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(0, 1)-matrices. We prove several results concerning such ma-
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characterizations for certain orders, and separate sufficient 
and necessary conditions for the so-called matrix majoriza-
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1. Introduction

Majorization is an important order notion which arises in several areas of mathematics. 
An early treatment of majorization is the classical book by Hardy, Littlewood and Pólya 
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[6], and today a main reference is [10] which is a comprehensive treatment of both 
the theory and many applications in e.g., matrix theory, statistics, and combinatorics. 
The book [1] treats majorization in connection with combinatorial classes of matrices. 
Majorization is well-known as an order relation for vectors, but it has been extended, for 
example, to orders for matrices. There are different ways of doing such an extension. In 
our recent paper [4] we presented different matrix majorization orders, and introduced 
and studied its generalizations for classes of matrices. Matrix majorization has some of 
its roots in a functional analytic approach to basic notions in statistics, in connection 
with the theory of comparison of statistical experiments [14]. The theory deals with the 
information content in families of (probability) measures, as abstract representations of 
statistical experiments. These ideas were further developed in a matrix theoretic setting 
in [2] and [3], where related polytopes were studied.

The following notations will be used in the subsequent discussion. Let Mm,n be the 
space of all real m ×n matrices (where we write Mn if m = n). For a vector x ∈ Rn we let 
x[j] denote the jth largest number among the components of x. If x, v ∈ Rn we say that 
x is majorized by v, denoted by x � v (or v � x), provided that 

∑k
j=1 x[j] ≤

∑k
j=1 v[j]

for k = 1, 2, . . . , n where there is equality for k = n. A matrix is called row stochastic
if it is (component-wise) nonnegative and each row sum is 1. The set of all such n × n

matrices is denoted by Ωrow
n . If in addition each column sum is 1, the matrix is called 

doubly stochastic. The set Ωn of all n ×n doubly stochastic matrices is a polytope whose 
extreme points are the permutation matrices (the Birkhoff–von Neumann theorem), see 
[1] for an in-depth survey of properties of Ωn, some related work may be found in [9], 
[13].

In this paper we study classical matrix majorizations and mainly focus on these no-
tions for (0, 1) matrices. This type of constraint on the matrix entries leads to some 
interesting questions and properties, some of combinatorial type. In particular, we find 
certain necessary and sufficient conditions for such matrices to be majorized and algo-
rithms detecting the majorization.

There are two main motivations for the study of matrix majorization for (0, 1)-ma-
trices. First, it is of interest to see if this restriction to the subclass of (0, 1)-matrices 
leads to simpler characterizations of the majorization order in question. This can give 
better insight into this order, and also possibly lead to new types of questions for larger 
matrix classes. Secondly, (0, 1)-matrices are essential to represent combinatorial objects, 
and therefore one may look at the meaning of such a matrix majorization order for two 
combinatorial objects (each associated with a (0, 1)-matrix). We leave this approach for 
future investigations, although we give a couple of such examples in this paper.

Our paper is organized as follows: Section 2 summarizes several types of matrix 
majorizations and discusses some connections between these notions. In Section 3 we 
characterize weak, directional and strong majorizations of (0, 1)-matrices. Section 4 is 
devoted to investigations of matrix majorization on (0, 1) matrices.

For a matrix A its j’th column is denoted by A(j) and its i’th row is denoted by A(i). 
The set of all real m ×n matrices with every element in {0, 1} is denoted by Mm,n(0, 1). 
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Let R(A) denote the set of rows of a matrix A. The set of its columns is denoted by 
C(A).

2. Different notions of matrix majorization

Vectors in Rn are considered as column vectors, and identified with corresponding 
n-tuples. The transpose of a matrix A is denoted by At. The j’th unit vector is denoted 
by ej while e denotes the all 1s vector (of suitable length). The convex hull of a set 
S ⊆ Rn is denoted by conv(S).

Let � denote a matrix majorization order. There are several such notions, and we 
mention some of them below. Let A, B ∈ Mm,n.

• Directional majorization: A �d B when Ax � Bx for all x ∈ Rn.
• Weak matrix majorization: A �wm B when there is a row-stochastic matrix X ∈ Mm

such that A = XB.
• Strong majorization: A �s B when there is an X ∈ Ωm such that A = XB.
• Doubly stochastic majorization: A �ds B when there is X ∈ Ωn such that A = BX.
• Matrix majorization: A �m B when there is a row-stochastic matrix X ∈ Mn such 

that A = BX.

Classical vector majorization is a special case of strong majorization where matrices 
A and B have a single column. Also, doubly stochastic majorization is a special case of 
matrix majorization.

Matrix majorization was introduced and studied in [2], and has later been investigated 
in the linear algebra area. Also, recently in a Nature Communications paper [5], matrix 
majorization was the starting point for a generalization used to study basic problems in 
quantum mechanics and quantum thermodynamics.

Proposition 2.1. Let A, B ∈ Mm,n.

(i) A �s B if and only if At �ds Bt.
(ii) A �d B implies that A �wm B.

