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Abstract

The bidomain system of degenerate reaction–diffusion equations is a well-established spatial model of
electrical activity in cardiac tissue, with “reaction” linked to the cellular action potential and “diffusion”
representing current flow between cells. The purpose of this paper is to introduce a “stochastically forced”
version of the bidomain model that accounts for various random effects. We establish the existence of
martingale (probabilistic weak) solutions to the stochastic bidomain model. The result is proved by
means of an auxiliary nondegenerate system and the Faedo–Galerkin method. To prove convergence
of the approximate solutions, we use the stochastic compactness method and Skorokhod–Jakubowski
a.s. representations. Finally, via a pathwise uniqueness result, we conclude that the martingale solutions
are pathwise (i.e., probabilistic strong) solutions.
c⃝ 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. Background

Hodgkin and Huxley [29] introduced the first mathematical model for the propagation
of electrical signals along nerve fibers. This model was later tweaked to describe assorted

✩ This work was supported by the Research Council of Norway (project 250674/F20)
∗ Corresponding author.

E-mail addresses: mostafa.bendahmane@u-bordeaux.fr (M. Bendahmane), kennethk@math.uio.no
(K.H. Karlsen).

https://doi.org/10.1016/j.spa.2019.03.001
0304-4149/ c⃝ 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/).

http://www.elsevier.com/locate/spa
https://doi.org/10.1016/j.spa.2019.03.001
http://www.elsevier.com/locate/spa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.spa.2019.03.001&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:mostafa.bendahmane@u-bordeaux.fr
mailto:kennethk@math.uio.no
https://doi.org/10.1016/j.spa.2019.03.001
http://creativecommons.org/licenses/by/4.0/


M. Bendahmane and K.H. Karlsen / Stochastic Processes and their Applications 129 (2019) 5312–5363 5313

phenomena in biology. Similar to nerve cells, conduction of electrical signals in cardiac
tissue rely on the flow of ions through so-called ion channels in the cell membrane. This
similarity has led to a number of cardiac models based on the Hodgkin–Huxley formalism
[11,13,32,42,45,52]. Among these is the bidomain model [54], which is regarded as an apt
spatial model of the electrical properties of cardiac tissue [13,52].

The bidomain equations result from the principle of conservation of current between the
intra- and extracellular domains, followed by a homogenization process of the cellular model
defined on a periodic structure of cardiac tissue (see, e.g., [13]). The bidomain model can be
viewed as a PDE system, consisting of a degenerate parabolic (reaction–diffusion) PDE for the
transmembrane potential and an elliptic PDE for the extracellular potential. These PDEs are
supplemented by a nonlinear ODE system for the conduction dynamics of the ion channels.
There are many membrane models of cardiac cells, differing in their complexity and in the
level of detail with which they represent the biology (see [11] for a review). Herein we will
utilize a simple model for voltage-gated ion channels [37].

The idiom “bidomain” reflects that the intra- and extracellular tissues are viewed as
two superimposed anisotropic continuous media, with different longitudinal and transversal
conductivities. If these conductivities are equal, then we have the so-called monodomain model
(elliptic PDE reduces to an algebraic equation). The degenerate structure of the bidomain
PDE system is due to the anisotropy of cardiac tissue [2,15]. Solutions exhibit discontinuous-
like propagating excitation fronts. This, together with strongly varying time scales, makes the
system difficult to solve by numerical methods.

The bidomain model is a deterministic system. This means that at each moment in time, the
solution can be inferred from the prescribed data. This is at variance with several phenomena
happening at the microscopic (cellular) and macroscopic (heart/torso) scales, where respectively
channel noise and external random perturbations acting in the torso can play important roles.
At the macroscopic level, the ECG signal, a coarse-grained representation of the electrical
activity in the heart, is often contaminated by noise. One source for this noise is the fluctuating
environment of the heart. In [36], the authors argue that such randomness cannot always be
suppressed. Occasionally deterministic equations give qualitatively incorrect results, and it is
important to quantify the nature of the noise and choose an appropriate model incorporating
randomness.

At the cellular level, the membrane potential is due to disparities in ion concentrations
(e.g., sodium, calcium, potassium) across the cell membrane. The ions move through the cell
membrane due to random transitions between open and close states of the ion channels. The
dynamics of the voltage potential reflect the aggregated behavior of the individual ion channels,
whose conformational changes control the conductance of each ionic current. The profound role
of channel noise in excitable cells is summarized and discussed in [26]. Faithful modeling of
channel noise gives rise to continuous-time Markov chains with voltage-dependent transition
probabilities. In the limit of infinitely many ion channels, these models lead to deterministic
Hodgkin–Huxley type equations. To capture channel noise, an alternative (and computationally
much simpler) approach is to add well-placed stochastic terms to equations of the Hodgkin–
Huxley type [26,35]. Indeed, recent studies (see [26] for a synthesis) indicate that this approach
can give an accurate reproduction of channel fluctuations. For work specifically devoted to
cardiac cells, see [19,36,42].

1.2. Deterministic bidomain equations

Fix a final time T > 0 and a bounded open subset Ω ⊂ R3 representing the heart (cf.
Section 2). Roughly speaking, the bidomain equations result from applying Ohm’s electrical
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conduction law and the continuity equation (conservation of electrical charge) to the intracel-
lular and extracellular domains. Let Ji and Je denote, respectively, the current densities in the
intracellular and extracellular domains. Moreover, denote by Im the membrane current per unit
volume and by Ii , Ie the injected stimulating currents. The continuity equations are

∇ · Ji = −Im + Ii , ∇ · Je = Im + Ie. (1.1)

The negative sign in the first equation reflects that the current leaving the intracellular domain
is positive. We assume that the intracellular and extracellular current densities can be written
in terms of potentials ui , ue as follows: Ji = −Mi∇ui , Je = −Me∇ue, where Mi ,Me are the
intracellular and extracellular conductivity tensors. The transmembrane potential v is defined
as v := ui − ue. Hence, the continuity equations (1.1) become

− ∇ · (Mi∇ui ) = −Im + Ii , −∇ · (Me∇ue) = Im + Ie. (1.2)

By adding the equations in (1.2), we obtain

− ∇ · ((Mi + Me)∇ue)− ∇ · (Mi∇v) = Ii + Ie in Ω × (0, T ). (1.3)

The membrane current Im splits into a capacitive current Ic, since the cell membrane acts as a
capacitor, and an ionic current, due to the flowing of ions through different ion channels (and
also pumps/exchangers):

Im = χm (Ic + Iion) , Ic = cm
∂v

∂t
, Iion = Iion(v,w), (1.4)

where χm is the ratio of membrane surface area to tissue volume and cm > 0 is the (surface)
capacitance of the membrane per unit area. The (nonlinear) function Iion(v,w) represents the
ionic current per unit surface area, which depends on the transmembrane potential v and
a vector w of ionic (recovery, gating, concentrations, etc.) variables. A simplified model,
frequently used for analysis, assumes that the functional form of Iion is a cubic polynomial
in v. The ionic variables w are governed by an ODE system,

∂w

∂t
= H (v,w) in Ω × (0, T ), (1.5)

where, as alluded to earlier, various membrane models exist for cardiac cells, giving rise to
different choices of H (and Iion). Inserting (1.4) into (1.2), we arrive at

χmcm
∂v

∂t
− ∇ · (Mi∇(v + ue))+ χm Iion(v,w) = Ii in Ω × (0, T ). (1.6)

The system (1.3), (1.5), (1.6) is sometimes referred to as the parabolic–elliptic form of the
bidomain model, as it contains a parabolic PDE (1.6) for the transmembrane potential v and
an elliptic PDE (1.3) for the extracellular potential ue. The bidomain equations are closed by
specifying initial conditions for v,w and boundary conditions for ui , ue. Electrically isolated
heart tissue, for example, leads to zero flux boundary conditions.

Herein we will rely on a slightly different form of the bidomain model, obtained by inserting
(1.4) into both equations in (1.2):

χmcm
∂v

∂t
− ∇ · (Mi∇ui )+ χm Iion(v,w) = Ii in Ω × (0, T ),

χmcm
∂v

∂t
+ ∇ · (Me∇ue)+ χm Iion(v,w) = −Ie in Ω × (0, T ).

(1.7)



M. Bendahmane and K.H. Karlsen / Stochastic Processes and their Applications 129 (2019) 5312–5363 5315

Consisting of two (degenerate) parabolic PDEs, the system (1.5), (1.7) is occasionally referred
to as the parabolic–parabolic form of the bidomain model. On the subject of well-posedness,
i.e., existence, uniqueness, and stability of properly defined solutions, we remark that standard
theory for parabolic–elliptic systems does not apply naturally. The main reason is that the
anisotropies of the intra- and extracellular domains differ, entailing the degenerate structure of
the system. Moreover, a maximum principle is not available. That being the case, a number of
works [1,2,5,6,13,15,23,34,55] have recently provided well-posedness results for the bidomain
model, applying differing solution concepts and technical frameworks.

1.3. Stochastic model & main results

The purpose of the present paper is to introduce and analyze a bidomain model that accounts
for random effects (noise), by way of a few well-placed stochastic terms. The simplest way
to insert randomness is to add Gaussian white noise to one or more of the ionic ODEs (1.5),
leading to a system of (Itô) stochastic differential equations (SDEs):

dw = H (v,w) dt + α dWw, (1.8)

where Ww is a cylindrical Wiener process, with noise amplitude α. Formally, we can think
of α dWw as

∑
k≥1 αk dWw

k (t), where {Ww
k }k≥1 is a sequence of independent 1D Brownian

motions and {αk}k≥1 is a sequence of noise coefficients. Interpreting w as gating variables
representing the fraction of open channel subunits of varying types, in [26] this type of noise
is referred to as subunit noise. We will allow for subunit noise in our model, assuming
for simplicity that the ionic variable w is a scalar and that the noise amplitude depends
on the transmembrane potential v, α = α(v) (multiplicative noise). We will also introduce
fluctuations into the bidomain system by replacing the PDEs (1.7) with the (Itô) stochastic
partial differential equations (SPDEs)

χmcmdv − ∇ · (Mi∇ui ) dt + χm Iion(v,w) dt = Ii dt + β dW v

χmcmdv + ∇ · (Me∇ue) dt + χm Iion(v,w) dt = −Ie dt + β dW v,
(1.9)

where W v is a cylindrical Wiener process (independent of Ww), with noise amplitude β. Adding
a stochastic term to the equation for the membrane potential v is labeled current noise in [26].
Current noise represents the aggregated effect of the random activity of ion channels on the
voltage dynamics. Allowing the noise amplitude in (1.9) to depend on the membrane voltage
v, we arrive at equations with so-called conductance noise [26]. The nonlinear term Iion(v,w)
accounts for the total conductances of various ionic currents, and conductance noise pertains
to adding “white noise” to the deterministic values of the conductances, i.e., replacing Iion by
Iion + β̂(v) dWv

dt , for some function β̂. Herein we include this case by permitting β in (1.9) to
depend on the voltage variable v, β = β(v).

Our main contribution is to establish the existence of properly defined solutions to the
SDE–SPDE system (1.8), (1.9). From the PDE perspective, we are searching for weak solutions
in a certain Sobolev space (H 1). From the probabilistic point of view, we are considering
martingale solutions, sometimes also referred to as weak solutions. The notions of weak &
strong probabilistic solutions have different meaning from weak & strong solutions in the PDE
literature. If the stochastic elements are fixed in advance, we speak of a strong (or pathwise)
solution. The stochastic elements are collected in a stochastic basis

(
Ω ,F , {Ft }t∈[0,T ] , P,W

)
,

where W = (Ww,Wv) are cylindrical Wiener processes adapted to the filtration {Ft }t∈[0,T ].
Whenever these elements constitute a part of the unknown solution, the relevant notion is that
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of a martingale solution. The connection between weak and strong solutions to Itô equations is
exposed in the famous Yamada–Watanabe theorem, see, e.g., [41]. We reserve the name weak
martingale solution for solutions that are weak in the PDE sense as well as being probabilistic
weak.

We will prove that there exists a weak martingale solution to the stochastic bidomain system.
Motivated by the approach in [2] (see also [5]) for the deterministic system, we use the
Faedo–Galerkin method to construct approximate solutions, based on an auxiliary nondegener-
ate system obtained by adding εdui and −εdue respectively to the first and second equations
in (1.9) (ε is a small positive parameter). The stochastic compactness method is put to use to
conclude subsequential convergence of the approximate solutions.

Indeed, we first apply the Itô chain rule to derive some basic a priori estimates. The
combination of multiplicative noise and the specific structure of the system makes these
estimates notably harder to obtain than in the deterministic case. The a priori estimates lead to
strong compactness of the approximations in the t, x variables (in the deterministic context [2]).
In the stochastic setting, there is an additional (probability) variable ω ∈ D in which
strong compactness is not expected. Traditionally, one handles this issue by arguing for weak
compactness of the probability laws of the approximate solutions, via tightness and Prokhorov’s
theorem. The ensuing step is to construct a.s. convergent versions of the approximations
using the Skorokhod representation theorem. This theorem supplies new random variables
on a new probability space, with the same laws as the original variables, converging almost
surely. Equipped with a.s. convergence, we are able to show that the limit variables constitute
a weak martingale solution. Finally, thanks to a uniqueness result and the Gyöngy–Krylov
characterization of convergence in probability [27], we pass à la Yamada–Watanabe from
martingale to pathwise (probabilistic strong) solutions.

Martingale solutions and the stochastic compactness method have been harnessed by many
authors for different classes of SPDEs, see e.g. [3,4,16,17,21,22,24,28,30,38,43,46,47] for
problems related to fluid mechanics. An important step in the compactness method is the
construction of almost surely convergent versions of processes that converge weakly. This
construction dates back to the work of Skorokhod, for processes taking values in a Polish
(complete separable metric) space [16]. The classical Skorokhod theorem is befitting for the
transmembrane variable v, but not the intracellular and extracellular variables ui , ue. This fact
is a manifestation of the degenerate structure of the bidomain system, necessitating the use
of a Bochner–Sobolev space equipped with the weak topology. We refer to Jakubowski [31]
for a recent variant of the representation theorem that applies to so-called quasi-Polish spaces,
specifically allowing for separable Banach spaces equipped with the weak topology, as well
as spaces of weakly continuous functions with values in a separable Banach space. We refer
to [7–10,40,51] for works making use of Skorokhod–Jakubowski a.s. representations.

The remaining part of this paper is organized as follows: The stochastic bidomain model
is presented in Section 2. Section 3 outlines the underlying stochastic framework and list
the conditions imposed on the “stochastic” data of the model. Solution concepts and the
accompanying main results are collected in Section 4. The approximate (Faedo–Galerkin)
solutions are constructed in Section 5. In Section 6 we establish several a priori estimates
and prove convergence of the approximate solutions, thereby providing an existence result for
weak martingale solutions. A pathwise uniqueness result is established in Section 7, which is
then used in Section 8 to upgrade martingale solutions to pathwise solutions.
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2. Stochastic bidomain model

The spatial domain of the heart is given by a bounded open set Ω ⊂ R3 with piecewise
smooth boundary ∂Ω . This three-dimensional slice of the cardiac muscle is viewed as two
superimposed (anisotropic) continuous media, representing the intracellular (i) and extracellular
(e) tissues. The tissues are connected at each point via the cell membrane. In our earlier outline
of the (deterministic) bidomain model, we saw that the relevant quantities are the intracellular
and extracellular potentials

ui = ui (x, t) and ue = ue(x, t), (x, t) ∈ ΩT := Ω × (0, T ),

as well as the transmembrane potential v := ui − ue (defined in ΩT ).
The conductivities of the intracellular and extracellular tissues are encoded in anisotropic

matrices Mi = Mi (x),Me = Me(x). Herein we do not exploit structural properties of cardiac
tissue, and assume that Mi ,Me > 0 are general matrices, cf. (2.5) below. For the modeling of
electrical conductivities of cardiac tissue, see for example [12,13,52].

The stochastic bidomain model contains two nonlinearly coupled SPDEs involving the
potentials ui , ue, v. These stochastic reaction–diffusion equations are further coupled to a
nonlinear SDE for the gating (recovery) variable w. The dynamics of (ui , ue, v, w) is governed
by the equations

χmcmdv − ∇ ·
(
Mi∇ui

)
dt + χm Iion(v,w) dt = Ii dt + β(v) dW v in ΩT ,

χmcmdv + ∇ ·
(
Me∇ue

)
dt + χm Iion(v,w) dt = −Ie dt + β(v) dW v in ΩT ,

dw = H (v,w) dt + α(v) dWw in ΩT ,

(2.1)

where cm > 0 is the surface capacitance of the membrane, χm is the surface-to-volume ratio,
and Ii , Ie are stimulation currents. In (2.1), randomness is represented by cylindrical Wiener
processes W v,Ww with nonlinear noise amplitudes β, α (cf. Section 3 for details).

We impose initial conditions on the transmembrane potential and the gating variable:

v(0, x) = v0(x), w(0, x) = w0(x), x ∈ Ω . (2.2)

The intra- and extracellular domains are often assumed to be electrically isolated, giving rise
to zero flux (Neumann type) boundary conditions on the potentials ui , ue [13,52]. From a
mathematical point of view, Dirichlet and mixed Dirichlet–Neumann type boundary conditions
are utilized in [1] and [2], respectively. Herein we partition the boundary ∂Ω into regular parts
ΣN and ΣD and impose the mixed boundary conditions ( j = i, e)(

M j (x)∇u j
)
· ν = 0 on ΣN ,T := ΣN × (0, T ),

u j = 0 on ΣD,T := ΣD × (0, T ),
(2.3)

where ν denotes the exterior unit normal to the “Neumann part” ΣN of the boundary, which
is defined a.e. with respect to the two-dimensional Hausdorff measure H2 on ∂Ω .

Observe that the equations in (2.1) are invariant under the change of ui and ue into
ui + k, ue + k, for any k ∈ R. Hence, unless Dirichlet conditions are imposed somewhere
(ΣD ̸= ∅), the bidomain system determines the electrical potentials only up to an additive
constant. To ensure a unique solution in the case ΣD := ∅ (∂Ω = ΣN ), we may impose the
normalization condition

∫
Ω ue(x, t) dx = 0. To avoid making this paper too long, we assume

that ΣD ̸= ∅. Moreover, we stick to homogeneous boundary conditions, although we could
have replaced the right-hand sides of (2.3) by sufficiently regular functions.
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Regarding the “membrane” functions Iion and H , we have in mind the fairly uncluttered
FitzHugh–Nagumo model [20,39]. This is a simple choice for the membrane kinetics that is
often used to avoid difficulties arising from a large number of coupling variables. The model
is specified by

Iion(v,w) = −v (v − a) (1 − v) + w, H (v,w) = ϵ(κv − γw),

where the parameter a represents the threshold for excitation, ϵ represents excitability, and
κ, γ, δ are parameters that influence the overall dynamics of the system. For background
material on cardiac membrane models and their general mathematical structure, we refer to
the books [13,32,52].

In an attempt to simplify the notation, we redefine Mi ,Me as 1
χm cm

Mi , 1
χm cm

Me, and set
I :=

1
cm

Iion, η :=
1

χm cm
β. We also assume Ii , Ie ≡ 0, as these source terms do not add new

difficulties. The resulting stochastic bidomain system becomes⎧⎪⎪⎨⎪⎪⎩
dv − ∇ ·

(
Mi∇ui

)
dt + I (v,w) dt = η(v) dW v in ΩT ,

dv + ∇ ·
(
Me∇ue

)
dt + I (v,w) dt = η(v) dW v in ΩT ,

dw = H (v,w) dt + σ (v) dWw in ΩT ,

(2.4)

along with the initial and boundary conditions (2.2) and (2.3). The cylindrical Wiener processes
W v,Ww in (2.4) are defined in Section 3.

