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a b s t r a c t

This article is concerned with inference in parametric copula setups, where both the
marginals and the copula have parametric forms. For such models, two-stage maximum
likelihood estimation, often referred to as inference function for margins, is used as an
attractive alternative to the full maximum likelihood estimation strategy. Previous studies
of the two-stagemaximum likelihood estimator have largely been based on the assumption
that the chosen parametric model captures the true model that generated data. We study
the impact of dropping this true model assumption, both theoretically and numerically.
We first show that the two-stage maximum likelihood estimator is consistent for a well-
defined least false parameter value, different from the analogous least false parameter
associated with the full maximum likelihood procedure. Then we demonstrate limiting
normality of the full vector of estimators, with concise matrix notation for the variance
matrices involved. Along with consistent estimators for these, we have built a model-
robust machinery for inference in parametric copula models. The special case where the
parametric model is assumed to hold corresponds to situations studied earlier in the
literature, with simpler formulas for variance matrices. As a numerical illustration, we
perform a set of simulations. We also analyze five-dimensional Norwegian precipitation
data. We find that the variance of the copula parameter estimate can both increase
and decrease, by dropping the true model assumption. In addition, we observe that the
two-stage maximum likelihood estimator is still highly efficient when the true model
assumption is dropped and thus the model robust asymptotic variance formulas are used.
Additionally, we discover that using highly misspecified models can lead to situations
where the asymptotic variance of the two-stage maximum likelihood estimator is lower
than that of full maximum likelihood estimator. Our results are also used to analyze the
mean squared error properties for both the full and the two-stage maximum likelihood
estimators of any focus parameter.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction and copula models

The popularity of copula modeling andmethods has increased rapidly in the last decade and now they are regularly used
in fields like biostatistics, hydrology, finance and actuarial science; see Embrechts [10]. One of the more popular estimation
techniques for parametric copulas with parametric margins is the two-stagemaximum likelihood estimation (two-stageML
estimation), first introduced by Shih and Louis [35]. This two-stage method is also often referred to as inference function
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for margins (IFM), a term coined by Xu [39]. The asymptotic behavior and efficiency of this method have been studied both
theoretically and numerically in [5,19,20,24,35,39].

Although the insights and results from these studies are fruitful, they are generally based on the assumption that the
chosen copula and marginal distributions are the true model that generated data. We refer to this as the ‘true model
assumption’, and the limitations and impact of this assumption for two-stage ML estimation in copula contexts have not
been studied earlier, to our knowledge. Andersen [4] has worked with model robust versions of asymptotic variances. This
was in the context of composite likelihoods, however, and her work does not give attention to the inference and impact of
model robustness. In this paper we develop model robust inference methods based on two-stage ML estimators, and study
their theoretical and numerical properties under possible model misspecification.

Our technical setting is as follows. Let (Y1, . . . , Yd)⊤ be a d-variate continuous random vector originating from a
joint density g(y1, . . . , yd), and further let y1 = (y1,1, . . . , y1,d)⊤, . . . , yn = (yn,1, . . . , yn,d)⊤ be mutually independent
observations of this variable. Typically, this true joint distribution g is unknown. Let f (y1, . . . , yd, η) be our choice of
parametric approximation of g , with η the parameter vector, belonging to some connected subset of the appropriate
Euclidean space. Further,G and F (·, η) indicate cumulative distribution functions corresponding to g and f (·, η), respectively.
In addition, Gj(yj) and Fj(yj, αj) indicate the jth marginal distribution functions corresponding to G and F (·, η), respectively,
with αj the parameter vector pertaining to modeling margin component j ∈ {1, . . . , d}.

Starting from the joint distribution F (·, η) under certain regularity conditions, Sklar’s theorem [36] implies that there
exists a copula C(u1, . . . , ud, θ ) that satisfies

F (y1, . . . , yd, η) = C{F1(y1, α1), . . . , Fd(yd, αd), θ}, (1)

with θ the vector of parameters for the copula. For the full parameter vector, now conveniently blocked into parameters for
margins and the part for the copula, we use

η = (α⊤, θ⊤)⊤ = (α⊤

1 , . . . , αd
⊤, θ⊤)⊤.

When F (y1, . . . , yd, η) is continuous, C(·, θ ) is unique. If we assume that F1(y1, α1), . . . , Fd(yd, αd) are absolutely continuous
and strictly increasing, C(·, θ ) can be differentiated and (1) becomes

f (y1, . . . , yd, η) = c{F1(y1, α1), . . . , Fd(yd, αd), θ}

d∏
j=1

fj(yj, αj), (2)

where c(u1, . . . , ud) = ∂dC(u1, . . . , ud, θ )/∂u1 · · · ∂ud and fj(yj, αj) = ∂Fj(yj, αj)/∂yj; see Nelsen [32]. Analogously, we can
decompose the true density g into marginal densities and copula density and obtain

g(y1, . . . , yd) = c0{G1(y1), . . . ,Gd(yd)}
d∏

j=1

gj(yj),

with c0 the true copula.
One of the most important families of copulas is the Archimedean class. An Archimedean copula has the form

C (u1, . . . , ud) = φ−1
{φ(u1) + · · · + φ(ud)},

where φ is its generator; see, e.g., [31]. One of themost common Archimedean copulas is the Gumbel copula with parameter
θ ∈ [1, ∞), which is defined for all u1, . . . , ud ∈ (0, 1), as

C (u1, . . . , ud) = exp[−(|ln u1|
θ
+ · · · + |ln ud|

θ )1/θ ].

Another member of the Archimedean family is the Frank copula with parameter θ ∈ (0, ∞), defined for all u1, . . . , ud ∈

(0, 1), defined as

C (u1, . . . , ud) = −
1
θ
ln

[
1 +

∏d
i=1{exp(−θui) − 1}
{exp(−θ − 1)}d−1

]
.

For further parametric copula constructions, see, e.g., [11–13,19,21,32], and with several multiparameter copula models
exhibited and discussed in [9,33].

The further structure of this paper is as follows. In Section 2,we briefly describe how the two-stageML estimationmethod
works. In Section 3, we first derive the limit distribution for two-stage ML estimators outside model conditions, including
proof of consistency towards the relevant least false parameter. After this, we examine consequences of the true model
assumption for the asymptotic distribution. The resulting model non-robust asymptotic variance formula is essentially
similar to that given in Joe [20], but one difference is that we choose to use quantities that are more in line with the classical
ML estimation theory. Our results give rise to clear recipes for confidence intervals, confidence curves, and hypothesis tests,
based on two-stage ML estimators, discussed in Section 4.

In Sections 5 and 6, we study the numerical behavior of our model robust inference methods against that of the model
non-robust version by using a set of simulations and a dataset of Norwegian precipitation. Generally speaking, the two-stage
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ML estimator η̃ has a variance matrix, say Σ , for which our apparatus provides two estimators: Σ̃A, computed under model
conditions, and Σ̃B using the model-robust machinery. When the true model really is captured by the candidate model,
then both variance matrix estimators tend to be in agreement. Next, when the data generating mechanism lies outside
the model, the second method aims at the correct matrix, whereas the first is not consistent. The disagreement between
these two variance matrix estimators gets larger as the degree of misspecification increases. Furthermore, we observe that
a high degree of model misspecification may lead to situations where the limiting variance matrix of the two-stage ML
estimator is smaller than the corresponding variance matrix of the full ML estimator. This cannot happen when the data
generating mechanism is inside the parametric model. By classical theorems on the optimality of ML estimators, such as
the Hájek–Le Cam convolution theorem [15], each competing sequence of estimators will have a limiting variance matrix
at least as large as the one for ML estimation (the matrix difference is nonnegative definite), under model conditions and a
few further regularity assumptions on competitors. But these optimality theorems for ML estimation do not apply when the
data generating mechanism is outside the parametric model.

In Section 7, our methods and results are used to examine the mean squared error properties of both full and two-stage
maximum likelihood estimators for any given focus parameter. This also leads to a new focused information criterion for
copulas, when examining different candidate models. In Section 8, we offer a list of concluding remarks, some pointing
to further research work. In particular, we mention model selection criteria, and explain briefly that our two-stage ML
machinery may be extended to classes of conditional copula regression models.

2. Two-stage maximum likelihood

2.1. Maximum likelihood and Kullback–Leibler divergence

With observations from a model parametrized via a parameter vector η, the ML estimator η̂ is the maximizer of ℓ(η), the
log-likelihood function of the model for the given observations. Properties of ML estimators are extensively covered by the
classic literature in statistics, including [6,29,38]. In this paper, we use ˆ to indicate that a quantity is estimated by full or
joint ML, and˜ to indicate that the quantity in question is estimated by two-stage ML, covered in Section 2.2.

The Kullback–Leibler (KL) divergence [28] measures the extent to which one probability distribution diverges from
another. The KL divergence from g to f is defined as

KL{g, f (·, η)} =

∫
g(y) ln{g(y)/f (y, η)} dy.

