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2 4–manifolds and intersection forms with

local coefficients

Kim A. Frøyshov ∗

Abstract

We extend Donaldson’s diagonalization theorem to intersection forms
with certain local coefficients, under some constraints. This provides
new examples of non-smoothable topological 4–manifolds.

1 Introduction

A celebrated early theorem of Donaldson [3, 4] says that if the intersec-
tion form of a closed, oriented smooth 4–manifold V is negative definite,
then it is standard, i.e. there is a basis for H2(V ;Z)/torsion with respect
to which the form is diagonal. The proof involved a careful study of a cer-
tain SU(2)–instanton moduli space over V . Later, Fintushel and Stern [7]
found a simpler proof using SO(3)–instanton moduli spaces in the case when
H1(V ;Z) contains no 2–torsion. (The assumption on the torsion can be re-
moved by using results from [4], see [12].) In either variant of the proof an
essential point is the link between the intersection form of V and Abelian
reducibles in the moduli spaces, which are represented by connections with
stabilizer U(1). In SO(3)–moduli spaces there is also a second type of re-
ducible, namely the twisted reducibles, which are represented by connections
with stabilizer Z/2 (among all automorphisms of the SO(3)–bundle). In
this paper we will show that these are related to the intersection forms of V
with certain local coefficients. We use this to partially extend Donaldson’s
theorem to such forms. We will now explain our result in more detail.

We generalize the setup somewhat and consider a compact, connected,
oriented, smooth 4–manifold X with boundary Y . Let ℓ→ X be any bundle
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of infinite cyclic groups. Recall that the set of isomorphism classes of such
bundles form an Abelian group isomorphic to H1(X;Z/2). Let H∗(X; ℓ) be
the singular cohomology with ℓ as bundle of coefficients. Since ℓ ⊗ ℓ = Z,
the cup product defines a homomorphism

H2(X; ℓ) ⊗H2(X,Y ; ℓ) → H4(X,Y ;Z) = Z. (1)

Now suppose Y is an integral homology sphere. ThenH2(X,Y ; ℓ) = H2(X; ℓ),
and (1) induces a unimodular quadratic form QX,ℓ on H2(X; ℓ)/torsion,
which we refer to as the intersection form of X with coefficients in ℓ. When
ℓ is trivial this is of course the usual intersection form of X. The signature
of QX,ℓ is independent of ℓ. As observed in [18, p. 587], the same holds for
the quantity

b0(X; ℓ)− b1(X; ℓ) + b+(X; ℓ),

where bj(X; ℓ) := rankHj(X; ℓ) and b+2 (X; ℓ) denotes the dimension of a
maximal positive subspace for QX,ℓ. For any non-trivial ℓ one therefore has

− b1(X; ℓ) + b+(X; ℓ) = 1− b1(X) + b+(X), (2)

where bj(X) := bj(X;Z) and b+(X) := b+(X;Z).
For any Abelian group G let HF∗(Y ;G) denote the instanton Floer coho-

mology group with coefficients in G, see [8, 5]. This is the cohomology of a
cochain complex CF∗⊗G, where CFq is the free Abelian group generated by
gauge equivalence classes of irreducible (perturbed) flat SO(3)–connections
over Y of index q ∈ Z/8, and the differential d : CFq → CFq+1 counts instan-
tons over the cylinder R×Y interpolating between two given irreducible flat
connections. Counting SO(3)–instantons over R × Y with trivial flat limit
at +∞ yields a homomorphism δ : CF4 → Z which satisfies δd = 0 (see [12])
and therefore induces a homomorphism

δ0 : HF
4(Y ;G) → G.

Before stating the main result of this paper we need one more definition:

τ(X) := dimZ/2 [torsion(H1(X;Z)) ⊗ Z/2]

= b1(X;Z/2) − b1(X),

where bj(X;Z/2) := dimZ/2Hj(X;Z/2).

Theorem 1.1 Let X be any compact, connected, oriented, smooth 4–manifold
whose boundary Y is an integral homology sphere, and such that

τ(X) + b+(X) ≤ 2. (3)
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Let ℓ → X be any non-trivial bundle of infinite cyclic groups. If QX,ℓ is
non-standard negative definite and H2(X; ℓ) contains no element of order 4
then

δ0 : HF4(Y ;Z/2) → Z/2

is non-zero.

Corollary 1.1 Let V be any closed, connected, oriented, smooth 4–manifold
such that

τ(V ) + b+(V ) ≤ 2.

Let ℓ→ V be any non-trivial bundle of infinite cyclic groups such that QV,ℓ

is negative definite and H2(V ; ℓ) contains no element of order 4. Then QV,ℓ

is standard.

Proof. This follows from the theorem by taking X to be the complement
of an open 4–ball in V , and recalling that HF∗(S3;Z/2) = 0.

Remarks. (i) Under the hypotheses of the corollary, V cannot be spin.
For in that case the usual intersection form QV would be even with nega-
tive signature, so QV could not be definite by Donaldson’s theorem. The
condition b+(V ) ≤ 2 would then violate a theorem of Furuta [14].

(ii) If b1(X) = 1 and τ(X) = 0 then H2(X; ℓ) does not even have any
element of order 2, see Proposition 2.1.

(iii) The author does not know whether the theorem holds without
the assumptions on τ(X) + b+(X) and (in general) elements of order 4 in
H2(X; ℓ), despite attempts at finding counterexamples.

(iv) The statement of the theorem holds when ℓ is trivial too, and with-
out the assumption τ(X) ≤ 2. However, we prefer to take that up in a
separate paper.

(v) One reason for the appearance of the term τ + b+ in the theorem is
that this quantity is invariant under surgery on any circle in the interior of
X which represents a non-zero class in H1(X;Z/2), see Lemma 8.1.

Proposition 1.1 Let V be any closed, oriented topological 4–manifold whose
intersection form QV is non-standard negative definite. Suppose H1(V ;Z)
contains no element of order 4. Let either

(i) W = Σ×S2, where Σ is any closed, oriented, connected surface of genus
at least 1, or

(ii) W = Y × S1, where Y is any closed, oriented 3–manifold.
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If τ(V )+ τ(W )+ b+(W ) ≤ 2, then V#W does not admit any smooth struc-
ture.

Of course, if W = Σ × S2 then τ(W ) = 0 and b+(W ) = 1, whereas if
W = Y × S1 then τ(W ) = τ(Y ) and b+(W ) = b1(Y ).

Proof. (i) We may assume that V is connected and that QV is negative
definite. Let ℓ → W := Σ × S2 be any non-trivial bundle of infinite cyclic
groups. The exact sequence (4) below yields

torsion(H1(W ; ℓ)) = Z/2, H2(W ; ℓ) = Z/2.

Let ℓ′ → V ′ := V#W be the bundle which corresponds to the trivial bundle
over V and to ℓ over W . Then the group

H1(V
′; ℓ′) = H1(V ;Z)⊕H1(W ; ℓ)

contains no element of order 4. By the universal coefficient theorem (see (6)
below) the same holds for H2(V ′; ℓ′). As for the intersection forms one has

QV ′,ℓ′ = QV ,

so it follows from Corollary 1.1 that V ′ cannot admit any smooth structure.
(ii) Let ℓ → W := Y × S1 be the pull-back of the non-trivial Z–bundle

over S1. Using the exact sequence (4) below one finds that Hk(W ; ℓ) is a
finite group for all k, and that

H1(W ; ℓ) = H1(Y ;Z) / 2H1(Y ;Z) ≈ (Z/2)r

for some r. We can now argue as in (i).

When combined with Freedman’s classification of simply-connected, closed,
oriented topological 4–manifolds [10] this yields many examples of non-
smoothable indefinite 4–manifolds, also with odd intersection form. In
the case of even intersection form such examples can also be found using
Rochlin’s theorem or Furuta’s theorem.

Note that if V is simply connected and negative definite, say, then
V#CP

2 is smoothable, since by Freedman’s theorem and the classification
of odd indefinite forms it is homeomorphic to CP

2#(−nCP2) for some n.
In a slightly different direction, Friedl–Hambleton–Melvin–Teichner [11]

have proved that a certain negative definite closed, oriented topological 4–
manifold V with π1(V ) = Z and b2(V ) = 4 is not smoothable by applying
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Donaldson’s diagonalization theorem to the finite coverings of V . (A survey
of related material can be found in [15].)

