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Abstract 
The usefulness of mechanistic models to disentangle complex multi-scale cancer processes 

such as treatment response has been widely acknowledged. However, a major barrier for multi-
scale models to predict treatment outcomes in individual patients lies in their initialization and 
parametrization which need to reflect individual cancer characteristics accurately. In this study 
we use multi-type measurements acquired routinely on a single breast tumor, including 
histopathology, magnetic resonance imaging, and molecular profiling, to personalize parts of a 
complex multi-scale model of breast cancer treated with chemotherapeutic and anti-angiogenic 
agents. The model accounts for drug pharmacokinetics and pharmacodynamics. We developed an 
open-source computer program that simulates cross-sections of tumors under 12-week therapy 
regimens and use it to individually reproduce and elucidate treatment outcomes of four patients. 
Two of the tumors did not respond to therapy, and model simulations were used to suggest 
alternative regimens with improved outcomes dependent on the tumor’s individual 
characteristics. It was determined that more frequent and lower doses of chemotherapy reduce 
tumor burden in a low proliferative tumor while lower doses of anti-angiogenic agents improve 
drug penetration in a poorly perfused tumor. Furthermore, using this model we were able to 
predict correctly the outcome in another patient after 12 weeks of treatment. In summary, our 
model bridges multi-type clinical data to shed light on individual treatment outcomes. 

 

Introduction 

Current personalized cancer treatment is based on a few biomarkers which allow assigning each 

patient to a subtype of the disease, for which treatment has been established [1]. In breast cancer, 

multigene tests like Mammaprint or PAM50 give prognostic information to guide clinical decisions 

[2, 3]. Such stratified patient treatments represent a first important step away from one-size-fits-all 

treatment. However, the accuracy of disease classification comes short in the granularity of the 

personalization: it assigns patients to one of a few classes, within which heterogeneity in response 

to therapy is still large [4]. In each of these classes, randomized clinical trials (RCT) can be run, to 

compare a few treatment regimens and to identify the best on-average one. As there is a 

combinatorial explosive quantity of combinations of cancer drugs, doses and regimens, only very 

few can be explored by RCTs. The concept of ‘one disease in each patient’ challenges diagnosis and 

therapy. 

Mechanistic mathematical modeling and simulation have emerged as a powerful approach to 

investigate the influence of biological factors on tumor progression and therapy response [5–7]. 

Current models are able to account for complex interactions at the cellular and molecular level, and 

are capable of bridging multiple spatial and temporal scales in ways that would be impossible using 

experimentation [8, 9]. Successful multi-scale models can describe with acceptable approximation 

the dynamics of tumors under the effect of a specific therapy. The present computing capacity 

allows exploration of a large number of treatment regimens by running multiple model simulations 

in parallel. Yet, considerable challenges hinder the use of computational modeling to guide patient’s 

treatment in clinical practice [7, 10]. The choice of the level of biological detail represented in the 

mathematical model can always be questioned and a judicious balance between biological and 

model complexity has to be found. An essential question is whether at all mathematical models can 

be personalized to predict the effect of therapies in each specific patient [7, 11]. This requires 
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individualized initialization and parameterization of such a model which are typically difficult to 

perform. 

For this paper, our team of oncologists, pathologists, molecular biologists, medical imaging 

physicists, statisticians and mathematicians examined whether a computational modeling approach 

can effectively simulate individual outcomes of a group of patients with invasive breast cancer 

receiving different treatment regimens (described later). Is it possible to design a mathematical 

model that integrates individual patient’s data collected in routine clinical practice to reproduce 

patients’ outcome? Can such a model be flexible enough to simulate a wide range of possible 

responses by capturing fundamental biological processes at an acceptable level of approximation? 

Are the available data sufficient to personalize such a mathematical model? This paper answers 

positively the first two questions: we developed a model which allows in-silico simulation of the 

treatment outcome. Regarding the third question, we show the need to measure more precisely 

certain individual drug and tumor characteristics, in order to estimate certain parameters which 

modulate the dynamics. 

Barbolosi et al. [7] underline the importance of capturing in a mathematical model 

pharmacokinetics (the fate of drugs in biological tissues) and pharmacodynamics (their 

mechanisms of action and effect). Both are present in our model. Furthermore, reference [7] 

distinguishes between phenomenological (descriptive) models and mechanistic (explicative) ones. 

