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Abstract

Understanding the dynamic complexity of the internal states of TCP is a
fundamental challenge, and particularly demanding due to the dynamics and
complexity of modern networks. TCP is one of the key transport protocols of
today’s IP suite that supports most of the popular applications on the Internet.
The main objective of this dissertation is to discover the dynamic complexity
of TCP and obtain detailed knowledge about the end hosts from passive
measurements using modern machine learning and deep learning techniques.
Passive measurement has a clear advantage over active measurements since it
doesn’t generate traffic overhead to the underlying network. In the networking
research community, there is an increasing interest in applying machine learning
and deep learning techniques in different contexts. Machine learning approaches
have effectively revolutionized and advanced the state-of-the-art for many
research domain problems. In this dissertation, we study the applicability of
state-of-the-art machine learning and deep learning approaches in computer
networks by focusing on three main use cases: (i) TCP state monitoring
from passive traffic measurements (i) Network intrusion detection (4ii) Passive
operating system fingerprinting.

The main research questions around which this dissertation is centered are:
(i) How can an intermediate node (e.g., a network operator) infer functionalities
that determine a network condition from passive measurements? (i) How can
we enhance computer network security attack analysis using regularized machine
learning techniques? (iii) Are we able to accurately classify the remote computer’s
operating system from passive measurements? Finally, this dissertation shows
how an intermediate node can passively identify the transmission states of the
TCP client associated with a TCP flow. We empirically demonstrate how the
intermediate node can infer the cwnd size, predict at real-time the RTT between
the sender and receiver, predict the underlying TCP variants of both loss-based
and delay-based congestion control algorithms of the TCP client. Consequently,
combining these contributions together, we built a deep learning-based universal
tool for passive monitoring that can be applied to first estimate the cwnd, second
predict the underlying TCP flavor and finally uses the predicted TCP variant
as an input feature to passively fingerprint the remote computer’s operating
system. Our experimental results indicate the effectiveness of the proposed
prediction models with reasonably high accuracy across different validation
scenarios and multiple TCP variants. We believe that our work will be useful
for the industry since passive measurements are becoming increasingly useful for
network operators and Internet service providers to evaluate the communication
performance of applications and services running on their networks.
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“Studying TCP is like studying natural processes. Even though the source code is
easy to understand, we can no longer understand the effects of many TCPs in
the wild.”

Professor Carsten Griwodz

University of Oslo, Simula Research Laboratory



Dissertation Structure

This dissertation is briefly organized as follows.

Chapter 1 Introduction : provides a detailed overview of motivation, and the
use cases that are relevant to this dissertation. It also describes the scientific
methods used in this dissertation.

Chapter 2 Summary and Contributions : presents a brief summary of
the included papers in this dissertation and their scientific contributions
which have been published in journals and international conferences.

Chapter 3 Background : sketches some of the basic contextual background
information that provides an overview of the background relevant to the
reader and challenges that are dealt with in the research.

Chapter 4 Related Work : presents a summary of the relevant state-of-the-art
related works found in the literature for the three main use cases we
presented in Chapter 1.

Chapter 5 Conclusions : provides a summary of the research and highlights
the main contributions of the dissertation. This chapter also provides
considerations of the research and suggestions for promising future research
directions.

Part Il Contains the list of all the papers included in this dissertation.
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Chapter 1
General Context and Motivation

This chapter provides a detailed overview of the general context of the dissertation,
motivation, and the use cases that are relevant to this Ph.D. dissertation.

1.1 Introduction

Inferring whether a complex and dynamic network operates under normal
behavior is a fundamentally challenging problem especially when a few
measurement points are monitored. In the networking research community,
there is an increasing interest in applying state-of-the-art machine learning
and deep learning techniques in computer networks in different contexts to
infer the status of the network. In contrast to analytical models that require
expert knowledge about the underlying network functioning modalities and rules,
machine learning assumes no such prior knowledge. Machine learning constructs
algorithms and models that can learn from data by unveiling an unforeseen
pattern without prior human knowledge [22, 52, 55]. Deep learning, on the
other hand, is characterized by a collection of computational neural network
models that are composed of multiple processing layers capable of learning
distributed representations of data with multiple levels of abstraction [5, 43]. For
more detailed background information on machine learning and deep learning
techniques, we refer our readers to Chapter 3.

Machine learning approaches have revolutionized and advanced the
state-of-the-art for many research domain problems in the networking research
community. For example, machine learning models are being actively applied
and have been found effective in the areas of Internet traffic classification [56, 58],
security monitoring and Intrusion Detection Systems (IDS) [4, 25, 74], flow
clustering [53], fraud detection [51, 55], text classification [28, 72], face
recognition [23], Spam detection [12, 34, 44, 62], image classification [45, 76],
and many other fascinating topics in computer networks such as traffic anomaly
detection [3]. In addition to this, legacy research works on Internet traffic
classification using machine learning and statistical methods demonstrate that it
is possible to characterize attributes of the data flow for a number of Transmission
Control Protocol (TCP) applications [10, 16, 40, 41].

The TCP is one of the key protocols of today’s Internet Protocol (IP) suite
that supports most of the popular applications on the Internet today. It provides
a connection-oriented communication by reliably sending data segments between
the sender and the receiver. TCP handles network congestion by using a set
of congestion control algorithms [17, 18]. One of the main responsibilities
of congestion control is to ensure efficient and fair sharing of the network’s
limited resources among its users. The congestion control mechanism was added



1. General Context and Motivation

to TCP as a new feature in 1988 [29], after Van Jacobson observed the first
Internet collapse in October 1986 due to congestion as shown in Figure 1.1.
Starting with [29, 70], TCP congestion control and its performance analysis
has maintained continuous research interest in the networking community [61].
Since the congestion control features of TCP has largely been responsible for the
reliability and stability of the global Internet to date [17, 18], developing modern
congestion control algorithms for TCP has been an active area of research. As the
Internet continues to grow rapidly with the recent developments in high-speed
networking capabilities supporting delay and loss-sensitive applications (e.g.,
video streaming), the implementation of advanced end-to-end congestion control
algorithms is of increasing interest. In practice, however, this is fundamentally a
challenging problem considering the complex behavior of networks.

TCP Reno
Jacobson, 1990
TCP/IP “flag day” acobson, 1950)

3-way handshake (BSD Unix 4.2, 1983) y
(Tomlinson, 1975)

TCP and IP TCP Tahoe

an Jacobson, 1988

(RFC 791/793, 1981) Uacobson )
Origins of “TCP” 7

(Cerf & Kahn, 1974 Congestion collapse

Observed, 1986

| | |
1970 1975 1980 1985 1990
\ J \

Y Y o
Pre-history Congestion control

Figure 1.1: Historical background of TCP.

There are two main approaches to congestion control schemes: end-system
(source-based) congestion control [2] and mnetwork-centric (router-based)
congestion control [8, 37, 71]. End-system congestion control approaches
are reactive, i.e., the source detects the congestion and reacts to it accordingly
after getting implicit signals of congestion (e.g., packet loss or queueing delay).
Based on the types of implicit congestion signals and other local information, the
end-system congestion control techniques are further categorized into loss-based
and delay-based variants as discussed in Chapter 3 in detail. On the other hand,
the network-centric (router-based) congestion control approaches are proactive.
This means since routers have more global information about the state of the
underlying network infrastructure by continuously measuring the traffic load and
queue length, they can proactively detect congestion and send a signal to the
source node before the queue overflows. For more details about this approach,
we refer the readers of this dissertation to [1, 69].

In this dissertation, we focus only on the end-system congestion control
techniques. Adding congestion control management in the endpoints is critical
and this is mainly because most of the intelligence on the Internet lies in the
end hosts. In this dissertation, we employ state-of-the-art machine learning and
deep learning techniques to monitor the internal states of the TCP client.
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1.2 Motivation

The work presented in this dissertation aims at obtaining detailed knowledge
about the end hosts by monitoring information of the packets that pass through
the network, and by employing machine learning and deep learning-based
techniques on the monitored network traffic. Since machine learning and deep
learning methods are good at coping with complex tasks and massive amounts
of data, they might play an important role to predict the TCP per-connection
internal states. Understanding the dynamic complexity of the internal states of
TCP is a fundamental challenge, and especially demanding due to the dynamics
and complexity of modern networks. Even though this is the main objective
of the dissertation, our work shows that related techniques can also be used to
find other information about the hosts, such as their Operating System (OS) or
TCP implementation or in a security perspective classify if the host’s traffic is
malicious or not.

The analyses of this dissertation focus mainly on TCP internal state
monitoring from passive traffic measurements. We believe that our work
will be useful for the industry since measurements are becoming increasingly
useful for network operators and Internet Service Providers (ISPs) to evaluate
the communication performance of applications and services running on their
networks. Here, we summarize the benefits in the following three perspectives.

Operational benefits: Detailed knowledge about the underlying network by
monitoring information of the packets that pass through the network is important
for several reasons. For example, network operators can use this information
to measure available bandwidth between endpoints, diagnose and troubleshoot
network problems depending on the details of the information collected from the
underlying network. We also believe that passively discovering the characteristics
of TCP in an intermediate node has an operational advantage for network
operators to monitor if major content providers (e.g., Google, Facebook, Netfliz,
Akamai, etc.) are manipulating their congestion control algorithms in their
servers to achieve more than their fair share of available bandwidth. Another
scenario where network operators might find this information useful is if there is
a path that they know is congested due to customer complaints, but the links
using that path are not especially over-subscribed. In that case, details about
the TCP Congestion Window (cwnd) behavior of all the users on that path
might be helpful in trying to diagnose the cause, i.e., are there users that are
using aggressive congestion control algorithms which are unfair and affecting
other user’s available bandwidth?

Internet Service Provider (ISP) benefits: Passively monitoring the TCP
traffic at an intermediate node, allows the operators of big ISPs to assess the
underlying network performance, which is crucial for their operation. We argue
that detailed knowledge about the TCP stack in use in the endpoints is useful
for operators of big ISP networks that do much traffic engineering who need to
move traffic from oversubscribed links. It can also be used to diagnose TCP

3
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performance problems (e.g., to determine whether the sending application, the
network or the receiving network stack are to blame for slow transmissions) in
real-time. Another benefit might be to observe when large content providers
implement their own custom congestion control behavior that does not match
one of the known congestion control algorithms.

Security ramifications: We also believe passively observing the network-level
characteristics found in TCP packets can give us more information about the
remote computer’s underlying OS. Hence, passively analyzing the internal states
of the underlying TCP flavors is also useful for exploring security threats. This is
because if we, for example, are able to infer the TCP variant, we can also make
some guessing on the implementation of the underlying OS and search for security
vulnerabilities. This can tell us about the encryption at the end-system that can
be used to tailor-made attacks. We further believe that this will also help us to
explore in detail the long-term characteristics of TCP traffic. The flip side of
this is that the techniques presented in this dissertation also can be exploited by
hackers. By knowing the OS, the hackers might also target known vulnerabilities
of the detected OS. Thus, even though some of the intentions of our work are
to provide tools to improve network analysis and security monitoring, the same
technology might also be misused.

1.3 TCP Traffic Monitoring Techniques

In the networking community, there is a growing interest in observing Internet
traffic characteristics at a given point of a network using end-to-end measurement
techniques. Managing complex networks is extremely difficult due to the
heterogeneity of communication networks. This represents an important challenge
for network operators and ISPs. Many network operators would cope with this
challenge by constantly monitoring the underlying network for analysis and
further action e.g., in order to understand the state and the dynamic behavior
of their network. As a result, there is a growing interest in observing Internet
traffic characteristics at a given point of a network using end-to-end measurement
techniques in the networking community.

The end-to-end measurement techniques to monitor the TCP per-connection
characteristics are divided into two broad categories named active measurement
and passive measurement. While active measurement has received a lot of
research attention in the networking community, however, passive measurement
remains still an under-investigated research topic. Hence, in this dissertation,
we try to bridge the gap and mainly focus on passive measurement approaches.

1.3.1 Active Measurement

Much of the existing research work on traffic monitoring approaches rely on an
active approach to measure the characteristics of TCP. This technique actively
measures the TCP behaviors of Internet flows by injecting artificial traffic (e.g.,
probes) into the network between at least two endpoints [54, 60].
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Active measurement techniques have several disadvantages. First, they
introduce extra probing overhead traffic to the network. Second, often we
have no control over either of the end-hosts of communication, so we cannot
launch active measurements between the hosts. This is typical for a network
operator that has not sufficient control over the equipment of the end customer.
Finally, TCP probes or ping messages used in active measurements are often
blocked by firewalls etc. Since it is common practice to disable probes by default,
active measurement approaches are often prone to failure and their practical
applicability is limited.

1.3.2 Passive Measurement

Passive measurement is at the heart of our work in this dissertation. In this
technique, passively collected packet traces are examined to measure TCP
behaviors of Internet flows [31, 63, 68]. Passive measurement doesn’t inject
artificial traffic into the network. It only measures the network without creating
or modifying any real traffic on the network. In the traditional methods of
passive measurement, there has been much interest in the investigation of TCP
connections aggregate properties and their characteristics on the global Internet.

Passive measurement techniques of TCP flows have recently gained much
attention in the networking research community lately [6, 11, 19, 35]. The main
reason is that such measurements are becoming increasingly useful for network
operators and ISPs to evaluate the communication performance of applications
and services running on their network. Passively monitoring the traffic at an
intermediate node, allows the ISPs to assess the underlying network performance,
which is crucial for their operation. The main advantages of using passive
measurements as compared to active measurements are that they do not put
additional requirements on the configurations at the end hosts, they are not
prone to failure due to firewalls etc., and they do not introduce additional traffic
overhead. This dissertation focuses on using passive traffic measurements.

The TCP congestion control itself has grown increasingly complex which
in practice makes inferring TCP per-connection internal states from passive
traffic measurements collected at an intermediate node is a challenging task.
Recently, the increasing practicality of leveraging state-of-the-art machine
learning approaches has received considerable attention in overcoming critical
challenges across many application domains some of which are presented above.
However, the role of machine learning-driven models in computer network issues
can be very broad. Hence, in this dissertation, we present our contributions by
considering three main use cases of both machine learning and deep learning-based
approaches in computer networks. These include: (I) TCP internal state
monitoring from passive traffic measurements, (1I) Security attack analysis
based on passive traces, and (III) Passive OS fingerprinting.
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1.4 Use Cases

In this dissertation, we study the applicability of state-of-the-art machine learning
and deep learning techniques in computer networks by focusing on the following
three main use cases.

1.4.1 Use Case 1: TCP State Monitoring from Passive Traffic
Measurements

TCP is one of the dominant transport protocols that has played a great role in the
exponential success of the Internet, network technologies and applications [29].
Many applications on the Internet use the reliable end-to-end TCP as a transport
protocol due to practical considerations that favored TCP over other transport
protocols [29]. TCP is a highly reliable end-to-end connection-oriented transport
protocol designed to prevent excessive congestion on the Internet [29]. There are
many different TCP variants in use, and each variant uses a specific end-to-end
congestion control algorithm to avoid congestion, while also attempting to share
the underlying network capacity equally among the competing users.

The TCP congestion control algorithms that are widely deployed today
perform the most important functionalities related to network congestion such as
handling the cwnd from the sender-side. Therefore, it is very natural to ask: How
about inferring these functionalities that determine a network condition from
passive traffic collected at an intermediate node of a network without having access
to the sender? In order to explore and answer this fundamental question, we
first investigate evaluation methodologies for estimating cwnd in an intermediate
node (e.g., network operator) from purely passive traffic measurements without
the knowledge of the sender’s cwnd for most of the widely used TCP variants
in the Internet by leveraging both machine learning and deep learning-based
techniques. We further expand our methodologies to predict the underlying TCP
variants whose implicit signal of congestion are either packet loss or queueing
delay across emulated and realistic settings.

The TCP congestion control is set to operate on the variability of bandwidth,
different cross-traffic, RT'T, etc. To deal with network congestion, as described
above TCP uses congestion control algorithms to guide and regulate the network
traffic on the Internet by avoiding sending more data than the underlying network
is capable of transmitting which is maintained by the sender’s cwnd. The global
Internet highly relies on the TCP congestion control algorithms and adaptive
applications that adjust its data rate to achieve high performance while avoiding
congestion on the network [7]. One of the most important elements of the TCP
sender state that can help us study the characteristics of the TCP per-connection
states in a real-world setting is cwnd. For example, it can be used to determine
the factors that limit the network throughput, to predict the underlying TCP
variant and efficiently identify non-conforming TCP senders etc. However, taking
the nature of TCP, accurately inferring cwnd and its characteristics from passive
traffic is a difficult problem. One of the difficulties is, for example, TCP packets
can be lost between the sender and the intermediate monitor, or between the
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monitor and the receiver. If a TCP packet is lost before it reaches the intermediate
node and is somehow retransmitted in order, there is no way we can determine
whether a packet loss has occurred or not. Therefore, what the intermediate
monitor sees may not be exactly what the sender or the receiver sees. This
means what appears to be reordering from the intermediate node’s perspective
can actually be a retransmit (or vice versa). In addition to this, end-to-end
delay variations in the path preceding the intermediate monitor can also cause
retransmissions that appear to be caused by an Retransmission Timeout (RTO)
rather than a fast retransmit [32]. Because TCP packets are only halfway to
their destination, the relative sequencing on the forward and reverse path can
be confusing, e.g., retransmitted packets can be seen at the monitor shortly
after acknowledgments that should have prevented their retransmission. This
is possibly because the acknowledgments haven’t yet reached their destination
when they are observed, so the receiver did not yet know that the packets were
received before they decided to retransmit them. More discussion on the location
of the passive monitor and its effect on what we can infer from the measurements
is found in [32]. In this dissertation, we argue that employing machine learning
and deep learning-based techniques can also provide a potentially promising
methodology for improving the accuracy of predicting TCP per-connection states
from purely passive traffic measurements by addressing some of the practical
challenges. For more detailed information on the methodologies and experimental
results, we refer the reader to the included papers: Paper I, Paper II, Paper IV,
Paper V, and Paper VI.

1.4.2 Use Case 2: Network Intrusion Detection

As the explosive rates of Internet growth and technological advancements
continue, cyber defense is becoming an important and growing research area
across wide ranges of application domains with direct commercial impact on
public national enterprises, private organizations, and companies in every sector.
The phenomenal growth of the global Internet has equally brought with it an
undesirable increase in the number and variety of security attacks on Internet
hosts. Any modern computer network needs to have robust and efficient
mechanisms of detecting and deflecting any forms of security vulnerabilities. It
also needs to be protected from any security violations, compromise of sensitive
corporate data, computer abuse from unauthorized entry, etc. However, as
computer and enterprise network systems have become more pervasive, dynamic
and complex over the years, chances for attackers to compromise security
flaws in these systems have also dramatically increased. A full list of security
vulnerabilities for computer programs is presented in detail at [38]. Even though
static computer network security mechanisms like a firewall can provide a fairly
acceptable level of security, more modern and sophisticated IDS should be used
in computer networks to automatically monitor the underlying traffic for any
abnormal activities.

The role of IDS techniques is very crucial in monitoring computer network
events for malicious activities, such as attacks against hosts and protecting
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computer systems and network infrastructures from a potential attack. From
a security perspective, the problem with the evolution of network threats and
attacks is that they are getting harder to detect and therefore it could be difficult
to find out whether network traffic is normal or anomalous. Commercially
available IDS tools are mainly signature-based that is designed to detect known
malicious behaviors by using the precise signatures of those attacks. Such systems
must be frequently updated with rule-sets and signature updates of the recent
threat vectors, and are not capable of detecting potentially unknown attacks in
network traffic.

Historically, several traditional IDS techniques use a signature-based approach
in which events are detected and compared against a predefined database of
precise signatures of known attacks that are provided by an administrator. The
traditional approaches to IDS depend on experts or managers codifying rule-sets
defining normal behavior and intrusions in a network [64, 73]. The two broad
categories of IDS methods are: misuse and anomaly detection [15]. Misuse
detection is a technique of searching for signatures based on patterns of known
malicious behavior, either pre-configured by the system or set up manually by
an administrator. This technique involves matching the signatures of known
attacks in a network against events currently taking place in the system that
should be considered as misuse [27, 36, 64]. We find this technique mostly used
in operational settings. One of the main limitations of this approach is the
failure of detecting and identifying either potentially unknown computer attacks
that do not have explicit known signatures or slightly modified attacks whose
precise signature is not included [27, 36, 46]. In this case, misuse detection is
ineffective against such malicious behaviors because attacks can go undetected.
Anomaly detection method, on the other hand, refers to the problem of finding
patterns in data that do not comply with an expected notion of normal behavior
in a system. Everything interpreted as a deviation from the profile of a normal
system or user behavior is evidence of a malicious activity [14, 21, 39]. Anomaly
detection, however, can detect previously unknown attacks but the problem with
anomaly detection is that it has a higher false-positive rate mainly generated
by the previously unseen behavior of the new attacks. Therefore, to effectively
address this significant challenge, we argue it is important to use automated
learning algorithms designed for large-scale anomaly detection.

Machine learning techniques have the potential of detecting unknown attacks
in network traffic sharing features with other attacks by being trained on normal
and abnormal types of traffic. However, one critical problem in machine learning
is identifying and selecting the most relevant input features from which to
construct an accurate model based on training data for a particular classification
task. We, therefore, believe that it is important to do feature selection analysis to
make it easier for network administrators to better understand the features that
contribute to security attacks and consequently differentiate between normal and
anomalous network behaviors. As a first use case in this dissertation work, we
address the problem of an actual input feature selection for IDS to find security
attack categories in a network through cross-validated regularized machine
learning techniques and an artificial neural network feature ranking methods.
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Selecting the most relevant actual features improves the detection quality for
many algorithms that are based on learning techniques [26]. Feature selection
helps to understand better which actual features are the most important ones to
find attacks in a network. Therefore, in this use case, our focus is to analyze
security attacks by exploring the contribution of the widely used actual input
features and selecting the most contributory ones in effectively identifying
anomalies in a network with respect to the attack categories. To that end, we
have ranked the actual input features into strongly contributing, low contributory
and irrelevant using a combination of feature selection filters and wrapper
methods by carrying out comparisons with previous works. We investigate
the most important features in identifying well-known security attacks by using
Support Vector Machines (SVMs) and ¢;-regularized method with Least Absolute
Shrinkage and Selection Operator (LASSO). We use LASSO in particular for
multiclass security attack classification to help us better understand which actual
features shared by attacks in a network are the most important ones. LASSO is
much more computationally effective and it provides coefficients that quantify
how individual features affect the probability of specific security attack classes
to occur. For more detailed experimental methodologies and evaluation results
of this use case, we refer the reader to the included Paper VII.

1.4.3 Use Case 3: Passive Operating System Fingerprinting

Exploring the different implementations and characteristics of commonly used
network protocols for security vulnerabilities is in the highest interest of network
administrators. Consequently, taking the advantage of understanding the
characteristics of the Transmission Control Protocol/Internet Protocol (TCP/IP)
parameters, this further helps an administrator to remotely fingerprint the
underlying OS without any application layer information for various reasons.
OS fingerprinting is the process of carefully utilizing collected information of
a machine that speaks TCP/IP in order to discover the underlying OS being
run by a remote target device on the Internet without having physical access
to the device [33]. As explained above, since the network infrastructures are
rapidly growing in size, collecting detailed relevant knowledge about the dynamic
characteristics and complexity of large heterogeneous networks is crucial for
many purposes e.g., exploring network vulnerability assessment and monitoring.
Developing advanced network security and monitoring techniques capable of
a wide range of active and passive measurements are important for both the
research and operational communities, as explained below.

Network scanning and accurate remote OS fingerprinting are the crucial
steps for penetration testing in terms of security and privacy protection. Note
that attackers can also embrace passive fingerprinting techniques to search for
potential victims in a network. For example, by identifying the OS running
on a remote computer and the list of services it runs, an attacker can target
the device to eavesdrop on the communication between the endpoints without
having physical access to the device. However, we argue that our work presented
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here is motivated by a number of practical applications that can be positively
used by network administrators systems and networks.

Passively fingerprinting an OS by analyzing the packets it’s generating and
transmitted over a network is extremely important in the areas of network
management and computer security for several reasons. For example, it is useful
to explore a network for potential exploitations of security vulnerabilities which
can be exploited by attackers, auditing, identifying critical attacks, revealing
new information about a network user etc. In addition to this, it is also useful
for network administrators to catalog a complete image and investigate the
dynamic characteristics of large networks, to monitor unauthorized access and
identifying rogue clients that may cause vulnerabilities in the network etc.
Network administrators can, therefore, use this OS related information to
maintain the security policy and reliability of their network by configuring
a network-based IDS [48, 75]. Vulnerabilities and security threats in a network
may result from rogue or unauthorized devices [77], unsecured internal nodes
within the network and from external nodes [9]. Hence, passively fingerprinting
an OS has a potential benefit in addressing these critical problems. This, from
an academic point of view, is interesting and a topic that needs to be addressed
from a network security research point of view.

Over the years, there has been a great deal of research work in the context
of network management and cybersecurity on developing network security tools
to fingerprint remote Operating Systems (OSes) [50, 57, 59, 78, 79]. There are
many different implementations in fingerprinting of the most commonly used
OSes based on the characteristics of its underlying TCP /TP network stack [33]
and this, to a large extent, is due to variability in how the TCP/IP stack is
traditionally implemented across different OSes [19]. One common approach, for
example, is by collecting the TCP/IP stack basic parameters [47], e.g., IP initial
Time To Live (TTL) default values [13], HTTP packets using the User-agent
field [42], Internet Control Message Protocol (ICMP) requests [65], known open
port patterns, TCP window size [30], TCP Maximum Segment Size (MSS) [67],
IP Don’t Fragment (DF) flag [66], a set of other specific TCP options, etc.
However, in our work, we want to take this one step further by combining these
basic features and with the underlying TCP variant as a distinguishing feature
in our classification model due to the fact that different OSes have slightly
different implementations of TCP. Some TCP congestion control algorithms, e.g.,
CUBIC [24], Reno [29], Veno [20], etc. quickly overshoot the size of the cwnd
but we don’t know why. Hence, we believe that knowing the implementation
of the underlying OS may help us understand why they behave the way they
do. It will also help us explore how to classify an OS when different OSes are
implementing the same TCP congestion control algorithm.

Traditionally, most of the existing general OS fingerprinting techniques
use manually generated signature matching from a database of heuristics which
contains features of widely used OSes. This means, after comparing the generated
signatures, the first set of responses match with the highest confidence against
a database of fingerprints would be used to select the specific probable OS.
However, manually updating a large number of signature and managing databases
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of new OSes adds a considerable amount of time and hence we may suffer from
the consequences of the lack of recent signature updates of the known OSes.
Consequently, newly developed computer and mobile OSes will not be recognized
by these tools since they are not included in their fingerprint databases. Hence,
we argue that it is important to consider making use of an up-to-date fingerprint
database that contains variations of most currently used OSes and automating
these tasks by employing learning algorithms capable of extracting all possible
OS-specific features for discovering the underlying OSes. To explore this idea
of applying learning algorithms, we present a robust classification approach to
an advanced passive OS fingerprinting that leverages both machine learning
and deep learning methods. We can determine what OS a remote computer on
the Internet is running by either passively listening to traffic captured from a
network or by actively sending packets to a target machine. Our fingerprinting
technique is completely passive meaning that we only need to be able to observe
network traffic from a target machine at any observation point in the network
without injecting any traffic into the network. For more detailed experimental
results and justifications, we refer the reader to the included Paper VIII.

1.5 Research Objectives and Methodology

The main objective of this dissertation is to explore passive monitoring tool of
the internal states of a TCP session and provide some new deeper insights. The
focus is on a network security engineering perspective and the tools are limited to
state-of-the-art machine learning and deep learning techniques. To address the
key objective of this dissertation, we consider the following three main research
questions (one for each of the use cases discussed in detail in Section 1.4). For
each of the main objectives, we identify a set of research questions that we
attempt to answer in this dissertation.

1. How can an intermediate node (e.g., network operator) infer the
per-connection internal transmission states of the TCP client associated
with a TCP flow by passively monitoring the TCP traffic in an intermediate
node of a network without having access to the kernel of the sender? This
research question belongs to Use Case 1. It can be subdivided into four
parts, detailing a different aspect of TCP and context for analysis.

l.a) Paper I and Paper IV investigate how can an intermediate node
passively predict the cwnd size of the TCP client using machine
learning and deep learning techniques on both emulated and realistic
settings? These papers consider only the underlying variants of
loss-based TCP congestion control algorithms. We will employ
a software emulator that supports an end-to-end variability of
bandwidth, delay, jitter, packet loss, and other parameters that the
cwnd is highly influenced by. Given that the software emulator is
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not precise, can we trust the network emulator for all the emulation
parameters? The precision of the emulator for all the variations of
bandwidth, delay, jitter and packet loss parameters and the impact
of cross-traffic variability needs to be investigated.

1.b) Paper II investigates how can we experimentally infer the underlying
variant of loss-based TCP algorithms within flow from passive traffic
measurements collected at an intermediate node based on the total
number of outstanding bytes?

1.c) Paper V investigates how can we dynamically predict at real-time
the Round-trip Time (RTT) between the sender and receiver nodes
based on passive measurements collected at an intermediate node?

1.d) There are TCP flavors that exploit queueing delay as a congestion
signal and Paper VI discusses how can we classify the underlying
variants of delay-based TCP congestion control algorithms from
passive traffic measurements?

. How can we understand the dynamics behind the security attacks

classification models so that we create safe and human-interpretable
systems? This research question belongs to Use Case 2. How can we
enhance computer network security attack analysis using regularized
machine learning techniques? Another aspect is how do we select the
most important actual input features that are well understood within
the networking community in identifying well-known security attacks?
Paper VII addresses these research questions.

. Is it feasible to classify the underlying OS of a remote computer from

passive measurements when different OSes are implementing the same
TCP variant? This research question belongs to Use Case 3. Paper VIII
explores this issue.

Table 1.1: Linking the research objectives with our included papers.

Research Objectives | Included Papers
l.a Paper I, Paper IV
1.b Paper 11

l.c Paper V

1.d Paper VI

2 Paper VII

3 Paper VIII

Table 1.1 sums up which research objective each of the papers addresses.

The relationship between the papers is also detailed in Figure 2.1 where each
paper’s contributions are also included.
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Chapter 2

Summary of Included Papers and
Contributions

In this chapter, we give a brief summary of the contributions of the included
papers in the dissertation.

2.1 Introduction

The main contributions of this dissertation can be categorized under three cases
that fall under the same umbrella of using machine learning to understand the
complexity of TCP. Those contributions can be briefly summarized as follows.

e The first contribution is anchored within the field of of passive TCP traffic
monitoring. We demonstrate an intermediate node can predict the internal
states of the TCP client using reasonably effective state-of-the-art machine
learning and deep learning techniques. Firstly, we use a generic machine
learning-based prediction approach for inferring cwnd within a flow from
passive traffic collected at an intermediate node basing our inference on
the total number of outstanding bytes. Secondly, using the estimated
cwnd as input feature with other TCP options, we extend our contribution
to classify the underlying TCP variants for which the congestion signal
is either loss or delay. We further validate that our Recurrent Neural
Networks (RNN)-based model is applicable for Round-trip Time (RTT)
prediction in relation to TCP from passive measurements collected at an
intermediate node. We show that the learned prediction model performs
reasonably well by leveraging trained knowledge from the emulated network.
Furthermore, the trained classification models generalized well to realistic
scenario settings which demonstrate the transfer learning capability of our
models. These approaches are evaluated in detail across different scenarios
and included in Paper I, Paper II, Paper IV, Paper V, and Paper V1.

e The second contribution falls in the area of network security and more
precisely under machine learning-based intrusion detection systems (IDS).
We introduce the use of standard regularized machine learning techniques to
binary and multi-class attack classification of security attacks. Regularized
machine learning techniques allows better interpretability of the complex
decisions of the IDS. In our evaluation, we focus mainly on selecting
the most important input features that are well understood within the
networking community for identifying security attacks. We further provide
deeper insight from a security engineering perspective on the importance
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2. Summary of Included Papers and Contributions

of those features identified by the regularized machine learning techniques.
Our analysis is extensively performed on the benchmark intrusion detection
dataset NSL-KDD [6]. The methodology of the evaluation and experimental
results are briefly included in Paper VII.

o We advance the field of passive Operating System (OS) fingerprinting
problem by introducing the underlying predicted TCP variant as a
distinguishing feature in addition to the basic TCP/IP features that are
the basis of OS fingerprinting. Our work is unique in that it employs the
predicted TCP variant as a feature in two cases across different variations of
OSes. Firstly, we use the default TCP flavor of the underlying OS. Secondly,
we use the predicted TCP variant passively inferred from the famous
sawtooth pattern behavior of TCP’s estimated cwnd computed based
on the outstanding bytes in flight. In terms of accuracy, we empirically
demonstrate that accurately predicting the TCP variant has the potential
to boost the evaluation performance across all our validation scenarios and
different types of traffic sources. We further demonstrate the transferability
approach of our passive OSes classification models by conducting a series
of controlled experiments against other experimental scenarios. To the
best of our knowledge, this is the first study that explores the potential for
using the knowledge of the TCP variant to significantly boost the accuracy
of passive OS fingerprinting. The employed techniques are evaluated in
detail and presented in Paper VIII.

2.2 Included Papers Summary and Contributions

This dissertation consists of the following papers presented at peer-reviewed
conferences and journals. The author of this dissertation has been the main
responsible for the studies in the included papers where he is the first author.
This includes proposing most of the research ideas, implementing the machine
learning and deep learning models, setting-up and running the experiments
across different scenarios, analyzing the experimental results and writing all
the included papers in this dissertation. Figure 2.1 gives an illustration of the
contribution by each paper grouped by the use cases, as well as showing the
progression and quality of the research. Figure 2.2 shows the overall relationship
of how the contribution of our papers is linked to each other.

Paper | Summary: Presents a general machine learning-based methodology to
experimentally infer the internal Transmission Control Protocol (TCP)
per-connection states of loss-based TCP flavors from passive measurements
collected at an intermediate node when there is variability within a flow.
By leveraging machine learning techniques, the paper demonstrates how
an intermediate node (e.g., a network operator) can infer the transmission
states of the TCP client associated with a TCP flow via passively
monitoring the TCP traffic. More precisely, the paper demonstrates how
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the intermediate node can predict the Congestion Window (cwnd) size
of the TCP client by examining each cross-traffic of TCP flows of the
endpoints passively collected at an intermediate node.

Paper I Contribution: We explored machine learning-based techniques
to monitor TCP per-connection states of loss-based TCP variants from
passive measurements under varying network conditions. A study of interest
that is most closely related to our work is [7] which provides a passive
measurement methodology to infer and keep track of the values of the
sender variables: end-to-end RTT and cwnd. The idea in [7] is to emulate a
state transition by detecting Retransmission Timeout (RTO) events at the
sender and observing the ACKs which cause the sender to change the value
of the cwnd. The authors consider only the predominant implementations
of TCP and the basic idea is to construct a replica of the TCP sender’s
state for each TCP connection observed at the intermediate node using
a finite state machine. However, the use of a separate state machine
for each variant is unscalable taking the many existing TCP variants
into consideration. We also believe that the constructed replica cannot
manage to reverse or backtrack the transitions taking the tremendous
amount of data into consideration. We argue that another limitation of
this work is the fact that the replica may not observe the same sequence
of packets as the sender and ACKs observed at the intermediate node may
not also reach the sender. The work in [8] presents a methodology to study
the performance of TCP, classify out-of-sequence behavior of packets for
retransmission to identify where congestion is occurring in the network,
with the same measurement environment as in [7]. The authors of the
study presented in [17] have developed a tool called tepflows that attempts
to passively estimate the value of cwnd by analyzing the ACK stream
to detect the occurrence of TCP congestion events. However, the state
machine implemented with tcpflows is limited to old TCP variants.

Our main goal in Paper I is to develop and evaluate a machine
learning-based methodology for passively predicting cwnd of all loss-based
TCP variants of the client by examining each cross-traffic of TCP flows
of the endpoints. Our experimental results yield very good accuracy for
both the increasing and decreasing portions of the sawtooth pattern across
various validation scenarios and different loss-based TCP flavors.

Paper Il Summary: Proposes a robust, scalable and generic machine
learning-based model that experimentally infers both the cwnd and
the underlying variants of loss-based TCP congestion control algorithms
within flow from passive traffic measurements collected at an intermediate
node. The significance of this paper is two-fold. By extending our work
presented in Paper I, this paper presents a machine learning model for
predicting the widely deployed underlying loss-based TCP variants within
a flow. The scalability and robustness approach of the prediction model
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is validated across multiple controlled scenario settings. It turns out,
surprisingly enough, that the learned prediction model performs reasonably
well by leveraging knowledge from the emulated network when it is applied
in a real-life scenario setting which bears similarity to the concept of
transfer learning in the machine learning and deep learning communities.

Paper IT Contribution: We passively control the TCP flows individually
by uniquely identifying the underlying TCP variants of the clients. However,
predicting TCP transmission states from passive measurement has a number
of practical difficulties. One of the main challenges is, for example, TCP
packets can be lost between the sender and the intermediate monitor, or
between the monitor and the receiver [7, 8]. In addition to this, end-to-end
delay variations in the path preceding the intermediate monitor can also
cause retransmissions that appear to be caused by an RTO rather than
a fast retransmit [8]. Because TCP packets are only halfway to their
destination, the relative sequencing on the forward and reverse path can be
confusing, e.g., retransmitted packets can be seen at the monitor shortly
after acknowledgments that should have prevented their retransmission.
This is possibly because the acknowledgments haven’t yet reached their
destination when they are observed, so the receiver did not yet know that
the packets were received before they decided to retransmit them.

In this paper, we advocate that machine learning-based approaches can
give a better prediction accuracy of TCP sender connection states from
passive measurements collected at an intermediate node. Hence, to address
the aforementioned practical challenges, we present a robust and scalable
machine learning-based methodology that passively estimates the cwnd
and uniquely identifies the widely deployed underlying loss-based TCP
variants that the client is using. We validate the robustness and scalability
approach of our prediction model extensively across an emulated, realistic
and combined scenario setting. The prediction accuracies of these scenario
settings are 93.51%, 95%, and 91.66% respectively. The experimental
performance shows that the prediction model gives reasonably good
performance on all the metrics both in the emulated, realistic and combined
scenario settings and across multiple TCP variants. We further show that
our prediction model learned from emulated data generalizes to realistic
scenarios bearing similarity to the concept of transfer learning in the
machine learning community.

Paper lll is a journal extension of Paper [ and Paper II. Hence, this journal
paper is not included as part of this dissertation to avoid redundancy.

Paper IV Summary: Explore the capability of Long Short-Term Memory
(LSTM)-based RNN model to predict TCP transmission states performed
by analyzing data collected through passive measurements. To the best
of our knowledge, this paper is the first work that attempts to apply
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LSTM for demonstrating how to identify the most important system-wide
transmission states of a TCP client from passive traffic measured at an
intermediate node of the network without having access to the sender. The
main goal in this paper is to implement a learning predictive model that
generates the pattern of cwnd from passive measurements using an LSTM
architecture and finally justify if the previous machine learning-based
experiments presented in Paper I and Paper II are valid. In addition to
capturing the pattern of a TCP cwnd with small prediction errors, our
LSTM-based prediction model is also applied to uniquely identify the
underlying loss-based TCP variants based on the multiplicative decrease
parameter of the cwnd and the per-connection states within the variant
from passive measurements. The experimental results presented in this
paper based on emulated and realistic settings show that the LSTM-based
model outperforms the previous results presented in Paper I and Paper 11 by
a reasonably significant margin. It shows that the learned prediction model
by leveraging knowledge from the emulated network performs reasonably
well when it is applied in a realistic scenario setting bearing similarity
to the concept of transfer learning in the machine learning community.
Through an extensive experimental evaluation on multiple scenarios, this
paper demonstrates the scalability and robustness of the approach and
its potential for monitoring TCP transmission states related to network
congestion from passive measurements.

Paper IV Contribution: As in the previous two papers where we
advocate the use of machine learning techniques in the context of TCP
passive monitoring, in this paper, we are interested in the potential of RNN
model based on emulated and realistic networks for estimating TCP cwnd as
well as the underlying TCP variants within a flow. Hence, we have explored
an LSTM architecture for RNN-based prediction approaches to monitor
the most important TCP per-connection states from passive measurements
related to network congestion. We demonstrate the capability of a
deep neural network architecture based on a state-of-the-art learning
LSTM recurrent predictive models to predict TCP transmission states
by merely analyzing data collected through pure passive measurements
from intermediate nodes. Our main goal in this work is to implement a
learning predictive model that generates the pattern of cwnd from passive
measurements using an LSTM architecture and finally justify if our previous
machine learning based-based experiments to estimate cwnd and predict
the underlying loss-based TCP variants presented in Paper I and Paper 11
are valid. We found out that our LSTM-based model outperforms our
previous work presented in Paper IT by a reasonably significant margin. The
LSTM-based TCP variant prediction model achieves accuracies of 97.22%,
96.66% and 94.44% on the emulated, realistic and combined scenario
settings, outperforming the standard machine learning-based which yields
accuracies of 93.51%, 95% and 91.66% respectively.
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Paper V Summary: Proposes and evaluates a novel deep learning-based model
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capable of dynamically predicting at real-time the RT'T between the sender
and receiver with high accuracy using TCP timestamps. This paper
alms at improving the accuracy and timeliness of the RTT estimation by
employing state-of-the-art LSTM-based prediction models to help network
operators improving their analysis. It explores in detail a set of practical
methodological challenges and considerations involved in performing
inference of RTT reliably from passive measurements. Our prediction
methodology is extensively validated across a controlled experimental
testbed and in a realistic scenario on the Google Cloud platform using
different TCP flavors and also dynamic changes in RT'T. Hence, the primary
contribution of the work presented in this paper is building an RTT
prediction model that works well for transfer learning. Even though the
RTT prediction model was trained on an emulated network, this paper
demonstrates that it performs well also when applied to a realistic scenario
setting by leveraging knowledge from the emulated network.

Paper V Contribution: We present a dynamic deep learning-based
approach for RTT prediction in relation to TCP from passive traffic
measurements. There are other previous research works who have examined
and reported RTT estimation for TCP [1, 7, 9]. The approach presented
in [9], for example, uses a unidirectional flow during the TCP handshake
of a connection to estimate RTT using the time from SYN to SYN+ACK
method. The estimation method proposed in [9] calculates one RT'T sample
per TCP connection associated either during the three-way handshake
or during the slow-start phase. If we have captured the TCP three-way
handshake as presented in [9], we can calculate the initial RTT (iRTT)
by taking the time difference from the SYN packet to the ACK packet of
the handshake. However, since the TCP handshake packets are processed
by the kernel, the RT'Ts during the data transfer will probably be slightly
larger than the iRTT. Hence, this approach may tend to underestimate the
actual RTT. In addition to this, since TCP sets the initial retransmission
timeout value to 3 seconds [15], this approach is not applicable in scenarios
where the TCP connection setup takes longer which leads to long delays
and packet losses introduced by the network.

Our deep learning-based approach to passively predict the continuous RTT
measurement throughout the lifetime of a TCP session builds upon these
classical approaches by taking advantage of the commonly used timestamps
option. The main contribution of our work is building an LSTM-based RTT
prediction model that works well for transfer learning from passive traffic
measurements under emulated, realistic scenarios settings and different
TCP variant configurations. Hence, we demonstrate that the learned
prediction model performs reasonably well by leveraging trained knowledge
from the emulated network when it is applied and transferred in a real-life
scenario setting.
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Paper VI Summary: Investigates and explores in greater detail on how an
intermediate node can identify the transmission characteristics state
of widely used delay-based TCP congestion control algorithms that
exploit queueing delay as a congestion signal associated with a passively
monitored TCP traffic. This paper presents an effective TCP variant
identification methodology from traffic measured passively by utilizing S,
the multiplicative back-off factor to decrease the cwnd on a loss event, and
the queueing delay values. The paper addresses how [ varies as a function
of queueing delay and how the TCP variants of delay-based congestion
control algorithms can be predicted both from passively measured traffic
and real measurements over the Internet.

Paper VI further employs a novel non-stationary time series approach
from a stochastic nonparametric perspective using a two-sided
Kolmogorov—-Smirnov test to classify delay-based TCP algorithms based
on the «, the rate at which a TCP sender’s side cwnd grows per window of
acknowledged packets, parameter. To the best of our knowledge, this paper
is the first to study how the variability of the 8 parameter as a function of
queueing delay and the a parameter can be used for passive delay-based
TCP variant identification in real-time. Through extensive experiments
on emulated and realistic scenarios, this paper demonstrates that the
data-driven classification techniques based on probabilistic models and
Bayesian inference for optimal identification of the underlying delay-based
TCP congestion algorithms give promising and comparable results in terms
of accuracy. It shows that the methods can also be applied equally well to
loss-based TCP variants. As observed in Paper I, Paper 11, Paper IV, and
Paper V| this paper also shows that the learned prediction model performs
reasonably well by leveraging trained knowledge from the emulated network
when it is applied and transferred on a realistic scenario setting.

Paper VI Contribution: Identifying the underlying TCP variant from
passive measurements is important for several reasons, e.g., exploring
security ramifications, traffic engineering in the Internet, etc. There are
many different TCP variants widely in use, and each variant uses a specific
end-to-end congestion control algorithm to avoid congestion, while also
attempting to share the underlying network capacity equally among the
competing users. However, we believe that there is very little work on
the identification of the underlying delay-based TCP congestion control
algorithms from passive measurements. The work in [14] proposes a cluster
analysis-based method that aims a router to identify between two versions
of TCP algorithms. This method was meant to be utilized in real-time
applications to handle network traffic routing policies. It performs RTT
and cwnd estimation in order to infer a group of traffic characteristics from
the flow [14]. These characteristics are then clustered into two groups by
applying a hierarchical clustering technique. The authors show that only
2 out of 14 TCP congestion algorithms that are implemented in Linux
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can be identified based on their method [14]. Another related work [20]
presents an active measurement technique to identify a diverse set of known
congestion control algorithms. However, our work in this paper relies on a
passive measurement technique and we are interested in investigating the
delay characteristics of widely used TCP algorithms that exploit queueing
delay as a congestion signal.

In Paper I, we presented a machine learning-based approach to identify the
underlying traditional loss-based TCP variants which achieve a reasonably
good accuracy on emulated and realistic scenarios. In this paper, we
present an effective delay-based TCP variant identification methodology
with both high and low queueing delay based on probabilistic models and
Bayesian inference techniques. The prediction accuracies for the selected
delay-based TCP variants on emulated and realistic scenarios with high and
low queueing delay cases are 97.5%, 95%, 97.83%, and 95.46% respectively

Paper VIl Summary: Introduces the use of standard regularized machine
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learning techniques for enhancing computer network security attack analysis
of an effective benchmark intrusion detection dataset. It focuses mainly
on the contribution of the actual input features that are well understood
within the networking community to find what kinds of attacks in a network
are the most significant. To that end, the actual input features studied
in this paper are ranked into strongly contributing, low contributory and
irrelevant using a combination of feature selection filters and wrapper
methods by carefully carrying out comparisons with previous techniques.
This paper adopts two well-known ranking distance measure metrics in the
evaluation of how similar the ranking algorithms presented in the paper
are in relative to other state-of-the-art methods.

Paper VII investigates the most important features in identifying
well-known security attacks by using Support Vector Machines (SVMs)
wrapped with Recursive Feature Elimination (RFE) algorithm and
{1-regularized method with Least Absolute Shrinkage and Selection
Operator (LASSO) for robust regression both to binary and multiclass
attack classification to give us an insight into features of different classes
of security attacks. SVMs are one of the standards of machine learning
classification techniques that give a reasonably good performance but with
some drawbacks in terms of interpretability. On the other hand, LASSO
is a regularized regression method often performing comparably well and
it has extra compelling advantages of being very easily interpretable.
Moreover, LASSO is much more computationally effective and provides
coefficients that assess how individual features affect the probability of
specific security attack classes. Hence, this paper uses LASSO in particular
for multiclass classification in order to better understand the dynamics
behind the classification model and get a better insight into which actual
features shared by security attacks in a network are the most important
ones for detecting and distinguishing between security attacks.
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The analysis in Paper VII is performed using a benchmark intrusion
detection public dataset where the data are labeled into either anomalous
(denial-of-service (DoS), remote-to-local (R2L), user-to-root (U2R), and
probe attack classes) or normal. Extensive experiments are performed
where we compared feature ranking algorithms using both two-stage
approaches with SVM and one-stage approach using LASSO. Total accuracy
of 97% for binary classification is achieved for both the two-stage evaluation
approach using SVM and a one-stage approach using LASSO. Compared to
binary, a total multiclass classification accuracy of 95.90% is achieved using
LASSO. This paper concludes that a one-stage approach using LASSO is
simpler, computationally faster and gives us good performance with the
most significant actual features.

Paper VII Contribution: The process of defining appropriate
input features, performing feature selection, data normalization and
the contribution of this with interpretable results on security attack
classification and computational performance has not been thoroughly
studied. Traditional approaches rely on expert knowledge or managers to
define rule-sets defining normal behavior and intrusions in a network [16, 19].
Machine learning techniques have the potential of detecting unknown
security attacks in network traffic sharing features with other attacks
by being trained on normal and abnormal types of traffic. However,
one critical problem in machine learning is identifying and selecting the
most relevant input features to construct an accurate model based on
training data for a particular classification task. As it is reported in
the literature [4, 11, 18], employing machine learning techniques on the
NSL-KDD [6] dataset gives a very low level of detection rate on some
security attack categories within the misuse detection context. It is,
therefore, important to perform an effective feature selection analysis to
make it easier for network administrators to better understand the features
that contribute to attacks. Finally, this paper provides a deeper insight
from a security engineering perspective on why the features obtained
by regularized machine learning techniques are so important in clearly
identifying various security attacks in a network. We argue that the
presented methodology may strengthen future research work in network
intrusion detection settings by leveraging advanced state-of-the-art machine
learning approaches.

Paper VIl Summary: Proposes and evaluates an advanced -classification
approach to passive OS fingerprinting by leveraging state-of-the-art classical
machine learning and deep learning techniques. Our controlled experiments
on benchmark data, emulated and realistic traffic is performed using two
approaches. Through an Oracle-based machine learning approach, we found
that the underlying TCP variant is an important feature for predicting
the remote OS. Based on this observation, we develop a sophisticated
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tool for OS fingerprinting that first predicts the TCP flavor using passive
traffic traces and then uses this prediction as an input feature for another
machine learning algorithm for predicting the remote OS from passive
measurements.

Paper VIII takes the passive fingerprinting problem one step further by
introducing the underlying predicted TCP variant as a distinguishing
feature in addition to the basic TCP/IP features that are the basis of
OS fingerprinting. Using the TCP variant as a passive OS distinguishing
feature remains largely unexplored and is not used by existing fingerprinting
techniques. The reason why we concentrate on the implementations of
the underlying TCP variant as a feature in our OSes classifier models is
that due to the fact that different Operating Systems (OSes) are doing
slightly different implementations of TCP. Hence, we strongly believe that
passively observing the network-level characteristics found in TCP packets
can give us more information about the remote computer’s underlying
OS. We further believe that this will also help us to explore in detail the
practical implications and long-term characteristics of TCP traffic. This
is one of the main contributions of Paper VIII. In terms of accuracy, we
empirically demonstrate that accurately predicting the TCP variant has
the potential to boosts the evaluation performance from 84.1% to 94.1%
on average across all traffic types tested, and from 85.6% to 95.4% in
an emulated setting. We also demonstrate a practical example of this
potential, by increasing the performance to 91.3% on average using a tool
for passive TCP variant prediction in an emulated setting. To the best of
our knowledge, this is the first study that explores the potential of using
the knowledge about the underlying TCP variant to significantly boost the
accuracy of passive OS fingerprinting.