(iii) A �wm B does not imply A �d B in general for m ≥ 2.
(iv) A �s B implies that A �d B.
(v) A �d B also does not imply A �s B for m ≥ 4.

(vi) A �wm B if and only if R(A) ⊆ conv(R(B)).

Proof. (i) follows from the definitions. (ii) and (vi) follow by Proposition 3.3 in [11]. (iii) 
follows by [11, Example 1]. (iv) follows from the well-known fact for vector majorization, 
the Hardy-Littlewood-Pólya theorem, saying that u � v if and only if u = Xv for some 
doubly stochastic matrix X. For (v) see [7, page 98(6)] and also [8]. �
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Proposition 2.2. There exist A, B ∈ Mm,n such that

(i) A �s B does not imply A �ds B and conversely,
(ii) let � be either �s, �d, or �wm, then A � B does not imply C(A) ⊆ conv(C(B)),

(iii) let � be either �ds or �m, then A � B does not imply R(A) ⊆ conv(R(B)).

Proof. Let us consider D =

⎡
⎢⎣

3/4 0 1/4
0 1 0

1/4 0 3/4

⎤
⎥⎦∈ Ωn, B =

⎡
⎢⎣

3 −1
1 3
2 1

⎤
⎥⎦, A =

⎡
⎢⎣

11/4 −1/2
1 3

9/4 1/2

⎤
⎥⎦.

Since DB = A, A �s B and as a consequence A �d B and A �wm B. It is easy to 
verify that (11/4, 1, 9/4) /∈ conv(C(B)).

It follows that R(At) � conv(R(Bt)) ⇒ At �wm Bt ⇒ A �ds B. Thus we have 
proved (ii) and direct part of (i).

To conclude the proof one should do the same calculations with At, Bt and Dt. In 
this case At = BtDt, so At �ds Bt and At �m Bt, so, (iii) and the inverse part of (i) 
are proved. �

Let A, B ∈ Mm,n, and let � be either �ds, �m, �wm or �s. Then one can 
check if A � B holds in polynomial time using linear optimization. In fact, for 
each of these orders we look for a row-stochastic or doubly stochastic matrix X that 
satisfies a (finite) system of linear equations, namely AX = B or XA = B (de-
pending of the order �). Thus, one needs to decide if a certain system of linear 
inequalities has a solution, and this can be done efficiently by linear optimization. 
Moreover, the above holds for �d too, since it can be reduced to weak majorization 
of finite number of matrices (see [11, Corollary 3.13]). Finally, we mention that a 
characterization of matrix majorization in terms of sublinear functions was given in 
[2].

3. Majorizations of types �wm, �d, �s for (0, 1)-matrices

Lemma 3.1. Let v, w1, w2, . . . , wm be (0, 1)-vectors of the same size such that v ∈
conv({w1, w2, . . . , wm}). Then v ∈ {w1, w2, . . . , wm}.

Proof. Let v =
∑m

j=1 λjwj where λj ≥ 0 for each j and 
∑m

j=1 λj = 1. Then v =∑
j∈J λjwj where J = {j : λj > 0} is nonempty. We claim that wj = v for each 

j ∈ J . Indeed, if vi = 0 for some i, then (wj)i = 0 for each j ∈ J (otherwise 0 =
vi =

∑
j∈J λj(wj)i > 0; a contradiction). If vi = 1 for some i, then (wj)i = 1 for each 

j ∈ J (otherwise 1 = vi =
∑

j∈J λj(wj)i < 1; a contradiction). The claim follows, and 
therefore the lemma. �
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Corollary 3.2. Let v1, v2, . . . , vn and w1, w2, . . . , wm be (0, 1)-vectors of the same 
size such that {v1, v2, . . . , vn} ⊆ conv({w1, w2, . . . , wm}). Then {v1, v2, . . . , vn} ⊆
{w1, w2, . . . , wm}.

Proof. We apply Lemma 3.1 to each of v1, v2, . . . , vn. �
This corollary leads to a nice characterization of �wm for (0, 1)-matrices.

Proposition 3.3. Let A, B be (0, 1)-matrices of the same size. Then the following state-
ments are equivalent:

(i) A �wm B,
(ii) R(A) ⊆ R(B),

(iii) A = RB for a (0, 1)-matrix R with exactly one element equal to 1 in every row.

Proof. If (i) holds, then by Proposition 2.1.(vi), R(A) ⊆ conv(R(B)). Hence by Corol-
lary 3.2 we obtain R(A) ⊆ R(B), so (ii) holds. Moreover, (ii) implies (iii) by simple 
matrix computations, and (iii) implies (i), as such matrix R is row-stochastic. �

We now turn to strong and directional majorizations.

Lemma 3.4. Let A, B ∈ Mm,n(0, 1) such that A �d B. Then the number of 1’s in A(j)

coincides with the number of 1’s in B(j) for each j ≤ n.