Phenomenological models are parametric models of the time evolution of the tumor that do not rest 

on explicit biological mechanisms. Mechanistic models instead, account for specific biological 

details and dynamics. We present here a mechanistic model that captures nonlinear, multi-scale 

dynamics in space and time. We consider discrete individual cells and blood vessels together with 

continuous quantities like oxygen and drug concentrations; such models are termed ‘hybrid’. Gallo 

and Birtwistle [12] use the term ‘enhanced pharmacodynamics’ for models that merge multi-scale 

dynamics with pharmacokinetics, as is in our case. An important distinction is between models 

informed by individual patient data and those who are not, and therefore cannot be used for 

personalized treatment optimization. While there are many studies in the literature which propose 

models in some of these dimensions (for instance [13–25]), our study is possibly the first one 

towards personalized computer simulation of breast cancer treatment incorporating relevant 

biologically-specific mechanisms and multi-type individual patient data in a mechanistic and multi-

scale manner. 

We inform our model with data from five breast tumors collected in a recent neoadjuvant clinical 

phase II trial [26]. Patients included in this study were randomized in two arms to receive 

chemotherapy with or without bevacizumab. Histological, magnetic resonance imaging (MRI) and 

molecular data were collected before, during and at the end of neoadjuvant treatment. We develop 

precise pipelines for clinical data preprocessing, model initialization and personalization. Besides 

individual histological and MRI data, our model also makes use of some genomic patient data. By 

means of extensive numerical simulations, we show, as a proof-of-concept, that patient-specific and 

multi-scale modeling allows us to reproduce treatment outcomes of the four patients. We also 

predicted correctly the outcome after 12 weeks treatments of one further patient. In addition, we 

investigate if and how alternative treatment protocols would have produced different outcomes. 

This is a first step towards virtual treatment comparison. Finally, we suggest which additional data 

and experimentation with tumor material is needed to improve the accuracy of the simulation, 
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towards precise outcome prediction. Our study shows that simulation-based personal treatment 

optimization is feasible and powerful and should be developed further as a promising avenue of 

personalized treatment. 

Materials and methods 

Patients and treatment 

We selected five patients with HER-2 negative mammary carcinomas from the NeoAva cohort [26], 

a randomized, phase II clinical trial that evaluated the effect of bevacizumab in combination with 

neoadjuvant treatment regimens for 24 weeks. Written informed consent was obtained from all 

patients prior to inclusion. The study was approved by the Institutional Protocol Review Board, the 

regional ethics committee, the Norwegian Medicines Agency, and carried out in accordance with the 

Declaration of Helsinki, International Conference on Harmony/Good Clinical practice. The study is 

registered in the http://www.ClinicalTrials.gov/ database with the identifier NCT00773695. See 

section S2.1 in Supplementary Material (SM) for more details about the trial inclusion criteria.  

For simplicity, we analyze only the first 12 weeks, where patients were treated with chemotherapy 

(FEC100, 4 courses) and randomized 1:1 to receive bevacizumab (15 mg/kg every third week given 

concurrently with chemotherapy) or not. The five patients were selected to belong to both arms of 

the trial and to have either a complete or no response by clinical examination and caliper 

measurements at 12 weeks of treatment. Additionally, MRI were used to facilitate precise validation 

of simulated outcomes in small tumor portions. An overview of baseline characteristics, treatment 

and response for the five patients is shown in table 1. Further details on clinical data can be found 

in table S1 and fig. S1–S10 of the SM. 

Histopathology 

The histopathological analysis was performed on needle biopsies taken from the breast tumors at 

week 0. See details and used images in section S2.2 of SM. Fiji and its cell counter plugin [27] were 

used for manual identification of cancer and stroma cells in each image. 

Magnetic resonance imaging 

Patients were examined on a 1.5 T MRI scanner (ESPREE, Siemens, Erlangen, Germany) at weeks 0, 

1 and 12 of the neoadjuvant treatment. See section S2.3 in SM for a description of the imaging 

protocol and data, including dynamic contrast-enhanced (DCE-MRI) and diffusion weighted (DW-

MRI) imaging. For DCE-MRI analysis, an extended Tofts model was used, which included the 

determination of the contrast-enhancement curve of the contrast agent in each individual voxel 

(volume 1mm × 1mm × 1.5mm). DW-MRI data were analyzed using a simplified IVIM model-based 

analysis as described in [28]. 

Molecular data 

To estimate parameters representing subcellular processes, we assessed several molecular features 

for each tumor. mRNA levels of VEGFA and TP53 in the tumor samples were determined using one 

color SurePrint G3 HumanGE 8 60 k Microarrays (Agilent Technologies) as described in [26], 

available in the ArrayExpress database, accession number E-MTAB-4439. The PAM50 subtyping [29] 
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was used to assign a subtype to each sample in the NeoAva cohort and proliferation score was 

derived for each tumor by computing mean expression values of the 11 proliferation-related 

PAM50 genes [26, 29]. TP53 mutation status was determined by sequencing the entire coding 

region (exons 2-11), including splice junctions as described in [26]. Furthermore, pathway 

deregulation score (PDS) [30] of the Hypoxia-inducible factor 1-alpha (HIF1A) pathway was 

calculated for all five patients at screening and at week 12 and normalized against 50 tumor-free 

samples. 