In our technical setting, the true density g is the same for all models. Thus, minimizing the KL divergence is equivalent to
maximizing

∫
g(y) ln f (y, η) dy.

Under the usual regularity assumptions and assuming that the integral is finite, the Law of Large Numbers gives

1
n

ℓ(η) =
1
n

n∑
i=1

ln f (yi, η)
p

→

∫
g(y) ln f (y, η) dy = EG{ln f (Y , η)}.

Here and later it is understood that the convergence relates to the sample size n growing beyond bounds. The above result
implies under mild and standard regularity conditions that η̂, the ML estimator of η, will tend asymptotically to η0,ML, the
least false parameter value and the maximizer of

∫
g(y) ln f (y, η) dy. Thus,

η̂
p

→ η0,ML = argmin
η

KL{g, f (·, η)} = argmax
η

∫
g(y) ln f (y, η) dy.

In other words, the η0,ML is the parameter vector making the candidate model closest to the true model, in the sense of
KL. When the parametric model is correctly specified, i.e., g(y) = f (y, η0,ML), for a suitable η0,ML, the minimum of the KL
divergence is zero and η0,ML is called true parameter value. By applying the decomposition (2) on our setting and f (y, η), we
have that η̂ is a consistent estimator of the least false parameter η0,ML, say η0,ML = (α⊤

0,ML, θ
⊤

0,ML)
⊤.

2.2. Two-stage maximum likelihood estimator

When the dimension d of the copula gets higher, the ML estimator becomes computationally more demanding and not
even feasible when the number of parameters is high [19]. To avoid this problem, the two-stage ML is a natural alternative
estimation strategy, first proposed, for the two-dimensional case, by Shih and Louis [35].

When parametric families for the copula and the margins are chosen, the two-stage ML estimator works as follows.

Stage 1: For each j ∈ {1, . . . , d}, obtain α̃j, the marginal ML estimate of αj, by maximizing, with respect to αj,

ℓfj =

n∑
i=1

ln fj(yi,j, αj).
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Stage 2: Plug in α̃1, . . . , α̃d from Stage 1, to get

ℓ (̃α, θ) =

n∑
i=1

[ln f1(yi,1, α̃1) + · · · + ln fd(yi,d, α̃d) + ln c{F1(yi,1, α̃1), . . . , Fd(yi,d, α̃d), θ}].

Then, θ is estimated by maximizing ℓ(̃α, θ ) with respect to θ , yielding

θ̃ = argmax
θ

ℓ (̃α, θ) = argmax
θ

ℓc (̃α, θ ),

where

ℓc(α, θ ) =

n∑
i=1

ln c{F1(yi,1, α1), . . . , Fd(yi,d, αd), θ}.

The two-stage ML estimate η̃ = (̃α⊤, θ̃⊤)⊤ = (̃α⊤

1 , . . . , α̃⊤

d , θ̃⊤)⊤ obtained in this way satisfies(
∂

∂α̃d
ℓf1 , . . . ,

∂

∂α̃d
ℓfd ,

∂

∂θ̃
ℓc

)
= (0, . . . , 0).

There are p1 + · · · + pd + q parameters and equations here, where pj is the dimension of αj and q the dimension of θ . In
the next section we demonstrate limiting normality for the full (p1 + · · · + pd + q)-dimensional η̃. Note that since the main
focus of this paper is two-stage ML estimation, we will simplify the notation for the least false parameter of two-stage ML
by using η0 = η0,2ML throughout this paper.

3. Large-sample behavior of two-stage maximum likelihood estimators

Towork out clear limit theorems for the two-stageML estimators we are helped by the following regularity assumptions.

A1: η ∈ Θ , where Θ is compact.
A2: ln fj(y, αj) is twice differentiable with respect to αj.
A3: ln c{F1(y1, α1), . . . , Fd(yd, αd), θ} is thrice differentiable with respect to α and θ .
A4: There exists a function R(yj) such that EG{R(Yj)} < ∞ and |ln fj(yj, αj)| ≤ R(yj) for all yj, αj.
A5: There exists a function R(y, α) such that EG{R(Y , α)} < ∞ and |ln c(y, α, θ )| ≤ R(y, α) for all y, α, θ .

In Stage 1 of two-stage ML estimation, the parameters of each margin are estimated by using separate ML estimation. We
may consequently use large-sample results from ML estimation theory directly, regarding the behavior of α̃j. In particular,
the estimator α̃j is now aiming for the least false value instead of the usual true parameter value under the true model
assumption.

3.1. Large-sample results for Stage 1 of two-stage ML estimation

The model-robust asymptotic proprieties of the ML estimator are already covered by White [38]. Here, we briefly recap
the result.

Lemma 1. Let α̃ be the ML estimator of the margin parameter vector α = (α1, . . . , αd)⊤ from Stage 1 and let α0 = (α0,1,

. . . , α0,d)⊤ be the least false value. Then we have
√
n (̃α − α0) =

√
n I−1

α Un,α(α0) + op(1) ⇝ I−1
α Λα ∼ N (0, I−1

α Kα I−1
α ),

where

Un,α(α) =

⎛⎜⎝Un,α1 (α1)
...

Un,αd (αd)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n

n∑
i=1

Uα1 (yi,1, α1)

...

1
n

n∑
i=1

Uαd (yi,d, αd)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1
n

n∑
i=1

∂

∂α1
ln f1(yi,1, α1)

...

1
n

n∑
i=1

∂

∂αd
ln fd(yi,d, αd)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

Kα =

⎛⎜⎜⎝
Kα1 Kα1,α2 · · · Kα1,αd

Kα2,α1 Kα2 · · · Kα2,αd
...

...
. . .

...

Kαd,α1 Kαd,α2 · · · Kαd

⎞⎟⎟⎠ , Kαj = Kαj,αj ,

Kαj,αk = covG{Uαj (yj, α0,j),Uαk (yk, α0,k)} = EG{Uαj (yj, α0,j)Uαk (yk, α0,k)⊤},
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Iα =

⎛⎜⎝Iα1 0 0

0
. . . 0

0 0 Iαd

⎞⎟⎠ , Iαj = −

∫
gj

∂2

∂α0,j∂α⊤

0,j
ln fj(yj, α0,j) dyj = −EGj{Hαj (yj, α0,j)}.

We have used Hαj (yj, αj) for the Hessian matrix operation on ln fj(yj, αj).

For the proof, see the proof of Theorem 3.2 in White [38].
Under the assumption that themargins are correctly specified, one has Kαj = Iαj .When j ̸= k, however, it holds in general

that Kαj,αk ̸= 0. The asymptotic variancematrix will hence keep the sandwich form even under the assumption that margins
are correctly specified.

3.2. Large-sample results for Stage 2 of two-stage ML estimation

Under the assumption that all margins and the copula are correctly specified, it is well known that θ̃ is a consistent
estimator of the true parameter value θ0, i.e., KL{c0, c(·, θ0)} = 0. However, without this assumption, the consistency of θ̃
needs more care, also since it needs to be clarified precisely what it is aiming for.

Lemma 2. Consider the function

M(α0, θ ) =

∫
g ln c{F1(y1, α0,1), . . . , Fd(yd, α0,d), θ} dy

and assume that there exists θ0, a unique and well-separated point of maximum of M(α0, θ ), which satisfies

sup{M(α0, θ ): d(θ, θ0) < ε} < M(α0, θ0)

for every ε > 0; here d(θ, θ0) refers to Euclidean distance. Let Mn (̃α, θ ) be the Stage 2 sample version of M(α0, θ ), viz.

Mn (̃α, θ ) =
1
n

n∑
i=1

ln c{F1(yi,1, α̃1), . . . , Fd(yi,d, α̃d), θ},

where the α̃js are the estimates from the Stage 1. Then θ̃ , the maximizer of Mn (̃α, θ ), is a consistent estimator of θ0, the least false
parameter value.

The proof is given in the Online Supplement [26].
So, under margin and copula misspecification, θ̃ is still consistent, but for the appropriate least false parameter value,

rather than for any ‘true’ parameter value. The divergence in question is of the KL type form∫
g ln

c0{F1(y1, α0,1), . . . , Fd(yd, α0,d)}
c{F1(y1, α0,1), . . . , Fd(yd, α0,d), θ}

dy.

This leads to a precise notion of the least false parameter vector η0 = (α⊤

0 , θ⊤

0 )⊤ associated with two-stage ML estimation.
Based on the consistency lemma above, we now derive the model robust asymptotic distribution of the two-stage ML

estimator.

