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Abstract We study optimal control for mean-field stochastic partial differen-
tial equations (stochastic evolution equations) driven by a Brownian motion
and an independent Poisson random measure, in case of partial information
control. One important novelty of our problem is represented by the intro-

duction of general mean-field operators, acting on both the controlled state
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process and the control process. We first formulate a sufficient and a neces-
sary maximum principle for this type of control. We then prove the existence
and uniqueness of the solution of such general forward and backward mean-
field stochastic partial differential equations. We apply our results to find the

explicit optimal control for an optimal harvesting problem.

Keywords Mean-field stochastic partial differential equation - optimal
control - mean-field backward stochastic partial differential equation -

stochastic maximum principles.
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1 Introduction

Over the last years, there has been a growing interest in mean-field (forward
and backward) stochastic differential equations (SDEs), as well as associated
control problems, due to their various appplications in economics, finance or
physics. Many studies are devoted to this topic, we refer the interested reader
to [1-6]. Compared to the abundant literature on mean-field SDEs, stochastic
partial differential equations (SPDEs) of mean-field type have received very
little attention. To the best of our knowledge, the only paper that deals with
the optimal control of mean-field SPDEs is [7]. Our paper extends [7] in several
directions: (i) we consider a more general mean-field operator; (ii) we introduce
an additional general mean-field operator which acts on the control process;
(iii) we add jumps; (iv) we study the optimal control problem in the case of

partial information.



Control for Mean-Field Stochastic Partial Differential Equations with Jumps 3

More precisely, we provide necessary and sufficient conditions for the opti-
mality of a control in case of partial information, as well as results regarding
the existence and the uniqueness of the solution for forward and backward
mean-field stochastic partial differential equations with a general mean-field

operator.

The paper is organized as follows: in Section 2, we show the sufficient and
necessary maximum principles for optimal control with partial information in
the case of a process described by a mean-field stochastic partial differential
equation (in short mean-field SPDE) driven by a Brownian motion and a
Poisson random measure. The drift and the diffusion coefficients, as well as
the performance functional, depend not only on the state and the control, but
also on the distribution of the state process and of the control process. We
apply these results to solve explicitly an optimal harvesting problem given as
a motivating example of our study. In Section 3, we investigate the existence
and the uniqueness of the solution to forward and backward mean-field SPDEs
with jumps and a general mean-field operator. In Section 4, we present the

conclusions of the paper.

2 Maximum Principles for Optimal Control with Partial

Information of General Mean-Field SPDEs with Jumps

2.1 A Motivating Example

As a motivation for our study, we consider the following optimal harvesting

problem: Suppose we model the density Y (¢,z) of a fish population in a lake
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D at time ¢ and at point x € D by an equation of the form:
d o2
dY (t,z) = E[Y (t,2)]b(t, z)dt + EZ a—Y(t x)dt + Y (t, x)o(t,x)dW,
) - ) ) 9 gt 8.%‘? ) ’ ) t

+Y(t,x) O(t,z,e)N(dt,de).
R*

Y (0,2) = yo(x), = € D, (1)

where D is a bounded domain in R%, d > 1, and yo(z),b(t, z),0(t, x),0(t, x,e)
are given bounded deterministic functions. Here W; is a Brownian motion and
N(dt,de) = N(dt,de) — v(de)dt is an independent compensated Poisson ran-
dom measure, respectively, on a filtered probability space (2, F,F = {F;}, P).
We may heuristically regard (1) as a limit as n — oo of a large population

interacting system of the form
1 & 1L 92
dy?" (t,z) = | = br o) | b(t,z)dt + = =y (t,z)dt
) = [ A3 [y} 3 T

—|—yj’”(t,x)cr(t,z)th—|—yj’”(t,cc)/ O(t,z,e)N(dt,de), =1,2,....,n

*

Y (t,x)(0,2) = yo(z), (2)

where we have divided the whole lake into a grid of size n and y?"(t,z)
represents the density in box j of the grid. Now suppose we introduce a
harvesting-rate process u(t,x). The density of the corresponding population
Y (t,z) = Y*(t,x) is thus modeled by a controlled mean-field stochastic partial

differential equation with jumps of the form:

d
dY (t,x) = E[Y (t,2)]b(t,z)dt + % Z ;—;Y(t, x)dt +Y (¢, z)o(t,x)dW;

=1

+Y (t,z) [ 0(t,x,e)N(dt,de) — Y (t,z)u(t,z)dt. (3)
R
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The performance functional is assumed to be of the form

J(u) =E

T
/ / log (Y (£, 2)u(t, z))dadt + / a(x)Y(T,x)dz]. (1)
0 D D

This may be regarded as the expected total logarithmic utility of the harvest
up to time T plus the value of the remaining population at time 7.

The problem is to find u* so that

J(u”) = sup J(u), ()
u€A

where A represents the set of admissible controls. This process u* (¢, x) is called
an optimal harvesting rate. This is an example of an optimal control problem
of a mean-field stochastic reaction-diffusion equation.

We will return to this example is Subsection 3.2.

2.2 Framework and Formulation of the Optimal Control Problem

Let (£2,F,F = {Fi}o<i<r, P) be a filtered probability space. Let W be a one-
dimensional Brownian motion. Let R* := R \ {0} and B(R*) be its Borel o-

field. Suppose that it is equipped with a o-finite positive measure v, satisfying

Jr

with compensator v(de)dt. We denote by N (dt, de) its compensated process,

el*v(de) < oo and let N(dt, de) be a independent Poisson random measure

defined as N(dt,de) = N(dt,de) — v(de)dt. We assume that D is a bounded
domain in R. We introduce the following notation:

— L?(P):= the set of random variables X so that E[|X|?] < oco.