Mathematical model 

To model the response of a cross section of tumor tissue to a combination of chemotherapeutic and 

antiangiogenic drugs, we use a multi-scale hybrid cellular automaton model. We combine cellular, 

extracellular and intracellular dynamics and inform them by multi-type, individual patient data. The 

model is detailed in section S1  and illustrated in fig. S11 of the SM. Briefly, we describe individual 

cells and cross sections of functional blood vessels in a 2D section of tumor tissue as discrete agents 

on a regular grid. Cell division and death as well as blood vessel formation and removal, are 

controlled in the cellular automata by intracellular and environmental factors, described by 

ordinary and partial differential equations. For instance, the concentration of each drug in the blood 

and in the tumor tissue is described by ordinary (pharmacokinetics) and partial (reaction-diffusion) 

differential equations respectively. As FEC chemotherapeutic agents can only kill cycling cells, we 

consider a simple cell cycle model for each cell and model the effect of low oxygen tension as 

delaying cell division. We account in each cell for the effect of hypoxia to TP53 and VEGF expression 

using a system of ordinary differential equations. This allows us to model the amount of VEGF 

produced by each cell and the inhibition of VEGF molecules by the antiangiogenic drug. To model 

the effect of VEGF on the tumor vasculature, we use a stochastic model where the probability of 

formation or removal of vessels is influenced by the local VEGF concentration. 

Tumor simulation and validation workflow 

The workflow to run personalized simulations of drug response of a breast tumor portion is 

outlined in fig. 1. Box A sketches the timeline of treatment application and tumor screening during 

the first phase of the NeoAva protocol. Tumor screening data at week 0, including MRI, 

histopathology and molecular data (box B), are used to initialize and parametrize the mathematical 

model (box E). Model initialization and parametrization is explained in detail in section S3 and 

illustrated in fig. S12 in  the SM: (i) Patient-derived parameters are obtained directly from her 

clinical data (see box B in fig. 1 and table S2 in the SM); (ii) Common parameters to all studied 

patients are obtained from public data (see box C in fig. 1 and table S3 in the SM); (iii) Finally, there 

are model parameters that are calibrated because they cannot be inferred from the clinical data 

directly, nor relevant quantities were found in the literature. Calibration is done by finding ranges 

of parameter values where the simulated and patient outcome qualitatively agree (see table S4 and 

fig. S13–S18 in the SM for parameter exploration of effects on treatment outcomes). Specifically, the 

exact drug schedule used in the clinical trial for each patient (box D) is simulated by increasing the 

amount of the corresponding drugs (FEC100 +/- bevacizumab) in the blood at the time points of 

administration according to the dosage. Each computer simulation then runs a complete cycle of 12 

weeks of the spatio-temporal dynamics of the considered tumor portion under the effect of the 

applied drugs. Computational details and a link to the open-source computer code can be found in 

section S4 of SM. Simulated outcomes include the spatial distribution of cells, blood vessels and all 
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considered molecules at any time between the start of the therapy and week 12 and in particular at 

the end of the study period (box F). To calibrate the three model parameters, we compare the 

simulated outcomes with the actual ones (box H). For that we use clinical tumor volumes and 

apparent diffusion coefficients (ADC) [26] calculated from DW-MR imaging at week 1 and 12 (box 

G). As we are simulating only very small portions of the tumor bulk, we selected only patients who 

were complete responders (number of tumor cells in all simulated tumor portions at week 12 

should be around zero) or complete non-responders at week 12 (approximately the same number 

of tumor cells in week 12 as in week 0). Moreover, changes in ADC histograms of the segmented 

tumor volume at weeks 0, 1 and 12, which relate to changes in the tumor cellularity [20], should 

qualitatively agree with the number of tumor cells in our simulations. 

Results 

Comparison of patient characteristics and treatment responses 

We consider four patients (1 to 4), see table 1 and section S2 in SM. Patients 1 and 2 received 

FEC100 plus bevacizumab with the same dose and schedule. Patient 1 did not respond to the 

therapy after 12 weeks, while patient 2 responded well. At baseline, patient 2 had a higher tumor 

cell density than patient 1, as shown by histological images and DW-MRI. This coincided with 

higher PDS of HIF1A pathway. Their tumors were also classified differently as Basal-like and 

Luminal B, respectively, and the estimated proliferative capacity of patient 2 was much higher (see 

parameter Tmin in section S3.5.1 of the SM), in agreement with the estimated PAM50 proliferation 

scores [31] of both patients. Other molecular and MRI-deduced parameters used in this study, did 

not differ significantly. Specifically, expression levels of VEGF and TP53 were almost identical, and 

both tumors were TP53 wild-type. The typical values of perfusion parameters ktrans and vp estimated 

from DCE-MRI, were similar too. 

