UiO ¢ Department of Informatics
University of Oslo

Tuning of Elasticsearch
Configuration

Parameter Optimization Through Simultaneous Perturbation
Stochastic Approximation Algorithm

Mohamad Sobhie

Thesis submitted for the degree of Master in
Network and System Administration
30 credits

Department of Informatics
Faculty of mathematics and natural sciences

Autumn 2019

Tuning of Elasticsearch Configuration
Parameter Optimization Through Simultaneous

Perturbation Stochastic Approximation Algorithm

Mohamad Sobhie

14th December 2019

Acknowledgement

I would like to thank my supervisors, Anis Yazidi and Harek Haugerud, for
the encouragement and advice they have provided throughout my time as their

student.

I would like to also thank my parents for their love, caring, and prayers. 1
am very much thankful to my brother, Omar, who has always been there for me.
I want to extend my gratitude to my close friends for their support throughout

my two years of studies.

ii

iii

Abstract

By default, Elasticsearch configuration does not change while it receives data.
However, when Elasticsearch stores a large amount of data over time, the default
configuration becomes an obstacle in scaling for better performance. Besides,
the machine that hosts Elasticsearch will have limitations on its specifications,
like memory size. A solution to this problem is to tune the parameter configur-
ation of Elasticsearch, which leads to achieving better performance. One way to
tune parameters is by using Simultaneous Perturbation Stochastic Approxima-
tion. This report provides an implementation of optimizing Elasticsearch config-
uration parameters by observing the performance and automatically change the
configuration to provide better performance. The used implementation relies
on combining machine learning with ELasticsearch. Through this combination,
Elasticsearch configuration can change its configuration parameters automatic-
ally without the need to reset the currently running instance of Elasticsearch.
The results showed a good improvement in the number of inserted data and

response time of the system.

iv

Contents

List of Figures viii
List of Tables ix
1 Introduction 1
1.1 Motivation 1
1.2 Problem Statement 2
1.3 Thesis Outline, 3

2 Background 5
2.1 Elasticsearch e 5
2.1.1 Documents)

2.1.2 Clusters 6

2.1.3 Elasticsearch Metrics 7

2.1.4 Tuning Parameters L. 11

2.1.5 Logstash. 11

2.2 ELK Stack 12
2.3 Elasticsearch Case Studies 13
2.3.1 NoSQL Databases 13

2.3.2 Defects Detection 14

24 ESRally 14
2.5 Docker e 17
2.6 Parameter Perturbation 17
2.6.1 Stochastic Approximation 18

2.6.2 Adaptive Random Search 18

2.6.3 Simultaneous Perturbation Stochastic Approximation . . 19

2.7 Related Work 19

3 Approach

3.1 Objectives L
3.2 Infrastructure overview
3.3 Elastic Stack Server Specifications
3.4 Documents Generator,
3.5 The Optimizer Algorithm
3.5.1 Initial Parameters
3.5.2 Updating Elasticsearch Automatically
3.5.3 ESRally Benchmarking Tests
3.5.4 Elasticsearch Parameters
3.5.,5 SPSA Algorithm
3.5.6 Objective Function
3.5.7 StepSize
3.5.8 Optimizer Data Flow

4 Implementation

4.1 Docker compose.
4.2 Data Generator
4.3 Running ESRally
4.4 SPSA Algorithm

5 Result and Discussion

5.1 Test Designs.
5.1.1 Taxi rides data
5.1.2 Geo-Names Data
5.1.3 HTTP Log Data

5.2 Objective Function Results . .
5.2.1 Taxi rides data
5.2.2 Geo-Names Data
5.2.3 HTTP Log Data

5.3 Number of Indexed Documents
5.3.1 Taxi Rides Data
5.3.2 Geo-Names Data
5.3.3 HTTP Log Data

5.4 Discussion
5.4.1 Problem Statement . . .

6 Conclusion And Future Work

vi

22
22
23
25
26
27
27
27
27
27
28
29
29
30

33
33
34
38
38

41
41
42
42
43
44
44
46
48
50
50
o1
92
o4
54

57

6.1 Future Work
6.1.1 Improvements
6.1.2 Features . . .
6.1.3 Framework .

6.2 Conclusion

Appendices

A

B

Docker-compose.yml
Data Generator
ESRally Connector
Parameters
Perturbation Optimizer
Race Reader

Main.py

Plotting

vii

65

66

71

77

79

85

95

96

98

List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4
3.5

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9

Cluster with onenode, 7
A single-node cluster with an index and shards

Elasticsearch Performance Metrics

Execution Time of Search Queries 10
Logstash Inputs and Outputs 12
Docker Components 17
Inside Elastic Stack Server 23
Infrastructure Servers oL 24
Elastic Stack Ports 25
Documents Generator Steps 26
Optimizer Algorithm Data Flow 31
Tuning Iterations - Taxi Rides Data 45
Directions of Objective Function - Taxi Rides Data 46
Tuning Iterations - Geo-names 47
Tuning Iterations - Geo-names Data 48
Tuning Process - HTTP Logs Data 49
Directions of Objective Function - HI'TP Logs Data 50
Number of Documents Indexed - Taxi Rides Data 51
Number of Documents Indexed - Geo-names Data 52
Number of Indexed Documents - HT'TP Logs Data 53

viii

List of Tables

2.1 Elasticsearch Tuning Parameters . . .

3.1 Elastic Stack Server Specification . . .
3.2 The Selected Elasticsearch Parameters

ix

Listings

2.1 Example of a Document in JSON 6
2.2 Example of ESRally Output 14
4.1 Elasticsearch Docker Compose 33
4.2 Logstash Docker Compose 34
4.3 Kibana Docker Compose 34
4.4 Person Data Generator 34
4.5 Hardware Data Generator 35
4.6 Address Data Generator 36
4.7 Internet Data Generator 36
4.8 Unit System Data Generator 37
4.9 Food Data Generator 0L 37
5.1 Example Taxi Ride Document 42
5.2 Example Geonames Docuemnt 43
5.3 Example HTTP Log Docuemnt 43
Docker-compose.yml 0o 66
Data Generator.py 71
ESRally Connector.py« ..o v v vt 7
Parameters.pyo 79
Perturbation Optimizer.py 85
Race Reader.py 95
Main.py« e 96
Plotting.py 98

