≤ n)∑n

j=n−k+1 sj ≤ k, (1 ≤ k < n)∑n
j=1 sj = n.

(11)

Proof. Let C = [cij ] ∈ Cn. Then SC = (s1, s2, . . . , sn) is clearly nonnegative.
Each row of C contains exactly one 1, so c11 = 1 and

∑
j sj = n. Moreover,

C is lower triangular, so the last k columns cannot contain more than k 1’s
(again, as each row has exactly one 1) which gives the final inequalities.
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Conversely, assume that S satisfies (11). We shall construct a matrix C ∈
Cn(S). Initially, let C be the matrix whose first column is all ones, and all other
entries are 0. Then, if sn = 1 shift the bottommost 1 in the first column of C to
column n. Next, in the updated C, shift the sn−1 bottommost 1’s in the first
column to column n−1 (if sn−1 = 0, nothing is done). As sn−1+sn ≤ 2, C will
remain lower triangular. In the k’th step, for the present C, shift the sn−k+1

bottommost 1’s in the first column to column n−k+ 1. As
∑n
j=n−k+1 sj ≤ k,

the new C will be lower triangular, and its column sum vector is clearly S, so
C ∈ C(S).

Note that the condition of the theorem is a sort of majorization condition
on S. We call the primary sum-matrix constructed in the proof of Theorem 9
the canonical primary sum-matrix with column sum S, and it will be denoted
by Ĉ(S). The (unique) corresponding permutation matrix is denoted by P̂ (S).

Example 10 Let n = 7, and S = (2, 1, 0, 2, 0, 1, 1). Then

Ĉ(S) =



1
1

1
1
1

1
1


, P̂ (S) =



1
1

1
1

1
1

1


.

Let L2 denote the matrix backward identity matrix of order 2, so

L2 =

[
0 1
1 0

]
.

We say that a (0, 1)-matrix has consecutive ones in columns if for every
column its ones (if any) occur consecutively.

Theorem 10 Assume that S satisfies the conditions of Theorem 9. Then the
following holds:

(i) The canonical matrix Ĉ(S) has consecutive ones in columns, and it does
not contain any submatrix equal to L2.

(ii) Ĉ(S) �B C for each matrix C ∈ Cn(S), i.e., Ĉ(S) is the least element
in the poset (C(S),�B).

Proof. The construction of Ĉ(S) = [ĉij ] implies that the ones in this ma-

trix are consecutive in each column, and that Ĉ(S) has a staircase pattern.
Therefore, it has no submatrix equal to L2.

Let C = [cij ] ∈ Cn(S) and C 6= Ĉ(S). Let C̄ be the (0, 1)-matrix whose
first column is the all ones vector, and all other entries are 0. Then C may be
obtained from C̄ by suitable shifting of 1’s to the right in every row. If, for
i = n, n − 1, . . . , 1, the 1 in row i is moved to the maximal column index j,
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then C would be equal to Ĉ(S), so this is not possible. Therefore, there is an
i, and j < k, such that cij = 1 and ĉik = 1, and we choose i largest possible

with this property. Since column k of both Ĉ(S) and C have the same sum,
there must exist i′ < i, such that ci′j = 1 and ĉik = 0. This means that the
submatrix of C consisting of rows i and i′ and columns j and k equals L2.

Let C ′ be the matrix obtained from C by replacing the mentioned subma-
trix L2 by I2. Then C ′ �B C. Now, if C ′ = Ĉ(S), we are done. Otherwise,
we repeat the process above with C replaced by C ′. It follows that Ĉ(S) is a
least element in the poset (C(S),�B).

One may ask if part (ii) of Theorem 10 can be extended to a similar state-
ment for the Bruhat order on the corresponding permutation matrices. This
is not the case, as the next example shows.

Example 10 cont. Let again n = 7 and S = (2, 1, 0, 2, 0, 1, 1). Another
matrix C in C(S) and the corresponding permutation matrix P are given by

C =



1
1

1
1
1

1
1


, P =



1
1

1
1

1
1

1


.

Then (Σ(P ))12 = 1, (Σ(P ))21 = 0 while (Σ(P̂ (S)))12 = 0, (Σ(P̂ (S)))21 = 1.
So P̂ (S) 6�B P and P 6�B P̂ (S).