With regard to the conductivity matrices in (2.4), we assume the existence of positive
constants m,M such that for j = i, e,

M j ∈ L∞, m |ξ |2 ≤ ξ⊤M j (x) ξ ≤ M |ξ |2 , ∀ξ ∈ R3, for a.e. x . (2.5)

Motivated by the discussion above on membrane models, we impose the following set of
assumptions on the functions I, H in (2.4):

• Generalized FitzHugh–Nagumo model (GFHN):

I (v,w) = I1(v) + I2(v)w, H (v,w) = h(v) + cH,1w,

where I1, I2, h ∈ C1(R) and for all v ∈ R,

|I1(v)| ≤ cI,1
(
1 + |v|3

)
, I1(v)v ≥ cI |v|4 − cI,2 |v|2 ,

I2(v) = cI,3 + cI,4v, |h(v)| ≤ cH,2
(
1 + |v|2

)
,

for some positive constants cI,1, cI,2, cI,3, cI,4, cH,1, cH,2 and cI > 0.
There exist µ, λ > 0 such that

µ (I (v2, w2) − I (v1, w2)) (v2 − v1) − (H (v2, w2) − H (v1, w1)) (w2 − w1)

≥ −λ
(
|v2 − v1|

2
+ |w2 − w1|

2) , ∀v1, v2, w1, w2 ∈ R.
(2.6)

The “dissipative” condition (2.6), involving an appropriate linear combination of I and
H , is linked to stability and uniqueness results. It will be used in Lemma 5.2 (existence of
Faedo–Galerkin solutions), cf. (5.24), and Theorem 7.2 (L2 stability and uniqueness). It can
be verified for the FitzHugh–Nagumo model. We refer to [6, pages 478–479] for additional
details and a more general condition.

The (generalized) FitzHugh–Nagumo model is a simplification of the Hodgkin–Huxley
model of voltage-gated ion channels. It is possible to treat other membrane models by blending
the arguments used herein with those found in [5,6,55].



M. Bendahmane and K.H. Karlsen / Stochastic Processes and their Applications 129 (2019) 5312–5363 5319

We end this section with a remark about the so-called monodomain model.

Remark 2.1. The stochastic bidomain model simplifies if Mi = λMe for some constant λ > 0.
In this case the first two equations in (2.4) can be combined into a single equation; thereby
arriving at the stochastic monodomain system

dv − ∇ · (M∇v) dt + I (v,w) dt = η(v) dW v in ΩT ,

dw = H (v,w) dt + σ (v)dWw in ΩT ,
(2.7)

where M :=
λ

1+λ
Mi . The system (2.7) is a significant simplification of the bidomain

model (2.4), and even though the assumption of equal anisotropy ratios is very strong, the
monodomain model is adequate in certain situations [14].

3. Stochastic framework

We refer to the books [16,41] for relevant notation, basic concepts, and results from stochas-
tic analysis, including the theory of cylindrical Wiener processes and stochastic integration.
We consider a complete probability space (D,F , P), along with a complete right-continuous
filtration {Ft }t∈[0,T ]. Without loss of generality, we assume that the σ -algebra F is countably
generated. Let {Wk}

∞

k=1 be a sequence of independent one-dimensional Brownian motions
adapted to the filtration {Ft }t∈[0,T ]. We refer to

S =
(
D,F , {Ft }t∈[0,T ] , P, {Wk}

∞

k=1

)
(3.1)

as a (Brownian) stochastic basis.
Fix a separable Hilbert space U, equipped with a complete orthonormal basis {ψk}k≥1. We

use cylindrical Wiener processes W evolving over U, namely

W (ω, t, ·) :=

∑
k≥1

Wk(ω, t)ψk(·) (3.2)

where the right-hand side of (3.2) converges on a larger Hilbert space U0, such that the
embedding U ⊂ U0 is Hilbert–Schmidt. Via standard martingale arguments, W is almost surely
continuous with values in U0, that is, W (ω, ·, ·) ∈ C([0, T ];U0) for P-a.e. ω ∈ D. We also
have W ∈ L2(D,F , P; C([0, T ];U0)). Without loss of generality, we assume that the filtration
{Ft }t∈[0,T ] is generated by W and the initial data. See [16,41] for details.

Let X be a separable Hilbert space with inner product (·, ·)X and norm ∥·∥X. For the
bidomain model (2.4), a natural choice is X = L2(Ω ). The vector space of all bounded
linear operators from U to X is denoted L(U,X). We denote by L2(U,X) the collection of
Hilbert–Schmidt operators from U to X, that is, R ∈ L2(U,X) if and only if R ∈ L(U,X) and
∥R∥

2
L2(U,X) :=

∑
k≥1 ∥Rψk∥

2
X < ∞.

Given a cylindrical Wiener process W , we define the Itô stochastic integral
∫

G dW as
follows [16,41]:∫ t

0
G dW =

∞∑
k=1

∫ t

0
Gk dWk, Gk := Gψk, (3.3)

provided the integrand G is a predictable X-valued process satisfying

G ∈ L2 (D,F , P; L2((0, T ); L2(U,X))
)
.
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The stochastic integral (3.3) is an X-valued square integrable martingale, satisfying the
Burkholder–Davis–Gundy inequality

E

[
sup

t∈[0,T ]

∫ t

0
G dW

p

X

]
≤ C E

[(∫ T

0
∥G∥

2
L2(U,X) dt

) p
2
]
, (3.4)

where C is a constant depending on p ≥ 1.
For the bidomain model (2.4), we take X = L2(Ω ). With this choice, we can give meaning

to the stochastic terms∫
Ω

(∫ t

0
β(v) dW

)
ϕ dx, (β,W ) = (η,W v) or (σ,Ww),

appearing in the weak formulation of (2.4), with ϕ ∈ L2(Ω ). Since W =
∑

k≥1 Wkψk is a
cylindrical Brownian motion, we can write∫

Ω

(∫ t

0
β(v) dW

)
ϕ dx =

∫
Ω

(∑
k≥1

∫ t

0
βk(v) dW

)
ϕ dx

=

∑
k≥1

∫ t

0

∫
Ω

βk(v)ϕ dx dWk,

(3.5)

knowing that the series converges in L2 (D,F , P; C([0, T ])), where βk(v) := β(v)ψk are
real-valued functions. Sometimes we denote the right-hand side by

∫ t
0

∫
Ω β(v)ϕ dx dW v .

We need to impose conditions on the noise amplitudes β = η, σ . For each v ∈ L2(Ω ), we
assume that β(v) : U → L2(Ω ) is defined by

β(v)ψk = βk(v(·)), k ≥ 1,

for some real-valued functions βk(·) : R → R that satisfy∑
k≥1

|βk(v)|2 ≤ Cβ

(
1 + |v|2

)
, ∀v ∈ R,∑

k≥1

|βk(v1) − βk(v2)|2 ≤ Cβ |v1 − v2|
2 , ∀v1, v2 ∈ R,

(3.6)

for a constant Cβ > 0. As a result, β becomes a mapping from L2(Ω ) to L2(U, L2(Ω )). More
precisely, we have

∥β(v)∥2
L2(U,L2(Ω))

≤ Cβ

(
1 + ∥v∥2

L2(Ω)

)
, v ∈ L2(Ω ),

∥β(v1) − β(v2)∥2
L2(U,L2(Ω))

≤ Cβ ∥v1 − v2∥
2
L2(Ω) , v1, v2 ∈ L2(Ω ).

(3.7)

Let (β,W ) = (η,W v) or (σ,Ww). Given a predictable process

v ∈ L2 (D,F , P; L2((0, T ); L2(Ω ))
)
,

the stochastic integral
∫ t

0 β(v) dWw is well-defined, taking values in L2(Ω ). Indeed,

E

[⏐⏐⏐⏐∫
Ω

(∫ t

0
β(v) dW

)
ϕ dx

⏐⏐⏐⏐2
]

≤ E

[∫ t

0
β(v) dW

2

L2(Ω)

]
∥ϕ∥

2
L2(Ω)

(3.4)
≤ Cϕ E

[∫ T

0
∥β(v)∥2

L2(U,L2(Ω)) dt
]

(3.7)
< ∞,

for any ϕ ∈ L2(Ω ). Hence, (3.5) makes sense.
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Remark 3.1. The condition (3.6) on the noise amplitude allows for various additive and
multiplicative noises, see e.g. [25, Example 3.2] for a list of representative examples.

It is possible to allow β = η, σ to be time and space dependent, β = β(t, x, v). Then β
must satisfy (3.6) for a.e. t ∈ [0, T ], with a constant Cβ that is independent of t . This does
not entail additional effort in the proofs, but for simplicity of presentation we suppress the t, x
dependency throughout the paper.

We will construct weak martingale solutions by applying the stochastic compactness method
to a sequence of approximate solutions. In one step of the argument, we show tightness of
the probability laws of the approximations. By the Prokhorov theorem, this is equivalent to
exhibiting weak compactness of the laws. Relating to convergence of the approximate solutions,
it is essential that we secure strong compactness (a.s. convergence) in the ω variable. To that
end, we need of a Skorokhod a.s. representation theorem, delivering a new probability space
and new random variables, with the same laws as the original ones, converging almost surely.
As alluded to before, our path space is not a Polish space since weak topologies in Hilbert
and Banach spaces are not metrizable. Thus the original Skorokhod theorem is not applicable;
instead we will use the recent Jakubowski version [31] that applies to so-called quasi-Polish
spaces. “Quasi-Polish” refers to spaces S for which there exists a countable family

{ fℓ : S → [−1, 1]}ℓ∈L (3.8)

of continuous functionals that separate points (of S) [31]. Quasi-Polish spaces include separable
Banach spaces equipped with the weak topology, and also spaces of weakly continuous
functions taking values in some separable Banach space. The basic assumption (3.8) gives
rise to a mapping between S and the Polish space [−1, 1]L ,

S ∋ u ↦→ f̃ (u) = { fℓ(u)}ℓ∈L ∈ [−1, 1]L , (3.9)

which is one-to-one and continuous, but in general f̃ is not a homeomorphism of S onto a
subspace of S. However, if we restrict to a σ -compact subspace of S, then f̃ becomes a measur-
able isomorphism [31]. In this paper we use the following form of the Skorokhod–Jakubowski
theorem [31], taken from [8,40] (see also [9,10]).

Theorem 3.2. [Skorokhod–Jakubowski a.s. Representations for Subsequences] Let S be a
topological space for which there exists a sequence { fℓ}ℓ≥1 of continuous functionals fℓ :

S → R that separate points of S. Denote by Σ the σ -algebra generated by the maps { fℓ}ℓ≥1.
Then

(1) every compact subset of S is metrizable;
(2) every Borel subset of a σ -compact set in S belongs to Σ ;
(3) every probability measure supported by a σ -compact set in S has a unique Radon

extension to the Borel σ -algebra B(S);
(4) if {µn}n≥1 is a tight sequence of probability measures on (S,Σ ), then there exist a

subsequence {nk}k≥1, a probability space (D̃, F̃ , P̃), and Borel measurable S-valued random
variables X̃k , X̃ , such that µnk is the law of X̃k and Xk → X P̃-a.s. (in S). Moreover, the law
µ of X̃ is a Radon measure.

We will need the Gyöngy–Krylov characterization of convergence in probability [27]. It will
be used to upgrade weak martingale solutions to strong (pathwise) solutions, via a pathwise
uniqueness result.
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Lemma 3.3 (Gyöngy–Krylov Characterization). Let S be a Polish space, and let {Xn}n≥1 be a
sequence of S-valued random variables on a probability space (D,F , P). For each n,m ≥ 1,
denote by µn,m the joint law of (Xn, Xm), that is,

µn,m(A) := P ({ω ∈ D : (Xn(ω), Xm(ω)) ∈ A}) , A ∈ B(S × S).

Then {Xn}n≥1 converges in probability (and P-a.s. along a subsequence) ⇐⇒ for any
subsequence {µmk ,nk }k≥1 there exists a further subsequence that converges weakly to some
µ ∈ P(S) that is supported on the diagonal: µ ({(X, Y ) ∈ S × S : X = Y }) = 1.

Remark 3.4. As a matter of fact, we need access to the “⇐H” part of the Gyöngy–Krylov
lemma for quasi-Polish spaces S. Suppose for any subsequence

{(
Xnk , Xmk

)}
k≥1 there exists

a further subsequence
{(

Xnk j
, Xmk j

)}
j≥1

that converges in distribution to (X, X ) as j → ∞,

for some X ∈ S, that is, the joint probability laws µmk j ,nk j
converge weakly to some µ ∈

P(S×S) that is supported on the diagonal. Recalling the mapping f̃ between S and the Polish
space [−1, 1]L , cf. (3.9), and the continuous mapping theorem, it follows that the sequence{(

f̃ (Xnk j
), f̃ (Xmk j

)
)}

j≥1
converges in distribution to ( f (X ), f (X )) as j → ∞. In view of

the Gyöngy–Krylov lemma, this implies that the sequence
{

f̃ (Xn)
}

n≥1
converges in probability

and thus, along a subsequence
{

f̃ (Xn j )
}

j≥1
, P-almost surely. Since { fℓ}ℓ≥1 separate points of

S, it is not difficult to see that this implies that
{

Xn j

}
j≥1

converges P-a.s. as well.

4. Notion of solution and main results

Depending on the (probabilistic) notion of solution, the initial data (2.2) are imposed
differently. For pathwise (probabilistic strong) solutions, we prescribe the initial data as random
variables v0, w0 ∈ L2(D,F , P; L2(Ω )). For martingale (or probabilistic weak) solutions, of
which the stochastic basis is an unknown component, we prescribe the initial data in terms
of probability measures µv0 , µw0 on L2(Ω ). The measures µv0 and µw0 should be viewed as
“initial laws” in the sense that the laws of v(0), w(0) are required to coincide with µv0 , µw0 ,
respectively.

Sometimes we need to assume the existence of a number q0 >
9
2 such that∫

L2(Ω)
∥v∥

q0
L2(Ω)

dµv0 (v) < ∞,

∫
L2(Ω)

∥w∥
q0
L2(Ω)

dµw0 (w) < ∞. (4.1)

As a matter of fact, we mostly need (4.1) with q0 > 2. One exception occurs in Section 6.5,
where we use q0 >

9
2 to conclude that the transmembrane potential v is a.s. weakly time

continuous, cf. part (5) in the definition below (for w this holds with just q0 > 2).
Let us define precisely what is meant by a solution to the stochastic bidomain model. For

this, we use the space

H 1
D(Ω ) := closure of the set

{
v ∈ C∞(R3), v

⏐⏐
ΣD

= 0
}

in the H 1(Ω ) norm.

We denote by (H 1
D(Ω ))∗ the dual of H 1

D(Ω ), which is equipped with the normu∗


(H1
D (Ω))∗ = sup

φ∈H1
D (Ω)

∥φ∥
H1

D (Ω)
≤1

⟨
u∗, φ

⟩
(H1

D (Ω))∗,H1
D (Ω) . (4.2)
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Definition 4.1 (Weak Martingale Solution). Let µv0 and µw0 be probability measures on L2(Ω ).
A weak martingale solution of the stochastic bidomain system (2.4), with initial–boundary data
(2.2)–(2.3), is a collection

(
S, ui , ue, v, w

)
satisfying

(1) S =
(
D,F , {Ft }t∈[0,T ] , P,

{
W v

k

}∞

k=1 ,
{
Ww

k

}∞

k=1

)
is a stochastic basis;

(2) W v
:=
∑

k≥1 W v
k ek and Ww

:=
∑

k≥1 Ww
k ek are two independent cylindrical Brownian

motions, adapted to the filtration {Ft }t∈[0,T ];
(3) For P-a.e. ω ∈ D, ui (ω), ue(ω) ∈ L2((0, T ); H 1

D(Ω ));
(4) For P-a.e. ω ∈ D, v(ω) ∈ L2((0, T ); H 1

D(Ω )) ∩ L4(ΩT ). Moreover, v = ui − ue;
(5) v,w : D × [0, T ] → L2(Ω ) are {Ft }t∈[0,T ]-adapted processes, {Ft }t∈[0,T ]-predictable in

(H 1
D(Ω ))∗, such that for P-a.e. ω ∈ D,

v(ω), w(ω) ∈ L∞((0, T ); L2(Ω )) ∩ C([0, T ]; (H 1
D(Ω ))∗);

(6) The laws of v0 := v(0) and w0 := w(0) are respectively µv0 and µw0 .
(7) The following identities hold P-almost surely, for any t ∈ [0, T ]:∫

Ω

v(t)ϕi dx +

∫ t

0

∫
Ω

(
Mi∇ui · ∇ϕi + I (v,w)ϕi

)
dx ds

=

∫
Ω

v0 ϕi dx +

∫ t

0

∫
Ω

η(v)ϕi dx dW v(s),

∫
Ω

v(t)ϕe dx +

∫ t

0

∫
Ω

(
−Me∇ue · ∇ϕe + I (v,w)ϕe

)
dx ds

=

∫
Ω

v0ϕe dx +

∫ t

0

∫
Ω

η(v)ϕe dx dW v(s),

∫
Ω

w(t)ϕ dx =

∫
Ω

w0ϕ dx +

∫ t

0

∫
Ω

H (v,w)ϕ dx ds

+

∫ t

0

∫
Ω

σ (v)ϕ dx dWw(s),

(4.3)

for all ϕi , ϕe ∈ H 1
D(Ω ) and ϕ ∈ L2(Ω ).

Remark 4.2. In view of the regularity conditions imposed in Definition 4.1, it is easily
verified that the deterministic integrals in (4.3) are well-defined. The stochastic integrals are
well-defined as well; they have been given special attention in Section 3, see (3.5).

Remark 4.3. We denote by C
(
[0, T ]; L2(Ω ) − weak

)
the space of weakly continuous L2(Ω )

functions. According to [53, Lemma 1.4], part (5) of Definition 4.1 implies that

v(ω, ·, ·), w(ω, ·, ·) ∈ C
(
[0, T ]; L2(Ω ) − weak

)
, for P-a.e. ω ∈ D.

Our main existence result is contained in

Theorem 4.4 (Existence of Weak Martingale Solution). Suppose conditions (GFHN), (2.5) and
(3.6) hold. Let µv0 , µw0 be probability measures satisfying the moment estimates (4.1) (with
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v0 ∼ µv0 , w0 ∼ µw0 ). Then the stochastic bidomain model (2.4), (2.2), (2.3) possesses a weak
martingale solution in the sense of Definition 4.1.

The proof of Theorem 4.4 is divided into a series of steps. We construct approximate
solutions in Section 5, which are shown to converge in Section 6. The convergence proof relies
on several uniform a priori estimates that are established in Sections 6.1 and 6.2. We use these
estimates in Section 6.3 to conclude that the laws of the approximate solutions are tight and
that the approximations (along a subsequence) converge to a limit. The limit is shown to be a
weak martingale solution in Sections 6.4 and 6.5.

If the stochastic basis S in Definition 4.1 is fixed in advance (not part of the solution), we
speak of a weak solution or weak pathwise solution. A weak solution is thus weak in the PDE
sense and strong in the probabilistic sense. In this case, we prescribe the initial data v0, w0 as
random variables relative to S.

Definition 4.5 (Weak Solution). Fix a stochastic basis S and assume that the initial data
v0, w0 are F0-measurable and belong to L2(D,F , P; L2(Ω )). A weak solution of the stochastic
bidomain system (2.4), with initial–boundary data (2.2)–(2.3), is a collection U =

(
ui , ue, v, w

)
satisfying conditions (3), (4), (5), (7) in Definition 4.1 (relative to S).

Weak solutions are said to be unique if, given any pair of such solutions Û , Ũ for which Û
and Ũ coincide a.s. at t = 0,

P
({

Û (t) = Ũ (t) ∀t ∈ [0, T ]
})

= 1. (4.4)

We establish pathwise uniqueness by demonstrating that v(t), w(t) depend continuously on
the initial data v0, w0 in L2(D,F , P; L2(Ω )). Moreover, using the Poincaré inequality, we
conclude as well the pathwise uniqueness of ui , ue.