In this paper, we show that the presented machine learning and
deep learning-based classification models for passive OS fingerprinting
approaches perform consistently and reasonably well as compared to other
existing state-of-the-art solutions. Furthermore, we also show that the
OSes classification model works equally as well for transfer learning. In
all our experiments, we made sure that both the training and validation
accuracies are closer as a way of measuring the ability of the classification
models to generalize on unforeseen scenarios.

Finally, Paper VIII highlights questions and technical challenges of interest
to direct future research, such as: what happens if an end-user (client)
changes parameters that are the basis of passive OS fingerprinting?, What
happens if we don’t know the underlying OS? We believe challenges like
this would make OS fingerprinting from passive measurements potentially
hard. Hence, investigating these key challenges is one possibility for our
future work. It is known that TCP clock drift improves OS fingerprinting
and hence measuring differences in the timing of how the IP stack works
may allow us to predict the underlying OS with greater assurance in terms
of accuracy. We, therefore, argue using other TCP options like Timestamps
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and queueing delay characteristics as an input feature vector for passive
OSes fingerprinting model is also an interesting direction. Hence, as part
of our future work, we plan to include these features and strengthen the
research in OS fingerprinting from passive measurements. The method
presented in this paper, where the TCP cwnd is first computed based
on the outstanding bytes in flight, then the underlying TCP flavor is
predicted from the estimated cwnd, is particularly efficient for loss-based
TCP variants. In previous works, we have also developed a tool for the
prediction of delay-based TCP flavors [5]. As future work, we plan to
extend the method presented here to also cover delay-based TCP variants.

Paper VIII Contribution: An accurate passive OS fingerprinting plays
a critical role in effective network management and cybersecurity protection.
Traditionally, most of the existing general OS fingerprinting techniques
resort to manually generated signature matching from a database of
heuristics which contains features of widely used OSes. This means, after
comparing the generated signatures, the first set of responses match with
the highest confidence against a database of fingerprints would be used to
select the specific probable OS. However, manually updating a large number
of signature and managing databases of new OSes adds a considerable
amount of time and hence we may suffer from the consequences of the lack
of recent signature updates of the known OSes. Hence, we argue that it is
important to consider making use of a fingerprint database that contains
variations of most currently used OSes and automating these tasks by
employing learning algorithms capable of extracting all possible OS-specific
features for discovering the underlying OSes. To explore this idea of
applying learning algorithms, we present a unified and robust classification
approach to an advanced passive OS fingerprinting that leverages both
machine learning and deep learning methods.

In the computer security community, there has been a great deal of work
on remote OSes fingerprinting [2, 10, 12, 13]. A recent study that is most
closely related to our work, and which has also given a comprehensive
survey on passive fingerprinting methods, can be found in [10]. The average
accuracy of OS classification using the TCP/IP parameters reported in [10]
is 80.88%. Aksoy et al. [2] have employed genetic algorithms for identifying
packet features suitable for OS classification based on the analysis of the
network TCP/IP packets using machine learning algorithms. However,
most of these previous works use the basic actual TCP/IP features for
evaluating passive OS fingerprinting. Besides, we believe that these tools
have the inability to extract all possible OS-specific features for passively
fingerprinting the underlying OSes.

In contrast, what distinguishes our contribution in Paper VIII from the
other previous related works is that our model supports a wider range of
TCP/IP network stack features. The central goal of our work presented
here is to combine these basic TCP/IP features that are the basis of
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OS fingerprinting with the underlying TCP variant by leveraging both
machine learning and deep learning techniques. This idea remains largely
unexplored and is not used by existing fingerprinting techniques. Detecting
the implementation of a TCP variant passively is a challenging task and
this, we believe, is the reason why no previous works use it to passively
fingerprint remote OSes. However, in our case, we already have a general
solution for this difficulty presented in Paper I, Paper II, and Paper IV.
The reason why we focus on the implementations of the underlying TCP
variant as a feature in our OS classifier model is due to the fact that
different OSes are doing slightly different implementations of TCP. We
believe that passively observing the network-level characteristics found in
TCP packets can give us more information about the remote computer’s
underlying OS. We further believe that this will also help us to explore
in detail the long-term characteristics of TCP traffic. Hence, we propose
and evaluate a novel approach that attempts to passively fingerprint the
underlying remote OS by leveraging state-of-the-art machine learning and
deep learning techniques.

In Paper VIII, we show that knowing the TCP variant has a great potential
for boosting the classification performance of passive OS fingerprinting.
However, in reality, we don’t have an Oracle-given TCP variant and hence
we don’t know what exactly the underlying TCP flavor is. In this paper,
we built a universal tool for passive monitoring that can be applied to
first passively estimate the TCP cwnd computed based on the outstanding
bytes in flight, second passively predict the underlying TCP flavor from
the estimated cwnd and finally uses the predicted TCP variant as an
input feature to detect the remote computer’s OS in addition to the basic
TCP/IP features that are the basis of OS fingerprinting. We demonstrate
that our tool with the TCP variant prediction performs equally as well
when compared to the Oracle-given TCP variant. The experimental
results show that our classification models for passive OS fingerprinting
perform highly consistently and reasonably well in terms of accuracy across
different validation scenarios. To the best of our knowledge, this is the
first study of passive fingerprinting OSes by applying machine learning
and deep learning approaches combining the basic TCP/IP features and
the predicted underlying TCP variant as input vectors.

Paper IX is a journal extension of Paper VIII and hence, this journal paper is
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Chapter 3
Background

In this chapter, we provide necessary background knowledge relevant to the
reader of this doctoral dissertation in order to make the dissertation report
self-contained.

3.1 Machine Learning

Machine learning, as a fundamental branch of Artificial Intelligence (AI), is a
programming approach that endows computers with the ability to learn and
improve from their past experiences driven by historical data and take a decision
that is not explicitly programmed [54, 75]. Historically, machine learning is
defined as a collection of powerful algorithms for data mining and knowledge
discovery technologies useful for automated identification of patterns in large
datasets [58, 63]. Machine learning is increasingly becoming so promising in wide
ranges of active research areas and practical applications and services, ranging
from smartphones and cameras, speech recognition, image recognition, etc., that
are important in all aspects of modern society. In this dissertation, we focus
on the state-of-the-art applicability of both machine learning and deep learning
techniques from the perspective of computer networking.

Categories of machine learning: In practice, there are two broad categories
of most widely used forms of machine learning [60]. Note that there is a third
category of an active research area in the machine learning community known
as reinforcement learning [79]. It is a useful computational approach to learning
where an agent tries to learn how to act or behave by maximizing the total
amount of occasional reward signal or punishment while interactive with a
dynamic environment. However, reinforcement learning is beyond the scope of
this dissertation. For more detailed information on reinforcement learning, we
refer the interested readers to [41, 70, 78, 81, 91].

3.1.1 Supervised Learning

Supervised learning, sometimes called a predictive learning, is a powerful machine
learning approach where the main task is learning a function, f : x — y, that
finds an underlying mapping from input space z to output space y, given a labeled
set of n input-output pairs D = {(z1,y1),-.-, (@n,Yn)}, i € R",y; € R where
D is called the training set and n is the number of training examples [60, 70].
Each training input space x; is a D-dimensional vector of numbers, representing,
for example, the length and width of a rectangle. These characteristics are
called features or attributes. Note that x; is a vector and y; is a discrete label
in classification and real values in regression [60, 70]. As show in Figure 3.2,

35



3. Background
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Representation
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Figure 3.1: A Venn diagram showing how deep learning is a subfield of machine
learning paradigm. Each section of the Venn diagram includes an example of an
AT technology and it is inspired by [28].

the supervised learning model infers a function from labeled training data (e.g.,
image, document, text, time series data, etc.) with features consisting of a set of
training examples [60].

Machine Learning
Algorithms

Feature vector
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Preprocessing Learning

Feature vector Machine Predicted
extraction Learning Model label
Preprocessing Evaluation/testing
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Figure 3.2: The supervised learning model process. (a) Training phase (b)
Testing phase.

36



Machine Learning

Forms of supervised learning: The two most common forms of supervised
learning are: classification and regression.

3.1.1.1 Classification

The main goal of classification task is to construct a function that maps from
an input z to a corresponding output y, i.e., {(x;,y;)};_, where y; € {1,...,n},
with n being the number of different classes. There are two broad categories
of classification: binary and multiclass classification. Binary classification is
when N = 2, where y; € {+1,—1}. However, if N > 2, it is called multiclass
classification. In general, if the possible set of output, f : X — R, where
X represents features of the underlying problem takes a finite set of discrete
labels or categories (e.g., “yes” or “no”, “male” or “female”, image classification,
handwriting recognition, facial detection and recognition, etc.), this indicates that
the learning problem is a classification or pattern recognition. The supervised
machine earning classification algorithms we employed in our papers are Support
Vector Machines (SVMs) [10, 87], Naive Bayes [20, 51], Random Forest [9],
k-nearest neighbors (KNN) [19]. These are also some of the most popular
supervised machine learning in use today.

3.1.1.2 Regression

Unlike classification, if the possible set of response variables, y;, takes continuous
real values (e.g., predicting housing price, predict tomorrow’s temperature,
predict an employee’s income, etc.), this indicates that the learning problem is a
regression given as {(z;,y;)};_, ,x; € X,y; € R. Regression approaches can be
used to extract the underlying relationship between independent and dependent
variables and identifying causal inference [38]. Some of the most common
regression techniques include: linear regression [61, 73], logistic regression [43, 55],
Least Absolute Shrinkage and Selection Operator (LASSO) regression [84, 85],
etc. Among these, we have employed LASSO regression in our work.

3.1.2 Unsupervised Learning

Unsupervised learning is the second main category of machine learning whose
main goal is to discover a particular hidden pattern in unlabeled data [35, 60].
This helps us to unveil the meaningful hidden relationships between the variables.
In unsupervised learning we only have a training input without pre-existing
labels, D = {x;},_,, where we observe only the features z1, 22, . . . , z,
without an associated response variable y; for a given x. Unlike supervised
learning where we have the desired response variable provided to the learning
model together with the input training data, with unsupervised learning we
learn how to artificially reconstruct the natural structure of the input data
using a representation [35]. In unsupervised learning, since we don’t know the
desired response variable, we formalize the learning task as unconditional density
estimation by building learning models of the form p (x;|0) [7, 62].
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Unsupervised learning in recent years is becoming more widely applicable in
a number of research fields since it does not require a human expert’s knowledge
about the data’s attributes ahead of time [62]. One benefit of unsupervised
learning is that it is often much easier to obtain unlabeled data than labeled data
which can require additional human intervention to provide the correct labels.
In addition to this, Bengio et al. has found out that unsupervised pre-training
improves state-of-the-art learning algorithms for deep architectures such as Deep
Belief Networks [22].

3.2 Deep Learning

Deep learning is an emerging and promising subfield of representation learning
paradigm [4, 28]. Representation learning is a set of advanced techniques that
seek to automatically discover the representations of large amounts of raw data
fed into a machine for performing actions such as prediction, classification tasks
or learning complex functions and relationships among data at multiple levels
of abstraction [3, 48]. It is a new field in the machine learning community
as depicted in Figure 3.1. The ability to automatically learn the depth and
complexity of the large data representation at multiple levels is important as
the amount of data and wide range of state-of-the-art applications to machine
learning and deep learning techniques such as sound and speech recognition,
object recognition, medical analysis, drug discovery, etc. continues to grow
exponentially. For a more detailed explanation and historical background of
representation learning, we refer the readers to the work presented in [28].

Deep learning methods are characterized by a collection of computational
neural network models that are composed of multiple processing layers capable of
learning distributed representations of data with multiple levels of abstraction [48].
Deep learning builds predictive models using large Artificial Neural Networks
(ANN) as underlying techniques [4, 28]. These models have contributed
remarkably well in advancing many research domains. Deep Neural Networks
(DNN) [48, 72] are a feed-forward deep learning neural network architecture
trained end-to-end using new machine learning methods that have shown
advancements in a wide range of supervised and unsupervised machine intelligence
tasks. Note that the computational effort of training the multiple processing
layers of a fully connected recurrent network and finding the correct combination
of weights from layer to layer and the parameters that change the input data
becomes enormous and substantially harder when more complicated neural
networks as described below are considered [69, 92]. To address this critical
challenge, backpropagation [47, 49, 68, 88, 89, 90] as a learning technique to
repeatedly update the change in weights in the neural network by comparing the
networks actual output against the desired value in terms of the corresponding
partial derivatives of the complex performance function computed using the
chain rule with respect to a particular weight is introduced as of the form given
in Equations 3.1 and 3.2.
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OL(zy) _0L(zy) Do 0=
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where L, z, y, w, and « in Equation 3.2 denote the loss function, expected output,

actual output, weight of the neural network, and the learning rate constant
respectively. As a result, the weight of the neural network is updated as follows:

(3.1)

IL(z,y)
—w—a——= 3.2
w—w — o= (3.2)
In a neural network, weights of the neuron are simultaneously updated

according to the following step by step procedures.

e Take a batch of training data.
e Perform forward propagation to obtain the corresponding loss.
o Backpropagate the loss to get the gradients.

o Use the gradients to update the weights of the network.

3.2.1 Recurrent Neural Network (RNNs)

As described above, the information in feed-forward neural networks moves in
only one direction, i.e., from the input nodes towards the output nodes. One of
the main benefits of the introduction of backpropagation is for efficiently and
recursively training more powerful network models than feed-forward neural
networks such as RNNs [48]. The backpropagation technique is capable of
repeatedly updating the weights of the layers in the neural networks in order
to minimize the measure of the difference between the actual and expected
output vectors for a particular training example [47, 49, 68, 69, 88]. RNNs
are widely applicable for tasks that involve the processing of sequential inputs
such as speech recognition, computational biology, natural language processing
(e.g., handwriting recognition) and other complex tasks. Unlike feed-forward
neural networks, the connections between units in RNNs form a directed loop
along a temporal sequence that allows the RNNs process an input sequence
one element at a time using their internal state memory. The internal hidden
memory maintains the information about the dynamic behavior and history
of all the previous units of the sequence [68, 69]. Due to their internal
memory cell capability, RNNs have, in recent years, become popular focus of
research topic in the areas of DNN as diverse as, for example, automatic speech
recognition [30, 31, 33, 56, 59, 71], music generation [15], text generation [76],
image classification [5, 23, 34, 44, 80, 86], facial recognition [46, 82], sentiment
classification [83], credit card fraud detection [26] and numerous other areas of
major advancements. RNNs use input sequence data such as text and speech to
solve both for prediction [18] as well as classification problems [12, 45, 52]. Even
though RNNs are very successful and powerful dynamic systems used to map
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input sequences to output sequences, however, as the long-range dependency
and duration of training RNNs arbitrarily increases, there are critical practical
difficulties to be addressed as explained in detail below [6, 21, 36, 65].

3.2.2 Long Short-Term Memory (LSTM)

Properly training RNNs for arbitrarily long-range dependencies suffers from
two widely known critical issues of the vanishing and exploding gradient
problems [6]. While training RNNs, these practical difficulties are associated with
the derivatives of the gradient-based methods, e.g., backpropagation, getting
big or small at each time step [48]. As the duration of the long sequence
dependencies during the course of backpropagation increases, the derivatives
of the gradient over many time steps may eventually explode or vanish during
training since the growing memory requirement is proportional to the length of
the sequence [6, 48]. To significantly reduce this problem of RNNs, a variety of
well-known approaches have been proposed [16, 21, 29, 36, 40, 53, 74, 77, 93].
Consequently, these advancements have made RNNs to become successful
on a number of difficult machine learning tasks such as end-to-end speech
recognition [11], text generation [76], word embedding extraction from a
sequence [57], sequence mapping [14], neural machine translation [2, 14], and
many other more complex tasks. LSTM [27, 29, 36] is one of the most
popular implementations of Recurrent Neural Networks (RNN) state-of-the-art
architectures that use special hidden units designed for a wide range of sequence
modeling tasks and time series prediction models with long-range dependencies.
The LSTM unit [27, 36] is a powerful and flexible RNN tool that has a memory
cell that gives a previous hidden state containing connection information through
the hidden layer activations from the past for a long period of time.

LSTM in its recurrent hidden layer has a special unit called memory blocks
consisting of memory cell units that are responsible for remembering the temporal
states of the network for arbitrary time intervals [27, 29, 36]. In each layer of
the LSTM architecture [27, 29, 36], there is a forward propagation step which
is a corresponding backward propagation through time step. In addition to this,
there is a cache that passes information from one layer to another. This ability
of LSTM [36] allows us to solve the vanishing gradient problem by dynamically
controlling the information flow within the layers and capture the long-term
dependencies of the connections in a sequence effectively. LSTM [27, 36] is
used to address difficult sequence learning and prediction problems in machine
learning and have subsequently achieved state-of-the-art results.

In recent years, LSTM networks have proved to be more effective by
outperforming traditional models in certain applications, e.g., speech recognition,
especially when they have multiple layers for each time step [31, 77]. One of the
main benefits of using an LSTM model for challenges that involve time series data
is to avoid the vanishing gradient problem. RNN model scans through the training
data from left to right and the parameters it uses to govern the connection in the
hidden layer for each time-step, learned features during the training are shared
and this significantly improves the prediction. An LSTM model computes a
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mapping from an input feature vector x = (x(1), Z(2), £(3), ..., T(n)) Where z; € R"
to a corresponding output sequence y = (y(1), ¥(2); ¥(3)s ---» Y(n)) Where y; € R"
by calculating the network unit activations of a weighted sum using the Equations
3.3-3.8 iteratively from ¢ = I to n. As it is shown in Equations 3.3, 3.4, and 3.6,
LSTM [27, 36] uses three adaptive, an input, forget and output, gates shared by
all cells in the LSTM block in order to learn long-term dependencies and control
the flow of information. The output of these gates multiplicatively influences
connections within the memory units. The input gate determines the flow of
input activations into the memory cell whereas the output gate determines the
output flow of cell activations into the rest of the network. The forget gate
determines the extent to which the current value remains in the memory cell
of the LSTM unit before it gets gradually discarded when its data is no longer
needed.

iy = o(Wigws + Wimmy 1 + Wiccy—1 + b;) (
fi=0Wizzy + Wepmmy—1 + Wyeci—1 + by) (
et = fr © i1+t © g(Weawe + Wemmy—1 + be) (
o = 0(Wopty + Wommy—1 + Woeer + bo) (
my = op @ h(c) (
Yt = ¢(Wy7rzmt + by) (

where the i, f, ¢, o are input, forget, memory state, and output gate activation
vectors respectively at each time step t. ¢ is the logistic sigmoid non-linearity
while ®, g and h are element-wise product of the vectors, the cell input and
output non-linearity activation functions of the entire neural network, ReL U
in our case, applied to each layer of the deep network respectively. W and b
represents a vector of weighted recurrent connections and the bias vector. my is
the hidden state output of the LSTM layer. Finally, ¢ is the activation function
in the hidden layer applied to the network output. Figure 3.3 describes the basic
unit of an LSTM network where the input sequence to the LSTM cell is carried
over each time step of t+1, t and ¢-1. As shown in Figure 3.3, the hidden state,
at time step t, is a function of the current input sequence z; at the same time
step. C; and C;_1 are the memory cell state activation vectors from the current
and previous block at time t and ¢-1 respectively.

3.2.3 Multilayer Perceptron (MLP)

MLP is one of the deep learning models we have employed in our papers.
It is a feedforward artificial neural network consisting of multiple layers of
neurons or hidden elements called perceptrons that interact using weighted
connections [17, 37, 67]. As it has been widely discussed in the neural network
literature, a typical MLP consists of an input layer, a hidden layer consisting
of intermediate processing units and an output layer [37, 68]. As shown in
Figure 3.4, a simple MLP neural network architecture consists of n input feature
vectors, & = [x1, X9, T3, T, ..., L), adjustable vector weights associated with the
i*" input vector, w;,i = 1,2,3,4, ...,n, a bias b, a non-linear activation function
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Figure 3.3: Simple LSTM Network Architecture. For more details, refer [64].

©, w represents the vector of weights, and an expected output of the neuron
y;. The most classical case of MLP can be written mathematically as shown in
Equation 3.9.

Activation

Function Outputs

Q.

Yi = (Z wiT; + b) =¢(w'x+0) (3.9)

MLP is efficiently used for both feature selection and classification tasks [17].
Note that logistic regression is one special case of the MLP with no hidden
elements [62]. Hence, MLP can be viewed as a collection of logistic regression
classifier models where the final layer is being either another logistic regression or
a linear regression model [62]. This depends depending on whether we are solving
a classification or regression task. For example, if we are solving a regression
task using two layers, the model has the forms presented in Equations 3.10
and 3.11 where g is a non-linear activation (logistic) function, z(x) = ¢(x, V) is
the hidden layer, H is the number of hidden elements, V is the weight matrix
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from the inputs to the hidden nodes, and finally w is the weight vector from the
hidden layer to the output layer.

p(y|x,0) =N (y\sz(x),orQ) (3.10)

z(x) = g(Vx) = [g (v{x) yees g (Vgx)} (3.11)

MLP has a universal approximation capability, that comes from the
nonlinearities used in the nodes, for any continuous multivariate function [37].
This means that it can model any arbitrary function given enough hidden
units. Hornik et al. has proved that a standard single hidden multilayer
layer feedforward neural networks are capable of approximating any continuous
function of interest, f : R™ — R™, to any given degree of accuracy from one
finite-dimensional space to another provided that adequate hidden units are
available [37]. As shown in Equation 3.12, an MLP model is also designed to
handle binary classification by passing the output through a sigmoid activation
function. We can also extend this to predict multiple outputs that can be used
for a multi-class classification as shown in Equation 3.13.

p(y|x,0) = Ber (y| sigm (WTZ(X))) (3.12)

p(ylx, 0) = Cat(y|S(Waz(x)) (3.13)

Finally, it is good to remember that for different tasks, MLP uses different
loss functions. For example, the loss function MLP uses for classification tasks
is cross-entropy. However, for regression tasks, MLP uses the squared error loss
function.

3.3 TCP Congestion Control

One of the main responsibilities of congestion control is to ensure efficient and
fair sharing of the network’s limited resources among its users. It ensures that
sending nodes adjust their transmission rates based on the level of congestion in
the network. Before congestion control was introduced into TCP, the sending rate
was only limited by the receiver window (rwnd), maintained and advertised by the
receiver to ensure appropriate flow control. With the introduction of congestion
control, the sending rate is also limited by the Congestion Window (cwnd)
maintained by the sender. The cwnd limits the maximum number of bytes that
can be sent without being acknowledged at any time. The cwnd is changed
dynamically according to the congestion control algorithm, and the maximum
rate of transmission changes accordingly.

Over the years, TCP has adopted several end-to-end congestion control
algorithms to address different requirements or to improve its general performance.
Some of the congestion control algorithms introduced over the years are shown
in Figure 3.5.
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Figure 3.5: TCP historical background from 1990 - 2010.

3.3.1 Additive Increase and Multiplicative Decrease (AIMD)

The Additive Increase Multiplicative Decrease (AIMD) method is a basic building
block for the congestion avoidance of many of the traditional TCP congestion
control algorithms [13, 42]. With AIMD, the window size is first increased
linearly by —“— every time an ACK is received [1], until there is a congestion
indication, such as when an ACK timeout is triggered.. Thus, the TCP sender
will effectively increase the window linearly by roughly « segments for every
Round-trip Time (RTT). However, when the congestion indication occurs, the
window size is decreased multiplicatively by a factor (3, i.e., the new reduced
window size will be only a p-factor of the window size when the congestion
indication occurred.

Let f(t) be the sending rate (e.g., the congestion window) during time
slot ¢, a(a>0), be the additive increase parameter, and 5(0 < S<1) be the
multiplicative decrease factor, the AIMD control is illustrated by Equation 3.14.

f(t) + «, If congestion is detected

ft+1)= {f(t) x (3, 1If congestion is not detected (3.14)

3.3.2 Phases of TCP implementations
TCP has the following phases:

o Slow start: Instead of the Additive Increase (AI) portion of the AIMD,
the cwnd size increases exponentially, as shown in Figure 3.6. The window
increases by one for each ACK received, resulting in a doubling of the cwnd
size for every RTT until either a packet loss has occurred, the rwnd limit is
reached, or if the given Slow Start Threshold (ssthresh) is reached [1, 39].
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o Congestion avoidance: Traditionally TCP increases the transmission
rate and then backs off when it sees signs of congestion. AIMD is an
example of a congestion avoidance mechanism.

e Fast retransmit: The fast retransmit mechanism triggers the
retransmission of a randomly dropped packet before the regular
Retransmission Timeout (RTO) expires or before three duplicate ACKs
are received [39]. Fast retransmit can fix a problem with a spuriously lost
or reordered packet, without necessarily going into multiplicative decrease.

e Fast recovery: Fast recovery works by effectively avoiding the slow start
phase even if there are still ACKs arriving in the pipe. When the TCP
sender receives a duplicate ACK during fast recovery, instead of dropping
its current cwnd all the way back to 0, the fast recovery algorithm simply
drops it multiplicatively, e.g. to C%—”d.
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Figure 3.6: Phases in TCP cwnd.

3.3.3 Flavors of TCP congestion control algorithms

Transmission Control Protocol (TCP) is one of the dominant transport protocols
that has significantly played a great role in the exponential success of the
Internet, network technologies and applications [39, 66]. As explained above,
the majority of all Internet traffic all over the world today use TCP due to
practical considerations that favored TCP over other transport protocols [24].
The TCP congestion control strategies are broadly categorized into loss-based
and delay-based variants. Detailed background on these two categories of TCP
variants is presented as follows.
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e Loss-based TCP flavors: One category of the widely deployed variants

ranging from TCP CUBIC [32], Reno [39], BIC [94], etc. where packet loss
probability is an implicit signal for congestion in the underlying network are
called loss-based TCP congestion control algorithms. TCP variants of this
kind aggressively fill up the actual network buffers in order to achieve better
throughput by ignoring queueing delay and hence they tend to induce large
queueing delays when the buffer sizes are large. However, this is challenging
for the quality of latency-sensitive and bandwidth-intensive real-time media
applications to achieve good performance when long-running flows also
share large bottleneck link buffers. Therefore, to address this challenging
problem, delay-based TCP schemes that adopt packet queueing delay
rather than a loss as congestion signals are introduced.

Delay-based TCP flavors: Unlike traditional loss-based approaches,
delay-based TCP congestion control algorithms use the changes in queueing
delay measurements as implicit feedback to congestion in the underlying
network. Delay-based congestion control algorithms attempt to avoid
network congestion by monitoring the trend of network path’s RTT
information contained in packets. In order to properly allocate, share the
underlying network resources, and ensure network queueing delay stays
low, delay-based congestion control algorithms require knowledge of an
accurate estimate of the network path’s base smallest possible RTT in
the absence of congestion (BaseRTT) [50]. With delay-based congestion
control algorithms, allocating network resources across competing users can
be attained by supporting both high network utilization and low queuing
delay even when the buffer sizes are large. Some of the end-to-end widely
used delay-based congestion control algorithms on the Internet we use for
our experimental evaluations include TCP Vegas [8] and TCP Veno [25].

3.3.4 Summary

To address the three use cases of the dissertation, we have used a number of
state-of-the-art machine learning and deep learning techniques. Some of the
classical machine learning methods we applied in Paper I, Paper II, Paper VII,
and Paper VIIT are: SVMs [10, 87], Naive Bayes [20, 51|, Random Forest [9],
KNN [19], and LASSO regression [84, 85]. In Paper VI, we applied data-driven
classification techniques based on probabilistic models and Bayesian inference
by employing a novel non-stationary time series approach from a stochastic
nonparametric perspective using a two-sided Kolmogorov—Smirnov test. The
two most widely used RNN techniques we employed in Paper IV, Paper V, and
Paper VIIT are: MLP [17, 37, 67] and LSTM [27, 29, 36].
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Chapter 4
Related Work

This chapter briefly presents a summary of the relevant related works found in
the literature for the three use cases we presented in Chapter 1.

TCP State Monitoring from Passive Traffic Measurements: Here we
summarize the most important related works from our papers I through VI.

Much of the substantial literature on Transmission Control Protocol (TCP)
state monitoring from passive traffic measurements are complementary to our
approaches. In the traditional methods of end-to-end passive measurement,
there has been much interest in the investigation of TCP connections aggregate
properties and its characteristics on the global Internet. Starting with [32, 60],
TCP congestion control has been an active area of research in the networking
community. Our initial work in the first use case is particularly related to prior
work that provides a passive measurement methodology to infer and keep track
of the values of the sender variables: end-to-end Round-trip Time (RTT) and
cwnd [34]. The idea is to emulate a state transition by detecting Retransmission
Timeout (RTO) events at the sender and observing the ACKs which cause the
sender to change the value of the cwnd. This work, [34], considers only the
predominant implementations of TCP (Reno, NewReno and Tahoe) and the
basic idea is it constructs a replica of the TCP sender’s state for each TCP
connection observed at the intermediate node. The replica takes the form of a
finite state machine. However, the use of a separate state machine for each variant
is unscalable taking the many existing TCP variants into consideration. We also
believe that the constructed replica [34] cannot manage to reverse or backtrack
the transitions taking the tremendous amount of data into consideration. Another
limitation is that the replica may not observe the same sequence of packets as
the sender and ACKs observed at the intermediate node may not also reach the
sender. As an extension of [34], the work in [35], presents a methodology to
study the performance of TCP, classify out-of-sequence behavior of packets for
retransmission so as to identify where congestion is occurring in the network,
with the same measurement environment as in [34]. Jitendra et al. [55] presents
a tool called TBIT that characterizes the TCP behavior of a remote web server
running over a real TCP implementation in a specific operating system by
actively sending requests to web servers irrespective of the TCP variant.

In contrast, we propose to use a passive measurement approach which, as we
motivate in Chapter 1, has a lot of benefits over active methods. The authors of
the study [61] developed a tool called tepflows that attempts to passively estimate
the value of cwnd by analyzing the ACK stream to detect the occurrence of TCP
congestion events. However, the state machine implemented with tcpflows is
limited to old TCP variants and hence, we believe, it cannot uniquely identify the
cwnd characteristics of newly deployed TCP variants. In Paper I, we show how
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an intermediate node (e.g., a network operator) can identify the transmission
state of the TCP client associated with a TCP flow by passively monitoring
the TCP traffic. We demonstrate how the intermediate node can predict the
Congestion Window (cwnd) size of the TCP client. Our method can also be
extended to predict other TCP transmission states of the client. We use a generic
machine learning-based prediction approach for inferring cwnd within a flow
from passive traffic collected at an intermediate node. Our experimental results
of Paper I indicate the effectiveness of our prediction model with reasonably
good accuracy across different scenarios and multiple modern loss-based TCP
variants by examining each cross-traffic of TCP flows of the endpoints passively
collected at an intermediate node.

As an extension of this work, in Paper Il we present a robust, scalable and
generic machine learning-based model which may be of interest for network
operators that experimentally infers the underlying variant of loss-based
TCP algorithms within flow from passive traffic measurements collected
at an intermediate node. Identifying the underlying TCP variant from
passive measurements is important for several reasons, e.g., exploring security
ramifications, traffic engineering in the Internet, etc. Oshio et al. [54] proposes
a cluster analysis-based method that aims to identify between two versions of
TCP algorithms. This method was meant to be utilized in real-time applications
to handle network traffic routing policies. It performs RTT and cwnd estimation
in order to infer a group of traffic characteristics from the flow [54]. These
characteristics are then clustered into two groups by applying a hierarchical
clustering technique. The authors show that only 2 out of 14 TCP congestion
algorithms that are implemented in Linux can be identified based on their
method [54].

Most of the line of research work in the literature on the unique identification
of the underlying variant of TCP congestion control algorithm from passive
measurements focus on earlier flavors of TCP [34, 58]. Our work mainly differs
from the previous research works in that our main goal is to develop a robust,
scalable and generic prediction model for inferring TCP per-connection states for
the most widely used loss-based congestion control algorithms including the newly
deployed algorithms (e.g., BIC [72], CUBIC [25], Reno [32] etc.). Combining
these two contributions, in Paper IV we have presented Long Short-Term
Memory (LSTM)-based Recurrent Neural Networks (RNN) prediction approach
for building a generic prediction model for TCP connection characteristics from
passive measurements.

As a parallel contribution, in Paper VI, we investigated the delay
characteristics of widely used TCP algorithms that exploit queueing delay
as a congestion signal and as a result, we present an effective TCP variant
identification methodology from traffic measured passively by analyzing [, the
multiplicative back-off factor to decrease the cwnd on a loss event, and the
queueing delay values. In Paper VI, we further employ a novel non-stationary time
series approach from a stochastic nonparametric perspective using a two-sided
Kolmogorov—Smirnov test to classify delay-based TCP algorithms based on the a,
the rate at which a TCP sender’s side cwnd grows per window of acknowledged
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packets, parameter. Through extensive experiments on emulated and realistic
scenarios, we demonstrate that the data-driven classification techniques based
on probabilistic models and Bayesian inference for optimal identification of the
underlying delay-based TCP congestion algorithms give promising results.

In Paper V, we propose and evaluate a novel deep learning-based model
capable of dynamically predicting at real-time the RTT between the sender
and receiver with high accuracy based on passive measurements collected at an
intermediate node, taking advantage of the commonly used TCP timestamps.
Measuring the network RTT has been widely acknowledged as one of the most
crucial study findings in understanding the important characteristics of TCP
connection on the public Internet. Hence, our contribution in Paper V benefits
from a wide range of existing passive measurement-related research work in
computer networking. TCP implements a retransmission strategy by setting the
time-out interval to ensure data delivery in the absence of any acknowledgment
for a particular segment from the receiver side [57]. The timer relies on the
measurement of the network latency which TCP does by periodically estimating
the current RTT of every active connection in order to determine the RTO when
it sends data and receiving an acknowledgment for it.

Accurate measurement of RTO is crucial to TCP performance and it is
determined by estimating the mean and variance of the estimated RTT [57].
When the timer RTO expires, the segment is retransmitted. To compute the
current RTO, TCP sender keeps track of the Smoothed Round-Trip Time (SRTT)
and the Round-Trip Time Variation (RTTVAR) state variables. When the first
RTT measurement R is made on the active connection, the host should compute
the following Jacobson RTO Estimation algorithm [33]. After computing the
RTO, if its value is less than 1 second, then the RTO value should be rounded up to
1 second [57]. However, the timeout can expire spuriously across low-bandwidth
network paths and triggers unnecessary retransmissions when no packets have
been lost [24]. Modern operating systems like Linux have a minimum value for
RTO in order to avoid unnecessary high retransmission delays of an open active
connection. The potential pitfall of choosing a low RTO, however, is that it may
trigger retransmission of a packet even though the segment is received and an
ACK is on its way. Setting a low value for RTO works better when there is a
moderate background traffic [47].

To address the critical problem of spurious timeouts, a number of approaches
have been proposed. For example, RTO estimators like [57] are based on the
assumptions of older technologies. As described earlier, spurious timeouts lead to
problems that cause several unnecessary retransmissions and congestion control
back-off that affect the TCP throughput. In addition to this, estimating the
RTT measurements are challenging in the presence of timeouts and packet
loss in the end-to-end path. This is because of the receipt of an ACK after
R retransmissions, the sender cannot tell which one of the R+1 data sent is
being acknowledged which again affects the measurement of SRTT. Wrongly
computed SRTT values will eventually lead to wrong RTO values. If the value
of RTO is too small, it will lead to unnecessary retransmission of data segments
which again increases the load on the underlying network capacity. But if the

57



4. Related Work

value of RT'O is too large, the sender waits too long before retransmitting lost
segments which again increases delay and lowers the throughput for connections
with packet loss. Making use of the TCP timestamps, the Eifel [24] algorithm
has pointed out that it is possible to detect spurious TCP timeouts problems
and recover by restoring a TCP sender’s congestion control state saved before
the timeout. There are other previous research works who have examined and
reported RTT estimation for TCP [3, 34, 36]. The approach presented in [36]
uses a unidirectional flow during the TCP handshake of a connection to estimate
RTT using the time from SYN to SYN+ACK method. The approaches proposed
in [36] calculates one RTT sample per TCP connection associated either during
the three-way handshake or during the slow-start phase. If we have captured the
TCP three-way handshake as presented in [36], we can calculate the initial RT'T
(¢RTT) by taking the time difference from the SYN packet to the ACK packet of
the handshake. However, since the TCP handshake packets are processed by the
kernel, the RTTs during the data transfer will probably be slightly larger than
the {RTT. Hence, this approach may tend to underestimate the actual RTT. In
addition to this, since TCP sets the initial retransmission timeout value to 3
seconds [57], therefore this approach is not applicable in scenarios where the
TCP connection setup takes longer which leads to long delays and packet losses
introduced by the network.

The study in [3] has reported a statistical characterization of RT'T variability
where the measurement point is closer to the sender. However, their study does
not take delayed ACKs into account. The authors of [34] have introduced an
approach for RTT measurements of TCP connections based on bidirectional
traces captured at the monitoring point using a finite state machine that replicates
the TCP sender states of observed ACKs depending on the underlying TCP
flavor. The authors have pointed out that the estimation of the TCP parameters
(e.g., cwnd) may have potential errors primarily due to over-estimation of the
RTT and incorrect window sizes of a connection [34]. As stated above in detail,
another limitation of this work, given differences of the many existing flavors of
TCP stack implementations, the use of a separate state machine for each TCP
variant is unscalable. In addition to this, the replica may also not observe the
same sequence of packets as the sender and ACKs observed at the intermediate
node may not also reach the sender. Our deep learning-based approach using
LSTM to passively predict the continuous RTT measurement throughout the
lifetime of a TCP session builds upon these classical approaches by avoiding the
limitations taking advantage of the commonly used timestamp option.

Network Intrusion Detection: There has been much discussion in the
computer security literature about the nature of Intrusion Detection Systems
(IDS). An IDS is an active device or process that ultimately monitors, analyzes
system and network policy violation for unauthorized entry or malicious
activity [15, 71]. As computer and enterprise network systems have become
more dynamic and complex over the years, chances for attackers to compromise
security flaws in these systems have also dramatically increased. Even though
static computer network security mechanisms like a firewall can provide a fairly
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acceptable level of security, more modern and sophisticated IDS that adapts to
rapidly changing security threats and cybercrime should be used in computer
networks. The role of IDS techniques in the computer security community are
very crucial in monitoring computer network events for malicious activities,
such as attacks against hosts and protecting computer systems and network
infrastructures from a potential attack [7]. The problem with the evolution
of network threats and attacks is that they are getting harder to detect and
therefore it could be difficult to find out whether network traffic is normal or
anomalous. Commercially available IDS techniques are mainly signature-based
that are designed to detect known attacks by using the signatures of those
attacks [40]. Some generic approaches to signature-based methods have been
reported in the literature [65, 66, 70]. Such systems must be frequently updated
with rule-sets and signature updates of the recent threat vectors, and are not
capable of detecting unknown attacks in network traffic. Traditionally, several
IDS methods use a signature-based approach in which events are detected and
compared against a predefined database of signatures of known attacks that are
provided by a network administrator.

The traditional approaches to IDS depend on experts codifying rule-sets
defining normal behavior and intrusions in a network [59, 63]. The two broad
categories of IDS methods in the intrusion detection literature are misuse
and anomaly detection [9, 15, 17, 48]. Misuse detection is a technique based
on rule-sets, either pre-configured by the system or set up manually by an
administrator. This technique involves matching the signatures of known security
attacks in a network against events currently taking place in the system that
should be considered as misuse [30, 59]. One of the main limitations of this
approach is the failure of detecting and identifying unknown computer attacks
that do not have known signatures. Anomaly detection method, on the other
hand, refers to the problem of finding patterns in data that do not comply
with an expected notion of normal behavior in a dataset. In the context of
computer security, everything interpreted as a deviation from the profile of a
normal system or user behavior is evidence of a malicious activity [16, 22, 41].
Anomaly detection methods, however, can detect new attacks but the problem
with anomaly detection is that it has a higher false-positive rate or misleading
false alarms.

As described in detail above, modern machine learning techniques have
effectively revolutionized the state-of-the-art for many research domain problems
in the networking research community. For example, in the areas of security
monitoring and IDS [10, 28, 67], fraud detection [51, 52], Spam detection [13, 38,
44, 56], and many other fascinating topics in computer networks such as traffic
anomaly detection [2]. Hence, machine learning techniques have the potential of
detecting unknown attacks in network traffic sharing features with other attacks
by being trained on normal and abnormal types of traffic. However, one critical
problem in machine learning is identifying and selecting the most relevant input
features from which to construct an accurate model based on training data for a
particular classification task. As it is reported in the literature [19, 45, 62, 64],
employing machine learning techniques on the benchmark intrusion detection
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dataset, NSL-KDD [31], gives a very low level of detection rate on attack
categories involving content features (i.e., user-to-root (U2R) and remote-to-local
(R2L) attacks) within the misuse detection context. However, with the same set
of 41 features, the detection rate for normal, denial-of-service (DoS) and probe
are accurately high. We, therefore, believe it is important to do feature selection
analysis to make it easier for network administrators to better understand the
features that contribute to security attacks. Selecting the most relevant actual
features improves the detection quality for many algorithms that are based on
learning techniques [29]. Some previous works have addressed different techniques
that help identify the important input features in building IDS [1, 6, 8, 12].
Feature selection helps to understand better which actual features are the most
important ones to find attacks in a network. Note that, here we only discuss
relevant previous works that have used the benchmark intrusion detection public
dataset, NSL-KDD [31], for their performance benchmarking.

In Paper VII, we address the problem of an actual feature selection for IDS
to find attack categories in a network by introducing cross-validated regularized
machine learning techniques and an artificial neural network feature ranking
methods. Paper VII focuses mainly on the contribution of the actual input
features that are well understood within the networking community to find
what kinds of attacks in a network are the most significant. To that end, the
actual input features studied in this paper are ranked into strongly contributing,
low contributory and irrelevant using a combination of feature selection filters
and wrapper methods by carefully carrying out comparisons with previous
techniques. Our paper investigates the most important features in identifying
well-known security attacks by using Support Vector Machines (SVMs) wrapped
with Recursive Feature Elimination (RFE) algorithm and ¢;-regularized method
with Least Absolute Shrinkage and Selection Operator (LASSO) for robust
regression both to binary and multiclass attack classification to give us an
insight into features of different classes of security attacks. SVMs are one of the
standards of machine learning classification techniques that give a reasonably
good performance but with some drawbacks in terms of interpretability. On
the other hand, LASSO is a regularized regression method often performing
comparably well and it has extra compelling advantages of being very easily
interpretable. Moreover, LASSO is much more computationally effective and
provides coefficients that contribute to how individual input features affect the
probability of specific security attack classes to occur. Hence, Paper VII uses
LASSO in particular for multiclass classification in order to better understand,
from a security engineering perspective, the dynamics behind the classification
model and get a better insight into which actual features shared by security
attacks in a network are the most important ones.

Passive Operating System (OS) Fingerprinting: Remote Operating
Systems (OSes) fingerprinting has a long history in the computer security
community [5, 43, 46, 50]. Collecting detailed information about the underlying
OS running on a remote computer is important for several reasons, e.g., detecting
possible security vulnerabilities, defining OS-based access control security policies,
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configuring network-based IDS to classify and prioritize extraneous security alerts
etc. A significant part of the literature on OS fingerprinting focuses on TCP /IP
header information. This is mainly because TCP/IP header fingerprinting
and any information related to application protocols are used to identify the
underlying OS running on a remote host either actively or passively [49]. There
are multiple existing tools for both the predominant active and passive OS
fingerprinting approaches. Many of the existing popular OS fingerprinting tools
depend on generating multiple active probes by introducing additional traffic
to the network and analyzing the corresponding potentially identifying replies
from the target hosts. For example, Nmap [50] is one of the most prominent
open-source active fingerprinting tools. Nmap [50] exchanges multiple TCP SYN
packets with the target hosts and then analyzes the SYN/ACK responses from
the remote computer by examining the network behavior of known TCP/IP
stack [68]. However, since active fingerprinting leads to longer scan times and
injects additional traffic to the network by generating active probes, it may
itself trigger false alarms and get blocked by firewall rules and Network address
translators (NATS) [23]. The previous work presented in [69], SYNSCAN, works
in a similar fashion to Nmap [50] but it performs the fingerprinting task by
actively sending a small number of crafted network packets to a single TCP
port. Xprobe2 [73] is another popular fingerprinting tool that relies primarily
on Internet Control Message Protocol (ICMP) packets and it depends on how
many changes we make to the default TCP/IP stack parameters. Since Xprobe2
does fuzzy fingerprinting with a signature matching algorithm as an alternative
to Nmap, it means if we make a lot of changes to the default TCP/IP stack
parameters, the underlying OS will not be detected. However, Xprobe2 is more
robust to small fingerprint variations as compared to Nmap. As explained above
the other fingerprinting tools, Ettercap [53] and pOf [74], have not been updated
since 2011 and 2014 respectively to include variations of modern OSes.

For an effective passive OS fingerprinting, we believe a limitation of these
fingerprinting approaches needs to be addressed. The work in [46] also
demonstrates that the OS fingerprinting accuracy for Ettercap and p0f signature
databases is low and proposed techniques to improve performance. It, hence,
presents rule-based machine learning classifiers capable of identifying 75 classes
of OSes from TCP/IP packet headers found in the Ettercap database. They
proposed a classifier technique using k-nearest neighbors (KNN) that returns
an approximate first match for an OS from a fingerprint database instead of
avoiding hosts being classified as unknown if no exact match is found in the
database [46]. However, their evaluation yielded poor experimental results,
rejecting as much as 84% of the test packets, while 44% of the accepted patterns
were wrongly classified [20]. The problems contributing to poor performance
was believed to be caused by two main issues. First, substitution errors due
to multiple OSes with exactly the same fingerprint feature values. The second
reason for the poor performance is the high rejection rate caused by numerous
unique feature values derived from the same OS. After combining the OS classes
most often confused with each other, eliminating all the classes where the error
could not be reduced by combining classes, the error percentage was reduced
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to 9.8% with no rejected packets. Beyond remote OS detection using TCP/IP
network stacks, fingerprinting techniques have also been extended to be applied
for remote device level fingerprinting [20]. This is one of the major drawbacks of
active fingerprinting.

Recent related works have shown promising advances towards remote devices
fingerprinting using different approaches [11, 14, 18, 37, 39]. Lastovicka et al. [43]
has discussed a recent work of interest that is most closely related to our work,
presented in Paper VIII, which has also given a comprehensive survey on passive
fingerprinting methods. They have employed OS fingerprinting methods in the
environment of wireless networks. Besides of using the three basic TCP /IP stacks
(i.e., TTL, window size and initial SYN packet size), the authors suggested that
a flow-based fingerprinting and classification using methods based on user-agents
of HTTP request headers and communication with OS-specific domains can be
usable in large dynamic networks [43]. A parallel line to their previous work,
Lastovicka et al. [42] proposed system architecture to detect the underlying
OS of every actively communicating device in the network using the methods
presented in [43]. The average accuracy of OS classification using the TCP/IP
parameters reported in [43] is 80.88%. Aksoy et al. [5] have employed genetic
algorithms for identifying packet features suitable for OS classification based
on the analysis of the network TCP/IP packets using three machine learning
algorithms. They argued that combining automatic feature selection and machine
learning algorithms enable for an adaptive OS classification. Aksoy et al. [4] has
also recently applied the same techniques to select features that are most unique
for the automatic identification of Internet of Things (IoT) devices. Zhang et al.’s
paper on OS detection [75] utilizes only one machine learning technique using
Support Vector Machine (SVM). However, the testing error rate of identifying
some of the OSes e.g., Mac, Cisco, FreeBSD, and OpenBSD is 25.80%, 24.22%,
17.71%, and 15.85% respectively. Gagnon et al. [21], demonstrate the capabilities
of a hybrid approach using diagnosis theory in addressing the fundamental
limitations of both active and passive fingerprinting techniques.

However, most of these previous works use the basic actual TCP/IP features
for evaluating passive OS fingerprinting. Besides, we believe that these tools
have the inability to extract all possible OS-specific features that are the basis
for passively fingerprinting the underlying OSes. In contrast, what separates our
contribution in this paper from the other previous related works is that our tool
supports a wider range of TCP/IP network stack features.

Unlike to the previous works, the main goal of our work presented in
Paper VIII is to combine these basic TCP features that are the basis of OS
fingerprinting and other settings with the underlying TCP variant by leveraging
both machine learning and deep learning techniques. This contribution remains
largely unexplored and is not used by existing fingerprinting techniques. For
this contribution, we follow two approaches. Firstly, we use the default TCP
variant of an OS as a feature along with the basic TCP/IP network stack
features. Secondly, we believe it is natural to ask one valid question: what
happens if we don’t know the underlying OS? That means we don’t know the
implementation of the default TCP variant. This is where our previous works on
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TCP sate prediction from passive traffic measurements [26, 27] come into play.
In this contribution, we want to take the OSes fingerprinting problem one step
further by combining the basic TCP/IP features and other settings with the
TCP variant as a feature in our model. The reason why we concentrate on the
implementations of the underlying TCP variant as a feature in our OSes classifier
models is that due to the fact that different OSes are doing slightly different
implementations of TCP. In the emulated scenario setting we used the predicted
TCP variant passively inferred from the famous sawtooth pattern behavior of
TCP’s estimated cwnd computed based on the total number of outstanding
bytes in flight [26, 27]. Hence, we strongly believe that passively observing the
network-level characteristics found in TCP packets can give us more information
about the remote computer’s underlying OS. It can help us answer the question,
“are we able to accurately classify the underlying OS when different OSes are
implementing the same TCP wvariant?”. We also believe coupling this with
our previous works [26, 27] can help us explore the practical implications and
long-term characteristics of TCP traffic. Besides we believe this will help us
improve the classification of remote OSes form passive measurements since the
values of some basic TCP/IP parameters are the same for multiple variations
of OSes which may lead to inaccurate classifications of the underlying OSes.
This is the core idea of our Paper VIII and to the best of our knowledge, this is
the first study of fingerprinting OSes from passive measurements by applying
RNN methods combining the basic TCP/IP features and the underlying TCP
variant as input vectors. Paper VIII highlights questions and technical challenges
of interest to direct future research, such as: What happens if an end-user
(client) changes parameters that are the basis of OS fingerprinting? We believe
challenges like this would make OS fingerprinting from passive measurements
potentially hard. Hence, investigating these key challenges is one possibility we
plan to address in our future work.
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Chapter 5
Conclusions

Modern machine learning and deep learning approaches have advanced the
state-of-the-art for many research domain problems in the networking research
community in different contexts, e.g., security monitoring, analyzing the
complexity of networks, network traffic engineering, etc. In this dissertation, we
catalogue that machine learning and deep learning-based techniques can provide
a potentially promising methodology for improving the accuracy of predicting the
internal states of TCP through passive traffic measurements. To demonstrate the
suitability of our approaches, we highlighted the benefits of passively discovering
the characteristics of TCP transmission states related to network congestion
from different perspectives. Although there are already some legacy works that
aspire to achieve the same objective, they are mainly based on engineered rules
that require a deep understanding of the complexity of TCP protocols. The
main advantage of using machine learning and deep learning-based techniques
is that we do not need a domain expert knowledge about the TCP protocol.
The work presented in this dissertation aims at obtaining detailed knowledge
about the end hosts by passively monitoring and analyzing the TCP traffic using
machine learning and deep learning-based techniques. Even though this is the
main objective of the dissertation, our work shows that related techniques can
also be used to find other important information about the hosts, such as their
TCP implementation or in a security perspective classify if the host’s traffic is
malicious or not. In addition to this, our work also shows that these techniques
can be extended to passively fingerprint the operating system of the end host.