— L%(R):= the set of measurable functions k : (R, B(R)) — (R, B(R)) with

Jp K (x)dx < co.
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— H?%:= the set of real-valued predictable processes Z (t,z) with
E[[ [, Z2(t, x)dxdt] < 0o

— L2:= the set of measurable functions [ : (R*, B(R*)) — (R, B(R)) so that
12113 2 1= S 12 ) < co. The set L2 is a Hilbert space equipped with
the scalar product (I,1’) fR* v(de) for all [,1' € L2 X L2

— H,Q,: the set of predictable real-valued processes k(t, x, ) with

T
E[fo fD |k(t,x, ')||L3dxdt] < 00.

Assume that we are given a subfiltration
gt g ]:ta t (S [O,T],

representing the information available to the controller at time ¢. For example,
we could have & = F(;_s)+ (6 > 0 constant), meaning that the controller gets
a delayed information flow compared to F;.

Consider a controlled mean-field stochastic partial differential equation

Y(t,z)=Y"(t,x) at (t,z) in 0, T[x D of the following form

dY (t,z) = [LY (t,z) + b(t, 2, Y (t,2), F(Y (t,2)), u(t, z), G(u(t,z)))]dt
+o(t,z,Y(t,x), F(Y(t,2)),u(t,z), G(u(t,z)))dW,

+ . 0(t,z, Y (t,x), F(Y(t,2)),u(t,z), G(u(t,x)), e)N(dt, de), (6)

with boundary conditions

Y(0,z) =¢&(x); x €D (7)

Y(t,x) =n(t,x); (t,z) €]0,T[xID. (8)
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In the above equation, F, G : L? (P) — R are Fréchet differentiable operators.
One important example is represented by the expectation operator E[-].

Here, dY (t,z) = d;Y (t,x) is the differential with respect to t and L is a
bounded linear integro-differential operator acting on x. We interpret Y as a

weak (variational) solution to (6), in the sense that for ¢ € C§° (D),
¢
(Ye, o)r2(py = (Mo, ®)12(D) +/ (Ys, L*¢)ds+
0
¢ ¢
/ <b(sv Y;)v ¢>L2(D)d8 + / <0(87 Ys)a ¢>L2(D)dWs
0 0
¢
[0 Y0) 00wy Vs, o), Q
0 *

where (-,-) represents the duality product between W12(D) and W2(D)*,
with W12(D) the Sobolev space of order 1. In the above equation, we have
not written all the arguments of b, g, 8, for simplicity. The operator L* is the

adjoint operator of L, which satisfies
(L*¢, ) = (¢, Lyp), for all ¢, € C3°(R), (10)

where (¢1,¢2)12m) = (¢1,02) = Jg @1(x)p2(x)dx is the inner product in
L2(R). The existence and the uniqueness of the solution of (6) are proved
in Section 3. Under this framework, the It6 formula can be applied to such
SPDEs. See e.g. Pardoux [8], Prévot and Rockner [9].

The process u(t,z,w) is our control process, taking values in an open
set A C R. We denote by A¢ a given family of admissible controls, con-
tained in the set of &-predictable stochastic processes u(t,z) € A satisfying
E[fOT [ w?(t, x)dxdt] < oo and so that (6)-(7)-(8) has a unique cadlag solution

Y (t,2). We make the following assumption:
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Assumption 2.1

(i) The functions b: [0, T] x 2x DxRZ2x A xR — R; (t,w,z,y,J,u, @) —
b(t,w,z,y,§,u, 1), 0:[0,T] x 2x DxR2x A xR R; (t,w,x,y,7,u,u) —
o(t,w,x,y,y,u, i), 0:[0,T] x 2x D xR?x AxRxR*— R,
(t,w,z,y,§,u,t,e) — 0(t,w,z,y,7,u,d,e) are predictable maps. We assume
that b, 0,0 are bounded functions of class C} with respect to y, ¥, u, u.

i) Let f:[0,T]x 2xDxR2x AxRrsRandg:2xDxR?+— Rbea
given profit rate function and bequest rate function, respectively. We suppose

that

E

/OT (/D f(tﬂfvy(tvx)aF(Y(t>$))au(t7$)7G(u(t,x)))|dsc> dt
+/D Ig(x,Y(T,m),F(Y(T,x))|d4 < o0,

where f(t,w,z,y,y,u,u), g(w,z,y,J) are measurable functions of class C}
with respect to (y, 9, u, %) and continuous with respect to ¢.

For each u € Ag, we define the performance functional J(u) by

Ju)=E

[ ([ sty 0. 00 ) o), Gt )i ) a
+/Dg(x7Y(T,:v)7F(Y(T,x))dx . (11)

We aim to maximize J(u) over all u € Ag and our problem is the following:

Find u* € A¢ so that

sup J(u) = J(u"). (12)
u€A

Such a process u* is called an optimal control (if it exists), and the number

J = J(u*) is the value of this problem.
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2.3 Sufficient Maximum Principle for Partial Information Optimal Control of

Mean-Field SPDEs with Jumps

We prove here a sufficient maximum principle for our optimal control problem
with partial information.

Define the Hamiltonian H : [0,T] x D x R? x A x R3 x L2 = R as follows:
H(t,2,y,9,u,1,p,¢,7) := [t 2, 4,9, u,u) + b(t, ,y,§, u, w)p

boltaygu e+ [ 0ty 0u a0l
Since the state process and the cost functional are of the mean-field type, the
adjoint equation is a mean-field backward SPDE. For u € Ag, we thus con-
sider the following adjoint equation in the three unknown processes p(t,x) €

R, q(t,x) € R,y(t,z, ) € L2 called the adjoint processes:

dp(t,z) = — {L*p(t,x) + %—ZI(J +E {ZI(J} VF(Y(t,x))} dt

*

+ q(t, z)dW, +/ v(t, x,e)N(dt,de); (t,z)€]0,T[xD.  (13)

T, ) =52 0. Y (), (Y (.)
+E {gg(%Y(T,xLF(Y(T, x)))} VEY(T,x)); z€D (14)
p(t,x) =0; (¢,z) €]0,T[xID. (15)