As alluded to earlier, we use this to “upgrade” martingale solutions to weak (pathwise)
solutions, thereby delivering

Theorem 4.6 (Existence and Uniqueness of Weak Solution). Suppose conditions (GFHN),
(2.5), and (3.6) hold. Then the stochastic bidomain model (2.4), (2.2), (2.3) possesses a
unique weak solution in the sense of Definition 4.5, provided the initial data satisfy v0, w0 ∈

Lq0 (D,F , P; L2(Ω )), q0 > 9/2.

Regarding the proof of Theorem 4.6, we divide it into two steps. A pathwise uniqueness
result is established in Section 7 by exhibiting an L2 stability estimate for the difference
between two solutions. We use this result in Section 8 to upgrade martingale solutions to
pathwise solutions.

5. Construction of approximate solutions

In this section we define the Faedo–Galerkin approximations. They are based on a non-
degenerate system introduced below. In upcoming sections we use these approximations to
construct weak martingale solutions to the stochastic bidomain model.

We begin by fixing a stochastic basis

S =
(
D,F , {Ft }t∈[0,T ] , P,

{
W v

k

}∞

k=1 ,
{
Ww

k

}∞

k=1

)
, (5.1)
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and F0-measurable initial data v0, w0 ∈ L2(D; L2(Ω )) with respective laws µv0 , µw0 on L2(Ω ).
For each fixed ε > 0, the nondegenerate system reads

dv + εdui − ∇ ·
(
Mi∇ui

)
dt + I (v,w) dt = η(v) dW v in ΩT ,

dv − εdue + ∇ ·
(
Me∇ue

)
dt + I (v,w) dt = η(v) dW v in ΩT ,

dw = H (v,w) dt + σ (v)dWw in ΩT ,

(5.2)

with boundary conditions (2.3). Regarding (5.2), we must provide initial data for ui , ue (not
v = ui − ue as in the original problem). For that reason, we decompose (arbitrarily) the initial
condition v0 in (2.2) as v0 = ui,0 − ue,0, for some F0-measurable random variables ui,0 and
ue,0,

ui,0, ue,0 ∈ L2 (D,F , P; L2(Ω )
)
, (5.3)

such that the law of ui,0 − ue,0 coincides with µv0 . We replace (2.2) by

u j (0, x) = u j,0(x) ( j = i, e), w(0, x) = w0(x), x ∈ Ω . (5.4)

In some situations, we make use of the strengthened assumption

ui,0, ue,0, w0 ∈ Lq0
(
D,F , P; L2(Ω )

)
, with q0 defined in (4.1). (5.5)

Remark 5.1. Modulo some obvious changes, the definitions of weak martingale and weak
(pathwise) solutions to the nondegenerate system (5.2)–(5.4)–(2.3) are basically the same as
those for the original system.

To construct and justify the validity of the Faedo–Galerkin approximations, we employ a
classical Hilbert basis, which is orthonormal in L2 and orthogonal in H 1

D . We refer for example
to [48, Thm. 7.7, p. 87] (see also [44]) for the standard construction of such bases. We operate
with the same basis {el}

n
l=1 for all the unknowns ui , ue, v, w.

We look for a solution to the problem arising as the projection of (5.2), (2.2), (2.3) onto the
finite dimensional subspace Xn := Span{el}

n
l=1. The (finite dimensional) approximate solutions

take the form

un
j : [0, T ] → Xn, un

j (t) =

n∑
l=1

cn
j,l(t)el ( j = i, e),

vn
: [0, T ] → Xn, vn(t) =

n∑
l=1

cn
l (t)el , cn

l (t) = cn
i,l(t) − cn

e,l(t),

wn
: [0, T ] → Xn, wn(t) =

n∑
l=1

an
l (t)el .

(5.6)

We pick the coefficients

cn
j =

{
cn

j,l

}n
l=1

( j = i, e), an
=
{
an

l

}n
l=1 , (5.7)
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which are finite dimensional stochastic processes relative to (5.1), such that (ℓ = 1, . . . , n)(
dvn, eℓ

)
L2(Ω) + εn

(
dun

i , eℓ
)

L2(Ω)

+
(
Mi∇un

i ,∇eℓ
)

L2(Ω) dt +
(
I (vn, wn), eℓ

)
L2(Ω) dt

=

n∑
k=1

(
ηn

k (vn), eℓ
)

L2(Ω) dW v
k (t),

(
dvn, eℓ

)
L2(Ω) − εn

(
dun

e , eℓ
)

L2(Ω)

−
(
Me∇un

e ,∇eℓ
)

L2(Ω) dt +
(
I (vn, wn), eℓ

)
L2(Ω) dt

=

n∑
k=1

(
ηn

k (vn), eℓ
)

L2(Ω) dW v
k (t),

(
dwn, eℓ

)
L2(Ω) =

(
H (vn, wn), eℓ

)
L2(Ω) dt +

n∑
k=1

(
σ n

k (vn), eℓ
)

L2(Ω) dWw
k (t),

(5.8)

where ε in (5.2) is taken as

ε = εn :=
1
n
, n ≥ 1. (5.9)

We need to comment on the finite dimensional approximations of the stochastic terms
utilized in (5.8). With (β,W ) denoting (η,W v) or (σ,Ww), recall that β maps from L2

(
(0, T );

L2(Ω )
)

to L2
(
(0, T ); L2

(
U, L2(Ω )

))
, where U is equipped with the orthonormal basis {ψk}k≥1

(cf. Section 3). Employing the decomposition βk(v) = β(v)ψk , βk(v) =
∑

l≥1 (βk(v), el)L2(Ω) el ,
we can write

β(v) dW =

∑
k≥1

βk(v) dWk =

∑
k,l≥1

βk,l(v)el dWk, βk,l(v) = (βk(v), el)L2(Ω) .

In (5.8), we utilize the finite dimensional approximation

βn(v) dW n
:=

n∑
k,l=1

βk,l(v)el dWk =

n∑
k=1

βn
k (v) dWk, (5.10)

with βn and W n then defined by

βn
k (v) = βn(v)ψk, βn

k (v) =

n∑
l=1

βk,l(v)el , W n
=

n∑
k=1

Wkψk,

where (βn,W n) denotes (ηn,W v,n) or (σ n,Ww,n); W n converges in C([0, T ];U0) for P-
a.e. ω ∈ D and (by a martingale inequality) in L2 (D,F , P; C([0, T ];U0)).

The initial conditions are

un
j (0) = un

j,0 :=

n∑
l=1

cn
j,l(0)el , cn

j,l(0) :=
(
un

j,0, el
)

L2(Ω)
, j = i, e,

vn(0) = vn
0 := un

i,0 − un
e,0,

wn(0) = wn
0 :=

n∑
l=1

an
l (0)el , an

l (0) := (w0, el)L2(Ω) .

(5.11)
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In (5.11), consider for example un
j,0. Since u j,0 ∈ L2

(
D,F , P; L2(Ω )

)
, we have (by standard

properties of finite-dimensional projections, cf. (5.14), (5.16) below) un
j,0 → u j,0 in L2(Ω ),

P-a.s., as n → ∞, and
un

j,0

2

L2(Ω)
≤ C

u j,0
2

L2(Ω). On this account, the dominated
convergence theorem implies

un
j,0 → u j,0 in L2 (D,F , P; L2(Ω )

)
, as n → ∞. (5.12)

Similarly, wn
0 → w0, v

n
0 → v0 in L2(Ω ), P-a.s., and thus in L2

ω(L2
x ).

For the basis {el}
∞

l=1, we introduce the projection operators (see e.g. [8, page 1636])

Πn : (H 1
D(Ω ))∗ → Span{el}

∞

j=1 , Πnu∗
:=

n∑
l=1

⟨
u∗, el

⟩
(H1

D (Ω))∗,H1
D (Ω) el . (5.13)

The restriction of Πn to L2(Ω ) is also denoted by Πn:

Πn : L2(Ω ) → Span{el}
∞

j=1 , Πnu :=

n∑
l=1

(u, el)L2(Ω) el ,

i.e., Πn is the orthogonal projection from L2(Ω ) to Span{el}
∞

j=1. We have

∥Πnu∥L2(Ω) ≤ ∥u∥L2(Ω) , u ∈ L2(Ω ). (5.14)

Note that we have the following equality for any u∗
∈ (H 1

D(Ω ))∗ and u ∈ H 1
D(Ω ):(

Πnu∗, u
)

L2(Ω) =
⟨
u∗,Πnu

⟩
(H1

D (Ω))∗,H1
D (Ω) . (5.15)

Furthermore, as n → ∞,

∥Πnu − u∥H1
D (Ω) → 0, u ∈ H 1

D(Ω ). (5.16)

Using the projection operator (5.13), we may write (5.8) in integrated form equivalently as
equalities between (H 1

D(Ω ))∗ valued random variables:

vn(t) + εnun
i (t) = vn

0 + εnun
i,0 +

∫ t

0
Πn
[
∇ ·

(
Mi∇un

i

)
− I (vn, wn)

]
ds

+

∫ t

0
ηn(vn) dW v,n(s) in (H 1

D(Ω ))∗,

vn(t) − εnun
e (t) = vn

0 − εnun
e,0 +

∫ t

0
Πn
[
−∇ ·

(
Me∇un

e

)
− I (vn, wn)

]
ds

+

∫ t

0
ηn(vn) dW v,n(s) in (H 1

D(Ω ))∗,

wn(t) = wn
0 +

∫ t

0
Πn
(
H (vn, wn)

)
ds

+

∫ t

0
σ n(vn) dWw,n(s) in (H 1

D(Ω ))∗,

(5.17)

where vn
0 = un

i,0 − un
e,0 and un

i,0 = Πnui,0, un
e,0 = Πnue,0, wn

0 = Πnw0.

In coming sections we investigate the convergence properties of the sequences
{

un
j

}
n≥1

( j = i, e), {vn}n≥1, {wn}n≥1 defined by (5.17). Meanwhile, we must verify the existence of a
(pathwise) solution to the finite dimensional system (5.8).
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Lemma 5.2. For each fixed n ≥ 1, the Faedo–Galerkin equations (5.6), (5.8), and
(5.11) possess a unique global adapted solution (un

i (t), un
e (t), vn(t), wn(t)) on [0, T ]. Besides,

un
i , un

e , v
n, wn belong to C([0, T ];Xn), and vn

= un
i − un

e .

Proof. Using the orthonormality of the basis, (5.8) becomes the SDE system (ℓ = 1, . . . , n)

d
(
cn
ℓ + εncn

i,ℓ

)
= Ai,ℓ dt + Γℓ dW v,n,

d
(
cn
ℓ − εncn

e,ℓ

)
= Ae,ℓ dt + Γℓ dW v,n,

dan
ℓ = AH,ℓ dt + ζℓ dWw,n,

(5.18)

for the coefficients cn
j = cn

j (t) ( j = i, e) and an
= an(t), cf. (5.7), where

Ai,ℓ = −

∫
Ω

Mi∇un
i · ∇eℓ dx −

∫
Ω

I (vn, wn)eℓ dx,

Ae,ℓ =

∫
Ω

Me∇un
e · ∇eℓ dx −

∫
Ω

I (vn, wn)eℓ dx,

AH,ℓ =

∫
Ω

H (vn, wn)eℓ dx,

Γℓ =
{
Γℓ,k

}n
k=1 , Γℓ,k =

∫
Ω

ηn
k (vn) eℓ dx, Γℓ dW v,n

=

n∑
k=1

Γℓ,k dW v
k ,

ζℓ =
{
ζℓ,k

}n
k=1 , ζℓ,k =

∫
Ω

σ n
k (vn) eℓ dx, ζℓ dW v,n

=

n∑
k=1

ζℓ,k dW v
k .

Adding the first and second equations in (5.18) yields (ℓ = 1, . . . , n)

dcn
ℓ =

1
2 + εn

[
Ai,ℓ + Ae,ℓ

]
dt +

2
2 + εn

Γℓ dW v,n
=: Fie,ℓ dt + 2Gℓ dW v,n, (5.19)

and plugging (5.19) into (5.18) we arrive at (ℓ = 1, . . . , n)

d
(√
εncn

i,ℓ

)
=

[
1 + εn

√
εn(2 + εn)

Ai,ℓ −
1

√
εn(2 + εn)

Ae,ℓ

]
dt

+

√
εn

2 + εn
Γℓ dW v,n

=: Fi,ℓ dt +
√
εnGℓ dW v,n,

d
(√
εncn

e,ℓ

)
=

[
1

√
εn(2 + εn)

Ai,ℓ −
1 + εn

√
εn(2 + εn)

Ae,ℓ

]
dt

−

√
εn

2 + εn
Γℓ dW v,n

=: Fe,ℓ dt −
√
εnGℓ dW v,n,

dan
ℓ = AH,ℓ dt + ζℓ dWw,n.

(5.20)

Recalling (2.6), we let

Cn
= Cn(t) =

{
cn(t),

√
εncn

i (t),
√
εncn

e (t), an(t)/µ
}

be the vector containing all the unknowns in (5.19) and (5.20). For technical reasons, related
to (5.22) and (5.23), we write the left-hand sides of the first two equations in (5.20) in terms
of the εn scaled quantities

√
εncn

i ,
√
εncn

e . Moreover, we view the right-hand sides of all the
equations as functions of Cn (involving the εn scaled quantities), which can always be done
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since εn > 0 is a fixed number. As a result, the constants below may depend on 1/εn . Let

F(Cn) =
{{

Fie,ℓ(Cn)
}n
ℓ=1 ,

{
Fi,ℓ(Cn)

}n
ℓ=1 ,

{
Fe,ℓ(Cn)

}n
ℓ=1 ,

{
AH,ℓ(Cn)/µ

}n
ℓ=1

}
be the vector containing all the drift terms, and

G(Cn) =
{
{2Gℓ}

n
ℓ=1 ,

{√
εnGℓ

}n
ℓ=1 ,

{
−

√
εnGℓ

}n
ℓ=1 , {ζℓ/µ}

n
ℓ=1

}
,

be the collection of noise coefficients. The vector {W v,n,W v,n,W v,n,Ww,n} is denoted by W n .
Then (5.19) and (5.20) take the compact form

dCn(t) = F(Cn(t)) dt + G(Cn(t)) dW n(t), Cn(0) = Cn
0 , (5.21)

where Cn
0 =

{
cn(0),

√
εncn

i (0),
√
εncn

e (0), an(0)/µ
}
, cf. (5.11).

If F,G are globally Lipschitz continuous, classical SDE theory [41,50] provides the
existence and uniqueness of a pathwise solution. However, due to the nonlinear nature of the
ionic models, cf. (GFHN), the global Lipschitz condition does not hold for the SDE system
(5.21). As a replacement, we consider the following two conditions:

• (local weak monotonicity) ∀C1,C2 ∈ R4n , |C1| , |C2| ≤ r , for any r > 0,

2 (F(C1) − F(C2)) · (C1 − C2)+ |G(C1) − G(C2)|2 ≤ Kr |C1 − C2|
2 , (5.22)

for some r -dependent positive constant Kr .
• (weak coercivity) ∀C ∈ R4n , there exists a constant K > 0 such that

2F(C) · C + |G(C)|2 ≤ K
(
1 + |C |

2) . (5.23)

Below we verify that the coefficients F and G in (5.21) satisfy both these conditions globally
(i.e., (5.22) holds independent of r ). Then, in view of Theorem 3.1.1 in [41], there exists a
unique global adapted solution to (5.21).

Let us verify the weak monotonicity condition. To this end, set

un
j := un

j,1 − un
j,2 ( j = i, e), vn

k := un
i,k − un

e,k (k = 1, 2),

vn
:= vn

1 − vn
2 , wn

:= wn
1 − wn

2 ,

where
(
un

i,1, un
e,1, w

n
1

)
and

(
un

i,2, un
e,2, w

n
2

)
are arbitrary functions of the form of (5.6), with

corresponding time coefficients
(
cn

i,1, cn
e,1, an

1

)
and

(
cn

i,2, cn
e,2, an

2

)
, respectively. Moreover, set

cn
1 := cn

i,1 − cn
e,1, cn

2 := cn
i,1 − cn

e,1, Cn
k :=

{
cn

k ,
√
εncn

i,k,
√
εncn

e,k, an
k /µ

}
for k = 1, 2.

We wish to show that

IF :=
(
F(Cn

1 ) − F(Cn
2 )
)
·
(
Cn

1 − Cn
2

)
≤ KF

⏐⏐Cn
1 − Cn

2

⏐⏐2 ,
i.e., that F is globally one-sided Lipschitz. This requires comparing the “dt-terms” in (5.19)
and (5.20) corresponding to the vectors Cn

1 and Cn
2 , resulting in three different types of terms,

linked to the M j (diffusion) part, the I (ionic) part, and the H (gating) part of the equations,
that is, IF = IM

F + I I
F + IH

F . First,

I I
F =

−2
2 + εn

n∑
l=1

∫
Ω

(
I (vn

1 , w
n
1 ) − I (vn

2 , w
n
2 )
)

el dx
(
cn

1,l − cn
2,l

)
+

−(1 + εn) + 1
√
εn(2 + εn)

n∑
l=1

∫
Ω

(
I (vn

1 , w
n
1 ) − I (vn

2 , w
n
2 )
)

el dx

×
(√
εncn

i,1,l −
√
εncn

i,2,l

)
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+
−1 + (1 + εn)
√
εn(2 + εn)

n∑
l=1

∫
Ω

(
I (vn

1 , w
n
1 ) − I (vn

2 , w
n
2 )
)

el dx

×
(√
εnce,1,l(t) −

√
εnce,2,l(t)

)
= −

∫
Ω

(
I (vn

1 , w
n
1 ) − I (vn

2 , w
n
2 )
)
vn dx .

Similarly,

IH
F =

n∑
l=1

∫
Ω

(
H (vn

1 , w
n
1 ) − H (vn

2 , w
n
2 )
)

el dx
(
a1,l/µ− a2,l/µ

)
=

1
µ

∫
Ω

(
H (vn

1 , w
n
1 ) − H (vn

2 , w
n
2 )
)
wn dx,

and therefore I I
F + IH

F becomes
1
µ

∫
Ω

((
H (vn

1 , w
n
1 ) − H (vn

2 , w
n
2 )
)
wn

− µ
(
I (vn

1 , w
n
1 ) − I (vn

2 , w
n
2 )
)
vn
)

dx

(2.6)
≤ K̃ H,I

(vn
1 − vn

2

2
L2(Ω) +

wn
1 − wn

2

2
L2(Ω)

)
≤ K H,I

⏐⏐Cn
1 − Cn

2

⏐⏐2 , (5.24)

for some constants K̃ H,I , K H,I . Finally,

IM
F =

1
2 + εn

∫
Ω

(
−Mi∇U n

i + Me∇U n
e

)
· ∇V n dx

+
1

2 + εn

∫
Ω

(
−(1 + εn)Mi∇U n

i − Me∇U n
e

)
· ∇U n

i dx

+
1

2 + εn

∫
Ω

(
−Mi∇U n

i − (1 + εn)Me∇U n
e

)
· ∇U n

e dx .

Adding the integrands gives(
−Mi∇U n

i + Me∇U n
e

)
· ∇V n

+
(
−(1 + εn)Mi∇U n

i − Me∇U n
e

)
· ∇U n

i

+
(
−Mi∇U n

i − (1 + εn)Me∇U n
e

)
· ∇U n

e

= − (2 + εn)Mi∇U n
i · ∇U n

i − (2 + εn)Me∇U n
e · ∇U n

e ,

and thus, cf. (2.5), IM
F = −

∑
j=i,e M j∇U n

j · ∇U n
j ≤ 0. Hence, F is globally one-sided

Lipschitz. In view of (3.6), it follows easily that G is globally Lipschitz:⏐⏐G(Cn
1 ) − G(Cn

2 )
⏐⏐ ≤ KG

⏐⏐Cn
1 − Cn

2

⏐⏐ ,
for some constant KG (depending on n). Summarizing, condition (5.22) holds.