After some preliminaries in Section 2 on (co)homology with local coeffi-
cients, Section 3 introduces what is probably the main novelty in the paper
as far as gauge theory is concerned: Given any SO(3)–bundle E → Z, where
Z is a smooth, compact manifold, and any loop γ : S1 → Z, we define a
double covering Ξγ → Uγ , where Uγ is a certain open subset of the orbit
space B(E) of all connections in E (of a given Sobolev type). The subset Uγ

contains all irreducible connections as well as some reducibles including all
Abelian ones. In Section 4 we classify non-flat twisted reducible instantons
over certain 4–manifolds W with a tubular end. The local structure around
these reducibles is described in Section 5, whereas Abelian reducibles are
discussed in Section 6. Section 7 proves three lemmas on Banach manifolds.
Section 8 contains the proof of the theorem. This begins by reducing the
problem to the case b1(X) = 1+b+(X) by doing surgery on a suitable collec-
tion of disjoint circles in X. We then study the moduli space Mk of instan-
tons with trivial limit in a certain SO(3)–bundle over W := X ∪Y (R+×Y ).
The irreducible part M∗

k is cut down to a 1–manifold using sections of the
real line bundles corresponding to suitable double coverings Ξγ . The ends of
this 1–manifold are associated to twisted reducibles inMk and factorizations
over the end of W . Of course, the number of ends must be zero modulo 2.

The advantage of reducing to the case b1 = 1+b+ is that then, generically,
all non-flat twisted reducibles in the moduli spaces are isolated. Working
directly with the original manifold X would require dealing with positive-
dimensional families of twisted reducibles. This technically more difficult
situation has been studied by Teleman [24]. However, it is not clear to this
author whether one can expect stronger results with such a direct approach.

After this paper was submitted the preprint [20] appeared, which ad-
dresses similar issues for closed 4–manifolds, using Seiberg–Witten theory.

Acknowledgement: The author is grateful to the anonymous referee
for the careful reading of the manuscript and many suggestions. He would
also like to thank Ian Hambleton and Bjørn Jahren for helpful correspon-
dence.

2 Homology and cohomology with local coefficients

This section contains mostly background material.
(I) This part is concerned with singular (co)homology with local coef-

ficients. Let X be any space. For any bundle E → X of discrete Abelian
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groups we denote by C∗(X;E) the singular chain complex of X with values
in E, as defined in [16]. A short exact sequence

0 → E′ → E → E′′ → 0

of morphisms of such bundles induces a short exact sequence of chain com-
plexes

0 → C∗(X;E′) → C∗(X;E) → C∗(X;E′′) → 0

which in turn yields a long exact sequence relating the corresponding ho-
mology groups H∗(X; ·). Similar statements hold for the singular cochain
complexes and cohomology groups H∗(X; ·).

Now let p : X̃ → X be any double covering and ℓ → X the associated
bundle of infinite cyclic groups. Consider the Z

2–bundle

E := X̃ ×
Z/2

Z
2

over X, where 1 ∈ Z/2 acts on X̃ by flipping the sheets of the covering and
on Z

2 by permuting the factors. Then

H∗(X;E ⊗G) = H∗(X̃ ;G)

for any Abelian group G, and similarly for cohomology. There is a canonical
short exact sequence of bundles

0 → ℓ→ E → Z → 0

which induces a long exact sequence

· · · → Hk(X; ℓ) → Hk(X̃ ;Z)
p∗
→ Hk(X;Z) → Hk−1(X; ℓ) → · · · . (4)

We will use the notation λ (resp. λ) for ℓ⊗R thought of as a real line bundle
(resp. a bundle with discrete fibres) over X. By the universal coefficients
theorem (see [22, p. 283]) one has

H∗(X; ℓ)⊗ R = H∗(X;λ)

in each degree in which H∗(X; ℓ) is finitely generated. There is a canonical

isomorphism of bundles R⊕ λ
≈
→ E ⊗ R, which induces an isomorphism

H∗(X̃ ;R) = H∗(X;R)⊕H∗(X;λ).

The two summands correspond to the ±1 eigenspaces of the endomorphism
of H∗(X̃;R) induced by the involution of X̃ (i.e. the action of 1 ∈ Z/2). If
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X is a smooth manifold then H∗(X;λ) can be computed as the de Rham
cohomology associated to the flat bundle λ (see [1]). When working with
de Rham cohomology it is natural to write bj(X;λ) instead of bj(X; ℓ), and
similarly for b+.

There is also a relationship with mod 2 (co)homology, for arbitrary X:
The short exact sequence

0 → ℓ
·2
→ ℓ→ Z/2 → 0

of bundles gives rise to a long exact sequence

· · · → Hq(X; ℓ)
·2
→ Hq(X; ℓ) → Hq(X;Z/2) → Hq−1(X; ℓ) → · · · (5)

as well as a similar sequence for cohomology. Furthermore, because ℓ∗ = ℓ
the universal coefficient theorem yields a split short exact sequence

0 → Ext(Hq−1(X; ℓ),Z) → Hq(X; ℓ) → Hom(Hq(X; ℓ),Z) → 0. (6)

Proposition 2.1 Let X be any compact manifold (with or without bound-
ary) such that H1(X;Z/2) = Z/2. Let ℓ → X be any non-trivial bundle of
infinite cyclic groups. Then H1(X; ℓ) is a finite group of odd order, hence
by (6) the group H2(X; ℓ) contains no 2–torsion.

Proof. Because X is a manifold and ℓ is non-trivial, H0(X; ℓ) = Z/2.
Thus (5) yields an exact sequence

H1(X; ℓ)
·2
→ H1(X; ℓ) → 0.

SinceX is a compact manifold, H∗(X; ℓ) is finitely generated, henceH1(X; ℓ)
must be a finite group on which multiplication by 2 is an isomorphism.

We will now state a version of Poincaré duality for local coefficients. Let
X be a closed topological n–manifold and OX → X the orientation bundle,
whose fibre over x ∈ X is

Ox = Hn(X,X\{x};Z).

Let [X] ∈ Hn(X;OX ) be the fundamental class, which is the unique class
whose image in

Hn(X,X\{x};OX ) = Hn(X,X\{x};Ox) = Ox ⊗Ox = Z

is 1 for every x ∈ X. Let R be a commutative ring with identity.

7



Proposition 2.2 For any closed topological n–manifold X and any bundle
E → X of R–modules, cap product with [X] defines an isomorphism

Hp(X;E)
≈
→ Hn−p(X;E ⊗OX)

for every p.

Proof. The proof in [16] for R–oriented X and E = R carries over with
virtually no changes.

Other duality theorems for (co)homology with local coefficients can be
found in [23].

Now suppose X is a closed oriented topological n–manifold and λ → X
a bundle of infinite cyclic groups. Then it follows from Proposition 2.2
and the universal coefficient theorem (6) (recalling that H∗(X; ℓ) is finitely
generated) that the intersection form QX,ℓ is unimodular. The same holds if
X has an integral homology sphere as boundary, as one can see by applying
the previous result to the double of X and noting that the intersection form
of the double is the orthogonal sum of the intersection forms of the two
pieces.

(II) In this part we use Čech cohomology. Recall that for any para-
compact space X the first Chern class induces an isomorphism between the
group of isomorphism classes of complex line bundles over X and the co-
homology group H2(X;Z). We will now give a similar interpretation of
H2(X; ℓ). Let X̃, λ be as in (I) and set

K := X̃ ×Z/2 C = R⊕ λ,

where 1 ∈ Z/2 acts on X̃ by flipping the sheets and on C by complex conju-
gation. Here C has the Euclidean topology, so that K is a real vector bundle
over X. Since conjugation is a field automorphism, K is a bundle of fields
isomorphic to C. Let K∗ ⊂ K be the subspace of non-zero vectors thought
of as a bundle of multiplicative groups, and let K and K∗ denote the sheaves
of continuous sections of K and K∗, resp. By a K–line bundle we mean
a bundle L → X such that each fibre Lx is a 1–dimensional vector space
over Kx, and such that these data satisfy the usual axiom of local triviality.
A local trivialization of L over an open subset U ⊂ X is an isomorphism
L|U

≈
→ K|U of K|U–modules. An atlas of such local trivializations gives

rise to a Čech cocycle with values in K∗. Standard arguments show that
L is classified up to isomorphism by the corresponding cohomology class
c̃1(L) ∈ H1(X;K∗). If X is paracompact then the short exact sequence of
sheaves

0 → ℓ→ K
exp
→ K∗ → 1 (7)
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yields an isomorphism H1(X;K∗)
≈
→ H2(X; ℓ), and we obtain:

Proposition 2.3 For any paracompact space X the characteristic class c̃1
induces an isomorphism between the group of isomorphism classes of K–line
bundles and the cohomology group H2(X; ℓ).

