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Abstract Tchebycheffian splines are smooth piecewise functions where the differ-
ent pieces are drawn from extended Tchebycheff spaces. They are a natural gen-
eralization of polynomial splines and can be represented in terms of an interesting
set of basis functions, the so-called Tchebycheffian B-splines, which generalize the
standard polynomial B-splines. We provide an accessible and self-contained expo-
sition of Tchebycheffian B-splines and their main properties. Our construction is
based on an integral recurrence relation and allows for the use of different extended
Tchebycheff spaces on different intervals. The special class of generalized B-splines
is also discussed in detail.

1 Introduction

Extended Tchebycheff (ET-) spaces are natural generalizations of algebraic poly-
nomial spaces [13, 27]. Any nontrivial element of an ET-space of dimension p+ 1
has at most p zeros counting multiplicity. Extended complete Tchebycheff (ECT-)
spaces are an important subclass that can be generated through a set of positive
weight functions [23, 27] and allow for defining generalized power functions [17].
Relevant examples are nullspaces of linear differential operators on suitable inter-
vals [9, 27].

Similarly to the polynomial spline case, Tchebycheffian splines are smooth piece-
wise functions whose pieces are drawn from ET-spaces [24, 27]. They share many
properties with the classical polynomial splines but also offer a more flexible frame-
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work, due to the wide variety of ET-spaces. As it is difficult to trace all the works
on Tchebycheffian splines, we refer the reader to [27] for an extended bibliography
on the topic. Multivariate extensions of Tchebycheffian splines can be easily ob-
tained via (local) tensor-product structures [5, 6]. Besides their theoretical interest,
Tchebycheffian splines have application in several branches of the sciences, includ-
ing geometric modeling and numerical simulations; see, e.g., [19, 20, 21, 28].

Most of the results in the polynomial case extend in a natural way to the
Tchebycheffian setting. In particular, Tchebycheffian splines admit a representation
in terms of basis functions, called Tchebycheffian B-splines, with similar properties
to polynomial B-splines. Tchebycheffian B-splines were introduced in 1968 by Kar-
lin [12] using generalized divided differences. We refer the reader to the historical
notes in [27, Chapters 9 and 11] for further details. There are several other ways to
define them, including Hermite interpolation [7, 26], de Boor-like recurrence rela-
tions [10, 17], integral recurrence relations [4], and blossoming [24]. Each of these
definitions has advantages according to the problem one has to face or to the proper-
ties to be proved. All these constructions lead to the same Tchebycheffian B-splines,
up to a proper scaling.

This paper aims to provide a self-contained exposition of Tchebycheffian B-
splines and their main properties, which are often scattered, and sometimes hidden,
in the literature. Our construction of Tchebycheffian B-splines is based on an inte-
gral recurrence relation and allows for the use of different ET-spaces on different
intervals in order to be able to completely exploit the rich variety of ET-spaces, as
often required in applications. This general piecewise structure, under certain con-
straints on the different ET-spaces and/or on the length of the considered intervals, is
sometimes referred to in the literature as piecewise Tchebycheffian B-splines [25].
Although the construction and the properties we present are already known, the cor-
responding proofs –just based on elementary calculus– are largely new, resulting in
an accessible, homogeneous, and original overview. On the other hand, due to space
limitation, some properties of Tchebycheffian B-splines are not treated in this short
overview. In particular, we do not discuss the Marsden identity, dual functionals and
construction of quasi-interpolants; see, e.g., [1, 27].

Our presentation of the Tchebycheffian B-spline setting strongly relies on prop-
erties of ECT-spaces related to the generating weight functions. On the other hand,
any ET-space on a bounded and closed interval is an ECT-space (see [22, Corol-
lary 2.12] and [24]), and therefore it is also equipped with weights functions. In
view of this important result, since only closed and bounded intervals are of interest
to define spline spaces, we could avoid mentioning the concept of ECT-spaces for
constructing Tchebycheffian B-splines, as it is sometimes the case in the literature
(see, e.g., [24]). However, for the sake of completeness and clarity, we prefer to
present the material in terms of ECT-spaces (similar to, e.g., [3, 27]).

The remainder of the paper is divided in three sections. Section 2 introduces
ET-spaces and ECT-spaces. It also summarizes some of their properties to be used
in the construction of Tchebycheffian B-splines. Section 3 contains the core of the
paper: it defines Tchebycheffian B-splines through an integral recurrence relation
and proves some of their main properties including non-negativity, smoothness, and
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knot insertion. Section 4 concludes the paper by discussing an interesting special
class of Tchebycheffian B-splines, the so-called generalized B-splines.

2 Extended Tchebycheff Spaces

In this section we introduce spaces that are a natural generalization of algebraic
polynomial spaces, the so-called extended Tchebycheff spaces. In particular, we
mainly focus on the subclass of extended complete Tchebycheff spaces. Such spaces
can be spanned by a set of basis functions that are a natural generalization of the
polynomial power basis.

2.1 Definition and Basic Properties

Suppose we have a (p+ 1)-dimensional subspace Up(I) of Cp(I) where I is a real
interval. A Hermite interpolation problem in Up(I) consists of finding an element
g ∈ Up(I) satisfying the following conditions:

D jg(zi) = fi, j, j = 0, . . . ,mi −1, i = 0, . . . , ℓ, (1)

where z0, . . . ,zℓ are distinct points in I, and mi are integers such that ∑ℓ
i=0 mi = p+1,

and fi, j ∈ R. We now define extended Tchebycheff spaces 1 on a real interval I.

Definition 1. Let I be an interval of the real line. Given an integer p ≥ 0, a space
Tp(I) ⊂ Cp(I) of dimension p+ 1 is an extended Tchebycheff (ET-) space on I
if any Hermite interpolation problem with p+1 data on I has a unique solution in
Tp(I).

The definition immediately implies that a (p+1)-dimensional subspace of Cp(I)
is an ET-space on I if and only if any nontrivial element of the space has at most p
zeros in I counting multiplicity. Moreover, any ET-space on I is an ET-space of the
same dimension on any nontrivial subinterval of I.

Example 1. The space Pp := 〈1,x, . . . ,xp〉 of algebraic polynomials of degree less than or equal to
p is an ET-space on the real line.

Example 2. The space 〈cos(x),sin(x)〉 is an ET-space on any interval [a,a+π) with a ∈R. Indeed,
the equation c1 cos(x)+ c2 sin(x) = 0 has exactly one solution in the considered interval for any
fixed c1,c2 not both equal to zero. On the other hand, on any interval [a,a+π] or larger, this space
is not an ET-space anymore.

We now focus on a special subclass of ET-spaces.

1 The space Tp(I) is called a Tchebycheff (T-) space if any solution of (1) with m0 = · · ·= mp = 1
is unique in Tp(I). In such a case, (1) is a Lagrange interpolation problem.
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Definition 2. Let I be an interval of the real line. Given an integer p ≥ 0, the
space Tp(I) ⊂ Cp(I) of dimension p+ 1 is an extended complete Tchebycheff
(ECT-) space if there exists a basis {u0, . . . ,up} of Tp(I) such that every subspace
〈u0, . . . ,uk〉 is an ET-space on I for k = 0, . . . , p. The basis {u0, . . . ,up} is called an
ECT-system.

Example 3. Taking uk(x) = xk, k = 0, . . . , p, we see from Example 1 that the space Pp is an ECT-
space on any interval of the real line.

Example 4. An ECT-space is clearly an ET-space, but the converse is not always true. It is sufficient
to consider the space 〈cos(x),sin(x)〉. This is an ET-space on [0,π), see Example 2, but not an ECT-
space on [0,π). However, the space is an ECT-space on (0,π).

The next theorem shows that the classes of ECT-spaces and ET-spaces coincide
in a very important case; see [22, Corollary 2.12] and [24] for details.

Theorem 1. If I is a bounded closed interval, then any ET-space on I is an ECT-
space on I.

In the following we will provide a characterization of an ECT-space in terms of
Wronskians. The Wronskian of k+1 functions {u0, . . . ,uk} of class Ck(I) is given
by the determinant

W [u0, . . . ,uk](x) := det
(
Diu j(x)

)k
i, j=0.

If there exists a point x̄ ∈ I such that W [u0, . . . ,uk](x̄) 6= 0, then the functions
{u0, . . . ,uk} are linearly independent. Wronskians can be used to characterize an
ECT-space as follows; see [27, Theorem 9.1] for a proof.

Theorem 2. A (p+1)-dimensional subspace of Cp(I) is an ECT-space on I if and
only if there exists a basis {u0, . . . ,up} such that all the Wronskians are positive;
more precisely,

W [u0, . . . ,uk](x)> 0, k = 0, . . . , p, x ∈ I.

Note that the basis {u0, . . . ,up} in Theorem 2 is an ECT-system.

Example 5. In Example 3 we have shown that the space Pp is an ECT-space using the set
{1,x, . . . ,xp}. More generally, Pp can be seen as the span of the power basis

{
1,x− y,

(x− y)2

2
, . . . ,

(x− y)p

p!

}
, (2)

for any fixed y ∈ R. Indeed, the Wronskians of this set of functions are all equal to one.

Example 6. Theorem 2 gives a characterization of ECT-spaces in terms of Wronskians, but there
is no similar characterization for ET-spaces. If 〈u0, . . . ,up〉 is an ET-space on I, then the Wronskian
W [u0, . . . ,up](x) does not change sign on I. However, the converse does not hold. It is sufficient to
consider the space 〈cos(x),sin(x)〉. This is an ET-space only on intervals of the form [a,a+π) or
subintervals (see Example 2), but W [cos,sin](x) = 1 for all x ∈ R.
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2.2 Generalized Powers

In this section we introduce special functions that can be regarded as a generalization
of the power basis in (2).

Definition 3. Let (v1, . . . ,vp) be a vector of continuous functions on an interval I.
For a nonnegative integer p and the points x,y in I, we define repeated integrals by

Gp[v1, . . . ,vp](x,y) :=
∫ x

y
v1(t)Gp−1[v2, . . . ,vp](t,y)dt, p ≥ 1, (3)

starting with G0(x,y) := 1.

From the definition we obtain

G1[v1](x,y) =
∫ x

y
v1(t)dt,

and for p > 1,

Gp[v1, . . . ,vp](x,y) =
∫ x

y
v1(t1)

∫ t1

y
v2(t2) · · ·

∫ tp−1

y
vp(tp)dtp · · ·dt1.

We only list two basic properties of repeated integrals; for proofs and further prop-
erties we refer the reader to [17].

• Diagonal Property. Let v j ∈Cp−1− j(I), j = 1, . . . , p. For any y ∈ I we have

∂ r

∂xr Gp[v1, . . . ,vp](x,y)|x=y = 0, r = 0, . . . , p−1. (4)

• Generalized Binomial Formula. For any x,y,c ∈ I we have

Gp[v1, . . . ,vp](x,y) =
p

∑
j=0

(−1)p− jG j[v1, . . . ,v j](x,c)Gp− j[vp, . . . ,v j+1](y,c).