The work presented in this dissertation advances the state-of-the-art for
passive operating system fingerprinting problem one step further by combining
the common TCP/IP features that are the basis of passive operating system
fingerprinting with the underlying predicted TCP variant as a distinguishing
input feature. We argue that passively observing the network-level characteristics
found in TCP packets can give us more information about the remote computer’s
operating system. We further argue that this helps us to explore in detail the
long-term characteristics of TCP traffic. In terms of accuracy, we empirically
demonstrate that accurately inferring the TCP variant has a great potential to
significantly boost the fingerprint performance across different types of traffic
sources and evaluation settings.

For all our evaluations, we demonstrate the effectiveness of our proposed
prediction models with reasonably good accuracies across different scenarios and
multiple TCP variants. We also illustrated that the learned prediction models
generalize well by leveraging knowledge from the emulated network and perform
reasonably well when it is applied in a realistic scenario setting bearing similarity
to the concept of transfer learning in the machine learning community.
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Finally, we believe that our work presented in this dissertation opens
new doors in the discovery of the dynamic complexity of TCP from passive
measurements by leveraging advanced machine learning and deep learning-based
techniques. We, further, believe that the study and results presented in this
dissertation will be potentially useful to network operators, researchers and
scientists in the networking community from both academia and industry who
want to assess the characteristics of TCP transmission states related to network
congestion from passive measurements.

5.1 Future Research Directions

At this juncture, we discuss the potential future directions exploiting the
approaches we describe as well as encouraging more research to bring new
advanced methods to bear for the different use cases presented in this dissertation.

e When it comes to the first use case presented in this dissertation, there
are many research avenues that can be explored. For example, designing a
general approach based on machine learning and deep learning techniques
that are able to predict if a TCP packet loss is due to buffer overflow in
routers or a wireless link in which two of them have different characteristics.
Historically, TCP was designed for buffer overflow in routers and the TCP
back-off action is based on the assumption that it is buffer overflow at a
router as an implicit signal of network congestion. However, if we have
another packet delay in the wireless link, the actions by TCP will not
be necessarily the same because, in wireless networks, there might be a
significant amount of packet loss due to corrupted packets as a result of
interference. It would, therefore, be interesting to investigate this as future
research work.

e To infer the transmission states of TCP client from passive traffic
measurements, we capture the traffic in an intermediate node. But what
happens if we capture the traffic at both the sender and receiver endpoints
and do the estimation of the internal states of TCP separately? There
isn’t a timing difference for predicting the underlying TCP variant since it
simply measures the change in cwnd size and hence this will not complicate
the inference of the cwnd. However, since there will be a difference in the
timing of the received data, measuring at both endpoints will affect the
passive Round-trip Time (RTT) estimation. It means this, to get a good
measure of the raw one-way RTT for each direction, would require clock
synchronization between the sender and receiver endpoints. We have no
way to combine these two clocks with any strong guarantees unless the
two endpoints are reasonably synchronized (e.g., by using GPS signals).
Assessing this practical challenge is left for future work.

e The second use case of this dissertation focuses particularly on the four
security attack classes namely Denial-of-Service (DoS), User-to-Root (U2R),
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Remote-to-Local (R2L) and probe used in the labeled NSL-KDD public
dataset. FEven though the NSL-KDD benchmark dataset for intrusion
detection we use in our analysis may not be an ideal representative of
existing realistic networks, it does not suffer from any of the mentioned
limitations in the other old public intrusion detection datasets. Because of
the lack of public intrusion detection datasets in the networking research
community, we believe it can be applied as an effective benchmark dataset
for the general problem of network security analysis to help networking
researchers work with different machine learning, deep learning and
other sophisticated statistical techniques to perform intrusion detection.
It is worth mentioning that generating a similarly labeled intrusion
dataset of real-time network traffic with different classes of modern
security attack distribution as in the NSL-KDD dataset is costly and
significantly challenging. Besides, to the best of our knowledge, there is no
thorough study that focuses on the investigation of the most important
features in identifying well-known network security attacks. Hence, a
deep investigation of a practical solution to this important problem and
validating the findings presented in Paper VII using more recent realistic
network traffic is one potential area for future work.

For our emulated experiments of the TCP state monitoring, we employ a
software-based emulator with great care in an extremely well-contained
virtual environment for all the variations of bandwidth, delay, jitter, and
packet loss parameters. However, as the precision of the emulator, given
that a software emulator is not precise, cannot be measured from TCP
streams, we set up a different experiment using UDP to evaluate and
measure the precision where both the emulator and traffic generator create
variations. We verified the raw performance by measuring the bandwidth,
delay, jitter and packet loss variations created by the traffic generator and
network emulator at the receiver side. We believe the emulator may be
impacted by network elements outside of its scope e.g., CPU load, busy
devices, network card buffers, hardware architectural factors etc. Hence,
extending our emulated experiments using a hardware-based emulator
would be a recommended focus for future work.

In Paper VI, we present an effective TCP variant identification methodology
from traffic measured passively by utilizing 3, the multiplicative back-off
factor to decrease the cwnd on a loss event, and the queueing delay
values. By design, unlike loss-based algorithms, the multiplicative decrease
parameter of delay-based congestion control algorithms is not fixed which
makes it fundamentally challenging to predict the TCP variant from passive
traffic when there is variability in delay. As future work, it would also be
interesting to further develop a delay-based model using advanced methods
from the field of Artificial Intelligence (AI) so as to verify how delay changes
and look into how the TCP variants of delay-based congestion control
algorithms can be predicted both from passively measured traffic and real
measurements over the Internet.
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o As presented in the third use case of this dissertation, passively detecting

the TCP variant is a challenging task which led to a two-step approach,
where the TCP variant prediction of a deep learning-based universal tool
is used as input to another machine learning method in the next step.
However, by integrating the two machine learning approaches better, there
should be potential for increasing the classification performance even further
and get even closer to the idealistic results of using an Oracle presented
in Paper VIII. Exploring such optimizations is left for future work.

In the evaluation methods presented in Paper VIII, we adopted a
multi-stage approach to passive OS fingerprinting where in the first stage,
the cwnd behavior from the outstanding bytes in flight is used to predict
the TCP variant. The predicted TCP variant is finally used as an input
feature to the passive Operating Systems (OSes) fingerprinting process. We
believe this approach requires more training time and it is computationally
inefficient. To this end, dynamically addressing this problem with a
one-stage approach guided by taking the whole TCP/IP header data as an
input vector is left out for further future work.

It is known that TCP clock drift improves OS fingerprinting and hence
measuring differences in the timing of how the IP stack works may allow us
to predict the underlying OS with greater assurance in terms of accuracy.
We, therefore, argue for using other TCP options like timestamps and
queueing delay characteristics as an input feature vector for passive OSes
fingerprinting model as another interesting future work direction.

For the passive OS fingerprinting experiments, we passively collected our
realistic dataset from TCP traffic originated from the internal network
of our university and destined to various hosts on the Internet. First,
we passively collected data for fixed (non-mobile) desktop computers
(typically using OSes like Windows, Linux, Unix, Mac OSx, etc.) by
using an intermediate node. Then, we passively collected the data that
covered mobile devices, like android and 70S. Our real traffic covers the
communication to and from our university and hence all traffic whose
source and destination IP addresses are within the subnets of our internal
network. Hence the network administrator of our university has full control
over the internal machines with real IP addresses that are not going to
a NAT gateway, and therefore it is fairly possible to tell whether it is a
laptop or a desktop PC by looking it up in the internal database owned by
the university. However, since it is a dynamic network we do not have full
control over external machines, because they can be anything behind an
IP address that changes dynamically. This is because there is an endless
number of machines spoofing scanning the network and they can appear as
Linux-powered OSes but they could be Windows and vice versa and this
happens because the user may have strongly tuned the TCP stack to look
like something else. It is pretty hard to certainly say anything about the
external computers because the communication can go through a NAT
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gateway possessing another OS type. For example, if a user is connected to
a student wireless network, there is a chance that it may go to a Linux NAT
gateway and hence from outside the user is seen as Linux NAT which makes
it hard to predict whether the underlying OS is Linux, Mac or Windows.
Therefore, fingerprinting devices behind NAT technology on a distributed
network where a number of devices can hide behind a NAT is another
critical challenge. It is, therefore, worth noting that establishing ground
truth in dynamic networks at a larger scale remains a challenging problem.
Further investigation and implementation to explore these difficulties is
one possible future research direction.

Finally, in addition to the difficulties of establishing ground truth at a
larger scale on a dynamic network, there is a lot of other work to be done as
an extension of our work presented in Paper VIII. For example, addressing
answers to valid questions like: What happens if an end-user (client)
changes default parameters that are the basis of OS fingerprinting? is one
possibility for our future work. We expect that end-users don’t change
parameters often, while servers may do so if it helps improve performance.
We believe this would make passive OS fingerprinting potentially hard
and hence a further future work addressing these challenges using different
advanced approaches is promising.
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Abstract

Many applications in the Internet use the reliable end-to-end
Transmission Control Protocol (TCP) as a transport protocol due to
practical considerations. There are many different TCP variants in use,
and each variant uses a specific end-to-end congestion control algorithm to
avoid congestion, while also attempting to share the underlying network
capacity equally among the competing users. This paper shows how an
intermediate node (e.g., a network operator) can identify the transmission
state of the TCP client associated with a TCP flow by passively monitoring
the TCP traffic. We demonstrate how the intermediate node can predict
the Congestion Window (cwnd) size of the TCP client. The method can
also be extended to predict other TCP transmission states of the client.
We use a generic machine learning-based prediction approach for inferring
cwnd within a flow from a passive traffic collected at an intermediate node.
Our experimental results indicate the effectiveness of our prediction model
with reasonably good accuracy across different scenarios and multiple TCP
variants.
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I. A Machine Learning Approach to TCP State Monitoring from Passive
Measurements

.1 Introduction

Machine learning techniques have effectively advanced the state-of-the-art for
many research domain problems in the computer networking community. For
example, they are being applied in the areas of traffic classification [15], security
monitoring and Intrusion Detection Systems (IDS) [8, 22], and many other
topics in computer networks. In this paper, we argue that employing machine
learning-based techniques can also provide a potentially promising methodology
to improving the accuracy of predicting TCP per-connection states from passive
measurements. Much of the Internet’s traffic is carried using the end-to-end
TCP protocol [10] due to practical considerations that favored TCP over other
transport protocols. To deal with network congestion, TCP uses congestion
control algorithms to guide and regulate the network traffic on the Internet by
avoiding sending more data that the underlying network is capable of transmitting
which is maintained by the sender’s cwnd. The global Internet highly relies
on TCP congestion control algorithms and adaptive applications that adjust
their data rate to achieve high performance while avoiding congestion on the
network [4]. One of the main parameters for TCP performance evaluation in
a real-world setting is cwnd. The TCP congestion control algorithms that are
widely deployed today perform the most important functionalities related to
network congestion such as handling the cwnd from the sender-side. Therefore,
it is very natural to ask: How about inferring these functionalities that determine
a network condition from a passive traffic collected at an intermediate node of a
network without having access to the sender? This is the question we will explore
and attempt to answer in our paper.

The TCP congestion control itself has grown increasingly complex which in
practice makes inferring TCP per-connection states from passive measurements a
challenging task. Much of the existing research work on this problem rely on an
active approach to measure the characteristics of TCP. The difference between
active and passive measurement techniques will be explained later in detail in
Section I.3. The work reported in [11] presented an approach to estimate TCP
parameters at the sender-side based on packets captured at the monitoring point
using a Finite State Machine (FSM). The authors have pointed out that the
estimation of cwnd may have potential errors primarily due to over-estimation
of the Round-trip Time (RTT) and estimation of incorrect window sizes [11].
Another limitation of this work, given the many existing variants of TCP, the
use of a separate state machine for each variant is unscalable and that the
constructed replica might not manage to reverse or backtrack the transitions
taking the tremendous amount of data into consideration. In addition to this,
the replica may also not observe the same sequence of packets as the sender and
ACKs observed at the intermediate node may not also reach the sender.

In moving towards a generic approach, we believe there is very little work
on a scalable method of predicting the cwnd from a passive traffic without the
knowledge of the sender’s cwnd for most of the widely used TCP variants
in the Internet using machine learning. In this paper, we argue that the
existing approaches for monitoring of TCP per-connection states from passive
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measurements do not adequately address the problem either due to being
outdated or failing to recognize the difference between individual implementations
of TCP variants [21]. Hence, compared to these previous studies, in this paper,
we explore machine learning-based approaches to predict the per-connection
state of a TCP cwnd of the sender by examining each cross-traffic of TCP flows
of the endpoints passively collected at an intermediate node. Our prediction
model handles more scenarios and it can also work with different variants of
TCP. Our study has a potential opportunity and benefit for network operators
in characterizing the operations of Internet service providers and a better
understanding of the widely deployed implementations of TCP congestion control
flavors in the Internet. It will also be potentially useful to researchers and
scientists in the networking community who want to assess the characteristics of
TCP states related to network congestion from passive measurements.

.2 Motivation

It is a challenging task to predict whether a complex network has a normal
behavior or not and analyze network dynamics. One of the most important
elements of TCP sender state that can help us study the characteristics of
TCP per-connection states in the Internet is cwnd. For example, it can be
used to determine the factors that limit the network throughput, to predict the
underlying TCP variant and efficiently identify non-conforming TCP senders
etc. However, taking the nature of TCP, accurately inferring cwnd and its
characteristics from passive traffic is a difficult problem. One of the difficulties is,
for example, TCP packets can be lost between the sender and the intermediate
monitor, or between the monitor and the receiver.

If a TCP packet is lost before it reaches the intermediate node, and is
somehow retransmitted in order, there is no way we can determine whether
a packet loss has occurred or not. Therefore, what the intermediate monitor
sees may not be exactly what the sender or the receiver sees. This means what
appears to be reordering from the intermediate node’s perspective can actually
be a retransmit (or vice versa). In addition to this, end-to-end delay variations
in the path preceding the intermediate monitor can also cause retransmissions
that appear to be caused by an Retransmission Timeout (RTO) rather than a
fast retransmit [12]. Because TCP packets are only halfway to their destination,
the relative sequencing on the forward and reverse path can be confusing, e.g.,
retransmitted packets can be seen at the monitor shortly after acknowledgments
that should have prevented their retransmission. This is possibly because the
acknowledgments haven’t yet reached their destination when they are observed,
so the receiver did not yet know that the packets were received before they
decided to retransmit them. More on the location of the passive monitor and
its effect on what we can infer from the measurements is found in [12]. In
this paper, we argue that machine learning-based approaches can give a better
prediction accuracy of TCP sender connection states from passive measurements
by addressing the aforementioned practical challenges.
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The rest of the paper is organized as follows: In Section 1.3, we review and give
a detailed overview of the state-of-the-art and discuss closely related works on
TCP variants research. In Section 1.4, we describe our experimental setup for the
evaluation and the assumptions we made during our experiment. Section [.5 gives
an overview of our methodology highlighting the machine learning techniques
and performance measure metrics used in our paper. Section [.6 presents detailed
experimental results and evaluation of the emulated network for cwnd prediction.
In Section 1.7, we present a realistic setup which validates our prediction model
with other scenarios. Finally, Section 1.8 concludes the paper and outlines our
future directions of research.

1.3 Related Work

This section discusses closely related studies on monitoring network traffic
techniques and the characteristics of TCP congestion control algorithms.
The techniques to monitor TCP per-connection characteristics are divided
into two categories: active measurement and passive measurement. While
active measurement has received a lot of research attention, however, passive
measurement remains still an under investigated research topic. Hence, in this
paper, we try to bridge the gap and mainly focus on the passive measurement
approach.

1.3.1 Active Measurement

This technique actively measures the TCP behaviors of Internet flows by injecting
an artificial traffic into the network between at least two endpoints [14, 17].

1.3.2 Passive Measurement

In this technique, passively collected packet traces are examined to measure TCP
behaviors of Internet flows [11, 18, 19]. Passive measurement, doesn’t inject an
artificial traffic into the network. It only measures the network without creating
or modifying any real traffic on the network. In the traditional methods of
passive measurement, there has been much interest in the investigation of TCP
connections aggregate properties and its characteristics on the global Internet.

Starting with [10, 20], TCP congestion control has been an active area of
research in the networking community. A work of interest that is most closely
related to our work is [11] which provides a passive measurement methodology to
infer and keep track of the values of the sender variables: end-to-end RTT and
cwnd. Their idea is to emulate a state transition by detecting RTO events at the
sender and observing the ACKs which cause the sender to change the value of the
cwnd. This work [11] considers only the predominant implementations of TCP
(Reno, NewReno and Tahoe) and the basic idea is it constructs a replica of the
TCP sender’s state for each TCP connection observed at the intermediate node.
The replica takes the form of a finite state machine (FSM). However, the use of
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a separate state machine for each variant is unscalable taking the many existing
TCP variants into consideration. We also believe that the constructed replica [11]
cannot manage to reverse or backtrack the transitions taking the tremendous
amount of data into consideration. Another limitation is that the replica may
not observe the same sequence of packets as the sender and ACKs observed at
the intermediate node may not also reach the sender. As an extension of [11], the
work in [12], presents a methodology to study the performance of TCP, classify
out-of-sequence behavior of packets for retransmission so as to identify where
congestion is occurring in the network, with the same measurement environment
as in [11].

The authors of the study [21] developed a tool called tepflows that attempts to
passively estimate the value of cwnd by analyzing the ACK stream to detect the
occurrence of TCP congestion events. However, the state machine implemented
with tepflows is limited to old TCP variants and hence it cannot uniquely identify
the cwnd characteristics of newly deployed TCP variants. Our main goal in this
study is more fundamental to develop a machine learning based methodology for
predicting cwnd of all loss-based TCP variants by examining each cross-traffic of
TCP flows of the endpoints passively collected at an intermediate node.

.4 Experimental Setup and Datasets

In this section, we provide an overview of our experimental testbed that has been
designed and implemented in order to investigate the problem we are addressing
in this work.

1.4.1 Experimental Testbed

Figure 1.1 shows the experimental setup that we use for all of our experiments in
this paper. We first created an emulated network and put a communication tunnel
across the network and simultaneously push TCP cross-traffic to the network
using an iperf traffic generator [6] so as to create a congestion. Our experiments
are performed using a cluster of machines based upon the GNU/Linux operating
system running a modified version of the 4.4.0-75-generic kernel release. The
reason why we chose Linux is because we wanted to track the system-wide TCP
state of every packet that is sent and received from the kernel. We carried out
the experiment by capturing all sessions on the network when the client and
server are sending TCP packets. During a single TCP flow of our experiment,
the parameters bandwidth, and delay are constant with a uniform distribution.
However, since we have the jitter given as an average, its distribution is normal.
We created an identical regular tepdump of the TCP packets on the client node
including information about the per-connection states so that we can match the
tepdump with the TCP states.

The passive monitor shown in Figure I.1 is a separate Linux machine acting
as a proxy. We made sure its receiver window is much bigger than the receiver
window of both the sender and the receiver in order to hinder the proxy from
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Figure I.1: Experimental Setup.
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influencing on the network traffic apart from measuring all the TCP traffic
sessions from the sender. It is designed to do the tcpdump on all the interfaces
available in the system and at the same time we want to predict what the
per-connection state of a TCP packet was when it arrives in the monitor. It is
important to remember that the traces we obtain from the tcpdump have no
labels associated with them. As it is shown in Figure 1.1, we used a database to
match and join the measured TCP data as an input to our methodology for a
prediction of the TCP per-connection states. Finally, we verified the predicted
TCP states with the actual TCP kernel states directly logged from the Linux
kernel used only for training and generate a new data for the learning model to
predict on. Once we finish with the verification, we run our learning model and
get the predictions.

Testbed hardware

We have performed our experiment in two different environments based on
the computational cost. The GridSearchCV for Random Forest Regressor model
is performed on an NVIDIA Tesla K80 GPU accelerator computing with the
following characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz, 64 CPU
processors, 128GB RAM, 12 CPU cores running under Linux 64-bit. Whereas
the Gradient Boosting model with a higher number of boosting estimators and
learning rates that are used to scale the step length of the gradient descent
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procedure are performed on an HPC cluster with 700+ nodes where most nodes
have 16 cores and 64 GiB memory of which 11,0004 cores and 52 TiB of memory
are available in total as it needs more computational power for iterations. The
CPUs in the computing cluster are 8-core 2.6 GHz Intel E5-2670. All nodes in
the cluster are connected to a low latency 56 Gbit/s Infiniband network, gigabit
Ethernet and have access to 600 TiB of BeeGFS parallel file system storage.

1.4.2 Network Emulation

TCP congestion control is set to operate on the variability of bandwidth, different
cross-traffic, RT'T, etc. In order to create a realistic scenario, we have emulated
the network in our setup as it is shown in Figure I.1 by adding an end-to-end
variability within a flow to the important parameters shown in Table I.1. For
the network emulation, we used the popular Linux-based network emulator,
Network Emulator (NetEm) [9] on a separate node, that supports an end-to-end
variability of bandwidth, delay, jitter, packet loss, duplication, packet corruption
and more other parameters which the TCP cwnd is influenced by.

1.4.3 Verification of the Emulator

Given that the software emulator is not precise, can we trust the network emulator
for all the variations of bandwidth, delay, jitter and packet loss parameters that we
change as shown in Table 1.1 for our evaluation irrespective of the measurement
we get from TCP stream? As part of our study, we have also carefully investigated
the precision of the network emulator, NetE'm [9], we employed in this paper in
order to use the tool with great care in an extremely well-contained environment.
We created a filter that sets the parameter variation of each packet according to
Table I.1. As its precision cannot be measured from TCP stream, we setup a
different experiment using UDP to evaluate and measure the precision where
both the emulator and traffic generator create variations. We verified the raw
performance by measuring the bandwidth, delay, jitter and packet loss variations
created by the traffic generator and network emulator at the receiver side.

1.4.4 Cross-traffic Variability

In our experimental setup of the emulator, we have carefully studied and validated
our results in order to evaluate the impact of cross-traffic variability from the
same TCP congestion protocol on our results by emulating other UDP traffic.
NetEm [9] does lots of buffering and internally it has a buffer which is used to
emulate a network by adding an end-to-end variability of packet loss, delay, rate
control and other characteristics to packets outgoing from a selected network
interface. Therefore, NetEm [9] (with a default FIFO queue) can also work in
conjunction with other queuing disciplines (g¢disc) by swapping the queue with
another gdisc. It works well for traffic shaping and also supports a kernel level
traffic shaping using the Linux tc utility. We ran NetEm [9] with variations in
the data rate and the parameters presented in Table .1 between the client and
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the server and we found out that each variation run by NetEm [9] doesn’t affect
our results. We, therefore, believe that the variability of the cross-traffic in our
current experimental setup will not impact our analysis. In general, when it
comes to the cwnd variability, it will depend on the particular TCP congestion
control in use. For example, TCP-Vegas [1] controls cwnd based on a queuing
delay and delay-based congestion control algorithms thus may be affected by the
variability of a cross traffic. We also believe the emulator may be impacted by
network elements outside of its scope e.g., CPU load, busy devices, network card
buffers, hardware architectural factors etc. For example, cross-traffic in a real
network is influenced by device resources that are used by both flows. Even if
both flows are running on different interfaces and different line cards, there may
be interaction due to buffer use and perhaps backplane occupancy.

1.4.5 Traffic Captures

The kernel might keep the TCP per-connection states of the packets in the buffer
and waits for enough amount of packets before sending the TCP states to the
userspace. TCP per-connection states might also get lost due to a slow process
of TCP by the userspace process. Therefore, the first thing we did as a sanity
check is to capture the packets at both the sender and the receiver for it helps us
to know whether a packet was lost or just never sent as the ACKs from receiver
to sender are just as important as the data packets for inferring packet loss. This
way, it is possible to verify if the traffic captures are identical and there are no
missing per-connection TCP states. The second thing we carried out in order
to avoid missing of packets and capture exactly the same number of packets on
the sender and the monitor is tuning the buffer size and flush the buffer to the
userspace.

We carried out our experiment over a path that is jumbo-frame clean by
disabling TCP segmentation offloading. Because we want to avoid packet sizes
way over the regular legitimate Maximum Segment Size (MSS) and Maximum
Transmission Unit (MTU) values. This is because, if we measure at a higher
level and when packets are pushed down layer by layer on the protocol stack,
the negotiated MSS will be violated. In order to avoid this violation, the TCP
length must stay equal or below the MTU minus the IP and TCP header size.
Every experiment of each TCP variant uses the same emulation setup parameters
described in Table I.1. Therefore, In all of our experiments, each TCP flow uses
1500-byte data packets and an advertised window set by the operating system.

1.4.6 Network Emulation Parameters

The data traces for all our experiments are generated using the iperf [6] traffic
generator on an emulated LAN link where we run each TCP variant with an
end-to-end variation of the parameters bandwidth, delay, jitter and packet loss
as shown below in Table .1 where the cwnd is highly influenced by.

86



Methodology

Table I.1: Network Emulation Parameters.

Bandwidth (Mbit/s) | Delay (ms) | Jitter (ms) | Packet Loss (%)
1 10 1 0.001 0.01
2 100 2 0.1 0.05
3 300 3 0.2 0.1
4 500 ) 0.5 1
) 700 7 1 1.5
6 1000 10 2

1.4.7 Assumptions

In TCP, the cwnd is one of the main factors that determine the number of bytes
that can be outstanding at any time. Hence, we assume that using the observed
outstanding sequence of unacknowledged bytes on the network seen at any point
in time in the lifetime of the connection as an estimate of the sending TCP’s
cwnd from teptrace [16] when there is an end-to-end variability of bandwidth,
delay, loss and RTT is a better approach to estimate the cwnd and how fast
the recovery is. Firstly, since we are estimating cwnd from bytes in_ flight, we
have also considered that cwnd must be the limiting factor for the TCP sender.
Secondly, we assume that we don’t know what TCP variant is running in the
network and the per-connection state within the variant. Lastly, the results we
present in this paper assume that the sender and receiver have the same receiver
window in all of our measurements set by the operating system independent of
the underlying TCP variant.

.5 Methodology

In this section, we describe our methodology for experimentally inferring the
cwnd from passive measurements.

In order to create the input data for the machine learning algorithm, loss-based
TCP congestion control algorithms are used by emulating a background traffic
using the end-to-end emulation of the parameters shown in Table I.1.

1.5.1 Passive Monitoring of bytes_in_flight

The passive traffic (i.e., measured TCP data) collected at the intermediate node
as shown in Figure .1 is used for a training experiment of our model. The TCP
implementation details and use of TCP options are not visible at the intermediate
monitoring point. A TCP sender includes a sequence number to identify every
unique data packets sent into the network. The TCP sender also keeps track of
outstanding bytes by two variables in the kernel: snd_nat (the sequence number
of the next packet to be sent) and snd _wuna (the smallest unacknowledged
sequence number, i.e., a record of the sequence number associated with the
last ACK). This is because the TCP congestion control algorithms govern the
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Figure 1.2: Outstanding bytes calculated from the intermediate monitor using [16]
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Figure 1.3: Methodology for cwnd prediction.

TCP sender’s sending rate by employing the cwnd that limits the number of
cumulatively unacknowledged bytes that are allowed at any given time. From
the passive traffic at the intermediate node, we can infer and manually analyze
the number of bytes that have been sent but not yet cumulatively acknowledged
on the network at a given point in time using tcptrace [16]. This information is
very useful in our experiment as it helps us match with the cwnd calculation
of the particular TCP stack in use. Firstly, we run our ensemble model on the
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number of outstanding bytes which gives the initial predicted cwnd as it is shown
in Figure 1.3. We then apply a convolution filtering technique, as it will be
explained more in detail below in this Section, on the initial predicted cwnd
which gives the final predicted cwnd.

Given that inferring cwnd size from passive measurements is a challenging
problem as it is not advertised, the most obvious approach is to try to use
the observation of ACKs and retransmissions to predict whether the cwnd will
increase or decrease. However, the effect of these events on the window will
differ depending on the underlying TCP congestion control algorithm and the
type of retransmission (e.g., fast retransmit versus a retransmit caused by a
timeout). In order to estimate the cwnd, some research works assume that there
is a congestion when the number of bytes in_ flight are below the advertised
window by the receiver. However, if the the number of bytes in_ flight are below
the advertised window, it could also mean that the receiver has acknowledged
packets before the advertised window was full. In this work, we are estimating
cwnd from the calculated bytes in_ flight measured at the intermediate node.

1.5.2 Prediction of TCP cwnd

The cwnd is a TCP per-connection state internal variable that represents the
maximum amount of data a sender can potentially transmit at any given point in
time based on the sender’s network capacity and conditions. TCP [10] uses cwnd
that determines the maximum number of bytes that can be outstanding without
being acknowledged at any given time maintained independently by the sender
to do congestion avoidance. TCP congestion control is set to operate on the
variability of bandwidth, different cross-traffic, RT'T etc. One initial approach we
tried to estimate the cwnd was to process the packet headers of the flows in the
tepdump and calculate an aggregate TCP cross-traffic from the trace sets and
add that as a feature. We, however, found out that turns to be an insufficient
detail for an accurate prediction.

We created an ensemble machine learning prediction model in Python where
we apply a Random Forest Regressor algorithm [2] to estimate the cwnd where
the entire number of outstanding bytes in_ flight is an input vector to the model.
The size of the Random Forest Regressor model with the default parameters is
O(M * N xlog(N)), where M is the number of trees and N is the number of
samples. Figure 1.2 shows the comparison between the number of outstanding
bytes from the intermediate node before running the ensemble model and applying
the filtering techniques versus the actual cwnd tracked from the kernel of the
sender-side. In order to further improve the performance of our ensemble
prediction, we tuned the Random Forest Regressor optimal hyperparameters
shown in Table 1.2 using a GridSearchC'V that allows specifying only the ranges
of values for optimal parameters by parallelization construction of the model
fitting. In order to obtain an optimal cwnd prediction model by minimizing
the prediction function, we have also used Gradient Boosting algorithm [3]. We
increased the variations of the tuning parameters in order to improve the initial
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TCP cwnd prediction fitting model by avoiding the risk of overfitting of the filters
and fit the ensemble model by iteratively re-weighting the training outputs.

Table 1.2: Tuning parameters of the ensemble methods.

n_ estimators|max_ depth |max_ features|min_ samples_split|learning rate
10 1 n__features 2 0.1
100 2 n_ features 5 0.2
300 3 n__features 10 0.3
500 5 n_ features 20 0.5

We trained our ensemble machine learning algorithm without the knowledge
of the input features from the sender-side during the learning phase. We
validated our methodology using the experimental testbed shown in Figure 1.1
over a LAN link. In order to train and test our prediction model, we employed
every experiment with a ratio of 60% training, 40% testing split and a 5-fold
cross-validation on all end-to-end variations of bandwidth, delay, jitter and packet
loss into one robust and generic learning model. We learn the model from the
training data and then finally predict the test labels from the testing instances on
all variations of the emulation parameters. The initial prediction of TCP cwnd
using a trained ensemble learning algorithm before optimizing the prediction
performance using convolution filtering technique is shown in Figure 1.4.
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Figure I.4: Initial prediction of TCP cwnd versus the actual cwnd before applying
the convolutional filtering technique.

As it is shown in Table 1.3, we employ both the Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE) metrics in order to evaluate our
prediction model. The MAPFE measures the absolute percentage error in our
prediction model and is defined by the formula in Equation 1.1 where X is the
actual input value to the model, Y is the target value and p is the learning
model. For more information, we refer the interested readers to [5].

=P Y g (L)
t=1
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1.5.3 Convolutional Filtering

Taking TCP packets dynamics and the complexity of accurately predicting cwnd
from passive measurements, we have built a convolutional filtering technique in
order to improve the accuracy of the initial prediction of TCP cwnd shown in
Figure 1.4 and produce the final predicted value of cwnd shown in Figure 1.5 as
per the methodology depicted in Figure 1.3. Convolution filtering technique is
an operation on two complex-value functions f and g, which produces a third
function that can be interpreted as a filtered version of f where the output is
the full discrete linear convolution of the inputs. In Equation 1.2, g is the filter
which in our case is the final predicted cwnd as shown in Figure [.5.

f@)xgl@)= > flk]-glz — K] (1.2)

k=—o0

To perform the final prediction of TCP cwnd, we used convolution filtering
to optimize the initial prediction accuracy of TCP cwnd obtained from tunning
a GridSearchCV suite of parameters using a b-fold cross-validation as shown in
Table 1.2 and correctly recognize the patterns of the cwnd curves. As it is shown
in Figure 1.5, the measured and actual cwnd match very well after we apply
convolution. Our convolution method runs as a function taking the value of the
initial predicted cwnd, a method to calculate the convolution, a mode which
indicates the size of the output and a standard deviation of the fitting model
as inputs to the function. We used a list comprehension to loop over the entire
rows of the inputs from the initial cwnd prediction and pass the filtered data
into an array for which the full convolution is computed. We have also zero-pad
our convolution method in order to efficiently produce a full linear discrete result
by preventing circular convolution. To calculate the convolution function for our
evaluation of cwnd prediction, the recommended technique which automatically
chooses either Fast Fourier or direct methods based on an estimate of which is
faster is selected. In order to extract the valid part of the convolution which
gives better smoothed sawtooth of the cwnd and detect the accurate pattern, we
verified the equivalence of input and output sizes in every dimension through the
parameter we pass to the convolution function. The RMSE and MAPE before
optimizing the initial predicted value of TCP cwnd obtained from an ensemble
model are 8.637 and 19.183% respectively. The final evaluation of TCP cwnd for
the selected configurations after optimizing the initial predicted value of cwnd
using convolution filtering technique are shown in Table 1.3.

.6 Experimental Results

In this section, we present the experimental results of the emulated network
for a TCP cwnd prediction of the sender. In Figure 1.5, the comparison of the
final predicted TCP cwnd after optimizing the prediction performance using
convolution filtering technique and the actual cwnd of the sender tracked from
the kernel is presented. Our methodology for inferring the TCP cwnd is shown
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in Figure 1.3. We have experimented with several variations (36 configurations
for each TCP variant). Due to space limitation in this paper, we will not present
all the evaluation plots for all configurations as per Table 1.1 and hence the
results reported in this paper are for some of the selected configurations as shown
in Figure [.5 to verify the accuracy of our machine learning-based prediction
model.

We evaluate our final TCP cwnd prediction model under different
configurations of training and testing sample size ratios and the performance
results are presented in Table 1.3. As it is shown in Figure 1.5, we found out
the convolutional filtering we built for predicting cwnd captures the ratio of the
cwnd drop very accurately. Figures 1.5(a) and (b) share the same bandwidth
regardless of delay, loss and jitter configurations which cause the difference
on the maximum number of segments over the course of the connection. For
example, if we see on Figures 1.5(c) and (d), Figure 1.5(c) has a Bandwidth-Delay
Product (BDP) [13] of 700mb*0.01s = 875,000 bytes. At 1500 byte segments,
that’s 583 segments and our emulation shows a maximum of 500-600 segments for
cwnd. In all the plots we can see, once the timeout occurs, all the packet losses
are handled with fast recovery in response to 3 duplicate ACKs. This is because
the cwnd does not drop below half of its previous peak as it is shown in Figure 1.5.
In the results, there is a linear-increase phase followed by a packet loss event
where the cwnd increases with new arriving ACK. This also demonstrates how
the TCP congestion control algorithm responds to congestion events. We can see
that the pattern of the final predicted cwnd generally matches the actual cwnd
quite well with a small prediction error. We matched both the increasing and
decreasing parts of the sawtooth pattern using the precise timestamp obtained
from the kernel.

Table 1.3: TCP final predicted cwnd performance results of an emulated network
with different configurations.

TCP Algorithms Configurations RMSE | MAPE (%)
Final predicted cwnd - Cy 5.839 6.953%
CUBIC Final predicted cwnd - Co 3.075 3.725%
Final predicted cwnd - C3 | 2.209 2.857 %
Final predicted cwnd - Cy4 1.947 3.002%
Reno Final predicted cwnd - C; | 3.511 3.140%
Final predicted cwnd - Cq 2.057 3.824%

.7 Realistic scenario setup

In order to further validate our results presented in Section [.6 against other
scenarios, we believe it is necessary to carefully test how well our machine
learning-based prediction model presented above using an emulated network
works by conducting a series of controlled experiments in a realistic scenario
setting. This helps us to justify and guarantee how our model could predict the
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Figure 1.5: Final TCP cwnd prediction with different configurations of network
emulation parameters for TCP CUBIC [7] and TCP Reno [10] after optimizing
the initial cwnd prediction accuracy with convolution filtering technique in an
emulated network.
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Figure I1.6: TCP cwnd prediction versus actual cwnd of TCP CUBIC [7], TCP
BIC [23] and TCP Reno [10] from a realistic scenario on Google Cloud platform
(East coast USA (North Carolina) site)

development of a cwnd pattern and the TCP variant used with other realistic
network traffic scenarios captured from the Internet. To this end, we created
a realistic testbed where we experiment from Google Cloud platform nodes by
running our resources on the East coast of USA. In order to create a realistic
TCP session, we uploaded an Ubuntu image to Google Cloud platform site so
that we have a full control of the underlying TCP variant and at the same time
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run a tepdump in the background and capture the traffic on the source node. We
filtered out the host where we send the TCP traffic to. Finally, we calculated
the number of outstanding bytes from the captured network traffic and run it
through our learning model to predict the development of the TCP cwnd. As it is
shown in Figure 1.7, we found out that our model could be performing very well
with small prediction errors for realistic scenario settings too. The prediction
performance evaluation result of the final predicted cwnd in the realistic scenario
setting is presented in Table 1.4.

Table 1.4: TCP final predicted cwnd performance results of a realistic scenario
setting.

TCP Algorithms | Google Cloud Platform | RMSE | MAPE (%)
CUBIC USA site 4.265 5.134%
Reno USA site 3.170 5.068%
BIC USA site 2.952 3.809%

1.8 Conclusion and Future Work

In this paper, we have explored machine learning-based techniques to monitor
TCP per-connection states of loss-based TCP variants from passive measurements
when there is variability within a flow. Our paper presents a machine
learning-based prediction model for experimentally inferring TCP cwnd of the
sender by examining each cross-traffic of TCP flows of the endpoints passively
collected at an intermediate node. Our measurement results show that we get
a very good accuracy for both the increasing and decreasing portion of the
sawtooth pattern across more scenarios and different TCP variants. In order to
train and test our prediction model, we employed every experiment with a ratio
of 60% training, 40% testing split and a 5-fold cross-validation on all variations of
bandwidth, delay, jitter and packet loss into one robust and generic learning model.
In order to guarantee an optimal prediction model by minimizing the prediction
function, we have also utilized Gradient Boosting algorithm. Our performance
study shows that the prediction model gives a very good performance on all the
metrics both in the emulated and realistic scenario settings.

As a future work, there are many research avenues that can be explored. First,
since now we are able to predict the cwnd, we also think that we will be able
to infer other TCP states, for example, predicting the underlying TCP variants
of loss-based congestion control algorithms. Second, it would be interesting
to develop a delay-based method so as to verify how delay changes and look
into how the TCP variants of delay-based congestion control algorithms can be
predicted from a passively measured traffic. Finally, we would like to design an
approach based on machine learning techniques that is able to predict if a TCP
packet loss is due to buffer overflow in routers or a wireless link in which two of
them have different characteristics. Historically, TCP was designed for buffer
overflow in routers and the action in TCP to back-off is based on the assumption
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that it is buffer overflow at a router as an implicit signal of network congestion.
However, if we have another packet delay in the wireless link, the actions by
TCP will not be necessarily the same because, in wireless networks, there might
be a significant amount of packet loss due to corrupted packets as a result of
interference. We plan to address these issues in our future work.
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Abstract

Different end-to-end Transmission Control Protocol (TCP) algorithms
widely in use behave differently under network congestion. The TCP
congestion control itself has grown increasingly complex which in practice
makes predicting TCP per-connection states from passive measurements
a challenging task. In this paper, we present a robust, scalable and
generic machine learning-based model which may be of interest for network
operators that experimentally infers the underlying variant of loss-based
TCP algorithms within a flow from passive traffic measurements collected
at an intermediate node. We believe that our study has also a potential
benefit and opportunity for researchers and scientists in the networking
community from both academia and industry who want to assess the
characteristics of TCP transmission states related to network congestion.
‘We validate the robustness and scalability approach of our prediction model
through several controlled experiments. It turns out, surprisingly enough,
that the learned prediction model performs reasonably well by leveraging
knowledge from the emulated network when it is applied on a real-life
scenario setting bearing similarity to the concept of transfer learning in the
machine learning community. The accuracy of our experimental results
both in an emulated network, realistic and combined scenario settings and
across multiple TCP variants demonstrate that our model is effective and
has considerable potential.

1 University of Oslo, Department of Informatics, destahh@ifi.uio.no
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II.1 Introduction

Congestion control is a fundamental problem in computer networks. The TCP
congestion control algorithms that are widely deployed today perform the most
important functionalities related to congestion control such as handling the
cwnd from the sender-side. In this paper, we investigate and explore questions
quantitatively as they apply to problems of network congestion that include: (i)
How well can we infer the most important TCP per-connection transmission
states that determine a network condition (e.g., cwnd) from a passive traffic
collected at an intermediate node of the network without having access to the
sender? (ii) How can we track the underlying TCP variant that the TCP client
is using from passive measurements? (7ii) What percentage of network users
are using either a loss-based or delay-based TCP variants? (4w) Which user is
responsible for the majority of heavy flow traffic in the network? (iv) How do
different implementations of TCP congestion control algorithms behave on the
end-to-end variability of bandwidth, delay, different cross-traffic, Round-trip
Time (RTT)?, etc.? Our work is mainly motivated by these important questions.

Much of the Internet’s traffic is carried using the dominant reliable end-to-end
TCP protocol [14] due to practical considerations that favored TCP over other
transport protocols. To deal with network congestion, TCP uses congestion
control algorithms to guide and regulate the network traffic on the Internet
by avoiding sending more data that the underlying network is capable of
transmitting which is maintained by the sender’s Congestion Window (cwnd).
The global Internet highly relies on TCP congestion control algorithms and
adaptive applications that adjust their data rate to achieve high performance
while avoiding congestion on the network [3]. One of the main parameters for
TCP performance evaluation in a real-world setting is cwnd. Numerous existing
research works on this problem that has been proposed rely on an active approach
to measure the characteristics of TCP. In this paper, we focus mainly on the
passive measurement approach?.

A wide variety of approaches have been applied to the problem of congestion
control characteristics. The work in [15] presented an approach to estimate TCP
parameters at the sender-side based on packets captured at the monitoring point
using a finite state machine. The authors have pointed out that the estimation
of cwnd may have potential errors primarily due to over-estimation of the RTT
and estimation of incorrect window sizes [15]. Another limitation of this work,
given the many existing variants of TCP, the use of a separate state machine for
each TCP variant is unscalable and we also believe that the constructed replica
may not manage to reverse or backtrack the transitions taking the tremendous
amount of data into consideration. In addition to this, the replica may also
not observe the same sequence of packets as the sender and ACKs observed at
the intermediate node may not also reach the sender. TCP implementations
developed by different operating system vendors that have different parameters

2The difference between active and passive measurement techniques will be explained later
in detail in Section II.4.
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(e.g., minimum RTO, timer granularity, duplicate ACK thresholds, etc.) can
also behave so differently [27]. For example, given the same ACK response
from the receiver, there is a variation between a client using Linux TCP stack
and Windows TCP stack [27]. The authors in [27] addressed this problem by
developing a separate state machine for each of the operating system vendors.
The problem with this technique [27] is that it increases the amount of processing
required per TCP connection when there is a change in operating system (e.g.,
when new operating systems are developed or old variants are changed) which
again leads to the development of new state machines.

Machine learning techniques, as they play important roles in other
areas of research, are potentially useful in many areas within the computer
networking research community. For example, intrusion detection analysis and
prediction [12], network scheduling [18], traffic classification [20, 31], etc. However,
after we survey the existing works for monitoring of TCP transmission states from
passive measurements, we believe there is very little work on a robust, scalable
and generic method of predicting the cwnd and uniquely identifying the type of
the underlying TCP congestion control algorithm from a passive traffic without
the knowledge of the sender’s cwnd for most of the widely used TCP variants in
the Internet. Hence, In this paper, we demonstrate how an intermediate node
(e.g., a network operator) can identify the transmission states of the TCP client
associated with a TCP flow related to network congestion from a traffic passively
measured at an intermediate node using machine learning-based techniques. Our
experimental results demonstrate the feasibility of our prediction model. We
believe that our study will be potentially useful to network operators, researchers
and scientists in the networking community from both academia and industry
who want to assess the characteristics of TCP transmission states related to
network congestion from passive measurements.

Our contributions
The summaries of our contribution in this paper are the following:

o We demonstrate how the intermediate node (e.g., a network operator) can
identify the transmission state of the TCP client associated with a TCP
flow and predict the cwnd size of the sender from passive measurements.

o We identify a set of methodological challenges involved in performing
inference of TCP per-connection states from passive measurements.

e We explore the applicability of our prediction model by presenting a
robust and scalable methodology to uniquely identify the widely deployed
underlying TCP variants that the TCP client is using.

o We show that the learned prediction model performs reasonably well by
leveraging knowledge from the emulated network when it is applied on a
real-life scenario setting. Thus our prediction model is general bearing
similarity to the concept of transfer learning in the machine learning
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community. [4, 24, 28]. This guarantees that our prediction model is able
to discern the results to unforeseen scenarios.

o We validate the robustness and scalability approach of our prediction model
extensively through several controlled experiments and experimentally
verified across an emulated, realistic and combined scenario settings.

1.2 Motivation

TCP congestion control algorithms have a critical role in improving the
performance of TCP and regulating the amount of network traffic on the Internet
by preventing congestion collapse [7]. However, when different variants of TCP
algorithms coexist on a network, they can potentially influence the performance
of each other. One approach to solve this issue is to control the TCP flows
individually by uniquely identifying the underlying TCP variant. Here we can
ask questions like (7) What is the reason someone needs to know which algorithm
the TCP sender is using? (ii) Is there some action that someone would take
based on knowing the information of the underlying TCP variant of the sender?

From an operational perspective, we argue that this information is useful for
network operators to monitor if major content providers (e.g., Google, Facebook,
Netfliz, Akamai, etc.) are manipulating their congestion windows in their servers
to achieve more than their fair share of available bandwidth. Another scenario
where network operators might find this information useful is if they have a
path that they know is congested due to customer complaints, but the links
using that path are not especially over-subscribed. In that case, details about
the congestion window behaviour of all the users on that path might be helpful
in trying to diagnose the cause, i.e., are there users that are using aggressive
congestion control algorithms which are unfair and affecting other user’s available
bandwidth?

From an ISP perspective, we believe knowledge about the TCP stack in
use in the endpoints is useful for operators of big ISP networks that do much
traffic engineering who need to move traffic from oversubscribed links. It can
also be used to study the end-to-end characteristics of the TCP stack and
non-conformant end-to-end traffic. In addition to this, researchers and scientists
in the networking community from both academia and industry could use the
information to evaluate and understand existing congestion control algorithms.
It can also be used to diagnose TCP performance problems (e.g., to determine
whether the sending application, the network or the receiving network stack are to
blame for slow transmissions) in real-time. Another benefit might be to observe
when large content providers implement their own custom congestion control
behavior that does not match one of the known congestion control algorithms.

However, predicting TCP per-connection states from passive measurement has
a number of difficulties. One of the challenges is, for example, TCP packets can
be lost between the sender and the intermediate monitor, or between the monitor
and the receiver. If a TCP packet is lost before it reaches the intermediate
node and is somehow retransmitted in order, there is no way we can determine
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whether a packet loss has occurred or not. Therefore, what the intermediate
monitor sees may not be exactly what the sender or the receiver sees. This
means what appears to be reordering from the intermediate node’s perspective
can actually be a retransmit (or vice versa). If a captured TCP packet at the
intermediate node is lost before it reaches the destination, a retransmission will
occur without sending an acknowledgment [15]. Acknowledgments can be lost
between the sender and the intermediate monitor, or between the monitor and
the receiver. If either the entire window of TCP packets are lost before the
intermediate node or acknowledgments lost after the measuring point will lead to
the over-estimation of a cwnd [15]. In addition to this, end-to-end delay variations
in the path preceding the intermediate monitor can also cause retransmissions
that appear to be caused by an Retransmission Timeout (RTO) rather than a
fast retransmit [16]. Because TCP packets are only halfway to their destination,
the relative sequencing on the forward and reverse path can be confusing, e.g.,
retransmitted packets can be seen at the monitor shortly after acknowledgments
that should have prevented their retransmission. This is possibly because the
acknowledgments haven’t yet reached their destination when they are observed,
so the receiver did not yet know that the packets were received before they
decided to retransmit them. More on the location of the passive monitor and
its effect on what we can infer from the measurements is found in [16]. In this
paper, we advocate that machine learning-based approaches can give a better
prediction accuracy of TCP sender connection states from passive measurements
collected at an intermediate node by addressing the aforementioned practical
challenges.

The rest of the paper is organized as follows: Section I1.3 overviews the
background of our study. In Section II.4, we review and give a detailed
overview of the state-of-the-art and discuss closely related works on TCP
variants research. In Section I1.5, we describe our experimental setup for the
evaluation. Section I1.6 gives an overview of our methodology highlighting the
machine learning techniques, performance measurement metrics used in our
paper. Section II.7 presents detailed experimental results and the multiple
scenario settings used to validate our prediction model. Finally, Section 1.8
concludes the paper and outlines directions of research for future extensions.

1.3 Background

TCP congestion control is set to operate on the variability of bandwidth, different
cross-traffic, RT'T etc. Different TCP stacks come with a variety of features
that will violate the assumptions we might make if we only look at one or two
TCP implementations and for this very reason, the following are a list of the
most widely used loss-based variations of TCP congestion control algorithms we
consider in our work so as to cover the whole scope of the problem.

1. TCP Reno: Reno [14] is one of the most predominant implementations
of TCP variant that implements the Additive Increase and Multiplicative
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Decrease (AIMD) scheme [5], which employs a conservative linear growth
function for increasing the cwnd by one segment per RT'T for each received
ACK and multiplicative decrease function on encountering a packet loss per
RTT. It includes the congestion control schemes of slow start, congestion
avoidance, fast retransmission, fast recovery, and timeout retransmission.
During a congestive collapse, Reno uses loss events as a back-off mechanism.