Proposition 1. With η̃ the two-stage ML estimator of η, we have

√
n (̃η − η0) =

√
n

(
Iα 0
I⊤

α,θ Iθ

)−1 (
Un,α(α0)

Un,θ (α0, θ0)

)
+

(
op(1)
op(1)

)
⇝ I−1

η Λη ∼ N (0, Vη),

where

Vη = I−1
η Kη(I−1

η )⊤,

Un,θ (α, θ ) =
1
n

n∑
i=1

Uθ (yi, α, θ ) =
1
n

n∑
i=1

∂

∂θ
ln c{F1(yi,1, α1), . . . , Fd(yi,d, αd)θ},

Kη =

(
Kα Kα,θ

K⊤

α,θ Kθ

)
,

Kθ = varG Uθ (y, α0, θ0) = E{Uθ (y, α0, θ0)Uθ (y, α0, θ0)⊤},

Kα,θ = covG{Uα(y, α0),Uθ (y, α0, θ0)} = E{Uα(y, α0)Uθ (y, α0, θ0)⊤},

Iη =

(
Iα 0
I⊤

α,θ Iθ

)
,

Iθ = −

∫
g

∂2

∂θ0∂θ⊤

0
ln c{F1(y1, α0,1), . . . , Fd(yd, α0,d), θ} dy = −EG{Hθ (y, α0, θ0)},
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Iα,θ = −

∫
g

∂2

∂α0∂θ⊤

0
ln c{F1(y1, α0,1), . . . , Fd(yd, α0,d), θ} dy = −EG{Hα,θ (y, α0, θ0)}.

The proof is given in the Online Supplement [26].
Compared to the results from [20,39] where margins and copula are assumed to be correctly specified, the asymptotic

variance expression in Proposition 1 has a more general form. Writing it in block matrix form gives

Vη =

(
Vα Vα,θ

V⊤

α,θ Vθ

)
=

(
I−1

α 0
−I−1

θ I⊤

α,θ I−1
α I−1

θ

)(
Kα Kα,θ

K⊤

α,θ Kθ

)(
I−1

α −I−1
α Iα,θI−1

θ

0 I−1
θ

)
, (3)

where

Vα = I−1
α Kα I−1

α ,

Vθ = I−1
θ Kθ I−1

θ + I−1
θ I⊤

α,θ I−1
α Kα I−1

α Iα,θ I−1
θ − I−1

θ K⊤

α,θ I−1
α Iα,θ I−1

θ − I−1
θ I⊤

α,θ I−1
α Kα,θ I−1

θ ,

Vα,θ = I−1
α Kα,θ I−1

θ − I−1
α Kα I−1

α Iα,θ I−1
θ .

Andersen [4] has a similar result, but in the context of a composite likelihood construction.
Further, since the two-stage ML estimator can be seen as a special case of the generalized method of moments (GMM)

in econometrics, Proposition 1 and Lemma 2 can also be seen as the direct result of consistency and asymptotic normality
of the GMM estimator with the optimal weight matrix W = K−1

η . See Hall [16] for details of the GMM estimator. Similarly,
Proposition 1 can also be derived by using the theories of estimating equations, like in Section 5.5 of Joe [21].

Since the main focus of our paper is finding the exact effect of the true model assumption, i.e., f = g , we now look at
how the truemodel assumption simplifies the result from Proposition 1. As alreadymentioned in Section 3.1, the truemodel
assumption in Stage 1 gives equality Kαj = Iαj for all j ∈ {1, . . . , d}, where d indicates the dimension of the data.

Joe [20] implements this result by replacing each Iαj with Kαj in his asymptotic variance formula. Although this method
is theoretically correct, it is not the most economical way of stating results, since Vη contains more Iαjs than Kαjs; note that
every Kαj is ‘sandwiched’ by Iαj in (3). In addition, this is in opposition to the usual practice of maximum likelihood theory,
where the asymptotic variance is defined and used as the inverse of Fisher information, as opposed to the variance of the
score function vector.

Thus, under the true model assumption, we choose to simplify Vη by replacing Kα with

K TMA
α =

⎛⎜⎜⎝
Iα1 Kα1,α2 · · · Kα1,αd

Kα2,α1 Iα2 · · · Kα2,αd
...

...
. . .

...

Kαd,α1 Kαd,α2 · · · Iαd

⎞⎟⎟⎠ .

Although our method is theoretically the same as that of Joe [20], it will make a difference in practice since it is almost
never the case that the twomatrices Kαj and Iαj , though identical as population quantities, have empirical estimates that are
very close.

Lemma 3. Under the assumption that the margins and copula are correctly specified, one has Kα,θ = 0.

The proof is given in the Online Supplement [26].
In two-stage ML estimation, the log-likelihood functions are different in Stages 1 and 2. This implies that the true model

assumption does not give Iα,θ = Kα,θ . Instead, the true model assumption for two-stage ML estimation yields a different
relationship, as follows.

Lemma 4. Let

U∗

α (y, α) =

⎛⎜⎝U∗
α1
(y, α1)
...

U∗
αd
(y, αd)

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎝
∂

∂α1
ln c{F1(y1, α1), . . . , Fd(yd, αd), θ}

...
∂

∂αd
ln c{F1(y1, α1), . . . , Fd(yd, αd), θ}

⎞⎟⎟⎟⎟⎠
and

K ∗

α,θ = covG{U∗

α (y, α0),Uθ (y, α0, θ0)} = EG{U∗

α (y, α0)Uθ (y, α0, θ0)⊤}.

Under the assumption that the margins and copula are correctly specified, one has Iα,θ = K ∗

α,θ .

The proof is given in the Online Supplement [26].

Lemma 5. Under the assumption that the margins and copula are correctly specified, one has Iθ = Kθ .

The proof is given in the Online Supplement [26].
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3.3. Impact of model misspecification on the copula parameter

The most apparent consequence of margin misspecification is that the two-stage ML copula parameter estimate θ̃ is no
longer consistent for the true parameter value. Another consequence is the change in asymptotic variance Vη . Applying the
lemmas resulting from true model assumption to (3) gives

V TMA
η =

(
V TMA

α V TMA
α,θ(

V TMA
α,θ

)⊤ V TMA
θ

)
=

(
I−1

α 0
−I−1

θ I⊤

α,θ I−1
α I−1

θ

)(
K TMA

α 0
0 Iθ

)(
I−1

α −I−1
α Iα,θI−1

θ

0 I−1
θ

)
, (4)

where

V TMA
α = I−1

α K TMA
α I−1

α , V TMA
θ = I−1

θ + I−1
θ I⊤

α,θ I−1
α K TMA

α I−1
α Iα,θ I−1

θ , V TMA
α,θ = −I−1

α K TMA
α I−1

α Iα,θ I−1
θ .

In Section 5we illustrate the difference between (3) and (4) in practice by using simulated data. In Section 6, we illustrate
the same difference by using real-life data.

4. Inference

Having established limiting normality of the two-stage ML estimator η̃ in Proposition 1, we can derive limiting normality
also for smooth parameter functions µ̃ = µ(̃η), via the delta method. To use such results in practice we need consistent
estimators of all variances.

The general formula for the variance matrix of the limiting distribution of η̃ has the form Vη = I−1
η Kη(I−1

η )⊤. These
components are population quantities, defined as means and variance matrices of random variables. Consistent estimators
for these components emerge generally speaking by using plug-in sample averages h̄n =

∑n
i=1 h(yi, η̃)/n for estimating a

required h0 = EG{h(y, η0)}. For regularity conditions that secure convergence in probability of such h̄n to h0, see [22]. This
general recipe leads to consistent estimators of I−1

η , Kη above, and hence of Ṽη = Ĩ−1
η K̃η (̃I−1

η )⊤.
Consider now such a focus parameter µ = µ(η) = µ(α, θ ), a parameter of primary interest, a smooth function of the

model parameters. In addition to the ML estimator µ̂ = µ(̂α, θ̂ ), we may define the associated two-stage ML estimator
µ̃ = µ(̃α, θ̃ ), for which the delta method yields

√
n (µ̃ − µ0) ⇝ N (0, τ 2), (5)

with τ 2
= c⊤Vηc , and c = ∂µ(η0)/∂η0. Then τ̃ 2

= c̃⊤Ṽη̃c is consistent for τ 2, with c̃ = ∂µ(̃η)/̃η. This leads to confidence
intervals, for any parameter of interest, as with

µ̃ ± 1.96 τ̃ /
√
n (6)

for the approximate 95% interval. There are different versions of (6), corresponding to differentways of applying the variance
matrix formula Vη above. One may use components for Ṽη in a model-robust fashion, or the version where the parametric
model assumption is trusted, leading to say Ṽ TMA

η and to a consequent τ̃ TMA. Also, results similar to and in fact more familiar
than those of (5) and (6) are easy to write down and use for the full ML estimation method, leading to µ̂ ± 1.96 τ̂ /

√
n etc.

We note that full confidence distributions can be computed and displayed, to supplement the two-stage ML based point
estimate µ̃ and estimated standard deviation τ̃ /

√
n. These are random curves cc(µ), one such for each focus parameter,

constructed post data, with the property that Pr{cc(µ) ≤ α} is equal to or approximately equal to α, for all confidence levels
α. In addition to the easy to use first-order large-sample confidence curve

cc(µ) = Φ{
√
n(µ − µ̃)/̃τ },

somewhat more elaborate and better approximations may be constructed via the methods in Chapters 3–4 of Schweder
and Hjort [34], involving generalizations of the Wilks type theorems. In Section 6 such confidence curves are computed and
displayed for relevant parameters pertaining to Norwegian precipitation data.