(5)

We are now ready to define a generalization of the classical power basis in (2).

Definition 4. Let www := (w0, . . . ,wq) be a vector of continuous functions on an in-
terval I. For a nonnegative integer p ≤ q and a fixed point y in I, we define the
generalized powers by

uwww
0,p(x,y) := wp(x),

uwww
1,p(x,y) := wp(x)G1[wp−1](x,y),

uwww
2,p(x,y) := wp(x)G2[wp−1,wp−2](x,y),

...

uwww
p,p(x,y) := wp(x)Gp[wp−1, . . . ,w0](x,y),

(6)

with G j the repeated integrals in (3).
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We immediately obtain the following properties.

• Recurrence Formula. From the definition (3) of repeated integrals we deduce

uwww
j,p(x,y) = wp(x)

∫ x

y
uwww

j−1,p−1(t,y)dt, j = 1, . . . , p, x,y ∈ I. (7)

• Smoothness. If w j ∈C j(I), j = 0, . . . , p, then

uwww
j,p ∈Cp(I), j = 0, . . . , p. (8)

This follows from (7).

Example 7. If wp− j = · · ·= wp = 1 then

uwww
j,p(x,y) = wp(x)G j[wp−1, . . . ,wp− j](x,y) =

(x− y) j

j!
. (9)

In this case, (5) takes the form

(x− y)p

p!
=

p

∑
j=0

(−1)p− j (x− c) j

j!
(y− c)p− j

(p− j)!
=

(
(x− c)− (y− c)

)p

p!
.

The next theorem shows that the Wronskians of generalized powers can be ex-
pressed in a simple form; see [12, page 278].

Theorem 3. Let www := (w0, . . . ,wp) be a vector of weight functions on an interval I
such that w j ∈C j(I), j = 0, . . . , p. For any x,y ∈ I and 0 ≤ k ≤ p we have

W [uwww
0,p(·,y), . . . ,uwww

k,p(·,y)](x) = wk+1
p (x)wk

p−1(x) · · ·wp−k(x).

Theorem 3 leads to the following properties.

• Linear Independence. Suppose there exists a point x̄ ∈ I such that

wp(x̄) · · ·wp−k(x̄) 6= 0.

Then, W [uwww
0,p(·,y), . . . ,uwww

k,p(·,y)](x̄) 6= 0 and, as a consequence, the generalized
powers {uwww

0,p(·,y), . . . ,uwww
k,p(·,y)} are linearly independent for any y ∈ I.

• Weight Functions. Let www :=(w0, . . . ,wp) be a vector of positive weight functions
on an interval I such that w j ∈ C j(I), j = 0, . . . , p. Then, for any x,y ∈ I the
Wronskians of the generalized powers are positive, and we have

wp(x) = uwww
0,p(x,y), wp−1(x) =

W [uwww
0,p(·,y),uwww

1,p(·,y)](x)(
uwww

0,p(x,y)
)2 ,

and for 2 ≤ k ≤ p,

wp−k(x) =
W [uwww

0,p(·,y), . . . ,uwww
k,p(·,y)](x)W [uwww

0,p(·,y), . . . ,uwww
k−2,p(·,y)](x)(

W [uwww
0,p(·,y), . . . ,uwww

k−1,p(·,y)](x)
)2 .
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In the following, we discuss spaces spanned by generalized powers. The gener-
alized binomial formula (5) and definition (6) imply

〈uwww
0,p(·,y1), . . . ,uwww

k,p(·,y1)〉= 〈uwww
0,p(·,y2), . . . ,uwww

k,p(·,y2)〉, y1,y2 ∈ I,

for k = 0, . . . , p. This observation leads to the following well-posed definition.

Definition 5. Let www := (w0, . . . ,wq) be a vector of positive weight functions on an
interval I such that w j ∈ C j(I), j = 0, . . . ,q. For a nonnegative integer p ≤ q, we
define the space Twww

p (I) on the interval I generated by the weight vector www by

Twww
p (I) := 〈uwww

0,p(·,y), . . . ,uwww
p,p(·,y)〉, (10)

where uwww
j (·,y), j = 0, . . . , p are given in (6) and y is any fixed point in I.

It is clear that the space Twww
p (I) in (10) only depends on w0, . . . ,wp.

Example 8. From Example 7 we see that if w0 = · · ·= wp = 1 then

Twww
p (R) =

〈
1,x− y,

(x− y)2

2
, . . . ,

(x− y)p

p!

〉
= Pp,

for any fixed y ∈ R.

We now show that generalized powers defined in terms of positive weight func-
tions span an ECT-space.

Theorem 4. Let www := (w0, . . . ,wp) be a vector of positive weight functions on
an interval I such that w j ∈ C j(I), j = 0, . . . , p. The space Twww

p (I) is an ECT-
space of dimension p+ 1 on the interval I. In particular, the generalized powers
{uwww

0,p(·,y), . . . ,uwww
p,p(·,y)} are linearly independent.

Proof. By recalling (8) we see that Twww
p (I)⊂Cp(I). From Theorem 3 it follows that

all the Wronskians of the generalized powers {uwww
0,p(·,y), . . . ,uwww

p,p(·,y)} are positive
on I, and in particular that {uwww

0,p(·,y), . . . ,uwww
p,p(·,y)} forms a basis for Twww

p (I). Theo-
rem 2 completes the proof. ⊓⊔

From Theorem 2 we can assume that any ECT-space Tp(I) is spanned by an ECT-
system with positive Wronskians. The next theorem shows that Tp(I) is spanned by
generalized powers associated with certain positive weight functions. The proof can
be deduced from [12, proof of Theorem 1.1, page 276].

Theorem 5. Let Tp(I) be any ECT-space of dimension p+1 on the interval I, and
let {u0, . . . ,up} be an ECT-system with positive Wronskians spanning Tp(I). We
define the positive weight functions

wp(x) := u0(x), wp−1(x) :=
W [u0,u1](x)
(u0(x))2 ,

wp−k(x) :=
W [u0, . . . ,uk](x)W [u0, . . . ,uk−2](x)(

W [u0, . . . ,uk−1](x)
)2 , k = 2, . . . , p.
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Then, the corresponding generalized powers {uwww
0,p(·,y), . . . ,uwww

p,p(·,y)} form a basis
for Tp(I) for any y ∈ I.

Example 9. There exist different weight vectors generating the same ECT-space. Obviously, the
weight vector (c0w0, . . . ,cpwp) generates the same space as the weight vector (w0, . . . ,wp) for
any positive constants c j , j = 0, . . . , p. A less trivial case is illustrated in Example 10. A nice
construction of all possible weight vectors generating the same ECT-space is given in [23].

Example 10. The space 〈1,cos(x),sin(x)〉 is an ECT-space of dimension 3 on (−π/2,π/2). This
can be shown by considering the weight vector www = (w0,w1,w2) with

w0(x) =
1

cos2(x)
, w1(x) = cos(x), w2(x) = 1.

Then, the corresponding generalized powers with y = 0 are

uwww
0,2(x,0) = w2(x) = 1,

uwww
1,2(x,0) =

∫ x

0
cos(t)dt = sin(x),

uwww
2,2(x,0) =

∫ x

0
cos(t1)

∫ t1

0

1
cos2(t2)

dt2dt1 =
∫ x

0
sin(t1)dt1 = 1− cos(x).

Actually, with some additional effort we can prove that 〈1,cos(x),sin(x)〉 is an ECT-space of di-
mension 3 on (−π,π). To this end, consider the weight vector www = (w0,w1,w2) with

w0(x) = w1(x) = 1
/

cos2
( x

2

)
, w2(x) = cos2

( x
2

)
.

For x ∈ (−π,π) and any fixed y ∈ (−π,π) we find the following generalized powers:

uwww
0,2(x,y) = w2(x) = cos2

( x
2

)
=

1+ cos(x)
2

,

uwww
1,2(x,y) = sin(x)− (1+ cos(x)) tan

( y
2

)
,

uwww
2,2(x,y) = 2sin2

( x− y
2

)/
cos2

( y
2

)
=

1− cos(x)cos(y)− sin(x)sin(y)
cos2(y/2)

.

Example 11. Let 〈u,v〉 be an ET-space of dimension 2 on [a,b]. We can assume without loss of
generality that u(a) = u(b) = 1 and v(a) = 0, v(b) 6= 0. It turns out that u is positive on [a,b]
because otherwise it would have two zeros (counting multiplicity) in (a,b). Set

w1(x) := u(x), w0(x) := D
( v

u

)
(x) =

u(x)Dv(x)− v(x)Du(x)
(u(x))2 =

W [u,v](x)
(u(x))2 .

Since 〈u,v〉 is an ET-space, the Wronskian W [u,v] does not change sign on [a,b]. Hence, we can
assume it is positive on [a,b]; if this is not the case, we change the sign of v. This implies that w0
is positive on [a,b]. Moreover,

w1(x)
∫ x

a
w0(t)dt = w1(x)

( v(x)
u(x)

− v(a)
u(a)

)
= v(x). (11)

Therefore, 〈u,v〉 is the space Twww
2 ([a,b]) with www = (w0,w1), and so from Theorem 4 we know it is an

ECT-space on [a,b]. We conclude that any ET-space of dimension 2 on a closed interval [a,b] is an
ECT-space of dimension 2 on [a,b]. This is in agreement with Theorem 1. Note that the statement
does not hold anymore if the interval is not closed; see Example 4.
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Example 12. Let U,V ∈ Cp([a,b]) be given such that 〈Dp−1U,Dp−1V 〉 is an ET-space on [a,b].
Then, the space 〈1,x, . . . ,xp−2,U(x),V (x)〉 for p ≥ 2 is an ECT-space of dimension p+1 on [a,b].
Indeed, it is the space Twww

p ([a,b]) generated by the weight functions

w0(x) =
W [u,v](x)
(u(x))2 , w1(x) = u(x), w2(x) = · · ·= wp(x) = 1,

where

u(x) := c0,uDp−1U(x)+ c1,uDp−1V (x), v(x) := c0,vDp−1U(x)+ c1,vDp−1V (x),

such that u(a) = u(b) = 1 and v(a) = 0, v(b) 6= 0 (see Example 11).

Example 13. Let Lp be the linear differential operator defined by

Lp f := Dp+1 f +
p

∑
j=0

a jD j f , f ∈Cp+1(I), (12)

where a j ∈ C(I) and I is a real interval. Any operator of the form (12) is uniquely identified
by its nullspace, denoted by Lp. More details on linear differential operators can be found in
[11, Chapter 5]. The nullspace Lp is an ECT-space on I if and only if there exist positive weight
functions w j ∈C j+1(I), j = 0, . . . , p such that

Lp f = w0 · · ·wpD0 . . .Dp f , (13)

where
D j f := D

( f
w j

)
, j = 0, . . . , p;

see [9, Theorem 2, page 91].