In much the same way, again using assumptions (GFHN) and (3.6), we deduce that

F(Cn
1 ) · Cn

1 ≤ KF

(
1 +

⏐⏐Cn
1

⏐⏐2) , ⏐⏐G(Cn
1 )
⏐⏐2 ≤ KG

(
1 +

⏐⏐Cn
1

⏐⏐2) ,
for some constants KF , KG ; that is to say, condition (5.23) holds. □

6. Convergence of approximate solutions

6.1. Basic apriori estimates

To establish convergence of the Faedo–Galerkin approximations, we must supply a series
of apriori estimates that are independent of the parameter n (cf. Lemma 6.1). At an informal
level, assuming that the relevant functions are sufficiently regular, these estimates are obtained
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by considering

d (v + εnui ) =
[
∇ ·

(
Mi∇ui

)
− I (v,w)

]
dt + η(v) dW v

d (v − εnue) =
[
−∇ ·

(
Me∇ue

)
− I (v,w)

]
dt + η(v) dW v,

where εn is defined in (5.9), multiplying the first equation by ui , the second equation by −ue,
and summing the resulting equations. For the moment, let us assume that the noise W v is
one-dimensional and η(v) is a scalar function. To proceed we use the stochastic (Itô) product
rule. Hence, we need access to the equation for dui , which turns out to be

dui =

[
1 + εn

εn(2 + εn)
∇ ·

(
Mi∇ui

)
+

1
εn(2 + εn)

∇ ·
(
Me∇ue

)
−

1
2 + εn

I (v,w)
]

dt

+
1

2 + εn
η(v) dW v.

Note that this equation “blows up” as εn → 0 (the same is true for the due equation below).
The stochastic product rule gives

d (ui (v + εnui )) = ui d (v + εnui )+ dui (v + εnui )+
1

2 + εn
η(v)2 dt

=
1

2 + εn
η(v)2 dt +

[
ui ∇ ·

(
Mi∇ui

)
− ui I (v,w)

]
dt

+ ui η(v) dW v
+

[
· · ·

]
i

dt +
1

2 + εn
(v + εnui ) η(v) dW v,

(6.1)

where[
· · ·

]
i

dt =

[
1 + εn

εn(2 + εn)
(v + εnui )∇ ·

(
Mi∇ui

)
+

1
εn(2 + εn)

(v + εnui )∇ ·
(
Me∇ue

)
−

1
2 + εn

(v + εnui ) I (v,w)
]

dt.

Similar computations, this time involving the equation

due =

[
1

εn(2 + εn)
∇ ·

(
Mi∇ui

)
+

1 + εn

εn(2 + εn)
∇ ·

(
Me∇ue

)
+

1
2 + εn

I (v,w)
]

dt

−
1

2 + εn
η(v) dW v,

yield

d (−ue (v − εnue)) = −ue d (v − εnue)− due (v − εnue)+
1

2 + εn
η(v)2 dt

=
1

2 + εn
η(v)2 dt +

[
ue ∇ ·

(
Me∇ue

)
+ ue I (v,w)

]
dt

− ue η(v) dW v
+

[
· · ·

]
e

dt +
1

2 + εn
(v − εnue) η(v) dW v,

(6.2)

where[
· · ·

]
e

dt =

[
−

1
εn(2 + εn)

(v − εnue)∇ ·
(
Mi∇ui

)
−

1 + εn

εn(2 + εn)
(v − εnue)∇ ·

(
Me∇ue

)
−

1
2 + εn

(v − εnue) I (v,w)
]

dt.
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After some computations we find that[
· · ·

]
i

dt +

[
· · ·

]
e

dt =

[
2ui ∇ ·

(
Mi∇ui

)
+ 2ue ∇ ·

(
Me∇ue

)
− 2v I (v,w)

]
dt

and

ui η(v) dW v
+

1
2 + εn

(v + εnui ) η(v) dW v

− ue η(v) dW v
+

1
2 + εn

(v − εnue) η(v) dW v
= 2v η(v) dW v.

Whence, adding (6.1) and (6.2),

d
(
v2

+ εnu2
i + εnu2

e

)
= d (ui (v + εnui ))+ d (−ue (v − εnue))

=

[
2

2 + εn
η(v)2

+ 2ui ∇ ·
(
Mi∇ui

)
+ 2ue ∇ ·

(
Me∇ue

)
− 2v I (v,w)

]
dt + 2v η(v) dW v.

Adding to this the equation for dw2, resulting from (5.2) and Itô’s formula, the estimates in
Lemma 6.1 appear once we integrate in x and t , make use of spatial integration by parts,
the boundary conditions (2.3), and properties of the nonlinear functions I, H implying (6.13).
Arguing at the level of finite dimensional approximations, we now convert the computations
outlined above into a rigorous proof.

Lemma 6.1. Suppose conditions (GFHN), (2.5), (3.6), and (5.3) hold. Let

un
i (t), un

e (t), vn(t), wn(t), t ∈ [0, T ],

satisfy (5.8), (5.9), (5.10), (5.11). There is a constant C > 0, independent of n, such that

E
[vn(t)

2
L2(Ω)

]
+ E

[wn(t)
2

L2(Ω)

]
(6.3)

+

∑
j=i,e

E
[√εnun

j (t)
2

L2(Ω)

]
≤ C, ∀t ∈ [0, T ];

∑
j=i,e

E
[∫ T

0

∫
Ω

⏐⏐∇un
j

⏐⏐2 dx dt
]

+ E
[∫ T

0

∫
Ω

⏐⏐vn
⏐⏐4 dx dt

]
≤ C; (6.4)

∑
j=i,e

E
[∫ T

0

∫
Ω

⏐⏐un
j

⏐⏐2 dx dt
]

≤ C; (6.5)

E

[
sup

t∈[0,T ]

vn(t)
2

L2(Ω)

]
+ E

[
sup

t∈[0,T ]

wn(t)
2

L2(Ω)

]
(6.6)

+

∑
j=i,e

E

[
sup

t∈[0,T ]

√εnun
j (t)
2

L2(Ω)

]
≤ C.
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Proof. We wish to compute d J (t), J (t) =
∫
Ω (v

n)2 + εn
(
un

i

)2
+ εn

(
un

e

)2 dx :

d J (t) = d
∫
Ω

un
i

(
vn

+ εnun
i

)
dx + d

∫
Ω

−un
e

(
vn

− εnun
e

)
dx

=

n∑
ℓ=1

d
(
cn

i,ℓ

(
cn
ℓ + εncn

i,ℓ

))
+

n∑
ℓ=1

d
(
−cn

e,ℓ

(
cn
ℓ − εncn

e,ℓ

))
,

(6.7)

where we have used (5.6) and the orthonormality of the basis.
First, in view of (5.18) and (5.20), the stochastic product rule implies (ℓ = 1, . . . , n)

d
(
cn

i,ℓ(c
n
ℓ + εncn

i,ℓ)
)

=
(
cn

i,ℓd
(
cn
ℓ + εncn

i,ℓ

))
+
(
dcn

i,ℓ

(
cn
ℓ + εncn

i,ℓ

))
+

1
2 + εn

n∑
k=1

(∫
Ω

ηn
k (vn)el dx

)2

dt

=
1

2 + εn

n∑
k=1

(∫
Ω

ηn
k (vn)el dx

)2

dt

+

∫
Ω

(
Mi∇un

i · ∇eℓ − I (vn, wn)eℓ
)

dx cn
i,ℓ dt

+

n∑
k=1

∫
Ω

ηn
k (vn)eℓ dx cn

i,ℓ dW v,n
+

[
· · ·

]
i

dt

+
1

2 + εn

n∑
k=1

∫
Ω

ηn
k (vn)eℓ dx

(
cn
ℓ + εncn

i,ℓ

)
dW v,n,

(6.8)

where[
· · ·

]
i

dt =

[
1 + εn

εn(2 + εn)

∫
Ω

Mi∇un
i · ∇eℓ dx

(
cn
ℓ + εncn

i,ℓ

)
+

1
εn(2 + εn)

∫
Ω

Me∇un
e · ∇eℓ dx

(
cn
ℓ + εncn

i,ℓ

)
−

1
2 + εn

∫
Ω

I (vn, wn)eℓ dx
(
cn
ℓ + εncn

i,ℓ

)]
dt.

Similar computations give (ℓ = 1, . . . , n)

d
(
−cn

e,ℓ, (cn
ℓ + εncn

e,ℓ)
)

=
(
−cn

e,ℓd
(
cn
ℓ − εncn

ℓ

))
−
(
dcn

e,ℓ

(
cn
ℓ − εncn

e,ℓ

))
+

1
2 + εn

n∑
k=1

(∫
Ω

ηn
k (vn)el dx

)2

dt

=
1

2 + εn

n∑
k=1

(∫
Ω

ηn
k (vn)el dx

)2

dt

+

∫
Ω

(Me∇un
e · ∇eℓ + I (vn, wn)eℓ) dx cn

e,ℓ dt

−

n∑
k=1

∫
Ω

ηn
k (vn)el dx ce,ℓ dW v,n

+

[
· · ·

]
e

dt

+
1

2 + εn

n∑
k=1

∫
Ω

ηn
k (vn)eℓ dx

(
cn
ℓ − εncn

e,ℓ

)
dW v,n,

(6.9)
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where[
· · ·

]
e

dt =

[
−

1
εn(2 + εn)

∫
Ω

Mi∇un
i · ∇eℓ dx

(
cn
ℓ − εncn

e,ℓ

)
−

1 + εn

εn(2 + εn)

∫
Ω

Me∇un
e · ∇eℓ

(
cn
ℓ − εncn

e,ℓ

)
dx

−
1

2 + εn

∫
Ω

I (vn, wn)eℓ dx
(
cn
ℓ − εncn

e,ℓ

)]
dt.

Combining (6.7), (6.8), (6.9) we arrive eventually at

d
∫
Ω

⏐⏐vn
⏐⏐2 + εn

⏐⏐un
i

⏐⏐2 + εn
⏐⏐un

e

⏐⏐2 dx

=

[
−2

∫
Ω

Mi∇un
i · ∇un

i dx − 2
∫
Ω

Me∇un
e · ∇un

e dx − 2
∫
Ω

vn I (vn, wn) dx

+
2

2 + εn

n∑
k,l=1

(∫
Ω

ηn
k (vn)el dx

)2

dt
]

dt + 2
∫
Ω

vnηn(vn) dx dW v,n.

(6.10)

Similarly, in view of (5.6) and (5.20), Itô’s lemma gives

d
∫
Ω

⏐⏐wn
⏐⏐2 dx =

[
2
∫
Ω

wn H (vn, wn) dx +

n∑
k,l=1

(∫
Ω

σ n
k (vn)el dx

)2
]

dt

+ 2
∫
Ω

wnσ n(vn) dWw,n.

(6.11)

After integration in time, adding (6.10) and (6.11) delivers

1
2

vn(t)
2

L2(Ω) +

∑
j=i,e

1
2

√εnun
j (t)
2

L2(Ω)
+

1
2

wn(t)
2

L2(Ω) .

+

∑
j=i,e

∫ t

0

∫
Ω

M j∇un
j · ∇un

j dx ds

=
1
2

vn(0)
2

L2(Ω) +

∑
j=i,e

1
2

√εnun
j (0)

2
L2(Ω)

+
1
2

wn(0)
2

L2(Ω)

+

∫ t

0

∫
Ω

(
wn H (vn, wn) − vn I (vn, wn)

)
dx ds

+
1

2 + εn

n∑
k,l=1

∫ t

0

(∫
Ω

ηn
k (vn)el dx

)2

ds +
1
2

n∑
k,l=1

∫ t

0

(∫
Ω

σ n
k (vn)el dx

)2

ds

+

∫ t

0

∫
Ω

vnηn(vn) dx dW v,n(s) +

∫ t

0

∫
Ω

wnσ n(vn) dx dWw,n(s),

(6.12)

for any t ∈ [0, T ]. By (GFHN) and repeated applications of Cauchy’s inequality,

wH (v,w) − v I (v,w) ≤ −C1 |v|4 + C2
(
|v|2 + |w|

2)
+ C3, (6.13)
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for some constants C1 > 0 and C2,C3 ≥ 0. Recalling that {el}l≥1 is a basis for L2(Ω ),
n∑

k,l=1

∫ t

0

(∫
Ω

ηn
k (vn)el dx

)2

ds +

n∑
k,l=1

∫ t

0

(∫
Ω

σ n
k (vn)el dx

)2

ds

≤

∫ t

0

∫
Ω

n∑
k=1

⏐⏐ηk(vn)
⏐⏐2 dx ds +

∫ t

0

∫
Ω

n∑
k=1

⏐⏐σk(vn)
⏐⏐2 dx ds

(3.6)
≤ C4

(∫ t

0

∫
Ω

⏐⏐vn
⏐⏐2 dx ds + t |Ω |

)
,

(6.14)

for some constant C4 > 0. Using (6.13), (6.14), and (2.5) in (6.12), we obtain
1
2

vn(t)
2

L2(Ω) +

∑
j=i,e

1
2

√εnun
j (t)
2

L2(Ω)
+

1
2

wn(t)
2

L2(Ω) .

+ m
∑
j=i,e

∫ t

0

∫
Ω

⏐⏐∇un
j

⏐⏐2 dx ds + C1

∫ t

0

∫
Ω

|v|4 dx ds

≤
1
2

vn(0)
2

L2(Ω) +

∑
j=i,e

1
2

√εnun
j (0)

2
L2(Ω)

+
1
2

wn(0)
2

L2(Ω)

+ (C3 + C4)t |Ω |

+ (C2 + C4)
∫ t

0

vn(s)
2

L2(Ω) ds + C2

∫ t

0

wn(s)
2

L2(Ω) ds

+

∫ t

0

∫
Ω

vnηn(vn) dx dW v,n(s) +

∫ t

0

∫
Ω

wnσ n(vn) dx dWw,n(s).

(6.15)

Since E
[∫ T

0 | f (t)|2 dt
]
< ∞ for f =

∫
Ω v

nηn(vn) dx and f =
∫
Ω w

nσ n(vn) dx , the
martingale property of stochastic integrals ensures that the expected value of each of the last
two terms in (6.15) is zero. Hence, taking the expectation in (6.15), keeping in mind (5.3) and
using Grönwall’s inequality, we conclude that (6.3) and (6.4) hold.

The refinement of (6.3) into (6.6) comes from a martingale inequality. Indeed, taking the
sup over [0, T ] and subsequently applying E[·] in (6.15), it follows that

E

[
sup

t∈[0,T ]

vn(t)
2

L2(Ω)

]
+

∑
j=i,e

E

[
sup

t∈[0,T ]

√εnun
j (t)
2

L2(Ω)

]

+ E

[
sup

t∈[0,T ]

wn(t)
2

L2(Ω)

]
≤ C5

(
1 + Γη + Γσ

)
,

(6.16)

where C5 is a constant independent of n and

Γη := E

[
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0

∫
Ω

vnηn(vn) dx dW v,n(s)
⏐⏐⏐⏐
]
,

Γσ := E

[
sup

t∈[0,T ]

⏐⏐⏐⏐∫ t

0

∫
Ω

wnσ n(vn) dx dWw,n(s)
⏐⏐⏐⏐
]
.

To arrive at (6.16) we have used (5.3), (6.3).
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We use the Burkholder–Davis–Gundy inequality to handle the last two terms. To be more
precise, using (3.4), the Cauchy–Schwarz inequality, the assumption (3.6) on η, Cauchy’s
inequality “with δ”, and (6.3), we obtain

Γη ≤ C6E

⎡⎣(∫ T

0

n∑
k=1

⏐⏐⏐⏐∫
Ω

vnηn
k (vn) dx

⏐⏐⏐⏐2 dt

) 1
2
⎤⎦

≤ C6E

⎡⎣(∫ T

0

(∫
Ω

⏐⏐vn
⏐⏐2 dx

)( n∑
k=1

∫
Ω

⏐⏐ηn
k (vn)

⏐⏐2 dx

)
dt

) 1
2
⎤⎦

≤ δE

[
sup

t∈[0,T ]

vn(t)
2

L2(Ω)

]
+ C7,

(6.17)

for any δ > 0. Similarly, using (3.6) and (6.3),

Γσ ≤ δE

[
sup

t∈[0,T ]

wn(t)
2

L2(Ω)

]
+ C8. (6.18)

Combining (6.16), (6.17) and (6.18), with δ > 0 small, the desired estimate (6.6) follows.
Finally, let us prove (6.5). By the Poincaré inequality, there is a constant C9 > 0, depending

on Ω but not n, ω and t , such that for each fixed (ω, t) ∈ D × [0, T ],un
e (ω, t, ·)

2
L2(Ω) ≤ C9

∇un
e (ω, t, ·)

2
L2(Ω) .

Hence, by (6.4),

E
[∫ T

0

un
e (ω, t, ·)

2
L2(Ω) dt

]
≤ C10. (6.19)

Since vn (= un
i − un

e ) complies with (6.3), it follows that also un
i satisfies (6.19). □

In view of the n-independent estimates in Lemma 6.1, passing if necessary to a proper
subsequence, we can assume that the following (weak) convergences hold as n → ∞:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un
j ⇀ u j in L2 (D,F , P; L2((0, T ); H 1

D(Ω ))
)
, j = i, e,

εnun
j → 0 in L2 (D,F , P; L2((0, T ); L2(Ω ))

)
, j = i, e,

vn ⇀ v in L2 (D,F , P; L2((0, T ); H 1
D(Ω ))

)
,

vn ⋆
⇀ v in L2 (D,F , P; L∞((0, T ); L2(Ω ))

)
,

vn ⇀ v in L4 (D,F , P; L4(ΩT )
)
,

wn ⋆
⇀ w in L2 (D,F , P; L∞((0, T ); L2(Ω ))

)
.

(6.20)

The next result, a consequence of Lemma 6.1 and a martingale inequality, supplies
high-order moment estimates, useful when converting a.s. convergence into L2

convergence.



M. Bendahmane and K.H. Karlsen / Stochastic Processes and their Applications 129 (2019) 5312–5363 5337

Corollary 6.2. In addition to the assumptions in Lemma 6.1, suppose (5.5) holds with q0
defined in (4.1). There exists a constant C > 0, independent of n, such that

E
[

sup
0≤t≤T

vn(t)
q0

L2(Ω)

]
+

∑
j=i,e

E
[

sup
0≤t≤T

√εnun
i (t)

q0
L2(Ω)

]

+ E
[

sup
0≤t≤T

wn(t)
q0

L2(Ω)

]
≤ C.

(6.21)

Moreover,∑
j=i,e

E
[∇un

j

q0
L2((0,T )×Ω)

]
+ E

[vn
2q0

L4((0,T )×Ω)

]
≤ C.