Remark 1 In [11] Fulton defined what he called the essential set of a n × n
permutation matrix P corresponding to a permutation π of {1, 2, . . . , n} as
follows: Think of P as an n×n array of squares with one dot in each row and
column and all other squares empty (corresponding to the 1’s and 0’s of P ).
For each dot in P shade all the squares from the dot and eastwards and from
the dot and southwards leaving the diagram of unshaded squares of P . The
essential set of P is the set of southeast corners of the connected components
of the unshaded squares of the diagram. For example, we have

P =

∣∣∣∣∣∣∣∣∣∣∣∣

•
? ? •
•

•
? •
•

∣∣∣∣∣∣∣∣∣∣∣∣
→

∣∣∣∣∣∣∣∣∣∣∣∣

•
0 1 •
•

•
2 •
•

∣∣∣∣∣∣∣∣∣∣∣∣
,

where the essential set consists of the squares with a ? which are then replaced
by the number of •’s in the northwest submatrix they determine (equivalently,
its rank).
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Fulton shows that a permutation matrix is determined by these rank num-
bers and their locations, the ranked essential set and that, in general, none
of these can be omitted. Notice that these rank numbers are entries of the
sum-matrix of the permutation matrix P , corresponding to certain zeros of P .
Thus these entries (with their locations) determine the permutation matrix P .
In [10] an algorithm is given that determines its ranked essential set. In [10] it
is shown that a permutation matrix is determined by the rank function on a
subset of its essential set called its core where the core has size at most n. In
[9] it is proved that the average size of the essential set of an n×n permutation

matrix is asymptotic to n2

36 .

We return to the notion of primary sum-sequence of a permutation matrix,
and the algorithm given in the proof of Theorem 6. The following example
implies that there may be no analogue of primary sum-sequence for ASMs.

Example 11 Consider the two 6× 6 ASMs

A1 =



1
1

1 −1 1
1 −1 1

1
1

 and A2 =



1
1

1 −1 1
1 −1 1

1
1

 .

Their sum-matrices are

Σ(A1) =



0 0 0 1 1 1
0 0 1 2 2 2
0 1 1 2 3 3
1 2 2 2 3 4
1 2 3 3 4 5
1 2 3 4 5 6

 and Σ(A2) =



0 0 0 1 1 1
0 0 1 2 2 2
0 1 2 2 3 3
1 2 2 2 3 4
1 2 3 3 4 5
1 2 3 4 5 6

 .

Thus the sum-matrices Σ(A1) and Σ(A2) differ only in the the (3, 3)-entry
shaded above. Hence if we try to mimic the algorithm given to determine a
permutation matrix from its primary sum-sequence (in which a row is deter-
mined by the rows below it), it will fail when we transition from rows 6, 5,
and 4 to row 3.

The notion of nests can be generalized to ASMs but, because of the presence
of −1’s, the situation is more complicated.
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Example 12 Consider the 8× 8 ASM

A =



1
1 −1 1

1
1 −1 1

1 −1 1
1 −1 1

1
1


where

Σ(A) =



0 0 1 1 1 1 1 1
0 1 1 1 1 2 2 2
0 1 1 2 2 3 3 3
1 1 2 3 3 4 4 4
1 2 2 3 4 5 5 5
1 2 3 3 4 5 6 6
1 2 3 3 4 5 6 7
1 2 3 4 5 6 7 8


,

and the increases in each row (here we use rows rather than columns as we did
for permutation matrices, and think of an initial column of all 0’s) are indicated
again by shading the corresponding cells. For any ASM A, let Σ(A)∗ be the
(0, 1)-matrix obtained from Σ(A) by replacing each positive entry with a 1.
Thus each row of Σ(A)∗ records the columns in which an increase occurs. For
this example we have

Σ(A)∗ =



1
1 1
1 1 1

1 1 1 1
1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1
1 1 1 1 1 1 1 1


.

Let α1, α2, . . . , α8 be the rows of Σ(A)∗ and define α0 = (0, 0, 0, 0, 0, 0, 0, 0).
So for i = 1, 2, . . . , 8, αi has its ones in the columns of each increase. Define
α0 = (0, 0, . . . , 0). Then αi − αi−1 for i = 1, 2, . . . , 8 are the rows of the ASM
A. Moreover, α1, α2, . . . , α8 defines a saturated chain in the partially ordered
set defined by Terwilliger [13] who shows that the saturated chains are in a
one-to-one correspondence with the ASMs. This partially ordered set consists
of all n-tuples of 0’s and 1’s with partial order defined by: (a1, a2, . . . , an) �
(b1, b2, . . . , bn) if and only if the difference sequence (b1−a1, b2−a2, . . . , bn−an)
is a (0,±1)-sequence.
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Example 13 Consider the diamond ASM D7:

D7 =



1
1 −1 1

1 −1 1 −1 1
1 −1 1 −1 1 −1 1

1 −1 1 −1 1
1 −1 1

1


where

Σ(D7) =



0 0 0 1 1 1 1
0 0 1 1 2 2 2
0 1 1 2 2 3 3
1 1 2 2 3 3 4
1 2 2 3 3 4 4
1 2 3 3 4 5 6
1 2 3 4 5 6 7


→ Σ(D∗7) =



1
1 1

1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1 1


.