Patients 3 and 4 received only FEC100 with the same dose and schedule. Patient 3 did not respond 

to the therapy after 12 weeks, while patient 4 responded completely. The tumors were classified as 

HER2 enriched and Basal-like respectively, but they had similar proliferative capacity as shown by 

their estimated PAM50 proliferation scores. They differed in tumor morphology, vessel perfusion 

and TP53 status and expression. Comparing histological slices and DW-MRI, the tissue of patient 3 

was densely packed with cells, while patient 4 showed more heterogeneity. DW-MRI of patient 4 

also showed heterogeneity. At week 0, by DCE-MRI the tumor in patient 3 had a very poorly 

perfused core while it was highly perfused on the outer edge, resulting in cross sections with ring-

like patterns. Interestingly, DW-MRI analysis suggests that the tumor core is not necrotic. The 

tumor from patient 3 was TP53 wild-type while the tumor from patient 4 was TP53-mutated. 

Expression levels of TP53 were higher in patient 4 while VEGF expression was comparable and very 

high in both patients. Patient 3 had much higher HIF1A PDS at week 0, exhibiting signs of a denser 

and more hypoxic tumor. 

Model simulations reproduce treatment outcomes 

For each of the four patients we run personalized simulations of tumor portions under the 

treatment received in the clinical trial as outlined in fig. 1 and described in the SM.  
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Low vs. highly proliferative tumor in bevacizumab arm 

Model simulations of the outcomes of patient 1 and patient 2 are shown in fig. 2. We used two 

biopsy portions for each patient (biopsy A and B). For each portion, we ran ten independent 

stochastic simulations of the 12-week treatment using the same parameterization, but different 

random events such as births and deaths of vessels. We plot the time evolution of the cancer cell 

density, defined as the proportion of grid points occupied by cancer cells at any given time, for the 

ten simulations. Simulated cell densities for patient 1, shown in fig. 2a, decrease moderately after 

drug administration and grow in the period between consecutive administrations. The four grid 

snapshots show, at different time points, the spatial distribution of cancer and stroma cells together 

with the oxygen level in one representative simulation. All twenty simulated experiments presented 

moderate degrees of hypoxia, as seen by the white and light blue background displayed in the 

snapshots of fig. 2a. This is in agreement with the observed hypoxic pathway activity and VEGF 

expression, shown in fig. S10b and fig. S10d in the SM. In fact, despite of production of VEGF by 

hypoxic cells, the applied dose of bevacizumab reduces VEGF concentration in the tumor tissue to 

very low levels, as recorded above each snapshot in fig. 2a. In our model blood vessels disappear 

with a certain probability under low VEGF concentration. For patient 1, if this probability is high 

enough, the tumor can persist, because bevacizumab reduces tumor perfusion and the 

chemotherapeutic agents cannot reach the tumor tissue. We can reproduce the outcome at week 12 

using any value for the probability for vessels to become dysfunctional under low VEGF and an 

intermediate value of the chemosensitivity parameter, as shown in fig. S13 and fig. S16 in the SM. In 

fig. 2a, even when using a very low probability of vessel death (pdeath = 0.0001), the killing of cancer 

cells after each dose administration does not prevent cancer cells to proliferate again, resulting in a 

net balance between killing and proliferation in 20 out of 20 simulations. This is in agreement with 

the available ADC data of patient 1 at week 0 and 1, showing little difference in tumor density (fig. 

S9a in the SM). By the end of the simulations, the cancer cell density is approximately the same as it 

was at the beginning. 

Patient 2 is a responder. Many blood vessels remain in the tissue to allow chemotherapeutic drugs 

to be distributed and thus kill most of the tumor cells. To reproduce the available ADC data, where 

virtually no tumor remained at week 12 (fig. S9b in the SM), the following is required: First, a low 

probability of vessel disappearing (pdeath < 0.01), so that part of the tumor vasculature is resistant to 

the VEGF inhibitor; second, a chemosensitivity high enough (β > 6000), so that few cells escape the 

therapy, see fig. S13 and fig. S16 in the SM. In the simulations of patient 2 shown in (fig. 2b), all 

tumor cells were killed after 12 weeks in 19 out of 20 experiments. Due to higher cell densities at 

week 0, hypoxia is more severe than for patient 1, in agreement with the HIF pathway (fig. S10d in 

the SM) and ADC data (fig. S9b in the SM). 