List of Abbreviations

API Application Programmable Interface

CPU Central Processor Unit

DevOps Development and Operations

DSL Domain Specific Language

FDSA Finite difference stochastic approximation
JSON JavaScript Object Notation

JVM Java Virtual Machine

ML Machine Learning

NoSQL Not Only Scripted Query Language

PS Page Size

RAM Random Access Memory

RDBMS Relational Database Management System
SA Stochastic Approximation

SPSA Simultaneous Perturbation Stochastic Approximation

TTN Time To Notify

xi

Chapter 1

Introduction

In this introductory chapter, the motivation for this project is presented with a
problem statement and questions to resolve. The chapter starts by presenting
the motivation, following the description of the problem statement, and finally,

it presents the thesis outline.

1.1 Motivation

The amount of generated data is remarkably increasing every day, 3.8 billion
people use the internet as of 2017. It is also estimated that 1.7 MB of data
will be created for every person every second by 2020 [1]. Also, other data will
be generated by servers to maintain their status and stored in files, which are
referred to as log files. Log files can include different types of data, such as web
requests from users, user activities, server events, etc. Log files are considered
part of big data [2]. Due to the increase in the number of users and machines,

there will be a large amount of data to analyze.

There are different aspects when discussing large data, one of these aspects
is searching among big data. When it comes to searching methods, the taken
time to fetch the right information crucially influences the quality of a search
engine. Having big data has led to the need for good search engines in which

information is quickly collected and is relevant to the searched input. Elastic-

search [3] is a search engine that became popular within the Development and
Operations (DevOps) field, and also among many tech companies [4]. It can be

combined with other tools that collect logs from servers and visualize them.

The traditional way of operating the development teams in organizations
has led to less efficiency and more conflicts when new features or updates are
pushed to production [5]. For this reason, a demanding need for filling the gap
between development and operations has created the DevOps field, that is, a
field in which operations, development, and quality assurance teams are unified
[6]. This has made it faster to release new codes into production, and it also

increased the quality of software systems [7].

Even though the current DevOps tools do not majorly rely on machine
learning (ML), there has been some interest in applying machine learning into
DevOps tools where the quality of software processes was enhanced [8]. This has
brought attention to how to increase quality by applying optimization solutions.
Elasticsearch configuration relies on several parameters, and this means that
tuning the right parameters will give better results in terms of used resources

and fast output, hence quality.

By combining ML and Elasticsearch, we can achieve better performance
by tuning some parameters in Elasticsearch using ML. This project will handle
different aspects of combining ML with Elasticsearch and will provide an al-

gorithm to tune Elasticsearch in an efficient way.

1.2 Problem Statement

Running Elasticsearch with a good performance level depends on what server
specification you have. However, there are other parameters that affect the
performance of Elasticsearch. These parameters can provide fast searching or
indexing if configured correctly. To do so, one has to adopt an optimization
solution to have an optimal-like configuration. The following problem statement

describes what this report will cover:

How to achieve a better FElasticsearch performance by applying Simul-
taneous Perturbation Stochastic Approzimation algorithm while Elasticsearch

cluster keeps on scaling

In order to achieve the above, it is important to understand what para-
meters to deal with and how to deal with them. Along with other considerations

too, this report will answer the following questions:

e How to dynamically change Elasticsearch configuration without resetting
the node?

e To what extent is the new solution improving the current configuration?

Finding the right configuration parameters is difficult when Elasticsearch
clusters rely on the amount of data being indexed and the host machine spe-
cifications. Moreover, it is also hard to combine different parameters to get the

best outcome of configuration parameters.

With the help of machine learning, the above tasks become easier to
handle. With machine learning and Elasticsearch, one can utilize the perform-
ance and lead to better quality when response time is short, and throughput is
high.

1.3 Thesis Outline

This thesis will include the following sections :

e Introduction: Includes the motivation behind this topic and the problem

statement.

e Background: Includes literature of Elasticsearch, Parameter Perturbation,

and used tools.

e Approach: How the system will look like with details, and what is the
approach to implement the solution.

e Implementation: details on the implemented solution

e Results and Discussion: showing the results of the implemented solution.

Also, discussing the findings in relation to the problem statement.

e Conclusion and Future work: How the achieved results approve or disap-
prove of the defined problem. Also, improvements to the delivered solution

and how it helps to cover more aspects in the future.