Our methodology lends itself nicely also to hypothesis testing. If µ = µ(α, θ ) is a parameter where a certain null value
µnull is of interest, then we may test Hnull:µ = µnull via inspection of the associated confidence interval, or via some fully or
nearly equivalent route. This in particular applies for testing independence in themodel structure, for the full d-dimensional
vector or for a subset, if this corresponds to a null value for the θ parameter.

We may also use the developed machinery to test whether aspects of two or more sets of data are identical or different.
If one has data from two groups thought to be not very different, say A and B, one may fit the same copula model to both,
yielding parameter estimates for ηA = (αA, θA) and ηB = (αB, θB), along with variance estimators. With this taken care as
explained above, one may then test the hypothesis H0 : θA = θB. Specifically, with sample sizes nA and nB, we would have

θ̃A − θ̃B ≈d N (θA − θB,W ),

say,withW = ΣA/nA+ΣB/nB. HereΣA andΣB are the variancematrices appearing in the limit distributions for
√
nA (̃θA−θA)

and
√
nB (̃θB − θB). The test statistic

Z = (̃θA − θ̃B)⊤W̃−1 (̃θA − θ̃B),

with W̃ involving consistent estimators for ΣA and ΣB, would then follow an approximate χ2
q null distribution, with q the

dimension of θ .
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Table 1
Description of the models used in simulation 1.

Copula Margin 1 Margin 2 K̂L(g, f )

Data generating
model

Gaussian
θ = 0.3

Weibull
α1 = (1.5, 4)⊤
(shape, scale)

Gamma
α2 = (2, 1)⊤
(shape, rate)

Model 1 Gaussian Weibull Gamma 0
Model 2 Gaussian Weibull Generalized gamma 0
Model 3 Gaussian Log-normal Log-normal 0.140
Model 4 Student t Weibull Gamma 0.020
Model 5 Student t Log-normal Log-normal 0.166
Model 6 Frank Weibull Gamma 0.004
Model 7 Frank Log-normal Log-normal 0.139

Table 2
Description of the models used in simulation 2.

Copula Margin 1 Margin 2 Margin 3 Margin 4 K̂L(g, f )

Data generating
model

Gumbel
θ = 3

Weibull
α1 = (1.5, 4)⊤
(shape, scale)

Weibull
α2 = (2, 3)⊤
(shape, scale)

Gamma
α3 = (2, 1)⊤
(shape, rate)

Gamma
α4 = (3, 1)⊤
(shape, rate)

Model 1 Gumbel Weibull Weibull Gamma Gamma 0
Model 2 Gumbel Weibull Weibull Generalized Gamma Generalized Gamma 0
Model 3 Gumbel Log-normal Log-normal Log-normal Log-normal 0.298
Model 4 Survival Clayton Weibull Weibull Gamma Gamma 0.433
Model 5 Survival Clayton Log-normal Log-normal Log-normal Log-normal 0.508
Model 6 Frank Weibull Weibull Gamma Gamma 0.263
Model 7 Frank Log-normal Log-normal Log-normal Log-normal 0.558

5. Simulation study

To study the impact of the true model assumption on two-stage ML estimation, we have performed a set of simulations.
In simulation 1, we study the impact of the true model assumption on a number of 2-dimensional copula models. In
simulation 2, we do the same with 4-dimensional copula models. In simulation 3, we look at the case where the degree
of misspecification increases or decreases gradually.

5.1. Simulation 1 (2-dimensional case) and simulation 2 (4-dimensional case)

Tables 1 and 2 contain descriptions of the models that were used to generate the data and the models that were used to
fit the data in simulation 1 and simulation 2, respectively. The candidatemodels are chosen in such away that they illustrate
different types and degrees of misspecification. The column K̂L(g, f ) indicates estimated Kullback–Leibler divergence with
ML estimated least false parameter values. We used two sample sizes n = 100 and n = 1000. For each sample size, we
drew 1000 samples and the results were averaged. Some of the candidate models are easily distinguishable from the data
generating model for a sample size 1000, based on likelihood-basedmodel selection criteria such as AIC. However, since our
goal is to investigate different degrees of model misspecification, we included them in our simulation.

For eachmodel, ML and two-stageML estimationswere performed both assuming and not assuming that themodel is the
truemodel that generated data. The column ‘Truemodel assumption’ in Tables 3–6 indicates the presence of this assumption.
Dropping the true model assumption leads to the model robust asymptotic variance formulas. For the ML estimator, this is
the so-called ‘sandwich estimator’. For a copulamodel, this estimator can be obtained straightforwardly by applying classical
theory covered in [8,17,38]. When we make the true model assumption, the sandwich estimator simplifies to the inverse of
the Fisher information. For two-stage ML estimators, dropping the true model assumption yields (3) as asymptotic variance,
and assuming the true model, this simplifies into (4).

Below, θ̂ and θ̃ indicate the ML and the two-stage ML estimate of the copula parameter, respectively. Also,
√
n SE(̂θ ) is

the square root of the estimated asymptotic variance of θ̂ . It is estimated by choosing the relevant formula, depending on
the presence of true model assumption, and, in general terms, replacing EG{h(y, η0)} by

∑n
i=1 h(yi, η̂)/n or

∑n
i=1 h(yi, η̃)/n;

see the discussion in Section 4.
Next, let q0.8 indicate the vector that contains the 0.8-quantile value of each margin according to the data generating

model, i.e., q0.8 = (G−1
1 (0.8), . . . ,G−1

d (0.8)). With Pr(q0.8 < Y ) we mean the joint probability that each marginal variable
has larger value than the corresponding 0.8-quantile value. This joint upper probability is sensitive to the tail behavior
of both margins and copula. The notations P̂r(q0.8 < Y ) and P̃r(q0.8 < Y ) refer to ML and two-stage ML estimates of
this joint probability, respectively. Also,

√
n SE(P̂r(q0.8 < Y )) is the square root of the estimated asymptotic variance of

P̂r(q0.8 < Y ), and
√
n SE(P̃r(q0.8 < Y )) is the two-stage ML estimator analog. These asymptotic variances are obtained by
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Table 3
Result from simulation 1 with sample size 100. For clarification of the column labels, see Section 5.1.
Simulation 1 (n = 100)

True model
assumption

MLE

θ̂ (95% CI) Coverage
θ

√
n SE(̂θ ) P̂r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̂r(q0.8 < Y ))

Model 1 No 0.298 (0.107, 0.489) 0.951 0.974 0.066 (0.048, 0.085) 0.959 0.094
Yes (0.121, 0.475) 0.939 0.902 (0.049, 0.083) 0.939 0.087

Model 2 No 0.299 (0.109, 0.489) 0.952 0.970 0.066 (0.048, 0.085) 0.954 0.094
Yes (0.122, 0.476) 0.939 0.904 (0.049, 0.083) 0.937 0.087

Model 3 No 0.298 (0.095, 0.500) 0.961 1.032 0.066 (0.047, 0.086) 0.963 0.100
Yes (0.121, 0.474) 0.929 0.902 (0.049, 0.083) 0.930 0.087

Model 4 No 0.297 (0.098, 0.496) n/a 1.016 0.069 (0.050, 0.088) 0.943 0.096
Yes (0.102, 0.491) n/a 0.992 (0.050, 0.087) 0.942 0.094

Model 5 No 0.303 (0.091, 0.514) n/a 1.079 0.069 (0.049, 0.089) 0.947 0.103
Yes (0.102, 0.503) n/a 1.022 (0.050, 0.088) 0.938 0.098

Model 6 No 1.844 (0.504, 3.183) n/a 6.835 0.065 (0.047, 0.083) 0.946 0.092
Yes (0.597, 3.090) n/a 6.358 (0.048, 0.082) 0.932 0.086

Model 7 No 2.003 (0.527, 3.480) n/a 7.535 0.067 (0.047, 0.087) 0.950 0.101
Yes (0.682, 3.325) n/a 6.742 (0.049, 0.085) 0.921 0.090

True model
assumption

Two-stage MLE

θ̃ (95% CI) Coverage
θ

√
n SE(̃θ ) P̃r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̃r(q0.8 < Y ))

Model 1 No 0.298 (0.107, 0.488) 0.950 0.973 0.066 (0.048, 0.085) 0.957 0.094
Yes (0.121, 0.475) 0.939 0.903 (0.049, 0.083) 0.938 0.087

Model 2 No 0.297 (0.108, 0.487) 0.951 0.967 0.066 (0.048, 0.085) 0.955 0.093
Yes (0.120, 0.475) 0.941 0.905 (0.049, 0.083) 0.938 0.087

Model 3 No 0.298 (0.095, 0.500) 0.961 1.032 0.066 (0.047, 0.086) 0.963 0.100
Yes (0.117, 0.478) 0.936 0.923 (0.049, 0.084) 0.936 0.089

Model 4 No 0.296 (0.101, 0.491) n/a 0.995 0.069 (0.050, 0.087) 0.943 0.094
Yes (0.103, 0.490) n/a 0.986 (0.050, 0.087) 0.942 0.094

Model 5 No 0.302 (0.094, 0.510) n/a 1.062 0.069 (0.049, 0.089) 0.950 0.101
Yes (0.098, 0.505) n/a 1.038 (0.049, 0.088) 0.947 0.099

Model 6 No 1.828 (0.506, 3.150) n/a 6.746 0.065 (0.047, 0.083) 0.946 0.091
Yes (0.583, 3.072) n/a 6.350 (0.048, 0.082) 0.935 0.086

Model 7 No 1.974 (0.534, 3.415) n/a 7.351 0.067 (0.047, 0.086) 0.947 0.099
Yes (0.638, 3.311) n/a 6.819 (0.049, 0.085) 0.930 0.092

writing Pr(q0.8 < Y ) as a function of η and applying the delta method. With those standard errors, we also constructed
confidence intervals. The reported confidence intervals in Tables 3–6 are obtained by averaging the confidence intervals
from 1000 samples.