Proof. By the definition of the directional majorization, Ax � Bx for each x. By letting 
v = ej we obtain Aej = A(j) � B(j) = Bej . In particular, it follows that 

∑m
i=1 A

(j)
i =∑m

i=1 B
(j)
i which gives the result since all entries are either 0 or 1. �

Let us characterize the majorization order A �d B for (0, 1)-matrices A and B by 
using purely combinatorial arguments.

Theorem 3.5. Let A, B ∈ Mm,n(0, 1). Then

(i) A �d B if and only if A is a row permutation of B, i.e., A = PB for some permu-
tation matrix P ,

(ii) �d is an equivalence relation on Mm,n(0, 1).

Proof. For x ∈ {0, 1}n let xA = |{1 ≤ i ≤ m : A(i) = x}| and xB = |{1 ≤ i ≤ m :
B(i) = x}|, the cardinalities of the sets of rows equal to x in A and B, correspondingly. 
By construction we get the identity

m =
∑

n

xA =
∑

n

xB . (1)

x∈{0,1} x∈{0,1}
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Hence, in order to show that xA = xB it is sufficient to show that xA ≤ xB for every 
x ∈ {0, 1}n.

For an arbitrary x ∈ {0, 1}n define the (column) vector vx ∈ Rn as follows: (vx)i = 1, 
if xi = 1 and (vx)i = −1, if xi = 0. Let y ∈ {0, 1}n. It is straightforward to see that 
ytvx ≤ xtvx and ytvx = xtvx = xte if and only if x = y. It follows that the maximal 
possible elements of Avx and Bvx are xte and the number of elements equal to xte in 
Avx (respectively, Bvx) is precisely xA (respectively, xB). Since Avx � Bvx we may 

conclude that xA ≤ xB . Indeed, otherwise 
xA∑
i=1

(Avx)[i] >
xA∑
i=1

(Bvx)[i], a contradiction.

By the equality (1) we have proved that xA = xB for every x ∈ {0, 1}n. It follows 
that matrices A and B are equal up to permutation of rows.

Conversely, if A is a row permutation of B, then Az is a permutation of Bz, for any 
z ∈ Rn, so Az � Bz, and therefore A �d B.

Finally, since permutation matrices are invertible, it follows from the condition (i) 
that A �d B if and only if B �d A, so this order is an equivalence relation. �
Corollary 3.6. For (0, 1)-matrices �d and �s are equivalent.

Proof. �s implies �d for all matrices by Proposition 2.1.(iv). For (0,1)-matrices the 
converse implication follows from the characterization obtained in Theorem 3.5.(i). �
4. Matrix majorization for (0, 1)-matrices

We now consider the matrix majorization order, denoted by �m. This concept was 
introduced and studied in [2]. In particular, that paper contains characterizations of 
A �m B when A and B are (0, 1)-matrices with one, resp. two, 1’s in each row. Matrix 
majorization is a more complex concept than weak matrix majorization. We show that 
this majorization differs from the others even in the case of (0, 1) matrices.

Observe that matrix majorization, unlike weak majorization, does not allow any ana-
logues of Proposition 3.3, Lemma 3.4, and characterizations above. Namely, it can not 
be described in terms of row/column inclusion, as the following examples show: the first 
of them shows that row/column inclusion does not follow from A �m B, and the other 
one shows that converse implication does not hold as well.

Example 4.1. Let A =
[

0 0 1
0 0 1

]
, B =

[
1 0 0
0 1 0

]
, R =

⎡
⎢⎣

0 0 1
0 0 1
0 0 1

⎤
⎥⎦. Then A = BR, 

so A �m B. As we can see, A(3) =
[

1
1

]
/∈ C(B). Moreover, B(1) =

[
1
0

]
/∈ C(A) and 

R(A) ∩R(B) = ∅, so A �wm B. �
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Example 4.2. Let A =

⎡
⎢⎣

1 1 0 0
1 1 0 0
1 1 1 1

⎤
⎥⎦ and B =

⎡
⎢⎣

1 0 1 0
1 1 0 0
1 1 1 1

⎤
⎥⎦. Then Ae = Be and 

C(A) ⊆ C(B). But it is easy to verify that A �m B. Indeed, suppose that there exists 

R =

⎡
⎢⎢⎢⎢⎣
a b . . . . . .

d e . . . . . .

g h . . . . . .

j k . . . . . .

⎤
⎥⎥⎥⎥⎦ such that A = BR. Since

BR =

⎡
⎢⎣

a + g b + h . . . . . .

a + d b + e . . . . . .

a + d + g + j b + h + e + k . . . . . .

⎤
⎥⎦ ,

it follows that a + g = a + d = a + d + g + j = 1. Then d = g = j = 0 and a = 1. For 
similar reasons, b = 1, and then R is not a row-stochastic matrix. �

The next example shows that, in the case of matrix majorization, one may have 
A �m B for some (0, 1)-matrices, but, still, the corresponding stochastic matrix R cannot 
be chosen from the set of (0, 1)-matrices.