Chapter 2

Background

2.1 Elasticsearch

Elasticsearch is an open-source search engine that is built on top of Apache Lu-
cene [9] using Java. Elasticsearch is used for searching and analyzing purposes.
It allows us to search for data using full-text search, analysis, structured search,
or different combinations of these three [3]. Elasticsearch provides access to
the Application Programmable Interface (API) in an HTTP RESTful API [10],
which means less complexity and easier integration with other tools. It also
provides near real-time performance [11]. For defining queries, Elasticsearch
provides query Domain Specific Language (DSL) that is based on JavaScript
Object Notation (JSON). [12]. Elasticsearch is widely used by popular websites
such as Wikipedia and Stack Overflow [13]. Elasticsearch has other advantages,
such as load balancing and horizontal scalability [14]. The core idea of Elast-
icsearch is not new at all, as search engines existed before. The difference is
that Elasticsearch provides analysis and search of data in real-time with good

performance.

2.1.1 Documents

One of the essential terms used in Elasticsearch is documents. A document is an

object that includes data which will be stored in Elasticsearch, the documents

have the property of being indexed[13]. In other words, when storing data in
Elasticsearch, another information can be connected to this stored data. The
information describes the stored data and referred to as an index. Indexing
helps in enhancing the speed of searching. It is easier to look for a specific
type rather than go through all the text word by word. An example of a doc-
ument is represented in listing 2.1, the document is serialized into JavaScript
Object Notation(JSON). The document shown in listing 2.1 represents different
keys; those keys are a name, age, "join_date", and accounts. Similarly, those
keys have values such as the name "James Smith", age 30, date "2014-06-01",

"Instagram" and "Twitter".

{
"name " : "James Smith",
"age": 30,
"join date": 12014—06—01",
"accounts": |
{
"type": "Instgram",
"id": "jamesSm"
b
{
"type": "twitter",
"id ": "jameySm"
}
|
}

Listing 2.1: Example of a Document in JSON

Storing entire documents in the database requires a different way of hand-
ling search operations. When dealing with stored data, Elasticsearch does not
look on rows of columnar data, rather it filters, searches, and indexes data of

stored documents. This makes Elaasticsearch performs well with complex texts.

2.1.2 Clusters

When a running instance or more of Elasticsearch works together to share data,
they form a cluster[13]. A cluster contains one or more running instances. The
running instance is referred to as a node. In each cluster, there must be an
elected master node that holds the responsibilities of deleting or adding nodes

as well as adding or removing indexes. The elected master node is not fixed,

this means that if a master node breaks down, another node will be elected.
Also, using several servers, the nodes will automatically connect to each other
if they are on the same network and create cluster [15]. In Figure 2.1 [13] there
is a cluster that contains one node as Nodel and this node is marked as the

master node.

NODE 1 - % MASTER

Figure 2.1: Cluster with one node

The cluster in Figure 2.1 has no index. Hence, it has no data. When adding
an index to a node, using shards becomes necessary. It is one of the important
concepts in Elasticsearch. Shards fix the problem caused by the indexes when
storing a large amount of data that requires more of the existing resources of
a single node. With shards, the index is subdivided into multiple pieces, and
these new pieces are called shards[16][17]. Figure 2.2 [13] shows a cluster with
one node as the master node, inside node 1 there are three shards. A shard is
considered an independent index. For that, each shard can exist on any node

in the cluster.

NODE 1- * MASTER

Figure 2.2: A single-node cluster with an index and shards

2.1.3 Elasticsearch Metrics

There are several factors that play a crucial part in the performance of Elastic-
search. However, the metrics are context-dependent, and since different systems
can run on top of Elasticsearch [18] more metrics will be considered as well. The

following are metrics to consider in Elasticsearch[19];

Cluster Status

Cluster status shows information inside the cluster components, such as running
nodes and how many shards are assigned. Also, it provides information on the

time it takes a cluster to allocate shards.

Node Performance

The node performance is dependant on the specifications of the machine in
which the node is installed. Things like the Central Processor Unit (CPU),
memory usage, and Operating System will affect the performance. And since
Elasticsearch was built using Java, it is important to investigate the Java Virtual
Machine (JVM) metrics as well.

Java Heap

Elasticsearch allocates 32 GB or less to JVM heap of the Random Access
Memory (RAM) but never higher. Along with that, Elasticsearch allocates
50 percent of the available RAM or less.

Index Metrics

There are a few parameters that help to optimize and assess index performance.
Indexing latency can be calculated by using tools or by using the available
parameters index total and index time in millis. Another metric is
the Flush latency that helps in detecting problems with disks. When there

is a problem with slow disks, this flush latency metric will increase.

Search Performance Metrics

Querying is used when using search requests. The number of queries written
and how they are written will influence the performance of a node. Because of

that, Query Latency and Query Load are two important metrics to monitor.

Both Index and Search performance metrics can be summarized as seen in
Figure 2.3, Query Load and Query Latency influence the performance of search-

ing while Index Latency and Flush Latency affect the Indexing Performance.

Search Performance Metrics

Query Load Query Latency

Indexing Performance Metrics

Indexing Latency

Figure 2.3: Elasticsearch Performance Metrics

Search Requests in Elasticsearch

Having the best performance during search requests is the main goal when
using Elasticsearch. When having a large amount of data, the searching will
consume more time. In [20], Elsticsearch performance was tested on a cloud
environment, the test was to execute six types of queries with different result
counts that increasingly vary from query 1 to query 6. In figure 2.4 the X-axes
show the six queries while the Y-axis shows the execution time in milliseconds,
the page size (PS) is represented in colors. The figure shows that with increasing

the page size and result counts, the search time will also increase.

50

Execution Time {in ms)

— ,_.,.,.."{I;...._‘-..ﬂ__-s«——wqh.h,%

. S g —
a1 a2 Q3 04 as a6
Query
—8—P5=100 == P5=500 PS=1000

Figure 2.4: Execution Time of Search Queries

Writing a proper search query is the main factor in influencing search
performance in Elasticsearch. Similarly, factors like data type and how they are
organized play a rule as well. However, to increase the speed of the search there

are two methods [19], custom routing, and force merging.