Note that Λ2L = λ, so for the first Stiefel–Whitney class one has

w1(L) = w1(λ).

Furthermore, c̃1(L) maps to w2(L) under the homomorphism H2(X; ℓ) →
H2(X;Z/2).

By a Hermitian K–line bundle we mean a K–line bundle equipped with
a Euclidean metric such that multiplication with any unit vector in Kx is
an orthogonal transformation of Lx, for any x ∈ X.

We now turn to the smooth category. The proof of the following propo-
sition is similar to that of Proposition 2.3.

Proposition 2.4 For any smooth manifold X the characteristic class c̃1
induces an isomorphism between the group of isomorphism classes of smooth
Hermitian K–line bundles and the cohomology group H2(X; ℓ).

Let L→ X be a smooth Hermitian K–line bundle. If A is any (orthog-
onal) connection in L then its curvature FA is a 2–form on X with values
in the bundle so(L) of skew-symmetric endomorphisms of L. Under the iso-

morphism λ
≈
→ so(L) (defined by multiplication with elements from λ) the

closed form FA ∈ Ω2(X;λ) represents the image of −2πc̃1(L) in H
2(X;λ).

(One can deduce this last statement from the known case when ℓ is trivial
by pulling A back to X̃ and noting that H2(X;λ) → H2(X̃ ;R) is injective.)

3 SO(3)–connections and holonomy

Let Z be a connected smooth n–manifold, possibly with boundary, and
E → Z an oriented, Euclidean 3–plane bundle. Fix p > n and let A be
an (orthogonal) Lp

1,loc connection in E. Let ΓA denote the group of Lp
2,loc

automorphisms of E which preserve A. Just as for smooth connections, ΓA is
isomorphic to the centralizer of the holonomy group Holz(A) ⊂ Aut(Ez) ≈
SO(3) at any point z ∈ Z. Recall that any positive-dimensional proper
closed subgroup of SO(3) is conjugate to either U(1) or O(2), and these
subgroups have centralizer U(1) and Z/2, resp. We will call the connection
A

9



• irreducible if ΓA = {1}, otherwise reducible,

• Abelian if ΓA ≈ U(1),

• twisted reducible if ΓA ≈ Z/2.

Now suppose A is smooth. Then A is reducible if and only if it preserves
a rank 1 subbundle λ ⊂ E. If in addition A is not flat then λ is unique
(because a non-flat connection A has holonomy close to but different from
1 around suitable small loops in Z). In that case A is Abelian if λ is trivial
and twisted reducible otherwise.

Now suppose Z is compact. Let A denote the affine Banach space con-
sisting of all Lp

1 connections in E and let G be the Banach Lie group of all
Lp
2 automorphisms of E. Then G acts smoothly on A and we denote the

quotient space by B = B(E). It follows easily from the local slice theorem
(see [6, p. 132 and p. 192] and [13, Section 2.5]) that B is a regular topologi-
cal space. Since B is also second countable, it is metrizable by the Urysohn
metrization theorem [17]. Hence B is paracompact, and the same holds for
any subspace of B.

LetA∗ ⊂ A be the subset of irreducible connections. Then B∗ := A∗/G is
a Banach manifold. In the proof of the theorem we will take p to be an even
integer, to make sure that B∗ possesses smooth partitions of unity. (In [19]
the existence of smooth partitions of unity is established for paracompact
Hilbert manifolds. The proof carries over to paracompact Banach manifolds
B modelled on a Banach space (E, ‖ · ‖) such that ‖ · ‖t is a smooth function
on E for some t > 0. This includes B = B∗ when p is an even integer, with
t = p.)

Recall that the Lie group Aut(Ez) ≈ SO(3) has a non-trivial double
covering

Ãut(Ez) → Aut(Ez), (8)

where Ãut(Ez) is isomorphic to the group Sp(1) of unit quaternions. Let G

act on Aut(Ez) by conjugation with u(z) and on Ãut(Ez) by conjugation

with any lift of u(z) to Ãut(Ez). Then the covering map (8) is G–equivariant.
It follows from the local slice theorem that A∗ → B∗ is a principal G–bundle,
hence

A∗ ×G Ãut(Ez) → A∗ ×G Aut(Ez) (9)

is a double covering. Now let γ : S1 → Z be a loop based at z. Pulling back
(9) by the smooth map

B∗ → A∗ ×G Aut(Ez), [A] 7→ [A,Holγ(A)]
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yields a double covering of B∗. We will now show that this extends to a
double covering Ξγ → Uγ , where Uγ ⊂ B contains B∗ as well as certain
reducibles.

Definition 3.1 (i) Let Uγ ⊂ B be the subspace consisting of those [A] such

that there are two points in A ×G Ãut(Ez) lying above [A,Holγ(A)] ∈
A×G Aut(Ez).

(ii) Let Ξγ ⊂ A ×G Ãut(Ez) be the subspace consisting of those [A, g] such

that [A] ∈ Uγ and g ∈ Ãut(Ez) is a lift of Holγ(A).

Remark: Note that [A] ∈ B lies in the complement of Uγ if and only if

there exists a u ∈ ΓA such that u interchanges the two points in Ãut(Ez)
lying above Holγ(A), or equivalently, such that u(z) and Holγ(A) are both
reflections and have perpendicular axes of rotation.

Proposition 3.1 Let [A] ∈ B.

(i) If A is Abelian, then [A] ∈ Uγ .

(ii) Let A be twisted reducible and let λ ⊂ E be the 1–eigenspaces of the
non-trivial element of ΓA. Then [A] ∈ Uγ if and only if γ∗λ is trivial.

Note that elements of G are of class C1 by the Sobolev embedding the-
orem, hence the subbundle λ ⊂ E in (ii) is of class C1.

Proof. (i) If ΓA ≈ U(1) then ΓA is the centralizer of any non-trivial
element x ∈ ΓA with x2 6= 1. Hence Holz(A) ⊂ ΓA, so [A] ∈ Uγ by the
above remark.

(ii) Since A preserves the subbundle λ, the holonomy Holγ(A) acts as
ǫ = ±1 on the fibre λz. Therefore, [A] ∈ Uγ if and only if ǫ = 1, or
equivalently, if γ∗λ is trivial.

Proposition 3.2 Uγ is an open subset of B, and the canonical projection
Ξγ → Uγ is a double covering.

Proof. We give a proof which does not require the local slice theorem.
After choosing a framing of Ez we can identify the covering (8) with the
adjoint representation Sp(1) → SO(3). Fix A ∈ A with [A] ∈ Uγ and a lift
q ∈ Sp(1) of Holγ(A). For ǫ > 0 set

Pǫ := A+
◦
Dǫ,

11



where
◦
Dǫ ⊂ Lp

1(Z; so(E)) is the open ǫ–ball about the origin. Let π : A → B
be the projection. This is an open map, since B is the quotient of A with
respect to a group action. Hence π(Pǫ) ⊂ B is an open neighbourhood of
[A]. If B ∈ Pǫ with ǫ sufficiently small then Holγ(B) · Holγ(A)

−1 will not
be a reflection and so has a unique lift g(B) ∈ Sp(1) with positive real part.
Then

f(B) := g(B)q

is a lift of Holγ(B). A simple convergence argument shows that if ǫ is
sufficiently small and B ∈ Pǫ, u ∈ G are such that u(B) ∈ Pǫ then

f(u(B)) = u · f(B).

For such ǫ we have π(Pǫ) ⊂ Uγ , and the map [B] 7→ [B, f(B)] is a continuous
section of Ξγ over π(Pǫ). Changing the sign of f yields a different section
and altogether a trivialization of Ξγ over π(Pǫ).