Example 4.3. There exist A, B ∈ Mm,n(0, 1) such that A �m B and there is no 
(0, 1)-matrix R ∈ Ωrow

n with A = BR.

Let A =

⎡
⎢⎣

1 1 0
1 1 0
1 1 0

⎤
⎥⎦ and B =

⎡
⎢⎣

1 1 0
1 0 1
0 1 1

⎤
⎥⎦.

Then one can check that B−1 =

⎡
⎢⎣

0.5 0.5 −0.5
0.5 −0.5 0.5

−0.5 0.5 0.5

⎤
⎥⎦ and B−1A =

⎡
⎢⎣

0.5 0.5 0
0.5 0.5 0
0.5 0.5 0

⎤
⎥⎦=

R. Obviously, this is the only R such that A = BR and, since R ∈ Ωrow
n , A �m B. �

Now we show that it is possible that A �m B, and A = BR where B and R are (0, 1)
matrices, but A /∈ Mm,n(0, 1).

Example 4.4. There exist (0, 1)-matrices B, R such that A = BR is not a (0, 1)-matrix.

Let B =
[

1 1
0 0

]
and R =

[
1 0
1 0

]
. Then A = BR =

[
2 0
0 0

]
and A �m B. �

As mentioned, doubly stochastic majorization is a particular case of matrix majoriza-
tion. We already know that A �ds B if and only if A = BP (i.e., A is a permutation of 
columns of B). So, below we mainly investigate those pairs A, B ∈ Mm,n that A �m B, 
but A �ds B.
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Lemma 4.5. Let A, B ∈ Mm,n(0, 1) and A �m B. Then for every i = 1, 2, . . . , m the 
number of 1’s in the i’th row of A is equal to the number of 1’s in the i’th row of B.

Proof. By assumption, A = BR for some R ∈ Ωrow
n . Then Ae = BRe = Be where 

e = [1 1 · · · 1]t. Since both matrices are (0, 1), the i-th entry of Ae is the number of 1s 
in the i-th row of A. The same is for B. Hence, the result follows. �

Lemma 4.6. Let A, B ∈ Mm,n(0, 1). Assume A �m B, but A �ds B. Then

(i) there exists R ∈ Ωrow
n satisfying A = BR such that R contains a zero column, and 

for each column sum ci of R it holds that either ci = 0 or ci ≥ 1,
(ii) if B does not contain a zero column, then for any R ∈ Ωrow

n satisfying A = BR it 
holds that R contains a zero column, and for each column sum ci of R it holds that 
either ci = 0 or ci ≥ 1,

(iii) A contains a zero column.

Proof. Suppose that A = BR. It follows that the j’th column of A is a linear combination 
of columns of B with coefficients from j’th column of R. Since R ∈ Ωrow

n , the sum of all 
elements in R is n. Since, by assumption, A �ds B, there is j such that the j’th column 
sum cj < 1 and there is k such that the k’th column sum ck > 1.

If cj < 1 then A(j) is a zero column. Indeed, each element of A(j) is less than or equal 
to cj < 1. Hence, it is 0.

(i) We are going to modify R in order to construct R′ ∈ Ωrow
n such that A = BR′

and R′ (j) is zero. Fix some k such that ck > 1. Suppose that rpj �= 0. Since 0 = A(j) =
n∑

i=1
rijB

(i) ≥ rpjB
(p), we obtain B(p) = 0. It follows that change of R(p) does not affect A. 

Indeed, consider arbitrary axy. Since A = BR, axy =
n∑

z=1
bxzrzy =

∑
z �=p

bxzrzy + bxprpy =∑
z �=p

bxzrzy.

We consider the matrix R′, which is obtained from R by changing rpk to rpk + rpj
and rpj to 0, recall that k is some fixed index satisfying ck > 1. We do the same for the 
rest of nonzero elements in R(j). Finally, we obtain R′ such that A = BR′, R′ (j) is a 
zero column, c′k > 1 and R(l) = R′ (l) for l �= j, k.

We repeat this procedure for every q with 0 < cq < 1. After several such substitutions 
we obtain R′ such that for every q either c′q = 0 or c′q ≥ 1 and R′ contains a zero column, 
as required.

(ii) Suppose that B does not contain a zero column. Let j be such that cj < 1. By 

above, A(j) is zero. Since A(j) =
n∑

i=1
rijB

(i) and all summands are non-negative, it follows 

that rij = 0 for all i.
Finally, if cj < 1 then cj = 0 and R contains a zero column.
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(iii) By (i) we obtain that R′ contains a zero column and, as a consequence, A = BR′

also contains a zero column. �
Remark 4.7. Note that in general, if there is a zero column in B, then item (ii) above 
may not hold, i.e., there is an R ∈ Ωrow

n without zero columns satisfying A = BR. For 
instance, let

A =

⎡
⎢⎣

0 1 0
0 1 0
0 1 0

⎤
⎥⎦ , B =

⎡
⎢⎣

0 1 0
0 1 0
0 0 1

⎤
⎥⎦ .