Heterogeneous perfusion condition without bevacizumab 

Patient 3 is a non-responder. As revealed by MRI data (fig. S7 in the SM), the core of the tumor is 

poorly perfused with much higher perfusion at the tumor edge. Since the location of our biopsy was 

not identifiable, we show in fig. 3 simulations for both perfusion profiles. ktrans = 0.0067min−1 and vp 

= 1.73% were estimated from the core to reflect its poorly perfused condition (fig. 3a). Since the 

number of vessels is small and their permeability is low, the simulated drug concentration arriving 

in the tissue is very low. Therefore, free spaces in the simulation grid were occupied by the cancer 
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cells, see fig. 3a. This is in agreement with DW-MRI data (fig. S9c in the SM) and HIF1A PDS which 

explain patient 3 being a non-responder. At the highly-perfused tumor edge, ktrans and vp were 

estimated to be 0.2145min−1 and 15.35% respectively, and drugs arrive in the tissue more 

efficiently. Provided cell chemosensitivity is high enough, simulated cancer cell densities can be 

reduced, as shown in fig. 3b. Although cells in the edge could be killed, this area could have been 

repopulated by the highly-proliferative cells from the core. 

Patient 4 is a responder with also a heterogeneous perfusion profile as seen by DCE-MRI. Contrary 

to patient 3, a scattered pattern with two representative perfusion profiles is observed, one highly 

perfused with low permeability, the second with lower perfusion but high permeability. We show 

simulations of the first perfusion profile in fig. 4a, with the estimated parameters vp = 6.0% and ktrans 

= 0.0067min−1. Simulations of the second profile are in fig. 4b, where we estimated vp = 3.99% and 

ktrans = 0.1107min−1. To reproduce the DWMRI data in both cases, where we see that the tumor was 

drastically reduced at week 1 and almost disappeared by week 12 (fig. S9d in the SM), a higher rate 

of vessel creation compared to the other three patients is required (fig. S15b and fig. S14 in the SM). 

This was achieved by increasing pbirth and HighV , see table S4. This allowed to transport the drug 

efficiently to the tissue, even when the permeability was very small. The simulated reduction of 

severe hypoxia to normoxia shown in the snapshots of fig. 4 is also in agreement with the observed 

significant decrease in HIF1A PDS comparing week 0 to week 12 (fig. S10d in the SM). 

Simulating alternative drug regimens 

In addition to the regimens used in the clinical study, we simulated alternative drug regimens 

(schedules and doses) for the two non-responders. 

Low dosage frequent chemotherapy dosing for slowly proliferative tumor 

The simulations of patient 1 in fig. 2a suggest that a main reason behind the survival of cancer cells 

after each drug administration was their low proliferation rate. As the interplay of treatment 

frequency and cell proliferation rate can contribute to the outcome, we hypothesized that 

administrating a smaller dose more frequently, while keeping the overall amount would be 

beneficial. We therefore simulated four chemotherapy regimens: every week with one third of the 

original dose, every one and a half week with half of the original dose, every two weeks with two 

thirds of the original dose and the original three-week schedule used in the clinical trial. In fig. 5a 

we compare the outcomes after 12 weeks of treatment in terms of change in cell density. We used 

the same initialization and parameters of the personalized simulations of patient 1. To see the effect 

of cell proliferation rate, we repeated the same simulations while changing the cell cycle length 

parameter over a wide range. Simulation results show that the interplay between cell cycle length 

and schedule is complex and can exhibit non-monotonic behaviors. Interestingly, we see that drug 

administrations every week or every week and a half can improve the treatment outcome of patient 

1 (marked with a star in fig. 5a). In fig. 5b, we show simulations of the most successful schedule for 

patient 1, where we reduced FEC100 and bevacizumab to a third of their original dose, but 

administrated every week instead of every 3 weeks. The tissue was free of cancer cells after 

approximately 6 weeks. 
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Low dosage bevacizumab for poorly perfusive tumor 

Patient 3 is a non-responder in the trial arm with chemotherapy only. Our analysis suggests that the 

main reason for the negative outcome was that drugs did not penetrate enough in the tumor core. 