Custom routing

When having several shards in a node, Elasticsearh checks all segments inside
each shard, not all shards, only the ones that satisfy the search request. Custom
routing gives the ability to store chosen data on the same shard. For that,
only one shard will be searched in order to satisfy the query. As a result,
it requires less number of shards to investigate rather than going through all
shards. Similarly, it is possible to decrease the number of segments of each shard
by using Force Merge API [21]

Force Merging
The purpose of Force Merge is to merge segments continuously until the value of

max _num_segments in a shard is reduced to 1. However, when the number

of segments and shards is high, it will become slow to perform the force merging

10

process. For example, merging 10 000 segments to 5000 segments takes less time
than merging 10 000 segments to one, this will affect the resources required to
perform the process, which will also affect the search requests. In that case, it

is recommended to schedule Force Merging on non-busy hours.

2.1.4 Tuning Parameters

There are many parameters to consider when it comes to both searching speed
and indexing speed in Elasticsearch. Table 2.1 summarizes the most parameters
that have an influence on indexing performance and hence searching perform-
ance [22] [23].

Parameter Description

index.refresh.interval

Time to wait before copying in-buffer memory

index.number.of.replicas

The number of replicas each primary shard has

indices.memory.index.buffer.size

Allocation of heap memory

indices.memory.min.index.buffer.size

Allocation of heap memory

indices.memory.max.index.buffer.size

Allocation of heap memory

index.translog.flush.threshold.size

Make a flush after reaching specific size

index.translog.retention.age

Duration for keeping a translog files

index.translog.sync.interval

How often the translog is synced to disk

index.number.of.shards

The number of primary shards per index

index.shard.check.on.startup

shards should be checked for corruption before opening

Table 2.1: Elasticsearch Tuning Parameters

2.1.5 Logstash

Logstash is an open-source data collector who works on the sever-side with real-
time pipe-lining [24]. Although Logstash was mainly created to collect logs,
its features are not limited to that, Logstash is capable of handling several use
cases. A Logstash instance is capable of receiving an input of different formats,
implement some process on the input based on the configuration, and then send
the data to several storage systems. Figure 2.5 shows a visualization of Logstash
inputs and outputs features. As seen in the figure, Logstash takes different
formats as input and provides an output that is capable of being analyzed,
archived, monitored, altered, etc. In general, Logstash consists of inputs, filters,

and outputs. The input stage will generate an event from the input data format,

11

then at the filter stage, the data will be filtered and will be moved to the

output stage in which different tools can be used to manipulate the output as
desired[24].
A
E Analysis

Iﬂ \\: / Ar(iiving
00— %
‘ \ Monitoring

logstash \
/ Alerting
lIIII

Figure 2.5: Logstash Inputs and Outputs

(((J

2.2 ELK Stack

There are many tools when it comes to DevOp field, and those tools serve dif-
ferent purposes from logs to building dashboards. In the same token, combining
different tools would help in increasing the efficiency in some aspects within
the DevOps field. One of the useful and efficient combinations is the ELK
stack [25], which is a collection of three products, Elasticsearch, Logstash, and
Kibana, known as ELK stack, it can also include more tools like Filebeat, which
is a tool that works to send logs to Logstash. The combination of these three
tools is powerful. Starting from Logstash, which will centralize the logging and
hence receiving the status of servers in an easy way. On top of Logstash comes
Elasticsearch, which will make the process of searching among logs easier. And
finally, A graphical interface known as Kibana will provide a useful visualiza-
tion of logs by building customized dashboards. An example of ELK stack case
can be found in the paper [10], in which the ELK stack was used to monitor

scientific applications on the Cloud.

One important aspect to mention when discussing ELK stack is the secur-

ity features. By default, Kibana and Elasticsearch do not provide authentication

12

and authorization for issuing queries [26]. However, this can be enhanced by
using third-party plugins such as Search Guard [26] and X-Pack [27], which can
secure the ELK stack.

2.3 Elasticsearch Case Studies

Elasticsearch can be implemented within a different context. It is not combined
with logging scenarios, it can be applied on top of databases too. This section

provides different case studies of Elasticsearch.

2.3.1 NoSQL Databases

The relational database management system is the traditional way of storing
data. Oppositely, storing data in a system where a relational database is not
used is another approach called NoSQL Databases. NoSQL stands for Not
Only SQL , the core idea of NoSQL is also to store unstructured data which can
be used when storing document, column databases, etc. [28]. Several NoSQL
databases that are commonly used with applications such as MongoDB [29], and
Cassandra [30] and many others. Elasticsearch stores documents in the form
of JSON, which makes Elasticsearch as NoSQL database since it does not use

scripted query language.

Performance on Databases

There are different aspects to investigate when it comes to testing Elsticsearch’s
performance, and there are several papers that discuss the matter. On a higher
level investigation, one can investigate alternative tools than Elasticsearch, such
as CouchDB [31] ,which is also NoSQL. Both CouchDB and Elasticsearch per-
form the primary operations of databases such as insertion, deletion, updating,
creation, and selection. However, the two tools have different performance when
it comes to time taken to handle the mentioned database operations [32]. In
the paper [32], Elasticsearch performed better only on the selection operation
while CouchDB showed better results on the rest of the operations. However,
when comparing the performance of Elasticsearch versus Relational Database

Management System (RDBMS), Elasticsearch performs faster than Relational

13

Databases such as MySQL [33]. Moreover, the SQL database can be used with
Elasticsearch to perform better in searching for data. One example of such a
case is presented in [34], where MySQL database and NoSQL were combined to

perform faster searching.