2. TCP BIC: BIC [29] is a predecessor of TCP CUBIC [10]. It is optimized
for high speed networks with high latency and has been adopted as a
default congestion control algorithm by Linux for many years replacing
TCP-Reno[14]. It uses the concept of binary search algorithm along with
the AIMD [5] in an attempt to find the maximum cwnd that will last
longer period. BIC-TCP [29] stand out from other TCP algorithms in its
stability, TCP friendliness and RTT fairness.

3. TCP CUBIC: CUBIC [10] is an enhanced version of BIC [29]. It is the
default congestion control algorithm as part of the Linux kernel distribution
configurations from version 2.6.19. CUBIC [10] is designed to modify the
linear window growth function of existing TCP standards to be governed
by a cubic function in order to improve the scalability of TCP over fast
and long distance networks. It uses a similar window growth function as
its predecessor (BIC [29]) and is designed to be less aggressive and fair to
TCP in bandwidth usage than BIC [29] while maintaining the strengths of
BIC [29] such as stability, window scalability and RTT fairness.

1.4 Related Work

Before delving into our methodologies and the experimental results of our
paper, we believe it is important to better understand where to position our
work compared to the previous related works. This section briefly discusses
closely related research works on inferring TCP per-connection states related to
network congestion from passive measurements. The techniques to monitor TCP
per-connection characteristics are divided into two categories: active measurement
and passive measurement.

11.4.1 Active Measurement

This technique actively measures the TCP behaviors of Internet flows by injecting
an artificial traffic into the network between at least two endpoints [19, 23]. It
focuses mainly on active network monitoring and relies on the capability to inject
specific traffic which is then monitored so as to measure service obtained from
the network.

11.4.2 Passive Measurement

In a passive measurement, passively collected packet traces are examined to
measure TCP behaviors of Internet flows [15, 25, 32]. Passive measurement,
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unlike an active measurement, doesn’t inject an artificial traffic into the network.
It only measures the network without creating or modifying any real traffic on
the network. Passive monitoring measurements are increasingly used by network
operators and researchers in the networking community. Network operators can
track the underlying TCP congestion control algorithms from passively collected
traffic and analyze the traffic flows.

In the traditional methods of passive measurement, there has been much
interest in the investigation of TCP connections aggregate properties and its
characteristics in the global Internet. Another work of interest that is most closely
related to our work is [15] which provides a passive measurement methodology
to infer and keep track of the values of the sender variables: end-to-end RTT
and cwnd. Their idea is to emulate a state transition by detecting RTO events at
the sender and observing the ACKs which cause the sender to change the value
of the cwnd. This work [15] considers only the predominant implementations of
TCP (Reno, NewReno and Tahoe) and the basic idea is it constructs a replica of
the TCP sender’s state for each TCP connection observed at the intermediate
node. The replica takes the form of a finite state machine. However, the use of
a separate state machine for each variant is unscalable taking the many existing
TCP variants into consideration. We also believe that the constructed replica [15]
cannot manage to reverse or backtrack the transitions taking the tremendous
amount of data into consideration. Another limitation is that the replica may
not observe the same sequence of packets as the sender and ACKs observed at
the intermediate node may not also reach the sender. As an extension of [15], the
work in [16] presents a methodology to study the performance of TCP, classify
out-of-sequence behavior of packets for retransmission so as to identify where
congestion is occurring in the network, with the same measurement environment
as in [15].

The authors of the study [27] developed a tool, called tepflows that attempts
to passively estimate the value of cwnd and identify TCP congestion control
algorithms by analyzing the ACK stream to detect the occurrence of TCP
congestion events. However, the state machine implemented with tcpflows is
limited to old TCP variants and hence it cannot uniquely identify the newly
deployed TCP congestion control algorithms. Oshio et al. [21] proposes a
cluster analysis-based method that aims to identify between two versions of TCP
algorithms. This method was meant to be utilized in real-time applications to
handle network traffic routing policies. It performs RTT and cwnd estimation
in order to infer a group of traffic characteristics from the flow [21]. These
characteristics are then clustered into two groups by applying a hierarchical
clustering technique. The authors show that only 2 out of 14 TCP congestion
algorithms that are implemented in Linux can be identified based on their
method [21]. Most of the line of research work in the literature on the unique
identification of the underlying variant of TCP congestion control algorithm
from passive measurements focus on earlier flavors of TCP [15, 25]. Our
work mainly differs from the previous research works in that our main goal
is more fundamentally to develop a robust, scalable and generic prediction model
for inferring TCP per-connection states for the most widely used loss-based
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congestion control algorithms including the newly deployed algorithms (e.g.,
BIC [29], CUBIC [10], Reno [14] etc.).

1.5 Controlled Experiments

In this section, we briefly explain the building blocks of our experimental testbed
that we use to run controlled experiments that emulate the network.

I.L5.1 Experimental Setup

We describe our experimental procedure below. Figure II.1 shows the
experimental setup that we use for all of our experiments.

Internet

Network

Sender Emulator passive Monitor Receiver

O O O NetEm

_— loss
jitter|

delay

bandwidth

Measured TCP Data

Methodology

Figure II.1: Experimental Testbed.

TCP State

TCP State

We first created an emulated network and put a communication tunnel across
the network and simultaneously push TCP cross-traffic to the network using
an iperf traffic generator [8] so as to create a congestion. During a single TCP
flow of our experiment, the parameters bandwidth, and delay are constant with
a uniform distribution. However, since we have the jitter given as an average,
its distribution is normal. We created an identical regular tcpdump of the TCP
packets on the client node including information about the per-connection states
so that we can match the tepdump with the TCP states.
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The passive monitor shown in Figure 1.1 is a separate Linux machine acting
as a proxy. It is designed to do the tcpdump on all the interfaces available in the
system and at the same time we want to predict what the per-connection state of
a TCP packet was when it arrives in the monitor. It is important to remember
that the traces we obtain from the tcpdump have no labels associated with them.
Finally, we verified the predicted TCP states with the actual TCP kernel states
directly logged from the Linux kernel used only for training whose data format
output is shown in Table II.1 and generate a new data for the learning model to
predict on. Once we finish with the verification, we run our learning model and
get the predictions.

Table I1.1: TCP Probe outputs from the sender-side kernel.

’ Column \ Variable Description
1 tstamp Kernel Timestamps
2 saddr:sport Sender Address:port
3 daddr:dport Receiver Address:port
4 length Packet Length (Bytes in packet)
5 snd__nxt Next Send Sequence Number
6 snd_una Unacknowledged Sequence Number
7 snd__cwnd Congestion Window
8 ssthresh Slow Start Threshold
9 snd_wnd Send Window
10 sritt Smoothed RTT
11 tep__ca__state | Congestion Avoidance State

Testbed hardware

Our experiments are performed using a cluster of machines based upon the
GNU/Linux operating system running a modified version of the 4.4.0-75-generic
kernel release. We have performed our prediction experiment in two different
environments based on the computational cost. The GridSearchCV for Random
Forest Regressor model is performed on an NVIDIA Tesla K80 GPU accelerator
computing with the following characteristics: Intel(R) Xeon(R) CPU E5-2670
v3 @2.30GHz, 64 CPU processors, 128GB RAM, 12 CPU cores running under
Linux 64-bit. Whereas the Gradient Boosting model with a higher number of
boosting estimators and learning rates that are used to scale the step length
of the gradient descent procedure are performed on an HPC cluster with 700+
nodes where most nodes have 16 cores and 64 GiB memory of which 11,000+
cores and 52 TiB of memory are available in total as it needs more computational
power for iterations. The CPUs in the computing cluster are 8-core 2.6 GHz
Intel E5-2670. All nodes in the cluster are connected to a low latency 56 Gbit/s
Infiniband network, gigabit Ethernet and have access to 600 TiB of BeeGFS
parallel file system storage.
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11.5.2 Network Emulation

TCP congestion control is set to operate on the variability of bandwidth,
different cross-traffic, RT'T, etc. Therefore, in order to create a realistic scenario,
we have emulated the network in our setup as it is shown in Figure II.1 by
adding variability within a flow to the important network emulation parameters
presented in Table I1.2. For the network emulation, we used the popular
Linux-based network emulator, Network Emulator (NetEm) [13] on a separate
node, that supports an end-to-end variability of bandwidth, delay, jitter, packet
loss, duplication and more other parameters which the cwnd is influenced by to
an outgoing packets of a selected network interface. The data traces for all our
experiments are generated using the iperf [8] traffic generator on an emulated
LAN link where we run each TCP variant with an end-to-end variation of the
emulation parameters shown below where the cwnd is highly influenced by.

Table I1.2: Network Emulation Parameters.

Bandwidth (Mbit/s) | Delay (ms) | Jitter (ms) | Packet Loss (%)
1 10 1 0.001 0.01
2 100 2 0.1 0.05
3 300 3 0.2 0.1
4 500 5 0.5 1
) 700 7 1 1.5
6 1000 10 2 2
£ 6] 6]

1.5.3 The Precision of the Emulator and Cross-traffic Variability

In order to use the network emulator, NetE'm [13], with great care in an extremely
well-contained environment for all the variations of bandwidth, delay, jitter and
packet loss parameters, we created a filter that sets the parameter variation of
each packet according to Table I1.2. As the precision of the emulator, given that
a software emulator is not precise, cannot be measured from TCP streams, we set
up a different experiment using UDP to evaluate and measure the precision where
both the emulator and traffic generator create variations. We verified the raw
performance by measuring the bandwidth, delay, jitter, and packet loss variations
created by the traffic generator and network emulator at the receiver side. In our
experimental setup of the emulator, we have also carefully studied and validated
the impact of cross-traffic variability from the same TCP congestion protocol on
our results by emulating other UDP traffic. We ran NetEm [13] with variations
in the data rate and the parameters presented in Table I1.2 between the client
and the server and we found out that each variation run by NetEm [13] doesn’t
affect our results. We, therefore, believe that the variability of the cross-traffic in
our current experimental setup will not impact our analysis. In general, when it
comes to the cwnd variability, it will depend on the particular TCP congestion
control in use. For example, TCP-Vegas [1] controls cwnd based on a queuing
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delay and delay-based congestion control algorithms thus may be affected by the
variability of a cross traffic. We also believe the emulator may be impacted by
network elements outside of its scope e.g., CPU load, busy devices, network card
buffers, hardware architectural factors etc. For example, cross-traffic in a real
network is influenced by device resources that are used by both flows.

In order to avoid packet sizes over the regular legitimate Maximum Segment
Size (MSS) and Maximum Transmission Unit (MTU) values, we carried out our
experiment on a path that is jumbo-frame clean by disabling TCP segmentation
offloading. This is because, if we measure at a higher level and when packets are
pushed down layer by layer on the protocol stack, the negotiated MSS will be
violated. Therefore, in all of our experiments, each TCP flow uses 1500-byte
data packets and an advertised window set by the operating system. The kernel
might keep the TCP per-connection states of the packets in the buffer and waits
for enough amount of packets before sending the TCP states to the userspace.
TCP per-connection states might also get lost due to a slow process of TCP by
the userspace process. Therefore, the first thing we did as a sanity check is to
capture the packets at both the sender and the receiver for it helps us to know
whether a packet was lost or just never sent as the ACKs from receiver to sender
are just as important as the data packets for inferring packet loss. This way, it
is possible to verify if the traffic captures are identical and there are no missing
per-connection TCP states. The second thing we carried out in order to avoid
missing of packets and capture exactly the same number of packets on the sender
and the monitor is tuning the buffer size and flush the buffer to the userspace.

11.L5.4 Assumptions

Firstly, we assume that we don’t know what TCP variant is running on the
network and the per-connection state within the variant. Secondly, the results we
present in this paper assume that the sender and receiver have the same receiver
window in all of our measurements set by the operating system independent of the
underlying TCP variant. Thirdly, in order to identify the TCP implementation
of the client, we make use of the fact that the number of outstanding bytes in
flight of the client cannot be more than its usable window size.

.6 Methodology

In this section, we describe the overall description of our approaches for
experimentally inferring both the cwnd and uniquely identifying the underlying
TCP variant from a passive measurement using machine learning-based
techniques.

11.6.1 Passive Monitoring of outstanding bytes

The measured passive traffic collected at the intermediate node as shown in
Figure II.1 is used for a training experiment of our model. A TCP sender
includes a sequence number to identify every unique data packets sent into the
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Figure I1.3: Methodology for TCP Variant prediction.

network. The TCP sender also keeps track of outstanding bytes by two variables
in the kernel: snd_nat (the sequence number of the next packet to be sent)
and snd_una (the smallest unacknowledged sequence number, i.e., a record
of the sequence number associated with the last ACK). This is because the
TCP congestion control algorithms govern the TCP sender’s sending rate by
employing the cwnd that limits the number of cumulatively unacknowledged
bytes that are allowed at any given to do congestion avoidance [14].

I.6.2 Experimental inference of TCP cwnd from Passive Traffic

TCP’s cwnd maintained independently by the sender controls the maximum
number of packets a TCP flow may have in the network at any time maintained
independently by the sender [14]. Taking the nature of TCP, accurately inferring
cwnd of the sender by examining each cross-traffic of TCP flows of the endpoints
passively collected at an intermediate node is a challenging task as it is not
advertised. One initial approach we tried to estimate the cuwnd was to process
the packet headers of the flows in the tcpdump and calculate an aggregate TCP
cross-traffic from the trace sets and add that as a feature. We, however, found
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out during our experiment that turns to be an insufficient detail for an accurate
prediction. We have built a convolutional filtering technique in order to improve
the accuracy of the prediction of TCP cwnd [11]. The practical challenges
with the experimental inference of TCP cwnd using a machine learning-based
approach are explained thoroughly in [11].

Another practical challenge of cwnd inference is when we place the passive
monitor close to the receiver. If we try to measure the cwnd for the end-to-end
path between the sender and the receiver basing our inference on the total
amount of outstanding bytes, the further away from sender that our passive
monitor is, the less likely it is that the packets that our monitor observes will
match the packets that are used by the sending host to adjust its cwnd. For
example, more hops between the sender and our passive monitor create more
opportunities for packets to be lost, reordered or delayed. This means that the
information we are using to infer congestion behavior (the packets observed
at the passive monitor) is less reliable and introduces more opportunities for
prediction algorithms to make false inferences. Because placing the monitor close
to the receiver means, we will be seeing the ACKs before the sender does and
so we may have more trouble estimating which of the data packets we capture
were liberated by which of the ACKs we see. However, another technique we can
try is to measure the size of the bursts of segments sent by the sender, where
a burst is a series of segments that are sent back to back followed by a larger
gap where no segments are sent. This is a lot trickier to perform — e.g., we need
to be able to tell whether the timing gap between two data packets is a large
inter-burst gap or just a slight delay between two packets in the same burst. But
at least this allows us to mostly ignore the ACK stream from the receiver. We
will address this approach in our next work.

From the passive traffic at the intermediate node, we infer the number of bytes
that have been sent but not yet acknowledged on the network at a given point
in time using teptrace [22]. This information is very useful in our experiment
as it helps us match with the cwnd calculation of the particular TCP stack in
use [11]. Once we estimate the cwnd of the sender, we can infer the multiplicative
decrease parameter () which is an important feature for uniquely identifying
TCP variants. We use the python sklearn library implementation [26] to build
our ensemble machine learning prediction model using Random Forest Regressor
algorithm [2] to estimate the cwnd where the entire number of outstanding bytes
in flight is an input vector to the model. The tuning parameters of the ensemble
methods are presented in detail in our previous work [11]. We trained our
ensemble learning algorithm without the knowledge of the input features from
the sender-side during the learning phase. We validated our methodology using
the experimental testbed shown in Figure II.1 over a LAN link. In order to train
and test our prediction model, we employed every experiment with a ratio of
60% training, 40% testing split and a 5-fold cross-validation on all variations of
bandwidth, delay, jitter and packet loss into one learning model. As it is shown
below, we employ both the Root Mean Square Error (RMSE) and Mean Absolute
Percentage Error (MAPE) metrics in order to evaluate our prediction model.
The MAPE measures the absolute percentage error in our prediction model [6].
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11.6.3 Prediction of TCP Variants

Congestion control in any IP stack doesn’t have much information available
to drive its algorithm. It has to infer congestion from the history of packet
loss and RTT. Our methodology for uniquely identifying the underlying TCP
variant, by inferring the multiplicative decrease parameter (§) from the final
predicted TCP cwnd, is shown in Figure I1.3. For the underlying TCP variant
prediction task, we consider only loss-based TCP congestion control algorithms
that consider packet loss as an implicit indication of congestion by the network
(e.g., CUBIC [10] BIC [29] and Reno [14]) for a proof of concept. As it is
explained in Section I1.2, since the global Internet is evolving from homogeneous
to heterogeneous TCP congestion control algorithms, uniquely identifying the
underlying TCP congestion control algorithm is a very important task. In
practice; however, it is challenging to identify the TCP variant on the Internet
taking the complexity and heterogeneity of congestion control algorithms into
consideration. One possibility would be to have a state machine model for each
congestion control algorithm, and play the trace against the model to see if the
trace is consistent with the model. However, there will again be some challenges,
depending on where the trace is collected. Here we can ask questions: (i) Do
we see both directions of the traffic? (i) Are we close to either endpoint, so
we can hopefully estimate RTT accurately? (i) How do we deal with the fact
that some algorithms vary depending on past connections between the same
pair of endpoints? (iv) How do we deal with the fact that sometimes a sender
doesn’t send a packet because of the congestion window but other times doesn’t
send because the application actually doesn’t have any additional data in the
send socket buffer? (v) How do we deal with the varieties of old and modern
operating system dependent TCP parameters?

As a solution to the aforementioned questions, in this paper we argue that
training a classifier and prediction model utilizing machine learning-based
algorithms to uniquely identify the underlying TCP variant based on the
multiplicative decrease window of the cwnd and the per-connection state within
the variant from passive measurements collected at an intermediate node is very
important. The standard TCP congestion algorithm employs an AIMD scheme
that backs off in response to a single congestion indication [5]. A thorough
analysis and evaluation of AIMD can be found in [5]. The AIMD has a linear
growth function for increasing the cwnd at the receipt of an ACK packet and
multiplicative decrease parameter, denoted by (5, on encountering a TCP packet
loss at the receipt of triple duplicate ACKs and it can be described as shown
below in Function I1.1. This scheme adjusts the cwnd by the increase-by-one
decrease-to-half strategy i.e., the TCP sending rate is controlled by a cwnd which
is halved for every window of data containing a packet loss, and increased by
one packet per window of segments are acknowledged.

Ack : cund + cwnd + «

Loss : cwnd < 8 x cwnd (IL1)

Most of the existing loss-based TCP congestion control algorithms implement
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AIMD scheme as it is proven to converge [5]. It can generally be expressed as
follows:

Taiwiyr — wp + a5 >0
ot wipse < (1= Blw; 0 < B < 1,

Where 1¢ refers to the increase in window as a result of the receipt of one
window of acknowledgments in RTT and |¢ refers to the decrease in window
on detection of network congestion by the sender, w; is the window size at time
t, R is the RTT of the flow and ¢ is a sampling rate. The AIMD algorithm is
generalized by adding two variables, o and § that control the two aspects of
AIMD: « indicates the increase in the window size if there is no packet loss
in round-trip time and g indicates the fraction of the window size that it is
decreased to when packet loss is detected [5]. Let f(t) be the sending rate (e.g.,
the congestion window) during time slot ¢, a(a>0), be the additive increase
parameter, and 5(0 < f<1) be the multiplicative decrease factor.

(11.2)

f(t) + «, If congestion is detected

I1.3
f(t) x B, 1If congestion is not detected (IL3)

ft+1) = {
In TCP, after slow start, the additive increase parameter « is typically one
MSS every RT'T, and the multiplicative decrease factor 5 on loss event is typically
1 [5]. For example, CUBIC [10] decreases the cwnd whenever it detects that a
segment was lost, either by using the TCP Fast Retransmit or Fast Recovery
method of three duplicate ACK or when the Retransmission Timeout expires.
And, it increases towards a target congestion window size (W) when in-order
segments are acknowledged where W is defined by the following function:

Wcubic(t) == ‘C(t - K)|3 + Wmar (114)

Where W4, is the window size reached before the last packet loss event, C' is
a fixed scaling constant that determines the aggressiveness of window growth,
t is the elapsed time from the last window reduction measured after the fast
recovery, and where K is defined by the following function:

Wmamﬂ
C

Where 5 is a constant multiplicative decrease factor of CUBIC [10] applied for
window reduction at the time of a TCP packet loss event (i.e., the window reduces
t0 BWinas at the time of the last reduction) [10]. The § value of CUBIC [10] is
0.7, as shown in Table I1.3, which corresponds to reducing the window by 30%
during a TCP packet loss event and can be calculated as per Equations VI.6
and VI.7. The windows growth function of a TCP CUBIC [10] is a cubic function.
TCP CUBIC [10] reduces its window by a factor of 8 after a loss event, the
TCP-friendly rate would be 3((1 — 8)/(1 + 3)) per RTT. Different congestion
control algorithms have different window growth functions. However, when TCP
BIC [29] detects a packet loss, it reduces its window by a multiplicative factor £.

K=y (I11.5)
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Its cwnd size just before the reduction is set to the mazimum W4, (i-e., the
window size just before the last fast recovery) and the window size just after
the reduction is set to the current minimum Wi, (i-e., 8 X Winas). Then, BIC
finally performs a binary search increase using these two parameters looking for
the mid-point as shown in Equation II.6.

Wma:v + Wmin
2

The multiplicative back-off parameter, 3, especially for loss-based congestion
control algorithms is one of the most important TCP characteristics which
determines important conditions of a network congestion like the cwnd and Slow
Start Threshold (ssthresh) [30]. There are two approaches to measure the 3 value
of a TCP congestion control algorithm: (i) using a packet loss event, and (i)
using a time out event. In the presence of a packet loss event, TCP sets both
its ssthresh and the cwnd size to 8 X cwnd_loss where cwnd__loss is the cwnd
size before a packet loss event or a time out occurs. When timeout occurs, TCP
sets its ssthresh to B x cwnd_loss and its cwnd size to its initial congestion
window (init_cwnd) size (1 or 2 segments depending on the TCP congestion
control algorithm). The back-off parameter along with other TCP characteristics
(e.g., the rate at which the congestion window grows (a)) can be used to predict
the underlying TCP congestion control algorithms. Hence, here we use the
[ value so as to uniquely predict the underlying TCP variant based on the
multiplicative back-off factor of the selected loss-based TCP congestion control
algorithms summarized in Table 11.3. Unlike loss-based algorithms, the 3 value
of delay-based congestion control algorithms is not fixed. By design, delay-based
TCP congestion control algorithms (e.g., TCP-Vegas [1], TCP-Westwood [9],
etc.) have a variable 8 and the S value of these protocols will vary when there is
variability in delay which makes it not easy to predict the variant from a passive
traffic and we will address this in our next research work.

(IL.6)

Table I1.3: Loss-based TCP Variants [ Value.

TCP Congestion Control Algorithm | 5 Value
BIC 0.8
CUBIC 0.7
Reno 0.5

I.L7 Experimental Scenario Settings Results

Here, we explain in detail the experimental results of our main contributions:
(i) Inferring TCP cwnd and (7)) Predicting the underlying TCP variants from
passive measurements under multiple scenario settings. In the experimental
evaluation, we choose a testing scenario configurations and present CUBIC [10],
BIC [29] and Reno [14] in order to make our obtained evaluation results easily
readable. We have experimented with several variations (36 configurations
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for each TCP variant, 216 in total as presented in Table 11.2). Due to space
limitation in this paper, we can not present all the evaluation plots for a total of
216 configurations. Hence the results reported in this paper for all the scenario
settings are for a subset of the selected configurations for a proof of concept
as shown in Figures I1.4, I1.5 and II.6 to verify the accuracy of our machine
learning-based prediction model.

Our final TCP cwnd prediction model is evaluated under different
configurations of training and testing sample size ratios. As it is shown in
the plots below, we found out the convolutional filtering we built for predicting
cwnd captures the ratio of the cwnd drop very accurately. Figures I1.4(a) and
(b) don’t share the same bandwidth, delay, loss and jitter configurations which
cause the difference on the maximum number of segments over the course of the
connection. For example, if we see on Figures 11.4(b), it has a Bandwidth-Delay
Product (BDP) [17] of 700mb*0.01s = 875,000 bytes. At 1500 byte segments,
that’s 583 segments and our emulation shows a maximum of 500-600 segments
for cwnd. In all the plots shown below we can see, once the timeout occurs, all
the packet losses are handled with fast recovery in response to 3 duplicate ACKs.
This is because the cwnd does not drop below half of its previous peak. In the
results, there is a linear-increase phase followed by a packet loss event where the
cwnd increases with new arriving ACK. This also demonstrates how the TCP
congestion control algorithm responds to congestion events. We can see that the
pattern of the final predicted cwnd generally matches the actual cwnd quite well
with a small prediction error. We matched both the increasing and decreasing
parts of the sawtooth pattern using the precise timestamp obtained from the
kernel.

1.7.1 Emulated Network Setup

In Figure 11.4, the comparison of the final predicted TCP cwnd after optimizing
the prediction performance using convolution filtering technique and the actual
cwnd of the sender tracked from the kernel is presented. As it is shown in
Figure 11.4, we found out the convolutional filtering we built for predicting cwnd
captures the ratio of the cwnd drop very accurately. For a detailed explanation of
the filtering technique refer to [11]. We evaluate our final TCP cwnd prediction
model and the performance results are presented in Table I1.6. For the TCP
variant prediction, we analyzed the § value by averaging out the window size of
AIMD algorithm every time we have a peak so that we don’t do the computation
of the multiplicative decrease factor only on a slow start phase. The accuracy of
uniquely identifying the underlying TCP variant prediction result in the emulated
environment as presented in Table I1.5 is 93.51%.

1.7.2 Realistic Scenario Setup

In order to demonstrate the transferability [4, 24, 28] approach of our proposed
machine learning-based prediction model and further validate our results
presented in Section I1.7 by conducting a series of controlled experiments against
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Figure I1.4: Final TCP cwnd prediction with different configurations of network
emulation parameters for TCP CUBIC [10] after optimizing the initial cwnd
prediction accuracy with convolution filtering technique in an emulated network.
For more results with different configurations of an emulated network for TCP
BIC [29] and TCP Reno [14] refer to our previous paper [11].
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Table I1.4: TCP Variant Prediction of an emulated network setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 32 1 0
CUBIC 2 33 0
Reno 2 2 36

Table I1.5: TCP Variant Prediction of an emulated network setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 0.89 0.97 0.93 33
CUBIC 0.92 0.94 0.93 35
Reno 1.00 0.90 0.95 40
Average/Total 0.94 0.94 0.94 108
Accuracy 0.9351

Table I1.6: TCP final predicted cwnd performance results of an emulated network
setting with sample configurations.

Congestion Algorithm | Per Configuration | RMSE | MAPE (%)
Configuration C 5.839 6.953%
TCP CUBIC Configuration Cj 2.209 2.857%

other scenarios, we believe it is necessary to carefully test how well our model
using an emulated network works with realistic scenarios by leveraging the
knowledge of the emulated network. This guarantees that our prediction model
is able to discern the results to unforeseen scenarios. Our experimental setup for
this scenario setting is presented in Figure I1.7.

[nee |
T
Internet .
e» 35.190.138.173

Google Cloud Platform

Figure I1.7: Realistic scenario setup.

From an experimental view point, this helps us to justify and guarantee how
our model could predict the development of a cwnd and the underlying TCP
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Figure IL.5: TCP cwnd prediction of TCP CUBIC [10], TCP BIC [29] and TCP
Reno [14] from a realistic scenario on different zones of Google Cloud platform
(East coast USA (North Carolina) and Northeast Asia (Tokyo, Japan) sites).
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Figure I1.6: TCP cwnd prediction of TCP CUBIC [10], TCP BIC [29] and TCP
Reno [14] from a combined scenario setting.

variant with other realistic network traffic scenarios captured from the Internet.
To this end, we created a realistic testbed where we experiment from Google
Cloud platform nodes by running our resources on the East coast of USA (South
Carolina) and Northeast Asia (Tokyo, Japan) as shown in Figure IL.5. In order
to create a realistic TCP session, we uploaded an Ubuntu image to Google Cloud
platform sites so that we have a full control of the underlying TCP variant on
the sender-side and at the same time run a tcpdump in the background and
capture the whole TCP traffic flow for testing on the source node. We filtered
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out the host where we send the TCP traffic to. Finally, we calculated the number
of outstanding bytes from the captured network traffic and run it through our
learning model to predict the development of the TCP cwnd and variant. As it is
shown in Figure I1.5, we confirm that our prediction model operates correctly and
accurately recognizes the sawtooth pattern for realistic scenario settings across
different Google Cloud platform zones as well. This shows that our prediction
model is general bearing similarity to the concept of transfer learning in the
machine learning community. The final cwnd prediction performance result of
the realistic scenario setting across the Google Cloud platforms is presented
in Table I1.7. As it is shown in Table 11.9, the accuracy of the TCP variant
prediction for this scenario setting is 95%.

Table I1.7: TCP final predicted cwnd performance results of a realistic scenario
setting.

Congestion Algorithm | Google Cloud Zone | RMSE | MAPE (%)
USA site 4.265 5.134%
TCP CUBIC Japan site 3.522 4.738%
USA site 2.952 3.809%
TCP BIC Japan site 2.694 3.761%
USA site 3.170 5.068%
TCP Reno Japan site 3.396 5.197%

Table I1.8: TCP Variant Prediction of a realistic scenario setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 20 0 0
CUBIC 0 18 1
Reno 0 2 19

Table I1.9: TCP Variant Prediction of a realistic scenario setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 1.00 1.00 1.00 20
CUBIC 0.90 0.95 0.92 19
Reno 0.95 0.90 0.93 21
Average/Total 0.95 0.95 0.95 60
Accuracy 0.95
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I.7.3 Combined Scenario Setting

Real networks behave in more complex manner than emulated networks. The loss
and delay of packets in TCP is both affected by, and affects, the TCP control loop.
We believe, there are queue dynamics in the network which cause packet trains
and other behaviors which software emulators like NetEm [13] can’t reproduce
well enough. In Section I1.7.2, we performed a realistic experiment when the
random packet loss comes from the dynamics of multiple TCP connections sharing
a link (congestion) rather than an injected packet loss. In this section, we address
the scalability approach by conducting an experiment of our model under a
broader range by combining the realistic and emulated scenario settings to justify
the applicability and robustness of our prediction model. Our experimental
setup for this scenario setting is presented in Figure I1.8.

Internet

i é!
3 e ‘
i%a—ya::i 102,58 11 128.39.74.9 %«%@—(« 12539-74-19
bandwidth S .
Network a— ALTO Cloud Internet a——
Emulator Passive Monitor, Receiver

Figure I1.8: Combined scenario setup.

In this experiment, we combine the two scenario settings (one with an
emulator and one with no emulator but Internet) where our intermediate node
acts as a router. We get the traffic to the intermediate node, wrap and forward
it to the network so that we can add more delay and the number of hops in the
network on both sides. In this scenario, as it is shown in Figure I1.6, both the
increasing and decreasing portions of the sawtooth pattern across different TCP
variants is potentially accurate. The TCP variant prediction accuracy of the
combined scenario setting, as it is presented in Table 11.12, is 91.66% and this
justifies that our prediction model can handle multiple scenario settings.

Table I1.10: TCP final predicted cwnd performance results of a combined scenario
setting.

Congestion Algorithm Per Configuration RMSE | MAPE (%)
TCP CUBIC Sample Configuration C 5.704 8.053%
TCP BIC Sample Configuration By | 5.193 7.831%
TCP Reno Sample Configuration Ry 4.752 5.739%
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Table II1.11: TCP Variant Prediction of a combined scenario setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 32 1 0
CUBIC 4 33 2
Reno 0 2 34

Table I1.12: TCP Variant Prediction of a combined scenario setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 0.89 0.97 0.93 33
CUBIC 0.92 0.85 0.88 39
Reno 0.94 0.94 0.94 36
Average/Total 0.92 0.92 0.92 108
Accuracy 0.9166

1.8 Conclusion and Future Work

In this paper, we presented a robust, scalable and generic machine learning-based
prediction model that experimentally infers both TCP cwnd and the underlying
variant of loss-based TCP congestion control algorithms within a flow from
passive measurements collected at an intermediate node of the network. The
significance of our paper is two-fold. First, it presents a prediction model for
estimating TCP cwnd of the sender when there is variability within a flow.
Our measurement results of the cwnd prediction show that we get a very good
accuracy for both the increasing and decreasing portion of the sawtooth pattern.
Second, this paper presents a robust, scalable and generic learning model for
predicting the widely deployed underlying TCP variants within a flow which
may be of interest for the network operators, researchers and scientists in the
networking community from both academia and industry. In order to train
and test our prediction model, we employed every experiment with a ratio of
60% training, 40% testing split and a 5-fold cross-validation on all end-to-end
variations of bandwidth, delay, jitter and packet loss into one learning model. Our
prediction model is tested under multiple scenario settings. The experimental
performance shows that the prediction model gives reasonably good performance
on all the metrics both in the emulated, realistic and combined scenario settings
and across multiple TCP variants. We show that the learned prediction model by
leveraging knowledge from the emulated network performs reasonably well when
it is applied on a real-life scenario setting bearing similarity to the concept of
transfer learning in the machine learning community. The prediction accuracies
of the underlying TCP variant for these scenario settings are 93.51%, 95%, and
91.66% respectively. To validate our evaluation of the prediction models, in
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addition to accuracy, we used multiple performance validation metrics such as
precision, recall, F1-Score and support. Our evaluation across different scenario
settings show that our model is effective and has considerable potential.

As a future work, it would be interesting to develop a delay-based model
using both machine learning and deep learning techniques so as to verify how
delay changes and look into how the TCP variants of delay-based congestion
control algorithms can be predicted both from a passively measured traffic and
real measurements over the Internet. We plan to address these open issues and
extend the approaches in our future work.
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Abstract

Long Short-Term Memory (LSTM) neural networks are a state-of-the-art
techniques when it comes to sequence learning and time series
prediction models. In this paper, we have used LSTM-based Recurrent
Neural Networks (RNN) for building a generic prediction model for
Transmission Control Protocol (TCP) connection characteristics from
passive measurements. To the best of our knowledge, this is the first work
that attempts to apply LSTM for demonstrating how a network operator
can identify the most important system-wide TCP per-connection states of
a TCP client that determine a network condition (e.g., cwnd) from passive
traffic measured at an intermediate node of the network without having
access to the sender. We found out that LSTM learners outperform the
state-of-the-art classical machine learning prediction models. Through an
extensive experimental evaluation on multiple scenarios, we demonstrate
the scalability and robustness of our approach and its potential for
monitoring TCP transmission states related to network congestion from
passive measurements. Our results based on emulated and realistic
settings suggest that Deep Learning is a promising tool for monitoring
system-wide TCP states from passive measurements and we believe that
the methodology presented in our paper may strengthen future research
work in the computer networking community.
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IV.1 Introduction

Deep Neural Networks (DNN) [20, 28] are a deep learning architecture trained
using new machine learning methods that have shown advancements in a wide
range of supervised and unsupervised machine intelligence tasks. In recent years,
Recurrent Neural Network (RNNs) have become popular focus of research topic
in the areas of DNN as diverse as, for example, speech recognition [8], music
generation [4], text generation [30], sentiment classification [31], and other areas
of major advancements. RNNs use input sequences to solve both for prediction [5]
as well as classification [2, 19, 21] problems. LSTM [14] is a special kind of RNN
state-of-the-art architecture designed for a wide range of sequence modeling
tasks and time series prediction models. The LSTM unit [14] is a powerful and
flexible RNN tool that has a memory cell that gives a previous hidden state
containing connection information through the hidden layer activations from
the past for a long period of time. LSTM in its recurrent hidden layer has
a special unit called memory blocks consisting of memory cell units that are
responsible for remembering the temporal states of the network for an arbitrary
time intervals [14]. In each layer of the LSTM architecture [14], there is a forward
propagation step which is a corresponding backward propagation through time
step. In addition to this, there is a cache that passes information from one layer
to another. This ability of LSTM [14] allows us to solve the vanishing gradient
problem by dynamically controlling the information flow within the layers and
capture the long-term dependencies of the connections in a sequence effectively.

LSTM [14] is used to address difficult sequence learning and prediction
problems in machine learning and have achieved state-of-the-art results. One of
the main benefits of using an LSTM model for challenges that involve time series
data is to avoid the vanishing gradient problem. RNN model scans through the
training data from left to right and the parameters it uses to govern the connection
in the hidden layer for each time-step, learned features during the training are
shared and this significantly improves the prediction. An LSTM model computes
a mapping from an input feature vector x = (x(l),x(g),x(3), ...,x(n)) where
ri€ R" to an output sequence y = (y(1),¥(2),¥(3), s ¥(m)) Where y; € R™ by
calculating the network unit activations of a weighted sum using the Equations
IV.1-1V.6 iteratively from ¢ = I to n.

As it is shown in Equations IV.1, IV.2, and IV.4, LSTM [14] uses three
adaptive, an input, forget and output, gates shared by all cells in the LSTM block
in order to learn long-term dependencies and control the flow of information.
The output of these gates multiplicatively influences connections within the
memory units. The input gate determines the flow of input activations into
the memory cell whereas the output gate determines the output flow of cell
activations into the rest of the network. The forget gate determines the extent
to which the current value remains in the memory cell of the LSTM unit before
it gets gradually discarded when its data is no longer needed.

130



Introduction

iy = c(Wigws + Wimmy_1 + Wicci—1 + b;) ( )
fi=0Wpzy + Wepmmy—1 + Wyeci—1 + by) ( )
ct = ft © o1+ it © g(Weawy + Wemmy—1 + be) ( )
oy = o(Wogxy + Womy—1 + Woeer + by) (IV.4)
my =0y © h(cy) (IV.5)
Yr = d(Wymmi + by) ( )

Where the i, f, ¢, o are input, forget, memory state, and output gate activation
vectors respectively at each time step t. ¢ is the logistic sigmoid non-linearity
while ®, g and h are element-wise product of the vectors, the cell input and
output non-linearity activation functions of the entire neural network, ReL U
in our case, applied to each layer of the deep network respectively. W and b
represents a vector of weighted recurrent connections and the bias vector. m; is
the hidden state output of the LSTM layer. Finally, ¢ is the activation function
in the hidden layer applied to the network output. Figure IV.1 describes the
basic unit of an LSTM network where the input sequence to the LSTM cell
is carried over each time step of t+1, ¢t and ¢-1. As shown in Figure IV.1, the
hidden state, at time step ¢, is a function of the current input sequence z; at the
same time step. C; and C;_1 are the memory cell state activation vectors from
the current and previous block at time ¢ and ¢-1 respectively.
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Figure IV.1: LSTM Networks. For more thorough details, refer [23].

In this paper, we are interested in the capability of RNN model based
on emulated and realistic networks for estimating TCP cwnd as well as the
underlying TCP variants within a flow. Hence, we have explored an LSTM
architecture for RNN-based prediction approaches to monitor the most important
TCP per-connection states from passive measurements related to network
congestion. In our paper, we have demonstrated that LSTM can use its memory
blocks and a series of gates to effectively capture the patterns of a TCP cwnd
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from passive measurements. Congestion control is a fundamental problem in
computer networks. The TCP congestion control algorithms that are widely
deployed today perform the most important functionalities related to congestion
control such as handling the cwnd from the sender-side. In this paper, we
investigate and explore questions quantitatively as they apply to problems of
network congestion that include: (i) How well can we infer the most important
TCP per-connection transmission states that determine a network condition
from passive traffic collected at an intermediate node of the network? (i) How
can we uniquely track the underlying TCP variant that the TCP client is using
from passive measurements? (i) What is the motivation why we need to know
which algorithm the TCP sender is using? (%) Is there some action that we
would take based on knowing the information of the underlying TCP variant of
the sender? (v) Which user is responsible for the majority of heavy flow traffic
in the network? etc.?

The work in [16] presented an approach to estimate TCP parameters at the
sender-side based on packets captured at the monitoring point using a finite
state machine. The authors have pointed out that the estimation of cwnd may
have potential errors primarily due to an over-estimation of the Round-trip
Time (RTT) and estimation of incorrect window sizes [16]. Another limitation of
this work, given the many existing variants of TCP, is that the use of a separate
state machine for each TCP variant is unscalable and we also believe that the
constructed replica may not manage to reverse or backtrack the transitions
taking the tremendous amount of data into consideration. In addition to this,
the replica may also not observe the same sequence of packets as the sender and
ACKs observed at the intermediate node may not also reach the sender. Within
the computer networking research community, RNN techniques are potentially
useful. After we extensively survey the existing works for monitoring of TCP
transmission states from passive measurements, we believe there is not much
work on a scalable method of predicting the cwnd and uniquely identifying
the type of the underlying TCP control algorithm from passive traffic without
the knowledge of the sender’s cwnd for most of the widely used TCP variants
using RNN-based techniques. Hence, in this paper, we demonstrate how an
intermediate node (e.g., a network operator) can identify the transmission states
of the TCP client associated with a TCP flow related to network congestion
from a traffic passively measured at an intermediate node using LSTM [14]. Our
experimental results demonstrate the feasibility of our prediction model. We
believe that our study will be potentially useful to network operators, researchers
and scientists in the networking community from both academia and industry
who want to assess the characteristics of TCP transmission states related to
network congestion from passive measurements. To the best of our knowledge,
this is the first work that attempts to apply LSTM [14] for inferring the most
important TCP per-connection states that determine a network condition from
passive traffic collected at an intermediate node of the network without having
access to the sender. Our prediction model has several benefits over other
approaches as we demonstrate in our experimental results.
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Our Contributions: The main contributions of our paper are the following:

o We demonstrate how the intermediate node (e.g., a network operator) can
identify the transmission state of the TCP client associated with a TCP
flow and predict the Congestion Window (cwnd) size of the sender from
passive measurements using an LSTM recurrent model.

o We explore the applicability of our LSTM-based prediction model by
presenting a robust and scalable methodology to uniquely identify the
widely deployed underlying TCP variants that the TCP client is using.

o We show that the learned prediction model performs reasonably well by
leveraging a trained knowledge from the emulated network when it is
applied and transferred on a real-life scenario setting. Thus our prediction
model is general bearing similarity to the concept of transfer learning in
the machine learning community [26].

o We validate the robustness and scalability approach of our prediction model
extensively through several controlled experiments and experimentally
verified across an emulated, realistic and combined scenario settings.

IV.2 Motivation

Our work is mainly motivated by the questions presented on Section IV.1.
Congestion control algorithms have a critical role in improving the performance
of TCP on the Internet [6]. However, when different variants of TCP algorithms
coexist on a network, they can potentially influence the performance of each
other. One approach to solve this issue is to control the TCP flows individually
by predicting the cwnd and uniquely identifying the underlying TCP variant.

Benefits: From an operational perspective, this information is useful for network
operators to monitor if major content providers (e.g., Google, Facebook, Netfliz,
Akamai, etc.) are manipulating their congestion windows in their servers to
achieve more than their fair share of available bandwidth. Another scenario
where operators might find this information useful is if they have a path that
they know is congested due to customer complaints, but the links using that path
are not especially over-subscribed. In that case, details about the congestion
window behavior of all the users on that path might be helpful in trying to
diagnose the cause. From an ISP perspective, we believe knowledge about the
TCP stack in use in the endpoints is useful for operators of big ISP networks
that do much traffic engineering and anomaly detection [12].

Methodological Challenges: In practice; however, predicting TCP
per-connection states from passive measurement has a number of difficulties.
One of the challenges is, for example, TCP packets can be lost between the
sender and the intermediate monitor, or between the monitor and the receiver.
If a TCP packet is lost before it reaches the intermediate node and is somehow
retransmitted in order, there is no way we can determine whether a packet
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loss has occurred or not. Therefore, what the intermediate monitor sees may
not be exactly what the sender or the receiver sees. The set of methodological
challenges we identify involved in performing inference of TCP per-connection
states related to network congestion from passive measurements are presented
more in detail in [10]. In this paper, we advocate that LSTM-based approaches
can give a better prediction accuracy of TCP sender connection states from
passive measurements collected at an intermediate node by addressing the
aforementioned practical challenges.

Roadmap: The rest of the paper is organized as follows: In Section IV.3, we
review and give a detailed overview of the closely related research works of
TCP passive measurements considered as a state-of-the-art. In Section IV .4,
we describe our experimental setup for the evaluation. Section IV.5 gives an
overview of our methodology highlighting the machine learning techniques,
performance measurement metrics used in our paper. Section IV.6 presents
detailed experimental results and the multiple scenario settings used to validate
our prediction model. Finally, Section IV.7 concludes the paper and outlines
directions of research for future extensions.

IV.3 Related Work

This section briefly discusses closely related research works on inferring TCP
per-connection states related to network congestion from passive measurements.
The techniques to monitor TCP per-connection characteristics are divided into
two categories: active and passive measurements.

Active Measurement: Many existing research works that have been proposed
rely on an active approach to measuring the characteristics of TCP. This technique
actively measures the TCP behaviors of Internet flows by injecting an artificial
traffic into the network between at least two endpoints [22, 25]. Tt focuses mainly
on active network monitoring and relies on the capability to inject specific traffic
which is then monitored so as to measure service obtained from the network.

Passive Measurement: In a passive measurement, passively collected packet
traces are examined to measure TCP behaviors of Internet flows [16]. Passive
measurement, unlike an active measurement, doesn’t inject an artificial traffic
into the network. It only measures the network without creating or modifying any
real traffic on the network. Passive monitoring measurements are increasingly
used by network operators and researchers in the networking community. A work
of interest that is most closely related to our work is [16] which provides a passive
measurement methodology to infer and keep track of the values of the sender
variables: end-to-end RTT and cwnd. Their idea is to emulate a state transition
by detecting Retransmission Timeout (RTO) events at the sender and observing
the ACKs which cause the sender to change the value of the cwnd. This work [16]
considers only the predominant implementations of TCP and the basic idea is it
constructs a replica of the TCP sender’s state for each TCP connection observed
at the intermediate node. The replica takes the form of a finite state machine.
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However, the use of a separate state machine for each variant is unscalable
taking the many existing TCP variants into consideration. We also believe
that the constructed replica [16] cannot manage to reverse or backtrack the
transitions taking the tremendous amount of data into consideration. Another
limitation is that the replica may not observe the same sequence of packets as
the sender and ACKs observed at the intermediate node may not also reach
the sender. The authors of the study [27] developed a tool, called tepflows that
attempts to passively estimate the value of cwnd and identify TCP congestion
control algorithms by analyzing the ACK stream to detect the occurrence of
TCP congestion events. However, the state machine implemented with tepflows
is limited to old TCP variants and hence it cannot uniquely identify new TCP
congestion control algorithms.

Our work mainly differs from the previous works in that our main goal
is more fundamentally to develop a scalable LSTM-based prediction model
for inferring TCP per-connection states for the most widely used loss-based
congestion algorithms. Different TCP stacks come with a variety of features
that will violate the assumptions we might make if we only look at one or two
TCP variants. Hence, a list of the most widely used loss-based variations of
TCP algorithms we consider in our work so as to cover the whole scope of the
problem are BIC [32], CUBIC [9] and Reno [15].

IV.4 Experimental Setup and Discussion

In this section, we provide a detailed overview of our experimental testbed.

IV.4.1 Experimental Testbed

Figure IV.2 shows the experimental setup that we use for all of our experiments in
this paper. In order to introduce congestion, we first created an emulated network
and put a communication tunnel across the network and simultaneously push
TCP cross-traffic to the network using an iperf traffic generator [7]. We carried
out the experiment by capturing all sessions on the network when the client and
server are sending TCP packets. During a single TCP flow of our experiment,
the parameters bandwidth, and delay are constant with a uniform distribution.
However, since we have the jitter given as an average, its distribution is normal.
We created an identical regular tcpdump of the TCP packets on the client node
including information about the per-connection states so that we can match
the tepdump with the TCP states. As shown in Figure IV.2, we used the
measured TCP data as an input to our methodology for a prediction of the TCP
per-connection states. Finally, we verified the predicted TCP states with the
actual TCP kernel states directly logged from the Linux kernel used only for
training and generate a new data for the learning model to predict on. Once we
finish with the verification, we run our learning model and get the predictions.
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Figure IV.2: Experimental Setup.

IV.4.2 Testbed Hardware

We have carried out our experiments using a cluster of HPC machines based
upon the GNU/Linux operating system running a modified version of the
4.4.0-75-generic kernel release. The prediction model is performed on an NVIDIA
Tesla K80 GPU accelerator computing with the following characteristics: Intel(R)
Xeon(R) CPU E5-2670 v3 @2.30GHz, 64 CPU processors, 128GB RAM, 12 CPU
cores running under Linux 64-bit. All nodes in the cluster are connected to a
low latency 56 Gbit/s Infiniband, gigabit Ethernet and have access to 600 TiB of
BeeGFS parallel file system storage.

IV.4.3 Network Emulation and Verification of the emulator

For the network emulation, we used the popular Linux-based network emulator,
Network Emulator (NetEm) [13] on a separate node, that supports an end-to-end
variability of bandwidth, delay, jitter, packet loss, and other parameters that
the cwnd is highly influenced by to an outgoing packets of a selected network
interface. Given that the software emulator is not precise, can we trust the
network emulator for all the variations of bandwidth, delay, jitter and packet loss
parameters that we change for our evaluation irrespective of the measurement we
get from TCP stream? In order to use the network emulator with great care in
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an extremely well-contained environment for all the variations of the parameters,
we created a filter that sets the parameter variation of each packet. As the
precision of the emulator cannot be measured from TCP streams, we set up a
different experiment using UDP to evaluate and measure the precision where
both the emulator and traffic generator create variations. We verified the raw
performance by measuring the bandwidth, delay, jitter and packet loss variations
created by the traffic generator and network emulator at the receiver side.

IV.4.4 Impact of Cross-traffic Variability

We ran NetEm [13] with variations in the data rate and the emulation parameters
between the client and the server. We have carefully studied and validated the
impact of cross-traffic variability from the same TCP congestion protocol on our
results by emulating other UDP traffic and we found out that each variation
run by the emulator doesn’t affect our results. We believe that the variability of
the cross-traffic in our current setup will not impact our analysis. In general,
when it comes to the cwnd variability, it will depend on the particular TCP
congestion control in use. We also believe the emulator may be impacted by
network elements outside of its scope e.g., CPU load, network card buffers,
hardware architectural factors etc.

IV.4.5 Network Traces

To evaluate our prediction model on both the emulated and realistic network
conditions, we have generated our own dataset using tcptrace [24]. The data
traces for all our experiments are generated using the iperf [7] traffic generator
on an emulated LAN link where we run each TCP variant with variation of the
parameters bandwidth, delay, jitter and packet loss as shown below in Table IV.1
where the cwnd is highly influenced by. However, the kernel might keep the TCP
per-connection states of the packets in the buffer and waits for enough amount
of packets before sending the TCP states to the userspace. TCP per-connection
states might also get lost due to a slow process of TCP by the userspace process.
Therefore, the first thing we did as a sanity check is to capture the packets at
both the sender and the receiver for it helps us to know whether a packet was lost
or just never sent as the ACKs from receiver to sender are just as important as
the data packets for inferring packet loss. This way, it is possible to verify if the
traffic captures are identical and there are no missing per-connection TCP states.
The second thing we carried out in order to avoid missing of packets and capture
exactly the same number of packets on the sender and the monitor is tuning the
buffer size and flush the buffer to the userspace. We carried out our experiment
over a path that is jumbo-frame clean by disabling TCP segmentation offloading
so that we can avoid packet sizes way over the regular legitimate size.
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IV.4.6 Network Emulation Parameters

TCP congestion control is set to operate on the variability of bandwidth, different
cross-traffic, RTT, etc. Therefore, in order to create a realistic scenario, we
have emulated the network in our setup as it is shown in Figure V.2 by adding
variability within a flow to the important network emulation parameters presented
in Table I'V.1.