We hypothesized that by administrating an appropriate amount of bevacizumab, VEGF levels could 

be reduced appropriately, and tumor perfusion could be improved with the creation of new 

functional vessels in the core [32, 33]. Thereafter chemotherapy could be delivered efficiently. We 

added different bevacizumab regimens to the personalized simulations of patient 3, using the same 

initialization and parameters. Moreover, to see the effect of VEGF expression on the outcome, we 

repeated the same simulations while changing the parameters modulating VEGF expression levels 

from low to high (fig. 6a). Since bevacizumab has a long half-life, the same schedule was used like 

for the chemotherapy (every three weeks) while scaling the amount with respect to what originally 

administered in the other arm of the trial. We see in fig. 6a, applying full amount of bevacizumab led 

to no improvement comparing to chemotherapy only and the simulated outcomes strongly depend 

on the applied bevacizumab regime and the VEGF expression. For patient 3 (VEGF Level = 2.32), 

tumor burden is reduced with doses lower than a fourth of the full bevacizumab dose. In fig. 6b, we 

show simulations using the optimal bevacizumab regime for patient 3. Comparing this simulation to 

its actual clinical outcome, the new therapy appears to improve the outcome by inhibiting the 

growth of the tumor, reducing the density of the tumor by 50% on average. 

Other alternative treatments 

We tested several regimens removing fluorouracil from the treatment. We found no difference in 

patient’s outcome comparing to the FEC100 regime administered every 3 and every 2 weeks. 

Interestingly, this is in agreement with findings in clinical study [34], see fig. S19 in the SM. 

We investigated the effect of prolonging the 12-wk FEC regimens, by continuing to administer the 

same chemotherapy and bevacizumab for another 12 weeks for patient 1. We saw no benefit in 

terms of patient’s treatment outcome. This confirmed the appropriateness of the actual clinical 

decision of switching to taxane-based chemotherapy after week 12 (fig. S20 in the SM). 

Predicting treatment outcome 

Here we predict the response to treatment of a new patient using our model. We chose a patient, 

patient 5, with the same subtype and in the same trial arm as one of the other four patients, namely 

patient 2. Screening data was then collected as we did for the other patients and as described in 

section S3. The simulations were initialized with parameters estimated from the same patient 5 or 

from the literature, but we did not calibrate any parameter. Instead we use exactly the same 

chemosensitivity, probability of vessel birth and death and the VEGF thresholds as for patient 2. At 

week 0, patient 5 has a moderately sized tumor with necrotic region shown on DCE and DWI MR 

images. Both biopsies showed a high cancer cell density. As a result of this, HIF pathway score was 

high, comparable to patient 2, indicating hypoxia. 

For each of the two digitally captured biopsy images, we ran twenty stochastic simulations and 

obtain a bootstrap confidence interval for the cell density at the end of week 12. At the end of week 

12, the simulated tumor disappeared, and HIF PDS was close to 0. The two-sided 95% bootstrapped 
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confidence interval for biopsies A and B were (0,0.0154) and (0,0.0049) respectively. This agrees 

with the truth, as patient 5 experienced a clinical complete response. 

Discussion 

This paper is a new step towards the simulation of individualized tumor response to therapy. We 

have shown that it is possible to design a multi-scale mathematical model, which integrates 

different types of individual patient’s data collected in clinical practice and simulates the observed 

patient outcome. Our model is flexible enough to simulate different outcomes based on individual 

data, by capturing fundamental biological processes at an acceptable level of approximation. 

Importantly, our model suggests possible mechanistic explanations of individual treatment 

outcomes and allows virtual testing of alternative treatment plans. For example, the administrated 

amount of bevacizumab did not benefit patients. Simulations show that moderate amounts of 

bevacizumab can improve the outcome of patients with extreme hypoxia. As for FEC, we found that 

for highly proliferative tumors, cell-cycle specific drugs are very effective, while for low 

proliferative tumors, a more frequent but lower dosing of FEC can be advantageous. 

We are well equipped to recognize limitations of our approach that need to be addressed in the 

future. First, we have only simulated a few tumor sections of 200 × 300 microns, which might not 

be representative of the whole tumor bulk. Although the current computational power allows 

multi-scale model simulations of larger tumor portions, the approach is still limited by the 

availability of clinical data to inform them. For instance, clinical information at the cellular level, 

such as the number, position and type of cells, is currently possible only for biopsies. We are 

extending our algorithms to run cross-sections of full biopsies. A second limitation of our model 

relates to tumor heterogeneity. Some cell clones can be more proliferative than others, produce 

more VEGF or be more resistant to therapy. Vessels can be different in size, have unequal 

functionality and permeability, contain different oxygen and drug concentrations. Due to the 

current impossibility of characterizing cells and vessels heterogeneity from the available clinical 

data, our simulations assume all cells and vessels to be of the same type. Extending our model to 

multiple clones, competing for resources would rely on a deeper picture of the patients’ tumor than 

routinely available today. 