2.3.2 Defects Detection

Elasticsearch is capable of serving other purposes that are purely related to soft-
ware engineering ,such as software testing, as the facts show that maintenance
and evolving a system cost over half of the total effort spent on developing the
system [35] [36]. By using Elasticsearch, testers can benefit from using Elastic-
search to discover defects faster. In [37], a case study presented how much time
it takes to notify bugs by using Time To Notify (TTN) metric and comparing

it with other metrics.

2.4 ESRally

ESRally is an open-source tool that helps to benchmark Elasticsearch, and it is
available on Github[38|. ESRally provides powerful tasks such as[39]:

1. Executing benchmarks

2. Providing Benchmark data with specifications on the type of data used in
the benchmark

3. Helping in finding Elasticsearch performance problems

Also, ESRally supports running as a docker container from the docker
image. By providing the Elasticsearch IP when issuing the running command
of the ESRally container, it will connect to the existing node on the specified

IP and perform the bench-markings.

Besides, the output result will provide a JSON file, which consists of several
information as seen in Listing 2.2. The output will include information like the
throughput of each operation performed such as indexing and search queries.

A
> "rally —version": "1.3.0",

"environment": "local",

14

"trial —id": "1423b4e3—delb—4a49-b329—-692340cad833",

"trial —timestamp": "20190928 T104655Z" ,
"pipeline": "benchmark—only",
"user—tags": {},
"track": "nyc taxis",
"Cal‘": [
"external"
P
"cluster": {
"nodes": |
{
"node name": "elasticsearchl",
UOS": {
"name": "Linux",
"version": "4.15.0—-58—generic"
}7
||ij": {
"vendor": "Oracle Corporation",
"version": "12.0.1"

})

"Cpll"! {

"available processors": 16,
"allocated processors": 16
b

"memory" : {

"total bytes": 25253437440

}
] k)

"node—count": 1,

"revision": "de777fa",
"distribution —version": "7.3.0",
"distribution —flavor": "default"
b
"results": {

"op metrics": |

{

"task": "index",

"operation": "index",

"throughput": {
"min": 7919.7283998172215,
"mean": 7919.7283998172215,
"median": 7919.7283998172215,
"max": 7919.7283998172215,
"unit": "docs/s"

b

"latency": {

15

87

88

89

90

5E_@° -

112.03272873535752,

"100_0": 123.38479235768318,
"mean": 114.06296049244702
b
"service time": {
"50_0": 112.03272873535752,
"100 0": 123.38479235768318,
"mean": 114.06296049244702
I
"error rate": 0.0
b
{
"task": "default",
"operation": "default",

"throughput": {

min": 185.11768730001103,
"mean": 185.11768730001103,
"median": 185.11768730001103,
"max": 185.11768730001103,
"unit": "ops/s"

b

"latency": {
"100_0": 4.116862080991268,
"mean": 4.116862080991268
b

"service time": {
"100 _0": 4.116862080991268,
"mean": 4.116862080991268
b,

"error rate": 0.0

}

[

"node metrics": [],

"total time":

15801693,

"total time per shard": {

"min" :

3 k)

"median" :

"max" :

"unit":

8922,
1375645,

ms

Listing 2.2: Example of ESRally Output

16

2.5 Docker

Docker is an open platform tool that is based on the containerization concept[40]
and has become a popular tool among companies and developers. Docker came
to solve the problem of packages and project dependencies, with docker all of
the project code and packages can be built into a docker image and ran by a
container that runs an instance of the docker image. As seen in figure 2.6, docker
consists of docker daemon, REST API, and Docker Command Line Interface.
The combination of these three will allow docker to manage images, containers,

data volumes, and docker network.

container image

docker CLI
network data volumes

REST API l

server
docker daemon

Figure 2.6: Docker Components

2.6 Parameter Perturbation

Tuning Elasticsearch will require an understanding of the parameters used in
the configuration and their input values, to achieve this, several parameter val-
ues must be entered as an input to a function that returns a perturbed value of
the input data. For such a case, stochastic optimization can be used to gener-
ate random values from initial ones. Employing such solutions will enable the
tuning of Elasticsearch configuration by applying optimization solutions to the

parameters. When there is a degree of randomness in input values, stochastic

17

optimization helps in maximizing or minimizing the objective function based on
the desired goal. One can design the objective function to maximize throughput

or minimize response time ,for example.

2.6.1 Stochastic Approximation

Stochastic Approximation (SA) algorithms are types of solutions for optimiza-
tion problems. SA helps in solving problems when the objective function has no
specific form to analyze but can be approximated based on noisy observations.
The noisy observations find an order of parameter estimates which directs the
objective function towards zero as in ¢g() = 0 where ¢ is the gradient of the

expected objective function as explained in [41] and can be presented as:

g9(0) = VO f(0)

where VO f(0) is the gradient of the expected objective function

2.6.2 Adaptive Random Search

Adaptive random search is an extension of the random search algorithm, which
improves the step size of each iteration in the algorithm [42]. Random search
requires a uniform distribution in which it chooses variables from and where
those selected variables are independent of other values on other iterations.
However, the issue with random search is the step size of each iteration, which
makes scaling an issue when the step size is moving within a small range and
hence creating a local optima problem. For that, an adaptive random search
addresses the step size of the random search. The difference between random
search and adaptive random search is that adaptive random search makes a
more significant step size to not have a local optima problem as in random
search. Both random search and adaptive random search implementation can
be found in [43]

18

2.6.3 Simultaneous Perturbation Stochastic Approxima-

tion

Simultaneous Perturbation Stochastic Approximation (SPSA) was introduced
in 1992 by Spall [44], which was an improvement of Kiefer-Wolfowitz in [45] and
referred to as finite difference stochastic approximation (FDSA). SPSA measures
two loss functions that are independent of the number of parameters to optimize.
In comparison, FDSA uses one direction at a time, and this means FDSA will
perturb only one direction while SPSA will perturb all gradient directions and

thus makes it more efficient to use SPSA.