Table IV.1: Network Emulation Parameters.

Bandwidth (Mbit/s) | Delay (ms) | Jitter (ms) | Packet Loss (%)
1 10 1 0.001 0.01
2 100 2 0.1 0.05
3 300 3 0.2 0.1
4 500 5 0.5 1
5 700 7 1 1.5
6 1000 10 2 2
6] 6] 6]

IV.4.7 Assumptions

In TCP, the cwnd is one of the main factors that determine the number of bytes
that can be outstanding at any time. Hence, we assume that using the observed
outstanding sequence of unacknowledged bytes on the network seen at any point
in time in the lifetime of the connection as an estimate of the sending TCP’s
cwnd from teptrace [24] when there is variability of bandwidth, delay, loss and
RTT is a better approach to estimate the cwnd and how fast the recovery is.
Firstly, since we are estimating cwnd from bytes in flight, we have also considered
that cwnd must be the limiting factor for the sender and it has to be less than
the receiver side window. Secondly, we assume that we don’t know what TCP
variant is running in the network and the per-connection state within the variant.
Lastly, the results we present in this paper assume that the endpoints have the
same receiver window set by the operating system independent of the underlying
TCP variant.

IV.5 Methodology

This section explains the general methodology we have used to experimentally
infer both the cwnd and uniquely identifying the underlying TCP variant from
passive measurement using RNN-based techniques.

IV.5.1

TCP congestion control algorithms govern the TCP sender’s sending rate by
employing the cwnd that limits the number of cumulatively unacknowledged bytes

Passive Monitoring of bytes in flight
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that are allowed at any given time. The measured passive TCP data collected at
the intermediate node as shown in Figure V.2 is used for a training experiment
of our model. The TCP implementation details and use of TCP options are not
visible at the monitoring point. The TCP sender also keeps track of outstanding

139



IV. Recurrent Neural Network-Based Prediction of TCP Transmission States
from Passive Measurements

bytes by two variables in the kernel: snd nzt (the sequence number of the next
packet to be sent) and snd_una (the smallest unacknowledged sequence number).

IV.5.2 Prediction of TCP cwnd from Passive Traffic

The cwnd is a TCP per-connection state internal variable that represents the
maximum amount of data a sender can potentially transmit at any given point
in time based on the sender’s network capacity and conditions. TCP [15] uses
cwnd that determine the maximum number of bytes that can be outstanding
without being acknowledged at any given time maintained independently by the
sender to do congestion avoidance. Figure IV.3 shows the comparison between
the number of outstanding bytes from the intermediate node before running the
neural model and applying the LSTM techniques versus the actual cwnd tracked
from the kernel of the sender-side with respect to time. Taking the nature of
TCP, accurately inferring cwnd of the sender by examining each cross-traffic
of TCP flows of the endpoints passively collected at an intermediate node is a
challenging task as it is not advertised. One initial approach we tried to estimate
the cwnd was to process the packet headers of the flows in the tepdump and
calculate an aggregate TCP cross-traffic from the trace sets and add that as a
feature. We, however, found out during our experiment that turns out to be
an insufficient detail for an accurate prediction. In this paper, we argue that
training a classifier and prediction model utilizing RNN-based algorithms to
predict the cwnd from passive measurements is very important.

Learning Context: We built and trained a highly robust and scalable
RNN-based prediction model in Python using the Keras deep learning framework
with a TensorFlow backend [1] where we apply an LSTM-based architecture
to estimate the cwnd trained over multiple epochs with a batch size of 32. As
shown in Figure IV.1, at each time-step of ¢, the LSTM model takes an entire
array of outstanding bytes in flight as an input feature vector (z) indexed by time
stamp obtained from the kernel. We propagate the input to the model through a
multilayer LSTM cell followed by a dense layer of 15-dimensional hidden states
with ReLU activation that generates an output of a sequence dimensional vector
of predicted cwnd (y) of the same size indexed by time stamp.

Our LSTM network is trained using the Truncated Back Propagation Through
Time (TBPTT) training algorithm for modern RNNs applied to sequence
prediction problems [29]. We used this training algorithm to minimize LSTM’s
total prediction error between the expected output and the predicted output for a
given input of the bytes in flight. We trained our LSTM-based learning algorithm
without the knowledge of the input features from the sender-side during the
learning phase. We validated our methodology using the experimental testbed
shown in Figure IV.2 over a LAN link. In order to train and test our prediction
model, we employed a single trained network that adapts to all experiments with
variations of bandwidth, delay, jitter and packet loss into one learning model.
We have trained our recurrent model on a GPU using the Adam stochastic
optimization algorithm [18] with the default learning rate of 0.001. We optimize
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the hyper-parameters (e.g., Number of epochs, batch size, the number of time
steps to unroll the LSTM during training, cell hidden state size and the number
of LSTM layers) related to the neural network topology so as to improve the
performance of our prediction model. In order to boost our neural network
implementation, we used the ReLU activation function for the hidden layer.
We learn the model from the training data and then finally predict the test
labels from the testing instances on all variations of the emulation parameters.
Finally, in order to evaluate and measure how well our LSTM-based prediction
model performs in terms of capturing the cwnd pattern, all neural networks are
trained, as it is shown in Section IV.6, by employing both the Root Mean Square
Error (RMSE) and Mean Absolute Percentage Error (MAPE) loss functions.

IV.5.3 Prediction of TCP Variants

Our methodology for uniquely identifying the underlying TCP variant from
passive measurements by inferring the multiplicative decrease parameter, denoted
by (), from the predicted TCP cwnd is shown in Figure IV.5. The standard
TCP congestion algorithm employs an Additive Increase and Multiplicative
Decrease (AIMD) scheme that backs off in response to a single congestion
indication [3]. The AIMD has a linear growth function for increasing the cwnd
at the receipt of an ACK packet and § on encountering a TCP packet loss
at the receipt of triple duplicate ACKs. This scheme adjusts the cwnd by the
increase-by-one decrease-to-half strategy. The aspect of the AIMD algorithm
is generalized and controlled by adding two variables, o and 5. « indicates the
increase in the window size if there is no packet loss in round-trip time and /3
indicates the fraction of the window size that it is decreased to when packet loss
is detected [3]. Let f(t) be the sending rate (e.g., the congestion window) during
time slot ¢, a(a>0), be the additive increase parameter, and (0 < f<1) be the
multiplicative decrease factor.

f(t) + «, If congestion is detected

V.7
f(t) x B, If congestion is not detected ( )

ft+1)= {

For the underlying TCP variant prediction task, we consider only loss-based
TCP congestion control algorithms (e.g., CUBIC [9] BIC [32], and Reno [15]) [11]
that consider packet loss as an implicit indication of congestion by the network
for a proof of concept. Congestion control in any IP stack doesn’t have much
information available to drive its algorithm. It has to infer congestion from the
history of packet loss and RTT. The g value especially for loss-based congestion
control algorithms is one of the most important TCP characteristics which
determines important conditions of a network congestion like the cwnd and
ssthresh [33]. There are two approaches to measure the 3 value of a TCP
congestion control algorithm: () using a packet loss event, and (i) using a
timeout event. In the presence of a packet loss event, TCP sets both its ssthresh

and the cwnd size to § x cwnd_loss where cwnd__loss is the cwnd size before
a packet loss event or a timeout occurs. When timeout occurs, TCP sets its
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ssthresh to B X cwnd_loss and its cwnd size to its initial congestion window
(init__cwnd) size. The back-off parameter along with other TCP characteristics
can be used to predict the underlying TCP congestion control algorithms. Hence,
here we use the § value so as to uniquely predict the underlying TCP variant
of the selected loss-based TCP congestion control algorithms summarized in
Table IV.2.

Table IV.2: 8 Values of Loss-based TCP Variants.

TCP Congestion Control Algorithm | 5 Value
BIC 0.8
CUBIC 0.7
Reno 0.5

IV.6 Experiments and Results

In this section, we summarize in detail the several experimental results that
illustrate our main contributions under multiple scenarios using an LSTM-based
RNN architecture. In the experimental evaluations, we choose a testing scenario
configurations and present CUBIC [9], BIC [32] and Reno [15] in order to
make our obtained evaluation results easily readable. We have experimented
with several variations (36 configurations for each TCP variant, 216 in total
as presented in Table IV.1). Due to space limitation in this paper, we cannot
present all the evaluation plots for a total of 216 configurations. Hence, the
results reported in this paper for all the scenario settings are for a subset of the
selected configurations for a proof of concept as shown in Figures IV.6, IV.7,
IV.8, and V.9 to verify the accuracy of our LSTM RNN-based prediction model.
The TCP cwnd pattern prediction model is evaluated under different
configurations of training and testing sample size ratios. As it is shown in
the plots below, we found out the RNN-based model we built for predicting
cwnd captures the ratio of the cwnd drop very accurately. Figures IV.6(a) and
(b) don’t share the same bandwidth, delay, loss and jitter configurations which
cause the difference on the maximum number of segments over the course of the
connection. For example, if we see on Figures IV.6(b), it has a Bandwidth-Delay
Product (BDP) [17] of 700mb*0.01s = 875,000 bytes. At 1500 byte segments,
that’s 583 segments and our emulation shows a maximum of 500-600 segments
for cwnd. In all the plots shown below we can see, once the timeout occurs, all
the packet losses are handled with fast recovery in response to 3 duplicate ACKs.
This is because the cwnd does not drop below half of its previous peak. In the
results, there is a linear-increase phase followed by a packet loss event where the
cwnd increases with new arriving ACK. This also demonstrates how the TCP
congestion control algorithm responds to congestion events. We can see that the
pattern of the predicted cwnd generally matches the actual cwnd quite well with
a small prediction error. We matched both the increasing and decreasing parts
of the sawtooth pattern using the precise timestamp obtained from the kernel.
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IV.6.1 Emulated Network Setup

In Figure IV.6, the comparison of the predicted TCP cwnd and the actual cwnd
of the sender in an emulated setup is presented. We found out our prediction
model captures the ratio of the cwnd drop very accurately. We evaluate our TCP
cwnd prediction model and the performance results with different configurations
are presented in Table I'V.3. For the TCP variant prediction, we analyzed the
[ value by averaging out the window size of AIMD algorithm every time we
have a peak so that we don’t do the computation of the multiplicative decrease
factor only on a slow start phase. The accuracy of uniquely identifying the
underlying TCP variant prediction result in the emulated environment as shown
in Table IV.5 is 97.22%.

Table IV.3: Prediction of cwnd on an emulated network.

TCP Algorithms | Sample Configurations | RMSE | MAPE (%)
Predicted cwnd - Cy 2.181 2.846%
CUBIC Predicted cwnd - Co 2.855 3.103%
Reno Predicted cwnd - Ry 2.013 2.815%

Table IV.4: TCP Variant Prediction of an emulated network setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 34 0 0
CUBIC 1 35 0
Reno 1 1 36

Table IV.5: TCP Variant Prediction of an emulated network setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 0.94 1.00 0.97 34
CUBIC 0.97 0.97 0.97 36
Reno 1.00 0.95 0.97 38
Average/Total 0.97 0.97 0.97 108
Accuracy 0.9722

IV.6.2 Realistic Scenario Setup

In order to demonstrate the transferability [26] approach of our proposed machine
learning-based prediction model and further validate our results presented in
Section IV.6 by conducting a series of controlled experiments against other
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Figure IV.7: TCP cwnd prediction from a realistic scenario setting on different
zones of Google Cloud platform (East coast USA (North Carolina) and Northeast
Asia (Tokyo, Japan) sites). (a) CUBIC [9], USA site. (b) CUBIC [9], Japan
site. (c) BIC [32], USA site. (d) BIC [32], Japan site. (e) Reno [15], USA site.
(f) Reno [15], Japan site.

scenarios, we believe it is necessary to carefully test how well our model using
an emulated network works with realistic scenarios by leveraging the knowledge
of the emulated network. This guarantees that our prediction model is able to
discern the results to unforeseen scenarios. In this experimental scenario, the
prediction model is trained where the passive monitor is placed between the
sender and the receiver.

From an experimental viewpoint, this helps us to justify and guarantee how
our model could predict the development of a cwnd and the underlying TCP
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variant with other realistic network traffic scenarios captured from the Internet.
To this end, we created a realistic testbed where we experiment from Google
Cloud platform nodes by running our resources on the East coast of the USA
and Japan as shown in Figure IV.7. In order to create a realistic TCP session,
we uploaded a big Ubuntu image to Google Cloud platform sites so that we
have a full control of the underlying TCP variant on the sender-side and at the
same time run a tcpdump in the background and capture the whole TCP traffic
flow for testing on the source node. We filtered out the host where we send the
TCP traffic to. Finally, we calculated the number of outstanding bytes from the
captured network traffic and run it through our learning model to predict the
development of the TCP cwnd and variant. As it is shown in Figure IV.7, we
confirm that our prediction model operates correctly and accurately recognizes
the sawtooth pattern for realistic scenario settings across different Google Cloud
zones. This shows that our prediction model is general bearing similarity to
the concept of transfer learning in the machine learning community. The cwnd
prediction performance result of the realistic scenario setting across the Google
Cloud platforms is presented in Table IV.6. As it is shown in Table IV.8, the
accuracy of the TCP variant prediction for this scenario setting is 96.66%.
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Table IV.6: Prediction of cwnd on a realistic scenario.

TCP Algorithms | Google Cloud Zone | RMSE | MAPE (%)
USA Zone 1.752 2.517%
CUBIC Japan Zone 1.964 2.852%
USA Zone 2.219 2.979%
BIC Japan Zone 2.527 3.097%
Reno USA Zone 2.057 3.143%
Japan Zone 2.975 2.861%

Table IV.7: TCP Variant Prediction of a realistic scenario setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 20 0 0
CUBIC 0 19 1
Reno 0 1 19

Table IV.8: TCP Variant Prediction of a realistic scenario setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 1.00 1.00 1.00 20
CUBIC 0.95 0.95 0.95 20
Reno 0.95 0.95 0.95 20
Average/Total 0.97 0.97 0.97 60
Accuracy 0.9666

1V.6.3 Intermediate Node Closer to the Receiver Scenario

Our experimental setup for this scenario setting across different Google Cloud
zones is presented in Figure IV.10. It is fundamentally difficult to infer the
sender’s cwnd accurately from passive measurements collected close to the
receiver. If we try to measure the cwnd for the end-to-end path between the
sender and the receiver basing our inference on the total amount of outstanding
bytes, the further away from sender that our passive monitor is, the less likely it
is that the packets that our monitor observes will match the packets that are
used by the sending host to adjust its cwnd. For example, more hops between
the sender and our passive monitor create more opportunities for packets to be
lost, reordered or delayed. This means that the information we are using to infer
congestion behavior is less reliable and may introduce more opportunities for
prediction algorithms to make false inferences. In this scenario, the number of
hops are 18 with an average RTT of 137ms whereas in the emulated scenario,
the number hops are 3 with an average RTT of 1.8ms. We believe the data
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wouldn’t reveal what additional packets are in flight from the sender, or which
ACKs from the receiver have been received. Because placing the monitor close
to the receiver means, we will be seeing the ACKs before the sender does and
so we may have more trouble estimating which of the data packets we capture
were liberated by which of the ACKs we see. As it is shown in Figure IV.9, we
can see that our prediction model correctly recognizes the sawtooth pattern of
the cwnd. However, as shown in Table IV.9, the prediction error is relatively
higher as compared to the other scenario settings. This is because of the cases
mentioned earlier. For predicting the underlying TCP variant, we can use the
same evaluation methodology, applied on the other presented scenario settings,
based on measuring the change in cwnd size.

Google Cloud Platform
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Figure IV.10: Intermediate node closer to the receiver scenario setup.

Table IV.9: Prediction of cwnd across different Google Cloud Zones when the
monitor is closer to the receiver.

TCP Algorithms | Google Cloud Zones | RMSE | MAPE (%)
CUBIC USA Zone, Creceiver 6.341 9.057%
BIC USA Zone, Breceiver 5.185 8.680%
Reno USA Zone, Rreceiver 6.937 9.238%

IV.6.4 Combined Scenario Setting

Real networks behave in a more complex manner than emulated networks. The
TCP control loop affects the loss and delay of packets. We believe, there are
queue dynamics in the network which cause packet trains and other behaviors
which software emulators like NetEm [13] can’t reproduce well enough. In
Section IV.6.2, we performed a realistic experiment when the random packet loss
comes from the dynamics of multiple TCP connections sharing a link (congestion)
rather than an injected packet loss. In this section, we address the scalability
approach by conducting an experiment of our model under a broader range by
combining the realistic and emulated scenario settings to justify the applicability
and robustness of our prediction model. Our experimental setup for this scenario
setting is presented in Figure IV.11.
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Figure IV.11: Combined scenario setup.

In this experiment, we combine the two scenario settings (one with an
emulator and one with no emulator but Internet) where our intermediate node
acts as a router. We get the traffic to the intermediate node, wrap and forward
it to the network so that we can add more delay and the number of hops in the
network on both sides. In this scenario, as it is shown in Figure IV.8, both the
increasing and decreasing portions of the sawtooth pattern across different TCP
variants is potentially accurate. The TCP variant prediction accuracy of the
combined scenario setting, as it is presented in Table IV.12, is 94.44% and this
justifies that our prediction model can handle multiple scenario settings.

Table IV.10: Prediction of cwnd on a combined setting.

TCP Algorithms Per Configuration RMSE | MAPE (%)
CUBIC Sample Configuration C1 2.072 3.262%
BIC Sample Configuration B 3.506 4.846%
Reno Sample Configuration Ry 2.096 3.829%

Table IV.11: TCP Variant Prediction of a combined scenario setting: Confusion
Matrix.

Predicted
Actual | BIC | CUBIC | Reno
BIC 33 0 0
CUBIC 2 33 0
Reno 1 3 36

Table IV.12: TCP Variant Prediction of a combined scenario setting: Performance
metrics.

Precision | Recall | F1-Score | Support
BIC 0.92 1.00 0.96 33
CUBIC 0.92 0.94 0.93 35
Reno 1.00 0.90 0.95 40
Average/Total 0.95 0.94 0.94 108
Accuracy 0.9444
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Transfer Learning: In our work, we are able to train in one scenario setting
and apply it as a pre-training in another scenario setting. Therefore, we are able
to show that the learned prediction model by leveraging a trained knowledge
from the emulated network performs reasonably well as it is shown above when
it is applied and transferred to a realistic scenario setting bearing similarity to
the concept of transfer learning in the machine learning community [26].

Optimality: As it is shown in Tables V.13 and IV.14, the experimental results
show that our LSTM-based prediction model is able to outperform our previous
approach using machine learning techniques [10]. Our LSTM-based TCP variant
prediction model achieves accuracies of 97.22%, 96.66% and 94.44% on the
emulated, realistic and combined scenario settings, outperforming the standard
ML-based which yields accuracies of 93.51%, 95% and 91.66% respectively.

Table IV.13: TCP cwnd prediction comparison.

. Techniques

SSZ??;:I(S) Al zrcijiilms Configuration | Machine Learning LSTM
& & RMSE | MAPE | RMSE | MAPE
CUBIC Cy 5.839 6.953% 2.181 | 2.846%
Emulated Cy 3.075 3.725% 2.855 | 3.103%
Reno Ri 3.511 3.140% 2.013 | 2.815%
CUBIC USA 4.265 5.134% 1.752 | 2.517%
Japan 3.522 4.738% 1.964 | 2.852%
Realistic BIC USA 2.952 3.809% 2.219 | 2.979%
Japan 2.694 3.761% 2.527 | 3.097%
Reno USA 3.170 5.068% 2.057 | 3.143%
Japan 3.396 5.197% 2.975 | 2.861%

Table IV.14: TCP variant prediction accuracy comparison.

Scenario Settings
Techniques Accuracy | Emulated | Realistic | Combined
Machine Learning-based | 93.51% 95% 91.66%
LSTM-based 97.22% 96.66% 94.44%
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IV.7 Conclusion and Future Work

In this paper, we have demonstrated the capability of a deep neural network
architecture based on a learning LSTM recurrent predictive models to capture
the pattern of a TCP cwnd with small prediction errors from passive traffic
collected at an intermediate node. We have also uniquely identified the underlying
TCP variants based on the multiplicative decrease window of the cwnd and the
per-connection states within the variant from passive measurements. Our goal
in this work was to implement a learning predictive model that generates the
pattern of cwnd from passive measurements using an LSTM architecture and
finally justify if our previous machine learning-based experiments are valid.
The experimental results show the effectiveness of our LSTM-based prediction
approach. We found out that our LSTM-based model outperforms our previous
work carried out using the state-of-the-art machine learning-based prediction
models by a reasonably significant margin. We show that the learned prediction
model by leveraging knowledge from the emulated network performs reasonably
well when it is applied on a real-life scenario setting bearing similarity to the
concept of transfer learning in the machine learning community. Finally, we
believe that our work can open up the path to a number of future research work
directions in the computer networking community.

In this work, we consider only loss-based TCP congestion control algorithms
that consider packet loss as an implicit indication of congestion by the network
for a proof of concept. By design, unlike loss-based algorithms, the multiplicative
decrease parameter of delay-based congestion control algorithms is not fixed
which makes it fundamentally challenging to predict the TCP variant from
passive traffic when there is variability in delay. As a future work, it would be
interesting to develop a delay-based model using both machine learning and deep
learning techniques so as to verify how delay changes and look into how the TCP
variants of delay-based congestion control algorithms can be predicted both from
passively measured traffic and real measurements over the Internet. We plan to
investigate these issues further and extend the approaches in our future work.

Acknowledgements. We greatly acknowledge the anonymous reviewers for
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Abstract

The Round-trip Time (RTT) is a property of the path between a sender and
a receiver communicating with Transmission Control Protocol (TCP) over
an IP network and over the public Internet. The end-to-end RTT value
influences significantly the dynamics and performance of TCP, which is by
far the most used communication protocol. Thus, in communication
networks, RTT is an important network performance variable. By
measuring the traffic at an intermediate node, a network operator or
service provider can estimate the RTT and use the estimation to study
and troubleshoot the per-connection characteristics and performance.
This paper aims at improving the accuracy and timeliness of the RTT
estimation, to help network operators improving their analysis. We propose
and evaluate a novel deep learning-based model capable of dynamically
predicting at real-time the RTT between the sender and receiver with high
accuracy based on passive measurements collected at an intermediate node,
taking advantage of the commonly used TCP timestamps. We validate
extensively our prediction methodology in a controlled experimental testbed
and in a realistic scenario on the Google Cloud platform. We show that
our model, which is based on classical deep learning algorithms, gives
reasonably effective state-of-the-art performance results across multiple
TCP congestion control variants. We also show that the model works well
for transfer learning. Even though the RTT prediction model was trained
on an emulated network, it performs well also when applied to a realistic
scenario setting, as demonstrated in our experimental evaluation.

1 University of Oslo, Department of Informatics, destahh@ifi.uio.no
Keywords: TCP, RTT Prediction, LSTM, Passive Measurements
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TCP

V.1 Introduction and Motivation

Passive measurement techniques of TCP flows have gained much attention in
the networking research community lately [3, 7, 9, 25]. The main reason is that
such measurements are becoming increasingly useful for network operators and
Internet Service Providers (ISPs) to evaluate the communication performance of
applications and services running on their network. Monitoring the traffic at an
intermediate node, allows the ISP to assess the underlying network performance,
which is crucial for their operation. The RTT is one of the most important
indicators of communication performance. The RTT is a TCP state variable
that influences congestion control in many TCP variants, and the RTT has a
huge influence on the performance of the end-to-end communication. In order
for network access providers to determine and diagnose application performance
issues on the public Internet, knowledge about the characteristics of the network
is a very important factor. The ability to passively compute and dynamically
predict the RTT is very crucial for a lot of reasons. For example, it allows
network operators to measure and optimize the network performance of real-time
applications and services, and it helps providers understand the responsiveness,
availability of their network services, performance and predict the behavior of
a TCP connection. Network operators and service providers care about RTT,
and they even make RTT a Service Level Agreement (SLA) parameter in legal
contracts with their customers [27]. Customers who demand better services
can passively detect the occurrence of SLA violations and this ability would
allow the network providers to quickly respond to Quality of Service (QoS)
problems [27]. This is particularly important for the quality of latency-sensitive
and bandwidth-intensive real-time media applications (such as video, audio, and
application sharing), etc. [27]. RTT is the length of time it takes for an outgoing
TCP client packet plus the minimal time spent for an acknowledgment of that
segment from the server to be received by the client [23]. The RTT between the
sending and receiving endpoints is typically a combination of a fixed BaseRTT,
a fixed propagation time, and the amount of queueing that is experienced along
the path. Thus, the changes in the RTT might give an indication of changes in
queuing and the congestion in the network, and be a useful input to the TCP
congestion control algorithm.

TCP is a highly reliable connection-oriented transport protocol capable of
adding reliability and preventing excessive congestion on the Internet [17]. Note
that congestion control in TCP was not part of the protocol initially until the first
Internet congestion collapse was observed [16]. TCP controls congestion by also
aiming for fair sharing of the available network resources by the competing flows,
using strategies empowered by TCP [17]. TCP fairness means that if N TCP
sessions share the same bottleneck link of a bandwidth B, each session should
ideally get an average rate of % and % of the available link capacity assuming
that all the active TCP connections have the same increase of rates and similar
RTTs. If the multiple TCP sessions have different RTTs but share the same
bottleneck link, the flows with larger RTTs usually achieve lower throughput,
while the flows having smaller RTT may utilize the bandwidth more aggressively
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than the others [13]. Indeed, the RTT directly influences the TCP throughput
according to the following equation:

1

T ox ——
1 B RTT,

(V.1)

where T; is the throughput, p; is the probability of a packet loss rate, and RTT;
is RTT of a TCP flow i. Equation V.1 shows that the throughput ratio of
individual TCP connections is inversely proportional to the RTT [29]. This
means that RTT is one of the most important state variables that determine
the aggressiveness of a TCP flow. This also means that passively predicting
RTT is useful for the deployed TCP variants to optimize for high bandwidth by
leveraging the TCP timestamps option carried in each TCP header. Evaluating
the RTT, inflated by queueing across the network [29], may also give a more
detailed view of the sender state than merely the throughput, as the RTT also
influences the Retransmission Timeout (RTO) of an active TCP session and the
Congestion Window (cwnd) size [19]. The cwnd is also one of the most important
TCP per-connection state variables. The cwnd is a TCP per-connection state
internal variable that represents the maximum amount of data a sender can
potentially transmit per RTT at any given point in time based on the sender’s
network capacity and conditions. TCP decides the maximum number of bytes
that can be outstanding without being acknowledged at any time maintained
independently by the sender.

Benefits: It is very natural to ask: why RTT prediction performed in an
intermediate node from passive measurements is tmportant? In addition to
the reasons we address above, there are myriad reasons we may want to use
passive RTT measurements. Passive RTT prediction in an intermediate node
is important, for example, when (i) We have no control over either end-host of
communication so we can’t launch active measurements from either host, but
want to know the RTT between them. (7)) We want to know the RTTs of the
actual communication occurring on the Internet, and not the RTT between
a pair of hosts artificially picked. (iii) The TCP active probes used in active
measurements (such as ping messages) are blocked by firewalls etc. For more
details about the difference between active and passive measurement techniques,
we refer the reader to our previous work [12].

Recurrent Neural Networks (RNN) models: In this paper, we are
interested in the capabilities and potentials of RNN models for implementing
our passive RTT prediction model for TCP using timestamps and timestamp
echoes [18]. Hence, we have explored an approach to dynamically predict an
end-to-end RTT for TCP from passive measurements using Long Short-Term
Memory (LSTM)-based RNN architecture. As described in Section V.3, different
approaches have been proposed to estimate RTT from passive measurements.
However, we believe that no previous research works have applied deep learning
models to estimate RTT in relation to TCP from passive measurements. To the
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best of our knowledge, this paper is the first to study the applicability of LSTM
for passive RT'T measurement schemes in real-time.

RNNs are powerful neural sequence models that achieve state-of-the-art
performance on sequential, time-dependent prediction and classification tasks.
However, when the input sequence is very long, RNNs have a significant limitation
of gradient vanishing. LSTM [15] is a special kind of RNN introduced with the
purpose of overcoming this shortcoming of RNNs. LSTM has the ability to
solve the vanishing gradient problem by dynamically controlling the information
flow within the layers through its memory blocks and capture the long-term
dependencies of the connections in a sequence effectively [15]. In an LSTM
model, we consider a time-series prediction task of length n producing an output
Yt at each time-step t€ {1, 2,3, ..., T} by mapping a temporal input feature vector
sequence 7 = (T(1), T(2), Z(3), -+, T(n-1), L(n)) Where z; € R™ to a corresponding
output vector sequence y = (¥(1),¥(2),¥(3): - Y(n-1), Y(n)) Where y; € R™ by
calculating the network unit activations of a weighted sum using the Equations
V.2-V.7 iteratively from ¢ = 1 to n. As it is shown in Equations V.2, V.3,
and V.5, LSTM [15] uses three, an input, forget and output, gates shared by all
cells in the LSTM block in order to learn long-term dependencies and control
the flow of information. The input gate determines the flow of input activation
into the memory cell whereas the output gate determines the output flow of cell
activation into the rest of the network. The forget gate determines the extent to
which the current value remains in the memory cell of the LSTM unit before it
gets gradually discarded when its data is no longer needed.

iy = o(Wigwy + Wimmy—1 + Wicer—1 + b;) (V.2)
fr = oWraas + Wemmi—1 + Wyeer—1 + by) (V.3)
ct = fr ©ci1+is © g(Wewwsy + Wemmy 1 + be) (V.4)
oy = c(Wogxy + Womy—1 + Woeer + b,) (V.5)
my = 0; © h(cy) (V.6)
yr = ¢(Wymmy + by) (V.7)

where the i, f, ¢, o are input, forget, memory state, and output gate activation
vectors respectively at each time step ¢. o is the logistic sigmoid function while
®, g and h are element-wise product of the vectors, the cell input and output
non-linearity activation functions of the entire neural network applied to each
layer of the deep network respectively. W and b represents a vector of weighted
recurrent connections and the bias vector. m; is the hidden state output of the
LSTM layer. Finally, ¢ is the activation function in the hidden layer applied to
the network output. Figure V.1 describes the basic unit of an LSTM network
where the input sequence to the LSTM cell is carried over each time-step of ¢-1,
t and t+1. C; and Cy_; are the memory cell state activation vectors from the
current and previous blocks at time t and ¢-1 respectively.
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Figure V.1: LSTM Networks. For more thorough details, refer [28].

Why did we use deep learning? As explained above in Section V.1, both
cwnd and RTT are TCP state variables relevant to congestion control. However,
neither the value of cwnd nor the value of RTT is contained in the TCP header.
The cwnd size is stored in the memory of the TCP sender, and the RTT is a
product of the varying behavior of the network between the TCP sender and
receiver. Therefore, trying to predict these values somewhere other than at
the TCP sending node is challenging. Deep learning techniques have found a
great success in multiple areas of research. In our case, let’s consider a situation
where a network model is trained for a specific intermediate node which has
been trained for a specific bandwidth, background load, multiplexing rate, and a
multitude of different router conditions, can predict well for exactly this node.
Hence, we want a model that is able to train in one scenario setting and apply it
as a pre-training on another setting by leveraging trained knowledge. As it is
presented in Section V.6, this paper proofs that it makes sense in principle to
use learning algorithms for TCP state predictions.

Contributions: We summarize our main contributions below.

o We present a dynamic deep learning-based approach for RTT prediction in
relation to TCP from passive measurements collected at an intermediate
node.

o We identify the main challenges in the passive estimation of RTT across a
broad range of network conditions.

o We show that the learned prediction model performs reasonably well by
leveraging trained knowledge from the emulated network when it is applied
and transferred on a real-life scenario setting.

o We demonstrate the benefits and explore the applicability of our prediction
model using an LSTM architecture.
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o We experimentally validate our prediction model extensively through
several controlled experiments across an emulated and realistic settings.

V.2 Background

RTT measurements are used in congestion control algorithms to determine
connection timeouts. Delay-based congestion control algorithms use the measured
RTT as an implicit feedback to control congestion, and they adjust the cwnd
size according to the queuing packet delay instead of packet loss [20]. These
algorithms increase the cwnd size quickly when the queuing delay is low and
decreases the cwnd slowly when the delay is high. Different rate and delay-based
TCP stacks come with a variety of features that will violate the assumptions
we might make if we only look at one or two TCP implementations. Hence, the
following are a list of the most widely used TCP variants we consider in our
analysis to cover the whole scope of the problem.

1. TCP Westwood: Westwood [10] is a sender-side modification of the
traditional TCP algorithm [17]. At the time of congestion triggered in
response to RTO or triple DupACKs, TCP Westwood [10] estimates the
available end-to-end per-connection bandwidth by monitoring the flow of
returning ACK rates instead of packet loss and sets the cwnd size equal to
the measured bandwidth which helps to avoid too much reduction of the
cwnd.

2. TCP-Vegas: Vegas [5], instead of packet loss, uses a measured RTT as
congestion feedback and hence it attempts to accurately tune the cwnd
by using the measured BaseRTT of every segment sent and reacting to
changes in it by altering the cwnd.

3. BBR: BBR is an emerging TCP delay-controlled congestion control
algorithm from Google fully deployed across all Google TCP services and
the B4 Wide Area Network (WAN) backbone connections [6]. Unlike
the traditional congestion algorithms, BBR doesn’t overreact to packet
loss. Instead, it reacts to actual congestion and relies on maximizing the
throughput with minimal queue by sequentially probing and periodically
estimating the underlying available bottleneck bandwidth and minimum
path RTT in a similar fashion as TCP Vegas [5].

Roadmap: The rest of this paper is organized as follows. Next, in Section V.3,
we summarize the related work in the literature considered as a state-of-the-art.
In Section V.4, we describe our controlled experimental setup for the evaluation.
Section V.5 gives an overview of our methodology highlighting the practical
challenges and considerations. Section V.6 presents the validation scenario
settings of our prediction model. The experimental results and discussion are
presented in detail in Section V.7. Finally, Section V.8 concludes the paper and
outlines directions of research for future extensions.
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V.3 Related Work

Our work benefits from a wide range of existing passive measurement related
research works in computer networking.

TCP RTT Measurement: TCP implements a retransmission strategy by
setting the time-out interval to ensure data delivery in the absence of any
acknowledgment for a particular segment from the receiver side [30]. The timer
relies on the measurement of the network latency which TCP does by periodically
estimating the current RTT of every active connection in order to determine
the RTO when it sends data and receiving an acknowledgment for it. Accurate
measurement of RTO is crucial to TCP performance and it is determined by
estimating the mean and a variance of the estimated RTT [30]. When the
timer RTO expires, the segment is retransmitted. To compute the current RTO,
TCP sender keeps track of the Smoothed Round-Trip Time (SRTT) and the
Round-Trip Time Variation (RTTVAR) state variables. When the first RTT
measurement R is made on the active connection, the host should compute the
following Jacobson RTO Estimation algorithm [17].

SRTT =R (V.8)
RTTVAR = R/2 (V.9)
RTO = SRTT + max(G, K * RTTVAR) (V.10)

However, when a subsequent RTT measurement RT'T"' is made, the host should
compute the following algorithm [17].

RTTVAR = (1 — f3) * RTTVAR + f3 % |[SRTT — RTT/| (V.11)
SRTT = (1 — a) * SRTT + « % RTT' (V.12)
RTO = SRTT + max(G, K * RTTVAR) (V.13)

Understanding RTO: In a typical implementation, TCP computes the RTT of
an active connection using the Exponential Weighted Moving Average (EWMA)
estimator [17]. As it is used in TCP RTT computation implementations, the
SRTT is also updated using the EWMA estimator as it is shown in Equation V.12
where the smoothing factor (o) = & [30]. RTTVAR is also calculated using
EWMA as shown in Equation V.11 where the smoothing gain of the samples
B (variance factor) = i. The new value of RTO is given in Equation V.13
as a function of SRTT and RTTVAR where K is usually 4 and G is a clock
granularity in seconds. The TCP sender, dynamically adjusted based on the
estimated RTT, keeps a timer which activates retransmission of packets that have
not been acknowledged before the RTO expires [30]. After computing the RTO,
if its value is less than 1 second, then the RTO value should be rounded up to 1
second [30]. However, the timeout can expire spuriously across low-bandwidth
network paths and triggers unnecessary retransmissions when no packets have
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been lost [11]. Modern operating systems like Linuz have a minimum value for
RTO in order to avoid unnecessary high retransmission delays of an open active
connection. The potential pitfall of choosing a low RTO, however, is that it may
trigger retransmission of a packet even though the segment is received and an
ACK is on its way. Setting a low value for RTO works better when there is a
moderate background traffic [26]. For more technical descriptions and the rules
governing the measurement of SRTT, RTTVAR, and RTO refer [30].

Algorithms for Avoiding Spurious Timeouts: To address this problem, a
number of approaches have been proposed. For example, RTO estimators like [30]
are based on the assumptions of older technologies. As described earlier, spurious
timeouts lead to problems that cause several unnecessary retransmissions and
congestion control back-off that affect the TCP throughput. In addition to this,
estimating the RTT measurements are challenging in the presence of timeouts
and packet loss in the end-to-end path. This is because on the receipt of an
ACK after R retransmissions, the sender cannot tell which one of the R+1 data
sent is being acknowledged which again affects the measurement of SRTT shown
in Equation V.12. Wrongly computed SRTT values will eventually lead to
wrong RTO values. If the value of RTO is too small, it will lead to unnecessary
retransmission of data segments which again increases the load on the underlying
network capacity. But if the value of RTO is too large, the sender waits too long
before retransmitting lost segments which again increases delay and lowers the
throughput for connections with packet loss. Making use of the TCP timestamps,
the Eifel [11] algorithm has pointed out that it is possible to detect spurious
TCP timeouts problems and recover by restoring a TCP sender’s congestion
control state saved before the timeout.

There are other previous research works who have examined and reported
RTT estimation for TCP [2, 21, 22]. The approach presented in [22] uses a
unidirectional flow during the TCP handshake of a connection to estimate RTT
using the time from SYN to SYN+ACK method. The approaches proposed
in [22] calculates one RTT sample per TCP connection associated either during
the three-way handshake or during the slow-start phase. If we have captured the
TCP three-way handshake as presented in [22], we can calculate the initial RTT
(iRTT) by taking the time difference from the SYN packet to the ACK packet
of the handshake. However, since the TCP handshake packets are processed by
the kernel, the RTTs during the data transfer will probably be slightly larger
than the ‘RTT. Hence, this approach may tend to underestimate the actual
RTT. In addition to this, since TCP sets the initial retransmission timeout value
to & seconds [30], therefore this approach is not applicable in scenarios where
the TCP connection setup takes longer which leads to long delays and packet
losses introduced by the network. The study in [2] has reported a statistical
characterization of RT'T variability where the measurement point is closer to
the sender. However, their study does not take delayed ACKs into account. The
authors of [21] have introduced an approach for RTT measurements of TCP
connections based on bidirectional traces captured at the monitoring point using
a Finite State Machine (FSM) that replicates the TCP sender states of observed
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ACKs depending on the underlying TCP flavor. The authors have pointed out
that the estimation of the TCP parameters (e.g., cwnd) may have potential
errors primarily due to over-estimation of the RTT and incorrect window sizes
of a connection [21]. Another limitation of this work, given differences of the
many existing flavors of TCP stack implementations, the use of a separate
state machine for each TCP variant is unscalable and we also believe that the
constructed replica may not manage to reverse or backtrack the transitions
taking the amount of data into consideration. In addition to this, the replica
may also not observe the same sequence of packets as the sender and ACKs
observed at the intermediate node may not also reach the sender. Our deep
learning-based approach to passively predict the continuous RTT measurement
throughout the lifetime of a TCP session builds upon these classical approaches
by avoiding the limitations taking advantage of the commonly used timestamp
option as explained in Section V.5.

V.4 Experimental Evaluation

V.4.1 Testbed Hardware

We have carried out our experiments using a cluster of HPC machines based
upon the GNU/Linux operating system running a modified version of the
4.15.0-39-generic kernel release. The prediction model is performed on an
NVIDIA Tesla K80 GPU accelerator computing with the following characteristics:
Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz, 64 CPU processors, 128 GB RAM,
12 CPU cores running under Linux 64-bit. All nodes in the cluster are connected
to a low latency 56 Gbit/s Infiniband, gigabit Ethernet and have access to 600
TiB of BeeGFS parallel file system storage.

V.4.2 Passive RTT Monitoring Methodology and Trace Analysis

Passive measurement methodology is a technique of tracking the behavior and
characteristics of packet streams where the network is not influenced by injecting
extra traffic. More details on the two types of network measurement technique
categories (i.e., active and passive) are briefly described in [12]. The RTT seen
by a TCP segment is defined as the time a sender waits until it receives a
corresponding ACK from the receiver before it sends more data packets. In
this paper, we are interested in presenting a deep learning-based RTT prediction
model using a packet statistics passively monitored between the sender and
receiver endpoints of a network. In order to increase the RT'T measurement
precision, the timestamps option which every TCP segment carries in the header
field is used in our methodology. When the server receives a data segment, it
copies the timestamps into the ACK and this, in turn, enables the client to
compute the RTT accurately for every acknowledged data segment.
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Trace Analysis: To evaluate our prediction model and perform our analysis
on both the emulated and realistic network conditions, we have generated our
own dataset. In order to capture all sessions on the network when the client
and server are sending TCP packets and measure the TCP data packets from
both directions, we have used the fully controlled experimental setup shown in
Figure V.2. The data passively collected at an intermediate node is fed into
a model that can be trained in another context, e.g., an emulated scenario
as discussed in Section V.6. The background traffic for all our experiments
are generated using the iperf [8], an open source TCP streaming benchmark,
traffic generator on an emulated LAN link where we run each TCP variant
by adding a configurable variation of the emulation parameters bandwidth (in
Mbit/s), delay (in ms), jitter (in ms) and packet loss (%) within a flow. The
values of configuration parameters of the emulator for our samples collection
are presented in Table V.1. The cross-traffic variability and verification of the
popular Linux-based network emulator we used, Network Emulator (NetEm) [14],
are thoroughly addressed in [12].
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Figure V.2: Controlled Experimental Setup.

Verification of the Emulator: Given that the software emulator is not precise,
we can ask: can we trust the network emulator for all the variations of bandwidth,
delay, jitter and packet loss values introduced by the emulator irrespective of
the measurement we get from TCP stream? As the precision of the emulator
cannot be measured from TCP streams, we set up a different experiment using
UDP to evaluate and measure the precision where both the emulator and traffic
generator create variations. We verified the raw performance by measuring the
bandwidth, delay, jitter and packet loss variations created by the traffic generator
and network emulator at the receiver side and we found out that each variation
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run by the emulator doesn’t affect our results. But it is good to remember that
emulator experiments are always going to have some differences compared to a
real network as different networks behave completely differently.

Table V.1: Network emulation parameters.

Bandwidth (Mbit/s) Delay (ms) Jitter (ms) Packet loss (%)

10 1 0.001 0.01
100 2 0.1 0.05
300 3 0.2 0.1
500 5 0.5 1
700 7 1 1.5
1000 10 2 2

V.5 Experimental Methodology

In this paper, we are exploring an approach to dynamically and reliably predict
an end-to-end RTT for TCP from passive measurements using an LSTM-based
RNN architecture. As illustrated in Figure V.3, there are different techniques
to estimate passive RTT values from packet arrival times at an intermediate
monitoring point. The first and third RTT computation techniques shown
are the initial three-way handshake [22] and the termination of a connection
phase that carries the FIN control flag. The three-way handshake method uses
a TCP segments association during the initial handshake phase to compute
the minimum RTT with a small packet burst (so less affected by propagation
delay through intermediate devices) but it also has limitations as described in
Section V.3. A similar estimation technique can also be applied during the
connection termination phase. However, these two techniques do not consider
continuously estimating RTT through the course of the connection and hence
they are statically limited to the setup and termination of the TCP connection.
In our paper, however, we are interested in the second estimation method
where we have to account for the cases where there are large packet bursts by
continuously measuring the TCP data segments sequence and their corresponding
ACK for estimating RTTs when they carry data throughout the lifetime of the
connection by associating the timestamps and timestamp echoes. This helps
us to dynamically estimate the RTT between the sender and receiver from
the perspective of the intermediate node by measuring the streams of RTT
samples which can be added to get an end-to-end RTT. Let’s simplify this
more with an easy to understand example. When the sender, on Figure V.3,
sends a TCP data segment, the receiver acknowledges the data segment with an
ACK and echoes the sender’s timestamp. The intermediate node recognizes the
sender’s timestamp in both data segments and associates the data segments with
timestamps matching. When the sender receives an ACK, it sends more data
packets by echoing the receiver timestamps. The intermediate node captures
this data segment, it recognizes the receivers timestamps in both data segments
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and forms an association. Finally, with a timestamp matching of all these data
segments, the intermediate node can observe a full estimated RTT. Hence, in
order to reliably associate the data segments with its corresponding ACK that
triggered it, compute accurate RTT and avoid the ambiguity between delayed
and retransmitted segments, we have employed the TCP timestamps option.
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Figure V.3: Passive RTT estimation techniques.

Timestamps option: The reason why we used the timestamp option in our
evaluation is to avoid the impact of incorrect (spurious) timeouts and get the
accurate RTT measurement. Anytime TCP experiences spurious timeouts
unnecessarily, it significantly suffers from unnecessary retransmissions and
congestion control back-off. This, in turn, triggers TCP to drop the Slow
Start Threshold (ssthresh) to half the current cwnd and reduces the value of
cwnd. This is because when the retransmission of a lost packet is as a result of the
RTO value expiration, TCP cannot infer anything about the state of the network.
Unless TCP uses the timestamp option while sending the retransmitted packets,
it cannot correctly measure the RTTs for those packets [23]. In addition to this,
research studies like the Fifel mechanism have shown that the timestamp option
substantially improves the overall TCP connection’s performance over paths
with a large Bandwidth-delay product (BDP) [11]. Since TCP is a symmetric
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protocol, allowing data segments to be sent and received at any given time
in both directions, the timestamp options are also specified in a symmetrical
manner [18] as they can be sent and echoed in both directions. This means the
actual Timestamp Value (TSval) added by the sender is carried in both the ACK
and data segments are echoed in Timestamp Echo Reply (TSecr) fields carried
in the returning ACK or recently received data segments [18]. In this way, we
can avoid underestimating the actual RTT measurement.

V.5.1 Practical Challenges

The TCP congestion control algorithms that are widely deployed today perform
the most important parameters used for TCP performance evaluation such
as handling the cwnd and RTT from the sender-side. In this paper, we are
interested in passively inferring an end-to-end RTT for TCP from packet arrival
times collected at an intermediate monitoring point of a network without having
access to the sender. However, there are some practical factors and concerns
which complicate the implementation of a passive RTT measurement from
an intermediate node. Here, we describe these practical challenges and the
approaches how we address them in our evaluation.

-

Sender - -

-

- Receiver

Figure V.4: RTT computation scenarios.

Let’s suppose two end-points are exchanging traffic in both directions as
shown in Figure V.4. If we measure at the intermediate point, one approach is
to measure from the perspective of the sender in both directions. This is because
if we measure the RTT at the receiver side, we cannot be sure when we send an
ACK that it will trigger a new sent packet at the sender. In addition to this,
the sender might not have any data to send, or the sender may also still have
opportunities to send without receiving an ACK. If the sender sends data to
the receiver, and the receiver sends a corresponding ACK, then the monitor
could measure monitor-to-receiver-to-monitor part of the RTT by observing
the data packet and the associated ACK. Similarly, if the receiver sends data
to sender, and sender sends an ACK, then the monitor could measure the
monitor-to-sender-to-monitor part of the RTT by observing the data segments
and the associated ACK. Finally, these two values could be added together
into an observation of an estimated RTT. However, there are a number of
limitations that require consideration: (7) many connections send traffic mainly
in one direction, rather than in both directions (%) since Internet routing is not
necessarily symmetric (i.e., the path from sender to receiver is not necessarily
the reverse of the path from receiver to sender), the monitor might not be on the
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path in both directions between sender and receiver, and between receiver and
sender. (7ii) The RTT estimate is combined from two different data-ACK pairs
at different times. In order to get a more reliable and accurate estimation, our
passive RTT prediction model takes advantage of the TCP timestamps option
(see Section V.5).

Measuring at both endpoints: What happens if we capture the traffic at
both the sender and receiver endpoints and do the RTT estimation separately?
There will be a difference in the timing of the received data which will affect
the RTT estimation. It means this, to get a good measure of the raw one-way
RTT for each direction, would require clock synchronization between the sender
and receiver endpoints. We have no way to combine these two clocks with any
strong guarantees unless the two endpoints are reasonably synchronized (e.g.,
by using GPS signals). However, it is important to remember that there isn’t
a timing difference for predicting the underlying TCP variant since it simply
measures the change in cwnd size.

Sender idle time: How do we technically handle the idle time (delay) of the
sender when the buffer is not full and the sender waits for enough data to be
pushed? As explained above, since the queue is one-way, the idle time in the
sender when there isn’t enough data to send doesn’t have an impact on the
network propagation time, but it does for an application latency. Hence, this is
both application and implementation dependent as there are many applications
where the sender has nothing to send. We may have a transmitting delay when
there is a lost packet that triggers a dupPACK. In the presence of a packet loss or
out-of-order packet, the response will come right away. Basically, if the sender is
application limited, measuring RTT on the three-way handshake is very reliable.
However, we are interested in when a segment carries data. In order to passively
estimate RTT, we measure all the sequence numbers of the data segments going
in both directions at the intermediate node and their corresponding ACK only
if they carry data. If the monitoring point is somewhere in the path, all we
observe is packets flowing back and forth, and we can’t tell the difference between
network and application latency. Hence, we may treat them both the same way
while data is being exchanged between the sending and receiving endpoints.
The inclusion of TCP timestamps was supposed to help in these calculations
independently by observing the timestamps sent and echoed in both directions
and provide an improved RTT estimation.

Multiple packets with the same sequence number: The fact that TCP
can send multiple packets with the same sequence number is a challenge. For
example, if we send a packet with a sequence number and an ACK, how do
we know when the other packets have been sent if we see another packet with
the same sequence number? This is challenging and highly depends on whether
the connection is using TCP timestamps or not. As explained in detail above,
if TCP timestamps are not enabled, RT'T samples cannot be safely computed
due to the retransmission ambiguity, and thus unreliable. However, if TCP
timestamps are enabled, then the sender can accurately compute an RTT sample

168



Experimental Methodology

even for retransmitted data using the timestamp Echo Reply (TSecr) [18]. This
is one of the main reasons why we are using the timestamps options for our RTT
measurement scheme. If more than one Echo Reply of a data packet is received
before a reply segment is sent, our model estimates the RTT using the latest
transmission time of most recently sent data packet with the oldest sequence
number while ignoring the data packets with the earliest transmission time. This
helps us to avoid spurious retransmissions.