Proof. In view of (6.15), we have the following estimate for any (ω, t) ∈ D × [0, T ]:

sup
0≤τ≤t

vn(τ )
2

L2(Ω) +

∑
j=i,e

sup
0≤τ≤t

√εnun
j (τ )

2
L2(Ω)

+ sup
0≤τ≤t

wn(τ )
2

L2(Ω)

≤
vn(0)

2
L2(Ω) +

∑
j=i,e

√εnun
j (0)

2
L2(Ω)

+
wn(0)

2
L2(Ω)

+ C1(1 + t) + C1

∫ t

0

vn(s)
2

L2(Ω) ds + C1

∫ t

0

wn(s)
2

L2(Ω) ds

+ C1 sup
0≤τ≤t

⏐⏐⏐⏐∫ τ

0

∫
Ω

vnηn(vn) dx dW v,n(s)
⏐⏐⏐⏐

+ C1 sup
0≤τ≤t

⏐⏐⏐⏐∫ τ

0

∫
Ω

wnσ n(vn) dx dWw,n(s)
⏐⏐⏐⏐ ,

for some constant C1 independent of n.
We raise both sides of this inequality to the power q0/2, take the expectation, and apply

several elementary inequalities, eventually arriving at

E
[

sup
0≤τ≤t

vn(τ )
q0

L2(Ω)

]
+

∑
j=i,e

E
[

sup
0≤τ≤t

√εnun
i (τ )

q0
L2(Ω)

]

+ E
[

sup
0≤τ≤t

wn(τ )
q0

L2(Ω)

]
≤ C2E

[vn(0)
q0

L2(Ω)

]
+ C2

∑
j=i,e

E
[√εnun

i (0)
q0

L2(Ω)

]
+ C2E

[wn(0)
q0

L2(Ω)

]
+ C2 (1 + t)

q0
2

+ C2

∫ t

0

vn(s)
q0

L2(Ω) ds + C2

∫ t

0

wn(s)
q0

L2(Ω) ds + Γη + Γσ ,

(6.22)

where

Γη := E

[
sup

0≤τ≤t

⏐⏐⏐⏐∫ τ

0

∫
Ω

vnηn(vn) dx dW v,n(s)
⏐⏐⏐⏐

q0
2
]
,
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Γσ := E

[
sup

0≤τ≤t

⏐⏐⏐⏐∫ τ

0

∫
Ω

wnσ n(vn) dx dWw,n(s)
⏐⏐⏐⏐

q0
2
]
.

Arguing as in (6.17), using a martingale inequality and (3.6),

Γη ≤ C3E

⎡⎣(∫ t

0

n∑
k=1

⏐⏐⏐⏐∫
Ω

vnηn
k (vn) dx

⏐⏐⏐⏐2 ds

) q0
4
⎤⎦

≤ C3E

⎡⎣(∫ t

0

(∫
Ω

⏐⏐vn
⏐⏐2 dx

)( n∑
k=1

∫
Ω

⏐⏐ηn
k (vn)

⏐⏐2 dx

)
ds

) q0
4
⎤⎦

≤ δE

[
sup
τ∈[0,t]

vn(τ )
q0

L2(Ω)

]
+ C4E

[∫ t

0

vn(s)
q0

L2(Ω) ds
]

+ C5,

(6.23)

for any δ > 0. Similarly, relying again on (3.6),

Γσ ≤ δE

[
sup
τ∈[0,t]

wn(τ )
q0

L2(Ω) dx

]
+ C6E

[∫ t

0

vn
q0

L2(Ω) ds
]

+ C7. (6.24)

With δ chosen small, combining (6.23) and (6.24) in (6.22) gives

E
[

sup
0≤τ≤t

vn(τ )
q0

L2(Ω)

]
+

∑
j=i,e

E
[

sup
0≤τ≤t

√εnun
i (τ )

q0
L2(Ω)

]

+ E
[

sup
0≤τ≤t

wn(τ )
q0

L2(Ω)

]
≤ C8E

[vn(0)
q0

L2(Ω)

]
+ C8

∑
j=i,e

E
[√εnun

i (0)
q0

L2(Ω)

]
+ C8E

[wn(0)
q0

L2(Ω)

]
+ C8 + C8

∫ t

0
E
[vn(s)

q0
L2(Ω) ds

]
,

(6.25)

for some constant C8 > 0 independent of n. Set

Γ (t) := E
[

sup
0≤τ≤t

vn(τ )
q0

L2(Ω)

]
+

∑
j=i,e

E
[

sup
0≤τ≤t

√εnun
i (τ )

q0
L2(Ω)

]
+ E

[
sup

0≤τ≤t

wn(τ )
q0

L2(Ω)

]
,

and note that (6.25) reads Γ (t) ≤ C8Γ (0) + C8 + C8
∫ t

0 Γ (s) ds for t ∈ [0, T ]. Now an
application of Grönwall’s inequality yields the desired result (6.21).

Finally, we can use (6.15), (6.23), (6.24), and (6.21) to conclude that

∑
j=i,e

E

[⏐⏐⏐⏐∫ t

0

∫
Ω

⏐⏐∇un
i

⏐⏐2 dx ds
⏐⏐⏐⏐

q0
2
]

+ E

[⏐⏐⏐⏐∫ t

0

∫
Ω

⏐⏐vn
⏐⏐4 dx ds

⏐⏐⏐⏐
q0
2
]

≤ C9,

and (6.21) follows. □
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6.2. Temporal translation estimates

To secure strong L2
t,x compactness of the Faedo–Galerkin solutions, via a standard Aubin–

Lions–Simon compactness lemma, we need to come up with n-independent temporal translation
estimates.

Lemma 6.3. Suppose conditions (GFHN), (2.5), (3.6), and (5.3) hold. Let

un
i (t), un

e (t), vn(t), wn(t), t ∈ [0, T ],

satisfy (5.8), (5.9), (5.10), (5.11). With un
= vn or wn , there is a constant C > 0, independent

of n, such that for any sufficiently small δ > 0,

E
[

sup
0≤τ≤δ

∫ T −τ

0

∫
Ω

⏐⏐un(t + τ, x) − un(t, x)
⏐⏐2 dx dt

]
≤ Cδ

1
4 . (6.26)

Proof. We assume that vn, un
i , un

e , w
n and ηn, σ n have been extended by zero outside the time

interval [0, T ]. Recalling (5.6) (i.e., vn
= un

i − un
e ), it follows that

Γie(t) :=

∫
Ω

⏐⏐vn(t + τ, x) − vn(t, x)
⏐⏐2 dx + εn

∑
j=i,e

∫
Ω

⏐⏐un
j (t + τ, x) − un

j (t, x)
⏐⏐2 dx

=

∫
Ω

(
un

i (t + τ, x) − un
i (t, x)

) ( ∫ t+τ

t
d
(
vn(s, x) + εnui (s, x)

))
dx

−

∫
Ω

(
un

e (t + τ, x) − un
e (t, x)

) ( ∫ t+τ

t
d
(
vn(s, x) − εnue(s, x)

))
dx .

In view of (5.18), see also (5.17),

Γie(t) = −

∑
j=i,e

∫
Ω

(∫ t+τ

t
M j (x)∇un

j (s, x) ds
)

· ∇
(
un

j (t + τ, x) − un
j (t, x)

)
dx

−

∫
Ω

(∫ t+τ

t
I
(
vn(s, x), wn(s, x)

)
ds
) (
vn(t + τ, x) − vn(t, x)

)
dx

+

∫
Ω

(∫ t+τ

t
ηn(vn(s, x)) dW v,n(s)

) (
vn(t + τ, x) − vn(t, x)

)
dx .

Similarly, using the equation for wn , cf. (5.18) and also (5.2),

Γw(t) :=

∫
Ω

⏐⏐wn(t + τ, x) − wn(t, x)
⏐⏐2 dx

=

∫
Ω

(∫ t+τ

t
H
(
vn(s, x), wn(s, x)

)
ds
) (
wn(t + τ, x) − wn(t, x)

)
dx

+

∫
Ω

(∫ t+τ

t
σ n(vn(s, x)) dW v,n(s)

) (
wn(t + τ, x) − wn(t, x)

)
dx .

Integrating over t ∈ (0, T − τ ) and summing the resulting equations gives∫ T −τ

0
Γie(t) dt +

∫ T −τ

0
Γw(t) dt = Γ1 + Γ2 + Γ3 + Γ4 + Γ5, (6.27)
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where

Γ1 := −

∑
j=i,e

∫ T −τ

0

∫
Ω

(∫ t+τ

t
M j (x)∇un

j (s, x) ds
)

· ∇
(
un

j (t + τ, x) − un
j (t, x)

)
dx dt

Γ2 := −

∫ T −τ

0

∫
Ω

(∫ t+τ

t
I
(
vn(s, x), wn(s, x)

)
ds
)

×
(
vn(t + τ, x) − vn(t, x)

)
dx dt

Γ3 :=

∫ T −τ

0

∫
Ω

(∫ t+τ

t
H
(
vn(s, x), wn(s, x)

)
ds
)

×
(
wn(t + τ, x) − wn(t, x)

)
dx dt

Γ4 :=

∫ T −τ

0

∫
Ω

(∫ t+τ

t
ηn(vn(s, x)) dW v,n(s)

)
×
(
vn(t + τ, x) − vn(t, x)

)
dx dt

Γ5 :=

∫ T −τ

0

∫
Ω

(∫ t+τ

t
σ n(vn(s, x)) dW v,n(s)

)
×
(
wn(t + τ, x) − wn(t, x)

)
dx dt.

We examine these six terms separately. For the Γ1 term, noting that⏐⏐⏐⏐∫ t+τ

t
M j (x)∇un

j (s, x) ds
⏐⏐⏐⏐2 ≤ Mτ

∫ t+τ

t

⏐⏐∇un
j (s, x)

⏐⏐2 ds,

thanks to (2.5), we obtain

|Γ1| ≤
√

Mτ
∑
j=i,e

(∫ T −τ

0

∫ t+τ

t

∫
Ω

⏐⏐∇un
j (s, x)

⏐⏐2 dx ds dt
) 1

2

×

(∫ T −τ

0

∫
Ω

⏐⏐∇ (un
j (t + τ, x) − un

j (t, x)
)⏐⏐2 dx dt

) 1
2

,

using Cauchy–Schwarz’s inequality. Hence, by Young’s inequality and (6.4),

E
[

sup
0≤τ≤δ

|Γ1|

]
≤ C1

√
δ, (6.28)

for some constant C1 > 0 independent of n.
Next, take notice of the bound⏐⏐⏐⏐∫ t+τ

t
I
(
vn(s, x), wn(s, x)

)
ds
⏐⏐⏐⏐ 4

3

≤ τ
1
3

∫ t+τ

t

⏐⏐I (vn(s, x), wn(s, x)
)⏐⏐ 4

3 ds

≤ C2τ
1
3

∫ t+τ

t

(
1 + |v(s, x)|4 + |w(s, x)|2

)
ds,

(6.29)

where we have used the inequality

|I (v,w)|
4
3 ≤ C2

(
1 + |v|4 + |w|

2) , (6.30)
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resulting from (GFHN) and Young’s inequality. Due to (6.29), (6.3) and (6.4),

|Γ2| ≤ C3τ
1
4

(∫ T −τ

0

∫ t+τ

t

∫
Ω

(
1 + |v(s, x)|4 + |w(s, x)|2

)
dx ds dt

) 3
4

×

(∫ T −τ

0

∫
Ω

⏐⏐vn(t + τ, x) − vn(t, x)
⏐⏐4 dx dt

) 1
4

,

and for this reason, in view of Young’s inequality and (6.4),

E
[

sup
0≤τ≤δ

|Γ2|

]
≤ C4δ

1
4 . (6.31)

Similarly, since |H (v,w)|2 ≤ C5
(
1 + |v|4 + |w|

2), cf. (GFHN), we obtain

E
[

sup
0≤τ≤δ

|Γ3|

]
≤ C6δ

1
2 . (6.32)

Finally, we treat the stochastic terms. By the Cauchy–Schwarz inequality,

|Γ4| ≤

(∫ T

0

∫
Ω

sup
0≤τ≤δ

⏐⏐⏐⏐∫ t+τ

t
ηn(vn(s, x)) dW v,n(s)

⏐⏐⏐⏐2 dx dt

) 1
2

×

(∫ T

0
sup

0≤τ≤δ

∫
Ω

⏐⏐vn(t + τ, x) − vn(t, x)
⏐⏐2 dx dt

) 1
2

.

Applying E[·] along with the Cauchy–Schwarz inequality, we gather the estimate

E
[

sup
0≤τ≤δ

|Γ4|

]
≤

(
E

[∫ T

0

∫
Ω

sup
0≤τ≤δ

⏐⏐⏐⏐∫ t+τ

t
ηn(vn(s, x)) dW v,n(s)

⏐⏐⏐⏐2 dx dt

]) 1
2

×

(
E
[

sup
0≤τ≤δ

∫ T −τ

0

∫
Ω

⏐⏐vn(t + τ, x) − vn(t, x)
⏐⏐2 dx dt

]) 1
2

≤ C7

(
E

[∫ T

0

∫ t+δ

t

n∑
k=1

∫
Ω

⏐⏐ηn
k (vn(s, x))

⏐⏐2 dx ds dt

]) 1
2

≤ C8

(
E
[ ∫ T

0

∫ t+δ

t

∫
Ω

(
1 +

⏐⏐vn(s, x)
⏐⏐2) dx ds dt

]) 1
2

≤ C9δ
1
2 ,

(6.33)

where we have also used the Burkholder–Davis–Gundy inequality (3.4) and (3.6), (6.6).
Similarly,

E
[

sup
0≤τ≤δ

|Γ5|

]
≤ C10δ

1
2 . (6.34)

Collecting the previous estimates (6.28), (6.31), (6.32), (6.33), and (6.34) we readily
conclude from (6.27) that the time translation estimate (6.26) holds. □
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6.3. Tightness and a.s. representations

To justify passing to the limit in the nonlinear terms in (5.2), we must show that {vn}n≥1
converges strongly, thereby upgrading the weak L2 convergence in (6.20). Strong (t, x)
convergence is a result of the spatial H 1

D bound (6.4) and the time translation estimate (6.26).
On the other hand, to secure strong (a.s.) convergence in the probability variable ω ∈ D we

must invoke some nontrivial results of Skorokhod, linked to tightness of probability measures
and a.s. representations of random variables. Actually, there is a complicating factor at play
here, namely that the sequences

{
un

i

}
n≥1,

{
un

e

}
n≥1 only converge weakly in (t, x) because of

the degenerate structure of the bidomain model. As a result, we must turn to the Skorokhod–
Jakubowski representation theorem [31], which applies to separable Banach spaces equipped
with the weak topology and other so-called quasi-Polish spaces. At variance with the original
Skorokhod representations on Polish spaces, the flexibility of the Jakubowski version comes at
the expense of having to pass to a subsequence (which may be satisfactory in many situations).
We refer to [7–10,40,51] for works making use of Skorokhod–Jakubowski a.s. representations.

Following [3,38] (for example), the aim is to establish tightness of the probability measures
(laws) generated by the Faedo–Galerkin solutions

{(
U n,W n,U n

0

)}
n≥1, where

U n
= un

i , un
e , v

n, wn, W n
= W v,n,Ww,n, U n

0 = un
i,0, un

e,0, v
n
0 , w

n
0 . (6.35)

Accordingly, we choose the following path space for these measures:

X :=

[(
L2((0, T ); H 1

D(ΩT ))–weak
)2

× L2(ΩT ) × L2((0, T ); (H 1
D(ΩT ))∗)

]
×

[
(C([0, T ];U0))2

]
×

[(
L2(Ω )

)4
]

=: XU × XW × XU0 ,

where the tag “–weak” signifies that the space is equipped with the weak topology. The
σ -algebra of Borel subsets of X is denoted by B(X ). We introduce the (X ,B(X ))-valued mea-
surable mapping Φn defined on (D,F , P) by Φn(ω) =

(
U n(ω),W n,U n

0 (ω)
)
. On (X ,B(X )),

we define the probability measure (law of Φn)

Ln(A) = P
(
Φ−1

n (A)
)
, A ∈ B(X ). (6.36)

We denote by Lun
i
,Lun

e the respective laws of un
i , un

e on L2((0, T ); H 1
D(ΩT ))-weak, with

similar notations for the laws of vn on L2(ΩT ), wn on L2((0, T ); (H 1
D(Ω ))∗), W v,n,Ww,n on

C([0, T ];U0), and un
i,0, un

e,0, v
n
0 , w

n
0 on L2(Ω ). Hence,

Ln = Lun
i
× Lun

e × Lvn × Lwn × Lun
i,0

× Lun
e,0

× Lvn
0

× Lwn
0
.

Inspired by [3], for any two sequences of positive numbers rm, νm tending to zero as
m → ∞, we introduce the set

Zv
rm ,νm

:=

{
u ∈ L∞

(
(0, T ); L2(Ω )

)
∩ L2((0, T ); H 1

D(Ω )) :

sup
m≥1

1
νm

sup
0≤τ≤rm

∥u(· + τ ) − u∥L2((0,T −τ );L2(Ω)) < ∞

}
.

Then Zv
rm ,νm

is a Banach space under the natural norm

∥u∥Zv
rm ,νm

:= ∥u∥L∞((0,T );L2(Ω)) + ∥u∥L2((0,T );H1
D (Ω))

+ sup
m≥1

1
νm

sup
0≤τ≤rm

∥u(· + τ ) − u∥L2((0,T −τ );L2(Ω)) .
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Moreover, Zv
rm ,νm

is compactly embedded in L2(ΩT ), which is a consequence of an Aubin–
Lions–Simon lemma. Suppose X1 ⊂ X0 are two Banach spaces, where X1 is compactly
embedded in X0. Let Z ⊂ L p((0, T ); X0), where 1 ≤ p ≤ ∞. Simon [49] provides several
results ensuring the compactness of Z in L p((0, T ); X0) (and in C([0, T ]; X0) if p = ∞). For
example, by assuming that Z is bounded in L1

loc((0, T ); X1) and ∥u(· + τ ) − u∥L p((0,T −τ );X0) →

0 as τ → 0, uniformly for u ∈ Z [49, Theorem 3].
The space Zv

rm ,νm
is relevant for vn , while for wn we utilize

Zw
rm ,νm

:=

{
u ∈ L∞

(
(0, T ); L2(Ω )

)
:

sup
m≥1

1
νm

sup
0≤τ≤rm

∥u(· + τ ) − u∥L2((0,T −τ );(H1
D (Ω))∗) < ∞

}
,

with a corresponding natural norm ∥u∥Zw
rm ,νm

. Besides, Zv
rm ,νm

is compactly embedded in
L2((0, T ); (H 1

D(Ω ))∗).

Lemma 6.4 (Tightness of Laws (6.36) for Faedo–Galerkin approximations). Equipped with the
estimates in Lemmas 6.1 and 6.3, the sequence of laws {Ln}≥1 is tight on (X ,B(X )).

Proof. Given any δ > 0, we need to produce compact sets

K0,δ ⊂ L2((0, T ); H 1
D(Ω ))–weak,

K1,δ ⊂ L2(ΩT ), K2,δ ⊂ L2((0, T ); (H 1
D(Ω ))∗),

K3,δ ⊂ C([0, T ];U0), K4,δ ⊂ L2(Ω ),

such that, with Kδ =
(
K0,δ

)2
× K1,δ × K2,δ ×

(
K3,δ

)2
×
(
K4,δ

)4,

Ln (Kδ) = P ({ω ∈ D : Φn(ω) ∈ Kδ}) > 1 − δ.

This inequality follows if we can show that

Lun
(
Kc

0,δ

)
= P

({
ω ∈ D : un(ω) /∈ K0,δ

})
≤

δ

10
, un

= un
i , un

e , (6.37)

Lvn
(
Kc

1,δ

)
= P

({
ω ∈ D : vn(ω) /∈ K1,δ

})
≤

δ

10
, (6.38)

Lwn
(
Kc

2,δ

)
= P

({
ω ∈ D : wn(ω) /∈ K2,δ

})
≤

δ

10
, (6.39)

LW n
(
Kc

3,δ

)
= P

({
ω ∈ D : W n(ω) /∈ K3,δ

})
≤

δ

10
, W n

= W v,n,Ww,n, (6.40)

Lun
0

(
Kc

4,δ

)
= P

({
ω ∈ D : U n

0 (ω) /∈ K4,δ
})

≤
δ

10
, U n

0 = un
i,0, un

e,0, v
n
0 , w

n
0 . (6.41)

By weak compactness of bounded sets in L2((0, T ); H 1
D(Ω )), the set

K0,δ
:=

{
u : ∥u∥L2((0,T );H1

D (Ω)) ≤ R0,δ

}
,

is a compact subset of L2((0, T ); H 1
D(Ω ))-weak, where R0,δ > 0 is to be determined later.