– If the coefficients a j are equal to zero, then Lp = Pp is an ECT-space on the real line; see
Example 3.

– If the coefficients a j are constants and the characteristic polynomial λ p+1 +∑p
j=0 a jλ j has

only real roots, then Lp is an ECT-space on the real line; see [9, Proposition 16, page 124]. For
example, given distinct real numbers α0 < α1 < · · ·< αp, the space 〈eα0x,eα1x, . . . ,eαpx〉 is the
nullspace of Lp f = (D−α0) · · ·(D−αp) f , implying it is an ECT-space on the real line.

– If the coefficients a j are constants and the characteristic polynomial has complex roots, then
Lp is an ECT-space on a suitable interval. For example, the space 〈1,x, . . . ,xp−2,cos(x),sin(x)〉
with p ≥ 2 is the nullspace of Lp f = Dp+1 f +Dp−1 f ; it is also an ECT-space on the interval
(−π/2,π/2) that can be generated by the weight functions

w0(x) =
1

cos2(x)
, w1(x) = cos(x), w2(x) = · · ·= wp(x) = 1;

see Example 10 for the special case p = 2. The factorization (13) becomes

Lp f =
1

cos
D
(

cos2
(

D
( 1

cos
Dp−1 f

)))
.

Actually, the space 〈1,x, . . . ,xp−2,cos(x),sin(x)〉 is an ECT-space on larger intervals whose
maximum lengths increase with p; see Example 10 and [8].

– In the general case of nonconstant coefficients a j(x), Lp is an ECT-space on a suitable interval.
For example, if I is compact, then Lp is an ECT-space on any subinterval of I of length less
than min

(
1, 1

(p+1)M

)
, where M ≥ max0≤ j≤p maxx∈I |a j(x)|; see [9, Proposition 1, page 81].
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10 Tom Lyche, Carla Manni, and Hendrik Speleers

3 Tchebycheffian B-Splines

In Section 2 we showed that ECT-spaces extend in a very natural way the space of al-
gebraic polynomials. Now, we focus on smooth functions that are defined piecewise
in ECT-spaces, and we define the so-called Tchebycheffian B-splines, which are a
natural generalization of polynomial B-splines. Since we are interested in bounded
and closed intervals, in view of Theorem 1, ET-spaces are ECT-spaces and so they
are equipped with weight functions. Therefore, Tchebycheffian B-splines are actu-
ally defined piecewise in ET-spaces.

We start by introducing some preliminary notations. A function is called piece-
wise continuous on a finite interval I if it is bounded and continuous except at a
finite number of points, where the value is obtained by taking the limit either from
the left or the right. We denote the space of these functions by C−1(I). The right and
left limits of a real number x are denoted by

x+ := lim
t→x
t>x

t, x− := lim
t→x
t<x

t, x ∈ R.

Similarly, we denote right and left derivatives of a function f by

D+ f (x) := lim
h→0
h>0

f (x+h)− f (x)
h

, D− f (x) := lim
h→0
h<0

f (x+h)− f (x)
h

,

provided that the limits exist at the point x ∈ R.

3.1 Definition and Basic Properties

In order to define Tchebycheffian B-splines we use the concept of knot sequences.
Suppose for integers n > p ≥ 0 that a knot sequence

ξξξ := {ξi}n+p+1
i=1 = {ξ1 ≤ ξ2 ≤ ·· · ≤ ξn+p+1}, n ∈ N, p ∈ N0,

is given. This allows us to define a set of n Tchebycheffian B-splines of degree p.

Definition 6. Given a knot sequence ξξξ , the functions w0, . . . ,wp are called Tcheby-
cheffian B-spline weights with respect to ξξξ if they are positive on [ξ1,ξn+p+1] and 2

for j = 0, . . . , p,

w j ∈C j([ξ+
i ,ξ−

i+1]), ξi < ξi+1, i = 1, . . . ,n+ p, (14)

and

2 Let f be defined on [a,b] ) [c,d]. The notation f ∈ C j([c+,d−]) means that f is a function of
class C j on the interval [c,d] when considering the right/left limit in the left/right endpoint. Note
that, in general, Dr

+ f (c) 6= Dr
− f (c) and Dr

+ f (d) 6= Dr
− f (d), r = 0, . . . , j.
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w j ∈Cmax( j−µi,−1)(ξi), i = 2, . . . ,n+ p, (15)

where µi is the multiplicity of ξi in ξξξ .

Theorem 4 implies that the Tchebycheffian B-spline weights www := (w0, . . . ,wp)
define an E(C)T-space Twww

p ([ξ+
i ,ξ−

i+1]) of dimension p+ 1 for each ξi < ξi+1. We
will see that the smoothness at the knots suffices to define Tchebycheffian B-splines
with smoothness properties similar to the polynomial B-spline case.

Example 14. For i = 1, . . . ,n+1, let 〈ui,vi〉 be ET-spaces of dimension 2 on [ξi,ξi+1], where

ui,vi ∈C1([ξi,ξi+1]), ui(ξi) = ui(ξi+1) = 1, vi(ξi) = 0, vi(ξi+1) = 1,

and, according to Example 11, we can define the local weights

w0,i(x) :=
W [ui,vi](x)
(ui(x))2 , w1,i(x) := ui(x), x ∈ [ξi,ξi+1].

The global weights

w0(x) := w0,i(x), w1(x) := w1,i(x), x ∈ [ξi,ξi+1), i = 1, . . . ,n+1

satisfy (14) and (15) for p = 1. Hence, w0,w1 are Tchebycheffian B-spline weights with respect
to ξξξ , and they generate the given ET-spaces on each (nontrivial) interval [ξ+

i ,ξ−
i+1].

Definition 7. Let www := (w0, . . . ,wq) be a vector of Tchebycheffian B-spline weights
with respect to a knot sequence ξξξ . Suppose for a nonnegative integer p ≤ q and
some integer j that ξ j ≤ ξ j+1 ≤ ·· · ≤ ξ j+p+1 are p+2 real numbers taken from ξξξ .
The j-th Tchebycheffian B-spline Bwww

j,p,ξξξ : R→ R of degree p is identically zero if
ξ j+p+1 = ξ j and otherwise defined recursively by

Bwww
j,p,ξξξ (x) := wp(x)

(∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy−
∫ x

ξ j+1

Bwww
j+1,p−1,ξξξ (y)

γwww
j+1,p−1,ξξξ

dy
)
, (16)

starting with

Bwww
i,0,ξξξ (x) :=

{
w0(x), if x ∈ [ξi,ξi+1),

0, otherwise.
(17)

Here, γwww
i,k,ξξξ is defined as the integral of Bwww

i,k,ξξξ ,

γwww
i,k,ξξξ :=

∫ ξi+k+1

ξi

Bwww
i,k,ξξξ (y)dy, (18)

and we used the convention that if γwww
i,k,ξξξ = 0 then

∫ x

ξi

Bwww
i,k,ξξξ (y)

γwww
i,k,ξξξ

dy :=

{
1, if x ≥ ξi+k+1,

0, otherwise.
(19)

The Tchebycheffian B-spline Bwww
j,p,ξξξ is called normalized when wp = 1.
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In order to stress the similarity with the polynomial B-spline case,3 the term
degree p is used in Definition 7 to refer to the dimension p+ 1 of the underlying
E(C)T-space. We also use the terms linear in case of p = 1, quadratic in case of
p = 2, and so on. Furthermore, we use the notation

B[ξ j, . . . ,ξ j+p+1;w0, . . . ,wp] := Bwww
j,p,ξξξ ,

showing explicitly on which knots and weight functions the Tchebycheffian B-
spline depends.

Definition 7 allows for the construction of Tchebycheffian B-splines where the
different pieces are drawn from different ET-spaces. This can be done provided that
we are able to construct Tchebycheffian B-spline weights as in Definition 6 which
identify on each interval the desired ET-space. Example 14 shows that this is always
the case if we consider ET-spaces of dimension two. In view of Example 12, this
paves the path for the construction of the so-called generalized B-splines which will
be discussed in Section 4. A more general setting can be addressed by relying on the
elegant constructive procedure for finding all weight vectors associated with a given
ET-space in a bounded closed interval presented in [23]. In particular, this proce-
dure, which is based on the properties of Tchebycheffian Bernstein functions, has
been exploited in [25] to construct Tchebycheffian B-splines with pieces belonging
to ET-spaces of dimension four (see also [2]).

Example 15. The linear Tchebycheffian B-spline is given by

Bwww
j,1,ξξξ (x) = B[ξ j,ξ j+1,ξ j+2;w0,w1](x) =





w1(x)

∫ x
ξ j

w0(y)dy
∫ ξ j+1

ξ j
w0(y)dy

, if x ∈ [ξ j,ξ j+1),

w1(x)
∫ ξ j+2

x w0(y)dy
∫ ξ j+2

ξ j+1
w0(y)dy

, if x ∈ [ξ j+1,ξ j+2),

0, otherwise.

In particular, when w0(x) = 1/cos2(x), w1(x) = cos(x) and −π/2 < ξ j < ξ j+2 < π/2, we have

B[ξ j,ξ j+1,ξ j+2;w0,w1](x) =





sin(x−ξ j)cos(ξ j+1)

sin(ξ j+1 −ξ j)
, if x ∈ [ξ j,ξ j+1),

sin(ξ j+2 − x)cos(ξ j+1)

sin(ξ j+2 −ξ j+1)
, if x ∈ [ξ j+1,ξ j+2),

0, otherwise.

All spline pieces belong to the trigonometric space 〈cos(x),sin(x)〉. This is in agreement with
Example 10. This function is discontinuous at a double knot and continuous at a simple knot.

Example 16. The quadratic (normalized) Tchebycheffian B-spline defined on the uniform knot
sequence {iω}3

i=0 with ω < π , and generated by the weight functions

3 Our Tchebycheffian B-spline construction follows the approach of [3, 4], while it differs from
[24] in two ways: the indexing of the weight functions and the positioning of the weight functions
with respect to the integration. This provides a more intuitive notation.
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w0(x) =
1

(w1(x))2 , w1(x) =
cos(x− (i+1)ω/2)

cos(ω/2)
, w2(x) = 1, x ∈ [iω,(i+1)ω), (20)

is given by

B[0,ω ,2ω,3ω;w0,w1,1](x) =





1− cos(x)
2(1− cos(ω))

, if x ∈ [0,ω),

cos(2ω − x)+ cos(x−ω)−2cos(ω)

2(1− cos(ω))
, if x ∈ [ω,2ω),

1− cos(3ω − x)
2(1− cos(ω))

, if x ∈ [2ω,3ω),

0, otherwise.