V.5.2 Considerations
Here is the list of TCP mechanism we consider in our analysis.

Delayed ACKs: During our RTT passive measurement scheme, we took regular
delayed ACKs into account by leaving the delayed ACK enabled since major
operating systems enable it by default for TCP even though the algorithms
and constants are slightly different for each operating system. Most of the
widely-deployed TCP variants nowadays will have the delayed ACK tag switch
on by default to reduce network overhead. That means the TCP implementation
would have to deal with whatever ACK algorithm the receiver is using and the
receiver can wait up to 500ms (common TCP implementations delay the ACK
only up to 200ms) before it sends an ACK in the hope that it can save the
packet [4, 18]. So most of the TCP variants nowadays are configured in such a
way that they are allowed to send an ACK for every second full-sized segment.
In order to do that they receive data and wait for up to 200ms. If nothing else
comes, they send an ACK — if something else comes, they send a cumulative
ACK for both. However, it is necessary to remember that the receiver’s delayed
ACK mechanism, noisy links, and other factors may introduce bias by causing
systematic overestimation of RTT derived from Data-ACK matching (especially
for slow-moving TCP connections like an interactive telnet or ssh session). In
our analysis, to eliminate this bias when an ACK covers multiple packets, we
used only the RT'T from the latest data packet that is ACKed. It can also be
done by filtering out the ACKs of unacknowledged data segments whose value
is less than 2*MSS since those are quite possibly delayed ACKs [4]. TCP is
generally supposed to delay ACKs until either: (i) at least 2 full MSS of data has
arrived, in which case the TCP receiver should send an immediate ACK, or (i)
the delayed ACK timer fires. If we get an ACK that is for >= 2*MSS of data,
then there is a very good chance that the ACK was triggered by (i), in which
case the latest data that arrived was probably ACKed immediately. If we get
an ACK that is for less than 2*MSS of data, it was probably triggered by (i),
the delayed ACK timer, and should be filtered out if we want the RTT of the
network path. This is precisely one of the reasons why we avoid packet sizes over
the regular legitimate MSS in our experiments by disabling TCP segmentation
offloading as described below.

Mazximum Segment Size (MSS): Our experiments are carried out over a
path that is jumbo-frame clean by disabling TCP segmentation offloading in
order to avoid packet sizes greater than the regular legitimate values. If we
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measure at a higher level and when packets are pushed down layer by layer on the
protocol stack, the negotiated MSS will be violated. This means when the data
size is greater than the legitimate MSS, the messages will be split into several
frames with a higher chance of unnecessary retransmissions which will introduce
processing delays that affect the time it takes to send the data. Therefore, in
order to avoid this violation, we made sure that each TCP flow uses a standard
Maximum Transmission Unit (MTU) value of 1500-byte data packets.

V.5.3 Impact of the Underlying TCP Variants

We believe RTT is generally unaffected by the underlying TCP congestion
algorithm that is being used, except indirectly due to ambiguous retransmissions
which will probably make some RTTs seem longer when congestion is detected.
TCP congestion avoidance algorithms specify: (i) How much should the current
packets per burst be reduced when there is a packet loss, and () How should that
number be increased for each RTT. As described in Section V.2, RTT between
two endpoints is typically a combination of a fixed baseRTT, the propagation
time and whatever amount of queueing is experienced along the way. The
propagation time is not a function of congestion control or even of TCP, it’s the
same for any IP packet. Therefore, we believe that there is no direct impact of
the underlying TCP variant on a per-packet measured RTT.

V.6 Validation Scenarios

Our model has been validated on the following settings.

Emulated setting: As illustrated in Figure V.2, we used the measured RTT
data from the intermediate node as an input to our methodology for an inference
of the RTT prediction. Finally, we verified the predicted RTT with the actual
TCP timestamps directly logged from the Linux kernel used only for training
and generate new data for the learning model to predict on. Once we finish with
the verification, we run our learning model and get the predictions. We validated
our methodology using the experimental testbed shown in Figure V.2 over a
LAN link. In order to train and test our prediction model, we employed a single
trained network that adapts to all experiments with variations of bandwidth,
delay, jitter and packet loss into one learning model. We have demonstrated that
our model can also be applicable in real networks.

Realistic setting: The ability to use embeddings of a model trained on an
emulated environment to a realistic setting is a huge advantage in terms of
scalability, applicability, and robustness. In this paper, we are able to train in
one scenario setting and apply it as a pre-training in another scenario setting.
Therefore, we are able to show that the learned passive RTT prediction model
by leveraging a pre-trained knowledge of the LSTM network from the emulated
network performs reasonably well as it is shown in the results when it is applied
and transferred to a realistic scenario setting bearing similarity to the concept of
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Figure V.5: Realistic Scenario Setup.

transfer learning in the machine learning community [32]. Here, we rely on passive
measurements of real-world TCP network trace to evaluate the effectiveness of
our model. This guarantees that our LSTM-based RTT prediction model is
able to discern the results to unforeseen scenarios. As shown in Figure V.5, we
performed a realistic experiment using Google cloud Virtual Machines (VMs)
hosted across different regions. The experimental results of our realistic scenario
are presented in Figure V.7.

V.7 Experimental Results and Discussion

On Section V.1, we have justified the choice of deep learning-based approaches in
our paper. In this section, we will explain how the key features of deep learning
and their implementations are being exploited.

Implementation details: We implemented our RTT prediction model in
Python using the Keras deep learning framework with Google’s TensorFlow
backend [1] running on NVIDIA Tesla K80 GPU where we apply an LSTM-based
architecture to estimate the RT'T trained over multiple epochs by taking the RTT
samples as values in time-series. As shown in Figure V.1 at each time-step of t,
as a learning process, the LSTM model takes an entire array of the Data-ACK
matching based on timestamps captured on the monitoring point between the
sender and receiver as an input feature vector (z) indexed by timestamps obtained
from the kernel. We propagate the input to the model through a multilayer
LSTM cell followed by a dense layer of 15-dimensional hidden states with Rectified
Linear Unit (ReLU) activation function for the different layers that generates
an output of a sequence dimensional vector of predicted RTT (y;) of the same
size indexed by timestamps. Our LSTM network is trained using the Truncated
Back Propagation Through Time (TBPTT) training algorithm for modern RNNs
applied to sequence prediction problems [31]. We used this training algorithm
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to minimize LSTM’s total prediction error between the expected output and the
predicted output for a given input of the measured RTT time-series. We trained
our LSTM-based learning algorithm without the knowledge of the input features
from the TCP sender-side during the learning phase. We learn the model from
the training data and then finally predict the test labels from the testing instances
on all variations of the emulation parameters. In order to train our prediction
model more quickly, and get a more stable and robust to changes RTT estimation
model, we have applied one of the most effective optimization algorithms in the
deep learning community, the Adam stochastic algorithm [24] with an initial
learning rate of 0.001 and exponential decay rates of the first (1) and second (f2)
moments set to 0.9 and 0.999 respectively. Totally, all of our configurations were
trained for a maximum of 100 epochs with the mini-batch size of 256 samples.
We further optimize a wide range of important hyper-parameters related to the
neural network topology to improve the performance of our prediction model.
In order to train and test our prediction model, we employed every experiment
with a ratio of 60% training, /0% testing split and a 5-fold cross-validation on
all variations of bandwidth, delay, jitter and segment loss into one learning
model.

Evaluation metrics: In order to evaluate and measure how well our
LSTM-based prediction model performs in terms of capturing the time-series
RTT patterns under different network conditions, all the neural networks are
trained, as it is shown in Tables V.2 and V.3, by employing both the Root
Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE)
performance metrics. The RMSE measures the root average squared error
between the predicted and actual value, while MAPE measures the absolute
deviation between the predicted and actual value as a percentage. The well-known
RMSE and MAPE metrics are both means of estimating the point-wise errors in
predictions and it is good to remember that these metrics don’t depend on RTT
sample sizes. Hence, the metrics values do not change for different numbers of
samples in the output of the neural network. This is because the sum increases
with the number of summed elements, but mean is sum divided by the number
of elements, so it’s “per element”.

Table V.2: Prediction accuracy of an emulated setting.

Kernel RTT vs. Sender SRTT|Monitor SRTT vs. Kernel RTT

TCP Algorithms[RMSE] MAPE (%) |RMSE MAPE (%)
Westwood [10] 0.1587 0.8632 1.4916 1.7391
Vegas [5] 0.1854 0.6341 0.7289 0.6581
BBR [6] 0.2103 1.0217 0.5733 1.2812

Discussion: We start by exploring in detail the practical challenges in the
dynamic inference of RTT for TCP connections in IP networks from passively
monitored traffic. The plots presented in Figures V.6 and V.7 show the RTT
prediction as a function of the elapsed time since a packet is sent until a
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Table V.3: Prediction accuracy of a realistic setting.

Kernel RTT vs. Sender SRTT|Monitor SRTT vs. Kernel RTT

TCP Algorithms RMSE MAPE (%) RMSE MAPE (%)
Westwood [10] 0.2504 1.3185 1.5277 1.8479
Vegas [5] 0.4155 2.3097 1.8327 2.5103
BBR [6] 0.2714 0.8730 1.7942 2.0715

corresponding ACK is received at the sender (y-azis) and index of time in seconds
(z-azis) of various TCP variants under a wide range of network conditions and
validation scenario settings. The general sawtooth patterns of the time-series
RTT prediction plots we presented in Figures V.6 and V.7 are consistent with
the behavior of each TCP variant considered. The minimum RTT during a
given time window begins at around Ims in the emulated and 133ms in the
realistic setting but slowly ramp up to the maximum. We believe that this
happens because the packets are being queued somewhere. When the queue gets
filled, packets begin to be dropped and therefore, the RTTs level off. They level
out because we see RTTs for packets that have been at the end of the queue.
However, with TCP BBR as it is shown in Figure V.6 (c), (f) and Figure V.7
(c), and (f), the RTT can go down because when BBR notices the queue, it
decides to send slower to drain it even if there are no packet drops [6]. Our
measurement results show that we achieve high accuracy of the RTT pattern
across different settings. We performed several experiments that illustrate our
main approach under multiple scenarios settings and different configurations.
However, due to lack of space, the experimental results presented in Figures V.6
and V.7 are a subset of the configurations for a proof of concept to show that
our prediction model is applicable both in an emulated and real-world settings.

The experimental comparisons on both scenarios presented on Tables V.2
and V.3 are between the actual RTT values we obtained from Linux kernel of the
TCP sending node against the SRTT of RT'T samples collected on the sender. The
second column on both tables compares the estimated SRTT of the intermediate
node (passive monitor) against the actual RTT value of RTT obtained from Linux
kernel of the TCP sending node. For a more detailed explanation and definition
of SRTT, we refer the reader to Section V.3 of this paper. On Tables V.2
and V.3, Kernel RTT is the actual RTT value used by the Linux kernel of
the TCP sending node. Whereas, monitor, as shown in Figure V.2, is the
intermediate node between the sender and the receiver. Tables V.2 and V.3 show
the performance of our model in an emulated and realistic scenarios, respectively,
and we observe that our prediction model performs comparably well in both
validation settings.

Optimality: The experimental results show that our deep learning-based
RTT prediction model performs with high accuracy across different validation
scenarios.

174



Conclusion and Future Work

V.8 Conclusion and Future Work

This work demonstrates how methods from the field of Artificial Intelligence (AI)
can in principle aid in solving network-related complex problems. Under different
variants of TCP, RTT is a property of the path between the sender and receiver
whose value influences the dynamics of TCP. Hence, an accurate and dynamic
estimation of RTT is crucial for TCP to maximize fair-share of the network
resources. It provides useful information for network operators in investigating
the critical factors that limit a flow rate and cause a congestive collapse in their
networks. In this paper, we have proposed and evaluated a novel LSTM-based
prediction model capable of dynamically predicting at real-time the RTT between
the sender and receiver with high accuracy based on passive measurements
collected at an intermediate node, taking advantage of the commonly used TCP
timestamps. We explored in detail a set of practical methodological challenges
and considerations involved in performing inference of RTT dynamically and
reliably from passive measurements. The primary contribution of our work
is building a prediction model that works well for transfer learning. We have
demonstrated the efficiency of our model through extensive experiments both on
a controlled experimental testbed network and in a realistic scenario setting on
the Google Cloud platform. As future work, we would like to explore extensions
in greater detail to the model we have presented across a broad range of different
network conditions and multiple simultaneous TCP connections. By design,
unlike loss-based algorithms, the back-off parameter of delay-based congestion
control algorithms is not fixed which makes it fundamentally challenging to
predict the TCP variant from passive traffic when there is variability in delay.
Hence, now that we are able to predict RTT with a high accuracy, we believe
extending our work in developing a delay-based pattern mining methodology
that identifies the underlying delay-based TCP flavors from passive traffic and
real measurements over the Internet using the RTT prediction model as an input
vector is a promising direction for future research.
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Abstract

Identifying the underlying TCP variant from passive measurements is
important for several reasons, e.g., exploring security ramifications, traffic
engineering in the Internet, etc. In this paper, we are interested in
investigating the delay characteristics of widely used TCP algorithms that
exploit queueing delay as a congestion signal. Hence, we present an effective
TCP variant identification methodology from traffic measured passively
by analyzing 3, the multiplicative back-off factor to decrease the cwnd on
a loss event, and the queueing delay values. We address how [ varies as a
function of queueing delay and how the TCP variants of delay-based
congestion control algorithms can be predicted both from passively
measured traffic and real measurements over the Internet. We further
employ a novel non-stationary time series approach from a stochastic
nonparametric perspective using a two-sided Kolmogorov—Smirnov test
to classify delay-based TCP algorithms based on the «, the rate at
which a TCP sender’s side cwnd grows per window of acknowledged
packets, parameter. Through extensive experiments on emulated and
realistic scenarios, we demonstrate that the data-driven classification
techniques based on probabilistic models and Bayesian inference for optimal
identification of the underlying delay-based TCP congestion algorithms
give promising results. We show that our method can also be applied
equally well to loss-based TCP variants.
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VI.1 Introduction and Motivation

Transmission Control Protocol (T'CP) is one of the dominant transport protocols
that has played a great role in the exponential success of the Internet, network
technologies and applications [17]. The majority of all Internet traffic all over the
world today uses TCP. TCP is a highly reliable end-to-end connection-oriented
transport protocol designed to prevent excessive congestion on the Internet [17].
Note that congestion control in TCP was not part of the protocol initially until the
first Internet congestion collapse was observed [17]. TCP controls congestion by
aiming for fair sharing of the available network resources by the competing flows,
using strategies empowered by TCP [17]. Congestion control algorithms provide
a fundamental set of techniques critical for maintaining the robustness, efficiency,
and stability of the global Internet. Since the specification of TCP [25], various
end-to-end congestion control algorithms have been designed and implemented
on a larger scale for the Internet with several enhancements. One category of the
widely deployed variants ranging from TCP CUBIC [12], Reno [17], BIC [30], etc.
where packet loss probability is an implicit signal for congestion in the underlying
network are called loss-based TCP congestion control algorithms. Variants of
this kind aggressively fill up the actual network buffers in order to achieve
better throughput by ignoring queueing delay. However, this is challenging
for the quality of latency-sensitive and bandwidth-intensive real-time media
applications to achieve good performance when long-running flows also share
large bottleneck link buffers. Therefore, to address this challenging problem,
delay-based TCP schemes that adopt packet queueing delay rather than a
loss as congestion signals are introduced. With delay-based congestion control
algorithms, allocating network resources across competing users can be attained
by supporting both high network utilization and low queuing delay even when the
buffer sizes are large. Detailed background on these categories of TCP variants
is presented in Section VI.2. In this paper, we are interested in investigating the
delay characteristics of widely used TCP algorithms that exploit queueing delay
as a congestion signal and demonstrating how an intermediate node can identify
both loss-based and delay-based TCP variants from passively captured TCP
traffic using state-of-the-art approaches. As explained below, inferring whether
the underlying network is using loss-based or delay-based TCP congestion control
algorithms has potential benefits for various reasons. Our work in this paper is
mainly motivated by the following questions: (i) How well can we infer the most
important TCP per-connection transmission states that determine a network
condition (e.g., Congestion Window (cwnd)) from passive traffic collected at an
intermediate node of the network without having access to the sender? (%) How
can we identify the underlying delay-based TCP variant that the TCP client is
using from passive measurements? (i) What percentage of network users are
using delay-based TCP variants? () How do different implementations of TCP
congestion control algorithms behave on the end-to-end variability of bandwidth,
delay, different cross-traffic, Round-trip Time (RTT)? etc.
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Potenial opportunities and benefits: It is reasonable to ask: Why is
the identification of the underlying TCP flavors performed in an intermediate
node from passive measurements important? Some of the main reasons why
passive estimation of TCP internal state variables in an intermediate node is
important, for example, is when (7) We have no control over either end-host of
communication so we can’t launch active measurements from either host, (i)
The TCP active probes used in active measurements (such as ping messages)
are blocked by firewalls etc. In addition to this passive measurements, unlike
active measurements, do not introduce additional traffic into the network that
can skew the results. For more details about the difference between active and
passive measurement techniques, we refer the reader to our previous work [13].
There are myriad reasons we may want to use passive measurements to identify
the underlying TCP flavors but in our paper, we will explore the above questions
quantitatively from different perspectives as they apply to the problems of
network congestion.

Operational benefit: We argue that uniquely inferring the underlying TCP
congestion algorithm the client is using is useful for network operators to monitor
if major content providers (e.g., Google, Facebook, Netfliz, Akamai etc.) are
manipulating their congestion windows in their servers to achieve more than their
fair share of available bandwidth. Another scenario where network operators
might find this information useful is if they have a path that they know is
congested due to customer complaints, but the links using that path are not
especially over-subscribed. In that case, details about the cwnd behaviour of
all the users on that path might be helpful in trying to diagnose the cause, i.e.,
are there users that are using aggressive congestion control algorithms which are
unfair and affecting other user’s available bandwidth?

ISP benefit: Knowledge about the TCP stack in use in the endpoints is useful
for operators of big ISP networks that do much traffic engineering who need to
move traffic from oversubscribed links. It can also be used to diagnose TCP
performance problems (e.g., to determine whether the sending application, the
network or the receiving network stack are to blame for slow transmissions) in
real-time. Another benefit might be to observe when large content providers
implement their own custom congestion control behavior that does not match to
one of the known congestion control algorithms.

Security ramifications: We believe it is also useful for exploring security
threats. This is because if we are able to infer the TCP variant, we can also
make some guessing on the implementation of the underlying operating system
and search for vulnerabilities. This can tell us about the encryption at the
end-system that can be used to tailor-made attacks.
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Contributions. Our paper makes the following contributions.

o We identify the main challenges in investigating the delay characteristics of
the widely used TCP algorithms.

o We demonstrate how the intermediate node (e.g., a network operator) can
predict the cwnd size of delay-based TCP algorithms using state-of-the-art
deep learning techniques.

e We examine a set of state-of-the-art techniques that are reasonably effective
in classifying the underlying variants of delay-based TCP congestion control
algorithms within flow from passive measurements based on the § parameter.

e We employ a novel non-stationary time series approach from a stochastic
nonparametric perspective using a two-sided Kolmogorov—Smirnov test to
classify delay-based TCP algorithms based on the o parameter.

e We are able to identify the widely used TCP variants with high accuracy and
explore security ramifications.

e We compare our delay-based classification approach with recent
state-of-the-art loss-based identification techniques.

e Finally, we show that the learned prediction model performs reasonably well
by leveraging trained knowledge from the emulated network when it is applied
and transferred on a realistic scenario setting.

V.2 Background

TCP congestion control strategies are broadly categorized into loss and delay
sensitive schemes. Loss-based TCP congestion control algorithms consider packet
loss as an implicit indication of congestion by the network. TCP variants of this
kind attempt to fill the network buffers and hence they tend to induce large
queueing delays when the buffer sizes are large. Unlike traditional loss-based
approaches, delay-based TCP congestion control algorithms use the changes in
queueing delay measurements as implicit feedback to congestion in the network.
Delay-based congestion control algorithms attempt to avoid network congestion
by monitoring the trend of network path’s RTT information contained in packets.
It is believed that variants of this kind achieve better average throughput by
not filling buffers and maintaining full path utilization with low queueing and
fair allocation of rates to flows [4, 28]. In order to properly allocate, share the
underlying network resources, and ensure network queueing delay stays low,
delay-based congestion control algorithms require knowledge of an accurate
estimate of the network path’s BaseRTT [21], usually defined as the smallest of
all measured minimum RTTs of a segment in the absence of congestion. The
following are the list of an end-to-end widely used delay-based congestion control
algorithms on the Internet we use for our evaluation.
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o TCP Vegas [4]: Vegas is a delay-based implementation of TCP congestion
control algorithm motivated by the studies [18] and [27]. Vegas’s congestion
detection technique depends on the accurate estimation of BaseRTT [4].
Hence, if the estimated value of BaseRTT is too small, then it’s throughput
will stay below the available bandwidth; however, if the estimated value for
BaseRTT is too large, then it will overrun the connection [4]. As shown in
Equation VI.1, Vegas computes the expected throughput of the connection as
the ratio of the current window size and BaseRTT. The main idea of Vegas
behind Equations VI.1 and VI.2 is that when the network is not congested,
the actual flow rate will be close to the expected flow rate. However, if the
network is congested, the expected flow rate will be greater than the actual
flow rate.

WindowSize
WindowSize
A = 1.2
ctual RTT (VL.2)

To estimate the available bandwidth and congestion state of the network,
TCP Vegas compares the actual sending rate and evaluates the difference,
Diff, between the estimated throughput and the current actual throughput
computed as shown in Equation VI.3 and updates the cwnd accordingly.

Diff = Exptected— Actual (VL3)

By definition Diff is a non-negative since Actual> FEzpected implies that we
need to change BaseRTT to the latest sampled RTT. To adjust the congestion
window size, TCP Vegas uses two threshold values o and 3 where 0<a<f [4].
Depending on this difference as shown in Figure VI.1 and Equation VI.4, if
Diff <a, Vegas increases the cwnd size linearly until the next RTT, and when
Diff >p, then Vegas reduces the cwnd linearly until the next RTT. However,
Vegas leaves the cwnd size unchanged when a<Diff <(.

increase cwnd cwnd unchanged decrease cwnd

Figure VI.1: TCP Vegas throughput thresholds.
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cund+ 1 1If Diff<a
cwnd = § cund —1 If Diff >p (VI4)

cund Otherwise

o TCP Veno [11]: Veno adopts the same methodology as TCP Reno [17] in
determining the congestion window size in the network. But Veno uses the
delay information of TCP-Vegas [4] to further differentiate non-congestion
packet losses when RTT varies greatly by estimating the backlogged packets
in the buffer similar to TCP Vegas. If the number of backlogged packets in
the buffer is below a certain threshold, it is a strong indication of random
loss. However, if packet loss is detected when the connection is in the
congestive state, TCP Veno uses the standard TCP Reno Additive Increase
and Multiplicative Decrease (AIMD) scheme to reduce the cwnd during its
congestion avoidance mode. TCP Veno sets g factor to 0.8 when the queueing
delay is small. However, when the queueing delay is high, TCP Veno sets (8
to 0.5.

For comparison reasons we also consider the following most widely used loss-based
TCP congestion control algorithms.

o« TCP Reno [17]: Reno is one of the most predominant implementations
of loss-based TCP variants which employs a conservative linear growth
function for increasing the cwnd by one segment for each received ACK and
multiplicative decrease function on encountering a packet loss per RTT [5].
Its 8 value is 0.5 which corresponds to reducing the window by 50% during a
loss event as shown in Equation VI.5.

cund + 1 Slow start phase
cwnd = < cwnd + Cwln 5 Congestion avoidance (VL5)
% If packet is lost

o TCP CUBIC [12]: CUBIC is the default congestion control algorithm as part
of the Linux kernel distribution configurations from version 2.6.19 onwards.
It modifies the linear window growth function of existing TCP standards to
be governed by a cubic function in order to improve the scalability of TCP
over fast and long distance networks. CUBIC decreases the cwnd by a factor
of 8 whenever it detects that a segment was lost. And, it increases towards a
target congestion window size (W) when in-order segments are acknowledged
where W is defined as follows:

Wcubic(t) = |C(t - K)‘S + Wmax (VIG)
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where Wy, 4. is the window size reached before the last packet loss event, C' is
a fixed scaling constant that determines the aggressiveness of window growth,
t is the elapsed time from the last window reduction measured after the fast
recovery, and K is defined by the following function:

(VLT7)

where 8 is a constant back-off factor of CUBIC [12] applied for window
reduction at the time of a TCP packet loss event. The [ value of CUBIC is
0.7 which corresponds to reducing the window by 30% during a TCP packet
loss event [12] and can be calculated as per Equations VI.6 and VI.7.

Roadmap: The rest of this paper is organized as follows. Next, in Section VI.3,
we discuss the related work in the literature considered as a state-of-the-art. In
Section VI.4, we describe an overview of our controlled experimental setup for
the evaluation. Section VI.5 presents approaches to our classification models in
detail. The experimental results and discussion are presented in Section VI.6.
Finally, Section VI.7 concludes the paper and outlines directions of research for
future extensions.

VI.3 Related work

TCP is one of the key protocols of today’s Internet Protocol (IP) suite and its
performance analysis has been extensively studied in the computer networking
community [24]. Many research studies have also analyzed the underlying TCP
congestion control algorithms as we have already discussed the most relevant
works in Section VI.2. There are many different TCP variants widely in use,
and each variant uses a specific end-to-end congestion control algorithm to avoid
congestion, while also attempting to share the underlying network capacity
equally among the competing users. However, we believe that there is very little
work on the identification of the underlying delay-based TCP congestion control
algorithms from passive measurements. The work in [22] proposes a cluster
analysis-based method that aims a router to identify between two versions of
TCP algorithms. This method was meant to be utilized in real-time applications
to handle network traffic routing policies. It performs RTT and cwnd estimation
in order to infer a group of traffic characteristics from the flow [22]. These
characteristics are then clustered into two groups by applying a hierarchical
clustering technique. The authors show that only 2 out of 14 TCP congestion
algorithms that are implemented in Linux can be identified based on their
method [22]. Another related work [31] presents an active measurement technique
to identify a diverse set of known congestion control algorithms. However, our
work in this paper relies on a passive measurement technique. In a closely related
previous work [15], we presented a machine learning-based approach to identify
the underlying traditional loss-based TCP variants which yield accuracies of
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93.51% and 95% on emulated and realistic scenarios respectively. The cwnd
prediction performance result of the loss-based variants across different scenario
settings is presented in Table VI.1.

Table VI.1: cwnd prediction accuracy of loss-based TCP variants under an
emulated and realistic settings [14, 15].

Emulated Setting Realistic Setting
TCP Algorithms | RMSE | MAPE (%) | RMSE | MAPE (%)
CUBIC 5.839 6.953 3.522 4.738
Reno 3.511 3.140 3.396 5.197

This was achieved by analyzing the g value by averaging out the window size
of loss-based algorithms every time a peak is detected so that the computation of
the multiplicative decrease factor is not done only on a slow start phase. However,
this work doesn’t address how the (3 as a function of queueing delay varies and how
the TCP variants of delay-based congestion control algorithms can be predicted
both from passively measured traffic and real measurements over the Internet.
By design, unlike loss-based algorithms, the 8 value of delay-based congestion
control algorithms is not fixed which makes it fundamentally challenging to
predict the TCP variant from passive traffic when there is variability in delay.
Hence, in this paper, we want to substantially address this problem by building
a two-dimensional space model and see if the § is dependent on queueing delay
or not. This helps us to expand our previous method [15] to address bigger cases
covering both loss-based and delay-based TCP congestion control algorithms.

V1.4 Evaluation Methodology

VI.4.1 Experimental Setup

Our evaluation experiments are carried out using a cluster of HPC machines
based upon the GNU/Linux operating system running a modified version of
the 4.15.0-39-generic kernel release. The prediction model is performed on an
NVIDIA Tesla K80 GPU accelerator computing with the following characteristics:
Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz, 64 CPU processors, 128 GB RAM,
12 CPU cores running under Linux 64-bit. All nodes in the cluster are connected
to a low latency 56 Gbit/s Infiniband, gigabit Ethernet and have access to 600
TiB of BeeGFS parallel file system storage.

VI.4.2 Validation Experiment

We have conducted a controlled experiment both on simulated environments
and realistic scenario settings.

Emulated Setting: We construct an experimental setup shown in Figure VI.2
where we generate the training data and predict the cwnd from passively captured
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Figure VI.2: LSTM Methodology for cwnd prediction.

traffic using state-of-the-art deep learning approaches. To evaluate the prediction
model and perform our analysis on both the emulated and realistic network
conditions, we have generated our own training dataset. In order to capture all
sessions on the network when the client and server are sending TCP packets
and measure the TCP data packets from both directions, we have used the
fully controlled experimental setup shown in Figure VI.2. The background TCP
stream traffic for all our experiments are generated using the iperf [9] traffic
generator on an emulated LAN link where we run each TCP variant by adding
a variation of the emulation parameters bandwidth (in Mbit), delay (in ms),
jitter (in ms) and packet loss (%) within a flow. During a single TCP flow
of our experiment, the parameters bandwidth, and delay are constant with a
uniform distribution. However, since we have the jitter given as an average, its
distribution is normal. The issues of cross-traffic variability and verification of the
popular Linux-based network emulator we used, Network Emulator (NetEm) [16],
are thoroughly addressed in our previous work [13].

CUBIC
Loss-based see
TCP back-off
Reno
Delay-based *» Vegas
Predicted cwnd TCP Variants ese
Veno

Figure VI.3: Methodology for TCP Variant classification.
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Realistic Setting: In addition to the simulation validation described above,
we have also evaluated our experiments over real-world Internet paths using the
setup shown in Figure VI.4 so that we can further validate our results presented
in Figure VI.9 against other scenario settings. This helps us to carefully test
how well our deep learning-based cwnd prediction model using an emulated
network works by conducting a series of controlled experiments in a realistic
setting. In this way, we can justify and guarantee how our model could predict
the development of a cwnd pattern and the TCP variant used with other realistic
network traffic scenarios captured from the Internet. To this end, we created a
realistic experimental testbed where we experiment by running our resources
on Google Cloud platform nodes across the Internet as shown in Figure VI.4.
In order to create a realistic TCP session, we uploaded a massive image file
to Google Cloud platform site so that we have a full control of the underlying
TCP variant on the sending node and at the same time run a tcpdump in the
background and capture all sessions on the network when the client and server
are sending TCP packets. Next, we filtered out the receiving host where we
send the TCP traffic to. Finally, we calculated the number of outstanding bytes
obtained from the captured network traffic and run it through our learning
model to predict the development of the TCP cwnd. Since we have full control of
the sending node, we can track the system-wide TCP state of every packet that
is sent and received from the kernel to verify our model’s prediction accuracy
against the ground truth by matching with the actual sending TCP states using
the methodology shown in Figure VI.2. As it is shown in Figure VI.10, we found
out that our model could be performing very well with small prediction errors
when we apply it to real-world scenario settings too. The final cwnd sawtooth
pattern prediction performance comparison between the emulated and realistic
settings is presented in Table VI.5.
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Figure VI.4: Realistic Scenario Setup.
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VI.5 Our Approaches

This section presents the concepts and approaches to the underlying TCP variant
classification process.

VI.5.1 Passive cwnd Prediction

For this task, we are interested in the capabilities and potentials of Recurrent
Neural Networks (RNN) models for implementing our passive cwnd prediction
model for TCP. Hence, we have explored an approach to investigate and explore
in detail on how an intermediate node (e.g., a network operator) can identify
the transmission state of both loss-based and delay-based TCP congestion
control algorithms associated with a passively monitored TCP traffic using Long
Short-Term Memory (LSTM)-based RNN architecture. In TCP, the cwnd is one
of the main factors that determine the number of bytes that can be outstanding
at any time. Hence, we assume that using the observed outstanding sequence of
unacknowledged bytes on the network seen at any point in time in the lifetime
of the connection as an estimate of the sending TCP’s cwnd from teptrace [23]
when there is variability of bandwidth, delay, jitter and loss is a better approach
to estimate the cwnd and how fast the recovery is. We measure the cwnd for
the end-to-end path between the sender and the receiver basing our inference on
the total amount of outstanding bytes and run it through our learning model to
predict the development of the TCP cwnd and it’s variant.

Implementation details: Our methodology of the classification process is
depicted in Figure VI.3. We implemented our passive cwnd prediction model
in Python using the Keras deep learning framework with Google’s TensorFlow
backend [1] running on NVIDIA Tesla K80 GPU where we apply an LSTM-based
architecture trained over multiple epochs by taking the cwnd samples as values
in time-series. As shown in Figure VI.2 at each time-step of ¢, as a learning
process, the LSTM model takes an entire array of the outstanding bytes matching
based on timestamps captured on the intermediate monitoring point between
the sender and receiver as an input feature vector indexed by timestamps. We
propagate the input to the model through a multilayer LSTM cell followed by a
dense layer of 15-dimensional hidden states with Rectified Linear Unit (ReLU)
activation function for the different layers that generates an output of a sequence
dimensional vector of predicted cwnd of the same size indexed by timestamps. Our
LSTM network is trained using the Truncated Back Propagation Through Time
(TBPTT) training algorithm for modern RNNs applied to sequence prediction
problems [26]. We used this training algorithm to minimize LSTM’s total
prediction error between the expected output and the predicted output for a
given input of the measured cwnd time-series. We trained our LSTM-based
learning algorithm without the knowledge of the input features from the TCP
sender-side during the learning phase. We learn the model from the training data
and then finally predict the test labels from the testing instances on all variations
of the emulation parameters. In order to train our prediction model more quickly,

189



VI. Classification of Delay-based TCP Algorithms From Passive Traffic
Measurements

and get a more stable and robust to changes cwnd estimation model, we have
applied one of the most effective optimization algorithms in the deep learning
community, the Adam stochastic algorithm [19] with an initial learning rate of
0.001 and exponential decay rates of the first (81) and second (83) moments set
to 0.9 and 0.999 respectively. Totally, all of our configurations were trained for a
maximum of 100 epochs with the mini-batch size of 256 samples. We further
optimize a wide range of important optimal hyperparameters related to the
neural network topology to improve the performance of our prediction model.
In order to train and test our prediction model, we employed every experiment
with a ratio of 60% training, 40% testing split and a 5-fold cross-validation into
one learning model.

Why did we use RNN models? As explained above, the cwnd is a TCP
per-connection state internal variable, stored in the memory of the TCP sender,
relevant to congestion control. However, since the value of the cwnd is not
contained in the TCP header — trying to predict this value somewhere other than
at the TCP sending node is fundamentally challenging. In our case, let’s consider
a situation where a network model is trained for a specific intermediate node
which has been trained for a specific bandwidth, background load, multiplexing
rate, and a multitude of different router conditions, can predict well for exactly
this node. Hence, we want a model that is able to train in one scenario setting
and apply it as a pre-training on another setting by leveraging trained knowledge.
As it is presented in Section VI.4, this paper proofs that it makes sense in
principle to use learning algorithms for TCP state predictions and this is the
reason why we use RNN approach for the passive cwnd prediction.

VI.5.2 TCP variant classification based on the g parameter

k-nearest neighbors (KNN): The first approach we used to identify the
underlying TCP variants is a distance metrics using KNN machine learning
classification algorithm [6]. Given an input feature vector of TCP protocols
in an n-dimensional Euclidean space R™ with a set of back-off parameters and
queueing delay instances, {Bi, EZ—E } € R™, training samples of the form ({z;,y;},
z; € R™), we want to c1a551fy a new TCP protocol, P, by finding the value of
{5, dzﬁl} that is nearest to P. For the estimation of dz[f in our evaluations, we
applied the formula proposed in TCP Vegas as shown in Equation VI.3.

As shown in Figure V1.5, our classifier model fits reasonably well with high
accuracy. However, we believe that this approach has a limitation in classifying
TCP Reno [17] and TCP Veno [11] when the queueing delay is high. For example,
iﬁ\ we have many 3 points of TCP Veno in a two-dimensional space with low
diff that means we will have more 3 values with one cluster of 0.8. How do we
ensure that the c@ is low and how do we tell the exact difference between TCP
Veno and Reno? Hence, to avoid this shortcoming, we proposed the following
methods.
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Figure VI.5: KNN Prediction of TCP Variants.

Kullback-Leibler (KL) Divergence: Before fitting our data into the beta
distribution family, we wanted to answer the question: How do we optimally
choose the positive shape parameters, o and [, of beta distribution given in
Equation VI1.9? Hence, we use the KL divergence [20] to find the fitting
parameters in the beta distribution. KL, in statistics, information theory and
pattern recognition, is a well-known distance measure between two probability
distribution measures p(y) and ¢(y) defined as follows:

._ ay)] _ op 1)
D(qllp) = Eyqy) {bg p(y)] = /Q(y)l € o(y) dy (VL8)

In general, the KL divergence is only defined if ¢(y) > 0 for any value of y such
that p(y) > 0.

Beta Distribution: As shown in Figure VI8, the beta distribution is the best
fitting model for the problem we address in this paper for all the TCP protocols
except TCP Veno [11]. Beta distribution, parametrized by two positive shape
parameters, denoted by « and f3, is appropriate for representing the uncertainty
of a continuous probability distribution and is defined by:

(a4 5)
L(a)L'(B)

where K € [0, 1] and it represents the support of the probability distribution,
I'(-) is the gamma function defined as: I'(z) = [;~ t* te "dt.

f(K|a, B) = Ko l(1—-K)f! (VL9)

For TCP Veno, as depicted in Figure VI.8(a), we used a sigmoid-based function
and the reason why we applied sigmoid function for TCP Veno is because say
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that we have 1 million /3 points with high ciz}ﬁc value (i.e., when the connection is
on a congestive state) and only 1 B point with low c?z}ff value. If we compare this
with TCP Reno [17] which has few points with a fixed § value of around 0.5,
the inaccuracy might be a little higher when we measure it with other metrics.
When we run our experiment on the Internet, we can’t decide how many B
points we get because it depends on the underlying network. As we can see it
on Figures VI.6 and V1.7, we have one B point for Veno [11] and we believe this
is completely realistic. Because this means we have one class (cluster) of 1 ﬁ
point with low c?z}ﬁ” and another class of many B points with high Jz}ﬁf and it is
possible to classify the protocols based on these classes. We built our model in
such a way that we don’t want the sender or network change anything with the
TCP parameter values (i.e., a and () that control increase and decrease ratios
of the cwnd. We simply want to observe things passively from an intermediate
node between the sender and the receiver. Therefore, to tell the exact difference
between the low cfz}ﬁ" and high c?z\ﬁ, we have to statistically measure how close
we are to the border between the low and high Jz}ﬁ‘ For example, when we are
around a szﬁ” threshold of 3, the ciz;‘j” will not count much but the weight of the B
value does. This way, we can tell the difference between the protocols TCP Veno
and TCP Reno by running a sigmoid-based function on the border between low
and high d/zyﬁc values.
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Figure VI.6: Beta analysis in an emulated setting. (a) Veno [11], (b) Reno [17],
(c) CUBIC [12], (d) Vegas [4].
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Figure VL.7: Beta analysis in a realistic setting. (a) Veno [11], (b) Reno [17],
(c) CUBIC [12], (d) Vegas [4].
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Figure VI.8: Sigmoid analysis and beta distributions. (a) Veno [11], (b)
Reno [17], (c¢) CUBIC [12], (d) Vegas [4].
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Figure VI.9: TCP cwnd Prediction results of an emulated setting. (a) Veno [11],
(b) Reno [17], (¢) CUBIC [12], (d) Vegas [4].
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Figure VI.10: TCP cwnd Prediction results of a realistic setting. (a) Veno [11],
(b) Reno [17], (¢) CUBIC [12], (d) Vegas [4].
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Mixture Distributions: For TCP Veno, we applied a beta mixture distribution
model in a classification setting defined as follows:

F1(Bo, diffy) = (1 — My (diff))di (Bi) + Ao(diff)d2(5:) (VL10)

where \; being the mixing weights (density) of the sigmoid function that depends
on the value of cfz\ﬁ, > Ai =1, dy and dy are two different distributions. First, we
pick a distribution of TCP Veno with probabilities given by the mixing weight, A
and (fz\ﬁ, then we generate one observation according to the selected distribution
as shown in Figure VI.11. Intuitively, the sigmoid of TCP Veno should be the
weights of the two peaks of the BZ values, i.e., a beta distribution centered around
0.5 and a beta distribution centered around 0.8. For the other TCP protocols,
we applied a beta distribution of the form fz(ﬁl) We have experimented with
different beta mixture distributions and finally, we have verified that our model
yields reasonably good results. Sample beta mixture distributions of TCP Veno
under different values are shown below in Figure VI.11.
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Figure VI.11: Mixture distributions of TCP Veno [11].

Bayesian Inference: Using the data generated from the beta distribution,
we built a Bayesian inference approach to machine learning by constructing
a set of observations O;.x = {01,02,03,...,0x} in which each element O;
represents a different set of observations of Bi and c@ of each TCP variant, V
that is obtained from the beta distribution model as f;(f;, CTZE) As shown in
Equation VI.12] the normalization factor is the sum of the data.

P(V = Vi|0;) x P(V = V}) ﬂp(oiw ~ V) (VL11)

i=1

195



VI. Classification of Delay-based TCP Algorithms From Passive Traffic
Measurements

From the law of probability theory, we know that:

ZP(V:W‘{ODO%O&"WON} =1
3 (VL12)

V:{‘/lv‘/QaVE%Véh"')VN}

where Vi = Veno, Vo = Reno, V3 = CUBIC and V, = Vegas. For every V;, the
argmaz () of these equations retrieves the index of the highest likelihood of
the probability vector. In the absence of a priori detailed domain knowledge
about the TCP protocols, from a Bayesian inference perspective we believe all
TCP variants will have the same probability and hence, P(Veno) = P(Reno)
= P(CUBIC) = P(Vegas). Using Equations VI.11 and VI.12, we are able to
perform the Bayesian inference and the results we obtained from both emulated
and realistic scenario settings are presented as follows.

Emulated setting

o When the ground truth is TCP Veno, P(V = Veno|Oy, 02,03, 04) gives a
probability estimation vector of (46.28, 38.93, 14.34, 0.45) and from this
46.28 maximizes the probability that this is being classified as V5 (Veno).

e When the ground truth is TCP Reno, P(V = Reno|O1, Oz, 03,04) gives a
probability estimation vector of (35.25, 49.81, 14.57, 0.36) and from this
49.81 maximizes the probability that this is being classified as V5 (Reno).

o When the ground truth is CUBIC, P(V = CUBIC|O1, O3, 03,04) gives an
estimation vector of (10.13, 9.02, 71.83, 9.02) and from this 71.83 maximizes
the probability that this is being classified as V3 (CUBIC).

o When the ground truth is Vegas, P(V = Vegas|O1,02,035,04) gives an
estimation vector of (31.85, 0.28, 10.79, 57.08) and from this 57.08 maximizes
the probability that this is being classified as V (Vegas).

Realistic setting

e When the ground truth is TCP Veno, P(V = Veno|O1, Oz, 03,04) gives a
probability estimation vector of (46.83, 39.4, 13.44, 0.34) and from this 46.83
maximizes the probability that this is being classified as V; (Veno).

o When the ground truth is TCP Reno, P(V = Reno|O1, 02,03, 04) gives a
probability estimation vector of (30.99, 52.05, 16.44, 0.52) and from this
52.05 maximizes the probability that this is being classified as V5 (Reno).

e When the ground truth is CUBIC, P(V = CUBIC|O1, 02,03, 04) gives an
estimation vector of (10.69, 9.53, 70.25, 9.53) and from this 70.25 maximizes
the probability that this is being classified as V3 (CUBIC).
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Table VI.2: cfz}ﬁc values performances

Emulated Setting

Low-diff High-diff
Precision | Recall | Fl-score | Support | Precision | Recall | Fl-score | Support
Vegas 1.00 0.92 0.96 13 1.00 0.91 0.95 11
CUBIC 1.00 1.00 1.00 10 0.92 1.00 0.96 11
Reno 0.90 1.00 0.95 9 0.90 1.00 0.95 9
Veno 1.00 1.00 1.00 8 1.00 0.89 0.94 9
Avg/Total 0.98 0.97 0.98 40 0.95 0.95 0.95 40
Accuracy 97.5% 95%
Realistic Setting
Low-diff High-diff
Precision | Recall | Fl-score | Support | Precision | Recall | Fl-score | Support
Vegas 1.00 0.93 0.96 12 0.92 0.92 0.92 11
CUBIC 1.00 1.00 1.00 11 1.00 1.00 1.00 10
Reno 0.92 1.00 0.96 9 0.91 1.00 0.95 9
Veno 1.00 1.00 1.00 8 1.00 0.91 0.95 10
Avg/Total 0.98 0.98 0.98 40 0.96 0.95 0.95 40
Accuracy 97.83% 95.46%

Table VI.3: d/z}? values confusion matrix

Predicted
Emulated | Actual CUBIC | Reno | Vegas | Veno
CUBIC 12 0 1 0
— Reno 0 10 0 0
Low-diff | yiegag 0 0 9 0
Veno 0 0 0 8
CUBIC 10 0 1 0
o~ Reno 0 11 0 0
High-diff | vegas o o 9 0
Veno 0 1 0 8
Realistic
CUBIC 13 0 1 0
— Reno 0 9 0 0
Low-diff | yiegag 0 0 9 0
Veno 0 0 0 8
CUBIC 10 0 1 0
o~ Reno 0 10 0 0
High-diff Vegas 0 0 9 0
Veno 1 0 0 9

o When the ground truth is Vegas, P(V = Vegas|O1, Oz,03,04) gives an
estimation vector of (32.18, 0.39, 11.73, 55.7) and from this 55.7 maximizes
the probability that this is being classified as V; (Vegas).
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VI.5.3 TCP variant classification based on the « parameter

In our classification task of the underlying TCP algorithms, in contrast to
the typical increase-by-one decrease-to-half scheme of TCP to adjust cwnd
growth, we consider the § and « parameters that control the increase and
decrease ratios of cwnd. This means, the cwnd size is increased by a per
window of acknowledged packets in the congestion avoidance state in response
to every RTT and it is decreased to § times its current value when there is
congestion. Classifying the underlying TCP variant using the [ parameter
with different approaches is discussed above in detail. Here, we will use the «
parameter for the same task by employing a novel non-stationary time series
approach from a stochastic nonparametric perspective. We believe this approach
is appealing because the changing rate of the cwnd size can be modeled as a
stochastic process [2, 3]. This method is ensuring to work properly because of
the quasi-stationary properties that every TCP protocol has as it could be easily
observed from Figure VI.12(a) and Figure VI.12(b) where the statistical behavior
of the signal remains almost unaltered and note that the distribution in all of
the scenarios is pretty consistent by maintaining the same property. We use the
two-sided Kolmogorov-Smirnov (KS) test which is a nonparametric statistical
test” for comparing two empirical cumulative distribution functions (ECDFs) [10].
The KS statistic for a given cumulative distribution function (CDF) F(z) is given
as shown in Equation VI.13.

D, (F,,Gpn) = Sl;p |[Fn () — Go()] (VI.13)

where sup, is the supremum of the set of distances over the given distributions,
F and G are two ECDFs.

Our approach is to first estimate the probability distribution function (PDF)
over categories in our classification task of each given TCP protocol as shown in
Figure VI.12 and then estimate the 95% confidence interval for the distributions
using bootstrap technique [7, 8] so that we can measure how certain we are
about the predictions of the underlying TCP variant when its estimated « value
changes frequently by comparing the uncertainty measure of the estimated PDF.
We could also show the corresponding standard CDF for each value, but due
to the limited space in this paper, here we present only the empirical PDF
estimations. As we can see from Table V1.4, the stochastic confusion matrix has
two values on both emulated and realistic settings. The first value compares
the maximum difference between the ECDFs and chooses the protocol with the
minimum distance that minimizes the probability of the log(p-value) as shown
in Equation VI.14.

P, (a) — Py(a)|da (V1.14)

vy = arg min/
v w

i.e., it does not assume a specific form of the distributions

2
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where v represents the set of TCP protocols, w represents all the possible values
of a, Pw(a) represents the empirical probability of a given TCP protocol (7),
Py(a) represents the estimated probability of « in dataset y. Whereas the second
value compares the KS test values by maximizing the estimated PDF of each
distribution using log(p-value) of the bootstrap test for a given distribution as
shown in Equation VI.15.

v = argmax log P[D,, (7%, y)], i€ {1,2,3} (VL.15)
ye{Vi}

where y is another sampled time series of length M used to classify the protocols
so that we don’t end up using the same time series and v are the candidate TCP
protocols, Vi =Veno, Vo=Vegas, and V3=CUBIC, from which the PDF were
initially estimated. Next, we calculate the distribution function using the raw
time series data of each variant and compare it against the stochastic template
of each TCP protocol using the KS test value whose result is presented in
log(p-value). Finally, we choose the underlying TCP protocol whose log(p-value)
bootstrap test is higher. In Figure VI.12, if the « interval between 100 and 160
have too high values, then the TCP variant is Veno. Otherwise, if the value
is too low between these intervals, the protocol will be identified as CUBIC.
Our method is robust enough to identify each underlying protocol without the
prior domain knowledge of the internal characteristics of each TCP variant. As
it is shown in Figure VI.12(a) and Figure VI.12(b), it is clear that the model
performs well in terms of identifying the underlying TCP variants when applied
both on an emulated and realistic scenario settings.
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Figure VI.12: Empirical PDF estimations for the TCP protocols with a 95%
confidence interval on emulated and realistic settings.

V1.6 Experimental Results and Discussion

We have conducted several experiments over different scenario settings. In order
to justify and guarantee how our learning model could predict the development
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Table VI.4: Stochastic confusion matrix.

Emulated Setting

Predicted
Maximum difference KS test
Actual | Veno | Vegas | Cubic | Veno | Vegas | Cubic
Veno 99 0 1 100 0 0
Vegas 0 100 0 0 100 0
Cubic 2 0 98 5 0 95
Realistic Setting

Veno 100 0 0 100 | 0 0
Vegas 0 100 0 0 100 0
Cubic 1 0 99 3 0 97

of a cwnd sawtooth and the underlying TCP variant with other realistic network
traffic scenarios captured from the Internet, we created a realistic testbed as
shown in Figure VI.4 where we experiment by running our resources on Google
Cloud platform nodes deployed across the globe. As shown in Figures VI.9 and
VI.10, our passive cwnd prediction model works reasonably well when applied
both on an emulated and realistic evaluation scenarios. We confirm that our
model operates correctly and accurately recognizes the sawtooth pattern for
realistic scenario settings across different Google Cloud platforms. This shows
that our prediction model is general bearing similarity to the concept of transfer
learning in the machine learning community [29].

Evaluation metrics: The passive cwnd prediction was evaluated for accuracy
using the Root Mean Square Error (RMSE) and Mean Absolute Percentage
Error (MAPE) metrics. The cwnd prediction performance result of both the
emulated and realistic scenario settings across the Google Cloud platforms in
terms of RMSE and MAPE is presented in Table VI.5. As stated in Section IV.5,
the ground truth data for the realistic setting was collected from the kernel
of the TCP sending node. The performance results on both metrics indicate
that our model is able to achieve reasonably accurate passive predictions of the
development of cwnd sawtooth pattern.