4 Moduli spaces and twisted reducibles

Let W be any oriented, connected, Riemannian 4–manifold with one cylin-
drical end R+ × Y , where Y is an integral homology sphere. (Thus, the
complement of R+ × Y is compact). Let E → W be an oriented Euclidean
3–plane bundle. Choose a trivialization of E|R+×Y . For any non-degenerate
flat connection ρ in the product SO(3)–bundle E0 → Y let M(E, ρ) denote
the moduli space of instantons in E that are asymptotic to ρ over the end.
We briefly recall the construction of this moduli space, following [5, 13].
Choose a smooth reference connection Aref in E whose restriction to the
R+ × Y is the pull-back of ρ. Introduce the space

A = A(E, ρ) := Aref + Lp,w
1 (W ; so(E))

of Sobolev connections, where w is a small exponential weight as in [13,
Subsection 2.1] (which is actually only needed when ρ is reducible). There
is a Banach Lie group G (consisting of certain Lp

2,loc gauge transformations)
acting on A, and M(E, ρ) is the subspace of the quotient space B := A/G
consisting of all [A] satisfying F+

A = 0.
If u : Y → SO(3) then the moduli spaces with limits ρ and u(ρ), resp.,

can be identified if u is null-homotopic; otherwise the expected dimensions
of these moduli spaces differ by 4 deg(u). Let RY denote the space of gauge
equivalence classes of flat connections in E0, and let R∗

Y be the irreducible
part of RY . It will be convenient to denote a moduli space M(E, ρ) of
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expected dimension d by Mα,d, where α = [ρ] ∈ RY . In the particular
case when ρ is trivial, however, we will usually label the moduli space by
k = −p1(E, ρ) ∈ H4

c (W ;Z) = Z, where p1(E, ρ) is the relative Pontryagin
class. Note that as ρ varies, k runs through a set of the form k0 + 4Z,
k0 ∈ Z. Thus, Mk will denote the moduli space with trivial limit and
expected dimension

dimMk = 2k − 3δ(W ),

where
δ(W ) := 1− b1(W ) + b+(W ). (10)

If Mk is non-empty then for every [A] ∈Mk one has

8π2k =

∫

W
tr(FA ∧ FA) =

∫

W
|F−

A |2 ≥ 0. (11)

After perturbing the Riemannian metric on W in a small ball we may
assume that there is no [A] ∈ Mk, for any k > 0, such that A preserves a
real line bundle λ ⊂ E with b+(W ;λ) > 0. (This can be proved along the
same lines as the untwisted case [6, Corollary 4.3.15], cf. [18, Lemma 2.4].)

For the remainder of this section assume

k > 0, δ(W ) = 0. (12)

Then Mk = Mθ,2k, where θ ∈ RY is the class of trivial connections. Let
M∗

k ,M
red
k ,M tred

k be the subsets ofMk consisting of the irreducible, reducible,
and twisted reducible points, resp.

Proposition 4.1 There is a canonical bijection between M tred

k and the set
P of equivalence classes of pairs (ℓ, c), where ℓ→W is a non-trivial bundle
of infinite cyclic groups, c ∈ H2(W ; ℓ), and such that for λ := ℓ⊗R one has

b+(W ; ℓ) = 0, w1(λ)
2 + [c]2 = w2(E), c2 = −k,

where [c]2 denotes the image of c in H2(W ;Z/2).

Here two such pairs (ℓ, c), (ℓ′, c′) are deemed equivalent if there is an

isomorphism ℓ
≈
→ ℓ′ such that c 7→ c′ under the induced isomorphism

H2(W ; ℓ)
≈
→ H2(W ; ℓ′).

Proof. (i) To define this bijection, let [A] ∈ M tred
k . We may assume

A is smooth. Since A is not flat, it preserves a unique non-trival rank 1
subbundle λ ⊂ E. Let K = R ⊕ λ be the corresponding bundle of fields
as in Section 2. The orthogonal complement L ⊂ E of λ is in a canonical
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way a K–line bundle. The module structure is given as follows: For x ∈W ,
(a, b) ∈ R⊕ λx, v ∈ Lx set

(a, b) · v := av + b× v, (13)

where b × v is the cross product in the 3–dimensional, oriented, Euclidean
vector space Ex. Let ℓ ⊂ λ denote the lattice of vectors of integer length
and set c := c̃1(L) ∈ H2(W ; ℓ). It is clear that different representatives A
of the same point in M tred

k are mapped to equivalent pairs (ℓ, c).
We now verify that (ℓ, c) has the required properties. By choice of metric

on W we must have b+(W ; ℓ) = 0. Furthermore,

w2(E) = w2(λ⊕ L) = w1(λ) ∪ w1(L) + w2(L) = w1(λ)
2 + [c]2.

Secondly, let B denote the connection in L induced by A. Then FB takes
values in λ, and one has

tr(FA ∧ FA) = −2FB ∧ FB ∈ Ω4(W ).

Since FB decays exponentially, we obtain
∫

W
tr(FA ∧ FA) = −2

∫

W
FB ∧ FB = −8π2c2,

hence c2 = −k.
(ii) Now suppose A,A′ ∈ A are smooth connections representing points

in M tred
k , and that the corresponding pairs (ℓ, c), (ℓ′, c′) are equivalent

through an isomorphism f : ℓ
≈
→ ℓ′. Let E = λ ⊕ L and E = λ′ ⊕ L′

be the splittings preserved by A and A′, resp., and let K,K ′ be the bundles
of fields corresponding to λ, λ′, resp. Let φ : K → K ′ be the isomorphism
induced by f . By means of φ, we turn L′ into an Hermitian K–line bundle
which we denote by L′

φ. It is easy to check that f∗(c̃1(L
′
φ)) = c̃1(L

′), so
by Proposition 2.4 there is an isomorphism ψ : L → L′

φ of Hermitian K–
line bundles. Combining φ|λ and ψ we obtain an isomorphism of Euclidean
vector bundles

u : E = λ⊕ L→ λ′ ⊕ L′ = E.

To see that u preserves orientations, let a ∈ λx and b ∈ Lx be of unit length.
Then (a, b, a × b) is a positive orthonormal basis for Ex. Under u this is
mapped to (φ(a), ψ(b), φ(a) × ψ(b)), which is also a positive orthonormal
basis.

We may assume A and A′ are in temporal gauge. Then L and L′ will
be translationary invariant over the end W+ := R+ × Y with respect to the

14



chosen trivialization of E|W+. Let v be the non-trivial element of ΓA and
let A|W+ = d + a, where d denotes the product connection. Then over the
end one has

0 = dAv = dv + av − va.

Since v is translationary invariant over the end and

∫

[t,t+1]×Y
|a|p → 0 as t→ ∞,

we conclude that dv = 0 onW+. The same holds for the non-trivial element
of ΓA′ . Hence

L|W+ =W+ × C, L′|W+ =W+ × C ′

for some 2–dimensional subspaces C,C ′ ⊂ R
3. Now ψ|W+ is given by a

smooth map
ψ̃ : W+ → SO(C,C ′),

where SO(C,C ′) ≈ S1 is one specific component of the space of linear
isometries C → C ′, the component being determined by the isomorphism
f : ℓ→ ℓ′. But every map C → S1 is null-homotopic, since H1(W+;Z) = 0.
We may therefore choose the isomorphism ψ such that ψ̃ is constant on
[1,∞)×Y , say. Then du = 0 on [1,∞)×Y , so u ∈ G. Set A′′ := u−1(A′) ∈ A.

Recall that the cross product on E defines a canonical isomorphism E
≈
→

so(E). Under this isomorphism, the difference b := A′′ −A is a 1–form with
values in λ. More precisely, b ∈ Lp,w

1 (W ; Λ1 ⊗ λ). Moreover,

FA′′ = FA + db,

so d+b = 0. Since b1(W ; ℓ) = 0 by (2) there is a section ξ ∈ Lp,w
2 (W ;λ) such

that dξ = b. Set v = exp(ξ). Then v(A′′) = A, so A and A′ represent the
same point in M tred

k .
(iii) We will now show that every class [ℓ, c] ∈ P is the image of some

point [A] ∈ M tred
k . Define λ,K in terms of ℓ as in Section 2. Choose a

K–line bundle L → W with c̃1(L) = c. The hypotheses on ℓ, c imply that
λ⊕ L and E have the same second Stiefel–Whitney class, hence these bun-
dles are isomorphic (see [2, p. 674] and [9, Theorem E.8]); we will identify
them. Since L is trivial over the end of W , there is an orthogonal connec-
tion A′ in E which respects the given splitting and is flat over the end of
W . Since d+ : Ω1(W ;λ) → Ω+(W ;λ) induces a surjective map Lp,w

1 → Lp,w

between Sobolev spaces with a small positive weight (cf. the proof of [13,
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Prop. 5.1.2]), there is an a ∈ Lp,w
1 such that A := A′ + a satisfies F+

A = 0.
Clearly, [A] ∈M tred

k is mapped to [ℓ, c].

Now fix ℓ → W and let Pℓ be the set of points in P of the form [ℓ, c].
Suppose Pℓ 6= ∅ (which implies b+(W ; ℓ) = 0) and choose a c with [ℓ, c] ∈ Pℓ.
Let Tℓ be the torsion subgroup of H2(W ; ℓ) and for any v ∈ H2(W ; ℓ) let v̄
denote the image of v in H2(W ; ℓ)/Tℓ. Set

Pc := {{r, s} ⊂ H2(W ; ℓ)/Tℓ | r · s = 0; r + s = c̄},

where {r, s} means the unordered set.