Since the gradient direction of stochastic approximation algorithms may
not represent the best direction on an iteration SPSA and FDSA have a disad-
vantage of slow convergence rate [46]. There have been some proposed papers
to help in getting better SPSA implementation [47] [48].

2.7 Related Work

Tuning the configuration to get a better performance has always been a practice
among researchers and system admins. It is possible to automate the tuning
of systems using machine learning. This has been used in different research
papers that use genetic algorithms to reconfigure systems like [49], which handles
the tuning of parameters to provide high performance. It uses Apache Drill
in a Hadoop cluster, which allows performing different types of querying on
top of NoSQL. Also, it automates the reconfiguration of the cluster once the
optimal configuration is ready. This thesis is highly related since both serve the
purpose of enhancing the performance of clusters. Another thesis that uses the
genetic algorithm as a solution [50], this thesis provides a solution for solving
high-dimensional problems in Hadoop. The solution consists of using a large
population and then evolve them through the cycle of a genetic algorithm. The
provided solution, however, does not solve the problem completely as it suggests
to combine the solution with other techniques as well. Also, this paper [51]
handles the self-tuning of database systems. The paper presents an approach
that depends on three inputs to tune its configuration. Those inputs are a
number of users, buffer-hit-ration, and size of the database. The approach

follows the fuzzy rules, which are defined after some analysis on queries response

19

time.

Similarly, some research papers implement different algorithms to achieve
auto reconfiguration tuning. For example, [52] uses the SPSA algorithm to
tune the parameters on the Hadoop system. The work in this paper shows the

effectiveness of using two system observation per iteration to tune parameters.

Other related work can include self-tuning approaches. For example [53]
proposed a self-tuning approach that is based on an artificial neural network,

which uses Apache Spark as the system to utilize.

20

21

Chapter 3

Approach

3.1 Objectives

The objective of this project is to optimize Elasticsearch configuration using an
optimization algorithm that is based on Simultaneous Perturbation. The solu-
tion will implement the algorithm on a running Elastcisearch container cluster.
The goal is to be able to tun the configuration of the cluster by running bench-
marks and analyze them through the algorithm and then enhance the configur-
ation on each iteration. For each iteration, Indexing metric and Response Time

are the influencing factors on the optimization process.

The benchmark process examines the performance of the running ELastic-
search node by inserting data into it and removing the data once the analyzing
is over. However, before running the benchmark, the Elasticsearch node should
be up and running with some data. For this reason, the followed approach in
this project is to set up the node with data as server logs, product information,
and many other types used in real-life scenarios. The solution should provide

automatic tuning based on the best of parameters.

22

Inside the Elastic Server

Elasticsearch Container Logstash Container
[
- A |
Filebeat Container Kibana Container

Elastic Stack Server

&> &

Figure 3.1: Inside Elastic Stack Server

3.2 Infrastructure overview

The infrastructure of the project will consist of one server hosting Elastic Stack
applications, and other virtual machines that direct their logs to the Elastic
cluster. Also, all applications will be running on docker containers. Figure 3.1
shows the Elastic Stack Server, which will host the Elastic Stack that consists

of Elasticsearch, Kibana, Filebeat, and Logstash as docker containers.

In addition to the Elastic server, there will be three virtual machines in
which logs will be sent from those virtual machines to the Elastic server. As
seen in figure 3.2, the Elastic server will be on a different network than the
virtual machines. Figure 3.1 and figure 3.2 will represent the network side of
the project since all the docker containers will communicate with each other as

well with the other virtual machines.

23

Elastic Stack Server

()
o’

4 Logs Servers

Servers to direct logs to Elastic Stack Server

Figure 3.2: Infrastructure Servers

In addition, the docker containers of the Elastic Stack will be using differ-
ent ports, as seen in figure 3.3 where Elasticsearch uses port 9200, Kibana on
port 5601, Logstash on port 5044 and Beats on port 5043.

Continually, the ESRally benchmarking tool is also available as a docker
image. Therefore, another container will be used to connect to the existing
Elasticsearch node using docker. The algorithm will rely on this combination of

docker containers to apply the solution.

24

K kibana G logstash

Port 5601 \ / Port 5044

o @——

-= elastic stack
—
o

B, bears

Port 9200 Port 5403

Figure 3.3: Elastic Stack Ports

3.3 Elastic Stack Server Specifications

The main server that holds the docker containers and the algorithm has the

following specifications as listed in the table 3.1

Operating System

Linux Ubuntul6.04 xenial

CPU

E5530 @ 2.40GHz

RAM 23 Gb
Disk Space 439G
Hardware Architecture x86 64

Processor

Intel(R) Xeon(R)

Table 3.1: Elastic Stack Server Specification

This server will be the main machine that will perform most of the tasks in this

project.