Table VI.5: cwnd prediction accuracy of loss-based and delay-based TCP variants
under an emulated and realistic settings.

Emulated Setting Realistic Setting
TCP Algorithms | RMSE | MAPE (%) | RMSE | MAPE (%)
Vegas [4] 1.8225 2.7618 3.6536 4.8864
Veno [11] 3.1421 3.8644 3.9254 4.8705
CUBIC [12] 4.0775 5.2961 3.6370 4.2774
Reno [17] 4.2484 5.9947 4.7541 5.0322
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In our two-dimensional space analysis, we evaluated how the B varies as a
function of the estimated queueing delay (ciz\ﬂ) for all TCP protocols basing
our hypothesis on the approaches;l)resented on Section VI.5. To see if the 3 is
dependent on the queueing delay diff, let’s consider TCP Veno [11]. Intuitively, If
the value of ciz}ﬁ" is low (i.e., Ji}ﬁ”<3), according to the standard specification Veno
sets the 8 to 0.8 and it means Veno decreases the cwnd upon packet loss only by
20%. However, if the delay is high (i.e., gi;ﬁ”>3), Veno sets the 8 to 0.5. In case of
TCP Vegas [4], if the c?z?f threshold is high enough Vegas increases the cwnd and
when the cwnd doesn’t reach the pipe, it decreases by 1. However, if the cwnd
is pretty large, it converges the 8 towards 1 because of its Additive Increase and
Additive Decrease (AIAD) strategy. In order to guarantee the accuracy of our
TCP variant prediction mo/d\el, we run our experiments where we ensure we have
measurements with high diff and low diff values on different scenario settings.
To this end, the prediction accuracies on emulated and realistic scenarios with
these two measurement cases are 97.5%, 95%, 97.83%, and 95.46% respectively
as shown in Table VI.2 and their corresponding confusion matrix is depicted in
Table VI.3. As explained above, our stochastic approach is also robust enough
in terms of classifying the TCP variants based on the a parameter without the
prior domain knowledge of the internal characteristics of each variant as it is
shown in Figure VI.12.
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VI. Classification of Delay-based TCP Algorithms From Passive Traffic
Measurements

VI.7 Conclusion and Future Work

In this paper, we investigate and explore in detail on how an intermediate node
(e.g., a network operator) can identify the transmission state of delay-based TCP
congestion control algorithms associated with a passively monitored TCP traffic.
We present an effective TCP variant identification methodology from traffic
measured passively by utilizing 3, the multiplicative back-off factor to decrease
the cwnd on a loss event, and the queueing delay values. We further employ
a novel non-stationary time series approach from a stochastic nonparametric
perspective using a two-sided Kolmogorov—Smirnov test to classify delay-based
TCP algorithms based on the «, the rate at which a TCP sender’s side cwnd
grows per window of acknowledged packets, parameter. Our model is built in such
a way that we don’t want the sender or network change anything with the TCP
parameter values that control increase and decrease ratios of the cwnd. Through
extensive experiments on emulated and realistic scenarios, we have demonstrated
that the data-driven classification techniques based on probabilistic models and
Bayesian inference for optimal identification of the underlying delay-based TCP
congestion control algorithms give promising and comparable results in terms of
accuracy. In conclusion, we show that the learned prediction model performs
reasonably well by leveraging trained knowledge from the emulated network
when it is applied and transferred in a realistic scenario setting. Finally, we
have shown that our model can also be applied equally well to loss-based TCP
variants using the presented approaches. To the best of our knowledge, this
paper is the first to study how the variability of the 8 parameter as a function
of queueing delay and the « parameter can be used for passive TCP variant
identification in real-time.

As part of our future work, we would like to substantially extend this work
in terms of devising a generic learning model for operating system fingerprinting
from passive measurements by combining the basic TCP/IP features and the
underlying TCP variant as input vectors.
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Abstract

With the increasing threats of security attacks, Machine learning (ML)
has become a popular technique to detect those attacks. However, most
of the ML approaches are black-box methods and their inner-workings
are difficult to understand by human beings. In the case of network
security, understanding the dynamics behind the classification model is
a crucial element towards creating safe and human-friendly systems. In
this article, we investigate the most important features in identifying
well-known security attacks by using Support Vector Machines (SVMs)
and {;-regularized method with Least Absolute Shrinkage and Selection
Operator (LASSO) for robust regression both to binary and multiclass
attack classification. SVMs are one of the standards of ML classification
techniques that give a reasonably good performance but with some
drawbacks in terms of interpretability. On the other hand, LASSO is
a regularized regression method often performing comparably well and
it has extra compelling advantages of being very easily interpretable.
LASSO provides coefficients that contribute how individual features affect
the probability of specific security attack classes to occur.

Hence, we finally use LASSO in particular for multiclass classification
to help us better understand which actual features shared by attacks in
a network are the most important ones. To perform our analysis, we use
the recent NSL-KDD intrusion detection public dataset where the data
are labeled into either anomalous (denial-of-service (DoS), remote-to-local
(R2L), user-to-root (U2R) and probe attack classes) or normal. Empirical

1 University of Oslo, Department of Informatics, destahh@ifi.uio.no
Keywords: Machine Learning, Network Intrusion Detection, SVMs, LASSO, Feature
Selection, Bayesian, Classification
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results of the analysis and computational performance comparison over
the competing methods used are also presented and discussed. We believe
that the methodology presented in this paper may strengthen a future
research in network intrusion detection settings.



Introduction

VIl.1 Introduction

As computer and network systems have become more dynamic and complex
over the years, chances for attackers to compromise security flaws in these
systems have also increased. A full list of security vulnerabilities for computer
programs is found at [26]. Even though, static computer network security
mechanisms like a firewall can provide a fairly acceptable level of security, more
modern and sophisticated Intrusion Detection Systems (IDS) should be used in
computer networks. The role of IDS techniques is very crucial in monitoring
computer network events for malicious activities, such as attacks against hosts
and protecting computer systems and network infrastructures from a potential
attack. The problem with the evolution of network threats and attacks is that
they are getting harder to detect and therefore it could be difficult to find out
whether network traffic is normal or anomalous. Commercially available IDS
are mainly signature-based that are designed to detect known attacks by using
the signatures of those attacks. Such systems must be frequently updated with
rule-sets and signature updates of the recent threat vectors, and are not capable
of detecting unknown attacks in network traffic. Examples of the computer
attack classes mentioned in this paper are briefly explained in Section VII.2.

Several traditional IDS use a signature-based approach in which events are
detected and compared against a predefined database of signatures of known
attacks that are provided by an administrator. The traditional approaches to
IDS depend on experts or managers codifying rule-sets defining normal behavior
and intrusions in a network [36, 40]. The two broad categories of IDS methods
are misuse and anomaly detection [6]. Misuse detection is a technique based
on rule sets, either pre-configured by the system or setup manually by an
administrator. This technique involves matching the signatures of known attacks
in a network against events currently taking place in the system that should be
considered as misuse [20, 36]. We find this technique mostly used in operational
settings. One of the main limitations of this approach is the failure of detecting
and identifying unknown computer attacks that do not have known signatures.
Anomaly detection method, on the other hand, refers to the problem of finding
patterns in data that do not comply with an expected notion of normal behavior
in a dataset. Everything interpreted as a deviation from the profile of a normal
system or user behavior is evidence of a malicious activity [5, 14, 27]. Anomaly
detection, however, can detect new attacks but the problem with anomaly
detection is that it has a higher false-positive rate.

ML techniques have the potential of detecting unknown attacks in network
traffic sharing features with other attacks by being trained on normal and
abnormal types of traffic. However, one critical problem in ML is identifying and
selecting the most relevant input features from which to construct an accurate
model based on training data for a particular classification task. As we have
observed from our evaluation result in Section VII.7 and as it is also reported
in the literature [11, 29, 38], employing ML techniques on the NSL-KDD [21]
dataset gives a very low level of detection rate on attack categories involving
content features (i.e., user-to-root (U2R) and remote-to-local (R2L) attacks)
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within the misuse detection context. However, with the same set of 41 features,
the detection rate for normal, denial-of-service (DoS) and probe is accurately
high. It is, therefore, important to do feature selection analysis to make it easier
for network administrators to better understand the features that contribute to
attacks.

In this paper, we address the problem of an actual feature selection for IDS
to find attack categories in a network through cross-validated regularized ML
techniques and an artificial neural network feature ranking methods. Selecting the
most relevant actual features improves the detection quality for many algorithms
that are based on learning techniques [19]. Feature selection helps to understand
better which actual features are the most important ones to find attacks in
a network. Therefore, in this paper, our focus is to analyze security attacks
by exploring the contribution of the 41 widely used actual input features and
selecting the most contributory ones in effectively identifying anomalies in a
network with respect to the attack categories. To that end, we have ranked the
actual input features into strongly contributing, low contributory and irrelevant
using a combination of feature selection filters and wrapper methods by carrying
out comparisons with previous works. We investigate the most important features
in identifying well-know security attacks by using SVMs and ¢;-regularized
method with LASSO. We use LASSO in particular for multiclass classification
to help us better understand which actual features shared by attacks in a network
are the most important ones. LASSO is much more computationally effective
and it provides coefficients that contribute to how individual features affect the
probability of specific security attack classes to occur. This again allows us to
be more specific in the analysis of the different classes of security attacks.

Our Contributions
Summaries of the main contributions of our paper are:

e We performed extensive simulation results where we compared feature
ranking using both two-stage? approach using SVM and one-stage’
approach using LASSO. We found that LASSO provides comparable results
at a lower computational cost.

e Despite the simplicity of LASSO, we found that it yields a feature ranking
that is similar to other well-established state-of-the-art two-stages based
approaches. Such similarity between the ranking models was thoroughly
tested using Kendall’s tau and Spearman’s footrule rank distance metrics.

o We use LASSO for multiclass classification to give us an insight into
features of different classes of attacks.

e We provide a deeper insight from a security engineering perspective on
why the features obtained by regularized ML techniques are so important
in detecting various security attacks in a network.

2 Apply classification technique first and then feature selection
3Feature selection and classification are intertwined using a penalization term
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Methodology

The rest of the paper is organized as follows: Section VII.2 gives an overview
of the benchmarking public dataset used in our work. In Section VIIL.3, we
review the state-of-the-art and related works of SVM and LASSO. Section VII.4
describes the feature selection and ranking techniques. Section VIL.5 presents
the ranking distance measure metrics. Section VII.6 presents the multiclass
feature engineering of the actual network security attack scenarios. Section VII.7
describes the evaluation results. Finally, Section VII.8 concludes the paper with
a discussion on future directions.

VII.2 Methodology

In this paper, we investigate a methodology to examine security attack analysis
using two well known ML techniques: SVMs and ¢;-regularized method with
LASSO for robust regression both to binary and multiclass attack classification
trained on the NSL-KDD intrusion detection public dataset [21], which uses
TCP/IP level information and embedded with domain-specific heuristics, to
detect intrusions at the network level.
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Table VII.2: Flag feature attribute values description.

Flags Description

REJ Connection attempt rejected

RSTO |Connection established, originator aborted (sent a RST)
RSTOS0|Originator sent a SYN followed by an RST

RSTR |Connection established, responder aborted

S0 Connection attempt seen, no reply (only the first SYN packet is sent)
S1 Connection established, not terminated

S2 Connection established and close attempt by the initiator

S3 Connection established and closed by the responder

SF Normal SYN/FIN completion

SH A state 0 connection was closed before we ever saw the SYN ack

OTH No SYN seen

Vil.2.1 Overview of NSL-KDD Dataset

In this paper, we used the NSL-KDD [21] benchmarking public dataset. It is
an improved version of the old KDD [4] and is suggested to solve some critical
problems mentioned in [31, 43]. The KDD dataset [4] was created by processing
the tepdump portions of the 1999 DARPA evaluation dataset collected in a
military network at MIT$ Lincoln Labs to study intrusion detection [30]. The
NSL-KDD public dataset [21] covers attacks which fall into 4 main categories:
denial-of-service (DoS), remote-to-local (R2L), user-to-root (U2R) and probe.
For different examples of each of these attack categories, we refer the reader to
Figure VIIL.1.

- >
U DoS (Denial of Service) \

(back, land, neptune, pod, smurf, teardrop)

R2L (Remote-to-Local)

(ftp_write %uess_passwd, imap, multihop,
ph , SPY, warezclient, warezmaster)

—— =

U2R (User-to-Root)

(buffer_overflow, loadmodule, perl, rootkit)

Connection

I P ————

______ ’ ‘ Probe
\

(ipsweep, nmap, portsweep, satan)

- e e o o o

B. Multinomial Classification

Figure VIIL.1: Attacks Classification.
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1.

Denial-of-Service (DoS) attacks: When an attacker tries to make a
network resource unavailable or too busy in order to prevent legitimate
users from accessing information or using a service a system provides in a
network e.g., syn flood.

Remote-to-Local (R2L) attacks: These are a class of exploits in which
the attacker does not have an account on the victim machine, hence exploits
some vulnerability to gain local user access from a remote machine e.g.,
guessing a password.

User-to-Root (U2R) attacks: This occurs when an attacker has local
access to the victim machine and tries to gain root privileges e.g., various
“buffer overflow” attacks.

Probing attacks: these are a class of exploits that take place whenever
the attacker tries to gather information (or find known potential
vulnerabilities) about the target host(s) by automatically scanning a
network of computers [13] e.g., port scanning.

Like DARPA [30] and KDD [4] datasets, the NSL-KDD public dataset [21]
consists of a total of 41 features [28] for the analysis and one target predictor
that indicates the attack category name. The set of features listed in Table VII.1
characterizing each connection are divided into the following three categories.

1.

214

Basic features: These groups of features encapsulate all the basic
characteristics that can be derived from packet headers of an individual
TCP/IP connection.

Content features: These features rely on a connection suggested by
domain knowledge to define suitable features for R2L and U2R attacks.
Unlike most of the DoS and probing, the R2L and UZR attacks do not
have any frequent pattern for intrusions. This is because DoS and probing
attacks involve sending a lot of connections to some host(s) in a very
short period of time. On the other hand, the R2L and U2R attacks are
embedded in the data portions of the packets and normally involve only a
single connection. In order to detect such kinds of attacks, we have to look
at the content of the connection and therefore we need “content” features
that indicate whether the data contents suggest suspicious behavior or not.

Traffic features: These groups also called connection-based traffic
features are computed using a time window interval. These are divided
into two groups: “same host” and “same service” connection features
(also called “time-based” traffic features of the connection records). The
“same host” features examine only the connections computed in the past
2 seconds time window that has the same destination host as the current
connection and calculate statistics related to protocol behavior, service,
etc. The same service traffic features examine only the connections that
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have the same service as the current connection and are computed using
a window of 100 connections instead of 2 seconds time window. This
is because there are slow probing attacks that scan the targeted host(s)
using a much larger time window than 2 seconds. Therefore, in order for
such attacks to produce an intrusion pattern, these features have to be
re-calculated using a connection window of 100 connections.

VII.3 Classification and Regression

VIL.3.1 Binary Classification Using SVMs

SVMs in ML are widely used supervised learning models for classification [3, 41],
regression analysis [15, 48] and density estimation problems [32]. In classification,
we are given n labeled training data samples of the form {(z;,y;)|z; € R,y €
{=1,1}}"fori =1,2,...,n where 2;€ R" represents an input feature of n-vectors
of real-valued predictors for the i*" observation that describe the training data
point and y;€{£1} represent the class label of the i'" data sample to which
class the point z; belongs. In our evaluation, we used an SVM with a Radial
Basis Function (RBF') kernel for classification. In order to perform an efficient
SVM classification through cross-validation, we have applied SVM tuning using
a model selection to find the best parameters C' and ~ which yield the least error
and the best accuracy for non-linear SVM.

Before applying a regression model for linear analysis, since the NSL-KDD
dataset is mixed with both numerical and categorical features, we applied a
Multiple Correspondence Analysis (MCA) [1] so that each feature is represented
as a vector of continuous values. We converted the categorical features
(protocol__type with 3* attribute values, service with 71° attribute values, and
flag with 11° attribute values) into continuous by creating binary features in
every column. This means we expand the matrix and normalize the dataset per
column and therefore the features are linearly interrelated. For example, 100 for
TCP, 010 for UDP and 001 for ICMP. The resulting feature vectors used after
binarization have 71237 dimensions out of which 92 normalized non-zero coefficient
features for binary classification are presented in Table VII.4. The impact of
this increased input dimensionality in the overall complexity of SVM is not that
significant. However, the performance depends more on the convergence criteria
inside the training algorithms and the sample size. The negative coefficients in
the result identify as a normal and whereas the positive coeflicients identify as
an attack.

4tep, udp, icmp

5aol, auth, bgp, courier, csnet_ns, ctf, daytime, discard, domain, domain_u, echo, eco_ 1,
ecr_i, efs, exec, finger, ftp, ftp__data, gopher, harvest, hostnames, hitp, http__ 2784, http__ 443,
http__ 8001, r2l4, imap4, IRC, iso__tsap, klogin, kshell, ldap, link, login, mtp, name, netbios__dgm,
netbios__ns, netbios_ssn, netstat, nnsp, nntp, ntp_ u, other, pm__dump, pop__ 2, pop__ 3, printer,
private, red__i, remote_job, rje, shell, smtp, sql_net, ssh, sunrpc, supdup, systat, telnet, tftp_ u,
tim__i, time, urh__i, urp__i, uucp, wucp_path, vmnet, whois, X11, Z39 50

SREJ, RSTO, RSTOS0, RSTR, S0, S1, S2, S3, SF, SH, OTH

738 + 3+ 71 + 11 = 123

215



VII. Enhancing Security Attacks Analysis Using Regularized Machine Learning
Techniques

Table VII.3: LASSO: Beta values for binary classification.

Number of Beta (f)Values | Categories A Values
Total Number of Beta Values 92 7.937784e-05
Non-Zero Beta Values 84 0.0001670827
Non-Zero Beta Values 10 3 0.3130826
Non-zero Beta Values 25 11 0.1487396
Non-Zero Beta Values 30 12 0.135526
Non-Zero Beta Values 35 17 0.08511426
Non-Zero Beta Values 40 19 0.07066335
Non-Zero Beta Values 50 30 0.02539509
Non-Zero Beta Values 100 84 0.0001670827

VII.3.2 LASSO with ¢;-Regularization

In order to perform /;-regularized feature selection, we recommend applying a
one-stage approach using LASSO fitting a predictive model with a binary target.
This again improves model performance as feature selection and classification
analysis in LASSO are intertwined. While other approaches including SVM
are two-stages which require more training time and they are computationally
inefficient. The LASSO regression uses a shrinkage method which allows a
variable to be partly included in the regression model to perform feature selection
where the estimated coefficients are shrunken towards zero as \ increases [44].

n P p
Minimize : » (Yi =Y Xi;B;)* + X >[5 (VIL1)
j=1 j=1

i=1

Where A > 0 is a nonnegative tuning parameter controlling the degree of
regularization. LASSO performs a model selection based on the shrinkage
operator A which controls the size of the 3 coefficients and the degree of sparsity
in 3. The feature selection in LASSO is performed by checking the coefficient
vector 3 which tells how relevant an actual feature is. Table VII.3 shows which
A value gives a corresponding number of optimized S values in the selection of
normalized features for binary classification. In Table VII.4, we have a total of
84 non-zero [ coeflicients of the normalized features. The 92 optimized non-zero
[ values and the corresponding A values shown in Table VII.3 are distributed
into all the normalized features. For example, the first 10 8 values go into 3
categories, the next 25 3 values goes into 11 categories, etc. In our evaluation,
the most significant actual features getting the highest 8 value in a descending
order are shown in Table VII.5.
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VIl.4 Feature Selection and Ranking Methods

Feature selection in IDS is used to eliminate the irrelevant or redundant input
features and utilize a few numbers of features. Feature selection has an important
effect on IDS and some of its benefits [10, 24, 34] are: providing a better
understanding of the most important features and the underlying process that
generated the dataset, making classification models more efficient, reducing
training times, providing cost-effective and faster predictors, avoiding overfitting,
increasing prediction performance, etc. In the context of classification, there are
three main categories of feature selection techniques [16, 39]: filter methods [37],
wrapper methods [22] and embedded methods [39]. Because of space constraints,
the basic concepts of feature selection techniques will not be discussed in detail
here, as they are well-known and documented elsewhere. Our focus in this
work is using wrapper feature selection techniques. Wrapper methods determine
subsets of features according to their relevance to a given predictor [16].

In this paper, we have employed a cross-validated ¢;-norm SVM-based
feature selection algorithm called Recursive Feature Elimination (RFE) [17].
The RFE [17] algorithm constructs the feature ranking from the SVM training
stage where the weights are assigned to the different entries of the classification
problem. In order to compute the relevance of the features, RFE uses the
separating hyperplane from the support vectors. RFE works based on a greedy
algorithm called backward feature selection® [22]. The main objective is to select
a subset of size S among f features (S<f) which maximizes the prediction
accuracy. The feature selection process can be expressed as the following: given
a feature set X = (z1, 2o, ... , ,) where z;€ R™ and a subset Y = (y1, 42, ...
, Yk ) of X with k<mn, which optimizes an objective function W(X) by removing
one weak” feature at a time. As presented in Algorithm 1, we keep on iterating
until we observe a sharp drop in the predictive accuracy of the model.

The For loop function in Algorithm 1 (line 7) controls the contribution of
each feature to the overall classification of the attacks. For a given class X, we
determine the right number of features (line 14) and select the N features that
have the highest values. Each feature is ranked using its importance to the final
model. According to [19], of all the 41 features presented in Table VII.1, 16
features (f3, f4, f6, 18, 123, 125, 26, f28, {29, 132, [33, f34, 135, 138, [39, f40)
are selected to be of strong significance in the anomaly detection. However, 14
features (f2, 15, f7, f10, f12, f13, f14, f15, f17, {18, f22, {24, f27, f41) are of very
little significance in the anomaly detection. The remaining 11 features (f1, f9,
f11, f16, 19, f20, 21, [30, f31, 36, f37) are insignificant. In our evaluation,
out of all the 17 most relevant features (f2, f3, f4, f6, [8, 23, 25, 126, {28, 29,
132, 133, 134, 135, £38, f39, f40), 16 of them are of strong significance in the
anomaly detection as described earlier in this section. Our evaluation results
show that the SVM and LASSO classifier accuracies of all the features including
strong and low contributing ones are 79% and 83% respectively. However, the

8A search that starts with the full set of features and sequentially eliminates one feature
at a time
9Feature with the least absolute coefficient in a linear model
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Algorithm 1 Feature selection algorithm using RFE

1: procedure PRE-PROCESS THE DATA(e.g., normalization)

2 for Each resampling iteration (10-fold cross-validation) do
3 Partition data into training and test sets

4: Train/tune the model using all the features

5: Predict the held-back samples

6 Calculate rankings to the model for each feature

7 for Fach subset size X;, i =1...X do

8 Keep the X; most important features

9 Train/tune the model using X; features

10: Predict the held-back samples

11: end for

12: end for

13: Find the accuracy over the X; using the samples

14: Select the appropriate number of features

15: Estimate the list of final features to keep in the final model
16: Fit the model based on the optimal X; using the training set
17: end procedure

SVM and LASSO accuracy of the 16 strongly contributing actual features is
comparably high as shown in Section VIL.7.

218



Feature Selection and Ranking Methods

Table VII.4: Binary: Non-Zero Coeflicient Features.

D Selected Features Coefficients

29 | same_srv_rate 9.6584405

33 dst_host_srv_count 8.8495808

139 dst _host_ srv_serror_rate 8.6792135

34 | dst_host_same_srv_rate 8.6109899

25 serror_rate 7.9176348

26 | srv_serror_rate 7.8804150

38 | dst_host_serror_rate 7.1196058

23 count 6.9890928

f32 | dst_host_count 6.8792587

J40 | dst_host_rerror_rate 6.6997582

35 dst_host_diff_srv_rate 6.4034485

28 | srv_rerror_rate 6.3596267

iz flagRET 5.9594539

3 serviceeco_i 5.8488743

3 serviceecr_i 5.7939503

3 servicedomain_u 5.6628783

f3 servicehtip 5.6548738

3 servicesmtp 5.5966379

18 wrong_fragment 5.5805339

4 5.5728882

iz 5.5427097

4 5.5210019

4 5.4825985

3 5.4398630

3 5.3662737

3 servicesystat 5.1609441

73| servicerje 5.0520126

3 serviceftp_data 4.5860699

3 servicelRC 4.5360582

3 servicetelnet 4.5133403

f3 serviceother 3.8991619

2 protocol_typeudp 3.8113397

3 servicefinger 3.7466049

3 servicetime 3.7452173

3 serviceurp_i 3.6329897

f17 num_file_creations 3.5458035

27 | rerror_ rate 3.2361194

3 servicepop_3 3.2291595

f16 num_root 3.2152647

3 servicedomain 3.1977012

3 serviceXT1 3.1686796

3 serviceftp 2.1324968

iz fagSF 2.1020335

5 src_bytes 2.0914915

J4 flagS2 2.0727762

JI4 | root_shell 2.0682542

iz flagSH 2.0604952

4 flagS3 2.0550322

2 protocol_typetcp 1.2548399

2 protocol_typeicmp 1.0515946

fI duration 0.0430454

3 servicessh 0.0078574

3 serviceimap4 -0.0288315
3 servicesupdup -0.0348969
JI5 | su_attempted -0.0438128
3 servicenetbios_dgm -0.0521436
SI3 | num_compromised -0.0587089
iz fagSF -0.0607704
J4 flagST -0.0711349
3 servicevmnet -0.0733044
3 servicepop_2 -0.0748774
f3 servicekshell -0.0816983
3 servicemtp -0.0857725
4 flagREJ -0.0975255
4 flagS2 -1.0987939
3 serviceklogin -1.1033372
J4 NlagS3 -1.1200202
3 servicebgp -1.1201005
3 -1.1239379
3 -1.1281446
3 serviceefs -1.1301224
3 servicehosmames -1.1415551
3 serviceiso_tsap -2.1419084
3 serviceZ39_50 -2.1421581
3 servicecsnel_ns -2.1452788
f3 servicegopher -2.1596109
3 servicewhois -3.1636177
3 servicennsp -3.1652713
3 serviceuucp -3.1669783
JEl servicecourier’ -4.1687838
3 servicehttp_443 -4.1695469
3 servicectf -5.1771981
B serviceprivate

f6 dst_bytes
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Vil.4.1 Ranking models and Importance of Features

Since feature selection is important for selecting the relevant features during
the data-preprocessing step to reduce space dimensionality, its accuracy
should be evaluated after combining with feature ranking algorithms. In
our evaluation analysis, an artificial neural network algorithm called Learning
Vector Quantization (LV(Q)) and one-stage approach using LASSO are used for
feature ranking. LVQ is a supervised prototype algorithm widely used for
classification of vectorized data and feature ranking in the field of artificial
neural networks [23]. It supports both binomial and multinomial classification
problems. To understand how LVQ works, let us, for example, assume that a
clustering of data into K classes is to be learned and a set of n-dimensional
data {(z;,y;) C R" x {1,2,...,K}i = 1,...,n} is given. The class labels or
categories are given as {1,2,..., K}. The components of a vector € R™ are
given as = (z1,...,%,). LVQ chooses every class K by a weight vector W; in
R"™. The distance between x; and w; is given by the weighted distance metric
dist(z;,wj, \) applying the feature weights vector A = [A;,..., A\n], Dop_; Ak
The weight vector \; measures the importance of the k*" of the input vector ;.
Rank of the k' feature at step i of the LVQ training is an average of all Ay, for
k=1,...,i.

Table VIL.5: Comparison of ranking techniques.

Related Work Techniques | Our Techniques
Rank | WMR | SAM | MRMR | LVQ | LASSO

/32 | fs32 132 132 132
M0 40 135 135 140
128 | f35 140 140 /35
/35 | 128 128 128 128

1 29 | f29 729 729 729
2 £33 | f33 133 133 733
3 134 f34 134 134 f39
4 139 | f39 739 139 34
5 f38 | f38 123 126 25
6 fo5 | f25 725 123 126
7 f26 | f26 138 125 38
8 f23 | f23 126 138 723
9
10
11
12

VIL.5 Distance Between Ranking Models

Our analysis is not only reducing the number of actual features but also to
understand their contribution to the classes of the attacks. As recommended
by the authors in [16], we used filters to obtain and compare feature rankings
and baseline results. The authors in [19] carry out feature rankings with filter
algorithms based on Weight by Mazimum Relevance (WMR) [2], Minimum
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Redundancy Mazimum Relevance (MRMR) [8] and Significance Analysis for
Microarrays (SAM) [}7]. First, we normalize filters ranking for a coarse-tuning
according to the maximum and minimum values and rearrange features in
descending order. Finally, we used wrapper feature selection techniques for a
fine-tuning. As shown in Table VIL.5, the comparison of the diverse feature
selection techniques showed strong positive agreement with an acceptable
classification performance. All selection techniques agreed about finding traffic
features as relevant and content features as irrelevant. We adopted two
well-known ranking distance measure metrics in the evaluation of how similar our
ranking algorithms are in relative to these methods as presented in Table VIIL.6 for
the most relevant features using: Kendall tau and Spearman’s footrule distance.

VIL.5.1 Kendall’s tau ranking distance

Kendall’s tau rank distance is a metric used to measure (count) the number of
pairwise disagreements between two rankings on the same domain [25, 33]. Let
{(z1,v1), (T2,Y2), .-, (Tn,yn)} denote a random sample of n observation from
a vector (X,Y") of continuous random variables such that all the values of (z;)
and (y;) are unique. For n objects of observations in the sample, there are (")

2
unique pairs to compare (x;, ¥;) and (x;, y;). Kendall’s tau (7) [33] is given by:

K(o)= Y_ [o(i) <o())];with i+ j (VIL.2)
(i,5):3>7
This means, given a ranking sequence o(1),...,0(n), where 1,...,n is the

rankings of the n objects of observations in the sample. For example, Kendall’s
tau ranking distance between two ranking predictions RI and R2 is given
by: K(T1,Tz) = [{(i,j) : 1 < j,(T1(i) < Ti(j) A To(i) > To(j5)) vV (T1(z) >
T1(5) NT2(i) < Ta(y))}|, where T3 (i) and T»(7) are the rankings of the element
¢ in Ry and Ry respectively, thus K (7) measures the total number of pairwise
inversions [25]. In Table VII.6, dj, represents the number of pairs whose values
are in opposite order (also called “discordant pairs”). Since there are 7 discordant
pairs between the algorithms WMR and LVQ, the Kendall’s tau distance is 7.
The normalized Kendall’s tau distance (which lies in the interval [0, 1])'" is

defined by:

S number ofncif;sf;);"dant pairs (VIL3)

2

A value of 0.10 indicates that 10% of pairs differ in ordering between the two
ranking methods, i.e., they are 90% in agreement. The larger the normalized
Kendall’s tau rank distance, the more dissimilar the two ranking methods are.

10A value of 1 indicates maximum disagreement between the rankings
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VIl.5.2 Spearman’s footrule distance

The Spearman’s footrule distance is the sum of the absolute values of the difference
between the ranks [7, 25, 42]. The Spearman’s footrule distance can be defined
as:

K(o)=Y_li—o(i)| (VIL4)
K3

As shown in Table VIIL.G, our results of the normalized Spearman’s footrule
distance (p) show that there is a strong positive agreement between the rankings.
That means, our rankings are in agreement with the ranking methods presented
in [19] to a large extent. The normalized Spearman’s footrule distance (p) is
defined by the following equation where dg is the difference between the ranks

of each observation.

6 d§

CEIREY (VIL5)

p=1-
Remark: The higher the p value is, the higher the similarity between the ranking
techniques. This means, there is a linear association between the rankings in

comparison.

Table VII.6: Distance between ranking algorithms: Comparison.

Kendall’s tau Distance Spearman’s Footrule Distance
LvQ LASSO LvVQ LASSO
di | tau (1) | di | tau (1) | ds | p ds | p
WMR 7 0.10 4 0.06 12 | 0916 | 8 | 0.965
SAM 6 0.09 3 0.045 | 10 | 0.961 | 6 | 0.972
MRMR | 3 0.045 | 6 0.09 6 | 0.958 | 10 | 0.989

VI.6 Multiclass Classification using LASSO

Binary classification has been intensively studied and in this paper, we go beyond
that and study multiclass classification using LASSO with ¢;-regularization
technique which allows us to be more specific in the analysis of the different
classes of attacks. In addition to the benefits explained above, the great thing
about ¢;-regression is that it is non-continuous. LASSO is very intuitive with
regression and allows us to explore a lot of things in terms of features selection
for attack analysis. Regression is such that with all the sets of features, we get
the best accuracy. We applied LASSO for feature selection by selecting the
optimal value of A from a number of A values that gives the best prediction
accuracy. We increased the penalty on the regression so that we reduce the
number of optimal non-zero 8 values. This means the higher the penalty is, the
more [ values will be pushed to zero. In multiclass LASSO, we get different
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values for each attack class. However, when we perform binary classification, we
obtain one set of features and one bias.

The main benefit of LASSO for multiclass security attack classification
is that it gives us a deeper understanding of the features of different attack
categories. This helps to provide a deeper insight from a security engineering
perspective on why the corresponding selected features are so important in
clearly detecting a certain attack. There are +ve and -ve coefficient values
which increase or decreases the probability of a certain attack as shown in
Table VII.7. For example, the feature wrong fragment with a coefficient of
12.271653598 means that this feature increases the probability that it is a
DoS attack. Features wrong fragment and same_srv_rate are among the most
contributing to a DoS attack. This makes sense because TCP fragmentation
(also called Teardrop) are DoS attacks that prevent reassembly protocols from
putting together a fragmented UDP traffic packets sent across the network to the
intended destination by rebooting the targeted host. DoS attack is sending a lot
of traffic to the same service to block the communication channel and therefore
count, src_bytes, flagS0 etc. are among the contributing features for such an
attack, e.g., TCP SYN flood attacks. The attacker may use many spoofed source
IP addresses by sending a lot of TCP connections with S0 flag to a port of the
targeted host in a time window of 7T seconds. The flag features as shown in
Table VII.2 are the flags in the TCP segment header and flag is an important
feature in identifying attack patterns because it shows the summary information
of the connection behavior with regard to the network protocol specification.
Some contributing features of the SYN flood are percentage of connections that
have the “S0” flag, count, dst_host__count, srv__count (connections that have
the same service) etc. Depending on its good spread on the different services and
in relationship to what is a positive contribution, the dst _host diff srv_rate
feature discounts for a DoS attack. This means it will be an attack if there
is no spread in the services. If the same service sends an icmp echo replies
(serviceecr i) to the same destination TP address, this may lead to a smurf
attack (count, srv_count), i.e., a DoS where its effect is slowing down the
network. If the source or destination IP address and port numbers are equal
with TCP connection flag of either “S0”, “REJ” or “RST0”, then it could be a
network attack of type neptune (DoS) that may eventually slow down the server
response.

Out of all the 71 service feature attribute values, serviceeco i used for
port scanning is the most significant contributing to ipsweep: identifies active
hosts, portsweep, and mmap: which lists open ports on a network, satan
(dst_host__diff _srv_rate, srv_rerror_rate) i.e., probe attacks. ICMP ping is
one of the most used tools in IP firewalls. Probe attacks are associated with
the scanning of open ports and running services on a live host during an attack.
For example, to find the list of running SSH services servicessh on a network,
an attacker may probe many IP addresses on the default SSH listening port.
If a response from the probe of the default SSH port is received, the attacker
may launch a brute force attack on the target host. In order to launch a
probe attack, the duration of a connection usually lasts longer than usual,
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Table VII.7: Multiclass: Non-Zero Coefficient Features.

Attack Class 1D Selected Features Coefficients

/8 wrong_fragment 12.271653598
129 same_srv_rate 5.768419027
3 serviceecr_i 4.315135582
4 flagSO 3.997512139
132 dst_host_count 3.902672852
f5 src_bytes 3.894714431

DoS 123 count 3.831534986
25 serror_rate 3.617634819
33 dst_host_srv_count 2.007112749
24 | srv_count 2.005255132
138 dst_host_serror_rate 1.024086592
f40 dst_host_rerror_rate 0.413642565
39 dst_host_srv_serror_rate 0.339514109
2 protocol_typetcp 0.238965656
3 serviceftp_data -0.002862796
f4 flagSF -0.879086505
135 dst_host_diff_srv_rate -3.164487231
f13 num_compromised 11.289718672
3 serviceIRC 9.672086382
3 serviceurp_i 9.277818694
3 servicehttp 8.949948108
f4 flagSF 8.678467594
3 servicedomain_u 7.576078198
129 same_srv_rate 6.407448247
3 servicesmtp 6.405202769

Normal f3 serviceX11 5.725198610

f4 SflagS1 5.294657953
SIS | su_attempted 5.231055104
ST duration 4.928014017
4 flagS2 4.319417825
f4 flagS3 3.134242962
4 flagRET 2.780086083
3 servicepop_3 1.004959401
2 protocol_typeudp 0.356947842
2 protocol_typeicmp 0.233562559
74| flagRSTR 0277986975
f40 dst_host_rerror_rate -0.320941948
24 | srv_count -3.015266290
123 count -7.145703431
139 dst_host_srv_serror_rate -9.054475025
f3 serviceeco_i 9.68002664
3 servicenetstat 9.440867487
3 servicessh 8.412049192

Probe 3 servicesystat 8.413300736
3 serviceremote_remote 7.158598362
3 servicerje 7.032530367
135 dst_host_diff _srv_rate 6.884222244
5 src_bytes 6.288375361
4 flagRSTR 3.526688669
f1 duration 1.33198478
3 servicewhois 0.790131328
28 | srv_rerror_rate 0.23681525
3 servicehttp -0.824674256
f3 serviceftp_data -2.528426436
f12 logged_in -2.704620781
f3 servicer2l4 6.924775328
f22 is_guest_login 6.864848127

ROL fII num_failed_logins 5.087381233
3 serviceftp_data 4.979039069
3 serviceauth 3.504325369
/3 flagRSTO 3.307197817
fI5 su_attempted 2.651112950
3 servicetelnet 1.941753603
3 servicefip 1.328600083
f34 dst_host_same_srv_rate 1.165825106
132 dst_host_count 0.14562231
J10 | hot 0.073086650
f14 | root_shell 4.82944013
fI6 | num_root 2.356016890

U2R f17 num_file_creations 1.6585901
f19 num_access_files 1.2985147
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and the number of data bytes in one connection sent by the attacker will be
large. Hence, src_bytes and duration are among the contributing features for
such attack. Other contributing features for probe attacks include: remote job
(serviceremote__job), remote job entry (servicerje) etc.

On the other hand, R2L and U2R attacks are detected by looking more on
the content of the connection. Because these attacks are embedded in the data
portions of the packets and normally involve only a single connection. The content
features as shown in Table VII.1 indicate whether the data contents suggest
suspicious behavior or not, e.g., number of failed logins, if successfully logged in
or not, whether a su command is attempted and succeeded, number of access to
access control files (e.g., “/etc/passwd”) etc. Some of the contributing features
of R2L attacks are servicer2ly, is_guest_login, su__attempted etc. Another most
contributing feature to R2L attacks is serviceftp data. This is because if a large
amount of traffic is sent from a source as compared to a destination during an
FTP session, then either warezmaster, warezclient or ftp_ write exploits, that are
associated when an FTP server has mistakenly given write permission to guest
users, where they could create hidden directories on the system, can be launched.
Normally, guest users are never allowed write permissions on an FTP server.
Another type of R2L attack contributed by the num_ failed logins feature is the
guess__passwd attack where the attacker is trying to login to a machine where
s/he is not authorized to use by guessing login information of a system. If a
root__shell is obtained, then the telnet service (servicetelnet) connection can
allow a remote attacker to launch a buffer overflow attack, i.e., U2R. A U2R
attack usually takes place when an attacker logs in as an administrator followed
by creating a number of files and making a lot of changes to the access control
files. The num_ root is another most contributing feature for a U2R attack that
provides the number of root accesses in a connection.

From a networking perspective, there is a strong correlation among some
actual features. This means, one feature may be discarded due to redundancy in
the presence of another relevant feature with which it is strongly correlated [16].
For example, let us consider features f13 and f16. It is sufficient for a classification
method to either resort to f18 or f16. At the presence of two correlated features,
LASSO [44, 45] tends to arbitrarily pick only one and drops the less relevant by
reducing the [ coefficient to zero. However, which correlated feature is selected
or dropped is “random” in LASSO that produces a highly unstable behavior.
This is because it is not clear at the end as to which choice of the correlated
feature 8 values will highly contribute to the regression. This has led to other
solution approaches and the problem of correlated features in LASSO penalty
can be avoided by using either the group LASSO [49] designed to do feature
selection at a group level which forces the model to assign a similar weight
to correlated features [46] or ¢y (ridge regression) penalty technique [18] that
push correlated features to the same value in the model by shrinking the larger
coefficients. When there are correlated features, unlike LASSO, ridge regression
has the tendency to share the coefficient value among the group of correlated
predictors [35]. Taking model stability and interpretability into account, the
LASSO penalty problem can also be avoided by a better regularization technique.
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This technique is a combination of ¢; and ¢, penalties called Elastic Net [50] that
pushes the values of the correlated features together and make them move in and
out of the model as a group. The FElastic Net regularization penalty, similar to
LASSO, does an automatic feature selection and continuous shrinkage, and it can
select multiple features that are correlated as it is thoroughly discussed in [50].
The authors in [46] have shown that several state-of-the-art ML classification
methods can generate randomly misleading feature rankings when the training
datasets contain large groups of correlated features.

It is worth mentioning that LASSO operates with the implicit assumption that
the features are independent which makes the analysis possible and maintains
the computational simplicity. Such assumption is common in ML and is the
basis for Bayesian classifier, which is known to be an optimal classifier when the
features are independent. However, even in the presence of feature dependence,
classification experimental results have shown that Bayesian classifiers yield
accurate results [9]. Bayesian classifiers also give good performance in practice
compared to the state-of-the-art supervised classification methods in ML such
as Decision tree classifiers, k-Nearest Neighbor (kNN), etc. [12]. During the
attack classification, we assume the notion of a Bayesian model where features
are independent and we focus on the higher probability of the coefficient values
for both binary and multiclass classification. As seen in Tables VII.4 and VIIL.7,
the distribution of the features among the attack classes is based on the large
coefficient values of the features.
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VIl.7 Experiments and Results

In this paper, we set out to experimentally examine classifying security attack
analysis using SVMs and /;-regularized method with LASSO. To evaluate
the prediction accuracy of the competing techniques and potential benefit of
feature selection for IDS, we have performed an experimental evaluation using
the R language on an NVIDIA Tesla K80 GPU accelerator computing with
the following characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz,
48 CPU processors, 128GB RAM, 12 CPU cores running under Linux 64-bit.
The execution time (hh:mm:ss) of SVM and LASSO classification is 05:49:14
and 02:27:04 respectively. The elapsed time for SVM is obviously longer.
Table VII.8 shows the confusion matrix and performance metrics results for
our approaches described in the earlier sections on a 10-fold cross-validation
experiment of the complete NSL-KDD public dataset. We have ranked the
actual input features into strongly contributing, low contributory and irrelevant
using a combination of feature selection filters and wrapper methods. We have
carefully performed our experiments by carrying out comparisons with previous
approaches. To that end, our results showed that selecting the most important
actual features has improved the overall performance of both methods. As it
is shown in Table VIIL.8, the test sets used for the computing methods (i.e.,
SVM and LASSO) are of the same size. Our evaluation results show that SVM
and LASSO classifier accuracies of all the 41 features including strong and
low contributing features are 79% and 83% respectively. A total accuracy of
97% for binary classification is achieved for both two-stage evaluation approach
using SVM and one-stage approach using LASSO. Compared to binary, a total
multiclass classification accuracy of 95.90% is achieved for DoS, U2R, R2L
and probing attack categories using LASSO at a lower computational cost. To
validate our evaluation of the classification models, in addition to accuracy, we
have assessed multiple performance validation metrics such as precision, recall,
specificity, F1-Score, and AUC!.

11 Area under the curve
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Table VII.&: Classification Performance Metrics.

(a) Binary: Confusion Matrix of SVM (b) Confusion Matrix of LASSO
. Actual . Actual
Prediction Anomaly | Normal Prediction Anomaly | Normal
Anomaly 33551 441 Anomaly 33699 1386
Normal 966 40618 Normal 818 39673
Totals 34517 41059 Totals 34517 41059
(¢) SVM Performance (d) LASSO Performance
Precision 98.08% Precision 99.95%
Recall 97.20% Recall 100%
Specificity 98.93% Specificity 99.99%
F1-Score 97.95% F1-Score 99.97%
AUC 97.12% AUC 99.44%
Accuracy 97.14% Accuracy 97.08%

(e) Multiclass: Confusion Matrix of LASSO

Prediction Actual

DoS Normal | Probe R2L U2R Precision
DoS 18048 202 249 71 27 97%
Normal 62 26605 149 394 102 97%
Probe 260 130 4264 34 16 90%
R2L 48 63 41 204 53 50%
U2R 57 109 15 25 195 49%
Recall 97.7% 98% 90.4% 28% 50%
F1-Score 97.37% | 97.77% | 90.51% | 35.88% | 49.12%
Specificity | 98.65% | 97.83% | 99% 98.94% | 99.60%

VII.8 Conclusion and future directions

The process of defining appropriate input features, performing feature selection,
data normalization and the contribution of this with interpretable results on
security attack classification and computational performance have not been very
well-studied. In this paper, we introduce the use of regularized ML techniques so
as to enhance computer network security attack analysis. In our work, an effective
feature selection analysis for IDS is performed on the benchmarking NSL-KDD
public intrusion detection dataset. We focused mainly on the contribution of the
actual input features that are well understood within the networking community
to find what kinds of attacks in a network are the most significant. To that
end, we have ranked the actual input features into strongly contributing, low
contributory and irrelevant using a combination of feature selection filters and
wrapper methods by carefully carrying out comparisons with previous techniques.
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We have examined LASSO for robust regression both to binary and multiclass
security attack classification to give us an insight into features of different
classes of security attacks. Extensive simulation results are performed where
we compared feature ranking algorithms using both two-stage approaches with
SVM and one-stage approach using LASSO. We adopted two well-known ranking
distance measure metrics in the evaluation of how similar our ranking algorithms
are in relative to other state-of-the-art methods. Using the same test set for the
competing methods, we found that LASSO gives comparable results with SVM.
However, LASSO is much more computationally effective. LASSO provides
coefficients that contribute how individual features affect the probability of
specific security attack classes to occur. Moreover, LASSO allows us to explore
more in terms of feature contribution for security attack analysis and it gives
a better insight into why specific features have been selected. We concluded
that one-stage approach using LASSO is simpler, computationally faster and
gives us good performance with the most significant actual features. Finally,
we provide deeper insight from a security engineering perspective on why the
features obtained by regularized ML techniques are so important in clearly
identifying various security attacks. We believe that the methodology presented
in this paper may strengthen a future research in network intrusion detection
settings.

In this work, our experimental study focuses particularly on the four attack
classes namely DoS, U2R, R2L and probe used in the labeled public dataset.
Even though the NSL-KDD dataset we use in our analysis may not be an
ideal representative of existing realistic networks, it does not suffer from any
of the mentioned limitations in the other old public datasets. Because of the
lack of public intrusion detection datasets in the computer networking research
community, we believe it can be applied as an effective benchmark dataset for
the general problem of security analysis to help networking researchers work with
different ML techniques to perform intrusion detection. Generating a similarly
labeled intrusion dataset of real-time network traffic with different classes of
attack distribution as in NSL-KDD dataset is costly and challenging. Therefore,
as part of our future work, we would like to deeply investigate this problem and
validate our findings using more recent realistic network traffic.
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Abstract

Securing and managing large, complex enterprise network infrastructure
requires capturing and analyzing network traffic traces in real-time. An
accurate passive Operating System (OS) fingerprinting plays a critical role
in effective network management and cybersecurity protection. Passive
fingerprinting doesn’t send probes that introduce extra load to the network
and hence it has a clear advantage over active fingerprinting since it
also reduces the risk of triggering false alarms. This paper proposes and
evaluates an advanced classification approach to passive OS fingerprinting
by leveraging state-of-the-art classical machine learning and deep learning
techniques. Our controlled experiments on benchmark data, emulated
and realistic traffic is performed using two approaches. Through an
Oracle-based machine learning approach, we found that the underlying
TCP variant is an important feature for predicting the remote OS. Based
on this observation, we develop a sophisticated tool for OS fingerprinting
that first predicts the TCP flavor using passive traffic traces and then uses
this prediction as an input feature for another machine learning algorithm
for predicting the remote OS from passive measurements. This paper takes
the passive fingerprinting problem one step further by introducing the
underlying predicted TCP variant as a distinguishing feature. In terms of
accuracy, we empirically demonstrate that accurately predicting the TCP
variant has the potential to boost the evaluation performance from 84%
to 94% on average across all our validation scenarios and across different
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types of traffic sources. We also demonstrate a practical example of this
potential, by increasing the performance to 91.3% on average using a tool
for TCP variant prediction in an emulated setting. To the best of our
knowledge, this is the first study that explores the potential for using
the knowledge of the TCP variant to significantly boost the accuracy of
passive OS fingerprinting.

VIIl.1 Introduction and Motivation

As modern network infrastructures grow in size, collecting detailed relevant
knowledge about the dynamic characteristics and complexity of large
heterogeneous networks is crucial for many purposes e.g., network vulnerability
assessment and monitoring, Spam detection, etc. Developing advanced network
security and monitoring techniques are important for both the research and
security practitioners. There has been a significant research work in the context
of network management and cybersecurity on developing network security
tools to fingerprint remote Operating Systems (OSes) [26, 27, 28, 44, 45].
OS fingerprinting is the process of inferring the OS of a machine operating
with TCP/IP by a remote device connected on the Internet without having
physical access to the device [20]. There are many different custom tools for
fingerprinting of the most commonly used OSes based on the characteristics of
its underlying TCP/IP network stack [20] and this, to a large extent, is due
to variability in how the TCP/IP stack is traditionally implemented across
different OSes [25]. One common approach, for example, is by collecting the
TCP/IP stack basic parameters [23], e.g., IP initial Time To Live (TTL) default
values [5], HTTP packets using the User-agent field [22], Internet Control
Message Protocol (ICMP) requests [31], known open port patterns, TCP window
size [18], TCP Maximum Segment Size (MSS) [33], IP Don’t Fragment (DF)
flag [32], a set of other specific TCP options to mention a few. However, in our
work, we want to take this one step further by combining these basic features
and other settings with the underlying TCP variant as a feature in our model
due to the fact that different OSes are doing slightly different implementations
of TCP. Some implementations of common TCP variants quickly overshoot the
size of the Congestion Window (cwnd) because of differences in the variant
implementations. Hence, we believe that knowing the implementation of the
underlying OS may help us understand better their exact behavior. It can also
help us explore how to classify an OS when different OSes are implementing the
same TCP variant.