Then

A = B

⎡
⎢⎣

0.5 0 0.5
0 1 0
0 1 0

⎤
⎥⎦ . �

Lemma 4.8. Let A, B be (0, 1)-matrices, and R be a nonnegative matrix such that A = BR

with rij �= 0 for some i, j. Then A(j) ≥ B(i) (element-wise).

Proof. Observe that A(j) = rijB
(i)+v, where v is a certain nonnegative vector. Indeed, it 

is obtained by linear combination of nonnegative columns of B with nonnegative scalars 
rkj . �
Lemma 4.9. Let A, B be such that R ∈ Ωrow

n with A = BR. Moreover, suppose that 

A(1) = B(1) =
k∑

j=1
etj for some k ≤ n. Then rij = 0 whenever i ≤ k and j > k.

Proof. The result follows from the fact that for i = 1 we have aij =
n∑

q=1
b1qrqj =

k∑
q=1

b1qrqj =
k∑

q=1
rqj = 0 for j > k. �

For an m ×n matrix B let supp(B(i)) denote the support of the i’th row of B, i.e., the 
set of column indices j such that (i, j)’th entry of B is non-zero. We consider the support 
as a subset of {1, 2, . . . , n}. For a subset S ⊆ {1, 2, . . . , n} and a matrix A ∈ Mm,n we 
let A(S) denote the submatrix induced by the columns with indices in S.

We are now ready to formulate and prove the following necessary condition concerning 
matrix majorization.

Lemma 4.10. Let A, B ∈ Mm,n(0, 1) be such that A �m B. Then for every i = 1, 2, . . . , m
there exists some permutation matrix P such that the following inequality holds elemen-
twise: A(supp(A(i))) ≥ B(supp(B(i)))P .
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Proof. Let i ≤ m. Assume that there are k 1’s in (the row) A(i), so, by Lemma 4.5, there 
are exactly k 1’s in B(i). Without loss of generality assume that they are all in the first 
k columns in A and B and also suppose that i = 1.

Consider the submatrix D of R of size k×k consisting of the first k rows and columns 
of R. Now we may write B and R as block matrices: B =

[
X Y

]
such that X is of 

size m × k with first row of 1s and Y is of size m × (n − k) with first row of 0s. By 

Lemma 4.9 R =
[
D O

U V

]
where D is a square matrix of order k, O is zero matrix of 

size k× (n −k) and U, V are arbitrary matrices of corresponding sizes. It is easy to verify 
that D is doubly stochastic. Indeed, by the proof above for any j the sum of elements 
of D in the j’th column equals a1j = 1.

Finally, we conclude the proof using Lemma 4.8. It implies that if rjs > 0 then A(s) ≥
B(j). By Birkhoff–von Neumann theorem (see, for example, [10, Theorem 2.A.2]) D =
λP+Q for some permutation matrix P and nonnegative Q. It follows that A(supp(A(i))) ≥
B(supp(B(i)))P . �

Remark 4.11. The following example shows that the statement of the lemma above holds 
only for submatrices induced by supports of some fixed rows A(k) and B(k) respectively:

Let A = 

⎡
⎢⎣

1 0 0
1 0 0
1 0 0

⎤
⎥⎦ and B =

⎡
⎢⎣

1 0 0
0 1 0
0 0 1

⎤
⎥⎦. It is easy to see that A �m B. In 

this case supp(A(i)) = {1} and supp(B(i)) = {i}. Obviously A(1) ≥ B(i), but for any 
M, N ⊆ {1, 2, 3} with |M | = |N | > 1 we have that A(M) � B(N)P for any permutation 
matrix P . �

Lemma 4.12. There is a polynomial algorithm to verify whether necessary condition in 
Lemma 4.10 holds.

Proof. It is easy to see that this problem can be solved by an algorithm for finding a 
maximum matching in a bipartite graph. We consider columns of B with 1’s in the chosen 
row (exactly k 1’s) as vertices of the first part of the graph and columns of A with 1’s 
in the same row as vertices in the second part. We write an edge between vertices A(i)

and B(j) if A(i) ≥ B(j). After that we find maximum matching and if its size equals k, 
then the condition holds and does not hold otherwise. The complexity of this algorithm 
is not more than O(mn3). �

We observe that the necessary conditions given in Lemmas 4.5, 4.6 and 4.10, even 
combined, are still not sufficient for the matrix majorization as the following example 
shows.
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Example 4.13. Indeed, it is easy to verify that

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 1 1 0
1 0 1 0

⎤
⎥⎥⎥⎥⎦ �m

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Suppose that there exists a row-stochastic matrix R = {rij} such that A = BR. It 
follows directly from this equality that:

• r11 + r21 = r11 + r41 = 1 and r21 + r31 = r31 + r41 = 0. It follows that r11 = 1 and 
r21 = r31 = r41 = r12 = r13 = r14 = 0.