In the cases where the true value of θ or Pr(q0.8 < Y ) was known, we also computed coverage to supplement the
confidence interval. The coverage is computed as the number of times that the confidence interval captured the true value
divided by the total number of simulations.

When estimating the above mentioned quantities, the main computational bottleneck is estimating the K -matrices. For
instance, the matrix

Iθ = −

∫
g

∂2

∂θ0∂θ⊤

0
ln c{F1(y1, α0,1), . . . , Fd(yd, α0,d), θ} dy

is estimated by

Ĩθ = −
1
n

n∑
i=1

∂2

∂θ∂θ⊤
ln c{F1(yi,1, α̃1), . . . , Fd(yi,d, α̃d), θ̃}.
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Table 4
Result from simulation 1 with sample size 1000. For clarification of the column labels, see Section 5.1.
Simulation 1 (n = 1000)

True model
assumption

MLE

θ̂ (95% CI) Coverage
θ

√
n SE(̂θ ) P̂r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̂r(q0.8 < Y ))

Model 1 No 0.298 (0.241, 0.356) 0.950 0.930 0.066 (0.060, 0.072) 0.954 0.090
Yes (0.242, 0.355) 0.947 0.908 (0.061, 0.071) 0.948 0.088

Model 2 No 0.299 (0.241, 0.356) 0.953 0.929 0.066 (0.060, 0.072) 0.954 0.090
Yes (0.242, 0.355) 0.947 0.909 (0.061, 0.071) 0.949 0.088

Model 3 No 0.291 (0.230, 0.352) 0.942 0.987 0.065 (0.059, 0.071) 0.938 0.095
Yes (0.234, 0.347) 0.927 0.914 (0.060, 0.071) 0.919 0.088

Model 4 No 0.299 (0.241, 0.356) n/a 0.930 0.067 (0.061, 0.072) 0.950 0.089
Yes (0.241, 0.356) n/a 0.930 (0.061, 0.072) 0.951 0.090

Model 5 No 0.294 (0.233, 0.355) n/a 0.985 0.066 (0.060, 0.072) 0.939 0.094
Yes (0.234, 0.353) n/a 0.964 (0.061, 0.072) 0.936 0.092

Model 6 No 1.806 (1.407, 2.204) n/a 6.422 0.064 (0.059, 0.070) 0.914 0.088
Yes (1.417, 2.194) n/a 6.269 (0.059, 0.070) 0.905 0.086

Model 7 No 1.958 (1.520, 2.397) n/a 7.076 0.067 (0.061, 0.073) 0.944 0.096
Yes (1.544, 2.372) n/a 6.674 (0.061, 0.072) 0.932 0.091

True model
assumption

Two-stage MLE

θ̃ (95% CI) Coverage
θ

√
n SE(̃θ ) P̃r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̃r(q0.8 < Y ))

Model 1 No 0.298 (0.241, 0.356) 0.950 0.929 0.066 (0.060, 0.072) 0.954 0.090
Yes (0.242, 0.355) 0.947 0.909 (0.061, 0.071) 0.948 0.088

Model 2 No 0.298 (0.241, 0.356) 0.952 0.929 0.066 (0.060, 0.072) 0.954 0.090
Yes (0.242, 0.355) 0.948 0.909 (0.061, 0.071) 0.949 0.088

Model 3 No 0.291 (0.230, 0.352) 0.942 0.987 0.065 (0.059, 0.071) 0.938 0.095
Yes (0.233, 0.349) 0.931 0.938 (0.060, 0.071) 0.926 0.090

Model 4 No 0.298 (0.241, 0.356) n/a 0.929 0.067 (0.061, 0.072) 0.949 0.089
Yes (0.241, 0.356) n/a 0.930 (0.061, 0.072) 0.950 0.090

Model 5 No 0.294 (0.233, 0.354) n/a 0.983 0.066 (0.060, 0.072) 0.940 0.094
Yes (0.232, 0.355) n/a 0.988 (0.060, 0.072) 0.942 0.095

Model 6 No 1.801 (1.405, 2.197) n/a 6.385 0.064 (0.059, 0.070) 0.913 0.088
Yes (1.413, 2.189) n/a 6.260 (0.059, 0.070) 0.905 0.086

Model 7 No 1.944 (1.511, 2.376) n/a 6.982 0.066 (0.060, 0.072) 0.946 0.095
Yes (1.525, 2.362) n/a 6.748 (0.061, 0.072) 0.940 0.092

When calculating this matrix, a for-loop can be avoided by swapping the order of summation and differentiation. When
computing

K̃θ =
1
n

n∑
i=1

Uθ (yi, α̃, θ̃ )Uθ (yi, α̃, θ̃ )⊤,

however, the same trick cannot be used and we are forced to use a time-consuming for-loop.
Now we look at the results from the simulations. From the result of simulations 1 and 2, we can observe that models

that are correctly specified or have a small degree of misspecification (e.g., Student t-copula instead of Gaussian copula and
Generalized Gammadistribution instead of Gammadistribution), the presence of the truemodel assumptionmakes virtually
no difference. This confirms the finding from Section 3 that when themodel is correctly specified, themodel robust variance
formula (3) and the non-robust version (4) coincide. Further, for the ML estimation part, it echoes the classical finding that
the ‘sandwich estimator’ becomes the inverse of the Fisher information when the model is correctly specified.

When the degree of misspecification increases (e.g., models 5 and 7 in simulation 2 where the log-normal density has a
heavier tail than the data generating margins and the Frank copula has lighter tails than the Gumbel copula), we see that
assuming the true model (i.e., using (4) instead of (3)) results in a larger difference in estimated the asymptotic variance.
Often, assuming the true model results in a smaller asymptotic variance. This sounds intuitive because assuming the true
model entails ignoring themodel uncertainty and thus reduces the variance. In other words, ignoring themodel uncertainty
often leads to over-confident confidence intervals. The degree of over-confidencewill be largerwhen the sample size is small,
because the asymptotic variance is divided by the sample size when a confidence interval is computed. This also implies that
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Table 5
Result from simulation 2 with sample size 100. For clarification of the column labels, see Section 5.1.
Simulation 2 (n = 100)

True model
assumption

MLE

θ̂ (95% CI) Coverage
θ

√
n SE(̂θ ) P̂r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̂r(q0.8 < Y ))

Model 1 No 3.022 (2.582, 3.462) 0.95 2.246 0.132 (0.122, 0.142) 0.943 0.050
Yes (2.571, 3.473) 0.954 2.302 (0.122, 0.142) 0.953 0.051

Model 2 No 3.024 (2.552, 3.496) 0.95 2.407 0.132 (0.122, 0.143) 0.944 0.054
Yes (2.570, 3.478) 0.953 2.315 (0.122, 0.142) 0.944 0.051

Model 3 No 2.869 (2.447, 3.291) 0.863 2.153 0.128 (0.118, 0.139) 0.905 0.053
Yes (2.469, 3.268) 0.858 2.039 (0.119, 0.138) 0.905 0.050

Model 4 No 2.867 (2.010, 3.724) n/a 4.374 0.123 (0.105, 0.140) 0.855 0.089
Yes (2.108, 3.626) n/a 3.874 (0.107, 0.138) 0.797 0.078

Model 5 No 3.907 (2.793, 5.021) n/a 5.683 0.139 (0.125, 0.154) 0.755 0.072
Yes (2.970, 4.843) n/a 4.779 (0.127, 0.151) 0.674 0.061

Model 6 No 11.160 (8.667, 13.652) n/a 12.715 0.107 (0.092, 0.122) 0.136 0.077
Yes (9.375, 12.944) n/a 9.106 (0.096, 0.118) 0.040 0.056