Proposition 4.2 |Pℓ| = |2Tℓ| · |Pc|.

Here | · | denotes the cardinality of the given set. Note that 2Tℓ has even
order if and only if H2(W ; ℓ) contains an element of order 4.

Proof. Let P̃ℓ be the set of all v ∈ H2(W ; ℓ) such that [ℓ, v] ∈ P . Set

α : P̃ℓ → Pℓ, v 7→ [ℓ, v].

Since the only non-trivial automorphism of ℓ is given by multiplication by
−1, we have

α(v) = α(v′) ⇐⇒ v = ±v′.

Because k 6= 0 it follows that α is two-to-one, hence

|P̃ℓ| = 2|Pℓ|.

Now let P̃c be the set of all ordered pairs (r, s) such that {r, s} ∈ Pc. Because
k 6= 0 one has r 6= s for all such r, s, hence

|P̃c| = 2|Pc|.

It follows from the long exact sequence

· · · → H2(W ; ℓ)
·2
→ H2(W ; ℓ) → H2(W ;Z/2) → · · · (14)

(see Section 2) that the map

P̃ℓ → P̃c, v 7→

(
c̄+ v̄

2
,
c̄− v̄

2

)

induces a bijection P̃ℓ/2Tℓ → P̃c, where 2Tℓ acts on P̃ℓ by translation, hence

|P̃ℓ| = |2Tℓ| · |P̃c|

and the proposition is proved.

16



5 Local structure around twisted reducibles

We continue the discussion of the previous section, under the assumptions
(12).

We do not know if the twisted reducibles in Mk are regular points of Mk

for a generic tubular end metric on W (although there is a generic metric
theorem of this kind for closed 4–manifolds, see [18, Lemma 2.4]). However,
regularity of these reducibles can be achieved by a simple local perturbation
of the instanton equation which is similar in spirit to that used in [3, p. 292].
To describe this perturbation, let Mk ⊂ B = A/G as in Section 4, and
suppose B ∈ A satisfies F+

B = 0 and preserves a splitting E = λ⊕L, where
λ is a non-trivial real line bundle. Then the non-trivial element of ΓB acts
on any fibre of λ⊕ L by (a, b) 7→ (a,−b). For any ǫ > 0 set

S0,ǫ = {a ∈ Lp,w
1 (W ; so(E)) | d∗Ba = 0, ‖a‖Lp,w

1
< ǫ},

where the Sobolev norm is defined in terms of B. This norm is equivalent
to the corresponding norm defined by the reference connection Aref because
of the Sobolev embedding Lp

1 ⊂ L∞ in R
4. (Recall that we are assuming

p > 4.) If ǫ is sufficiently small then Sǫ := B + S0,ǫ is a local slice to the
action of G. This means, firstly, that there is an open neighbourhood U of
1 ∈ G such that

U × Sǫ → A, (u,A) 7→ u(A)

is a diffeomorphism onto an open subset of A, and secondly, that the pro-
jection Sǫ/ΓB → B is injective. Then Sǫ/ΓB maps homeomorphically onto
an open neighbourhood of [B] in B, and the irreducible part of Sǫ/ΓB maps
diffeomorphically onto an open subset of B∗. The operator

−d∗B + d+B : Ω1 → Ω0 ⊕ Ω+,

acting on forms onW with values in so(E) ≈ E, induces a Fredholm operator
D : Lp,w

1 → Lp,w whose index is the expected dimension of Mk, i.e. ind(D) =
2k > 0. Therefore, there is a compact operator P such that D + P is
surjective. We will choose such a P of a particular kind. To describe this,
first note that

D = Dλ ⊕DL, (15)

where Dλ and DL act on forms with values in λ and L, resp. Now, Dλ is an
isomorphism, because λ is non-trivial and b+(W ;λ) = δ(W ) = 0. Therefore,
D + P is surjective if P is given by

Pa =

r∑

j=1

〈a, φj〉L2 · ωj ,
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where r is the dimension of the cokernel of DL, and φj ∈ Ω1
c(W ;L), ωj ∈

Ω+
c (W ;L) are suitably chosen. Choose a smooth function κ : [0,∞) →

[0,∞) such that κ(t) = 1 for t ≤ ǫ/3 and κ(t) = 0 for t ≥ 2ǫ/3. For any
a ∈ S0,ǫ set

p(B + a) := κ(‖a‖Lp,w
1

) · Pa.

Then p is a smooth ΓB–equivariant map Sǫ → Ω+
c (W ; so(E)). Moreover, p

extends uniquely to a smooth G–equivariant map A → Lp,w(W ; Λ+⊗so(E))
which vanishes outside GSǫ. This extension will also be denoted p.

The perturbed instanton equation that we have in mind is then

F+
A + p(A) = 0, (16)

for A ∈ A. Clearly, the linearization of this equation at B is surjective, since
it restricts to d+B + P on ker d∗B . Note that adding the perturbation p does
not affect the compactness properties of the corresponding moduli space. If
we take ǫ > 0 sufficiently small, then the classification of twisted reducibles
in Proposition 4.1 is also not affected.

More generally, we may add one such local perturbation p for each of a
finite number of twisted reducibles in B. Usually, the perturbations will be
suppressed from notation.

Having resolved the regularity issue, we now describe the local structure
around a regular twisted reducible in Mk.

In the next lemma Z will denote a compact, connected codimension 0
submanifold of W . Consider the double covering Ξγ → Uγ associated to the
bundle E|Z and a loop γ : S1 → Z based at z ∈ Z.

Lemma 5.1 Suppose [B] is a regular point of Mk such that B preserves
a non-trivial real line bundle λ ⊂ E. Then under the restriction map R :
M∗

k → Uγ, the pull-back of the double covering Ξγ → Uγ is trivial over the
link of [B] in Mk if and only if γ∗λ is trivial.

The fact that Ξγ → Uγ is a double covering was proved in Proposition 3.2.
By the “link” we mean the boundary ∂N ≈ RP

2k−1 of a compact neigh-
bourhood N of [B] in Mk to be constructed in the proof.

Proof. If γ∗λ is trivial then [B] ∈ Uγ by Proposition 3.1, so there is a
well-defined restriction map

R̄ :M∗
k ∪ {[B]} → Uγ .

Since Ξγ → Uγ is locally trivial, R̄∗Ξγ is trivial on a neighbourhood of [B].

18



Now suppose γ∗λ is non-trivial. We may assume B ∈ A is smooth.
Recall that the kernel K of the operator (15) consists entirely of forms with
values in L. Therefore the non-trivial element of ΓB acts as −1 on K.

For a small r > 0 let Dr ⊂ K be the closed r–ball around the origin
with respect to some ΓB–invariant inner product on K. By the local slice
theorem there is a smooth ΓB–equivariant embedding

Q := B +Dr → A

whose composition with the projection A → B induces a homeomorphism
of Q/ΓB onto a compact neighbourhood N of [B] in Mk.

Let Q̃→ Q be the pull-back of the double covering (8) under Holγ : Q→
Aut(Ez). Since Q is contractible, Q̃→ Q is a trivial double covering. There
is now a commutative diagram

∂Q̃/ΓB → R∗Ξγ

↓ ↓
∂Q/ΓB → M∗

k

where the horizontal maps are the embeddings induced by Q → A. The
image of the bottom map is ∂N , so what we need to show is that the left-
most map is a non-trivial covering. Since γ∗λ is non-trivial, h := Holγ(B)
acts as −1 on λz and hence by a reflection on Lz. In a suitable orthogonal
basis for Ez the two lifts of h ∈ SO(3) to Sp(1) are ±j, and σ acts on Sp(1)
by conjugation with i. Since iji−1 = −j, we see that σ interchanges the two
points in Q̃ lying above B. Thus we can identify Q̃→ Q with

D2k × {±1} → D2k,

where D2k is the unit disk in R
2k, and σ acts on D2k × {±1} by (x, t) 7→

(−x,−t). Restricting to ∂D2k = S2k−1 and dividing out by ΓB we obtain
the usual covering S2k−1 → RP

2k−1, which is non-trivial.

6 Abelian instantons

Let Mk be as in Section 4, assuming (12). In this section we use the unper-
turbed instanton equation.