OH
I(:)Iere a—y() stands for
87};(757 z, Y(t7 .7;), F(Y(tv .’L‘)), u(t7 x)7 G(u(t> .%‘)),p(t, .Z'), Q(t7 x)7 fY(t, z, ))a

H
and similarly for %() We assume that
Y

T
E[/O /D{p (t,z) +q°(t,x) —i—/*v (t,z, e)v(de) }dadt] < oco. (16)
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Note that (13) is equivalent to
0b 0o

@wm=—L%@@+%§»+&ymwm+5¢mwm

o0
. a—y(7 e)v(t, x, e)u(de)] dt

~& [0+ Zomtn) + e

00
+/R* ay(~,e)'y(t,x,e)u(de)] VE(Y(t,z))dt
+ q(t, z)dW; —|—/ v(t, z, e)N(dt,de), (t,z) €]0,T[xD, (17)

where %() stands for Z—ch(t,:c,Y(t,x),F(Y(t,x)),u(tx), G(u(t,z))),

L. ab Jdo af ob,. Oo a0
and similarly for a—y()7 a—y(), a—g(),a—g(),a—g(), and 8—y(~,e) stands for
el

8—(t,x, Y(t,z), F(Y(t,2)),u(t,z), G(u(t,z)),e), and similarly for g(, e).
Y Y

We now show a sufficient maximum principle.

Theorem 2.1 (Sufficient Maximum Principle for mean-field SPDEs
with jumps) Let @ € Ag with the corresponding solution Y(t, x) and suppose
that p(t,x),q(t,x) and Y(t,x,-) is a solution of the associated adjoint mean-
field backward SPDE (13)-(14)-(15). Assume the following hold:

(i) (The concavity assumption) The maps Y — g(z,Y, F(Y)) and
(You) = H(Y,u) := H(t,z,Y, F(Y),u, G(u),p(t, ), 4(t, x), 5(t, 2, ))
are concave functions with respect to Y and (Y,w), respectively, for all (t,x)
in [0,T] x D.

(ii) (The mazimum condition)

E [H(tmc,f/(t,x), F(?(Lx)),ﬁ(t,x), G(u(t,x)),p(t,x),4(t, x),5(t,x,-)) | &

= ess sup E [H(t,:a Y (t,x), F(Y (t,2)),v(t, z), Gu(t,z)), p(t, z),

G(t,z),y(t,x,-)) | &] a.s for allt € [0,T] and x € D. (18)
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Then 4(t) is an optimal control for the random field control problem (12).

Proof Let us fix u € Ag and let Y (¢,x) = Y"(¢, ) be the associated solution
of (6). Define: f := f(t,z,Y(t,x), F(Y(t,x)),a(t,x), G(a(t,x))), and b and
¢ similarly. Define f := f(¢t,z,Y(t,2),F(Y (¢, z)),u(t,z), G(u(t,z))), and b
and ¢ similarly. Define 0 := 0(t, 2, Y (t, ), F(Y (¢, z)), a(t, z), G(a(t, z)), e) and
0:=0(t,z,Y(tz),FY(Ex)),ult z), Gu(t,z)),e). Set

§:=g(x,Y(T,2),F(Y(T,z))) and g := g(z,Y (T, ), F(Y (T, z))). Also set

= H(t,z,Y(t,x), F(Y(t, x)), a(t, x), G(a(t, x)), p(t, x), 4(t, ), 5(t, x, -)),

m>

H:=H(t,z,Y(t,z), FY(t2)),ult, z), G(u(t,x)),plt,x),§(t, x), 5, z,-)).

Using the above definitions and the definition of the performance functional
J, we get that:
J(w) = J(0) = T + Ja, (19)
where J; 1= E[fOT [o(f = f)dzdt] and J» := E[[,(g — §)dx].
Now, let us notice the following relations:

f=H—bp(t,z) —64(t, =) — Sz 04(t, x, e)v(de);

f=H—-bp(t,z) —oq(t,x) — fR* 04(t, x, e)v(de),

which imply

/OT_/D<H—FI—(b—E)'ﬁ—(0_&)'q_/*(a_é)ﬁy(de))].

(20)

Ji=E

Define a sequence of stopping times 7,,; n = 1,2,.... as follows:

7 := inf{t > 0;max{||p(t) L2 (p), 14(t) lL2 (o) ()l (D)
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lo(8) = 8 ()2 (pys 10(2) = 0|2 (Do, Y () = V(D) l|L2 ()} = n} AT

Then 7,, — T as n — oo and for all n, we have

E [ /0 " ( /D 5t 2) (ot 2) — 6 (1, a:))dx) aw,
OT" /R * ( /D O(t, z, ) é(t,x,e))dm) N(dt, de)}
_E UOT (/D(Y(t,x) — Yt 2))ilt x)dx) dw,
+ /O /R * ( /D (Y (t, 2) —?(t,x))&(t,x,e)dm) N(dude)} 0.

+

Hence by (16) and dominated convergence we have

E

/OT </D pt, z)(o(t, ) — 6(t,x))dx> AW,
+ /OT /R ( /D (9(t,x,e)é(t,x,e))dm) N(dt,de)]
/OT (/D(Y(t,a:) - Y(t,x))(j(tw)dx) AW,

+ /OT /R (/D(Y(t,x) —?(t,x))’y(t,x,e)dm) N(dt,de)] 0.