All spline pieces belong to the trigonometric space 〈1,cos(x),sin(x)〉. The knots are simple
and it can be verified that the function is continuous with a continuous first derivative for
all x ∈ R. Observe that, to obtain quadratic Tchebycheffian B-splines with pieces belonging to
〈1,cos(x),sin(x)〉, we could have used the simpler weight functions w0(x) = 1/cos2(x), w1(x) =
cos(x), w2(x) = 1 instead of (20). However, this choice results in the restriction ω < π/6 to ensure
positivity of the weight functions on the interval [0,3ω].

Let χi denote the characteristic function on the interval [ξi,ξi+1). The general
explicit expression for a Tchebycheffian B-spline is quite complicated. Applying
the recurrence relation in Definition 7 repeatedly we find

Bwww
j,p,ξξξ (x) =

j+p

∑
i= j

Bwww,{i}
j,p,ξξξ (x)χi(x), p ≥ 0, (21)

where Bwww,{i}
j,p,ξξξ is defined on the interval [ξi,ξi+1) as the restriction of Bwww

j,p,ξξξ to that
interval, and it is assumed to be zero if ξi = ξi+1. In particular, for the nontrivial
cases we have

Bwww,{ j}
j,0,ξξξ (x) = w0(x), Bwww,{ j}

j,1,ξξξ (x) = w1(x)

∫ x
ξ j

w0(y)dy
∫ ξ j+1

ξ j
w0(y)dy

,

Bwww,{ j+1}
j,1,ξξξ (x) = w1(x)

∫ ξ j+2
x w0(y)dy
∫ ξ j+2

ξ j+1
w0(y)dy

.

For p ≥ 1, in the nontrivial cases, it follows that the first and last piece are given by

Bwww,{ j}
j,p,ξξξ (x) = wp(x)Gp[wp−1, . . . ,w0](x,ξ j)

/ p

∏
i=1

γwww
j,i−1,ξξξ ,

Bwww,{ j+p}
j,p,ξξξ (x) = wp(x)Gp[wp−1, . . . ,w0](ξ j+p+1,x)

/ p

∏
i=1

γwww
j+p−i+1,i−1,ξξξ ,

(22)

where Gp is defined in (3). If ξ j < ξ j+1 = ξ j+p+1 then (22) simplifies to
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Bwww,{ j}
j,p,ξξξ (x) = wp(x)

Gp[wp−1, . . . ,w0](x,ξ j)

Gp[wp−1, . . . ,w0](ξ j+1,ξ j)
, (23)

and if ξ j = ξ j+p < ξ j+p+1 then

Bwww,{ j+p}
j,p,ξξξ (x) = wp(x)

Gp[wp−1, . . . ,w0](ξ j+p+1,x)
Gp[wp−1, . . . ,w0](ξ j+p+1,ξ j+p)

. (24)

In the following, we list some basic properties of Tchebycheffian B-splines that
can be directly derived from Definition 7.

• Local Support. A Tchebycheffian B-spline is locally supported on the interval
given by the extreme knots used in its definition. More precisely,

Bwww
j,p,ξξξ (x) = 0, x /∈ [ξ j,ξ j+p+1). (25)

This can be proved using induction on the recurrence relation (16).

• Piecewise Structure. A Tchebycheffian B-spline has a piecewise Tchebycheff
structure, i.e.,

Bwww,{m}
j,p,ξξξ ∈ Twww

p ([ξm,ξm+1)), m = j, . . . , j+ p. (26)

Proof. We proceed by induction on p. Clearly, the case p= 0 holds by the defini-
tion in (17). Suppose (26) holds for degree p−1. By (16) the function Bwww,{m}

j,p,ξξξ (x)
for x ∈ [ξm,ξm+1) is a linear combination of

wp(x)
∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy, wp(x)
∫ x

ξ j+1

Bwww
j+1,p−1,ξξξ (y)

γwww
j+1,p−1,ξξξ

dy,

where we recall ∫ x

ξi

Bwww
i,p−1,ξξξ (y)

γwww
i,p−1,ξξξ

dy = 1, x ≥ ξi+p.

The result immediately follows from the induction hypothesis, the recurrence
relation (7) and Definition 5. ⊓⊔

• Local Partition of Unity. The sum of the Tchebycheffian B-splines of degree p
is given by

m

∑
j=m−p

Bwww
j,p,ξξξ (x) = wp(x), x ∈ [ξm,ξm+1), p+1 ≤ m ≤ n. (27)

In particular, for normalized Tchebycheffian B-splines this relation simplifies to

m

∑
j=m−p

Bwww
j,p,ξξξ (x) = 1, x ∈ [ξm,ξm+1), p+1 ≤ m ≤ n. (28)
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Proof. For p = 0, the relation (27) follows from (17). For p ≥ 1, we obtain from
(16), (25) and (19) that

m

∑
j=m−p

Bwww
j,p,ξξξ (x) = wp(x)

m

∑
j=m−p

(∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy−
∫ x

ξ j+1

Bwww
j+1,p−1,ξξξ (y)

γwww
j+1,p−1,ξξξ

dy
)

= wp(x)
(

1+
m

∑
j=m−p+1

∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy−
m−1

∑
j=m−p

∫ x

ξ j+1

Bwww
j+1,p−1,ξξξ (y)

γwww
j+1,p−1,ξξξ

dy
)

= wp(x).

In case of normalized Tchebycheffian B-splines we have wp = 1. ⊓⊔
• Differentiation. The derivative of a Tchebycheffian B-spline can be simply ex-

pressed in terms of two consecutive Tchebycheffian B-splines of lower degree
as

D+

(Bwww
j,p,ξξξ (x)

wp(x)

)
=

Bwww
j,p−1,ξξξ (x)

γwww
j,p−1,ξξξ

−
Bwww

j+1,p−1,ξξξ (x)

γwww
j+1,p−1,ξξξ

, p ≥ 1, (29)

where fractions with zero denominator have value zero. In particular, for normal-
ized Tchebycheffian B-splines the relation simplifies to

D+Bwww
j,p,ξξξ (x) =

Bwww
j,p−1,ξξξ (x)

γwww
j,p−1,ξξξ

−
Bwww

j+1,p−1,ξξξ (x)

γwww
j+1,p−1,ξξξ

, p ≥ 1. (30)

Example 17. The standard polynomial B-splines of degree p (see, e.g., [18, Definition 2]) are
normalized Tchebycheffian B-splines of degree p generated by the weights w0 = · · ·= wp = 1
and defined on the same knot sequence ξξξ . This is in agreement with Example 8 showing that
Twww

p ([a,b]) = Pp([a,b]) when w0 = · · ·= wp = 1.

Example 18. Let www := (w0, . . . ,wp) be a vector of positive functions on the interval [a,b] such
that w j ∈C j([a,b]), j = 0, . . . , p, and consider the knot sequence

ξξξ := {a =: ξ1 = · · ·= ξp+1 < ξp+2 = · · ·= ξ2p+2 := b},

which consists of only two different knots (a and b) but both of multiplicity p+ 1. Then, for
p ≥ 1 the functions in Definition 7 are given by

Bwww
1,p,ξξξ (x) = wp(x)

(
1−

∫ x

a

Bwww
2,p−1,ξξξ (y)

γwww
2,p−1,ξξξ

dy
)
,

Bwww
j,p,ξξξ (x) = wp(x)

(∫ x

a

Bwww
j,p−1,ξξξ (y),ξξξ

γwww
j,p−1,ξξξ

dy−
∫ x

a

Bwww
j+1,p−1,ξξξ (y)

γwww
j+1,p−1,ξξξ

dy
)
, 2 ≤ j ≤ p,

Bwww
p+1,p,ξξξ (x) = wp(x)

∫ x

a

Bwww
p+1,p−1,ξξξ (y)

γwww
p+1,p−1,ξξξ

dy.

These functions are called Tchebycheffian Bernstein functions of degree p and span the ECT-
space Twww

p ([a,b]) of dimension p+ 1. They reduce to the standard Bernstein polynomials of
degree p when w0 = · · ·= wp = 1.
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3.2 Further properties of Tchebycheffian B-Splines

In this section we prove several properties of Tchebycheffian B-splines, in particular
nonnegativity, smoothness and local linear independence. The most technical part is
to prove that γwww

i,ℓ,ξξξ > 0 whenever the support of the corresponding Tchebycheffian B-
spline is nontrivial, i.e., ξi < ξi+ℓ+1. The construction of Bwww

j,p,ξξξ requires all the
Tchebycheffian B-splines Bwww

i,ℓ,ξξξ for i = j, . . . , j + p− ℓ and ℓ = p− 1, p− 2, . . . ,0;
this involves the corresponding γwww

i,ℓ,ξξξ .
We first note that from Definition 7 the function

∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy, p ≥ 1

is of class C0([ξ1,ξn+p+1]) if γwww
j,p−1,ξξξ 6= 0, and of class C−1([ξ1,ξn+p+1]) otherwise.

The next lemma discusses the behavior of Tchebycheffian B-splines at the endpoints
of their support.

Lemma 1. Suppose γwww
i,ℓ,ξξξ > 0 whenever ξi < ξi+ℓ+1 for i = j, . . . , j + p− ℓ and

ℓ= 0, . . . , p−1.

(i) Let 1 ≤ µ j ≤ p+1 such that ξ j = · · ·= ξ j+µ j−1 < ξ j+µ j . We have

Dr
+Bwww

j,p,ξξξ (ξ j) = 0, r = 0, . . . , p−µ j,

and

D
p+1−µ j
+ Bwww

j,p,ξξξ (ξ j) = wp(ξ j)
p−1

∏
k=µ j−1

wk(ξ j)

γwww
j,k,ξξξ

.

(ii) Let 1 ≤ µ j ≤ p+1 such that ξ j+p+1−µ j < ξ j+p+2−µ j = · · ·= ξ j+p+1. We have

Dr
−Bwww

j,p,ξξξ (ξ j+p+1) = 0, r = 0, . . . , p−µ j,

and

D
p+1−µ j
− Bwww

j,p,ξξξ (ξ j+p+1) = (−1)p+1−µ j wp(ξ j+p+1)
p−1

∏
k=µ j−1

wk(ξ j+p+1)

γwww
j+p−k,k,ξξξ

.