Third, we have assumed that model parameters are constant during the simulated treatment. For 

instance, we use constant drug chemosensitivity, which is a simplification and neglects the possible 

evolution of resistant phenotypes. To incorporate such details in the present approach, monitoring 

of tumor evolution is needed. 

We incorporated some degree of heterogeneity in our studies by running simulations with different 

cell configurations (observed in the biopsies), and different perfusion and permeabilities (observed 

in MR images of the whole tumor). We account for spatio-temporal heterogeneity in the simulated 

tissue section where cell and vessel numbers, as well as oxygen, VEGF and drug concentrations 

change in space and time. 

Fourth, VEGF is the only angiogenic factor present in our model and does not explicitly reflect the 

redundancy of angiogenic stimulants and inhibitors known to be present in a tumor. The mode of 

action of the VEGF depletion treatment was assumed to be a reduction in the number of functional 
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capillaries, resulting in local reduced supply of oxygen and treatment. However, the effect may be 

more complex, related to the perfusion and leakage of the tumor influenced by the VEGF, as in [26, 

35]. See also [22] for a different susceptibility of VEGF withdrawal dependent on the immune 

activation in the tumor. Future version of the model should incorporate first principles of such 

mechanisms. 

An important contribution of our paper is the identification of three parameters which cannot be 

estimated precisely enough from the present clinical data: the chemosensitivity of tumor cells and 

the sensitivity of vessels to the local VEGF concentration. In our feasibility study, we calibrated 

these parameters, within a range of realistic values, by choosing the ones which allow simulating a 

trajectory compatible with the true patient endpoint. A systematic sensitivity analysis is beyond the 

scope of this paper. We intend to address it in the future. We were able to predict the treatment 

outcome for one patient without calibration. More tests are needed. 

There are several ideas on how the three parameters could be estimated in the future. Drug 

chemosensitivities can be measured using ex-vivo patient material; sensitivity of vessels can be 

perhaps estimated using in-vivo experiments on mice xenografts [35, 36]. Another possibility is to 

use Approximate Bayesian Computation [37] to estimate individual parameters from observing the 

first cycle of treatment. Preliminary results in this direction are promising. 

We highlight the importance of rich longitudinal data to improve the accuracy of the simulated 

therapies. Repeated MR images at different time points matched to each other [11] would allow to 

relate tumor features such as volume, perfusion and cell density along therapy. Additionally, 

matching biopsies and MRI data would be crucial to locate the exact location of the extracted biopsy 

in the MR images, allowing more accurate estimation of parameters such as the vessel permeability. 

Furthermore, instead of using average drug pharmacokinetic models, individual longitudinal 

measurements of drug concentrations in the blood could be easily performed allowing further 

personalization [7]. 

In this paper we use some genomic data but much more should be done. It is known that mutations, 

gene expression and copy number variations portrait properties of tumor cells some of which may 

have implication on treatment success. For example, the PAM50 gene expression signature [29] 

allows classification of breast cancers tumors into five distinct classes. As these genomic features 

modulate the efficacy of therapy, our study suggests that the key parameters in our model, 

proliferative capacity and chemosensitivity of tumor cells, should depend on such genomic features 

of the patient. 

This paper opens the possibility to build models that allow the simulation of other solid tumors. 

This would require extensive work on the mathematical modeling and inferential side, and the 

identification of informative clinical data. In conclusion, our work shows realistic possibilities for 

simulation guided personalized therapy and indicates where further research should focus to make 

this possible. 
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List of Tables 

Patient ID 1 2 3 4 5 

Age 48 31 40 41 53 

Histological tumor type IDC† IDC IDC IDC IDC 

Histological tumor grade 2 3 3 2 - 3 3 

Hormone 
Receptor status 

ER 
positive 
(100%) 

positive 
(1%) 

negative negative negative 

PR positive negative negative positive negative 

Lymph Node 
(LN) status 

Week 0 positive negative positive negative‡ positive 

PAM50 subtype luminal B basal HER2 basal basal 

Clinical Trial Arm 
FEC100 + 

bevacizumab 
FEC100 + 

bevacizumab 
FEC100 

only 
FEC100 

only 
FEC100 + 

bevacizumab 

  Week 0 3987 14940 11449.5* 1934 3327* 

Tumor volume 
(mm3) 

Week 1 3392 - 11460 1279 2115* 

  
Week 
12 

1662* 89 11780 0 0 

Response at week 12 NR CR NR CR CR 

 

Table 1: Patient overview.  Baseline characteristics are shown together with assigned clinical trial 

arms and tumor volumes measured from DW-MRI segmentation at weeks 0, 1 and 12 after 

initiation of the treatment. By clinical examination and caliper measurement, at week 12, patients 1 

and 3 were classified as non-responders (NR) while patients 2 and 4 were classified as complete 

responders (CR). Volumes marked with asterisks were unavailable due to problems such as fat 

suppression and instead computed from Dynamic Contrast Enhanced (DCE) segmentation. As 

patient 1 was treated with bevacizumab which typically reduces DCE-MRI signal, maximum tumor 

diameters were used (30mm at week 0 and 31mm at week 12). † Invasive Ductal Carcinoma ‡ A 

few possibly malignant cells not further classified were seen in lymph node aspirate before 

treatment start. 