Then D7 corresponds to the saturated chain

(0, 0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0, 1),

(1, 1, 0, 1, 0, 1, 0), (1, 1, 1, 0, 1, 1, 1), (1, 1, 1, 1, 1, 1, 1).

5 Bruhat lattice properties of ASMs

If A1 and A2 are two n× n ASMs, then GLBAn
{A1, A2} denotes the greatest

lower bound of A1 and A2 in the lattice (An,�B). This greatest lower bound is
the ASM whose sum matrix is the n×n matrix in which each entry equals the
maximum of the corresponding entries of A1 and A2. The next example shows
that GLBAn

{A1, A2} may be a permutation matrix even though neither A1

nor A2 are permutation matrices.

Example 14 Let

A1 =


1

1
1 −1 1

1

 and A2 =


1

1 −1 1
1

1

 .
Then

Σ(A1) =


1 1 1 1
1 1 2 2
1 2 2 3
1 2 3 4

 and Σ(A2) =


0 1 1 1
1 1 2 2
1 2 3 3
1 2 3 4

 .
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We have

Σ(GLBAn(A1, A2)) =


1 1 1 1
1 1 2 2
1 2 3 3
1 2 3 4

 ,
and hence the increases correspond to a nested sequence and give the permu-
tation matrix 

1
1

1
1

 .
A permutation matrix and an ASM which is not a permutation matrix may
have a greatest lower bound equal to a permutation matrix. For instance,

1
1

1
1

 and


1

1
−1 1 −1

1


has GLBAn

equal to 
1

1
1

1

 .

Example 15 Let n = 4 and π1 = (2431), π2 = (3241). Then the GLB{π1, π2} =
τ = (2341). We have

Σ(π1) =


0 1 1 1
0 1 1 2
0 1 2 3
1 2 3 4

 , Σ(π2) =


0 0 1 1
0 1 2 2
0 1 2 3
1 2 3 4

 ,
and

Σ(τ) =


0 1 1 1
0 1 2 2
0 1 2 3
1 2 3 4

 .
In this case, both π1 and π2 cover τ .

Another example is π1 = (3421), π2 = (4312) where the GLB{π1, π2} =
τ = (3412). We have

Σ(π1) =


0 0 1 1
0 0 1 2
0 1 2 3
1 2 3 4

 , Σ(π2) =


0 0 0 1
0 0 1 2
1 1 2 3
1 2 3 4


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and

Σ(τ) =


0 0 1 1
0 0 1 2
1 1 2 3
1 2 3 4

 .
In this case, both π1 and π2 also cover τ .

So, if we take two permutations π1 and π2 of {1, 2, . . . , n}, and form the
entrywise maximum of the entries of Σ(π1) and Σ(π2) to get a matrix M =
Σ(π1) ∨Σ(π2), then M is the sum-matrix of the ASM GLBAn

{π1, π2}. Then
GLBAn

{π1, π2} is not a permutation matrix if and only if in some row of M ,
there are two or more increases that were not increases in the previous row,
see further discussion below.

Now consider the two permutations π1 = (3241) and π2 = (4132) with
GLBAn{π1, π2} = τ = (3142). We have

Σ(π1) =


0 0 1 1
0 1 2 2
0 1 2 3
1 2 3 4

 , Σ(π2) =


0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

 ,
and

Σ(τ) =


0 0 1 1
1 1 2 2
1 1 2 3
1 2 3 4

 .
In this case, neither π1 nor π2 covers τ . There is an ASM different from a
permutation between π1 and τ (namely, the ASM corresponding to 13 in the
Hasse diagram of (A4,�B)), and another ASM different from a permutation
between π2 and τ (the ASM corresponding to 42 in the Hasse diagram of
(A4,�B)). (Note that e.g., 42 in the diagram denotes a 4 × 4 ASM with a 1
in position (4, 2) which is uniquely completable to an ASM by using the only
3× 3 ASM with a −1).

For small values of n we have enumerated all permutation matrices of order
n, and computed the GLBAn of each pair of such matrices. The following table
shows how many pairs that have a GLBAn

which is a permutation matrix, and
this number is denoted by #P. The other pairs have a GLBAn

which is an ASM
different from a permutation matrix, and their number is denoted by #ASM.

n n! n!(n!− 1)/2 #P #ASM
2 2 1 1 0
3 6 15 14 1
4 24 276 231 45
5 120 7140 5136 2004
6 720 258840 154385 104455
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Next we characterize when the GLBAn of a set of permutation matrices
is a permutation matrix. Let P1, P2, . . . , Pk be permutation matrices of order
n, and let A = [aij ] = GLBAn

{P1, P2, . . . , Pk}. Define Σ(A) = [σ̂ij ] and

Σ(Pt) = [σ
(t)
ij ] (t ≤ k). Thus, σ̂ij = maxt σ

(t)
ij for each i, j. Also define for

1 < i, j < n

Kij = {t ≤ k : σ
(t)
ij = σ̂ij},

I(i, j) = {(i, 1), . . . , (i, j − 1)},
J(i, j) = {(1, j), . . . , (i− 1, j)}.