=E

Since the map Y +— g(z,Y, F(Y)) is concave for each € D, we obtain:

09— < Y@ V(T 0), P (T, 2)V (T, 2)

dg
dy
+ %@7 Y(T,2), F(Y (T, 2))(VF(Y(T,x)),V(T,))2(p),
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where Y (t, ) := Y (t,x) — Y (¢, z). We thus obtain, by taking the expectation

and applying the It6 formula for jump-diffusion processes,

T
+ /0 (<f/(t, @), dp(t, ) + p(t, 2)dV (t,z) + (o — &)q(t,x)) dt> dm]

/D < /OT /R (0 — 0)A(t, ,e)N(dt, de)> dm}
/D /OTﬁ(t,x) (LY (t,2)+ (- D))

. oH
+Y(t,x)| -L*p(t,z) — —
( >< i) - G

+E

=E

- E %i; <W(Yf(t,z)),?(t,x)>L2(P)> dtdx]
! AN\ ~
+E /D/O ((o—ﬁ)Q(t,x)+A*(9—0)7(t,x,e)u(de)> dtdx]. (21)

From (19), (20) and (21), we derive

Ju)—J(@) <E

/OT ( /D Pt @) LY (t,2) — Y (t,2) L*p(t, x)dz) dt]

/D</OT (H—fl—?;j-?(t,z)

ol
oy

+E

-E

<VF(?(t,x)),f/(t,x)>L2(P)> dt) dm] .
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Since Y (t,z) = p(t,z) = 0 for all (t,z) € [0,T] x D, we obtain by an easy

extension of (10) that
[ Peorptois = [ oLt
D D
for all ¢ €]0,T[. We therefore get

/D</0T (H—f[—aail-?(t,x)

<VF(Y/(t,x)),Y(t,x)>L2(P)> dt> dx] .

J(u) — J(@) <E

oit
oy

By the concavity assumption we have

OH

H_ < T(Y F(Y),i,G(@))(Y —Y)

L %i;(y, F(Y), i, G (@) (VE(Y), (Y = V)L (p)
%w,mm,a,cm))(u—a)

I %i;(y, F(Y), 4, G(2))(VG(a), (u— @)Lz (p)

Combining the two above relations we get:

J(u)—J(@) < E /D /OT (?j(ﬁF(?),a,G(a))(u—m

0H
ou

By the maximum condition (18), we obtain:

Y E(V), 0, G(@)) | a] (u— 1)

o

+E {%H(Y F(Y),d, G(w)) | Et] (VG (@), u—a)r2py <0 as.,

+——(V,F(Y), %, G(2)) (VG (), (u — @) ) dtda:] :

(22)
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for all (¢,x) € [0,T] x D. From (22) and (23) we conclude that
J(u) < J(u).

By arbitrariness of u, we conclude that 4 is optimal. O

2.4 A Necessary-type Maximum Principle for Partial Information Control of

Mean-Field SPDEs with Jumps

As in many applications the concavity condition may not hold, we prove a ver-
sion of the maximum principle which does not need this assumption. Instead,
we assume the following:

(A1) For all s € [0,T] and all bounded £;-measurable random variables
0(w, z) the control § defined by 8(w, z) = 0(w, z)x(s,1)(t), forallt € [0,T],z €
D, is in Ag.

(A2) For all u,8 € Ag with 8 bounded, there exists 6 > 0 such that the

control
u(t) +yB(t); t €[0,7]

belongs to Ag for all y €] — 6, d].

Let us give an auxiliary lemma:

Lemma 2.1 Let u € A¢ and v € Ag. The derivative process

YutB(t, x) — YU(t, x)
t =1 ! !
Y(t,z) lim .
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exists and belongs to L2(dx x dt x dP). We then have that Y satisfies the

following mean-field SPDE:

dY(t,z) = LY(t,z) + <§Z<->y<t,x> 4 g—;cxvnmt,x)), V(b 2

0b 0b
F GBI + ST Glult ), Bt ) )

+ (g(zj(.)y(t,x) + %(')WF(Y“(IZ z)), Y(t, 2))rap)

oo Oo

FETCB02) + GEOT G iult ). Bt ) aace ) Ay

00 00 .
# [ (Gt + Ge VR ). Vit

00 00

+%(’7 e)ﬁ(ta 1') + %(a e)ﬂ(tv I)<V G(u(ta I)), ﬂ(tv I)>L2(P)) N(dta de),

Y(t,z) =0, (¢, z)€]0,T[x0D;

Y(0,2) =0, x € D.

where ?() stands for ?(t, x, YU(t,x), F(Y"(t,x)), G(u(t,z)) and similarly
Y Y

for the other coefficients.

Proof The result follows by applying the mean theorem.

We omit the details. O

We now provide the necessary-type maximum principle for our optimal control

problem for mean-field SPDEs.

Theorem 2.2 (Necessary maximum principle for mean-field SPDEs
with jumps) Let 4 € Ag with corresponding solutions (6)-(7)-(8) and (13)-
(14)-(15). Assume that Assumptions (A1)-(A2) hold. Then the following are

equivalent:
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d
(i) d—yJ(ﬁ +yB)|y=0 = 0 for all bounded § € As.

(ii) E [Vuﬁ(t,xﬂé} =0, forall (t,z) €[0,T] x D a.s.,

where
Vo H(t,x) ::%—]Z(t, z,a(t, x), Y (t,x), F(Y (t,z)),
G(u(t,x)),p(t,x),q(t,z),¥(t, z,"))
+ [%—g(t, z,a(t, x), Y (t,z), F(Y (t,z)),

G(a(t, x)),p(t, x),q(t, x), 3(t, z, )V Ga(t, ).