Proof. We focus on statement (i). For µ j = p+ 1 the result follows from the ex-
plicit expression in (24), and in particular the result holds for p = 0. Suppose now
1 ≤ µ j ≤ p. It follows from the definition that Bwww

j,p,ξξξ (ξ j) = 0, and for r ≥ 1 the
differentiation formula (29) implies

Dr
+

(Bwww
j,p,ξξξ (x)

wp(x)

)
=

Dr−1
+ Bwww

j,p−1,ξξξ (x)

γwww
j,p−1,ξξξ

−
Dr−1
+ Bwww

j+1,p−1,ξξξ (x)

γwww
j+1,p−1,ξξξ

. (31)
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We proceed by induction on p. The case p = 0 was already shown before. Since
Bwww

j,p−1,ξξξ and Bwww
j+1,p−1,ξξξ have a knot of multiplicity µ j and µ j −1 at ξ j, respectively,

we deduce from the induction hypothesis that

Dr
+Bwww

j,p−1,ξξξ (ξ j) = 0, r = 0, . . . , p−µ j −1,

Dr
+Bwww

j+1,p−1,ξξξ (ξ j) = 0, r = 0, . . . , p−µ j,

and

D
p−µ j
+ Bwww

j,p−1,ξξξ (ξ j) = wp−1(ξ j)
p−2

∏
k=µ j−1

wk(ξ j)

γwww
j,k,ξξξ

.

Therefore, from (31) we obtain

Dr
+

(Bwww
j,p,ξξξ

wp

)
(ξ j) = 0, r = 1, . . . , p−µ j,

and

D
p−µ j+1
+

(Bwww
j,p,ξξξ

wp

)
(ξ j) =

p−1

∏
k=µ j−1

wk(ξ j)

γwww
j,k,ξξξ

.

Recall that Bwww
j,p,ξξξ (ξ j) = 0, and so

(Bwww
j,p,ξξξ
wp

)
(ξ j) = 0. Finally, taking into account the

smoothness of wp in (14), the Leibniz rule gives

Dr
+Bwww

j,p,ξξξ (ξ j) =
r

∑
k=0

(
r
k

)
Dr−k
+ wp(ξ j)Dk

+

(Bwww
j,p,ξξξ

wp

)
(ξ j), r = 0, . . . , p−µ j +1,

which completes the proof of statement (i). The proof of statement (ii) is similar. ⊓⊔

In the following, we investigate the number of sign changes of linear combina-
tions of Tchebycheffian B-splines. We first define what we mean by sign changes of
a function.

Definition 8. The number of sign changes of a function f : [a,b]→ R is defined by

S−( f ) := sup
k≥2

sup
a≤x1<···<xk≤b

S−( f (x1), . . . , f (xk)),

where S−(c1, . . . ,ck) denotes the number of (strict) sign changes in the sequence of
real numbers c1, . . . ,ck.

Lemma 2. For a given function g ∈C−1([a,b]), we set

f (x) := f (a)+
∫ x

a
g(y)dy, x ∈ [a,b].

Suppose the function f has a finite number of sign changes on [a,b], as defined in
Definition 8. Then,
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(i) S−(g)≥ S−( f )+1 if f (a) = f (b) = 0 and f 6≡ 0;

(ii) S−(g)≥ S−( f ) if f (a) f (b) = 0;

(iii) S−(g)≥ S−( f )−1.

Proof. From its definition it follows that f is continuous on [a,b]. We start by prov-
ing statement (i). Suppose S−( f ) = k. Since f (a) = f (b) = 0 and f 6≡ 0, there exists
a sequence of points

a = x0 < x1 < · · ·< xk < xk+1 = b,

and zi ∈ (xi,xi+1), i = 0, . . . ,k, such that

f (xi) = 0, i = 0, . . . ,k+1, f (zi) 6= 0, i = 0, . . . ,k.

Since
∫ zi

xi

g(y)dy = f (zi)− f (xi) 6= 0,
∫ xi+1

xi

g(y)dy = f (xi+1)− f (xi) = 0,

the function g changes sign at least once in the interval (xi,xi+1). This implies that
S−(g) ≥ k + 1 = S−( f ) + 1. With a similar line of arguments we can prove the
statements (ii) and (iii). ⊓⊔

The proof of the next lemma is inspired by [3, Lemma 2.11].

Lemma 3. Let k ≥ 0. Suppose γwww
i,ℓ,ξξξ > 0 whenever ξi < ξi+ℓ+1 for i = j, . . . , j+k+

p− ℓ and ℓ= 0, . . . , p−1. For ci ∈ R, i = j, . . . , j+ k, the function

s(x) :=
j+k

∑
i= j

ciBwww
i,p,ξξξ (x)

has at most k sign changes on the interval [ξ j,ξ j+k+p+1].

Proof. If s≡ 0 there is nothing to prove. Otherwise we use induction on p. For p= 0
the result follows from the definition (17) of Bwww

i,0,ξξξ and the positivity of the weight
function w0. Assuming p ≥ 1 and using (16), we can write

s(x) = c jwp(x)
∫ x

ξ j

Bwww
j,p−1,ξξξ (y)

γwww
j,p−1,ξξξ

dy− c j+kwp(x)
∫ x

ξ j

Bwww
j+k+1,p−1,ξξξ (y)

γwww
j+k+1,p−1,ξξξ

dy

+wp(x)
j+k

∑
i= j+1

(ci − ci−1)
∫ x

ξ j

Bwww
i,p−1,ξξξ (y)

γwww
i,p−1,ξξξ

dy.

(32)

Suppose now that for any k and any j it holds that ∑ j+k
i= j ciBwww

i,p−1,ξξξ has at most k sign
changes. If one of the knots has multiplicity p+ 1 in the knot sequence {ξ j+1 ≤
·· · ≤ ξ j+k+p}, say ξ j+ℓ = ξ j+ℓ+p for some ℓ ∈ {1, . . . ,k}, then
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s(x) =
j+ℓ−1

∑
i= j

ciBwww
i,p,ξξξ (x)+

j+k

∑
i= j+ℓ

ciBwww
i,p,ξξξ (x) =: s1(x)+ s2(x).

From (25) we know that s1(x) = 0 for x /∈ [ξ j,ξ j+ℓ) and s2(x) = 0 for
x /∈ [ξ j+ℓ,ξ j+k+p+1). Hence,

S−(s)≤ S−(s1)+S−(s2)+1. (33)

Therefore, to show that S−(s) ≤ k it suffices to show that S−(s1) ≤ ℓ− 1 and
S−(s2) ≤ k− ℓ. These are two subproblems of the same structure. A repeated ap-
plication of this argument allows us to remove all knots of multiplicity p+1 in the
knot sequence {ξ j+1 ≤ ·· · ≤ ξ j+k+p}. Therefore, it is enough to prove the result in
the case

ξi < ξi+p, i = j+1, . . . , j+ k. (34)

Assuming that (34) holds, we consider four cases.
First case: ξ j < ξ j+p and ξ j+k+1 < ξ j+k+p+1. For x ∈ [ξ j,ξ j+k+p+1], let

f (x) :=
∫ x

ξ j

g(y)dy, g(x) :=
j+k+1

∑
i= j

(
ci − ci−1

γwww
i,p−1,ξξξ

)
Bwww

i,p−1,ξξξ (x),

with c j−1 := 0 and c j+k+1 := 0. Since ξi < ξi+p for i= j, . . . , j+k+1, the hypothesis
ensures that γwww

i,p−1,ξξξ > 0 for i = j, . . . , j+k+1. Hence, g is well defined and belongs

to C−1([ξ j,ξ j+k+p+1]) because of (26). By the induction hypothesis, we also know
that g has at most k+1 sign changes. As a consequence, f is a continuous function
with a finite number of sign changes and f (ξ j) = 0. From (32) it is clear that s(x) =
wp(x) f (x), and the positivity of wp implies S−(s)= S−( f ). Moreover, from the local
support of the B-splines it follows that f (ξ j+k+p+1) = 0. Thus, from statement (i)
of Lemma 2 we get S−(s) = S−( f )≤ S−(g)−1 ≤ k.

Second case: ξ j = ξ j+p and ξ j+k+1 = ξ j+k+p+1. For x ∈ [ξ j,ξ j+k+p+1], let

f (x) := c j +
∫ x

ξ j

g(y)dy, g(x) :=
j+k

∑
i= j+1

(
ci − ci−1

γwww
i,p−1,ξξξ

)
Bwww

i,p−1,ξξξ (x).

Since ξi < ξi+p for i = j+ 1, . . . , j+ k, the hypothesis ensures that γwww
i,p−1,ξξξ > 0 for

i = j + 1, . . . , j + k. Hence, g is well defined and belongs to C−1([ξ j,ξ j+k+p+1]).
Since γwww

j,p−1,ξξξ = γwww
j+k+1,p−1,ξξξ = 0, and taking into account (19), we have s(x) =

wp(x) f (x) for x ∈ [ξ j,ξ j+k+p+1). From (25) we see that s(ξ j+k+p+1) = 0, and so
the positivity of wp implies S−(s) = S−( f ). With the same line of arguments as in
the previous case, from statement (iii) of Lemma 2 and the induction hypothesis, we
get S−(s) = S−( f )≤ S−(g)+1 ≤ k on [ξ j,ξ j+k+p+1].

In the two remaining cases ξ j < ξ j+p and ξ j+k+1 = ξ j+k+p+1 or ξ j = ξ j+p and
ξ j+k+1 < ξ j+k+p+1, the result follows in a similar way by using statement (ii) of
Lemma 2. ⊓⊔
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We are now ready to show nonnegativity of Tchebycheffian B-splines.

Lemma 4. If ξ j < ξ j+p+1 then Bwww
j,p,ξξξ (x) ≥ 0 for x ∈ [ξ j,ξ j+p+1] and moreover

γwww
j,p,ξξξ > 0.

Proof. We proceed by induction on p. For p = 0 the result follows from the defi-
nition (17) of Bwww

i,0,ξξξ and the positivity of the weight function w0. Suppose now that
γwww

i,ℓ,ξξξ (x) > 0 whenever ξi < ξi+ℓ+1 for i = j, . . . , j+ p− ℓ and ℓ = 0, . . . , p− 1. Let
1 ≤ µ j ≤ p+ 1 such that ξ j = · · · = ξ j+µ j−1 < ξ j+µ j . From Lemma 1 and the in-
duction hypothesis we get

Dr
+Bwww

j,p,ξξξ (ξ j) = 0, r = 0, . . . , p−µ j, D
p+1−µ j
+ Bwww

j,p,ξξξ (ξ j)> 0.

Therefore, Bwww
j,p,ξξξ (x) > 0 for x ∈ (ξ j,ξ j + ε) and some ε > 0. Moreover, from

Lemma 3 (with k = 0) it follows that Bwww
j,p,ξξξ has no sign changes on [ξ j,ξ j+p+1].

This means that Bwww
j,p,ξξξ is nonnegative on [ξ j,ξ j+p+1] and it is a nontrivial function

on an open subset of [ξ j,ξ j+p+1]. As a consequence, γwww
j,p,ξξξ > 0. ⊓⊔

The positivity of γwww
j,p,ξξξ whenever ξ j < ξ j+p+1 shown in Lemma 4 implies that

the assumptions of Lemma 1 and Lemma 3 are always satisfied.