We will need to deal with both reducibles inMk and reducibles appearing
in weak limits of sequences in Mk. Such reducibles are contained in the set

M red :=
∐

s≥0

M red
k−4s.
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LetMared andM tred be the subsets ofM red consisting of Abelian and twisted
reducibles, resp. If b+(W ) > 0 then Mared is empty, by choice of the metric
on W . If b+(W ) = 0 (in which case b1(W ) = 1) then Mared consists of
a finite disjoint union of circles. Let Z ⊂ W be any compact, connected,
codimension 0 submanifold and γ a loop in Z. The restriction map

R :Mared → Uγ ⊂ B(E|Z)

maps each circle S ⊂ Mared onto either a circle or a point, depending on
whether H1(W ;R) → H1(Z;R) is non-zero or not. Moreover, the double
covering Ξγ → Uγ pulls back to a trivial covering of any S if and only if the
class in H1(W ;Z)/torsion represented by γ is divisible by 2; however, we
will make no use of this. Note that different circles S have disjoint images
in B(E|Z), by the unique continuation property of self-dual closed 2–forms
(applied to the curvature forms).

7 Three lemmas on Banach manifolds

The results of this section will be used in Section 8.2 below.

Lemma 7.1 Let B be a smooth (Hausdorff) Banach manifold which admits
smooth partitions of unity. Let L → B be a smooth real 2–plane bundle. If
L admits a continuous non-vanishing section, then it admits a smooth non-
vanishing section.

Proof. Of course, this is well known if B is finite-dimensional (and at
least in that case it holds for bundles of any finite rank). For general B one
can use the following Čech cohomology argument:

Choose a smooth Euclidean metric on L. Set λ := Λ2L and letK := R⊕λ
be the associated bundle of fields as in Section 2. Then L has a canonical
structure as a smooth K–line bundle as defined in (13). Clearly, L is trivial
as a smooth (resp. continuous) K–line bundle (meaning L ≈ K) if and only
if L admits a non-vanishing smooth (resp. continuous) section.

Let K∗ and K∗
∞ denote the sheaves of continuous and smooth sections

of K∗, resp. Then L is determined up to smooth isomorphism by its class
in H1(B;K∗

∞). But the inclusion K∗
∞ → K∗ induces an isomorphism

H1(B;K∗
∞)

≈
→ H1(B;K∗),

as is easily seen by considering the morphism between the exponential short
exact sequences for K∗

∞ and K∗ (see (7)).
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In the following two lemmas, B will be a metric space and R a compact
subspace. The open subspace B∗ := B \R of B will have the structure of a
smooth Banach manifold admitting smooth partitions of unity.

Lemma 7.2 Suppose R is a finite set. Let Θ → B be a Euclidean (real)
line bundle. Let Θ|B∗ have the obvious smooth structure. Then there ex-
ists a smooth section of Θ|B∗ which is nowhere zero in B∗ ∩ V for some
neighbourhood V of R in B.

Proof. Choose an open neighbourhood N of R and a section σ of Θ|N
which has (pointwise) unit length. Then σ is smooth in N ∩B∗. Since B is a
normal space there are disjoint open neighbourhoods V, V ′ of R and B \N ,
resp. Using a smooth partition of unity of B∗ subordinate to the open cover
{V ′, B∗∩N} one can construct a smooth section s of Θ over B∗ which agrees
with σ on B∗ ∩ V . In particular, s is nowhere zero in B∗ ∩ V .

Lemma 7.3 Suppose R is the disjoint union of three sets,

R = R0 ⊔R1 ⊔R2,

where R1 and R2 are finite sets and R0 is a finite disjoint union of subspaces
each of which is homeomorphic to a circle. For i = 1, 2 let Θi → B∗∪R0∪Ri

be a Euclidean line bundle. Let Θ̂ be the direct sum of the restrictions of Θ1

and Θ2 to B∗ ∪R0. Then there exists a smooth section of Θ̂ over B∗ which
is nowhere zero in B∗ ∩ V for some neighbourhood V of R in B.

Proof. Choose pairwise disjoint open sets H0,H1,H2 in B such that
Ri ⊂ Hi for i = 0, 1, 2. It is easy to see that Θ̂|R0

admits a non-vanishing
section σ. Since R0 is compact we can cover R0 by finitely may open sets Uj

in H0 such that Θ̂|Uj
is trivial for each j. By the Tietze extension theorem

there is a section σj of Θ̂|Uj
which agrees with σ on R0 ∩ Uj. Patching

together the sections σj by means of a partition of unity yields a section
σ̃ of Θ over U := ∪jUj such that σ̃ = σ on R0. Then the locus N0 where
σ̃ 6= 0 is an open neighbourhood of R0 in B. By Lemma 7.1 there exists a
non-vanishing smooth section s0 of Θ̂ over B∗ ∩N0.

For i = 1, 2 choose a unit length section τi of Θi over some open neigh-
bourhood Ni of Ri in Hi. Combining τi with the zero-section of Θ3−i yields
a smooth non-vanishing section si of Θ̂ over B∗ ∩Ni.

Set N := N0 ∪N1 ∪N2, which is an open neighbourhood of R in B. By
means of a smooth partion of unity as in the proof of Lemma 7.2 we can then
construct a smooth section s of Θ̂|B∗ which agrees with si in B

∗ ∩ V ∩ Nj

for some neighbourhood V of R in N . In particular, s is nowhere zero in
B∗ ∩ V .
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8 Proof of theorem

Assuming the hypotheses of the theorem are satisfied we will show that
δ0 6= 0.

For any ℓ set Fℓ := H2(X; ℓ)/torsion. If b+(X; ℓ) = 0 let Dℓ ⊂ Fℓ be the
subgroup generated by vectors of square −1. Let F̂ℓ ⊂ Fℓ be the orthogonal
complement of Dℓ, so that

Fℓ = Dℓ ⊕ F̂ℓ. (17)

By assumption there is a non-trivial ℓ such that F̂ℓ 6= 0 and H2(X; ℓ) con-
tains no element of order 4. Fix such an ℓ. Note that there is a class x ∈ F̂ℓ

with x2 6≡ 0 mod 4. (Proof: Since F̂ℓ is unimodular we can find elements
a, b ∈ F̂ℓ with a · b = 1. If a2, b2 ≡ 0 mod 4 then (a + b)2 ≡ 2 mod 4.)
Let k be the smallest (positive) integer 6≡ 0 mod 4 such that there exists
an x ∈ F̂ℓ with x

2 = −k.

8.1 Reduction to δ(X) = 0

By (2) we have δ(X) ≤ 0. We will now reduce the remaining part of the
proof to the case δ(X) = 0.

Lemma 8.1 Let N be any compact, connected oriented smooth 4–manifold,
and let C be any embedded circle in int(N) which represents a non-zero class
in H1(N ;Z/2). Let N ′ be obtained from N by surgery on C. Then

τ(N ′) + b+(N ′) = τ(N) + b+(N).

Here τ is the invariant defined just before Theorem 1.1.
Proof. Defining δ(N) as in (10) we have

b1(N ;Z/2) + δ(N) = (b1(N) + τ(N)) + (1− b1(N) + b+(N))

= τ(N) + b+(N) + 1.

Now, b1(N ;Z/2) drops by one by surgery on C, whereas δ(N) increases by
one by surgery on any circle in int(N). (A highbrow proof of the latter
statement applies the excision principle for indices to the elliptic operator
d∗ + d+ : Ω1 → Ω0 ⊕ Ω+ on some close-up V of N , recalling that the index
of that operator is −δ(V ).)

Every element of H1(X; ℓ) can be represented by an embedded, ori-
ented circle C in the interior of X together with a trivialization of ℓ|C . Set
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d := −δ(X) and let X ′ be obtained from X by performing surgery on a col-
lection of disjoint oriented circles C1, . . . , Cd in int(X) which, together with
a trivialization of ℓ over C̃ := ∪jCj, represent a basis for H1(X; ℓ)/torsion.
Let ℓ′ → X ′ be the bundle obtained by trivially extending ℓ|X\C̃ . Then

b1(X
′; ℓ′) = 0, and there is a canonical isomorphism H2(X; ℓ) → H2(X ′; ℓ′)

which induces an isomorphism between the intersection forms. It follows
from the long exact sequence

· · · → H1(X; ℓ)
·2
→ H1(X; ℓ) → H1(X;Z/2) → · · ·

that the circles Cj represent linearly independent classes in H1(X;Z/2), so
by Lemma 8.1 the invariant τ + b+ takes the same value on X and X ′.