Proof By introducing a sequence of stopping times 7,, as in the proof of the
previous theorem, we see that we may assume that all the local martingales
that appear in the following calculations are martingales with expectation
0. The assumptions on the coefficients together with the mean theorem and
relation (24) yield to:

1 N N

lim — (J(a+yp) — J(@))

Yy—r

0y

_ Tro(of of .
=E /O /D(ay(t,x)y(t,x)-l—ay(t,x)(VF(Y(;;x))7y(t,x)>L2(P)

—&-%(t,m)ﬁ(t, ) + gi_j(t,x)(VG(ﬂ(t,x)),ﬁ(t,m)>L2(p)> dtdx}

Gy By )
+E UD(ay(x)y(T, z) + afy(x)WF(Y(Ta 96))737(T,37)>L2<p>)dw] . (25)

where %(t,x) stands for Z—ch(t,x,?(t,x),F(f/(t,x)),ﬂ(t,z),G(ﬂ(t,x)) and

0
similarly for the other partial derivatives, and a—g(x) stands for
Y
0 - - 04
8—5(1‘, Y (z), F(Y(T,z)) and similarly for J ().
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The definition of the Hamiltonian H implies:

of oH ob
ay( ) @(t,x) - @(t ,2)p(t, )
06 )

. 00 .
- a—y(t ,x)q(t, x) — /* 6—y(t,x,e)’y(t@,e)u(de),

and similarly for ?Ff g—f g Using (25) and (13), we derive

lim ~ (7 +y5) = J(@)

b 06 ~
/ / ( )= G b)) ~ 5 (a)i(ta)
/ ay (t,z,e)5(t, z,e)v (de)) y(t,x)dxdt]

O b ) 96, .
+ E[/ / (T(t7x) - @(tﬂx)p(tﬂx) - %(fax)Q(th)

— [ St 0 ) (VR (), V(e 0) ooy
[, (aH (60— 20,0990 - 22 it
,/ gz (t,z,e)y(t,z,e)v (de)) ﬂ(t,x)dzdt]

R*

/ / _ @(t 2)p(t,7) — ?F&(t,x)ci(t,x)

u

+E

/ (b ) (de))(VG(a(t,m)),ﬁ(t,a:))dxdt]

+ E| /D (p(T,z), V(T, x))dx].

Applying It6 formula to (p(T,x),Y(T,x) > and using the dynamics of the

adjoint equations, we finally get

.1
lim - (J(i+ y5) -

/ / v H(t,z), B(t,z)) I&} dxdt] :



Control for Mean-Field Stochastic Partial Differential Equations with Jumps 19

where

(Va6 2), 5(t,)) = S (6,2)3(6,2) + G (1,2)(VG(@), 66,2,

We conclude that

limy 5 (J(a+yB) — J(2)) =0

if and only if

T
E /0 /DE[(VuH(t,x),6(t,x)>|5t}dxdt =0.

In particular this holds for all g € Ag which take the form

B(t,l’) = e(wv m)X[S,T] (t); le [OvTL

for a fixed s € [0,T[, where 6(w, z) is a bounded £s;-measurable random vari-

able. We thus get that this is again equivalent to

T
/ / E [(Vuﬁ(t,x),t?) | gt} dxdt] = 0.
s D

We now differentiate with respect to s and derive that

E

E [/DE [(VuH(s,2).0) | &] dx} — 0.

Since this holds for all bounded &£s-measurable random variable 6, we can easily

conclude that

lim © (J(a+yp)—J(a) =0

y—=0y

is equivalent to E [Vufl(t, x) | Et] =0, for all (t,z) € [0,T] x D a.s. O
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2.5 Application to the Optimal Harvesting Example

We now return to the problem of optimal harvesting from a population in a lake
D stated in the motivating example. Thus we suppose the density Y (¢, z) of
the population at time ¢ € [0, 7] and at point = € D is given by the stochastic
reaction-diffusion equation (1), and the performance criterion is assumed to
be as in (4). For simplicity, we assume that D is a bounded domain in R and

&+ = F;. In this case the Hamiltonian has the following form

H(t,z,y,7,u,,p,q,7) = log(yu) + [b(t, )y — yulp

+o(t, z)yq + . 0(t, z, e)yy(e)v(de),

and the adjoint BSDE becomes

_}672 (t )_|_ 1
29220\ % Y (t,z)

dp(t,z) = | +o(t,x)q(t, x)

+ . 0(t,z,e)y(t,x,e)v(de) — u(t,z)p(t,x) — Eb(t, x)p(t, z)]]dt

+ q(t, z)dW, +/ v(t, z,e)N(dt,de), (t,z)€]0,T[xD

*

p(T,z) = a(z), v € D,

p(t,x) =0, (¢, ) €]0,T[xdD.

We now apply the necessary maximum principle which implies the fact that if

u is an optimal control then it satisfies the first order condition

1

) Vo)

We summarize our results as follows:
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Theorem 2.3 Assume that the conditions of Theorem 2.2 hold. Suppose a
harvesting rate process u(t,x) is optimal for the optimization problem (5) in

Subsection 2.1. Then

1

ut ) = S pta)

where p(t, x) solves the mean-field backward SPDE

+o(t,z)q(t, x)
+ /* 0(t,x,e)vy(t,x, e)v(de) — E[b(t, x)p(t, x)] — u(t, x)p(t, x)]dt
+q(t,x)dW; + /* y(t,z,e)N(dt,de)

p(T,z) = a(z), z € D.

p(t,x) =0, (¢ ) €]0,T[xOD.

3 Existence and Uniqueness Results for General Forward and

Backward Mean-Field SPDEs with Lévy noise
3.1 Forward Mean-Field SPDEs

We address here the problem of the existence and uniqueness for the solution of
forward mean-field SPDE (6) with a general mean-field operator, introduced in
Section 2. In order to do this, we first describe the general framework. Let V, H
be two separable Hilbert spaces such that V' is continously, densely imbedded

in H. Identifying H with its dual we have

VCH=H"CV",
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where we have denoted by V* the topological dual of V. Let L be a bounded
linear operator from V to V* satisfying the following coercivity hypothesis:

There exist the constants xy > 0 and ¢ > 0 so that
2(—Lu,u) + Clul > x|jull} for all u €V, (26)

where (Lu,u) = Lu(u) denotes the action of Lu € V* on u € V and |- |g
(resp. || - ||v) the norm associated to the Hilbert space H (resp. V). Let us

introduce the notation adopted in this section.