Theorem 6 (Nonnegativity). A Tchebycheffian B-spline is nonnegative everywhere,
and positive inside its support, i.e.,

Bwww
j,p,ξξξ (x)≥ 0, x ∈ R, and Bwww

j,p,ξξξ (x)> 0, x ∈ (ξ j,ξ j+p+1). (35)

Proof. It suffices to prove that Bwww
j,p,ξξξ (x)> 0 for ξ j < x < ξ j+p+1. Indeed, nonnega-

tivity of Bwww
j,p,ξξξ on R follows from the local support (25) and Lemma 4.

If ξ j < ξ j+1 = ξ j+p+1 or ξ j = ξ j+p < ξ j+p+1 the result follows immediately from
the expression of the first and last piece in (23) and (24).

Now, suppose ξ j < ξ j+p and ξ j+1 < ξ j+p+1. From Lemma 4 we obtain γwww
j,p−1,ξξξ >

0 and γwww
j+1,p−1,ξξξ > 0, so that Bwww

j,p,ξξξ (ξ j) = Bwww
j,p,ξξξ (ξ j+p+1) = 0. Moreover, from the

proof of the same lemma, we know that Bwww
j,p,ξξξ (x)> 0 for x ∈ (ξ j,ξ j + ε) and some

ε > 0. In a similar way, we can also prove that Bwww
j,p,ξξξ (x) > 0 for x ∈ (ξ j+p+1 −

ε,ξ j+p+1) and some ε > 0. Assume now that there exists a point x̄ ∈ (ξ j,ξ j+p+1)
such that Bwww

j,p,ξξξ (x̄) = 0. We will show that this assumption leads to a contradiction.
Since

Bwww
j,p,ξξξ (x) = wp(x)

∫ x

ξ j

g(y)dy, g(x) :=
Bwww

j,p−1,ξξξ (x)

γwww
j,p−1,ξξξ

−
Bwww

j+1,p−1,ξξξ (x)

γwww
j+1,p−1,ξξξ

,

and g 6≡ 0 on (ξ j, x̄) and (x̄,ξ j+p+1), we have

∫ x̄

ξ j

g(y)dy = 0,
∫ ξ j+p+1

x̄
g(y)dy = 0.
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From statement (i) of Lemma 2 we deduce that g must have at least one sign change
on [ξ j, x̄] and at least another sign change on [x̄,ξ j+p+1]. On the other hand, from
Lemma 3 it follows that g can have at most one sign change on [ξ j,ξ j+p+1]. This
contradiction concludes the proof. ⊓⊔

We now describe the smoothness behavior of Tchebycheffian B-splines at the
knots in their support.

Theorem 7 (Smoothness). If ξ is a knot of Bwww
j,p,ξξξ of multiplicity µ ≤ p+1 then

Bwww
j,p,ξξξ ∈Cp−µ(ξ ), (36)

i.e., its derivatives of order 0,1, . . . , p− µ are continuous at ξ . Moreover, if µ =
p+1 then Bwww

j,p,ξξξ (ξ ) is bounded.

Proof. By Lemma 1 (and Lemma 4) the result holds if ξ = ξ j or ξ = ξ j+p+1. Sup-
pose now ξ j < ξ < ξ j+p+1. Observe that µ ≤ p, ξ j < ξ j+p and ξ j+1 < ξ j+p+1, and
therefore by Lemma 4 we have γwww

j,p−1,ξξξ > 0 and γwww
j+1,p−1,ξξξ > 0.

We first prove that Bwww
j,p,ξξξ is continuous at ξ whenever µ ≤ p. Indeed, by (15) we

have wp ∈C0(ξ ) and by (26) the integrands in (16) are bounded, and so Bwww
j,p,ξξξ and

Bwww
j,p,ξξξ
wp

are continuous at ξ .
In order to show (36) for µ < p, we proceed by induction on p. Both terms

in the differentiation formula (29) have a knot of multiplicity at most µ at ξ , and

from the induction hypothesis we obtain D
(Bwww

j,p,ξξξ
wp

)
∈ Cp−1−µ(ξ ). Moreover, since

Bwww
j,p,ξξξ
wp

is continuous at ξ , we can conclude that
Bwww

j,p,ξξξ
wp

∈ Cp−µ(ξ ) for µ < p. Since
ξ j < ξ < ξ j+p+1 then by (15) we have wp ∈Cp−µ(ξ ), and so Bwww

j,p,ξξξ ∈Cp−µ(ξ ). ⊓⊔

Finally, we show that Tchebycheffian B-splines are (locally) linearly independent
on each knot interval and span the local E(C)T-space defined on such interval.

Theorem 8 (Local Linear Independence). The set {Bwww
j,p,ξξξ}m

j=m−p forms a basis
for the E(C)T-space Twww

p on [ξm,ξm+1) for any p+1 ≤ m ≤ n.

Proof. By the piecewise Tchebycheff structure (26) of Tchebycheffian B-splines,
it suffices to prove that the functions {Bwww

j,p,ξξξ}m
j=m−p are linearly independent on

[ξm,ξm+1) for any p+1 ≤ m ≤ n.
We use induction on p. The case p = 0 follows from (17). Now, let p ≥ 1. Fix m

such that ξm < ξm+1, and suppose that for all x ∈ [ξm,ξm+1),

1
wp(x)

m

∑
j=m−p

c jBwww
j,p,ξξξ (x) = 0. (37)

After differentiating (37), it follows from (29) and (25) that
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m

∑
j=m−p+1

(
c j − c j−1

γwww
j,p−1,ξξξ

)
Bwww

j,p−1,ξξξ (x) = 0.

Since ξm < ξm+1, Lemma 4 implies that γwww
j,p−1,ξξξ > 0, j = m− p+ 1, . . . ,m. Then,

the induction hypothesis gives us that cm−p = · · ·= cm, so

cm

wp(x)

m

∑
j=m−p

Bwww
j,p,ξξξ (x) = 0.

By relation (27) we get cm = 0. As a consequence, all functions Bwww
j,p,ξξξ in (37) are

linearly independent on [ξm,ξm+1). ⊓⊔

3.3 The Tchebycheffian Spline Space

In this section we focus on the span of the Tchebycheffian B-splines of degree p
specified by the knot sequence ξξξ := {ξi}n+p+1

i=1 and the vector of Tchebycheffian B-
spline weights www, i.e.,

Swww
p,ξξξ :=

{
s : [ξp+1,ξn+1]→ R : s =

n

∑
j=1

c jBwww
j,p,ξξξ , c j ∈ R

}
. (38)

This is the space of Tchebycheffian splines spanned by the Tchebycheffian B-
splines {Bwww

1,p,ξξξ , . . . ,B
www
n,p,ξξξ} over the interval [ξp+1,ξn+1], which is called the basic

interval. We define the Tchebycheffian B-splines to be left continuous at the right
endpoint ξn+1, so as to avoid asymmetry in the construction of the space.

We now introduce some terminology to identify certain properties of knot se-
quences which are crucial in the study of the space (38).

• A knot sequence ξξξ is called (p+1)-regular if ξ j < ξ j+p+1 for j = 1, . . . ,n. By
the local support (25) such a knot sequence ensures that all the Tchebycheffian B-
splines in (38) are not identically zero.

• A knot sequence ξξξ is called (p+ 1)-basic if it is (p+ 1)-regular with ξp+1 <
ξp+2 and ξn < ξn+1. As we will show later, the Tchebycheffian B-splines in (38)
defined on a (p+ 1)-basic knot sequence are linearly independent on the basic
interval [ξp+1,ξn+1].

From the results in the previous section, we can immediately conclude the fol-
lowing list of properties of Tchebycheffian splines in the B-spline representation.

• Smoothness. If ξ is a knot of multiplicity µ then s ∈ Cr(ξ ) for any s ∈
Swww

p,ξξξ , where r + µ = p. This follows from the smoothness property of the
Tchebycheffian B-splines (Theorem 7). Therefore, the relation between smooth-
ness, multiplicity and degree is the same as in the polynomial B-spline case:
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“smoothness+multiplicity = degree”. (39)

• Local Support. The local support (25) of the Tchebycheffian B-splines implies

n

∑
j=1

c jBwww
j,p,ξξξ (x) =

m

∑
j=m−p

c jBwww
j,p,ξξξ (x), x ∈ [ξm,ξm+1), p+1 ≤ m ≤ n, (40)

and if ξm < ξm+p then

n

∑
j=1

c jBwww
j,p,ξξξ (ξm) =

m−1

∑
j=m−p

c jBwww
j,p,ξξξ (ξm), p+1 ≤ m ≤ n+1. (41)

• Minimal Support. From the smoothness properties it can be proved that if the
support of s ∈ Swww

p,ξξξ is a proper subset of [ξ j,ξ j+p+1] for some j then s = 0.
Therefore, the Tchebycheffian B-splines have minimal support.

• Partition of Unity. By (27) we have

n

∑
j=1

Bwww
j,p,ξξξ (x) = wp(x), x ∈ [ξp+1,ξn+1]. (42)

In particular, for normalized Tchebycheffian B-splines this relation simplifies to

n

∑
j=1

Bwww
j,p,ξξξ (x) = 1, x ∈ [ξp+1,ξn+1]. (43)

Since these splines are nonnegative it follows that they form a nonnegative par-
tition of unity on [ξp+1,ξn+1].

• Differentiation. By (29) we have for p ≥ 1,

D+

(
1

wp(x)

n

∑
j=1

c jBwww
j,p,ξξξ (x)

)
=

n

∑
j=2

c(1)j Bwww
j,p−1,ξξξ (x), x ∈ [ξp+1,ξn+1], (44)

where
c(1)j :=

c j − c j−1

γwww
j,p−1,ξξξ

, (45)

and fractions with zero denominator have value zero.

• Linear Independence. If ξξξ is (p+ 1)-basic, then the Tchebycheffian B-splines
{Bwww

1,p,ξξξ , . . . ,B
www
n,p,ξξξ} are linearly independent on the basic interval. Thus, the

spline space Swww
p,ξξξ is a vector space of dimension n.

Proof. We must show that if

s(x) =
n

∑
j=1

c jBwww
j,p,ξξξ (x) = 0, x ∈ [ξp+1,ξn+1],
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then c j = 0 for all j. Let us fix 1 ≤ j ≤ n. Since ξξξ is (p+1)-regular, there is an
integer m j with j ≤m j ≤ j+ p such that ξm j < ξm j+1. Moreover, the assumptions
ξp+1 < ξp+2 and ξn < ξn+1 guarantee that [ξm j ,ξm j+1) can be chosen in the basic
interval. From the local support property (40) we know

s(x) =
m j

∑
i=m j−p

ciBwww
i,p,ξξξ (x) = 0, x ∈ [ξm j ,ξm j+1).