We have shown that X ′, ℓ′ satisfy all the hypotheses of the theorem, and
that ℓ′, k satisfy the same minimality condition as ℓ, k. We may therefore
from now on assume that b1(X; ℓ) = 0 = δ(X). This implies that

b := b1(X;Z/2) = τ(X) + (b+(X) + 1) ≤ 3, (18)

where we have used assumption (3) of the theorem.

8.2 Choosing the sections

Let W be the result of attaching a half-infinite cylinder [0,∞) × Y to X.
We extend the bundle ℓ → X to all of W and, abusing notation, denote the
new bundle also by ℓ. Choose a c ∈ H2(W ; ℓ) whose image in Fℓ lies in F̂ℓ

and such that c2 = −k. Define λ,K in terms of ℓ as in Section 2 and let
L → W be a Hermitian K–line bundle with c̃1(L) = c. Then E := λ⊕ L is
an oriented, Euclidean 3–plane bundle over W .

We will use the same notation for moduli spaces associated to E as in
Section 4. Choose a Riemannian metric on W which is on product form on
the end and which is generic as assumed in the beginning of Section 4.

Let Mλ
k be the set of all [A] ∈ Mk such that A preserves a subbundle

of E isomorphic to λ. After perhaps perturbing the instanton equation as
in Section 5 we may assume that every element of Mλ

k is a regular point in
Mk.

We also add holonomy perturbations over the end ofW corresponding to
a small generic perturbation of the Chern–Simons functional over Y (which
is in general needed to construct the Floer homology of Y ), as well as small
holonomy perturbations obtained from a finite number of thickened loops
in W . (In order not to obscure the main ideas, we usually ignore holonomy
perturbations in this paper.)
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LetM#
k be obtained fromMk by deleting the interior of a small compact

neighbourhood Nω of every ω ∈Mλ
k , where Nω is as constructed in the proof

of Lemma 5.1. Let M−
k be the irreducible part of M#

k .
We are going to cut down M−

k to a 1–manifold with boundary in the
following way. For i = 1, . . . , 2k − 1 let Z ′

i ⊂ W be a compact, connected
codimension 0 submanifold and γi : S

1 → Z ′
i a loop. Let Θγi → Uγi be the

real line bundle associated to the double covering Ξγi → Uγi . Let s′i be a
smooth section of Θγi over the irreducible part of Uγi and set

M̂k := {ω ∈M−
k | s′i(ω|Z′

i
) = 0 for i = 1, . . . , 2k − 1}.

For generic sections s′i the space M̂k will be a smooth 1–manifold with
boundary (see [21]). We will show that for a suitable choice of loops and
sections the manifold M̂k will have an odd number of boundary points and
no ends coming from reducibles (i.e. points or circles in M red). We briefly
outline how this will be achieved.

Consider the set

Q := {w ∈ H1(W ;Z/2) | (γi)
∗w 6= 0 for i = 1, . . . , 2k − 1}.

If w1(λ) ∈ Q then, as we will see in Section 8.3, M̂k will have an odd number
of boundary points. If w1(λ) is the unique point in Q then the sections s′i
can be chosen so that M̂k has no ends associated to twisted reducibles in
Mk. Note that |Q| = 1 is indeed possible, since b ≤ 3 ≤ 2k − 1.

To avoid ends of M̂k associated to circles inMared we choose Z ′
2j−1 = Z ′

2j

for j = 1, . . . , k − 1 and exploit the fact that the direct sum of two real line
bundles admits a non-vanishing section over any circle (see Lemma 7.3);
furthermore, we take the Zj := Z ′

2j−1, j = 1, . . . , k to be disjoint.

Finally, to arrange, in addition, that there are no ends in M̂k coming
from twisted reducibles in lower strata Mℓ, ℓ < k we rotate the classes
represented by the γi in a suitable way.

We now make precise the choice of loops and sections. Choose a basis
{e1, . . . , eb} for H1(W ;Z/2) such that 〈eh, w1(λ)〉 = 1 for each h. Also
choose

• disjoint compact, connected, codimension 0 submanifolds Z1, . . . , Zk

of W ,

• two loops γ2j−1, γ2j in Zj for j = 1, . . . , k − 1,

• a loop γ2k−1 in Zk
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such that γi represents eh when i ≡ h mod b. For instance, Zk may be
a closed tubular neighbourhood of an embedded circle in W , whereas for
j = 1, . . . , k−1 one can take Zj to be an internal connected sum of two such
tubular neighourhoods.

We will write Ui,Ξi,Bj instead of Uγi ,Ξγi ,B(E|Zj
). Let B∗

j denote the
irreducible part of Bj. Let Θi → Ui be the real line bundle associated to the
double covering Ξi → Ui.

For j = 1, . . . , k−1 let Rj ⊂ Bj be the image ofM red under the restriction
map. We have observed that Rj is the disjoint union of finitely many circles
and a finite set. Note that, by Lemma 3.1, all these circles are contained in
U2j−1 ∩ U2j . Let Θ̂j be the direct sum of the restrictions of Θ2j−1 and Θ2j

to B∗
j . Let sj be a generic smooth section of Θ̂j which is nowhere zero on

B∗
j ∩ Vj for some neighbourhood Vj of the compact set Rj ∩ (U2j−1 ∪ U2j)

in Bj. The existence of sections of this kind follows from Lemma 7.3. (The
fact that Bj is metrizable was pointed out in Section 3.)

Let Rk ⊂ Bk be the image of M tred under the restriction map. Let sk be
a generic smooth section of Θ2k−1 over B∗

k which is nowhere zero on B∗
k ∩Vk

for some neighbourhood Vk of Rk ∩ U2k−1 in Bk. The existence of sections
of this kind follows from Lemma 7.2.

8.3 Ends and boundary points

Set
M̂k := {ω ∈M−

k | sj(ω|Zj
) = 0 for j = 1, . . . , k}.

Modulo 2 the number of boundary points of the smooth 1–manifold M̂k is

#∂M̂k ≡
∑

ω

〈[∂Nω], e(Θω)〉 ≡ |Pℓ| ≡ 1 mod 2, (19)

where e denotes the Euler class with coefficients in Z/2 and Θω is the direct
sum of the pull-backs of the line bundles Θ1, . . . ,Θ2k−1 to the boundary
∂Nω ≈ RP

2k−1 of Nω.
To prove the second congruence in (19), note that Θi pulls back to a

non-trivial bundle over each ∂Nω by Lemma 5.1. Since the Euler class is
multiplicative under finite direct sums, we conclude that each term in the
sum in (19) is one. The last congruence in (19) follows from Proposition 4.2
because |Pc| = 1 by the minimality property of k, and |2Tℓ| is odd since by
assumption H2(W ; ℓ) contains no element of order 4.

It remains to determine the ends of M̂k. For any moduli spaceMα,d with
α irreducible set

M̂α,d := {ω ∈Mα,d | sj(ω|Zj
) = 0 for j = 1, . . . , k}.
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Proposition 8.1 Any sequence in M̂k has a subsequence which either con-
verges in M̂k or chain-converges to an element of

M̂α,2k−1 × M̌ (α, θ)

for some α ∈ R∗
Y , where M(α, θ) is the one-dimensional moduli space over

R× Y with limits α at −∞ and θ at ∞, and M̌ := M/R.

Proof of proposition: Let {[An]} be a sequence in M̂k. After passing
to a subsequence we may assume that {[An]} chain-converges weakly in the
sense of [5]. Let ([A], x1, . . . , xq) be the weak limit overW , where [A] ∈Mα,d,
α ∈ RY , and x1, . . . , xq ∈ W , q ≥ 0. We are going to show that A must be
irreducible. First we establish the following lemma.

Lemma 8.2 If A is reducible then there is a j ∈ {1, . . . , k} with the follow-
ing two properties:

(i) Zj contains none of the points x1, . . . , xq.

(ii) [A|Zj
] ∈ Vj.

Proof of lemma: If A is reducible, then [A] ∈ M red
k−4s for some non-

negative integer s. Observe that

q ≤ s <
k

4
< k − 1. (20)

The second inequality holds because k− 4s ≥ 0 by (11) and we have chosen
k 6≡ 0 mod 4. Hence there is certainly a j < k satisfying (i).

Case 1: A Abelian. Then (ii) is satisfied for any j < k, so the lemma
holds in this case.

Case 2: A twisted reducible. Let E = λ′⊕L′ be the splitting preserved
by A, where λ′ is a non-trivial real line bundle.

Case 2a: λ′ ≈ λ. We will show that this cannot occur. Let ℓ′ ⊂ λ′

be the lattice of vectors of integer length and set c′ := c̃1(L
′) ∈ H2(W ; ℓ′).