Fingerprinting Techniques: We can determine what OS a remote computer
on the Internet is running by either passively listening to traffic captured from a
network or by actively sending it packets. The most widely used complementary
remote OS fingerprinting proven approaches that employ a variety of TCP/IP
stack scanning are broadly categorized into classes of active and passive methods.
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o Active Fingerprinting: This technique is based on actively transmitting
one or more specially crafted network packets with different packet settings
or flags to a remote network device in order to analyze the corresponding
potentially identifying replies [26, 44]. This method determines knowledge
of the underlying OS according to the received responses from the target
device by examining the network behavior of known TCP/IP stack [37].
However, since this approach injects additional traffic to the network by
generating active probes, it may itself trigger alarms and get blocked by
firewall rules and Network address translators (NATs) [9].

e Passive Fingerprinting: This approach, on the other hand, inspects
and analyzes packets traveling between end hosts without injecting any
traffic into the network [27, 28, 45]. This technique with little resource
simply analyzes a pattern of the OS-specific information that has already
been sent in the network traffic and compares for a match with a predefined
database that contains a list of known signatures of different OSes. Passive
fingerprinting doesn’t send probes and hence it has a clear advantage over
active fingerprinting since it reduces the risk of triggering alarms [9].

OS fingerprinting can also be performed using classical techniques known as
“banner grabbing”. It is an approach used to gain detailed information about
a remote computer system on a network and the associated services running
on its opened ports [35]. Using techniques like this, some remote computers
announce their underlying OS freely and running application services with their
versions in use to anyone connecting to them as part of welcome banners or
header information. Some of the widely used services that serve banner grabbing
are: Telnet, FTP, NetCat, SMTP, etc. However, it is useful to remember that
some of these basic services are effective against less secure networks.

Potential benefits and applications: Network scanning and accurate remote
OS fingerprinting are the crucial steps for penetration testing in terms of
security and privacy protection. Note that attackers can also embrace passive
fingerprinting techniques to search for potential victims in a network. For
example, by identifying the OS running on a remote computer and the list
of services it runs, an attacker can target the device to eavesdrop on the
communication between the endpoints without having physical access to the
device. However, we argue that our work presented here is motivated by a
number of practical applications that can be positively used by network and
system administrators. Passively fingerprinting an OS by analyzing the packets
it generates and transmits over a network is extremely important in the areas of
network management and computer security for several reasons. For example, it
is useful to explore a network for potential exploitations of security vulnerabilities
which can be exploited by attackers, auditing, identify critical attacks, reveal new
information about a network user etc. Network administrators can, therefore, use
this OS related information to maintain the security policy and reliability of their
network by configuring a network-based Intrusion Detection Systems (IDS) [24].
Vulnerabilities and security threats in a network may result from rogue or
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unauthorized devices [40], unsecured internal nodes within the network and from
external nodes [4]. Hence, passively fingerprinting an OS has a potential benefit
in addressing these critical problems. This, from an academic point of view, is
interesting and something that needs to be addressed from a network security
research point of view.
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Figure VIII.1: Network architecture for passive OS fingerprinting by an
intermediate node.

Limitations of previous works: Traditionally, most of the existing general
OS fingerprinting techniques resort to manually generated signature matching
from a database of heuristics which contains features of widely used OSes. This
means, after comparing the generated signatures, the first set of responses match
with the highest confidence against a database of fingerprints would be used to
select the specific probable OS. However, manually updating a large number
of signature and managing databases of new OSes adds a considerable amount
of time and hence we may suffer from the consequences of the lack of recent
signature updates of the known OSes. For example as reported in [22], the last
updates of the fingerprint databases of Ettercap [28] and p0Of [45] date to 2011
and 2014 respectively. Consequently, new OSes families like Android 4.4 and
higher versions of Android, Windows 10 distributions, etc. will not be recognized
by these tools since they are not included in their fingerprint databases. Hence,
we argue that it is important to consider making use of a fingerprint database
that contains variations of most currently used OSes and automating these tasks
by employing learning algorithms capable of extracting all possible OS-specific
features for discovering the underlying OSes. To explore this idea of applying
learning algorithms, we present a unified and robust classification approach to
an advanced passive OS fingerprinting that leverages both machine learning
and deep learning methods. Our fingerprinting technique is completely passive
meaning that we only need to be able to observe network traffic from a target
machine at any observation point on the network without injecting any traffic
into the network. Note that the TCP/IP header fields would not be impacted by
SSL/TLS encryption of the TCP payload. Hence, since we utilize features that
are readable even with encryption, our approach is independent of whether the
flow is encrypted or not. Figure VIII.1 shows the architecture for implementing
our fingerprinting methodology.
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Why machine learning approaches to OS fingerprinting? There are
several limitations imposed by classical fingerprinting techniques. Passive OS
fingerprinting generally relies on recognizing the default values for various
TCP/IP stack parameters. If a user changes these parameters, the task of
OS fingerprinting becomes much more challenging. Most of the existing works
on fingerprinting provide little capability to address this challenge. Motivated by
this problem, we proposed a novel approach by leveraging both machine learning
and deep learning-based techniques that consider the set of parameters as a
whole, rather than individually so that our model caters for variations in TCP
parameters. If a user changes the initial receive window size, for instance, we
may still be able to recognize the OS from other parameters that have not been
changed (TCP congestion control algorithm, initial cwnd size, etc.). Note that
this depends entirely on the changes made by the user to the default TCP or
OS stack parameters that are commonly used for signature based fingerprinting.
The other reason why we create a model by employing learning techniques is to
understand the complex patterns of the varying values in the TCP header and
extract useful input features. Because machine learning offers new possibilities as
it can extract pattern and general rules for classification. Machine learning can
also be more robust to small variations in the input parameters. In addition to
this, with the use of learning techniques, we argue that avoiding using manually
updated static signature databases has two potential benefits. Firstly there is no
tedious task of creating these unique fingerprints, all you need is a set of values
or features. The second benefit comes from a known flaw in many of the existing
fingerprinting tools, where a “first-match” policy is applied, meaning that if two
fingerprints are equal the tool would always predict the first OS with that exact
fingerprint. However, learning techniques, on the other hand, make calculated
guesses of which of the classes with the same fingerprint that will be predicted.

Contributions: We summarize our main contributions below.

e We propose and evaluate a robust approach to OS fingerprinting from
passive measurements by leveraging machine learning and deep learning
techniques.

o We investigate the use of TCP congestion control variant as a distinguishing
feature in passive OS fingerprinting.

e We explore variability in implementations of TCP variant by different OSes
and its effect on classifying remote OS.

o We study the applicability of Recurrent Neural Networks (RNN)-based
models for robust and advanced passive OS fingerprinting by combining
the basic TCP/IP features and the predicted TCP variant as input vectors.

o We show that the TCP flavor has a great potential for boosting passive
OS fingerprinting.
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e We show that the learned OS fingerprinter model performs reasonably well
by leveraging a trained knowledge from the emulated network when it is
applied and transferred on a realistic network.

e We build a universal tool for passive monitoring that can be applied to
first estimate the TCP cwnd, second predict the underlying TCP flavor
and finally uses the TCP variant as an input feature to detect the remote
computer’s OS.

Roadmap: The rest of the paper is organized as follows. Section VIII.2
discusses related work, and Section VIII.3 presents the experimental datasets.
Section VIIL.4 presents the machine learning of the OS fingerprinter. The
machine learning of the TCP variant prediction tool is presented in detail in
Section VIIL.5. Section VIII.G presents the experimental results without a
known TCP variant which will play the role of baseline. In order to assess the
importance of knowing the TCP variant, experimental results of all the use cases
with an Oracle-given TCP variant are presented in Section VIIL.7. Section VIII.8
presents the experimental results with the predicted TCP variant. Section VIII.9
presents the transfer learning results. Finally, Section VIII.10 concludes our
paper and suggests directions for future research work.

VIll.2 Related Work

Remote OSes fingerprinting has a long history in the computer security
community [2, 22, 23, 26]. TCP/IP header fingerprinting and any information
related to application protocols are used to identify the underlying OS running on
a remote host either actively or passively [25]. As we explained in Section VIIIL.1,
there are multiple existing tools for both the predominant active and passive
OS fingerprinting approaches, where Nmap [26] is one of the most prominent
open-source active fingerprinting tools. The work presented in [38], SYNSCAN,
works in a similar fashion to Nmap, but it performs the fingerprinting task
by actively sending a small number of crafted network packets to a single
TCP port. Xprobe2 [44] is another popular fingerprinting tool, that relies
primarily on ICMP packets, and it depends on how many changes we make to
the default TCP/IP stack parameters. Since Xprobe2 does fuzzy fingerprinting
with a signature matching algorithm as an alternative to Nmap, it means that
if we make a lot of changes to the default TCP/IP stack parameters, the
underlying OS will not be detected. However, Xprobe2 is more robust to small
fingerprint variations as compared to Nmap. As explained above the other
fingerprinting tools, Ettercap [28] and p0f [45], have not been updated since 2011
and 2014 respectively to include variations of most widely used modern OSes. For
passive OS fingerprinting to be effective, we believe that the limitations of these
fingerprinting tools need to be addressed. The work in [23] also demonstrates
that the OS fingerprinting accuracy of the Ettercap and p0f signature databases
is low and techniques to improve performance was proposed. Hence, the paper
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presents rule-based machine learning classifiers capable of identifying 75 classes
of OSes from TCP/IP packet headers found in the FEttercap database. They
proposed a classifier technique using k-nearest neighbors (KNN) that returns
an approximate first match for an OS from a fingerprint database this counters
the problem of classifying hosts as unknown if no exact match is found in the
database [23]. However, their evaluation yielded poor experimental results,
rejecting as much as 84% of the test packets, while 44% of the accepted patterns
were wrongly classified [23]. The problems contributing to poor performance
was believed to be caused by two main issues. The first reason is, substitution
errors due to multiple OSes with exactly the same fingerprint feature values.
The second reason for this poor performance is the high rejection rate caused by
numerous unique feature values derived from the same OS. After combining the
OS classes most often confused with each other, eliminating all the classes where
the error could not be reduced by combining classes, the error percentage was
reduced to 9.8% with no rejected packets. Beyond remote OS detection using
TCP/IP network stacks, fingerprinting techniques have also been extended to
be applied for remote device level fingerprinting [8].

A recent study that is most closely related to our work, and which has
also given a comprehensive survey on passive fingerprinting methods, can be
found in [22]. The authors have employed OS fingerprinting methods in the
environment of wireless networks. Besides using the three basic TCP/IP stacks
(i.e., TTL, window size and initial SYN packet size), the authors suggested also
using the user-agent information in HT'TP request headers and communication
with OS-specific domains can be usable in large dynamic networks [22]. The
average accuracy of OS classification using the TCP/IP parameters reported
in [22] is 80.88%. Zhang et al.’s paper on OS detection [46] utilizes only one
machine learning technique namely Support Vector Machine (SVM). However,
the testing error rate of identifying some of the OSes e.g., Mac, Cisco, FreeBSD,
and OpenBSD is 25.80%, 24.22%, 17.71%, and 15.85% respectively [46]. Aksoy
et al. [2] have employed genetic algorithms for identifying packet features suitable
for OS classification based on the analysis of the network TCP/IP packets using
machine learning algorithms. However, most of these previous works use the
basic actual TCP/IP features for evaluating passive OS fingerprinting. Besides,
we believe that these tools have the inability to extract all possible OS-specific
features for passively fingerprinting the underlying OSes. In contrast, what
separates our contribution in this paper from the other previous related works
is that out model supports a wider range of TCP /TP network stack features.
As shown in Figure VIIL.2, the main goal of our work presented here is to
combine these basic TCP/IP features that are the basis of OS fingerprinting
with the underlying TCP variant by leveraging both machine learning and deep
learning techniques. This contribution remains largely unexplored and is not
used by existing fingerprinting techniques. Detecting the implementation of a
TCP variant passively is a challenging task and this, we believe, is the reason
why no previous works use it to passively fingerprint remote OSes. However, in
our case, we already have a general solution for this difficulty presented in our
previous works [12, 13, 14]. The reason why we focus on the implementations
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of the underlying TCP variant as a feature in our OS classifier model is due
to the fact that different OSes are doing slightly different implementations of
TCP. Hence, we believe that passively observing the network-level characteristics
found in TCP packets can give us more information about the remote computer’s
underlying OS. We further believe that this will also help us to explore in detail
the long-term characteristics of TCP traffic. To the best of our knowledge,
this is the first study of passive fingerprinting OSes by applying RNN methods
combining the basic TCP/IP features and the underlying TCP variant as input
vectors.

VIIL.3 Experimental Datasets

Our machine learning models for OS classification is developed and tested on
three datasets, presented below.

VII.3.1 Benchmark Data

First, we utilize a large benchmark dataset that has been used for OS
fingerprinting in a previous related work [22]. This dataset is closely aligned
with our task, and it was collected from a university wireless network. The
benchmark dataset was used in the previous work for OS fingerprinting based on
the HTTP header, while the ambition of our paper is to do generic fingerprinting
based only on the TCP packet fields. Since we aim at fingerprinting that is
not application-specific, the TCP information in the dataset is useful for our
purpose, while the HTTP User-agent information in our experiments is used
only to establish ground truth about the OS that was used.

Table VIII.1: Statistics of the OSes and their market shares.

Android | Windows| Mac OS Linux i0S Unix Other
8.0 10 Mojave | Ubuntu 16.04 | 12.1 | Solaris 11.4 |Unknown
8.1 7 High Sierra| Ubuntu 18.04 | 11.4 |FreeBSD 11.2
6.0 8.1 Sierra Ubuntu 18.10 | 12.0
7.0 8.0 El Capitan| Fedora 29 10.3
7.1 XP Yosemite Debian 9 9.3
5.1 Vista | Mavericks | CentOS 7.6 11.2

openSUSE 42.3
36.5% | 35.99% 6.37% 0.79% 13.99% 1.58% 4.78%

The benchmark dataset contains 79087345 flows, activity of 21746 unique
users, 253374 WiFi sessions, 25642 unique MAC addresses, and 6104 unique
IP addresses, a fingerprint database of 2078 standard TCP /IP signatures of 51
known unique OSes with a total of 529 variations when considering major and
minor versions [22]. The dataset consists of three basic TCP/IP network stack
features, i.e., initial SYN packet size, TTL, and TCP window size [22]. After
our first set of testing, we realized that the data was severely skewed and that
only a few of the classes contained almost all of the entries, giving us artificially
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good classification results. We then removed most of the very seldom occurring
classes and ended up with 33 reduced classes. We also removed all traffic that
did not contain HTTP User-agent information, since we could not establish
ground truth for this traffic. In addition, we created a new dataset where all the
classes were bucketed into seven groups, consisting of the six most widely used
major OS families: Android, Linux, Mac OS, Unix, Windows, iOS, and a seventh
class called “Other” for OSes not suited for any of the other groups as shown in
Table VIII.1. Finally, we ended up distributing all of the labels equally so that
each OS class had the same number of occurrences. This is not necessarily the
option that gives a model with the best classification accuracy, but it creates
the most versatile model with balanced training data. This helps us improve
the generalizability of our model with a unified approach that encompasses all
variations of the most widely used OSes.

VIIl.3.2 Realistic Traffic

While benchmark traffic is useful to link our experiments to previous related
work, we also wanted additional realistic traffic for which we have more control
and that allows us to make our own assurances of the quality of the data. Thus,
we passively collected our realistic dataset from TCP traffic originated from the
internal network of the Oslo Metropolitan University and destined to various
hosts on the Internet. First, we collected data for fixed (non-mobile) desktop
computers (typically using OSes like Windows, Linux, Unix, Mac OSx, etc.)
by using an intermediate node as shown in the network setup in Figure VIII.1.
Then, we collected the data that covered mobile devices, like android and 70S.
The latter was collected from the 5G 4IoT research lab [1, 36] of the Oslo
Metropolitan University.

We spent a significant amount of effort in establishing ground truth, i.e.,
determining the actual OS that has been used for each traffic flow. To establish
ground truth in the realistic dataset, we follow two approaches. The first approach
was only applicable to the non-mobile desktops, while the second method was
used for both mobile and non-mobile devices. With the first method, we leveraged
the DHCP log messages associated with the non-mobile desktops to derive the
ground truth from the DHCP server of the Oslo Metropolitan University network
that logs the sessions by the MAC address and name of the device. Since we
collect the real data from the internal network of our university, extracting the
DHCP log messages can give us detailed information about the OSes. We could,
for example, see information about the vendor-specific prefires since most of
the OS variants are identified based on their vendors. The list of device vendor
prefixes is useful in revealing the specific implementation of an OS because most
of the modern OSes from the same device vendor usually share the same OS
kernel and similar network behaviors. For example, we found out that Apple
products often share the same TCP /IP parameters. The second approach we used
to identify the OS is getting the predefined browser strings that loosely tell the
name of the underlying OS assigned by the vendor from Webserver. We believe
changing the default device names by all users is not that common and sometimes
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discouraged by the vendors, e.g., Google and Apple OSes. However, the device
name of Linux and Windows OSes could be changed easily by experienced users
which would make passively identifying these devices hard. Since a number
of computer vendors offer devices with a pre-installed OS and default device
name and MAC address, we can use this information to derive the ground truth
for OS fingerprinting. For example, Apple devices use a default string name
of “<user>-iPhone”, “<user>-iPad”, Microsoft uses “Windows-Phone” for its
mobile devices, and Android uses “android-<android_id>", etc.

Our real traffic covers the communication to and from our university and
hence all traffic whose source and destination IP addresses are within the subnets
of our internal network. Hence the network administrator of our university has
full control over the internal machines with real IP addresses that are not going
to a NAT gateway, and therefore it is fairly possible to tell whether it is a laptop
or a desktop PC by looking it up in the internal database owned by the university.
However, since it is a dynamic network we do not have full control over external
machines, because they can be anything behind an IP address that changes
dynamically. This is because there is an endless number of machines spoofing
scanning the network and they can appear as Linux-powered OSes but they
could be Windows and vice versa and this happens because the user may have
strongly tuned the TCP stack to look like something else. It is pretty hard to
certainly say anything about the external computers because the communication
can go through a NAT gateway possessing another OS type. For example, if a
user is connected to a student wireless network, there is a chance that it may
go to a Linux NAT gateway and hence from outside the user is seen as Linux
NAT which makes it hard to predict whether the underlying OS is Linux, Mac
or Windows. Therefore, fingerprinting devices behind NAT technology on a
distributed network where a number of devices can hide behind a NAT is another
critical challenge. It is, therefore, worth noting that establishing ground truth
in dynamic networks at a larger scale remains a challenging problem. Further
investigation to explore these difficulties will be done in our future works. Finally,
due to the privacy protection of possibly sensitive data, the payload of all the
network packets collected was removed and anonymized with a prefix-preserving
algorithm [7, 42]. Furthermore, we were only allowed to collect TCP headers
of the traffic flows, while we could not collect complete traffic captures, due to
privacy protection and legal reasons.

VIIl.3.3 Emulated Traffic

In a real scenario where the OS fingerprinting is going on continuously in an
intermediate node of an enterprise or production network, the intermediate node
will have more information available than only the TCP header, such as the
traffic profile or the knowledge of congestion or the outstanding bytes-in-flight
of a flow. In our experiments below, we show how this information can be very
useful for OS fingerprinting. Since we do not have full traffic packet captures
in our benchmark dataset or in our realistic dataset, we needed an additional
dataset that we collected from an emulated network, where there would be no
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privacy protection or legal issues related to our dataset. The architecture of
our emulated network is similar to the network setup shown in Figure VIII.1,
except that all the nodes (the sender, the intermediate node and the receiver)
are implemented in virtual machines. All background traffic of the OSes for our
emulated scenario is generated using the iperf [6]. Establishing ground truth is
straightforward, as we have full control of the OSes used when generating the
traffic. In addition to establishing the ground truth, we also wanted to allow the
intermediate node to establish a prediction of the TCP variant by monitoring
the on-going traffic profile of the TCP flow between the sender and the receiver.
As shown later in the paper, using definitive or predicted knowledge of the TCP
variant as an additional input feature to the OS fingerprinting, might boost
the fingerprinting accuracy significantly. How the machine learning model for
prediction of the TCP variant in the emulated scenario is trained and how the
TCP variant is subsequently predicted are presented in the following.
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Figure VIIL.2: The process implemented on the intermediate node for passive
OS fingerprinting.

VII.4 Machine Learning of the OS Fingerprinter

VIIl.4.1 Classical Machine Learning Approaches

The OS fingerprinter takes various features as input parameters, and use machine
learning to predict the OS as shown in Figure VIII.2. Many machine learning
techniques could be used to implement a model for passive OS fingerprinting.
In this paper, we have employed the following most commonly used classical
machine learning methods suitable for our task. In order to train and test
our classification models, we employed every experiment with a ratio of 60%
training, 40% testing split and 5-fold cross-validation setting on all variations of
the features into one learning model.
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Figure VIIL.3: The process implemented on the intermediate node for prediction
of the TCP variant of the passively intercepted TCP traffic flow. An LSTM-based
machine learning module predicts the cwnd from the outstanding bytes-in-flight.
In the next step, the cwnd behavior is used to predict the TCP variant as
explained in further detail in our previous works [12, 13, 14]. The predicted
TCP variant is finally used as an input feature to the OS fingerprinting process
(see bottom right part of Figure VIII.2).

SVM: In order to perform an efficient multi-class SVM classification through
cross-validation, we tuned the SVM hyperparameters using a GridSearchCV
that allows specifying only the ranges of values for optimal parameters by
parallelization construction of the model fitting. Finally, in our evaluation, we
found out that SVM with a Radial Basis Function (RBF) kernel for classification
model yields a substantially better result.

Random Forest (RF): We tuned the meta-estimator by varying the number
of decision trees between 1 and 1000. We found out that increasing the number of
trees more than 10 doesn’t give much improvement in the classification accuracy.

KNN: We applied KNN by testing different values of K ranging from 5 to 100
followed by a weight function for a total of 20 observations. The observations
have been conducted in two ways. In the first experiment, we set the weight to
uniform. In the second experiment, the points are weighted by the inverse of
their distance, causing closer neighbors to have greater influence. Finally, we
choose the model that has the highest accuracy for a given unseen instance.

VIIl.4.2 Deep Learning Approaches

To find the deeper characteristics of TCP variants implemented by respective
OSes and exploit the extra OS-specific information, we apply the following two
neural network architectures.

Multilayer Perceptron (MLP): In our evaluation, MLP model with a
single-layer feedforward neural network [16, 34] has been used to classify the
different classes of OSes. After the hyperparameter tuning, we tested our MLP
model with a different number of batch sizes, hidden layers and nodes (e.g., 0,
1, 2, 32, 64, 128) in each layer. Combining all of these, a total of 324 models
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were trained with and without the default TCP variant. We found out that the
results for both with and without a known TCP variant were almost the same
with an insignificant drop in the accuracy irrespective of which hyperparameters
performed the best. Finally, 128 nodes of the network per dataset are trained
for 150 epochs with a batch size of 500 by SGD with momentum of 0.9 and
a constant learning rate of 0.01. However, we learned that SGD is sensitive
in regards to the selection of the learning rate since it doesn’t automatize the
values and we also found that it suffers from premature convergence and is
outperformed by Adam-based optimization methods. Hence, both Adam and
Nadam gradient-based optimization algorithms fit for our purpose and that is
because we wanted to use an optimization algorithm that adapts its learning
rate dynamically in a way that doesn’t affect the objective function and learning
process of the model. Our experimental results show that the hyperparameter
tuning baseline experiments by applying tanh as activation function and Adam
optimization algorithm and training the model for 150 epochs, provides a
substantial improvement in accuracy as compared to the other parameters.

Long Short-Term Memory (LSTM) models: We have explored an
approach to classify the underlying OS from passive measurements using
LSTM-based RNN architecture by combining the basic TCP/IP features and
the underlying TCP variant shown in Table VIII.2 as input vectors. For more
details about LSTM applied in the context of computer networks, we refer
the reader to our previous paper [13]. We trained our LSTM model over 150
epochs of the training samples with a batch size of 32 as values in time-series.
We propagate the input feature vector (z) to the model through a multilayer
LSTM cell followed by a fully connected dense layer of 150 hidden nodes with
Rectified Linear Unit (ReLU) activation function using the hard_sigmoid as
recurrent activation for the different layers that generates an output of a sequence
dimensional vector of predicted OSes (y;).

We trained our LSTM-based learning algorithm without the knowledge of
the input features from the true signatures of the OSes during the learning phase.
We learn the model from the training data and then finally predict the test
labels from the testing instances on all variations of the OS-specific parameters.
In order to train our prediction model more quickly, and get a more stable and
robust to changes OS classification model, we have applied one of the most
effective optimization algorithms in the deep learning community, the Adam
stochastic algorithm [19] with an initial learning rate of 0.001 and exponential
decay rates of the first (81) and second (f2) moments set to 0.9 and 0.999
respectively. We further optimize a wide range of important hyperparameters
related to the neural network topology to improve the performance of our OS
classification model.
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Vill.4.3 Experimental Hardware Setup

All our machine learning experiments are carried out using a cluster of HPC
machines based upon the GNU/Linux operating system running a modified
version of the 4.15.0-39-generic kernel release. The prediction model is
performed on an NVIDIA Tesla K80 GPU accelerator computing with the
following characteristics: Intel(R) Xeon(R) CPU E5-2670 v3 @2.30GHz, 64
CPU processors, 128 GB RAM, 12 CPU cores running under Linux 64-bit. All
nodes in the cluster are connected to a low latency 56 Gbit/s Infiniband, gigabit
Ethernet and have access to 600 TiB of BeeGFS parallel file system storage.

Vill.4.4 Objectives of our Experiments

The aim of our experiments is to explore the effect of the TCP variant as an
input feature when passively detecting the underlying OS. To investigate this,
we divide our analysis into three different experiments. First, in the baseline
experiment (Section VIIL.G) we carry out the OS fingerprinting without using
a known TCP variant as an input feature. This corresponds to the simplest
state-of-the-art transport layer method, which is illustrated in the upper part
of Figure VIIL.2. Since there is a close connection between existing popular
OSes and the TCP variants they use, our hypothesis was that the potential for
improvement by using the TCP variant as an input feature would be significant.
For example, CUBIC [10] is the default congestion control algorithm as part of
the Linux kernel distribution configurations from version 2.6.19 onwards. Since
Android devices are also Linux-powered, CUBIC remains to be the default TCP
congestion control algorithm. Many Windows 7 distributions have been shipped
with the default New Reno [15] and whereas Windows 8 families with CTCP [39].
Therefore, in the next Oracle-based experiment (Section VIIL.7), we investigate
the potential of knowing the TCP variant, and how much this knowledge might
boost the fingerprinting accuracy. Here we assume that there is an Oracle that
can identify and give the TCP variant used in the TCP flow that is fingerprinted.
This is illustrated in the bottom left part of Figure VIII.2. However, in a real
scenario, the intermediate node would not have access to definite knowledge
of the TCP variant (e.g., given by an Oracle). Instead, the intermediate node
might at best try to infer it from the monitored traffic. Thus, in the third
prediction-based experiment (Section VIIL.8), we first allow the intermediate
node to predict the TCP variant passively. This is illustrated in the bottom
right part of Figure VIIL.2. The OS fingerprinter then uses that TCP variant
prediction as an input feature to make the OS prediction illustrated in the upper
part of Figure VIII.2. The TCP variant is predicted by analyzing the famous
sawtooth pattern behavior of estimated cwnd of TCP, which is computed based
on the outstanding bytes-in-flight [13, 14]. This is presented in more detail in
the next section. Since the latter experiment requires TCP traffic details of
outstanding bytes-in-flight, which is not available in our benchmark and realistic
datasets, this experiment is only possible with our emulated dataset.
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VII.5 Machine Learning of the TCP Variant Prediction Tool

The main goal of the experiments in the emulated network is to use the predicted
TCP variant as an additional input feature to the OS fingerprinting. The TCP
variant is predicted by the process illustrated in Figure VIIL.3. As described in
sufficient detail in our previous works [12, 13, 14], we used a database to match
and join the intercepted TCP traffic on both the intermediate node and the
sending node. The outstanding bytes-in-flight of the traffic (i.e., the number of
bytes that have been sent but not yet acknowledged) is used as input to our
machine learning model to predict the cwnd behaviour of the traffic. We use
LSTM for the machine learning. We trained and verified the machine learning
model by matching the predicted TCP states with the actual TCP kernel states
directly logged from the Linux kernel. Since we have full control of the sending
nodes, we can track the system-wide TCP state of every packet that is sent and
received from the kernel to verify our model’s prediction accuracy against the
actual TCP variant by matching with the actual sending TCP states using the
techniques presented in our previous works [12, 13, 14]. After the verification,
we can run our learning model and get the cwnd predictions of the TCP stack
in use.

Once we can estimate the cwnd of the sender, we can also infer the
multiplicative back-off factor to decrease the cwnd on a loss event () which
is an important feature for uniquely identifying the TCP variants. Finally, we
combine the predicted TCP variant as the basis of OS fingerprinting with the basic
TCP/IP features as shown in Figure VIIL.2. Here, we consider only loss-based
TCP congestion control algorithms, e.g., BIC [43], CUBIC [10], CTCP [39],
Reno [17], and New Reno [15]. Our approach could also be useful to other
TCP variants like Google’s QUIC [21]. QUIC uses packet loss as an indicator
of congestion and supports a number of different congestion control algorithms,
including CUBIC [10] and BBR [3].

VIl.6 Baseline Experiment: Results without Knowing the
TCP Variant

Here we present the results of the machine learning and deep learning techniques
under all the validation scenarios presented above without a known underlying
TCP variant which will play the role of baseline for the other evaluations.

VIIl.6.1 Based on Benchmark Data from Previous Related Work

Looking at Tables VIII.2 and VIIL.3, both machine learning and deep learning
classification techniques have consistently achieved good levels of precision and
recall for all general classes of OSes except i0S. Quantitatively, iOS and Mac OS
devices were underrepresented in the benchmark data from previous related work.
Besides, as it is shown in Figures VIII.4 and VIIL.5, there is a slightly higher
misclassification of iOS as unknown and this is why the precision and recall of
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iOS are comparably lower than the rest of OSes. We also believe that the limited
TCP/IP stack basic features could contribute to the indistinguishability and
misclassification of OS classes with the same kernel implementation. The false
positives are easier to notice in the corresponding confusion matrices.

Table VIII.2: Benchmark data [22] experimental results without a known TCP

variant using SVM, RF, and KNN.

SVM RF KNN

0S Precission | Recall | Precision | Recall | Precision | Recall
Android 0.74 0.88 0.87 0.91 0.87 0.91
Linux 0.85 0.85 0.91 0.90 0.91 0.90
Mac OS 0.65 0.77 0.61 0.83 0.58 0.88
Other 0.91 0.81 0.92 0.81 0.92 0.81
Unix 0.91 0.99 0.94 0.99 0.94 0.99
Windows 0.97 0.88 0.98 0.91 0.98 0.91
iOS 0.73 0.55 0.72 0.53 0.79 0.47
Average 0.83 0.82 0.85 0.84 0.86 0.84

Accuracy 81.96% 84.07% 83.95%

Table VIIL.3: Benchmark data [22] experimental results without a known TCP
variant using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.75 0.92 0.77 0.85
Linux 0.90 0.82 0.83 0.85
Mac OS 0.62 0.81 0.58 0.83
Other 1.00 0.74 0.91 0.81
Unix 0.94 0.99 0.94 0.99
Windows 0.97 0.91 0.97 0.86
iOS 0.67 0.57 0.79 0.48
Average 0.84 0.82 0.83 0.81

Accuracy 82.16% 81.04%

VIIl.6.2 Based on Realistic Traffic

Our performance results of the realistic traffic without a known TCP variant
using the machine learning and deep techniques are presented in Tables VIII.4

and VIIL5 respectively.

Figures VIII.6 and VIIL.7.

250

The respective confusion matrix are presented in



Baseline Experiment

: Results without Knowing the TCP Variant

: 4000
Android 700 Android
3500
Linux 600 Linux 3000
Mac_0S 500
. Mac_0S 2500
2 2
© 400
g Other S Other 2000
£ 2
. 300 =
Unix Unix 1500
200
) 1000
Windows Windows
. 100 500
ios i0s
0 0
s g s o o
v@“’ & ‘@(,9 s \(\c@‘ ©
o
Predicted label Predicted label
(a) SVM (b) KNN
4000
Android
3500
Linux
3000
Mac_OS 2500
g
©
g Other 2000
£
Unix 1500
1000
Windows
500
ios
0
b@p & & & « = &
S ° S
> Q"bb o ~$\Q

Predicted label

(c) RF

Figure VIII.4: Confusion matrix comparison of the machine learning techniques
using the benchmark data from related work [22].
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benchmark data from previous related work [22].
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Baseline Experiment: Results without Knowing the TCP Variant

Table VIII.4: Realistic traffic experimental results without a known TCP variant
using SVM, RF, and KNN.

SVM RF KNN
OS Precision | Recall | Precision | Recall | Precision | Recall

Android 0.75 0.89 0.86 0.90 0.84 0.93
Linux 0.89 0.82 0.94 0.89 0.93 0.88
Mac OS 0.63 0.81 0.61 0.82 0.61 0.82
Unix 0.94 0.99 0.94 0.99 0.94 0.99
Windows 0.97 0.89 0.98 0.89 0.98 0.89
iOS 0.88 0.72 0.86 0.73 0.88 0.72
Average 0.85 0.83 0.86 0.85 0.87 0.85

Accuracy 83.43% 85% 85.10%

Table VIIL.5: Realistic traffic experimental results without a known TCP variant
using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.81 0.83 0.76 0.86
Linux 0.89 0.79 0.90 0.81
Mac OS 0.61 0.82 0.82 0.79
Unix 0.92 0.99 0.94 0.99
Windows 0.98 0.89 0.97 0.89
iOS 0.84 0.73 0.70 0.92
Average 0.84 0.83 0.83 0.84

Accuracy 83.91% 83.27%

VIIl.6.3 Based on Emulated Traffic

Our performance results of the emulated traffic without a known TCP variant
as an input feature using both machine learning and deep learning techniques
are presented in Tables VIII.6 and VIII.7 respectively. As we can see in the
corresponding confusion matrices presented in Figures VIIL.8 and VIIL.9, there
is slightly inaccurate classification of the Mac OS due to its underrepresentation.
The precision and recall for the rest of the OSes using machine learning and
deep learning techniques are reasonably good.

VIll.6.4 Comparison of Results without Known TCP Variant

As shown in Tables VIIL.2, VIIL.3, VIIL.4, VIIL.5, VIIL.6, and VIIL.7, our
experimental results are pretty consistent. Firstly, we can see that there is
not much difference in performance across different machine learning and deep
learning techniques. But more importantly, there are not many differences in
performance between results from using different types of experimental data.
This is intuitively correct, since the OS fingerprinting is based on the basic
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Table VIII.6: Emulated traffic experimental results without a known TCP variant
using SVM, RF and KNN.

SVM RF KNN

OS Precision | Recall | Precision | Recall | Precision | Recall
Android 0.74 0.90 0.86 0.90 0.85 0.91
Linux 0.92 0.82 0.94 0.89 0.92 0.90
Mac OS 0.63 0.81 0.61 0.82 0.61 0.82
Unix 0.94 0.99 0.94 0.99 0.94 0.99
Windows 0.97 0.89 0.98 0.89 0.98 0.89
iOS 0.88 0.73 0.86 0.73 0.88 0.73
Average 0.85 0.84 0.86 0.85 0.87 0.85

Accuracy 84.67% 85.73% 85.27%

Table VIIL.7: Emulated traffic experimental results without a known TCP variant
using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.75 0.88 0.91 0.85
Linux 0.93 0.78 0.92 0.74
Mac OS 0.62 0.81 0.86 0.88
Unix 0.92 0.99 0.94 1.00
Windows 0.93 0.91 0.98 0.73
iOS 0.88 0.73 0.82 1.00
Average 0.85 0.83 0.89 0.88

Accuracy 84.05% 88.44%

TCP/IP packet fields, and should not differ much between various types of data,
whether we do evaluation using the benchmark data, real data or emulated data.
Secondly, we believe accuracy in the range of 82-88% (average value) is perhaps
not sufficient for a product in a real deployment. Our hypothesis is that this
accuracy could be boosted considerably had we only known the implementation
of the underlying TCP variant. We will explore this hypothesis in the next
section.

VIIL.7 Oracle-based Experiment: Results using
Oracle-given TCP Variant

Here we assume that we know exactly the underlying TCP variant, i.e., we
assume it is given by an Oracle. We show that knowledge of the TCP variant
has a great potential for boosting passive fingerprinting of OSes, and in this
section, we will try to quantify this potential. In the next section, we will show
that much of this potential can be harvested by using a tool that predicts the
TCP variant.

254



Oracle-based Experiment: Results using Oracle-given TCP Variant

VIIl.7.1 Based on Benchmark Data from Previous Related Work

Tables VIIL.8 and VIIL.9 show a significant performance gain across all classes
of OSes when we assume prior knowledge of the underlying TCP variant,
as compared to the results when the TCP variant is unknown presented in
Tables VIIL.2 and VIIL.3.

Table VIIL.8: Benchmark data [22] experimental results with Oracle-given TCP
variant using SVM, RF and KNN.

SVM RF KNN

0S Precision | Recall | Precision | Recall | Precision | Recall
Android 0.96 0.99 0.99 0.98 0.99 0.98
Linux 0.86 0.95 0.92 0.95 0.93 0.94
Mac OS 0.98 0.89 0.97 0.92 0.97 0.92
Other 0.93 0.81 0.93 0.81 0.90 0.83
Unix 1.00 1.00 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.97 0.92 0.99 0.91
iOS 0.75 0.89 0.75 0.91 0.76 0.91
Average 0.92 0.92 0.93 0.93 0.93 0.93

Accuracy 91.71% 92.73% 92.69%

Table VIIL.9: Benchmark data [22] experimental results with Oracle-given TCP
variant using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.96 0.97 0.94 0.97
Linux 0.89 0.92 0.88 0.93
Mac OS 0.96 0.92 0.97 0.88
Other 0.93 0.81 0.84 0.84
Unix 1.00 1.00 1.00 1.00
Windows 0.96 0.92 0.98 0.84
iOS 0.76 0.89 0.73 0.83
Average 0.92 0.92 0.91 0.90

Accuracy 91.91% 90.03%

VIIl.7.2 Based on Realistic Traffic

The performance results of the realistic traffic with the Oracle-given TCP variant
presented in Tables VIII.10 and VIII.11 show the potential of knowing TCP
variant given by an Oracle for passive OS fingerprinting in a realistic scenario.
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Table VIII.10: Realistic traffic experimental results with Oracle-given TCP
variant using SVM, RF and KNN.

SVM RF KNN

OS Precision | Recall | Precision | Recall | Precision | Recall
Android 0.95 1.00 0.99 0.98 0.99 0.98
Linux 0.86 0.91 0.94 0.93 0.92 0.94
Mac OS 0.99 0.90 0.96 0.92 0.97 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.99 0.89 0.99 0.89
iOS 0.93 0.96 0.91 0.99 0.92 0.98
Average 0.95 0.95 0.96 0.96 0.96 0.96

Accuracy 94.81% 95.65% 95.69%

Table VIII.11: Realistic traffic experimental results with Oracle-given TCP
variant using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.98 0.97 0.98 0.97
Linux 0.92 0.92 0.90 0.93
Mac OS 0.96 0.92 0.96 0.92
Unix 1.00 1.00 1.00 1.00
Windows 0.97 0.91 0.99 0.88
iOS 0.92 0.97 0.91 0.98
Average 0.95 0.95 0.95 0.95

Accuracy 94.98% 94.89%

VIIl.7.3 Based on Emulated Traffic

Our performance results of the emulated traffic with the Oracle-given TCP
variant using both classical machine learning and deep learning techniques are
presented in Tables VIII.12 and VIII.13. We can see that this shows a significant
improvement in performance over the results without a known TCP variant
presented in Tables VIII.6 and VIIL.7. Both machine learning and deep learning
techniques have comparable and consistent results in terms of accuracy.

VII.7.4 Comparison of Results with Oracle-given TCP Variant

Our accuracy results presented in Tables VIIL.8, VIIL.9, VIIL.10, VIIL.11,
VIIL12, and VIII.13, demonstrate that by knowing the TCP variant we obtain
a considerable performance boost in all our experimental results, compared to
our previous results obtained without knowledge of the TCP flavor. With an
Oracle-given TCP variant, we obtain a prediction accuracy of 94-96%, with an
average value of 94.1% over all traffic classes and of 95.4% over only emulated
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Table VIII.12: Emulated traffic experimental results with the Oracle-given TCP
variant using SVM, RF, and KNN.

SVM RF KNN

OS Precision | Recall | Precision | Recall | Precision | Recall
Android 0.97 0.98 0.99 0.98 0.99 0.98
Linux 0.90 0.91 0.95 0.93 0.92 0.95
Mac OS 0.99 0.90 0.97 0.92 0.97 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.97 0.91 0.97 0.91
iOS 0.91 0.98 0.92 0.98 0.93 0.97
Average 0.95 0.95 0.96 0.96 0.96 0.96

Accuracy 95.10% 96.02% 95.83%

Table VIII.13: Emulated traffic experimental results with the Oracle-given TCP
variant using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.98 0.97 0.98 0.96
Linux 0.92 0.91 0.92 0.91
Mac OS 0.96 0.92 0.95 0.92
Unix 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.97 0.91
iOS 0.91 0.98 0.91 0.97
Average 0.95 0.95 0.95 0.95

Accuracy 95.11% 95.02%

traffic. The accuracy results are pretty consistent across all scenarios. Comparing
these results with our previous results that do not use the Oracle (84.1% on
average for all traffic types and 85.6% only for emulated traffic), we observe a
solid increase in the OS fingerprinting performance. This improvement would
significantly boost the usefulness of a product to be implemented in a real
enterprise network infrastructure.

As in the previous section, here again, we observe highly consistent
performance results across different machine learning and deep learning
techniques and also between the use of different types of experimental data. The
latter is useful knowledge for the next section since it means that performance
increases obtained over one traffic type is shown to be amenable to other traffic
types as well. In the next section, we will have to base our evaluation on
emulated data, since we do not have the TCP traffic patterns of the realistic
data or benchmark data at hand. These traffic patterns are required to be able
to passively infer the TCP variant in the experiments presented in the next
section. In this section, the idealistic Oracle was used only to demonstrate the
potential of knowing the TCP variant, but this is not a realistic assumption.
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Thus, in the next section, we will instead base our evaluation on a TCP variant
that is passively predicted by a deep learning-based tool that we developed and
presented in our previous work [12, 13, 14]. Using this tool, we explore how close
our performance will get to the ideal solution of having an Oracle.

VIII.8 Prediction-based Experiment: Results Using TCP
Variant Prediction

In Section VIIL.7, we showed that Oracle-given knowledge of the TCP variant
has a great potential for improving the passive OS fingerprinting. In reality,
however, we don’t have an Oracle-given TCP variant. Since passively detecting
the TCP variant is a challenging task, this is where our tool from previous works
on predicting the underlying TCP variant from passive measurements [12, 13, 14]
comes into play. In this Section we use the TCP variant passively predicted by
this tool as an input feature for the passive OS fingerprinting. The TCP variant is
inferred from the famous Additive Increase and Multiplicative Decrease (AIMD)
sawtooth pattern of TCP’s estimated cwnd computed based on the outstanding
bytes-in-flight. Since we don’t have access to the actual cwnd of the senders in
the benchmark data and realistic traffic, here we consider only the emulated
traffic.

VIIl.8.1 Based on Emulated Traffic

In this section, we use a tool to predict the TCP variant from passive
measurements of TCP traffic patterns, and this prediction is used as input
to the passive OS fingerprinting method presented above. The experimental
results of both techniques are presented in Tables VIII.14 and VIII.15.

Table VIII.14: Emulated traffic experimental results with predicted TCP variant
using SVM, RF, and KNN.

SVM RF KNN

OS Precision | Recall | Precision | Recall | Precision | Recall
Android 0.92 0.96 0.92 0.97 1.00 0.97
Linux 0.79 0.85 0.94 0.82 0.92 0.94
Mac OS 0.96 0.88 0.97 0.87 0.85 0.94
Unix 1.00 1.00 1.00 1.00 1.00 1.00
Windows 0.92 0.78 0.85 0.80 0.88 0.91
i0S 0.85 0.94 0.86 0.96 0.93 0.87
Average 0.90 0.90 0.91 0.91 0.93 0.93

Accuracy 90.01% 91.09% 92.15%
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Table VIII.15: Emulated traffic experimental results with predicted TCP variant
using MLP and LSTM.

MLP LSTM
(ON] Precision | Recall | Precision | Recall

Android 0.95 0.97 0.92 0.96
Linux 0.98 0.79 0.86 0.90
Mac OS 0.95 0.90 0.95 0.88
Unix 1.00 1.00 1.00 1.00
Windows 0.94 0.77 0.97 0.77
i0S 0.82 0.99 0.88 0.96
Average 0.92 0.91 0.92 0.92

Accuracy 91.45% 91.93%

VIIl.8.2 Comparison of Results with a Predicted TCP Variant

Results with emulated data and a passive prediction of the TCP variant (Tables
VIIL.14 and VIIIL.15) gives an accuracy of 91.3% on average, which comes pretty
close to the accuracy of 95.4% obtained on emulated traffic with the TCP-variant
given by the Oracle. Intuitively, when we do learning based on the TCP variant
prediction, the accuracy must be lower than the Oracle-given TCP variant, but
the question is how close we can get to the idealistic scenario of having an
Oracle. Our results show that using our tool for TCP variant prediction gives
reasonably good OS fingerprinting accuracies that come close to the results
obtained by using Oracle-given TCP variant. Even though the performance
results with the TCP variant passively predicted by our deep learning-based tool
are slightly lower as compared to the TCP variant given by an idealistic Oracle,
our performance results of using our tool are reasonably competitive.
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Transfer Learning Results

VIIL.9 Transfer Learning Results

Transfer learning is the ability to take a model trained in one scenario and apply
it for classification in a different scenario [29, 30, 41]. For example, in our case,
that means we are able to train our model on a dataset created in an emulated
network with an Oracle-given TCP variant and apply it for classification of our
dataset from the realistic traffic. Results shown in Tables VIII.16 and VIII.17
shows that the learning of the OS fingerprinter transfers well into other scenarios.
Good transfer learning results indicate that our passive OS fingerprinting model
is able to discern the results of unforeseen scenarios and still perform reasonably
well. In previous works, we have also demonstrated that the TCP variant
predictor performs well in terms of transfer learning [12, 13, 14].

Table VIII.16: Transfer learning experimental results using SVM, RF, and KNN.

SVM RF KNN

0OS Precision | Recall | Precision | Recall | Precision | Recall
Android 0.95 1.00 0.98 0.98 0.99 0.98
Linux 0.86 0.91 0.90 0.95 0.92 0.95
Mac OS 0.99 0.90 0.98 0.92 0.97 0.92
Unix 1.00 1.00 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.98 0.90 0.97 0.91
iOS 0.93 0.96 0.93 0.97 0.93 0.97
Average 0.95 0.95 0.95 0.95 0.96 0.96

Accuracy 94.79% 95.35% 95.76%

Table VIII.17: Transfer learning experimental results using MLP and LSTM.

MLP LSTM
0OS Precision | Recall | Precision | Recall

Android 0.97 0.98 0.97 0.96
Linux 0.95 0.85 0.91 0.91
Mac OS 0.94 0.94 0.96 0.90
Unix 1.00 1.00 1.00 1.00
Windows 0.99 0.89 0.98 0.87
iOS 0.90 0.98 0.90 0.98
Average 0.95 0.95 0.94 0.94

Accuracy 94.72% 94.28%

261



VIIl. Advanced Passive Operating System Fingerprinting Using Machine
Learning and Deep Learning

VII.L10 Conclusion and Future Work

In this paper, we proposed and evaluated a novel approach that attempts to
passively fingerprint the underlying remote OS by leveraging state-of-the-art
machine learning and deep learning techniques under multiple controlled scenarios.
We show that knowing the Oracle-given TCP variant has a great potential for
boosting the classification performance of passive OS fingerprinting. In our
setting, we demonstrate that using the idealistic Oracle has the potential to
boost the prediction accuracy from 84.1% to 94.1% on average across all traffic
types tested, and from 85.6% to 95.4% in an emulated setting. However, in
reality, we don’t have the Oracle-given TCP variant and hence we don’t know
exactly the underlying TCP flavor. To address this, we demonstrated a method
for passive OS fingerprinting where the cwnd is first computed based on the
outstanding bytes-in-flight, then the underlying TCP flavor is predicted from
the estimated cwnd, and finally, the predicted TCP variant is used as an input
feature to detect the remote computer’s OS. This is an additional feature that is
added to the basic TCP/IP features that are the basis of OS fingerprinting in
previous works. We demonstrate that our method performs significantly better
than not using the predicted TCP variant as an input feature, increasing the
accuracy in our experiment from 85.6% to 91.3%. The results of this method
come close to the accuracy of 95.4% obtained by using the idealistic Oracle. To
the best of our knowledge, this is the first study that reports the potential of
the underlying TCP feature in boosting significantly the accuracy of passive OS
fingerprinting. We further validate and demonstrate the transferability approach
of our OSes classification models by conducting a series of controlled experiments
against other scenarios. Through comparing the experimental results between
the benchmark dataset, realistic and emulated traffic in terms of accuracy
and confusion matrix, it is clear that our passive OSes classification models
are able to discern the results to unforeseen scenarios. Therefore, we are
able to show that the learned passive OS fingerprinting model by leveraging a
pre-trained knowledge of classification techniques from the emulated network
performs reasonably well as it is shown in the experimental results when it is
applied and transferred to a realistic scenario. Lastly, in all our experiments,
we made sure that both the training and validation accuracies are closer which
gives an idea about the ability of the OSes classification models to generalize on
unforeseen scenarios.

The method presented in this paper, where the cwnd is first computed based
on the outstanding bytes-in-flight, then the underlying TCP flavor is predicted
from the estimated cwnd, is particularly efficient for loss-based TCP variants. In
previous works, we have also developed a tool for the prediction of delay-based
TCP flavors [11]. We plan to extend the method presented in this paper to also
cover delay-based TCP variants and present it in a follow-on paper. Note that
passively detecting the TCP variant is a challenging task, which led to a two-step
approach, where the TCP variant prediction of a deep learning-based tool is
used as input to another machine learning method in the next step. However,
by integrating the two machine learning approaches better, there should be
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potential for increasing the performance even further and get even closer to the
idealistic results of using an Oracle. Exploring such optimizations is also left for
future work. It is known that TCP clock drift improves OS fingerprinting and
hence measuring differences in the timing of how the IP stack works may allow
us to predict the underlying OS with greater assurance in terms of accuracy.
We, therefore, argue for using other TCP options like timestamps and queueing
delay characteristics as an input feature vector for passive OSes fingerprinting
model as another interesting direction. Finally, in addition to the difficulties of
establishing ground truth (e.g., the TCP variant) at a larger scale on a dynamic
network addressed in Section VIII.3, there is a lot of other work to be done as an
extension of our work presented here. For example, addressing answers to valid
questions like: What happens if an end-user (client) changes default parameters
that are the basis of OS fingerprinting? is one possibility for our future work. We
expect that end-users don’t change parameters often, while servers may do so if
it helps improve performance. We believe this would make OS fingerprinting
potentially hard.
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