Recalling the Chebyshev inequality for a nonnegative random variable ξ ,

P ({ω ∈ D : ξ (ω) ≥ R}) ≤
E
[
ξ k
]

Rk
, R, k > 0, (6.42)
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it follows that

P
({
ω ∈ D : un(ω) /∈ K0,δ})

= P
({
ω ∈ D :

un(ω)


L2((0,T );H1
D (Ω)) > R0,δ

})
≤

1
R0,δ

E
[un(ω)


L2((0,T );H1

D (Ω))

]
≤

C
R0,δ

.

To derive the last inequality we used the Cauchy–Schwarz inequality and then (6.4). Clearly,
we can choose R0,δ > 0 such that (6.37) holds.

We fix two sequences {rm}
∞

m=1, {νm}
∞

m=1 of positive numbers tending to zero as m → ∞

(independently of n), such that

∞∑
m=1

r
1
8

m /νm < ∞, (6.43)

and define K1,δ
:=

{
u : ∥u∥Zv

rm ,νm
≤ R1,δ

}
, for a number R1,δ > 0 to be determined later.

Evidently, in view of an Aubin–Lions–Simon lemma, K1,δ is a compact subset of L2(ΩT ). We
have

P
({
ω ∈ D : vn(ω) /∈ K1,δ})

≤ P
({
ω ∈ D :

vn(ω)


L∞((0,T );L2(Ω))
> R1,δ

})
+ P

({
ω ∈ D :

vn(ω)


L2((0,T );H1
D (Ω)) > R1,δ

})
+ P

({
ω ∈ D : sup

0≤τ≤rm

vn(· + τ ) − vn


L2((0,T −τ );L2(Ω)) > R1,δ νm

})
=: P1,1 + P1,2 + P1,3 (for any m ≥ 1).

Again by the Chebyshev inequality (6.42), we infer that

P1,1 ≤
1

R1,δ
E
[vn(ω)


L∞((0,T );L2(Ω))

]
≤

C
R1,δ

,

P1,2 ≤
1

R1,δ
E
[vn(ω)


L2((0,T );H1

D (Ω))

]
≤

C
R1,δ

,

P1,3 ≤

∞∑
m=1

1
R1,δ νm

E

[
sup

0≤τ≤rm

vn(· + τ ) − vn


L2((0,T −τ );L2(Ω))

]

≤
C

R1,δ

∞∑
m=1

r
1
8

m

νm
,

where we have used (6.4), (6.6), and (6.26). On the grounds of this and (6.43), we can choose
Rδ such that (6.38) holds.

Similarly, with sequences {rm}
∞

m=1, {νm}
∞

m=1 as above, define

K2,δ
:=

{
u : ∥u∥Zw

rm ,νm
≤ R2,δ

}
,
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for a number R2,δ > 0 to be determined later. By an Aubin–Lions–Simon lemma, K2,δ is a
compact subset of L2((0, T ); (H 1

D(Ω ))∗). We have

P
({
ω ∈ D : wn(ω) /∈ K2,δ})

≤ P
({
ω ∈ D :

wn(ω)


L∞((0,T );L2(Ω))
> R2,δ

})
+ P

({
ω ∈ D : sup

0≤τ≤rm

wn(· + τ ) − wn


L2((0,T −τ );(H1
D (Ω))∗) > R2,δ νm

})
=: P2,1 + P2,2 (for any m ≥ 1),

where, using (6.42) and (6.6) as before,

P2,1 ≤
1
Rδ

E
[wn(ω)


L∞((0,T );L2(Ω))

]
≤

C
R2,δ

,

and, via (6.26) and (6.43),

P2,2 ≤

∞∑
m=1

1
R2,δ νm

E

[
sup

0≤τ≤rm

wn(· + τ ) − wn


L2((0,T −τ );(H1
D (Ω))∗)

]
≤

C
R2,δ

.

Consequently, we can choose R2,δ such that (6.39) holds.
Recall that the finite dimensional approximations W n

= W v,n,Ww,n , cf. (5.10), are P-
a.s. convergent in C([0, T ];U0) as n → ∞, and hence the laws LW n converge weakly.
This entails the tightness of {LW n }n≥1, i.e., for any δ > 0, there exists a compact set K3,δ
in C([0, T ];U0) such that (6.40) holds. Similarly, as the finite dimensional approximations
un

i,0, un
e,0, v

n
0 , w

n
0 , cf. (5.11), are P-a.s. convergent in L2(Ω ), the laws LUn

0
converge weakly

(Lvn
0
⇀ µv0 , Lwn

0
⇀ µw0 ). Hence, (6.41) follows. □

Lemma 6.5. [Skorokhod–Jakubowski a.s. Representations] By passing to a subsequence (that
we do not relabel), there exist a new probability space (D̃, F̃ , P̃) and new random variables(

Ũ n, W̃ n, Ũ n
0

)
,
(

Ũ , W̃ , Ũ0

)
, where

Ũ n
= ũn

i , ũn
e , ṽ

n, w̃n, W̃ n
= W̃ v,n, W̃w,n, Ũ n

0 = ũn
i,0, ũn

e,0, ṽ
n
0 , w̃

n
0 ,

Ũ = ũi , ũe, ṽ, w̃, W̃ = W̃ v, W̃w, Ũ0 = ũi,0, ũe,0, ṽ0, w̃0,
(6.44)

with respective (joint) laws Ln and L, such that the following strong convergences hold
P̃-almost surely as n → ∞:

ṽn
→ ṽ in L2((0, T ); L2(Ω )), w̃n

→ w̃ in L2((0, T ); (H 1
D(Ω ))∗),

W̃ v,n
→ W̃ v, W̃w,n

→ W̃w in C([0, T ];U0),

ũn
i,0 → ũi,0, ũn

e,0 → ũe,0, ṽ
n
0 → ṽ0, w̃

n
0 → w̃0 in L2(Ω ).

(6.45)

Moreover, the following weak convergences hold P̃-almost surely as n → ∞:

ũn
i ⇀ ũi , ũn

e ⇀ ũe in L2((0, T ); H 1
D(Ω )). (6.46)
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Proof. Thanks to the Skorokhod–Jakubowski representation theorem (Theorem 3.2), there exist
a new probability space (D̃, F̃ , P̃) and new X -valued random variables

Φ̃n =

(
ũn

i , ũn
e , ṽ

n, w̃n, W̃ v,n, W̃w,n, ũn
i,0, ũn

e,0, ṽ
n
0 , w̃

n
0

)
,

Φ̃ =

(
ũi , ũe, ṽ, w̃, W̃ v, W̃w, ũi,0, ũe,0, ṽ0, w̃0

) (6.47)

on (D̃, F̃ , P̃), such that the law of Φ̃n is Ln and as n → ∞,

Φ̃n → Φ̃ P̃-almost surely (in X ). (6.48)

To be more accurate, the Skorokhod–Jakubowski theorem implies (6.47), (6.48) along a
subsequence, but (as usual) we do not relabel the involved variables. Inasmuch as (6.48) is
a repackaging of (6.45), (6.46), this concludes the proof. □

Remark 6.6. As mentioned before, since our path space X is not a Polish space, we
use Skorokhod–Jakubowski a.s. representations [31] instead of the classical Skorokhod theo-
rem [16]. For a proof that L2((0, T ); H 1

D(ΩT ))-weak (and thus X ) is covered by the Skorokhod–
Jakubowski theorem, see for example [8, page 1645].

Lemma 6.7 (A Priori Estimates). The a priori estimates in Lemma 6.1 continue to hold for
the new random variables ũn

i , ũn
e , ṽ

n, w̃n on (D̃, F̃ , P̃), that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũn
j


L2
(

D̃,F̃ ,P̃;L2((0,T );H1
D (Ω))

) ≤ C, j = i, e,√εn ũn
j


L2
(

D̃,F̃ ,P̃;L∞((0,T );L2(Ω))
) ≤ C, j = i, e,ṽn


L2
(

D̃,F̃ ,P̃;L2((0,T );H1
D (Ω))

) ≤ C,ṽn


L2
(

D̃,F̃ ,P̃;L∞((0,T );L2(Ω))
) ≤ C,ṽn


L4
(

D̃,F̃ ,P̃;L4(ΩT )
) ≤ C,w̃n


L2
(

D̃,F̃ ,P̃;L∞((0,T );L2(Ω))
) ≤ C,

(6.49)

for some n-independent constant C > 0. The same applies to the estimates in Corollary 6.2,
provided (5.5) holds. Namely,(√εn ũn

i ,
√
εn ũn

e , ṽ
n, w̃n)

Lq0
(

D̃,F̃ ,P̃;L∞((0,T );L2(Ω))
) ≤ C, (6.50)(∇ũn

i ,∇ũn
e

)
Lq0

(
D̃,F̃ ,P̃;L2((0,T )×Ω)

) , ṽn


L2q0
(

D̃,F̃ ,P̃;L4((0,T )×Ω)
) ≤ C. (6.51)

Proof. Since the laws of vn and ṽn coincide and |·|
2

:= ∥·∥
2
L∞((0,T );L2(Ω)) is bounded

continuous on B := L∞((0, T ); L2(Ω )) (so |·|
2 is measurable and B is a Borel set in X ),∫

B |v|2 dLṽn (v) =
∫

B |v|2 dLvn (v) and thus

Ẽ
[ṽn(t)

2
L∞((0,T );L2(Ω))

]
= E

[vn(t)
2

L∞((0,T );L2(Ω))

] (6.6)
≤ C,
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where Ẽ[·] is the expectation operator with respect to (P̃, D̃); hence the fourth estimate in
(6.49) holds. As a matter of fact, by equality of the laws, all the estimates in Lemma 6.1 and
Corollary 6.2 hold for the corresponding “tilde” functions defined on (D̃, F̃ , P̃). □

Let us introduce the following stochastic basis linked to Φ̃n , cf. (6.47):

S̃n =

(
D̃, F̃ ,

{
F̃n

t

}
t∈[0,T ]

, P̃, W̃ v,n, W̃w,n
)
,

F̃n
t = σ

(
σ
(
Φ̃n
⏐⏐
[0,t]

)⋃{
N ∈ F̃ : P̃(N ) = 0

})
, t ∈ [0, T ];

(6.52)

thus
{
F̃n

t

}
n≥1

is the smallest filtration making all the relevant processes (6.47) adapted. By

equality of the laws and [16], W̃ v,n and W̃w,n are cylindrical Brownian motions, i.e., there exist
sequences

{
W̃ v,n

k

}
k≥1

and
{

W̃w,n
k

}
k≥1

of mutually independent real-valued Brownian motions

adapted to
{
F̃n

t

}
t∈[0,T ]

such that W̃ v,n
=
∑

k≥1 W̃ v,n
k ψk and W̃w,n

=
∑

k≥1 W̃w,n
k ψk , where

{ψk}k≥1 is the basis of U and each series converges in U0 ⊃ U (cf. Section 3). Below we need
the n-truncated sums

W̃ v,(n)
=

n∑
k=1

W̃ v,n
k ψk, W̃w,(n)

=

n∑
k=1

W̃w,n
k ψk, (6.53)

which converge respectively to W̃ v , W̃w in C([0, T ];U0), P̃-a.s., cf. (6.45).
We must show that the Faedo–Galerkin equations hold on the new probability space

(D̃, F̃ , P̃). To do that, we use an argument of Bensoussan [3], developed originally for the
stochastic Navier–Stokes equations. For other possible methods leading to the construction of
martingale solutions, see for example [16, Chap. 8] and [40].

Lemma 6.8 (Faedo–Galerkin Equations). Relative to the stochastic basis S̃n in (6.52), the
functions Ũ n , W̃ n , Ũ n

0 defined in (6.44) satisfy the following equations P̃-a.s.:

ṽn(t) + εn ũn
i (t) = ṽn

0 + εn ũn
i,0 +

∫ t

0
Πn
[
∇ ·

(
Mi∇ũn

i

)
− I (ṽn, w̃n)

]
ds

+

∫ t

0
ηn(ṽn) dW̃ v,(n)(s) in (H 1

D(Ω ))∗,

ṽn(t) − εn ũn
e (t) = ṽn

0 − εn ũn
e,0 +

∫ t

0
Πn
[
−∇ ·

(
Me∇ũn

e

)
− I (ṽn, w̃n)

]
ds

+

∫ t

0
ηn(ṽn) dW̃ v,(n)(s) in (H 1

D(Ω ))∗,

w̃n(t) = w̃n
0 +

∫ t

0
H (Πn ṽ

n,Π w
n w̃

n) ds +

∫ t

0
σ n(ṽn) dW̃w,(n)(s) in (H 1

D(Ω ))∗,

(6.54)

for each t ∈ [0, T ], where εn is specified in (5.9) and W̃ v,(n), W̃w,(n) are defined in (6.53).
Moreover,

ṽn
= ũn

i − ũn
e , d P̃ × dt × dx a.e. in D̃ × (0, T ) × Ω , (6.55)
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and (by construction) Ũ n , W̃ n are continuous, adapted (and thus predictable) processes.
Finally, the laws of ṽn

0 and w̃n
0 coincide with the laws of Πnv0 and Πnw0, respectively, where

v0 ∼ µv0 , w0 ∼ µw0 (see Definition 4.1).

Proof. We establish the first equation in (6.54), with the remaining ones following along
the same lines. In accordance with Lemma 5.2 and (6.35), recall that (U n,W n,U n

0 ) is the
continuous adapted solution to the Faedo–Galerkin equations (5.17) relative to S , cf. (5.1).

Let us introduce the (H 1
D(Ω ))∗ valued stochastic processes

In(ω, t) :=
(
vn(t) − vn

0

)
+ εn

(
un

i (t) − un
i,0

)
−

∫ t

0
Πn
[
∇ ·

(
Mi∇un

i

)
− I (vn, wn)

]
ds −

∫ t

0
ηn(vn) dW v,n(s),

Ĩn(ω, t) :=
(
ṽn(t) − ṽn

0

)
+ εn

(
ũn

i (t) − ũn
i,0

)
,

−

∫ t

0
Πn
[
∇ ·

(
Mi∇ũn

i

)
− I (ṽn, w̃n)

]
ds −

∫ t

0
ηn(ṽn) dW̃ v,(n)(s),

and the real-valued random variables, cf. (4.2), In(ω) := ∥In∥
2
L2((0,T );(H1

D (Ω))∗)
and Ĩn(ω) :=Ĩn

2

L2((0,T );(H1
D (Ω))∗)

. Note that In = 0 P-a.s. and so E[In] = 0.

If we could write In = Ln(Φn) for a (deterministic) bounded continuous functional Ln(·) on
X , cf. (6.47), then by equality of the laws, also Ẽ[ Ĩn] = 0 and the result would follow. However,
this is not immediately achievable since the stochastic integral is not a deterministic function
of W v,n . Hence, certain modifications are needed to produce a workable proof [3]. First of all,
we do not consider In but rather the bounded map In/(1 + In). Noting that E[In] = 0 implies

E
[

In

1 + In

]
= 0, (6.56)

the goal is to show that

Ẽ

[
Ĩn

1 + Ĩn

]
= 0, (6.57)

from which the first equation in (6.54) follows.
Recall that, cf. (5.10),

∫ t
0 η

n(vn) dW v,n(s) =
∑n

k=1

∫ t
0 η

n
k (vn) dW v

k (s). Let ϱν(t) be a standard
mollifier and define (for k = 1, . . . , n)

η
n,ν
k := (ηn

k (vn)) ⋆
(t)
ϱν, ν > 0.

By properties of mollifiers,ηn,ν
k


L2(D,F ,P;L2((0,T );L2(Ω)))

≤
ηn

k (vn)


L2(D,F ,P;L2((0,T );L2(Ω)))

and

η
n,ν
k → ηn

k in L2 (D,F , P; L2((0, T ); L2(Ω ))
)

as ν → 0. (6.58)

We define η̃n,ν
k similarly (with vn replaced by ṽn).
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An “integration by parts” reveals that∫ t

0
η

n,ν
k dW v

k (s) =
(
η

n,ν
k

)
(t) W v

k (t) −

∫ t

0
W v

k (s)
∂

∂s

(
η

n,ν
k

)
ds,

i.e., thanks to the regularization of ηn
k (vn) in the t variable,

∫ t
0 η

n,ν
k dW v

k (s) can be viewed as a
(deterministic) functional of W v

k .
Denote by I νn , Ĩ νn the random variables corresponding to In , Ĩn with ηn

k (vn), ηn
k (ṽn) replaced

by ηn,ν
k , η̃n,ν

k , respectively, and note I νn
1+I νn

= Ln,ν(Φn), Ĩ νn
1+ Ĩ νn

= Ln,ν(Φ̃n), for some bounded
continuous functional Ln,ν(·) on X . By equality of the laws,

Ẽ

[
Ĩ νn

1 + Ĩ νn

]
=

∫
X

Ln,ν(Φ) dL̃n(Φ) =

∫
X

Ln,ν(Φ) dLn(Φ) = E
[

I νn
1 + I νn

]
. (6.59)

One can check that

E
[⏐⏐⏐⏐ In

1 + In
−

I νn
1 + I νn

⏐⏐⏐⏐] ≤ E
[⏐⏐In − I νn

⏐⏐]
≤ C

(
E

[∫ T

0

n∑
k=1

ηn
k (vn) − η

n,ν
k

2
L2(Ω) dt

]) 1
2

(6.58)
−→ 0 as ν → 0,

(6.60)

and similarly

Ẽ

[⏐⏐⏐⏐⏐ Ĩn

1 + Ĩn
−

Ĩ νn
1 + Ĩ νn

⏐⏐⏐⏐⏐
]

≤C

(
E

[∫ T

0

n∑
k=1

ηn
k (ṽn) − η̃

n,ν
k

2
L2(Ω) dt

]) 1
2
ν↓0
→ 0. (6.61)

Combining (6.59), (6.60), (6.61), (6.56) we arrive at (6.57).
Finally, let us prove (6.55). By construction, vn

= un
i − un

e and sovn
− (un

i − un
e )


L2(D,F ,P;L2((0,T );L2(Ω)))
= 0.

For Φ ∈ X , define L(Φ) =
∥v−(ui −ue)∥2

L2((0,T );L2(Ω))

1+∥v−(ui −ue)∥2
L2((0,T );L2(Ω))

. Since L(·) is a bounded continuous

functional on X and the laws Ln , L̃n are equal,

Ẽ
[

L(Φ̃n)
]

= E [L(Φn)] ≤
vn

− (un
i − un

e )
2

L2(D,F ,P;L2((0,T );L2(Ω)))
= 0,

i.e., L(Φ̃n) = 0 P̃-a.s. and thus, via (6.49),ṽn
− (ũn

i − ũn
e )


L2
(

D̃,F̃ ,P̃;L2((0,T );L2(Ω))
) = 0.

This concludes the proof of the lemma. □

6.4. Passing to the limit

We begin by turning the probability space (D̃, F̃ , P̃), cf. (6.47) and (6.48), into a stochastic
basis,

S̃ =

(
D̃, F̃ ,

{
F̃t

}
t∈[0,T ]

, P̃, W̃ v, W̃w

)
, (6.62)
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by supplying the natural filtration
{
F̃t

}
t∈[0,T ]

, i.e., the smallest filtration with respect to which
all the relevant processes are adapted, viz.

F̃t = σ
(
σ
(
Φ̃
⏐⏐
[0,t]

)⋃{
N ∈ F̃ : P̃(N ) = 0

})
, t ∈ [0, T ]. (6.63)

Lemma 6.8 shows that Ũ n, W̃ n, Ũ n
0 satisfy the Faedo–Galerkin equations (5.17); hence, they

are worthy of being referred to as “approximations”. The next two lemmas summarize the
relevant convergence properties satisfied by these approximations.