P is the predictable o-algebra on [0, T] x §2;

— L2(H) is the set of measurable functions k : (R*, B(R*)) — (H, B(H)) such
that [[Fllgz () = (fu K(@)30(de)) * < oo

— L%(£2, H) is the set of measurable functions k : (2, F) — (H,B(H)) such
that E[|k|%] < oo

— L%(2,L2(H)) is the set of measurable functions
b+ (2, 7) s (U(H), BL2(H))) sueh that BIKZ, )] < oo

— L2(2 x [0,T],H) (resp. La(2 x [0,T],V)) is the set of F;-adapted H-
valued (resp. V-valued) processes @ : 2 x [0,T] — H (resp.V) such that
1902 o0y = L 190 t] <
(resp. ||¢||i2(mmv) — Bl 0|3 dt] < )

— L*(2x[0,T] x R*, H) is the set of all the P x B(R*)-measurable H-valued

maps 6 : 2 x [0, T] x R* — H satisfying

10112 (2x 0,1 xR, 1) = E[ fo Je- 12 fv(de)dt] <
— 8%(2 x [0,T), H) is the set of Fi-adapted H-valued cadlag processes & :

2 x[0,T] — H such that ||¢||%2(QX[O)T]7H) =B [supg<, <7 |D(t)|F] < oo
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The mean field SPDE under study is:
dY; = [LY; + b(t, Y3, F(Y2))]dt + o(t, Vs, F(Y2))dW,
+/ 0(t,Y;, F(Y;),e)N(dt,de); (t,z) €]0,T[xD. (27)
We recall that this equation should be understood in the weak sense.
We make the following assumption on b, 0,0 and the operator F.
Assumption 3.1 Themaps b : 2x[0, T|xHxH — H,o: 2x[0,T|xHxH
H are P x B(H) x B(H)/B(H)-measurable. The map 0 : 2 x [0,T] x H x
H xR*w— His P xB(H) x B(H) x B(R*)/B(H)-measurable. There exists a
constant C' < oo so that
b(t, y1,91) = b(t, y2, 92) |1 + o (t,y1,91) — o (t, 42, 92) |
+/ ‘a(taylvghe) _9(t7y27§2>€)|iy(de)
< C(lyr — y2lu + 171 — J2|u) as. for all (w,t) € 2 x[0,T].

There exists C' < oo so that
bt )+ ol + [ 16063, vde) < O+ ol + ),
Y(w,t) € 2 x[0,T],y,5 € R.
The operator F : L?(2; H) — H is Fréchet differentiable.

Theorem 3.1 Let h € H given. Under Assumption 3.1, there exists a unique
H -valued progressively measurable process (Yi)i>o satisfying:

(i) Y € I*(2 % [0,T],V)N §*(2 x [0,T], H);

(ii) Yo = h+ [y [LYa 4 b(s, Yo, F(Y)] ds + [y o (s, Ya, F(Y.))dW,

+ fL [ 0(s_, Yy, F(Y, ),e)N(ds, de).
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Proof 1. Existence of the solution
Let Y2 := h, t > 0. For n > 0, we define Y"*+! € L*([0,7]; V) N S?([0, T]; H)

to be the unique solution to the following equation:

AV = [LY T 4 b(t YL F(Y)dE + o (8, YL F(Y))dW,

+ [ 0, YT (Y ), e)N(dt, de). (28)
R*

The existence of the solution Y *! of (28) is given in [10, Proposition 3.1]. We
now show that the sequence {Y™, n > 1} is a Cauchy sequence in the spaces

L*(2 x [0,T],V) and S*(£2 x [0,T], H). By applying It6 formula, we get

e vl =2 Yy LY s
2 / Y Y b YL B (YD) — bl Y BV s
w2 f YT Y (s Y B(Y) — (s Y2 RV dW,s
/ o, Y2 BY) — (s, Vi BV ) s
/ [ 1606, Y B, €) = 65, Y B, €)W (s, )
+ 2/0 /*Qfs’i“ — Y, 0(s, YT F(Y), e)
—0(s, Y, F(Y"™Y),€)) g N(ds, de)

t
+ / / [6(s, Y7 B (Y™ ) ¢) — 0(s, Y7 F(Y"™), ) By(de)ds.
O *

Below, C' denotes a generic constant whose values might change from line to

line. Using the Burkholder-Davis-Gundy and Cauchy-Schwarz inequalities and



Control for Mean-Field Stochastic Partial Differential Equations with Jumps 25

the coercivity assumption (26) on the operator L, we obtain that

t
B s 24 - Y2l | < L[ 1V - v
0<s<t 0

t
1
+ CE / (Y7 Y7 2ds] + 2B sup [Y7H Y7 3ds)
0 2 o<s<t

+ CE[/t[Ib(S, YL R(Y)) = b(s, Y F(Y] ) 7ds)
0
+ CE% lo(s, YT F(Y) = os, YO F(Y ) [3,ds]

t
B[ [ [0 Y2 P - 006, Y2 F O ) (de)ds]. (20)
0 *
By the Lipschitz properties of b, o and 8, we deduce

t
B sup V4 - Y2l | < ORL[ v - v ra
0<s<t 0

+CE| / BV - B ) 3ds). (30)

We use the mean theorem and obtain the existence for each n € N, t € [0, T]

of a random variable Y (t) € L?(£2, H) so that
[F(Y") =P )l < [VEEONIY" =Y Meecom.  (31)
The two relations (30) and (31) lead to:
B sup 7 -
0<s<t

t t
< CE[ / (Y4 Y7 3,ds] + CE] / VP Yr T gds. (32)

Let us now define af = E [supg< <, |Y{" — Y7 71%] and A} = fot ards. Using

(32), we obtain:

a?tt < CAMT 4 cAr. (33)
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We multiply the above inequality by e~¢* and derive

d(A?'He_Ct)

7 < C’e_CtA;”,

which allows us to conclude that
t
AT < Cett / e 5 ATds < CeCltAT.
0
This inequality, together with (33), gives
t
aptt < C%eCUAT + CAT < Cr / AT ds,
0
where C is a given constant. By iteration for all n, we finally obtain

CrT)™
B[ sup 17+ — v 3] < O T,) :
0<s<T n!