Model 7 No 13.839 (10.242, 17.436) n/a 18.350 0.121 (0.104, 0.138) 0.815 0.086
Yes (11.421, 16.258) n/a 12.340 (0.110, 0.132) 0.545 0.058

True model
assumption

Two-stage MLE

θ̃ (95% CI) Coverage
θ

√
n SE(̃θ ) P̃r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̃r(q0.8 < Y ))

Model 1 No 3.001 (2.514, 3.487) 0.931 2.484 0.131 (0.121, 0.142) 0.941 0.056
Yes (2.508, 3.493) 0.936 2.512 (0.120, 0.143) 0.941 0.057

Model 2 No 2.989 (2.502, 3.475) 0.935 2.482 0.131 (0.120, 0.142) 0.939 0.056
Yes (2.493, 3.484) 0.944 2.527 (0.120, 0.142) 0.942 0.058

Model 3 No 2.980 (2.524, 3.435) 0.947 2.323 0.131 (0.121, 0.141) 0.957 0.053
Yes (2.549, 3.411) 0.938 2.199 (0.121, 0.141) 0.941 0.050

Model 4 No 2.619 (1.852, 3.386) n/a 3.912 0.117 (0.100, 0.135) 0.671 0.090
Yes (1.893, 3.346) n/a 3.706 (0.101, 0.134) 0.621 0.085

Model 5 No 3.180 (2.378, 3.983) n/a 4.094 0.129 (0.115, 0.143) 0.940 0.072
Yes (2.426, 3.934) n/a 3.846 (0.116, 0.142) 0.913 0.067

Model 6 No 9.884 (7.994, 11.775) n/a 9.646 0.099 (0.085, 0.112) 0 0.068
Yes (8.322, 11.447) n/a 7.974 (0.088, 0.110) 0 0.056

Model 7 No 9.637 (7.652, 11.623) n/a 10.130 0.097 (0.083, 0.111) 0.001 0.073
Yes (8.109, 11.165) n/a 7.797 (0.086, 0.108) 0 0.056

when hypothesis testing is carried out on the copula parameter or on a function that takes the copula parameter as an input,
the choice between the model-robust and model non-robust variance formula can lead to different outcomes of the test.

Although the true model assumption often results in a smaller variance of the copula parameter, there are cases when
this does not hold, e.g., model 1 from simulation 3 in Section 5.2 and the model for precipitation data in Section 6. This is in
line with the fact that we could not find any analytical evidence for the inequality V TMA

θ < Vθ . In addition, the true model
assumption changes the interpretation of θ̃ from ‘estimate of the least false parameter value’ to ‘estimate of the true value
that generated the data’.

Joe [20] carried out an extensive study on the asymptotic efficiency for two-stage ML estimators and concluded that
two-stage estimation is highly efficient in most cases. By comparing the results from ML and two-stage ML estimations, we
can largely confirm that this is also the case when the model robust variance formula is used, particularly when the sample
size n is large, as the two variance matrix estimators involved are estimating the same quantity.

Another notable result regarding efficiency is that the Hájek–Le Cam convolution theorem, and related theorems on
the optimality of ML estimation, do not apply when the model is incorrectly specified. The Hájek–Le Cam convolution
theorem [15], combined with the Cramér–Rao lower bound [30] theory, states that no asymptotically unbiased and normal
competing estimator can have a smaller limiting variance matrix than that of the full ML estimator. Models 5 and 7 in both
the two- and four-dimensional cases have a relatively large degree of model misspecification. For thesemodels, it frequently
happens that the asymptotic variance of the two-stageML estimator is smaller than that of the full ML estimator. This occurs
both when the model-robust and model non-robust variance formulas are used. The largest difference occurs for model 7
from simulation 2, where the degree of model misspecification is high (the copula and all four margins are misspecified).
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Table 6
Result from simulation 2 with sample size 1000. For clarification of the column labels, see Section 5.1.
Simulation 2 (n = 1000)

True model
assumption

MLE

θ̂ (95% CI) Coverage
θ

√
n SE(̂θ ) P̂r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̂r(q0.8 < Y ))

Model 1 No 3.002 (2.861, 3.143) 0.947 2.271 0.132 (0.129, 0.135) 0.946 0.051
Yes (2.861, 3.143) 0.949 2.278 (0.129, 0.135) 0.949 0.051

Model 2 No 3.002 (2.848, 3.156) 0.950 2.482 0.132 (0.129, 0.135) 0.945 0.056
Yes (2.860, 3.144) 0.951 2.287 (0.129, 0.135) 0.948 0.051

Model 3 No 2.853 (2.713, 2.993) 0.460 2.255 0.128 (0.125, 0.132) 0.500 0.056
Yes (2.728, 2.978) 0.382 2.019 (0.125, 0.132) 0.409 0.050

Model 4 No 2.785 (2.516, 3.055) n/a 4.346 0.122 (0.116, 0.128) 0.050 0.092
Yes (2.551, 3.019) n/a 3.780 (0.117, 0.127) 0.024 0.080

Model 5 No 3.862 (3.487, 4.237) n/a 6.049 0.140 (0.135, 0.144) 0.133 0.078
Yes (3.569, 4.155) n/a 4.728 (0.136, 0.143) 0.064 0.061

Model 6 No 11.067 (10.234, 11.900) n/a 13.436 0.107 (0.102, 0.112) 0 0.083
Yes (10.509, 11.624) n/a 8.997 (0.103, 0.110) 0 0.056

Model 7 No 13.777 (12.619, 14.934) n/a 18.677 0.121 (0.116, 0.127) 0.019 0.088
Yes (13.019, 14.535) n/a 12.227 (0.118, 0.125) 0.002 0.057

True model
assumption

Two-stage MLE

θ̃ (95% CI) Coverage
θ

√
n SE(̃θ ) P̃r(q0.8 < Y ) (95% CI) Coverage

Pr(q0.8 < Y )

√
n SE(P̃r(q0.8 < Y ))

Model 1 No 2.999 (2.842, 3.156) 0.960 2.532 0.132 (0.128, 0.135) 0.962 0.057
Yes (2.842, 3.156) 0.964 2.537 (0.128, 0.135) 0.960 0.057

Model 2 No 2.997 (2.840, 3.153) 0.961 2.527 0.132 (0.128, 0.135) 0.961 0.057
Yes (2.839, 3.154) 0.961 2.539 (0.128, 0.135) 0.960 0.057

Model 3 No 2.987 (2.838, 3.136) 0.943 2.399 0.132 (0.128, 0.135) 0.945 0.054
Yes (2.846, 3.128) 0.932 2.277 (0.128, 0.135) 0.938 0.052

Model 4 No 2.586 (2.339, 2.833) n/a 3.985 0.117 (0.112, 0.123) 0 0.093
Yes (2.357, 2.816) n/a 3.703 (0.112, 0.123) 0 0.086

Model 5 No 3.178 (2.915, 3.441) n/a 4.248 0.129 (0.125, 0.134) 0.839 0.074
Yes (2.937, 3.419) n/a 3.887 (0.125, 0.134) 0.791 0.068

Model 6 No 9.856 (9.254, 10.459) n/a 9.723 0.099 (0.095, 0.103) 0 0.069
Yes (9.358, 10.355) n/a 8.040 (0.095, 0.102) 0 0.057

Model 7 No 9.647 (9.007, 10.288) n/a 10.337 0.097 (0.093, 0.102) 0 0.075
Yes (9.153, 10.142) n/a 7.980 (0.094, 0.101) 0 0.058

When it comes to the asymptotic variance of the upper tail probability Pr(q0.8 < Y ), we often observe that the truemodel
assumption decreases the asymptotic variance. Yet, in some cases, we observe that the truemodel assumption increases the
asymptotic variance. This happensmostlywhen the truemodel assumption increases the asymptotic variance of θ , but there
are also cases where the true model assumption increases the asymptotic Pr(q0.8 < Y ) while it decreases the asymptotic
variance of θ . We suspect that this is due to the fact that the whole Vη , including its non-diagonal elements, is used through
the delta method formula to compute VPr(q0.8<Y ). To check whether this also happens in non-copula models, we simulated
a large number of univariate data and fitted well-known distributions and computed upper tail probability from them. We
could observe that the true model assumption can increase the limiting variance of the upper tail probability while the
limiting variance of parameters decreases. Further, from the same univariate simulation, we also observed that using the
true model assumption sometimes increases the limiting variance of parameters.

5.2. Simulation 3 (gradual change in misspecification)

To study the difference in the numerical behavior between (4) and (3) inmore detail, including the caseswhere the degree
of misspecification is very small, we ran a simulation with gradual change in misspecification. There are three scenarios and
for each scenario, we generated a dataset of size 100. The data generating algorithm generated (1− δ)× 100% of data points
from model 1 and δ × 100% data points from model 2. So, δ can be seen as the degree of ‘contamination’ to model 1 by
model 2. Then, we fitted both model 1 and model 2 to these data by using two-stage ML. This process was repeated 100,000
times and the results were averaged. We used 100 different values of δ, which were spread evenly between 0 and 1. Table 7
describes the model 1 and model 2 that were used in each scenario. In scenario 1, model 1 gets contaminated only in the
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Table 7
Description of the scenarios used in simulation 3.