3.4 Documents Generator

The documents generator is a code written in python that will be connected
to the Elasticsearch cluster and generate fake data. The generated data will
be in JSON format, which is the format used in Elasticsearch and referred to
as documents. Figure 3.4 illustrates the simple steps of the generator, after
generating the documents, the code will collect the generated data into bulk
and send it to the bulk API of Elasticsearch node. The API request will insert
the generated data into the connected Elasticsearch node. For indexing, the

code will generate five indexes for five different sets of data.

@ python

&

Figure 3.4: Documents Generator Steps

26

3.5 The Optimizer Algorithm

The optimizer algorithm will implement the concept of SPSA [44] to tune Elast-
icsearch. This section will breakdown the components of the algorithm that will

be used.

3.5.1 Initial Parameters

The number of parameters to tune will be the same during the implementation.
However, the initial values of each parameter will be different. For example,
index.referesh.interval will take the value of seconds like 1s or 100s and so on.
While other parameters have a memory size type of value, see table 2.1. In the
algorithm, the initial parameters will have random values, and with each para-

meter, there will be a variable that defines the next step size of that parameter.

3.5.2 Updating Elasticsearch Automatically

Once the initial parameters become defined with their values, the algorithm will
update the Elasticsearch cluster using an API from Elasticsearch, which allows
updating settings of a node or a cluster. The updating task is simply an HTTP
request which will hold information about the parameter that will be updated

with their values.

3.5.3 ESRally Benchmarking Tests
As seen in listing 2.2, ESRally provides a JSON file as an output. The output
is useful for having an overview of the current performance of the Elasticsearch

node. With the statistics included in the JSON file, we can retrieve the mean

throughput of indexing and latency of operations.

3.5.4 Elasticsearch Parameters

Elasticsearch configuration includes several parameters. However, the imple-

mented algorithm uses the four parameters listed in table 3.2. A detailed

27

description of the parameters can be found in the official documentation of

Elasticsearch for parameter tuning 2.1.

Parameter

translog.sync.interval
indices.recovery.max.bytes.per.sec
index.flush.threshold.size
index.referesh.interval

Table 3.2: The Selected Elasticsearch Parameters

3.5.5 SPSA Algorithm

The goal of SPSA in this thesis is to maximize the objective function of theta
f(0) where 6 is representing the parameters. In this case, 0 is a set of Elastic-
search parameters, and A represents the step size change that will be added to

each parameter on each iteration.
The algorithm implements the following:
1. Let f(0) be the system performance when the set of parameter equals 6.

2. Let A,, be the step size change that will be added to each parameter where

n represents the current number of the iteration.

3. Let A,z be the minimum step size of each parameter, and n represents

the current number of the iteration.

_ f(gn—l + An) - f(en—l - An)
2

*100 +1) * A

NSZmin

The implemented algorithm in this project is presented in Algorithm 1. The
algorithm starts with initial parameters 6, then for each iteration, the algorithm

will generate a perturbation vector A.

28

Algorithm 1 Simultaneous Perturbation Stochastic Approximation

1: Initial parameters § € R

2: Initial Step Size for each parameter A

3: forn=1,2,...,N do

4: Generate perturbation vector A, € R

Compute f(0) = A, + 0,1

Compute f(0) = A, — 0,1

Calculate percentage difference of f(A,, +6,) and f(A, —6,)
Calculate new step size An for each parameter

9: Update 6 from the best of f(A, +6,) and f(A, —0,)

10: end for

3.5.6 Objective Function

The objective function in the algorithm will use ESRally output to get the in-
dexing throughput and latency time of other operations. The objective function

formula :

Indexing

f(z)

ResponseTime

where indexing is the mean indexing throughput, and that is the number of
indexed documents, and Response Time is the mean latency time of operations,
and that is the latency of different search queries types being performed on the

Elasticsearch cluster.

3.5.7 Step Size

The step size is a value assigned to each parameter, and this value will decide
what the size of the next step is. For each parameter, there is a minimum and
maximum value, the step size will also have a minimum and a maximum value

that is based on the parameter value range. So for Pn where Pn is a parameter:

anaz - anzn

PnSZmin =
nSZmin 100

where PnSZmin is the minimum step size of parameter n , and Pn,,;, is the

minimum value of parameter n, and Pn,,,, is the maximum value of parameter

n. And the maximum value of the step size for Pn is presented as follows:

29

anam - anzn

PnSZ =
nSZmax 10

where PnSZmax is the maximum step size of parameter n , and Pn,,;, is the
minimum value of parameter n, and Pn,,,, is the maximum value of parameter
n. Now for each iteration, the step size value will be updated for each parameter
depending on the objective function of each f(46) and f(—6). The new step

size value will be calculated following the below formula:

StepSize = PnSZmin x (1 + DP)

where DP is the difference percentage of f(+6) and f(—0) and DP € [0,1]. If
step size value exceeds the maximum value of the step size, then the new step

size value will be the maximum step size PnSZmaz.

3.5.8 Optimizer Data Flow

The optimizing algorithm can be presented in a data flow diagram, as in figure
3.5. The data flow diagram starts with Initial Set of Parameters with Step Size
Values, and that is, the parameters in which will be tuned in the algorithm. For
each parameter, there is a step size that will be updated each iteration. Then
Calculate the negative and positive paths of each variable, where +6 presents
a set of values to add to each parameter from the selected set of parameters,
and —0 is the negative values of these values. After that, Update Elasticsearch
settings with both 46 and —0, then Calculate objective function of 46 and —0
and percentage difference, if the iteration is not the last one then check which
objective function value is better is it +60 or —6, the best value will be then
updated either the stage Update set of parameters as in +60 with new step size
value or the —@ one as seen in data flow diagram 3.5. Then the new set of
parameters will be used to update the Elasticsearch settings as before. If the
iterations are over, then update Elasticsearch with the best set parameters from

the previous iterations.