 

List of Figures 

 

Figure 1: Simulation and validation workflow, outlined through panels A to H 

 

Figure 2: (a) Simulations of NeoAva drug schedule in patient 1. (b) Simulations of NeoAva drug 

schedule in patient 2. Simulated time evolution of the cancer cell density starting from two different 

cell configurations at week 0 corresponding to biopsy portions A and B. Each line represents the 

average cancer cell density of 10 independent stochastic simulations. The corresponding color band 

indicates the 95% bootstrap confidence interval. Lower panel of each figure shows the spatial 

distribution of cancer and stroma cells for a representative simulation of the biopsy portion B for 

each patient. Background color represents oxygen pressure in mmHg. 
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Figure 3: (a) Simulations of NeoAva drug schedule in patient 3 under poorly-perfused condition. (b) 

Simulations of NeoAva drug schedule in patient 3 under well-perfused condition. Time evolution of 

cancer cell density for two different cell configurations, biopsy portions A and B, and drug 

schedules under two different perfusion profiles. Each line represents the average cancer cell 

density of 10 independent stochastic simulations. The corresponding color band indicates the 95% 

bootstrap confidence interval. Figure 3a represents the core of the tumor of patient 3, while lower 

panel of fig. 3b shows the peripheral spatial distribution of cancer and stroma cells for a 

representative simulation of the biopsy portion B for each patient. Background color represents 

oxygen pressure in mmHg. 

Figure 4: (a) Simulations of NeoAva drug schedule in patient 4 under perfusion profile 1.  (b) 

Simulations of NeoAva drug schedule in patient 4 under perfusion profile 2. Time evolution of 

cancer cell density for two different cell configurations, biopsy portions A and B, and drug 

schedules under two different perfusion profiles. Each line represents the average cancer cell 

density of 10 independent stochastic simulations. The corresponding color band indicates the 95% 

bootstrap confidence interval. Lower panel of figs. 4a and 4b show the spatial distribution of 

cancer and stroma cells for a representative simulation of the biopsy portion B for the patient. 

Background color represents oxygen pressure in mmHg. 

Figure 5: (a) Effects of different chemotherapy schedules on Patient 1 and effect of cell proliferation.  

(b) Simulations of an alternative schedule in patient 1. In fig. 5a, each colored dot represents the 

difference in cancer cell density between start and end of therapy under a specific drug schedule 

and minimal cell cycle length. Tmin of daughter cells is randomized to introduce variability in cell 

cycle duration. Colored lines represent the locally weighted smoothed curve smoothing fitting of 

the simulations of different cell cycle length under the same drug schedule. The simulations of 

patient 1 corresponding to the value Tmin = 14.69 are labeled with a star. fig. 5b illustrates the 

temporal dynamics of the alternative drug schedule providing better outcome. Solid lines represent 

the average cell density (n=10) of the alternative therapy obtained by reducing FEC100 and 

bevacizumab to a third of its original dose, and administrating them every week instead of every 

third week. 

Figure 6: (a) Effects of different bevacizumab schedule on Patient 3 with different estimated VEGF 

expression.  (b) Simulation of an alternative drug schedule for Patient 3. In fig. 6a, the y-axis 

represents the simulated difference in cancer cell density between week 0 and week 12 under a 3-

week administration interval. The x-axis indicates the hypothetical quantity of bevacizumab 

administered to the patient as fractions with respect to the full dose, corresponding to 15 mg/kg. 

Each colored band summarizes 10 independent simulations for patient 3 with VEGF expression 

from low to high given in the legend. These four expression levels correspond to those observed in 

our four patients. However, all other parameters are fixed as for Patient 3. In fig. 6b, we showed 

temporal dynamics of an alternative drug schedule providing better outcome. Solid lines represent 

the average cell density (n=10) of the alternative therapy obtained by administrating a reduced 

bevacizumab dosage of 0.5mg per kg body weight, equivalent of 3.33% of the dosage in the 

experimental arm alongside of chemotherapy following a 3-week interval. The corresponding 

simulation is labeled with a star in fig. 6a. 
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