With this notation, we have the following result.

Proposition 1 Let P1, P2, . . . , Pk be permutation matrices of order n, and let
A = GLBAn

{P1, P2, . . . , Pk}.
Then A is a permutation matrix if and only if there is no position (i, j),

with 1 < i, j < n, such that (a) for some s ∈ Ki−1,j−1 the matrix Ps has a 1
in I(i, j), but no 1 in J(i, j), (b) for some t ∈ Ki−1,j−1 the matrix Pt has a 1
in J(i, j), but no 1 in I(i, j), and (c) no Pl (l ≤ k) has a 1 in position (i, j),
or a 1 in both I1 and in I2.

Proof. The matrix A = [aij ] is a permutation matrix if and only if there is
no position (i, j), with 1 < i, j < n, such that aij = −1. Using the properties
of Σ(A) = [σ̂ij ], i.e., that Σ(A) is nondecreasing in rows and columns, and the
increase is at most 1, we see that aij = −1 if and only if, for some integer m,

σ̂i−1,j−1 = m, σ̂i−1,j = σ̂i,j−1 = σ̂i,j = m+ 1.

But these equations correspond precisely to the statements (a)–(c) in the
proposition.

Example 16 Let n = 4 and let

P1 =


1

1
1

1

 and P2 =


1

1
1

1

 .
Then

Σ(P1) =


0 1 1 1
0 1 1 2
0 1 2 3
1 2 3 4

 and Σ(P2) =


0 0 0 1
1 1 1 2
1 1 2 3
1 2 3 4

 .
Then

Σ (GLBAn
{P1, P2}) =


0 1 1 1
1 1 1 2
1 1 2 3
1 2 3 4

 ,
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whose corresponding ASM is 
0 1 0 0
1 −1 0 1
0 0 1 0
0 1 0 0

 .
In view of Proposition 1 consider i = j = 2, and k = 2. Then K1,1 = {1, 2}
(as σ̂11 = 0) and P2 satisfies condition (a) as it has a 1 in I(2, 2) = {(2, 1)},
and P1 satisfies condition (b) due to the 1 in I(2, 2) = {(1, 2)}. Moreover,
condition (c) holds, so the proposition also shows that GLBAn

{P1, P2} is not
a permutation matrix.

The next result determines when the greatest lower bound of a set of
permutation matrices is equal to the identity matrix In.

Theorem 11 Let P1, P2, . . . , Pk be permutation matrices of order n, and let
A = GLBAn{P1, P2, . . . , Pk}. Then A = In if and only if for each k =
1, 2, . . . , n − 1, there exists a t ≤ k such that the leading k × k submatrix
of Pt is a permutation matrix.

Proof. Let Σ(A) = [σ̂ij ] and Σ(Pt) = [σ
(t)
ij ] (t ≤ k). Assume A = In. Then

Σ(A) = Σ(I) is symmetric and

σ̂ij = i (i ≤ n, j = i, i+ 1, . . . , n). (12)

Therefore

i = σ̂ii = max
t≤k

σ
(t)
ii = σ

(s)
ii

for some s ≤ t. So, the permutation matrix Ps has i ones in its leading i × i
submatrix, and therefore this submatrix must be a permutation matrix.

Conversely, assume that for each k = 1, 2, . . . , n − 1 there exists a t ≤ k
such that the leading k × k submatrix of Pt is a permutation matrix. This
implies that

σ̂ii = max
t≤k

σ
(t)
ii = i (i ≤ n).

Since rows and columns of Σ(A) are nondecreasing and the last entry in row
i, and in column i, is i, it follows that Σ(A) satisfies (12). So, A = I, as
desired.

Example 17 Let n = 4 and let

P1 =


1

1
1

1

 and P2 =


1

1
1

1

 .
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Then

Σ(P1) =


0 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 and Σ(P2) =


1 1 1 1
1 1 2 2
1 1 2 3
1 2 3 4

 .
Then

Σ (GLBAn{P1, P2}) =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

 ,
which gives GLBAn

{P1, P2} = I. The leading k × k submatrix of P1 is a
permutation matrix for k = 2, 3 (and 4), while the leading k× k submatrix of
P2 is a permutation matrix for k = 1 (and 4).

Another way to formulate Theorem 11 is:

Let P1, P2, . . . , Pk be permutation matrices of order n, and let

A = GLBAn
{P1, P2, . . . , Pk}.

Then A = In if and only if for each k = 1, 2, . . . , n − 1 there exists a t ≤ k
such that the kth term in χ(Pt) equals k, that is, the kth term in χ(In).

Acknowledgments. The authors thank a referee for several useful com-
ments.
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