This implies that we can find Y € S2(§2 x [0,T]; H) such that

lim E[ sup |V —Y,|%]=0.

n—roo 0<s<t
By (29) we remark that Y™ also converges to Y in L*(§2 x [0, 7], V). Passing
to the limit in (28), we obtain that Y satisfies this equation.
II. Uniqueness of the solution.

Let Y7 and Y3 be two solutions in $?(2x [0, T], H)NL?(£2x[0,T], V). Applying
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1t6 formula, we have
t
R Y R N R I
#2 [0 V2 Y RO (s, V2RO s
2 f Y] Y2 0(s, Y B(Y)) — o(s Y2 E(Y2)) wdW,
+ [ o(s, Y2 B()) — o(s, Y2 F(Y2)2yds
[ e e - v RO 0
+2(YL — Y2, 0(s, YL F(YL).e) — 0(s, Y2 ,F(Y2),e))] N(ds,de)
[0 R0 006, V2 RO ). ).

Using the coercivity assumption on the operator L, the Lipschitz property of
b, 0,0 and the boundness of the Fréchet derivative of the operator F, we get:
t t
BV, = V2l < —xBL| (V) = Y2} + CBL[ V) = Y2y
1 t
4Bl sup (V) = Y2+ CB(| (s, Y F(YD) — bls, Y2 E(V2) s
0<s<t 0
t
B[ [ o5, Y2F () - ol Y2 F(2) frdsl+
0
t
CEI[ [ 10:,Y} FOD) = 00, Y2 B2 ipvlde)ds
0 JR*

t
< CE[ / V) - V2]
0

We thus deduce that Y,! = V2. O

3.2 Backward Mean-Field SPDEs

We prove now an existence and uniqueness result for the solution of mean-field

backward SPDEs with jumps. The analysis is carried out in a general case,
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where there exists a general mean-field operator acting on each composant of
the solution. We consider the same framework as in the previous section. Let A
be a bounded linear operator from V to V* satisfying the following coercivity

hypothesis: There exist constants o > 0 and A > 0 so that
2({Au,u) + Nul3 > af|ul|f: for allu €V,

where (Au,u) = Au(u) denotes the action of Au € V* onu e V.
Assumption 3.2 Let f: [0, 7] x2x Hx Hx Hx HxL?(H)xL2(H) — H be
aPxB(H)xB(H)xB(H)xB(H)xB(L2(H)) x B(L2(H))/B(H) measurable.
There exists a constant C' < oo such that

Lf(tw,y1, 01,21, 21,01, 1) — f(Ew, 92,92, 22, 22, G2, G2) |1

< C(lyr — vl + 91 — Gl + [21 — 22|l + |21 — Z2|m

+ o — @2luzay + |4 — Glrz )

for all t,y1,91, 21, 21, G1, 41, Y2, U2, 22, 22, @2, G2- We also assume the integrability
condition E[ [ [ f(£,0,0,0,0,0,0)[%dt] < co.

Theorem 3.2 Assume Assumption 3.2 holds. Let ¢ € L*(£2;H). Let H :
L*(2;H) — H, J : L*(;H) — H and K : L*(2,L*(H)) — L*(H) be
Fréchet differentiable operators. There exists a unique H x H x L2(H)-valued

progressively measurable process (Yy, Zy,Uy) so that
T T T
B[ Vil < oo B[ 12 <o, B 0] < o
T T
(ii) € = Vi + / AY,ds + / F(5, Yo, H(Ys), Z, T (24), Uy, K(US))ds
t t

T T
—|—/ ZdW —|—/ / Us(e)N(ds,de), forall 0<t<T.
t t -
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The equation (ii) should be understood in the dual space V*.

Proof 1. Existence of the solution. Set Y,' = 0; Z? = 0; U? = 0. Denote by

(Y™, Z1, Ul") the unique solution of the mean-field backward equation:

dY;" = AY['dt + f(6, Y R, 20, T (207, Ul KU 1) )dt

*

+Zt"th+/ Ul (e)N(dt, de); Y7 =¢.

The existence and the uniqueness of a solution (Y;*, Z*, U*) to such an equa-

tion have been proved in [11]. By applying Itd’s formula, we get

0= [z -y
T
=YY A Y, Y s
t
T
2 / (s, YH MY, 200, 7 (20), U K(UT))
t
- f(sv sta H(stil)v Z;l’ j(Zgil)’ Ugv IC(Usnil))’ st+1 - st>HdS
T
+/t / (Y4 — v + Ut — U2 — Y2 = Y |3 N(ds, de)
T
+ / / (U741 (e) — U7 (e) ] (de)ds
]

T T
1o / (Y ym d(Zr - 2y 4 / 204 Zn s,
t t

where Z[' := fot Z7dW,. We thus get, by taking the expectation and using the

coercivity assumption on the operator A,
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T
EY, - Y7l + B[ 1207 - 22 ds)
t
T
+ E[/ |Urtt — U3 v(de)ds)
t JR*
= 2E[(A(Y) - Y)Y - Y] ds]
T
2B [ (YL HY), 2 T2, UR L UD)
t
- f(S7staH(st71)7 Z?a j(Zgil)a U;leC(Ugil))a st+1 - st>d8]
T T
<B[[ (Y7 ds) - aBl[ Yy -
t t
T
—QE[/ (fls. YL H(YD), 20, J(2), U K(U)
t
- f(57Y3n7H(st_1>7 Zy, j(Z;L_l)7 Usn’K:(Usn_l))’ st—H - st>HdS]'
(34)
By using the Cauchy Schwarz inequality and the Lipschitz property of the
generator f, for each (¢,w) € [0,T] x {2 we obtain:
(f(s, YL (Y, 2040, J(20), USH K(UY))
- f(s’ysnth(stil)’ Z;lv j(Z;lil)v U;Lv]C(U;lil))v st+1 - st>H
<|f(s, YL H(Y), 207, T (20, U K(UY))
- f(57Yt€n7H()/sn71)7 Z?v j(Z‘?il)v U?vlc(Ugil)”H : |}/sn+1 - Y€n|H
< C(HEY) = HEY Du +1T(ZY) =T (28|
HEUE) = KU DLz ) - Y =Y
+ OV =Y i + 207 = 20 + U = U ez ) Y =Y
(35)
We now use the mean theorem in Hilbert spaces and obtain the existence for

each t € [0, T] of some random variables Y"(t) € L2(2, H), Z"(t) € L*(2, H),
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U™(t) € L*(2,L2(H)) so that