Copula Margin 1 Margin 2

Scenario 1

Model 1
Gaussian Weibull Gamma
θ = 0.3 α1 = (1, 3)⊤ α2 = (2, 1)⊤

(shape, scale) (shape, rate)

Model 2
Gaussian Log-normal Log-normal
θ = 0.3 α1 = (0.5, 1.3)⊤ α2 = (0.4, 0.8)⊤

(mean, SD) (mean, SD)

Scenario 2

Model 1
Gaussian Weibull Gamma
θ = 0.3 α1 = (1, 3)⊤ α2 = (2, 1)⊤

(shape, scale) (shape, rate)

Model 2
Frank Weibull Gamma
θ = 3 α1 = (1, 3)⊤ α2 = (2, 1)⊤

(shape, scale) (shape, rate)

Scenario 3

Model 1
Gaussian Weibull Gamma
θ = 0.3 α1 = (1, 3)⊤ α2 = (2, 1)⊤

(shape, scale) (shape, rate)

Model 2
Frank Log-normal Log-normal
θ = 3 α1 = (0.5, 1.3)⊤ α2 = (0.4, 0.8)⊤

(mean, SD) (mean, SD)

Table 8
Description of the model for precipitation data.

Copula Margin 1
(Vestby)

Margin 2
(Ski)

Margin 3
(Lørenskog)

Margin 4
(Nannestad)

Margin 5
(Hurdal)

Model Gumbel Gamma Gamma Log-normal Gamma Log-normal

margins. In scenario 2,model 1 gets contaminated only in the copula. In scenario 3,model 1 gets contaminated both in copula
andmargins. For eachmodel and scenario, we estimated the asymptotic variance of θ and Pr(q0.8 < Y ) by assuming the true
model and using Eq. (4) and by not assuming the true model and using Eq. (3).

Figs. 1, 2 and 3 show the results of scenarios 1, 2 and 3, respectively. We can observe that the true model assumption can
both decrease and increase the estimated asymptotic variance of θ and Pr(q0.8 < Y ). And it seems like it ismodel-specific. For
example, model 1, which is same across all three scenarios, always shows increased variance of copula parameter θ under
the true model assumption, regardless of what kind of contamination it gets.

A general pattern that we can clearly observe in all scenarios is that the difference between the two asymptotic variance
formulas (4) and (3), regardless of whether it is positive or negative, gets smaller as the degree of misspecification decreases.
As expected, this pattern is most clearly visible in scenario 3 where both copula and margins are misspecified.

6. Precipitation data

The precipitation data consist of daily measurements of precipitation in millimeters at five different meteorological
stations in Norway (Vestby, Ski, Lørenskog, Nannestad and Hurdal) from January 1, 1990 to December 31, 2006. These
data were provided by the Norwegian Meteorological Institute and used previously in Aas and Berg [1] (with one station
less) and Hobæk Haff [18]. Following the example of two previous papers that used these data, we modeled only positive
precipitation by removing all observations for which at least one of the stations has recorded zero precipitation, resulting in
5536 observations. The main advantage of this is that we remove time dependence.

To choose an adequatemodel, we first fitted a set ofwell-knowndistributions for eachmargin by usingML estimation and
evaluated them by AIC. After the marginal distributions were chosen, we performed a probability integral transformation
for each margin and fitted a set of well-known copulas by using ML estimation and evaluated these by AIC. The best model
obtained in this fashion is described in Table 8. The choice of the Gumbel copula correspondswell with the fact that there are
indications of strong upper, but not lower, tail dependence. This is visible in Figure 2 from the Online Supplement [26], which
contains simulated scatter plots between the first two variables of the 5-dimensional Gumbel copula. Since the Gumbel
copula is a member of the Archimedean copula family, the scatter plots between other possible combinations among the
five variables will be virtually the same as the one between variable 1 and variable 2. They are therefore not displayed.

Figure 1 from theOnline Supplement [26] shows that themarginal distributions of the fittedmodel are highly non-normal
and can differ between meteorological stations.

Table 9 shows the result from the model described in Table 8. With ML estimation, ignoring model uncertainty gives
smaller values of the asymptotic variances. However, with two-stage ML estimators, this is not the case. This phenomenon
was discussed earlier in Section 5.
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Fig. 1. Result of simulation 3, scenario 1. (Models 1 and 2 have the same copula, but different margins.) TMA stands for ‘true model assumption’. The
dashed lines are computed with the model non-robust asymptotic variance formula (4) and the solid lines are computed with the model robust asymptotic
variance formula (3).

Furthermore, we observe that the asymptotic variance of the two-stage ML estimator is smaller than that of the ML
estimator. As already discussed in Section 5, this happens when the degree of misspecification is high and consequently the
Hájek–Le Cam convolution theorem is not applicable. In our case, we used the five-dimensional Gumbel copula, which is a
member of the Archimedean copula family, to model the precipitation in five locations. The advantage of the Archimedean
family copulas is thatwe canmodel high-dimensional dependency byusing only one parameter. The disadvantage, especially
when dimension is high, is that the dependency structure and strength is the same between all different pairs of variables.
The dependency relationship between u1 and u2, for example, is the same as the dependency relationship between u3 and u5,
in such models. Here uj = Fj(yj), for j ∈ {1, . . . , 5}, and these are uniform. The pairwise pseudo-observations plot (Figure 3
in Supplement B of Hobæk Haff [18]), however, shows that the pairwise dependencies among the stations are not the same.

This rigidness of Archimedean copulas is causing amisspecification, and therefore we see that the asymptotic variance of
two-stage ML estimators is smaller than that of the full ML. Aas and Berg [1] suggest pair-copula constructions as a method
to overcome this limitation.

Fig. 4 visualizes Table 9 by using confidence curves, see Section 4. For details about confidence curves, see Schweder
and Hjort [34]. In Fig. 4, the confidence intervals from the model non-robust formula (dashed curves) and the confidence



376 V. Ko and N.L. Hjort / Journal of Multivariate Analysis 171 (2019) 362–381

Fig. 2. Result of simulation 3, scenario 2. (Models 1 and 2 have the same margins, but different copulas.) TMA stands for ‘true model assumption’. The
dashed lines are computed with the model non-robust asymptotic variance formula (4) and the solid lines are computed with the model robust asymptotic
variance formula (3).

intervals from the model robust formula (non-dashed lines) are quite close to each other. This is partly due to the fact that
the sample size (n = 5536) is relatively large and thus scales down the asymptotic variance when a confidence interval is
computed. For datasets with smaller number of observations, the choice of model (non-)robust formula will make a bigger
difference.

The joint upper tail probability Pr(q0.8 < Y ) can be interpreted as the probability that, given that there is precipitation in
all five locations, there is precipitation higher than the 0.8-quantile values in all five locations within the same day.

7. Comparing estimation schemes

Methods and results reached in the present paper may be exploited for examining and assessing the impact of model
misspecification for different types of outcomes. Some quantities will be more affected by misspecification than others,
depending on the particularities of the models entertained, the underlying data generating mechanism, and also the sample
size. It is also a consequence of our results that the two-stage based estimator may have lower variance than the full ML
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Fig. 3. Result of simulation 3, scenario 3. (Models 1 and 2 have different margins and different copulas.) TMA stands for ‘true model assumption’. The
dashed lines are computed with the model non-robust asymptotic variance formula (4) and the solid lines are computed with the model robust asymptotic
variance formula (3).

Table 9
Result from the model described in Table 8 fitted with the precipitation data. For the description of column labels, see
Section 5.1.
True model assumption MLE

θ̂ (95% CI)
√
n SE(̂θ ) P̂r(q0.8 < Y ) (95% CI)

√
n SE(P̂r(q0.8 < Y ))

No 2.351 (2.299, 2.404) 1.996 0.108 (0.101, 0.114) 0.246
Yes (2.304, 2.398) 1.796 (0.102, 0.114) 0.226

True model assumption Two-stage MLE

θ̃ (95% CI)
√
n SE(̃θ ) P̃r(q0.8 < Y ) (95% CI)

√
n SE(P̃r(q0.8 < Y ))

No 2.196 (2.154, 2.238) 1.578 0.101 (0.096, 0.107) 0.207
Yes (2.151, 2.241) 1.696 (0.095, 0.107) 0.225
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Fig. 4. Confidence curves for θ and Pr(q0.8 < Y ). Blue curves are from the model fitted with ML and black curves are from the model fitted with two-stage
ML. Dashed curves correspond to the true model assumption. The dashed horizontal lines indicate point-wise 95% confidence . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

estimator, outside model conditions. The extent to which this is an advantage or not then depends on the implicit biases,
when used to estimate well-defined population quantities.