Lemma 6.9 (Weak Convergence). There exist functions ũi , ũe, ṽ, w̃, with

ũi , ũe, ṽ ∈ L2
(

D̃, F̃, P̃; L2((0, T ); H 1
D(Ω ))

)
, ṽ = ũi − ũe,

ṽ, w̃ ∈ L2
(

D̃, F̃ , P̃; L∞((0, T ); L2(Ω ))
)
, ṽ ∈ L4

(
D̃, F̃ , P̃; L4(ΩT )

)
,

such that as n → ∞, passing to a subsequence if necessary,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ũn
i ⇀ ũi , ũn

e ⇀ ũe in L2
(

D̃, F̃ , P̃; L2((0, T ); H 1
D(Ω ))

)
,

εn ũn
i → 0, εn ũn

e → 0 in L2
(

D̃, F̃ , P̃; L2((0, T ); L2(Ω ))
)
,

ṽn ⇀ ṽ in L2
(

D̃, F̃ , P̃; L2((0, T ); H 1
D(Ω ))

)
,

ṽn ⋆
⇀ ṽ in L2

(
D̃, F̃ , P̃; L∞((0, T ); L2(Ω ))

)
,

ṽn ⇀ ṽ in L4
(

D̃, F̃ , P̃; L4(ΩT )
)
,

w̃n ⋆
⇀ w̃ in L2

(
D̃, F̃ , P̃; L∞((0, T ); L2(Ω ))

)
.

(6.64)

Proof. The claims in (6.64) follow from the estimates in (6.20) and the sequential Banach–
Alaoglu theorem. The relation ṽi = ũi − ũe, d P̃ × dt × dx a.e. in D̃ × (0, T ) × Ω , is a
consequence of (6.55) and the weak convergences in L2

ω,t,x of ṽn, ũn
i , ũn

e . The limit functions
ũi , ũe, ṽ, w̃ are easily identified with the a.s. representations in Lemma 6.5. □

As a result of (6.50), we can upgrade a.s. to L2 convergence.

Lemma 6.10 (Strong Convergence). As n → ∞, passing to a subsequence if necessary, the
following strong convergences hold:

ṽn
→ ṽ in L2

(
D̃, F̃ , P̃; L2((0, T ); L2(Ω ))

)
,

w̃n
→ w̃ in L2

(
D̃, F̃ , P̃; L2((0, T ); (H 1

D(Ω ))∗)
)
,

W̃ v,n
→ W̃ v, W̃w,n

→ W̃w in L2
(

D̃, F̃ , P̃; C([0, T ];U0)
)

.

ũn
i,0 → ũi,0, ũn

e,0 → ũe,0, ṽ
n
0 → ṽ0, w̃

n
0 → w̃0 in L2

(
D̃, F̃ , P̃; L2(Ω )

)
.

(6.65)

Proof. The proof merges the a.s. convergences in (6.45), the high-order moment estimates in
(6.50), and Vitali’s convergence theorem. To justify the first claim in (6.65), for example, we
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consider the estimate Ẽ
[
∥ṽn(t)∥q0

L∞((0,T );L2(Ω))

]
≤ C with q0 > 2, see (6.50). From this we

infer the equi-integrability (w.r.t. P̃) of
{
∥ṽn(t)∥2

L2((0,T );L2(Ω))

}
n≥1

. Accordingly, the first claim

in (6.65) follows from the P̃-a.s. convergence in (6.45) and Vitali’s convergence theorem, with
the remaining claims following along similar lines. Regarding the third claim, note also that
for W̃ n

= W̃ v,n or W̃w,n ,

Ẽ
[W̃ n

q

C([0,T ];U0)

]
= E

[W n
q

C([0,T ];U0)

]
≤ CT , ∀q ∈ [1,∞), (6.66)

which follows from equality of the laws and a martingale inequality. □

For each n ≥ 1, W̃ v,n and W̃w,n are (independent) cylindrical Wiener processes with respect
to the stochastic basis S̃n , see (6.52). Since W̃ v,n

→ W̃ v , W̃w,n
→ W̃w in the sense of (6.45) or

(6.65), it is more or less obvious that also the limit processes W̃ v , W̃w are cylindrical Wiener
processes. Indeed, we have

Lemma 6.11. The a.s. representations W̃ = W̃ v, W̃w from Lemma 6.5 are (independent)
cylindrical Wiener processes with respect to sequences

{
W̃ v

k

}
k≥1

,
{

W̃w
k

}
k≥1

of mutually inde-

pendent real-valued Wiener processes adapted to the natural filtration
{
F̃t

}
t∈[0,T ]

, cf. (6.62)

and (6.63), such that W̃ v
=
∑

k≥1 W̃ v
k ψk , W̃ v

=
∑

k≥1 W̃w
k ψk .

Proof. The proof is standard, see e.g. [40, Lemma 9.9] or [18, Proposition 4.8]. To
be more precise, by the martingale characterization theorem [16, Theorem 4.6], we must
show that W̃ v,Ww are {F̃t }-martingales. With Φ̃ defined in (6.47), it is sufficient to show
that

Ẽ
[

Ls(Φ̃)
(

W̃ (t) − W̃ (s)
)]

= 0, W̃ = W̃ v, W̃w,

for all bounded continuous functionals Ls(Φ) on X depending only on the values of Φ restricted
to [0, s]. Since the laws of Φn and Φ̃n coincide, cf. (6.47),

Ẽ
[

Ls(Φ̃n)
(

W̃ n(t) − W̃ n(s)
)]

= E
[
Ls(Φn)

(
W n(t) − W n(s)

)]
= 0, (6.67)

where the last equality is a result of the {Fn
t }-martingale property of W n

= W v,n,Ww,n . By
(6.45), (6.66), and Vitali’s convergence theorem, we can pass to the limit in (6.67) as n → ∞.
This concludes the proof of the lemma. □

Given the above convergences, the final step is to pass to the limit in the Faedo–Galerkin
equations. The next lemma shows that the Skorokhod–Jakubowski representations satisfy the
weak form (4.3) of the stochastic bidomain system.

Lemma 6.12 (Limit Equations). Let Ũ , W̃ , ṽ0, w̃0 be the a.s. representations constructed
in Lemma 6.5, and S̃ the accompanying stochastic basis defined in (6.62), (6.63), so that
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ṽ, w̃, W̃ v, W̃w become {F̃t }-adapted processes. Then the following equations hold P̃-a.s., for
a.e. t ∈ [0, T ]:∫

Ω

ṽ(t)ϕi dx +

∫ t

0

∫
Ω

(
Mi∇ũi · ∇ϕi + I (ṽ, w̃)ϕi

)
dx ds

=

∫
Ω

ṽ0 ϕi dx +

∫ t

0

∫
Ω

η(ṽ)ϕi dx dW̃ v(s),

∫
Ω

ṽ(t)ϕe dx +

∫ t

0

∫
Ω

(
−Me∇ũe · ∇ϕe + I (ṽ, w̃)ϕe

)
dx ds

=

∫
Ω

ṽ0ϕe dx +

∫ t

0

∫
Ω

η(ṽ)ϕe dx dW̃ v(s),

∫
Ω

w̃(t)ϕ dx =

∫
Ω

w̃0ϕ dx +

∫ t

0

∫
Ω

H (ṽ, w̃)ϕ dx ds

+

∫ t

0

∫
Ω

σ (ṽ)ϕ dx dW̃w(s),

(6.68)

for all ϕi , ϕe ∈ H 1
D(Ω ) and ϕ ∈ L2(Ω ). The laws of ṽ(0) = ṽ0 and w̃(0) = w̃0 are µv0 and

µw0 , respectively.

Proof. We establish the first equation in (6.68). The remaining equations are treated in the
same way. Let Z ⊂ D̃ × [0, T ] be a measurable set, and denote by

1Z (ω, t) ∈ L∞

(
D̃ × [0, T ]; d̃ P × dt

)
(6.69)

the characteristic function of Z . Our aim is to show

E
[∫ T

0
1Z (ω, t)

(∫
Ω

ṽ(t)ϕi dx
)

dt
]

+ E
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

Mi∇ũi · ∇ϕi dx ds
)

dt
]

+ E
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

I (ṽ, w̃)ϕi dx ds
)

dt
]

= E
[∫ T

0
1Z (ω, t)

(∫
Ω

ṽ0ϕi dx
)

dt
]

+ E
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

η(ṽ)ϕi dx dW̃ v(s)
)

dt
]
.

(6.70)

Then, since Z is an arbitrary measurable set and the simple functions are dense in L2, we
conclude that the first equation in (6.68) holds for d P̃ × dt almost every (ω, t) ∈ D̃ × [0, T ]
and any ϕi ∈ H 1

D(Ω ).
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Fix ϕi ∈ H 1
D(Ω ), and note that (6.54) implies∫

Ω

ṽn(t)ϕi dx +

∫
Ω

εn ũn
i (t)ϕi dx

+

∫ t

0

∫
Ω

Mi∇ũn
i · ∇Πnϕi dx ds +

∫ t

0

∫
Ω

I (ṽn, w̃n)Πnϕi dx ds

=

∫
Ω

ṽn
0 ϕi dx +

∫
Ω

εn ũn
i,0 ϕi dx +

∫ t

0

∫
Ω

ηn(ṽn)ϕi dx dW̃ v,(n)(s),

(6.71)

using (5.15). We multiply (6.71) by 1Z (ω, t), cf. (6.69), integrate over (ω, t), and then attempt
to pass to the limit n → ∞ in each term separately.

We will make repeated use of the following simple fact: If Xn ⇀ X in L p(D̃ × (0, T )), for
p ∈ [1,∞), then

∫ t
0 Xn ds ⇀

∫ t
0 X ds in L p(D̃ × (0, T )) as well.

First, since

1Z (ω, t)ϕi (x) ∈ L2
(

D̃, F̃ , P̃; L2((0, T ); L2(Ω ))
)
, (6.72)

the weak convergence in L2
ω,t,x of ṽn , cf. (6.64), implies

Ẽ
[∫ T

0
1Z (ω, t)

(∫
Ω

ṽn(t)ϕi dx
)

dt
]

→ Ẽ
[∫ T

0
1Z (ω, t)

(∫
Ω

ṽ(t)ϕi dx
)

dt
]
,

as n → ∞. Similarly,

Ẽ
[∫ T

0
1Z (ω, t)

(∫
Ω

εnun
i ϕi dx

)
dt
]

→ 0, as n → ∞.

The initial data terms on the right-hand side of (6.71) can be treated in the same way, using
(6.65). Recall also that the laws of ṽn

0 , w̃n
0 coincide with the laws of Πnv0, Πnw0, respectively,

and that v0 ∼ µv0 , w0 ∼ µw0 . Since Πnv0 → v0, Πnw0 → w0 in L2
ω,x as n → ∞, cf. (5.12)

or (5.16), we conclude that ṽ(0) = ṽ0 ∼ µv0 , w̃(0) = w̃0 ∼ µw0 .
Next, note that ∇Πnϕi → ∇ϕi in L2(Ω ) as n → ∞, cf. (5.16). By weak convergence in

L2
ω,t,x of ∇̃un

i , cf. (6.64), and (6.72), it follows that

Ẽ
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

Mi∇ũn
i · ∇Πnϕi dx ds

)
dt
]

→ Ẽ
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

Mi∇ũi · ∇ϕi dx ds
)

dt
]

→ 0 as n → ∞.

To demonstrate convergence of the stochastic integral∫ t

0

∫
Ω

ηn(ṽn)ϕi dx dW̃ v,(n)(s) =

∫
Ω

(∫ t

0
ηn(ṽn) dW̃ v,(n)(s)

)
ϕi dx,

we will use [17, Lemma 2.1] to infer that∫ t

0
ηn(ṽn) dW̃ v,(n)(s) →

∫ t

0
η(ṽ) dW̃ v(s) in L2((0, T ); L2(Ω )), (6.73)

in probability, as n → ∞. Since W̃ v,(n)
→ W̃ v in C([0, T ];U0), P̃-a.s. (and thus in probability),

cf. (6.45), it remains to prove that

ηn(ṽn) → η(ṽ) in L2 ((0, T ); L2(U; L2(Ω ))
)
, P̃-almost surely. (6.74)
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Before we continue, recall that
∫ t

0 η
n(ṽn) dW̃ v,(n) equals

∑n
k=1

∫ t
0 η

n
k (ṽn) dW̃ v,n

k , where ηn
k (ṽn) =

ηn(ṽn)ψk ∈ L2(Ω ), {ψk}k≥1 is an orthonormal basis of U, ηn
k (ṽn) equals

∑n
l=1 ηk,l(ṽn)el with

ηk,l(ṽn) = (ηk(ṽn), el)L2(Ω) and {el}
∞

l=1 is an orthonormal basis of L2(Ω ). We have a similar
decomposition of η(ṽ). Note that∫ t

0

η(ṽ) − ηn(ṽn)
2

L2(U;L2(Ω)) ds

≤

∫ t

0

η(ṽ) − η(ṽn)
2

L2(U;L2(Ω)) ds +

∫ t

0

η(ṽ) − ηn(ṽ)
2

L2(U;L2(Ω)) ds

=: J1 + J2.

(6.75)

Exploiting (3.7) and (6.45), we conclude easily that

J1 → 0, P̃-almost surely, (6.76)

as n → ∞. We handle the J2-term as follows:

J2 =

∫ t

0

∑
k≥1

ηk(ṽ) − ηn
k (ṽ)

2
L2(Ω) ds

=

∫ t

0

∑
k≥1

∑
l≥1

ηk,l(ṽ)el −

n∑
l=1

ηk,l(ṽ)el


2

L2(Ω)

ds

=

∫ t

0

∑
k≥1

∥ηk(ṽ) − Πn (ηk(ṽ))∥2
L2(Ω) ds.

Observe that the integrand can be dominated by an L1(0, T ) function, P̃-a.s.:∑
k≥1

∥ηk(ṽ(t)) − Πn (ηk(ṽ(t)))∥2
L2(Ω)

(5.14)
≤ 4

∑
k≥1

∥ηk(ṽ(t))∥2
L2(Ω) = 4 ∥η(ṽ(t))∥2

L2(U;L2(Ω))

(3.7)
≤ C

(
1 + ∥ṽ(t)∥2

L2(Ω)

)
,

where we recall that ṽ ∈ L2
ω

(
L∞

t

(
L2

x

))
and thus ṽ ∈ L2

t

(
L2

x

)
P̃-a.s. (cf. Lemma 6.9). Clearly,

by (5.16), Πn (ηk(ṽ)) converges as n → ∞ to ηk(ṽ) in L2(Ω ), for a.e. t , P̃-almost surely.
Therefore, after an application of Lebesgue’s dominated convergence theorem,

J2
n↑∞

→ 0, P̃-almost surely. (6.77)

Combining (6.76), (6.75), (6.77) we arrive at (6.74) (H⇒ (6.73) via [17, Lemma 2.1]).
Passing to a subsequence (not relabeled), we can replace “in probability” by “P̃-almost

surely” in (6.73). Next, fixing any q > 2, we verify that

Ẽ

[∫ t

0
ηn(ṽn) dW̃ v,(n)

q

L2((0,T );L2(Ω))

]

≤ CT Ẽ

⎡⎣(∫ T

0

n∑
k=1

ηk(ṽn)
2

L2(Ω) dt

) q
2
⎤⎦ ≤ Cη,T ,
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using the Burkholder–Davis–Gundy inequality (3.4) and (3.6), (6.49). Accordingly, in light of
Vitali’s theorem, (6.73) implies∫ t

0
ηn(ṽn) dW̃ v,n(s)

n↑∞

→

∫ t

0
η(ṽ) dW̃ v(s) in L2

(
D̃, F̃ , P̃; L2((0, T ); L2(Ω ))

)
,

and hence

Ẽ
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

ηn(ṽn)ϕi dx dW̃ v,n(s)
)

dt
]

= Ẽ
[∫ T

0

∫
Ω

(∫ t

0
ηn(ṽn) dW̃ v,n(s)

)
(1Z (ω, t)Πnϕi (x)) dx dt

]
→ Ẽ

[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

η(ṽ)ϕi dx dW̃ v(s)
)

dt
]

as n → ∞.

With reference to the nonlinear term in (6.71), according to condition (GFHN), we have
I (v,w) = I1(v) + I2(v)w with |I1(v)| ≤ cI,1

(
1 + |v|3

)
and I2(v) = cI,3 + cI,4v. By the first

part of (6.65), passing to a subsequence if necessary, we may assume that as n → ∞,

ṽn
→ ṽ for d P̃ × dt × dx almost every (ω, t, x) ∈ D̃ × [0, T ] × Ω .

As a result of this, the boundedness of ṽn in L4
ω,t,x , cf. (6.49), and Vitali’s convergence theorem,

we conclude that as n → ∞,

ṽn
→ ṽ in Lq (d P̃ × dt × dx), for any q ∈ [1, 4),

I1(ṽn) → I1(ṽ) in Lq (d P̃ × dt × dx), for any q ∈ [1, 4/3).
(6.78)

Fix two numbers q, q ′ such that 3
2 ≤ q < 2, 2 < q ′

≤ 3, 1
q +

1
q ′ = 1, for example q = 3/2

and q ′
= 3. Then, by Hölder’s inequality,

Ẽ
[∫ T

0

∫
Ω

⏐⏐I2(ṽn)Πnϕi − I2(ṽ)ϕi
⏐⏐2 dx dt

]
≤ Ẽ

[∫ T

0

∫
Ω

⏐⏐I2(ṽn)
⏐⏐2 |Πnϕi − ϕi |

2 dx dt
]

+ Ẽ
[∫ T

0

∫
Ω

⏐⏐I2(ṽn) − I2(ṽ)
⏐⏐2 |ϕi |

2 dx dt
]

≤
I2(ṽn)

2
L2q
ω,t,x

∥Πnϕi − ϕi∥
2

L2q′

ω,t,x
+
I2(ṽn) − I2(ṽ)

2
L2q
ω,t,x

∥ϕi∥
2

L2q′

ω,t,x

n↑∞

−→ 0,

since I2(ṽn) is bounded and converges strongly in L2q
ω,t,x (with 2q < 4), consult (6.78).

Consequently, I2(ṽn)Πnϕi → I2(ṽ)ϕi in L2(d̃ P × dt × dx). Besides, (6.64) implies w̃n ⇀ w̃

in L2(d̃ P × dt × dx). Hence,

I2(ṽn) w̃n Πnϕi
n↑∞

⇀ I2(ṽ)ϕi w̃ in L1(d̃ P × dt × dx). (6.79)

Regarding the I1 term, fix two numbers q, q ′ such that 6
5 ≤ q < 4

3 , 3 < q ′
≤ 6, 1

q +
1
q ′ = 1.

Then, similar to the treatment of the I1 term,

Ẽ
[∫ T

0

∫
Ω

⏐⏐I1(ṽn)Πnϕi − I1(ṽ)ϕi
⏐⏐ dx dt

]
≤
I1(ṽn)


Lq
ω,t,x

∥Πnϕi − ϕi∥Lq′

ω,t,x
+
I1(ṽn) − I1(ṽ)


Lq
ω,t,x

∥ϕi∥Lq′

ω,t,x

n↑∞

−→ 0,



5356 M. Bendahmane and K.H. Karlsen / Stochastic Processes and their Applications 129 (2019) 5312–5363

where we have used that I2(ṽn) is bounded and converges strongly in Lq
ω,t,x (q < 4/3), see

(6.78), and the Sobolev embedding theorem to control the Lq ′

norm of ϕi , Πnϕi − ϕi in terms
of the H 1

D norm (q ′
≤ 6). In other words,

I1(ṽn)Πnϕi → I1(ṽ)ϕi in L1
(

d P̃ × dt × dx
)

as n → ∞.