• r12 + r22 = 1 so r22 = 1. Also r22 + r32 = 1 so r32 = 0. Moreover, r32 + r42 = 1. It 
follows that r42 = 1 and a42 = r12 + r42 = 1, a contradiction. �

Let A, B ∈ Mm,n. We define a (0, 1)-matrix Z = Z(A, B) = [zkj ] by the following 
rule. For a fixed index j we consider the set I of rows of A having 0 in the j’th column. 
If there exists i ∈ I such that bik = 1, then zkj = 0, otherwise it is 1. In other words, 
zkj = 0 iff k ∈

⋃
i:aij=0 supp(B(i)), j = 1, 2, . . . , n.

Lemma 4.14. Let A, B ∈ Mm,n and assume that A �m B. Then every matrix R = [rij ] ∈
Ωrow

n with A = BR satisfies

R ≤ Z,

where ≤ denotes elementwise order here, namely, U = (uij) ≤ V = (vij) iff vij = 0 for 
some i, j implies that uij = 0. In particular, Z has no zero row.

Proof. When aij = 0, and A = BR, it follows that the inner product of the i’th row in 
B and the j’th column in R is zero, and therefore

∑
k∈supp(B(i))

rkj = 0.

Since R is nonnegative, it follows that rkj = 0 for each k ∈ supp(B(i)). So, rij = 0
whenever zij = 0, and the first part follows. The last statement follows from the first 
part, since R cannot have a zero row being row-stochastic. �

Based on this lemma it is sometimes very easy to check that A is not majorized by B
as the following two examples show.
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Example 4.15. Let

A =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
1 1 0 0
0 1 1 0
0 0 1 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 1 1 1
0 0 1 1

⎤
⎥⎥⎥⎥⎦ .

Then Z = Z(A, B) is given by

Z =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

So, Z has a zero row and by Lemma 4.14 we obtain A �m B. �
Example 4.16. Let

A =

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 1 1 0
1 0 1 0

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

⎤
⎥⎥⎥⎥⎦ .

Then Z = Z(A, B) is given by

Z =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 1 1 0
0 0 1 0

⎤
⎥⎥⎥⎥⎦ .

For instance, a13 = 0, and supp(B(1)) = {1, 2}, so z13 = z23 = 0. So, a row-stochastic 
R = [rij ] with A = BR must have the form

R =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 0 0
0 a a′ 0
0 0 1 0

⎤
⎥⎥⎥⎥⎦

for some 0 ≤ a ≤ 1 and a′ = 1 − a. But if a > 0, then (BR)22 > 1, and if a′ > 0, then 
(BR)33 > 1; a contradiction. It follows that A �m B. �
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Let n be a natural number. An ordered n-partition of the set Nn := {1, 2, . . . , n} is 
an n-tuple π = (S1, S2, . . . , Sn) of sets, where S1, S2, . . . , Sn is a partition of the set Nn

into the n disjoint subsets, and some sets Si can be empty. Let Pn denote the set of all 
such ordered n-partitions. For instance, there are 27 ordered partitions in P3, one can 
consider π1 = ({1, 3}, ∅, {2}) and π2 = (∅, ∅, {1, 2, 3}) for example.

Let B = [B(1)B(2) · · ·B(n)] be an m × n matrix, where B(j) is its j’th column, and 
let π = (S1, S2, . . . , Sn) ∈ Pn. Define the m × n matrix

Bπ =
[∑

j∈S1
B(j) ∑

j∈S2
B(j) · · ·

∑
j∈Sn

B(j)
]

where the sum is defined to be the zero vector if the summation set Si is empty.
We now connect these notions to matrix majorization by introducing certain new 

majorization. Let A and B be real m ×n matrices. We define the notion of (0, 1)-matrix 
majorization as follows: A is (0, 1)-matrix majorized by B, and we write A �m

0,1 B, when 
there is an integral row-stochastic matrix R ∈ Mn such that A = BR. Clearly, such R is 
a (0, 1)-matrix with exactly one 1 in every row. Let π, π′ ∈ Pn. We write π � π′ if π′ is a 
refinement of π, i.e., it is obtained by further partitioning of some of the subsets, and no 
permutations of subsets are allowed. This is a partial order on Pn, its maximal elements 
are (Nn, ∅, . . . , ∅) and its permutations, and its minimal elements are ({1}, {2}, . . . , {n})
and its permutations.

Theorem 4.17. Let A and B be real m × n matrices. Then the following holds.

(i) If A �m
0,1 B, then A �m B.

(ii) A �m
0,1 B if and only if A = Bπ for some π ∈ Pn.

(iii) A �m B if and only if A ∈ conv({Bπ : π ∈ Pn}).
(iv) If π � π′, then Bπ �m Bπ′ for every B ∈ Mm,n.

Proof. (i): This is clear as the integrality requirement on R makes (0, 1)-matrix ma-
jorization stronger than ordinary matrix majorization.

(ii): Assume A �m
0,1 B, so A = BR for an integral row-stochastic matrix R = [rij ]. 