1Y) = HOY D) < IVHE@O)IIY = Y e o,m)
\T(Z7) = T2 e < VT2 O ZE — 28Iz o,m)

KU) = KU D < IVROO)NUE = U7 oz oy (36)

Using (34), (35), (36) together with the boundness of the Fréchet derivatives

of the operators 7, 7, K and the inequality 2ab < ea® + 1b%, we obtain:

T
E(Y, - Y7l + Bl 1207 - 27 )
t
T
VB[ [ e - Uz @fpldeds)
. e
T T
B[ [ Y= Y rds] - B[ [ 1YY - Y] sl
t t
T 1,2 12
+ OBl [ (V7 =Y 125 = 22 U3 = U ) )
1 T
+IB([ -y
€ t
T
FCBE([ (Y7t Y2+ |2 = 22+ U2 = U ) )
t
1 T
B[ Y v )
t

B

where C is a constant depending on the Lipschitz constant of f and the bound-
ing constants of the Fréchet derivative operators of H, 7, K.

Letuschooseagiandﬂg%.Weset'y::/\+06+%+%+%andthen
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multiply the previous inequality by ¢7t. We thus get

d T 1 T
- e / Y7 Y] ds] |+ e / 20— 773 ds]
t t

1 T n n 1 T n
B[ VI YRl 5B UI - U2y

T
rac B[ Y-y )
t

(" 1 ("

< B -y et 4 gBl[ 12n -z e
4 t 4 t

L

T
+ 3B 102 = U2 Ryl (37)

We now integrate between 0 and 7T and obtain:

T T T
1
BU[ et =Py OB e et

1 T T
+ f/ E[/ |Zr L — 702 ds]etdt
2 0 t

1 T T T T
by [ Bl - U]+ [l vty Rl
0 t v 0 t
1 T T 1 T T
gf/ E[/ |}T—Ys"’1ﬁ{ds]e”tdt+f/ E[/ 12" — Zn 12 ds)e M dt
4 0 t 4 0 t

1 T T Lo
+5 /0 E| /t U2 — UB1 2, g dsedL. (38)

From the above inequality it follows that

T T T T
/ E| / Y Y et + / E| / 1z — 2 e
0 t 0 t
T T
v [ Bl —unp. dsletdt < —C
0 ] s s L2(H) = 9on 7"

From (38) one can deduce E[fOT [yr+l—yr|3,ds] < £C. Using (37), we derive

1 T 1 2 1 T +1 2
SBL[ Yo Yo + 5B [ 1200 - 27 fas
0 0

1 T +1 2 1 1 T —12
4Bl 0P - U s < v C ot B[V - ¥ sl
0 v 0

1

T T
n n— 1 n n
B 120 =z s+ B[ U - U2 ]
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which implies that
T

T
0 0
g 1 2 1
B[ U7 U 3 yds) < O

The above inequality together with (37) leads to

B[ I ¥R < () s o,
We can conclude that the sequence (Y™, Z",U"), n > 1 is a Cauchy sequence
in the Banach space L*(2x [0, T], V) xL*(2x[0,T], H) xL*(2x [0, T],L2(H),
and thus converges in the corresponding spaces to (Y, Z,U). The limit (Y, Z,U)

satisfies:
T T T
Yt+/ Asts+/ f(s,Ys,Hm),Zs,J(zs),US7K(US>>ds+/ Z,dW,
t t t
T ~
+/ UsN(ds,de) =& aus.
t R*

II. Uniqueness of the solution
The proof of the uniqueness of the solution is classical, but we give it for
reader’s convenience. Suppose (Y, Z;,U;) and (Y;, Z,,U,) are two solutions.

By applying It6’s formula, we obtain

T T
ME—EM+E%\%—&%M+mllm—m&wwﬂ

— E[(A(Y, — V), Y, — T)ds]
T
—nqlﬁ@nﬂmmAJwgmxwm

- f(svi}s’,}-l(i}s)a 237\7(23)5 USJC(US)), ~s - )~/S>Hd5]

T

T T
smv’M—ﬁmwwﬂm/|n—ﬁ@m+Km/|n—ﬁmm
t t t

1 T 1 T
~ 12 T2
+ §E[/t |Zs = Zs|pds] + §E[/t |Us = Us|Lz (11)ds]-
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We thus derive that
~ T ~
E[IY; - Tiff) < 0+ KOBL [ [Y. - Vol
t

Hence, by Gronwall lemma, we get Y; = Y;. This also implies that Z, = Z,

and U, = U,. O

4 Conclusions

The paper aims at providing an extensive analysis of mean-field stochastic
partial differential equations and their associated control problem, in a gen-
eral framework. More precisely, we have studied the optimal control problem
for mean-field stochastic partial differential equations with jumps and a gen-
eral mean-field operator, in case of partial information control. We have first
established necessary and sufficient maximum principles in a general setting,
where different mean-field operators are acting on both the controlled state
process and the control. We then applied these results in order to solve ex-
plicitly an optimal harvesting problem. Finally, we have shown the existence
and the uniqueness of the solution for both forward and backward mean-field

stochastic partial differential equations with a general mean-field operator.
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