Combining this and (6.79), recalling I (ṽn, w̃n) = I1(ṽn) + I2(ṽn)w̃n , we arrive finally at

Ẽ
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

I (ṽn, w̃n)Πnϕi ds
)

dt
]

−→ Ẽ
[∫ T

0
1Z (ω, t)

(∫ t

0

∫
Ω

I (ṽ, w̃)ϕi ds
)

dt
]

as n → ∞.

This concludes the proof of (6.70) and thus the lemma. □

6.5. Concluding the proof of Theorem 4.4

As stated in Lemma 6.12, the Skorokhod–Jakubowski representations Ũ , W̃ , ṽ0, w̃0
satisfy the weak form (6.68) for a.e. t ∈ [0, T ]. Regarding the stochastic integrals in
(6.68), the (H 1

D(Ω ))∗ valued processes ṽ(t), w̃(t) are (by construction) F̃t -measurable
for each t . To upgrade (6.68) to hold for “every t”, we will now prove that (cf. also
Remark 4.3)

ṽ(ω), w̃(ω) ∈ C([0, T ]; (H 1
D(Ω ))∗), for P̃-a.e. ω ∈ D̃. (6.80)

This weak continuity property also ensures that ṽ, w̃ are predictable in (H 1
D(Ω ))∗. Hence,

conditions (5) and (7) in Definition 4.1 hold. Conditions (1) and (2) are covered by Lemma 6.11,
while Lemma 6.9 validates conditions (3) and (4). Lemma 6.12 implies (6).

To conclude the proof of Theorem 4.4, it remains to verify (6.80), which we do for ṽ (the
case of w̃ is easier). Fix ϕ ∈ H 1

D(Ω ) ⊂ L6(Ω ), and consider the stochastic process

Ψϕ : D̃ × [0, T ] → R, Ψϕ(ω, t) :=

∫
Ω

ṽ(ω, t)ϕ dx,

relative to S̃, cf. (6.62) and (6.63). To arrive at (6.80) it will be sufficient to prove that
Ψϕ ∈ C([0, T ]) P̃-a.s., for any ϕ in a countable dense subset {ϕℓ}

∞

ℓ=1 ⊂ H 1
D(Ω ). In what

follows, let ϕ denote an arbitrary function from {ϕℓ}
∞

ℓ=1.
We are going to use the Lq0

ω estimates in Corollary 6.2, with q0 >
9
2 . Fix t ∈ [0, T ], ϑ > 0

(the case ϑ < 0 is treated similarly), and q ∈
(
3, 2

3 q0
]
. Then, using e.g. the first equation in

(6.68),

Ẽ
[⏐⏐Ψϕ(t + ϑ) − Ψϕ(t)

⏐⏐q]
≤ Ẽ

[⏐⏐⏐⏐∫ t+ϑ

t

∫
Ω

Mi∇ũi · ∇ϕ dx ds
⏐⏐⏐⏐q
]

+ Ẽ

[⏐⏐⏐⏐∫ t+ϑ

t

∫
Ω

I (ṽ, w̃)ϕ dx ds
⏐⏐⏐⏐q
]

+ Ẽ

[⏐⏐⏐⏐∫ t+ϑ

t

∫
Ω

η(ṽ)ϕ dx dW̃ v(s)
⏐⏐⏐⏐q
]

=: Γ1 + Γ2 + Γ3.
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The Γ1 term is estimated using the Cauchy–Schwarz inequality, the fact that ∇ũi ∈ Lq0
ω (L2

t,x ),
cf. (6.51), and q ≤ q0:

Γ1 ≤ Ẽ

[(∫ t+ϑ

t

∫
Ω

|∇ũi |
2 dx ds

) q
2
(∫ t+ϑ

t

∫
Ω

|∇ϕ|
2 dx ds

) q
2
]

≤ C1 |ϑ |
q
2 ∥∇ϕ∥

q
L2(Ω)

.

Thanks to Hölder’s inequality,

Γ2 ≤ Ẽ

⎡⎣(∫ t+ϑ

t

∫
Ω

|I (ṽ, w̃)|
4
3 dx ds

) 3q
4
(∫ t+ϑ

t

∫
Ω

|ϕ|
3 dx ds

) q
3

⎤⎦
≤ C̃2 |ϑ |

q
3 Ẽ

⎡⎣(∫ t+ϑ

t

∫
Ω

(
|ṽ|

4
+ |w̃|

2
)

dx ds
) 3q

4

⎤⎦ ∥ϕ∥

q
3
L3(Ω)

≤ C2 |ϑ |
q
3 ∥ϕ∥

q
L3(Ω)

,

using (6.30), ṽ ∈ L2q0
ω (L4

t,x ), cf. (6.51), w̃ ∈ Lq0
ω (L∞

t (L2
x )), cf. (6.21), and that the relevant

exponents satisfy 3q ≤ 2q0, 3q/2 ≤ q0.
Finally, we have

Γ3 ≤ Ẽ

[ sup
τ∈[0,ϑ]

∫ t+τ

t
η(ṽ) dW̃ v


q

L2(Ω)

]
∥ϕ∥

q
L2(Ω)

(3.4)
≤ C̃3Ẽ

[(∫ t+ϑ

t
∥η(ṽ)∥2

L2(U,L2(Ω)) dt
) q

2
]

∥ϕ∥
q
L2(Ω)

(3.7)
≤ Ĉ3 |ϑ |

q
2

(
1 + Ẽ

[
∥ṽ∥

q
L∞((0,T );L2(Ω))

])
∥ϕ∥

q
L2(Ω)

≤ C3 |ϑ |
q
2 ∥ϕ∥

q
L2(Ω)

,

since ṽ ∈ Lq0
ω (L∞

t (L2
x )) and q ≤ q0.

Summarizing, with t, t + ϑ ∈ [0, T ] and |ϑ | < 1, there exists a constant C > 0 such that

Ẽ
[⏐⏐Ψϕ(t + ϑ) − Ψϕ(t)

⏐⏐q] ≤ C |ϑ |
q
3 ∥ϕ∥

q
H1

D (Ω)
= Cϕ |ϑ |

1+
q−3

3 ,

where Cϕ := C ∥ϕ∥
q
H1

D (Ω)
. Noting that γ :=

1
3 −

1
q > 0, Kolmogorov’s continuity result ensures

the existence of a γ -Hölder continuous modification of Ψϕ .

7. Uniqueness of weak (pathwise) solutions

In this section we prove an L2 stability estimate and consequently a pathwise uniqueness
result. This result is used in the next section to conclude the existence of a unique weak solution
to the stochastic bidomain model.

Let
(
S, ui , ue, v, w

)
be a weak solution according to Definition 4.1. We need a special case

of the infinite dimensional version of Itô’s formula [16,33,41]:

d ∥v(t)∥2
L2(Ω) = 2 (dv, v)(H1

D (Ω))∗,H1
D (Ω) + 2

∑
k≥1

∥ηk(v)∥2
L2(Ω) dt.
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To compute the first term on the right-hand side, multiply the first equation in (2.4) by ui , the
second equation by −ue, and sum the resulting equations. The outcome is

v dv −

∑
j=i,e

∇ ·
(
M j∇u j

)
u j dt + v I (v,w) dt = vη(v) dW v.

Hence,

(dv, v)(H1
D (Ω))∗,H1

D (Ω) = −

∑
j=i,e

(
M j∇u j ,∇u j

)
L2(Ω) dt − (v, I (v,w))L2(Ω) dt

+

∑
k≥1

(v, ηk(v))L2(Ω) dW v
k .

Therefore, weak solutions of the stochastic bidomain model satisfy the following Itô formula
for the squared L2 norm:

∥v(t)∥2
L2(Ω) = ∥v(0)∥2

L2(Ω) − 2
∑
j=i,e

∫ t

0

∫
Ω

M j∇u j · ∇u j dx ds

− 2
∫ t

0

∫
Ω
v I (v,w) dx ds + 2

∑
k≥1

∫ t

0

∫
Ω

|ηk (v)|2 dx ds + 2
∑
k≥1

∫
Ω
v ηk (v) dx dW v

k .

(7.1)

Additionally, from the (simpler) w-equation in (2.4) we obtain

∥w(t)∥2
L2(Ω) = ∥w(0)∥2

L2(Ω) + 2
∫ t

0

∫
Ω

wH (v,w) dx ds

+ 2
∑
k≥1

∫ t

0

∫
Ω

|σk(v)|2 dx ds + 2
∑
k≥1

∫
Ω

w σk(v) dx dWw
k .

(7.2)

Remark 7.1. Definition 4.1 asks that the paths of v(t) are weakly time continuous but
not that they belong to C([0, T ]; L2(Ω )). Define X, Y by X (t) := v(t) −

∫ t
0 η(v) dW v and

Y (t) := w(t) −
∫ t

0 σ (w) dWw, and note that P-a.s., X, Y ∈ L2((0, T ); H 1
D(Ω )) and ∂t X, ∂t Y ∈

L2((0, T ); (H 1
D(Ω ))∗). Consequently, X, Y belong to C([0, T ]; L2(Ω )) [53]. According to

standard arguments [16], t ↦→
∫ t

0 β(v) dW ∈ C([0, T ]; L2(Ω )), P-almost surely, for (β,W ) =

(η,W v), (σ,Ww). We conclude that P-a.s. v,w ∈ C([0, T ]; L2(Ω )).

We are now in a position to prove the stability result.

Theorem 7.2. Suppose conditions (GFHN), (2.5), and (3.6) hold. Let Ū =
(
S, ūi , ūe, v̄, w̄

)
and Û =

(
S, ûi , ûe, v̂, ŵ

)
be two weak solutions (according to Definition 4.1), relative to the

same stochastic basis S, cf. (3.1), with initial data v̄(0) = v̄0, v̂(0) = v̂0, w̄(0) = w0, and
ŵ(0) = ŵ(0), where v̄0, v̂0, w̄0, ŵ0 ∈ L2

(
D,F , P; L2(Ω )

)
. There exists a positive constant

C ≥ 1 such that

E

[
sup

t∈[0,T ]

v̄(t) − v̂(t)
2

L2(Ω)

]
+

∑
j=i,e

E
[ū j − û j

2
L2(ΩT )

]

+ E

[
sup

t∈[0,T ]

w̄(t) − ŵ(t)
2

L2(Ω)

]

≤ C
(
E
[v̄0 − v̂0

2
L2(Ω)

]
+ E

[w̄0 − ŵ0
2

L2(Ω)

])
.

(7.3)

With v̄0 = v̂0, w̄0 = ŵ0, it follows that weak (pathwise) solutions are unique, cf. (4.4).
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Proof of Theorem 7.2. Set v := v̄ − v̂, ui := ūi − ûi , ue := ūe − ûe, and w := w̄ − ŵ. Note
that v = ui − ue. We have P-a.s.,

ui , ūi , ûi , ue, ūe, ûe, v, v̄, v̂ ∈ L2((0, T ); H 1
D(Ω )),

v, v̄, v̂, w, w̄, ŵ ∈ L∞((0, T ); L2(Ω )) ∩ C([0, T ]; (H 1
D(Ω ))∗).

Actually, we can replace C([0, T ]; (H 1
D(Ω ))∗) by C([0, T ]; L2(Ω )), see Remark 7.1.

Subtracting the (H 1
D(Ω ))∗ valued equations for Ū , Û , cf. (2.4), we obtain

dv − ∇ ·
(
Mi∇ui

)
dt +

(
I (v̄, w̄) − I (v̂, ŵ)

)
dt =

(
η(v̄) − η(v̂)

)
dW v,

dv + ∇ ·
(
Me∇ue

)
dt +

(
I (v̄, w̄) − I (v̂, ŵ)

)
dt =

(
η(v̄) − η(v̂)

)
dW v,

dw =
(
H (v̄, w̄) − H (v̂, ŵ)

)
dt +

(
σ (v̄) − σ (v̂)

)
dWw.

(7.4)

We apply the Itô formula to the w-equation, cf. (7.2), and multiply by 1/µ, cf. (2.6). We then
apply the Itô formula to the v-equations, cf. (7.1). Adding the results and using (2.5), we obtain
in the end the following inequality:

1
2

∥v(t)∥2
L2(Ω) +

1
2µ

∥w(t)∥2
L2(Ω) + m

∑
j=i,e

∫ t

0

∫
Ω

⏐⏐∇u j
⏐⏐2 dx ds

≤
1
2

∥v(0)∥2
L2(Ω) +

1
2µ

∥w(0)∥2
L2(Ω)

+
1
µ

∫ t

0

∫
Ω

(
w
(
H (v̄, w̄) − H (v̂, ŵ)

)
− µv

(
I (v̄, w̄) − I (v̂, ŵ)

))
dx ds

+

∑
k≥1

∫ t

0

∫
Ω

⏐⏐ηk(v̄) − ηk(v̂)
⏐⏐2 dx ds +

1
µ

∑
k≥1

∫ t

0

∫
Ω

⏐⏐σk(v̄) − σk(v̂)
⏐⏐2 dx ds

+

∑
k≥1

∫
Ω

v
(
ηk(v̄) − ηk(v̂)

)
dx dW v

k +
1
µ

∑
k≥1

∫
Ω

w
(
σk(v̄) − σk(v̂)

)
dx dWw

k .

(7.5)

We use assumption (2.6) to bound the third term on the right-hand side by a constant times∫ t
0

(
∥v(s)∥2

L2(Ω) + ∥w(s)∥2
L2(Ω)

)
ds. We use (3.6) to bound the fourth term by a constant

times
∫ t

0 ∥v(s)∥2
L2(Ω) ds. The stochastic integrals in (7.5) are square-integrable, zero-mean

martingales. Moreover, by the Poincaré inequality, we have∫ t

0

∫
Ω

|ue|
2 dx ds ≤ C̃

∫ t

0

∫
Ω

|∇ue|
2 dx ds,

for some constant C̃ > 0. Since ui = v + ue, we control ui as well. As a result of all this,
there is a constant C > 0 such that

E
[
∥v(t)∥2

L2(Ω)

]
+

∑
j=i,e

E
[u j

2
L2(ΩT )

]
+ E

[
∥w(t)∥2

L2(Ω)

]
≤ CE

[
∥v(0)∥2

L2(Ω)

]
+ CE

[
∥w(0)∥2

L2(Ω)

]
+ C

∫ t

0

(
E
[
∥v(s)∥2

L2(Ω)

]
+ E

[
∥w(s)∥2

L2(Ω)

])
ds, t ∈ [0, T ].

The Grönwall inequality delivers (7.3) “without sup”. The refinement (7.3) (“with sup”) comes
from a martingale inequality (3.4), see (6.16) for a similar situation. □
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8. Existence of weak (pathwise) solutions

In this section we prove the existence of a unique weak (pathwise) solution in the sense
of Definition 4.5, thereby proving Theorem 4.6. The proof follows the traditional Yamada–
Watanabe approach [17,24,41], combining the existence of at least one weak martingale
solution (Theorem 4.4) with a pathwise uniqueness result (Theorem 7.2), relying on the
Gyöngy–Krylov characterization of convergence in probability (Lemma 3.3).

Fix a stochastic basis S =
(
D,F , {Ft }t∈[0,T ] , P,W

)
, where W =

(
W v,Ww

)
and

W v
=
{
W v

k

}
k≥1, Ww

=
{
Ww

k

}
k≥1 are cylindrical Wiener processes. We denote by U n

=(
un

i , un
e , v

n, wn
)
, W n

=
(
W v,n,Ww,n

)
, U n

0 =
(
un

i,0, un
e,0, v

n
0 , w

n
0

)
the Faedo–Galerkin solution

defined on S, cf. Section 5. Let Ln be the probability law of

Φn : D → X = XU × XW × XU0 , Φn(ω) =
(
U n(ω),W n(ω),U n

0 (ω)
)
.

We intend to show that the approximate solutions U n converge in probability (in XU ) to
a random variable U = (ui , ue, v, w) (defined on S). Passing to a subsequence if necessary,
we may as well replace convergence in probability by a.s. convergence. We then argue as in
Section 6.4 to arrive at the conclusion that the limit U of {U n}n≥1 is a weak (pathwise) solution
of the stochastic bidomain model.

It remains to prove that {U n}n≥1 converges in probability. To this end, we will use the
Gyöngy–Krylov lemma along with pathwise uniqueness. By Lemma 6.4, the sequence {Ln}n≥1
is tight on X . For n,m ≥ 1, denote by Ln,m the law of the random variable

Φn,m(ω) =
(
U n(ω),U m(ω),W n(ω),U n

0 (ω),U m
0 (ω)

)
,

defined on the extended path space X E
:= XU × XU × XW × XU0 × XU0 . Clearly, we have

Ln,m = LUn × LUm × LW n × LUn
0

× LUm
0

(see Section 6.3 for the notation). With obvious
modifications of the proof of Lemma 6.4, we conclude that

{
Ln,m

}
n,m≥1 is tight on X E . Let

us now fix an arbitrary subsequence
{
Lnk ,mk

}
k≥1 of

{
Ln,m

}
n,m≥1, which obviously is also tight

on X E .
Passing to a further subsequence if needed (without relabeling as usual), the Skorokhod–

Jakubowski representation theorem provides a new probability space (D̃, F̃, P̃) and new
X E -valued random variables(

Ū nk , Û mk , W̃ nk , Ū nk
0 , Û

mk
0

)
,

(
Ū , Û , W̃ , Ū0, Û0

)
(8.1)

on (D̃, F̃ , P̃), such that the law of
(

Ū nk , Û mk , W̃ nk , Ū nk
0 , Û

mk
0

)
is Lnk ,mk and(

Ū nk , Û mk , W̃ nk , Ū nk
0 , Û

mk
0

)
k↑∞

−→

(
Ū , Û , W̃ , Ū0, Û0

)
P̃-almost surely (in X E ).

Observe that P̃
({
ω ∈ D̃ : Ū0(ω) = Û0(ω)

})
= 1. Indeed, we have U nk

0 = Πnk U0 and
U mk

0 = Πmk U0, and so for any ℓ ≤ min(nk,mk),

P̃
({
ω ∈ D̃ : ΠℓŪ

nk
0 = ΠℓÛ

mk
0

})
= P

({
ω ∈ D : ΠℓU

nk
0 = ΠℓU

mk
0

})
= 1,

by equality of the laws. This proves the claim.
Applying the arguments in Section 6.4 separately to

Ū nk , W̃ nk , Ū nk
0 , Ū , W̃ , Ū0 and Û mk , W̃ nk , Û mk

0 , Û , W̃ , Û0,
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it follows that
(

Ū , W̃ , Ū0

)
and

(
Û , W̃ , Û0

)
are both weak martingale solutions, relative to the

same stochastic basis S̃ =

(
D̃, F̃ ,

{
F̃t

}
t∈[0,T ]

, P̃, W̃
)

, W̃ = W̃ v, W̃w, where

F̃t = σ
(
σ
(
Ū
⏐⏐
[0,t], Û

⏐⏐
[0,t], W̃

⏐⏐
[0,t], Ū0

)⋃{
N ∈ F̃ : P̃(N ) = 0

})
, t ∈ [0, T ].

Denote by µnk ,mk and µ the joint laws of
(

Ū nk , Û mk
)

and
(

Ū , Û
)

, respectively. Then, in view

of (8.1), µnk ,mk ⇀ µ as k → ∞. Since Ū0 = Û0 P̃-a.s., Theorem 7.2 ensures that Ū = Û
P̃-a.s. (in XU ). Hence, since this implies

µ ({(X, Y ) ∈ XU × XU : X = Y }) = P̃
({
ω ∈ D̃ : Ū (ω) = Û (ω)

})
= 1,

we can appeal to Lemma 3.3, cf. Remark 3.4, to complete the proof.
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