Let Sj = {i : rij = 1} for each 1 ≤ j ≤ n. Since R is row-stochastic, the sets Sj (j ≤ n) 
are pairwise disjoint, and π = (S1, S2, . . . , Sn) is an ordered partition. Moreover, the j’th 
column of BR is

∑
k∈Sj

B(k)

and therefore BR = Bπ, as desired. The converse implication also follows from this 
computation.

(iii): This was shown in [2] (Corollary 3.2), and essentially follows by convexity and 
the fact that the set of row-stochastic m × n matrices is the convex hull of integral 
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row-stochastic m × n matrices, since this can be seen as the product (or direct sum) of 
the similar statement for each row separately, and this is just the standard simplex.

(iv): Assume π, π′ ∈ Pn and π � π′, and let π = (S1, S2, . . . , Sn), π′ = (S′
1, S

′
2, . . . , S

′
n). 

Since π � π′, for every nonempty S′
i there is unique Sj such that S′

i ⊆ Sj . Let R ∈ Mn. 
If ∅ �= S′

i ⊆ Sj , then set rij = 1, and otherwise set rij = 0. If S′
k = ∅, then set R(k) = et1. 

It is easy to see that Bπ = Bπ′R and R is row stochastic. �
Note that Example 4.3 shows that the converse of the implication in (i) is not true 

even for (0, 1)-matrices A and B.
We also remark that property (iii) of the theorem can be seen as a generalization of 

Rado’s theorem for vector majorization, see [10, Corollary 2.B.3]. Moreover, the set

PB := conv({Bπ : π ∈ Pn})

is a polytope, so it can be described in terms of its facets, i.e., as a solution of a finite sys-
tem of linear inequalities. Namely, there exist t ∈ N, matrices Ci ∈ Mm,n and constants 
bi ∈ R such that

PB := {A ∈ Mm,n : 〈Ci, A〉 ≤ bi for i = 1, . . . , t}.

The problem is to find Ci and bi for each i, and this can only be done in very special cases. 
But the general fact here is that one has the characterization of matrix majorization: 
A �m B if and only if 〈Ci, A〉 ≤ bi for i = 1, . . . , t.

Corollary 4.18. Let B ∈ Mm,n(0, 1). Then the set of m × n (0, 1)-matrices A such that 
A �m

0,1 B consists of all matrices

A = Bπ

where π = (S1, S2, . . . , Sn) ∈ Pn such that the vectors B(j) for j ∈ Si have pairwise 
disjoint supports (i ≤ n).

Proof. This follows from the definition of (0, 1)-matrix majorization and the assumptions 
that both A and B are (0, 1)-matrices: the condition of the theorem assures that the 
matrix Bπ is a (0, 1)-matrix. �

The following example shows a combinatorial significance of Corollary 4.18.

Example 4.19. Let G = (V, E) be a graph and B be its vertex-edge incidence matrix. Thus 
the columns of B correspond to the edges of G, and each such column has two nonzero 
entries, both equal to 1, and they are in the rows corresponding to the end-vertices of 
the edge.
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Consider Corollary 4.18 and let A be a (0, 1)-matrix satisfying A �m
0,1 B. Then the 

nonzero columns of A correspond to a partition of the edge set E into matchings Mk

(k ≤ t) such that the column corresponding to Mk has 1’s in rows corresponding to 
V (Mk), i.e., the vertices covered by Mk. �

Item (iii) of Theorem 4.17 can be also reformulated in the following geometrical way.

Corollary 4.20. Let A, B ∈ Mm,n(0, 1) and π = (S1, S2, . . . , Sn) ∈ Pn. Suppose that each 
subset Si corresponds to |Si| columns of A: A(i,1), A(i,2), . . . , A(i,|Si|) in the following 
way: Either A(i,1) =

∑
j∈Si

B(j) and A(i,x) = 0 for x = 2, . . . , |Si| or A(i,1) = · · · =
A(i,k) = 1

k

∑
j∈Si

B(j) and A(i,x) = 0 for x = k + 1, . . . , |Si|. Here (i, x) ∈ {1, . . . , n} and 
(i, x) = (j, y) implies i = j and x = y.

Then A �m B.

The corollary above sometimes allows to check easily that A is majorized by B as the 
following example shows.

Example 4.21. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 1 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0
1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Moreover, let

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5 0.5 0 0 0
0.5 0.5 0 0 0
0.5 0.5 0 0 0

0 0 0 1 0
0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Then it is easy to verify that A = BR. In this case {B(1), B(2), B(3)} corresponds to 
{A(1), A(2), A(3)}, since A(1) = A(2) = 1

2(B(1) + B(2) + B(3)) and A(3) = 0. {B(4), B(5)}
corresponds to {A(4), A(5)} since B(4) + B(5) = A(4) and A(5) = 0. �

The following characterization of matrix majorization is from [2]. Originally it was 
shown using Farkas’ lemma (see, for example, [12, Corollary 22.3.1]). This was done by 
considering a nonnegative solution R to the system of linear equations A = BR, Re = e, 
here the matrix equations is written column-wise. For m × n matrices U = [uij ] and 
V = [vij ], we use the usual inner product 〈U, V 〉 =

∑
i,j uijvij , and also define
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ρ(U) =
∑
j

max
i

uij .