Consider any parameter of interest, say µ = µ(G), expressed in terms of the underlying data generating mechanism G,
the joint cumulative distribution function for y = (y1, . . . , yd)⊤. When G is modeled as in (1)–(2), the parameter of interest
may be expressed in terms of the parameters of that model, i.e., µ = µ(η) = µ(α, θ ). Under mild regularity conditions, also
regarding the smoothness of µ, methods and results obtained in Section 4 lead to

√
n
(
µ̂ML − µ0,ML

)
⇝ N (0, τML) ,

√
n
(
µ̃2ML − µ0,2ML

)
⇝ N (0, τ2ML) ,

for the ML and the two-stage ML method, respectively. Here µ0,ML = µ(η0,ML) and µ0,2ML = µ(η0,2ML) are the appropriate
least false parameter values for µ = µ(η), involving the least false parameter values that the ML and the two-stage ML
method are aiming for, as in Section 4. Also, τML = c⊤

MLVη,MLcML and τ2ML = c⊤
2MLVη,2MLc2ML, with gradient vectors c = ∂µ(η)/∂η

evaluated at respectively the η0,ML and η0,2ML positions in the η = (α⊤, θ⊤)⊤ parameter space. There is also a third natural
estimator to be reckoned with here, namely the nonparametric µ̂np = µ(Gn), exploiting the direct empirical distribution of
the observations, and for which a similar result

√
n (µ̂np − µ) ⇝ N (0, τnp) holds. This essentially requires the existence of

an influence function for µ(G) with a finite variance.
Importantly, these results give rise to mean squared error (MSE) approximations, for the three natural estimators of the

focus parameter. We may write

µ̂np = µ + n−1/2τ 1/2
np Zn,np, µ̂ML = µ0,ML + n−1/2τ

1/2
ML Zn,ML, µ̃2ML = µ0,2ML + n−1/2τ

1/2
2ML Zn,2ML,

with the three Zn variables tending in distribution to the standard normalN (0, 1). These results invite the first-order large-
sample approximations

MSEnp = 02
+ τnp/n, MSEML = b2ML + τML/n, MSE2ML = b22ML + τ2ML/n,
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involving in addition to the approximate variances also the biases bML = µ0,ML −µ and b2ML = µ0,2ML −µ. The nonparametric
estimator has zero asymptotic bias.

Depending on the specifics of the models studied, and the focus parameter examined, each of the three estimators
might win, in the sense of having the smallest MSE. Particularly with a complicated µ, the parametric variances might
be significantly smaller than the nonparametric ones, so either the ML or the two-stage method might win, for small or
moderate sample sizes, if the biases are not large. It is also clear that if the parametric model is not accurate, leading to
non-zero biases bML and b2ML, the nonparametric estimation method will win for sufficiently large n. What is best in practice,
for different focus parameters, when working with a given dataset, becomes a matter of balancing bias with variance.

In work flowing from the present paper, the authors have pursued these ideas, by constructing asymptotically unbiased
estimators of the quantities involved in the MSE expressions. Incidentally, this requires the full simultaneous limit
distribution of the Zn variables above, in that limit distributions of b̂ML = µ̂ML − µ̂np and b̃2ML = µ̃2ML − µ̂np also play a
role in the construction of estimators of the squared biases involved. The end result is a focused information criterion (FIC)
for copula, in the tradition of the earlier developed focused information criterion (see Claeskens and Hjort [7,8] and Jullum
and Hjort [22,23]), but now involving at least three estimators for each focus parameter. If the statistician examines say k
different parametric copulamodels, each of type (1)–(2), then 2k+1 different estimators are evaluated, assessed, and ranked,
via the FIC for copula. See Ko et al. [27] for details, discussion, and applications.

8. Conclusions and further research

In our paper we have reached precise results for the behavior of two-stage ML estimators for parametric copula models,
bothunder andoutsidemodel conditions. This has then led to a full and flexiblemachinery for inference, including confidence
intervals and curves for focus parameters, testing hypotheses, etc. Here we offer some concluding remarks, some pointing
to further research.

The assumption that the chosen parametric model captures the true model that generated data leads to a set of
simplifications in our apparatus. For instance, the model robust asymptotic variance (3) simplifies to the model non-robust
asymptotic variance formula (4), which is essentially the same as the asymptotic variance formula from Joe [20]. The
difference is that we choose to use the inverse of the Fisher informationmatrix instead of the covariance of score vectors.We
believe that this is more concordant with the current practice of ML theory. Although these two definitions of asymptotic
variances are theoretically the same under the true model assumption, the practical difference between them can be non-
negligible when a real-life dataset is used. A further study on the impact ofmaking one vs. the other choice for estimating the
population Fisher information matrix, either in the usual fashion based on the Hessian matrix at the ML position, or using
the variance matrix for the score vectors, would be useful not only for the copula community, but also more generally for
statisticians applying ML theory in other contexts.

The methods in this paper require that the first and second derivatives of the density function with respect to the model
parameters can be obtained.When it is not feasible to obtain the derivatives, one can consider to use the resamplingmethods
mentioned in Joe [20,21] as alternatives.

Our simulation study shows that assuming that the model is true (i.e., using the model non-robust variance formula) can
both decrease and increase the asymptotic variance of the copula parameter estimate, depending on the parametric form of
the model. The degree of decrease or increase gets larger as the degree of misspecification increases.

Since the asymptotic standard deviation is divided by
√
n when computing a confidence interval, the overconfidence or

underconfidence coming from the truemodel assumption gets larger as sample size decreases.When carrying out hypothesis
testing for the copula parameter, or on a function that takes the copula parameter as an input, the choice of model-robust
variance formula or not can therefore lead to different decisions.

Joe [20] compares asymptotic relative efficiency (ARE) of the two-stage ML estimator with that of the full ML and
concludes that two-stage ML method typically has good ARE. We could observe that the two-stage ML estimator is still
highly efficient when the true model assumption is dropped and the model robust asymptotic variance formulas are used.

When models are highly misspecified, however, we see that the asymptotic variance of two-stage ML estimators can be
smaller than that of the ML estimator. This happens both when the model-robust and model non-robust variance formulas
are used. This effect increases as the degree of model misspecification and dimension increases. This relates to the fact that
the Hájek–Le Cam convolution theorem, along with theorems of a similar nature for the optimality of ML estimation for
parametric models, does not apply when the models are misspecified.

When the truemodel assumption decreases the variance of the estimator of the copula parameter, we sometimes observe
that the asymptotic variance of the joint upper tail probability increases. A possible reason is that this asymptotic variance is
computed with the delta method by using the whole variance matrix of η̃ (or η̂), including the covariances between copula
and margin parameters. A further theoretical and numerical study on the property of variance transformation through the
delta method would be fruitful, especially considering the fact that this also happens in various other types of models.

Our general results concerning misspecified models involve both the notion of least false parameters (those aimed at by
respectively the ML and the two-stage ML methods) and ensuing limit variance matrices. It appears possible to study how
much these vary from their true counterparts, under model conditions, in terms of functional derivatives, in certain types of
model neighborhoods. The O(1/

√
n) model misspecification from Chapters 6 and 7 of Claeskens and Hjort [8] can be used for

such purposes. Such considerations could then be used to pinpoint which parameter estimands µ = µ(η) are more robust
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than others, with respect to moderate misspecification. It is outside the scope of the present paper to pursue this issue,
however. We also consider the development of Section 7, with concrete analysis for each focus parameter µ = µ(η), to be
more directly informative in this regard.

The authors of this study are currently developing model selection criteria for two-stage ML estimators that utilize the
model robust large-sample distribution from Section 3 of this article [25]. These model selection criteria will complement
earlier model selection methodology efforts, such as the Copula Information Criterion (CIC) developed by Grønneberg
and Hjort [14]. One particular goal of these extended efforts will be to aid model building and selection for pair-copula
constructions [1,2].

The methodology for two-stage ML estimation for copula models, inside and outside model conditions, has been
developed in this paper, primarily aiming for the case of iid sequences of vector observations. Importantly, in the presence of
relevant covariate information, the large-sample results and ensuing inferencemethods can be extended to various classes of
conditional copula regressionmodels, with the required extra efforts. This will then lead to further estimation and inference
tools for models worked in, e.g., [3,37]. The covariates may influence the margins, the copula mechanism, or both. As one
such example, we might fit the Norwegian precipitation data of Section 6 using the Gumbel copula, but now with

θi = θ exp{γ1(xi − 1990) + γ2(xi − 1990)2},

where xi is the calendar year for observation i ∈ {1, . . . , n}. This leads to estimates and confidence curves for γ1, γ2 and
related parameters, via the two-stage construction

ℓc (̃α, θ, γ ) =

n∑
i=1

ln c{F1(yi,1, α̃1), . . . , Fd(yi,d, α̃d), θi},

and allows one the opportunity to assess any changes of the copula mechanism over time.
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