Theorem 8 implies cm j−p = · · ·= cm j = 0, and in particular c j = 0. ⊓⊔

In the following, we are looking for a characterization of the Tchebycheffian spline
space Swww

p,ξξξ in terms of piecewise Tchebycheff functions with a certain smoothness.

Definition 9. Let ∆ be a sequence of break points,

∆ := {η0 < η1 < · · ·< ηℓ+1}, a := η0, b := ηℓ+1, (46)

and let rrr := (r1, . . . ,rℓ) be a vector of integers such that −1 ≤ ri ≤ p for i = 1, . . . , ℓ.
Furthermore, let www := (w0, . . . ,wp) be a vector of positive weight functions on [a,b]
such that for j = 0, . . . , p,

w j ∈C j([η+
i ,η−

i+1]), i = 0, . . . , ℓ,

w j ∈Cmax( j−p+ri,−1)(ηi), i = 1, . . . , ℓ.
(47)

The space Srrr,www
p (∆) of piecewise Tchebycheff functions of degree p with smooth-

ness rrr over the partition ∆ is defined by

Srrr,www
p (∆) :=

{
s : [η0,ηℓ+1]→ R : s ∈ Twww

p ([ηi,ηi+1)), i = 0, . . . , ℓ−1,

s ∈ Twww
p ([ηℓ,ηℓ+1]), s ∈Cri(ηi), i = 1, . . . , ℓ

}
.

(48)

Any element s ∈ Srrr,www
p (∆) can be written in the form

s(x) =
p

∑
j=0

c0, juwww
j,p(x,η0)+

ℓ

∑
i=1

p

∑
j=ri+1

ci, juwww
j,p(x,ηi)+, x ∈ [a,b], (49)

where uwww
j,p(x,y) are generalized powers (see Definition 4) and

uwww
j,p(x,y)+ :=

{
uwww

j,p(x,y), x > y,
0, x < y,

(50)

where the value at y is defined by taking the right limit. The functions in (50) are
called generalized truncated powers. From the smoothness conditions in (47) we
see that wp−k ∈ Cmax(ri−k,−1)(ηi), k = 0, . . . , p, and from Definition 4 we immedi-
ately get

uwww
j,p(ηk,ηi) ∈Cri(ηk), k = i+1, . . . , ℓ, j = 0, . . . , p.
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Moreover, since wp−k ∈ Cp−k([η+
i ,η−

i+1]), k = 0, . . . , p, by combining (4) and (6)
we have

Dl
+uwww

j,p(ηi,ηi) = 0, l = 0, . . . ,ri, j = ri +1, . . . , p.

This shows that the function in (49) belongs to the space (48). The representation
(49) implies

dim(Srrr,www
p (∆))≤ p+1+

ℓ

∑
i=1

(p− ri). (51)

The next theorem states that the Tchebycheffian spline space Swww
p,ξξξ is equal to the

space Srrr,www
p (∆) with a prescribed partition ∆ and smoothness rrr.

Theorem 9 (Characterization of Spline Space). Let ξξξ := {ξi}n+p+1
i=1 be a (p+1)-

basic knot sequence. The space Swww
p,ξξξ spanned by Tchebycheffian B-splines of degree

p defined over the knot sequence ξξξ is characterized by

Swww
p,ξξξ = Srrr,www

p (∆),

where ∆ is a partition as in (46) defined from the knot sequence as follows,

ξp+1 =: η0, ξp+2, . . . ,ξn =:
µ1︷ ︸︸ ︷

η1, . . . ,η1, . . . ,

µℓ︷ ︸︸ ︷
ηℓ, . . . ,ηℓ, ξn+1 =: ηℓ+1,

and the smoothness rrr is defined by

ri := p−µi, i = 1, . . . , ℓ.

Proof. Since we are dealing with a (p+1)-basic knot sequence ξξξ , we have η0 < η1
and ηℓ < ηℓ+1. The Tchebycheffian B-spline weights www satisfy the smoothness con-
ditions in (47); see Definition 6. From the piecewise structure (26) and the smooth-
ness (36) of Tchebycheffian B-splines it follows that the space Swww

p,ξξξ is a subspace of
Srrr,www

p (∆). Moreover, using (51) we arrive at

dim(Swww
p,ξξξ ) = n = p+1+

ℓ

∑
i=1

(p− ri)≥ dim(Srrr,www
p (∆)).

This concludes the proof. ⊓⊔

3.4 Knot Insertion

In this section we are addressing the problem of representing a given Tchebycheffian
spline on a refined knot sequence. In particular, we focus on the special case where
only a single knot is inserted. Since any refined knot sequence can be reached by
repeatedly inserting one knot at a time, it suffices to deal with this case.
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Without loss of generality, we assume that the spline s = ∑n
j=1 c jBwww

j,p,ξξξ is given

on a (p+ 1)-basic knot sequence ξξξ := {ξi}n+p+1
i=1 . We want to insert a knot ξ in

some subinterval [ξm,ξm+1) of [ξp+1,ξn+1), resulting in a new (p+ 1)-basic knot
sequence ξ̃ξξ := {ξ̃i}n+p+2

i=1 defined by

ξ̃i :=





ξi, if 1 ≤ i ≤ m,

ξ , if i = m+1,
ξi−1, if m+2 ≤ i ≤ n+ p+2.

(52)

We are interested in the Tchebycheffian B-spline form of s on the new knot se-
quence.

Lemma 5. Let the (p+ 1)-basic knot sequence ξ̃ξξ := {ξ̃i}n+p+2
i=1 be obtained from

the (p + 1)-basic knot sequence ξξξ := {ξi}n+p+1
i=1 by inserting just one knot ξ in

[ξp+1,ξn+1). Then,

Bwww
j,p,ξξξ = α j,p,ξξξ Bwww

j,p,ξ̃ξξ +β j+1,p,ξξξ Bwww
j+1,p,ξ̃ξξ , (53)

where

(i) α j,p,ξξξ = 1 and β j+1,p,ξξξ = 0 if ξ ≥ ξ j+p+1;

(ii) α j,p,ξξξ > 0 and β j+1,p,ξξξ > 0 if ξ j < ξ < ξ j+p+1;

(iii) α j,p,ξξξ = 0 and β j+1,p,ξξξ = 1 if ξ ≤ ξ j.

Proof. From Theorem 9 it follows that Swww
p,ξξξ ⊆ Swww

p,ξ̃ξξ
, so every Bwww

j,p,ξξξ can be written as

a linear combination of the Tchebycheffian B-splines defined over ξ̃ξξ . If ξ ≥ ξ j+p+1
then Bwww

j,p,ξξξ = Bwww
j,p,ξ̃ξξ

, which shows (53) in case (i). If ξ ≤ ξ j then Bwww
j,p,ξξξ = Bwww

j+1,p,ξ̃ξξ
,

which shows (53) in case (iii). In the remainder, we focus on the last case (ii) and
assume ξ j < ξ < ξ j+p+1.

Fix j. We can write

Bwww
j,p,ξξξ (x) =

n+1

∑
i=1

c j,iBwww
i,p,ξ̃ξξ (x).

If x ∈ [ξ̃k, ξ̃k+1) with ξ̃k ≥ ξ j+p+1 = ξ̃ j+p+2, then

0 = Bwww
j,p,ξξξ (x) =

k

∑
i=k−p

c j,iBwww
i,p,ξ̃ξξ (x),

and by local linear independence we get c j,i = 0 for any i≥ j+2 since k− p≥ j+2.
Similarly, c j,i = 0 for any i ≤ j−1. This implies (53) for some α j,p,ξξξ and β j,p,ξξξ .

Next, we show the positivity of α j,p,ξξξ . Let µ j be the multiplicity of ξ j as a knot
of Bwww

j,p,ξξξ . Then, ξ j appears µ j times as a knot of Bwww
j,p,ξ̃ξξ

and µ j − 1 times as a knot

of Bwww
j+1,p,ξ̃ξξ

. We consider the (p+1−µ j)-th derivative at ξ j of the two sides in (53).
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By using the expression in statement (i) of Lemma 1 and recalling that the weight
functions are positive, we get

α j,p,ξξξ =





1, µ j = p+1,
γwww

j,p−1,ξ̃ξξ
···γwww

j,µ j−1,ξ̃ξξ
γwww

j,p−1,ξξξ ···γ
www
j,µ j−1,ξξξ

, µ j ≤ p.
(54)

Note that by Lemma 4 all γ’s involved in (54) are positive because ξ j < ξ j+µ j . The
positivity of β j+1,p,ξξξ can be proved in a similar way. Let µ j+p+1 be the multiplicity
of ξ j+p+1 as a knot of Bwww

j,p,ξξξ . From statement (ii) of Lemma 1 we get

β j+1,p,ξξξ =





1, µ j+p+1 = p+1,
γwww

j+2,p−1,ξ̃ξξ
···γwww

j+p+2−µ j+p+1 ,µ j+p+1−1,ξ̃ξξ

γwww
j+1,p−1,ξξξ ···γ

www
j+p+1−µ j+p+1 ,µ j+p+1−1,ξξξ

, µ j+p+1 ≤ p.
(55)

This completes the proof. ⊓⊔

Theorem 10 (Knot Insertion). Let the (p+1)-basic knot sequence ξ̃ξξ := {ξ̃i}n+p+2
i=1

be obtained from the (p+1)-basic knot sequence ξξξ := {ξi}n+p+1
i=1 by inserting just

one knot ξ , such that ξm ≤ ξ < ξm+1 with p+1 ≤ m ≤ n as in (52). Then,

s(x) =
n

∑
j=1

c jBwww
j,p,ξξξ (x) =

n+1

∑
i=1

c̃iBwww
i,p,ξ̃ξξ (x), x ∈ [ξp+1,ξn+1], (56)

where

c̃i =





ci, if i ≤ m− p,
αi,p,ξξξ ci +βi,p,ξξξ ci−1, if m− p < i ≤ m,

ci−1, if i > m.

(57)

The values αi,p,ξξξ and βi,p,ξξξ in (57) are nonnegative, and

αi,p,ξξξ +βi,p,ξξξ = 1, m− p < i ≤ m. (58)

Proof. From Lemma 5 we immediately deduce that

n

∑
j=1

c jBwww
j,p,ξξξ = α1,p,ξξξ c1Bwww

1,p,ξ̃ξξ +βn+1,p,ξξξ cnBwww
n+1,p,ξ̃ξξ +

n

∑
i=2

(αi,p,ξξξ ci +βi,p,ξξξ ci−1)Bwww
i,p,ξ̃ξξ ,

where the α’s and β ’s are nonnegative. This gives (56) with

c̃i = αi,p,ξξξ ci +βi,p,ξξξ ci−1, i = 2, . . . ,n. (59)

First, recall from (42) that both sets of B-splines in (56) sum to wp. Hence, in the
case s = wp, (59) implies

1 = αi,p,ξξξ +βi,p,ξξξ , i = 2, . . . ,n.
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Since p+1 ≤ m ≤ n, it follows that {m− p+1, . . . ,m} ⊆ {2, . . . ,n} and we obtain
(58). Furthermore, from case (i) in Lemma 5 we have αi−1,p,ξξξ = 1 and βi,p,ξξξ = 0 for
2 ≤ i ≤ m− p. We also observe from (54) that αm−p,p,ξξξ = 1. Indeed, if µm−p = p+1
it is obvious, and otherwise we have γwww

m−p,k−1,ξ̃ξξ
= γwww

m−p,k−1,ξξξ for k = µm−p, . . . , p.