Theorem 4.22. [2, Theorem 3.6] Let A and B be m × n matrices. Then A �m B if and 
only if

〈A, Y 〉 ≤ ρ(Y TB) (2)

for all Y ∈ Mm,n.

Specializing this result to (0, 1)-matrices we obtain the following characterization. Let 
supp(B(j)) denote the support of the j’th column of a matrix B ∈ Mm,n, viewed as a 
subset of {1, 2, . . . , m}.

Corollary 4.23. Let A, B ∈ Mm,n(0, 1). Then A �m B if and only if
∑
j

∑
i∈supp(A(j))

yij ≤
∑
j

max
k

∑
i∈supp(B(j))

yik (3)

for all matrices Y = [yij ] ∈ Mm,n.

Based on this corollary it is sometimes very easy to check that A is not majorized by 
B as the following example shows.

Example 4.24. Let

A =
[

1 0
0 1

]
, B =

[
1 0
1 0

]
.

Then B �m A as B = Aπ where π = ({1, 2}, ∅). However, A �m B by Corollary 4.23. 
Indeed, in this case (3) becomes

y11 + y22 ≤ max{y11 + y21, y12 + y22}

which is violated for y11 = y22 = 1, y12 = y21 = 0. The same conclusion is obtained from 
Lemma 4.14 as the first row of Z(A, B) is zero. �
Declaration of competing interest

There is no competing interest.

Acknowledgements

The authors wish to thank a referee for several useful comments and suggestions.



G. Dahl et al. / Linear Algebra and its Applications 585 (2020) 147–163 163
References

[1] R.A. Brualdi, Combinatorial Matrix Classes, Encyclopedia of Mathematics, Cambridge University 
Press, 2006.

[2] G. Dahl, Matrix majorization, Linear Algebra Appl. 288 (1999) 53–73.
[3] G. Dahl, Majorization polytopes, Linear Algebra Appl. 297 (1999) 157–175.
[4] G. Dahl, A. Guterman, P. Shteyner, Majorization for matrix classes, Linear Algebra Appl. 555 

(2018) 201–221.
[5] G. Gour, D. Jennings, F. Buscemi, R. Duan, I. Marvian, Quantum majorization and a complete set 

of entropic conditions for quantum thermodynamics, Nat. Commun. 9 (2018) 5352.
[6] G.H. Hardy, J.E. Littlewood, G. Pólya, Inequalities, Cambridge University Press, 1934, 1952, 1978.
[7] G. Koshevoy, Multivariate Lorenz majorization, Soc. Choice Welf. 12 (1995) 93–102.
[8] G. Koshevoy, The Lorenz zonotope and multivariate majorizations, Soc. Choice Welf. 15 (1998) 

1–14.
[9] S.-G. Hwang, S.-S. Pyo, Matrix majorization via vector majorization, Linear Algebra Appl. 332–334 

(2001) 15–21.
[10] A.W. Marshall, I. Olkin, B.C. Arnold, Inequalities: Theory of Majorization and Its Applications, 

second ed., Springer, New York, 2011.
[11] F.D. Martínez Pería, Pedro G. Massey, Luis E. Silvestre, Weak matrix majorization, Linear Algebra 

Appl. 403 (2005) 343–368.
[12] R.T. Rockafellar, Convex Analysis, second ed., Princeton University Press, New Jersey, 1972.
[13] S. Sherman, On a conjecture concerning doubly stochastic matrices, Proc. Amer. Math. Soc. 3 

(1952) 511–513.
[14] E. Torgersen, Comparison of Statistical Experiments, Encyclopedia of Mathematics and Its Appli-

cations, vol. 36, Cambridge University Press, Cambridge, 1991.

http://refhub.elsevier.com/S0024-3795(19)30427-6/bib427275616C64693036s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib427275616C64693036s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4461686C3939s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4461686C393962s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib47656972416C6578616E646572506176656C31s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib47656972416C6578616E646572506176656C31s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib476F75724574416C32303138s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib476F75724574416C32303138s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib48617264794C6974746C65776F6F64506F6C79613334s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4B6F736865766F793935s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4B6F736865766F793938s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4B6F736865766F793938s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4877616E6750796F3031s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4877616E6750796F3031s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4D614F6C41723131s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib4D614F6C41723131s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib50654D6153693035s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib50654D6153693035s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib526F636B6166656C6C6172s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib536865726D616E3532s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib536865726D616E3532s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib546F7267657273656E3932s1
http://refhub.elsevier.com/S0024-3795(19)30427-6/bib546F7267657273656E3932s1

	Majorization for (0,1)-matrices
	1 Introduction
	2 Different notions of matrix majorization
	3 Majorizations of types <=wm,  <=d, <=s for (0,1)-matrices
	4 Matrix majorization for (0,1)-matrices
	Acknowledgements
	References