Choose an isomorphism f : ℓ′
≈
→ ℓ and set ζ := f∗c

′ ∈ H2(W ; ℓ). Since
[ζ]2 = [c′]2 = [c]2 (the last equality by Proposition 4.1) it follows from the
exact sequence (14) that there is an x ∈ H2(W ; ℓ) such that ζ = c+2x. For
any v ∈ H2(W ; ℓ) let v̄ be the image of v in Fℓ and let v̂ be the component
of v̄ in F̂ℓ with respect to the splitting (17). Since c̄ ∈ F̂ℓ by assumption, we
have ζ̂ = c̄ + 2x̂, so (ζ̂)2 ≡ c2 = −k 6≡ 0 mod 4. Hence −(ζ̂)2 ≥ k by the
minimality of k, so

k − 4s = −ζ2 ≥ −(ζ̂)2 ≥ k.
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Thus, s = 0 and [A] ∈ Mk. It follows that the sequence {[An]} converges

in Mk (see [5]). Since M#
k is a closed subset of Mk, we must have [A] ∈

M#
k . This is a contradiction, since M#

k was obtained from Mk by deleting
neighbourhoods of all twisted reducibles preserving a line bundle isomorphic
to λ.

Case 2b: λ′ 6≈ λ. Then b ≥ 2.
Case 2b1: b = 2. Then for h = 1 or 2 we have

1 = 〈eh, w1(λ) + w1(λ
′)〉 = 1 + 〈eh, w1(λ

′)〉,

so 〈eh, w1(λ
′)〉 = 0. As observed in the beginning of the proof we can find a

j < k satisfying (i). For i = 2j − 1 or 2j the loop γi represents eh, in which
case (γi)

∗λ′ is trivial. This in turn implies [A|Zj
] ∈ Ui by Proposition 3.1,

so [A|Zj
] ∈ Vj .

Case 2b2: b = 3. Set

m :=

[
k − 1

3

]
.

Case 2b2a: m = 0. Then k ≤ 3, so q = 0 by (20). The same argument
as in the case b = 2 shows that (γi)

∗λ′ is trivial for some i ∈ {1, 2, 3}, hence
[A|Zj

] ∈ Vj for j = 1 or 2.
Case 2b2b: m ≥ 1. Choose h with 〈eh, w1(λ

′)〉 = 0. Then for at least
2m integers j ∈ {1, . . . , k − 1} one of the loops γ2j−1 or γ2j will represent
eh, in which case (ii) holds. Because

q <
k

4
< 2m,

one can choose j such that (i) holds as well.

Lemma 8.3 A is irreducible.

Proof of lemma: Assume to the contrary that A were reducible, and let
j satisfy the two properties of Lemma 8.2. Then

[An|Zj
] → [A|Zj

] in Bj as n→ ∞.

But Vj is open, so for sufficently large n we have [An|Zj
] ∈ B∗

j ∩ Vj and

therefore sj(An|Zj
) 6= 0. This contradicts [An] ∈ M̂k and the lemma is

proved.
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We can now complete the proof of the proposition. First suppose [A] ∈

Mk, which implies q = 0. Then {[An]} converges in Mk, so [A] ∈ M#
k . But

[A] is irreducible, so [A] ∈ M̂k.
Now suppose [A] 6∈Mk. Then

d ≤ min(2k − 1, 2k − 8q). (21)

Set

J := {j ∈ {1, . . . , k − 1} |Zj contains none of the points x1, . . . , xq}.

Then sj(A|Zj
) = 0 for every j ∈ J . Since the sections sj are generic, we must

have 2|J | ≤ d, where |J | denotes the cardinality of the set J . Combining
this with (21) yields

2|J | ≤ 2k − 8q.

Setting t := k − 1− |J | we deduce

4q ≤ t+ 1 ≤ q + 1,

so q = 0. Hence sj(A|Zj
) = 0 for j = 1, . . . , k, so d ≥ 2k−1. Combining this

with (21) we obtain d = 2k − 1. This is only possible when α is irreducible,
so the proposition is proved.

We can now complete the proof of the theorem. An argument similar to
the proof of Proposition 8.1 shows that M̂α,2k−1 is compact, hence a finite

set (since it is 0–dimensional). By gluing theory the number of ends of M̂k

is δh, where

h :=
∑

α

[#M̂α,2k−1]α ∈ CF4(Y )⊗ Z/2.

The proof of the proposition applied to moduli spaces Mβ,2k with β irre-
ducible shows that h is a cocycle.

Since the 1–manifold M̂k has an odd number of boundary points, it must
also have an odd number of ends, so δ0([h]) = 1.

References

[1] G. E. Bredon. Sheaf Theory. Second edition. Springer, 1997.

[2] A. Dold and H. Whitney. Classification of oriented sphere bundles over
a 4–complex. Annals of Math., 69(3):667–677, 1959.

28



[3] S. K. Donaldson. An application of gauge theory to four dimensional
topology. J. Diff. Geom., 18:279–315, 1983.

[4] S. K. Donaldson. The orientation of Yang–Mills moduli spaces and
4–manifold topology. J. Diff. Geom., 26:397–428, 1987.

[5] S. K. Donaldson. Floer Homology Groups in Yang–Mills Theory. Cam-
bridge University Press, 2002.

[6] S. K. Donaldson and P. B. Kronheimer. The Geometry of Four-
Manifolds. Oxford University Press, 1990.

[7] R. Fintushel and R. J. Stern. Definite 4–manifolds. J. Diff. Geom.,
28:133–141, 1988.

[8] A. Floer. An instanton invariant for 3–manifolds. Comm. Math. Phys.,
118:215–240, 1988.

[9] D. S. Freed and K. K. Uhlenbeck. Instantons and Four-Manifolds.
MSRI Publications. Springer-Verlag, second edition, 1991.

[10] M. Freedman and F. Quinn. Topology of 4–manifolds, volume 39 of
Princeton Mathematical Series. Princeton University Press, 1990.

[11] S. Friedl, I. Hambleton, P. Melvin, and P. Teichner. Non-smoothable
four-manifolds with infinite cyclic fundamental group. Int. Math. Res.
Not., (11), 2007.

[12] K. A. Frøyshov. Equivariant aspects of Yang–Mills Floer theory. Topol-
ogy, 41:525–552, 2002.

[13] K. A. Frøyshov. Compactness and gluing theory for monopoles, vol-
ume 15 of Geometry & Topology Monographs. Geometry & Topology
Publications, 2008.

[14] M. Furuta. Monopole equation and the 11
8 –conjecture. Math. Res. Lett.,

8:279–291, 2001.

[15] I. Hambleton. Intersection forms, fundamental groups and 4-manifolds.
In Proceedings of Gökova Geometry-Topology Conference 2008, pages
137–150, 2009.

[16] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[17] J. L. Kelley. General Topology. Van Nostrand, 1955.

29



[18] P. B. Kronheimer and T. S. Mrowka. Embedded surfaces and the struc-
ture of Donaldson’s polynomial invariants. J. Diff. Geom., 41:573–734,
1995.

[19] S. Lang. Differential Manifolds. Second edition. Springer-Verlag, 1985.

[20] N. Nakamura. Pin−(2)–monopole equations and intersection forms with
local coefficients of 4–manifolds. arXiv:1009.3624.

[21] S. Smale. An infinite dimensional version of Sard’s theorem. Am. J.
Math., 87:861–866, 1965.

[22] E. H. Spanier. Algebraic Topology. Corrected reprint. Springer, 1981.

[23] E. H. Spanier. Singular homology and cohomology with local coeffi-
cients and duality for manifolds. Pacific J. Math., 160:165–200, 1993.

[24] A. Teleman. Harmonic sections in sphere bundles, normal neighbor-
hoods of reduction loci, and instanton moduli spaces on definite 4–
manifolds. Geometry & Topology, 11:1681–1730, 2007.

Centre for Quantum Geometry of Moduli Spaces,

Ny Munkegade 118,

DK-8000 Aarhus C,

Denmark

Email: froyshov@imf.au.dk

30

http://arxiv.org/abs/1009.3624

	1 Introduction
	2 Homology and cohomology with local coefficients
	3 SO(3)–connections and holonomy
	4 Moduli spaces and twisted reducibles
	5 Local structure around twisted reducibles
	6 Abelian instantons
	7 Three lemmas on Banach manifolds
	8 Proof of theorem
	8.1 Reduction to (X)=0
	8.2 Choosing the sections
	8.3 Ends and boundary points