Similarly, from case (iii) in the same lemma we have αi,p,ξξξ = 0 and βi+1,p,ξξξ = 1 for
m < i ≤ n. If ξm = ξ then this case also implies βm+1,p,ξξξ = 1. If ξm < ξ then we can
conclude from (55) that βm+1,p,ξξξ = 1. This completes the proof. ⊓⊔

From the proof we observe that the α’s and β ’s in (57) are specified in (54) and
(55), respectively.

4 Generalized B-Splines

In this section we consider a special subclass of normalized Tchebycheffian B-
splines, the so-called generalized B-splines.4 They can be seen as the minimal ex-
tension of classical polynomial splines still offering a wide variety of additional
flexibility.

Definition 10. Given the partition ∆ := {η0 < η1 < · · ·< ηℓ+1} and a nonnegative
integer p ≥ 2, a generalized polynomial space of degree p is defined as a space of
the form

PU,V
p (∆) := 〈1,x, . . . ,xp−2,U(x),V (x)〉, x ∈ [η0,ηℓ+1], (60)

where U,V ∈Cp([η+
i ,η−

i+1]) and 〈Dp−1U,Dp−1V 〉 is an ET-space on [η+
i ,η−

i+1] for
all i = 0, . . . , ℓ.

From Example 12 we conclude that the restriction of the generalized polyno-
mial space PU,V

p (∆) on the interval [η+
i ,η−

i+1] is an ECT-space of dimension p+ 1
generated by weight functions of the form

w0,i(x), w1,i(x), w2,i(x) = · · ·= wp,i(x) = 1, (61)

where
w1,i(ηi) = w1,i(ηi+1) = 1. (62)

Note that the space 〈Dp−1U,Dp−1V 〉 is also an ECT-space on [η+
i ,η−

i+1], generated
by the weights w0,i and w1,i (see Example 11). The local weights in (61)–(62) allow
us to define a global weight vector www := (w0, . . . ,wp) such that

w j(x) := w j,i(x), x ∈ [ηi,ηi+1), i = 0, . . . , ℓ, j = 0, . . . , p. (63)

4 The term “generalized splines” has several different meanings in the literature. For example, the
splines considered here are much less general than those described in [27, Chapter 11]. We follow
the definition given in [16]. This definition was already used before for special choices of U and
V ; see, for example, [14, 15].
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From the construction it is easy to check that each weight w j ∈ C j([η+
i ,η−

i+1]),
i = 0, . . . , ℓ and that w j ∈C j−1(ηi), i = 1 . . . , ℓ.

We now define generalized B-splines of degree p associated with a knot sequence
ξξξ and a generalized polynomial space PU,V

p (∆). The knot sequence ξξξ := {ξi}n+p+1
i=1

is connected to the partition ∆ as follows

ξ1, . . . ,ξn+p+1 =

µ0︷ ︸︸ ︷
η0, . . . ,η0, . . . ,

µℓ+1︷ ︸︸ ︷
ηℓ+1, . . . ,ηℓ+1, (64)

for some integers µ0, . . . ,µℓ+1.

Definition 11. For a given partition ∆ , let PU,V
p (∆) be a generalized polynomial

space of degree p ≥ 2, and let ξξξ be a knot sequence connected to ∆ as in (64). For
any ξi < ξi+1, let ui,vi be the unique functions in 〈Dp−1U,Dp−1V 〉 on [ξ+

i ,ξ−
i+1]

satisfying
ui(ξi) = 1, ui(ξi+1) = 0, vi(ξi) = 0, vi(ξi+1) = 1.

Suppose for some integer j that ξ j ≤ ξ j+1 ≤ ·· · ≤ ξ j+p+1 are p+ 2 real numbers
taken from ξξξ . The j-th generalized B-spline BU,V

j,p,ξξξ :R→R of degree p is identically
zero if ξ j+p+1 = ξ j and otherwise defined recursively by

BU,V
j,p,ξξξ (x) :=

∫ x

ξ j

BU,V
j,p−1,ξξξ (y)

γU,V
j,p−1,ξξξ

dy−
∫ x

ξ j+1

BU,V
j+1,p−1,ξξξ (y)

γU,V
j+1,p−1,ξξξ

dy, (65)

starting with

BU,V
i,1,ξξξ (x) :=





vi(x), if x ∈ [ξi,ξi+1),

ui+1(x), if x ∈ [ξi+1,ξi+2),

0, otherwise.
(66)

Here, γU,V
i,k,ξξξ is defined as the integral of BU,V

i,k,ξξξ ,

γU,V
i,k,ξξξ :=

∫ ξi+k+1

ξi

BU,V
i,k,ξξξ (y)dy,

and we used the convention that if γU,V
i,k,ξξξ = 0 then

∫ x

ξi

BU,V
i,k,ξξξ (y)

γU,V
i,k,ξξξ

dy :=

{
1, if x ≥ ξi+k+1,

0, otherwise.

We now show that generalized B-splines are a special instance of normalized
Tchebycheffian B-splines, and therefore they enjoy all their properties.

Theorem 11. Generalized B-splines are normalized Tchebycheffian B-splines gen-
erated by the Tchebycheffian B-spline weights w0, . . . ,wp given in (63).

Proof. We first note that the global weights w0, . . . ,wp in (63) satisfy the smoothness
conditions in Definition 6, so they are actually Tchebycheffian B-spline weights
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with respect to ξξξ . Let www :=(w0, . . . ,wp). A direct computation shows that Bwww
i,1,ξξξ (x)=

BU,V
i,1,ξξξ (x) for all i. Indeed, if ξi < ξi+1 then from Definition 7 and the weight property

(62) we know that

Bwww
i,1,ξξξ (ξi) = 0, lim

x→ξi+1
x<ξi+1

Bwww
i,1,ξξξ (x) = lim

x→ξi+1
x<ξi+1

w1(x) = 1,

and from the piecewise Tchebycheff structure that Bwww
i,1,ξξξ belongs to the ET-space

〈Dp−1U,Dp−1V 〉 on [ξ+
i ,ξ−

i+1]. Since the same properties also hold for BU,V
i,1,ξξξ (x),

they must be identical on [ξi,ξi+1). A similar argument holds for the interval
[ξi+1,ξi+2). As a consequence, taking into account that w2 = · · ·=wp = 1, it follows
clearly from their definitions that Bwww

j,p,ξξξ (x) = BU,V
j,p,ξξξ (x) for p ≥ 2 and they are nor-

malized. In other words, generalized B-splines are a special instance of normalized
Tchebycheffian B-splines. ⊓⊔
Example 19. Any linear Tchebycheffian B-spline Bwww

j,1,ξξξ (x) can be written as BU,V
j,1,ξξξ (x) in the form

(66), up to the positive scaling factor w1(ξ j+1). In particular, when U(x) = cos(x), V (x) = sin(x),
we have

BU,V
j,1,ξξξ (x) =





sin(x−ξ j)

sin(ξ j+1 −ξ j)
, if x ∈ [ξ j,ξ j+1),

sin(ξ j+2 − x)
sin(ξ j+2 −ξ j+1)

, if x ∈ [ξ j+1,ξ j+2),

0, otherwise.

This is the scaled version of the spline in Example 15, with scaling factor w1(ξ j+1) = cos(ξ j+1).

Example 20. The generalized B-spline of degree p = 2 on a knot sequence ξξξ consisting of simple
knots is given by

BU,V
j,2,ξξξ (x) =





δ j

∫ x

ξ j

v j(y)dy, if x ∈ [ξ j,ξ j+1),

1−δ j+1

∫ x

ξ j+1

v j+1(y)−δi

∫ ξ j+2

x
u j+1(y), if x ∈ [ξ j+1,ξ j+2),

δ j+1

∫ ξ j+3

x
u j+2(y)dy, if x ∈ [ξ j+2,ξ j+3),

0, otherwise,

where

δi :=
(
γU,V

i,1,ξξξ

)−1
=
(∫ ξi+1

ξi

vi(y)dy+
∫ ξi+2

ξi+1

ui+1(y)dy
)−1

.

The normalized Tchebycheffian B-spline defined in Example 16 is a special case, considering the
functions U(x) = cos(x), V (x) = sin(x), and the uniform knot sequence {iω}3

i=0.

Example 21. Consider the partition ∆ = {0,1,2,3}, and

U(x) =





x, if x ∈ [0,1),

eαx, if x ∈ [1,2),

x, if x ∈ [2,3),

V (x) =





x2, if x ∈ [0,1),

e−αx, if x ∈ [1,2),

x2, if x ∈ [2,3).

30 INdAM_Workshop_DREAMS_2018, 010, v1: ’Tchebycheffian B-Splines Revisited’



Tchebycheffian B-Splines Revisited 31

When taking ξξξ = ∆ , we get for p = 1,

BU,V
1,1,ξξξ (x) =





x, if x ∈ [0,1),

sinh((2− x)α)

sinh(α)
, if x ∈ [1,2),

0, otherwise,

BU,V
2,1,ξξξ (x) =





sinh((x−1)α)

sinh(α)
, if x ∈ [1,2),

3− x, if x ∈ [2,3),

0, otherwise,

and for p = 2,

BU,V
1,2,ξξξ (x) =

1

1+
sinh(β )

β cosh(β )





x2, if x ∈ [0,1),

1+
cosh(β )− cosh((3−2x)β )

β sinh(β )
, if x ∈ [1,2),

(x−3)2, if x ∈ [2,3),

0, otherwise,

(67)

where β := α/2. The three non-trivial pieces of BU,V
1,2,ξξξ belong to P2, 〈1,eαx,e−αx〉, and P2, respec-

tively. When α tends to zero, the quadratic GB-spline in (67) tends to the quadratic polynomial
cardinal B-spline.

Example 22. If U(x) = xp−1 and V (x) = xp, then the space in (60) is nothing else than the poly-
nomial space Pp. In this case,

ui(x) =
ξi+1 − x
ξi+1 −ξi

, vi(x) =
x−ξi

ξi+1 −ξi
, ξi < ξi+1,

and Definition 11 results in the standard polynomial B-splines of degree p. This is in agreement
with Example 17.
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