30

Initial Set of Parameters
with step_size values

Calculate the negative
and positive paths of
each variable (+8, -8)

Update set of
Parameters asin
-8 with new
step size value

Update elasticsearch settings

Update set of
Parameters as in
+8
with new step

. Calculate Objective Function of +8 and -6
size value

and percentage difference

Yes

Is this the last Update elasticsearch settings
iteration with the best parameters

+8 is better than -8

Figure 3.5: Optimizer Algorithm Data Flow

31

32

1

Chapter 4

Implementation

4.1 Docker compose

Docker containers can be defined in a docker-compose file that will hold the
container information like name, ports, environment variables, and so on. For
the application used in this project, the elastic stack was divided into four con-

tainers; Elasticsearch, Logstash, Kibana, and Filebeat. See full file in appendix

A

A short definition of the Elasticsearch container includes the docker image,
container name, and some environment variable definition like node name and
cluster name, see code 4.1
compose Elasticsearch ,label=compose—elastic |
elasticsearch:

image: docker.elastic.co/elasticsearch/elasticsearch:7.3.0

container name: elasticsearchl

environment :

— node.name=elasticsearchl

— cluster .name=docker—cluster

Listing 4.1: Elasticsearch Docker Compose

Similarly, the definition of Logstash container will include a build, and that is

referring to the Dockerfile in the same directory and building it as a Docker

33

N

image. Also, since Logstash will use port 5000, it is essential to define it in the
container. See code 4.2
logstash :
container name: logstash
build :
context:
dockerfile: Dockerfile—logstash
restart: always

ports:
— "5000:5000"

Listing 4.2: Logstash Docker Compose

For Kibana, which is the tool that visualizes Elasticsearch, the container defin-
ition of it will include the docker image name, the container name, and, most
importantly, the Elasticsearch IP to connect to which has a node running. See
code 4.3
kibana:
image: docker.elastic.co/kibana/kibana:7.3.0
container name: kibana

environment :

ELASTICSEARCH HOSTS: http://localhost:9200/

Listing 4.3: Kibana Docker Compose

4.2 Data Generator

The data generator is a python script that uses a library that generates different
types of data and then converts them into a JSON format. It also uses the
Elasticsearch client for Python, this makes it easier to connect to an existing
cluster and to use the Elasticsearch APIs like the Bulking API. For the full
Python script of the data generator see appendix B. To break it down, the
script creates the following types of data; person, hardware, Internet, File, Unit
system, Address, and food data. It starts with generating data of type persons.
The data includes the fields first name, last name, academic degree, and email.
The implementation method in Python is like Listing 4.4. The fields will hold

random values every time the method gets called by the code.

34

def person data(self ,length):
for i in range(length):
yield {
" index": "person."{date today,
"doc": {
"last name": person.surname (),
"first name": person.name(),
"Academic degree": person.academic degree(),

"email": person.email ()

Listing 4.4: Person Data Generator

The hardware data includes different fields of different hardware information
like CPU, RAM size, RAM type, type of memory SSD or HDD, Manufacturer,
etc. The Python method for the hardware data generator presented in listing
4.5

def hardware data(self ,length):
for i in range(length):
yield {
#" id": str(uuid.uuid4()),
" index": "hardware."+date today,
"doc": {
"cpu": hardware.cpu(),
"frequency": hardware.cpu_frequency (),
"codename": hardware.cpu_ codename() ,
"model code":hardware.cpu model code(),
"generation":hardware. generation () ,
"manufacturer": hardware. manufacturer () ,
"graphics":hardware. graphics (),
"phone model" : hardware . phone model () ,
"ram size": hardware.ram size (),
"ram type": hardware.ram type(),
"resolution": hardware.resolution (),
"ssd_or hdd": hardware.ssd or hdd(),

"screen size": hardware.screen size ()

Listing 4.5: Hardware Data Generator

For address data, a general address will be generated, which includes information

like country code, country, city, current local, latitude, and longitude. Listing

35

18

4.6 presents the Python method that generates address data as JSON.

def address data(self ,length):

for i in range(length):

yield {

#" _id": str(uuid.uuid4()),

" index": "address."{date today,

"doc": {
"address": address.address(),
"country code": address.country code(),
"country": address.country (),
"continent":address.continent (),
"city":address.city (),
"current locale":address.get current locale(),
"coordinates":address.coordinates (),
"latitude":address.latitude (),
"longitude": address.longitude ()

Listing 4.6: Address Data Generator

The internet data includes information like IP and IPv6. It also provides inform-

ation about home pages and HTTP requests. Listing 4.7 presents the Python

method to generate Internet data.

def internet data(self ,length):

for i in range(length):

yield {
" index": "internet."+date today,
"doc" : {
"content type": internet.content type(),

"ip": intermnet.ip v4(),

"ip _v6": internet.ip v6(),
"emoji":internet.emoji(),

"home page":internet.home page(),

"network protocl":internet.network protocol(),
"mac _address":internet.mac address(),

"user agent":internet.user agent(),

"port": internet.port(),

"http method": internet.http method(),

"http status code": internet.http status code(),

"http status message": internet.http status message

36

19 }
Listing 4.7: Internet Data Generator

Unit system data includes only two fields, unit, and prefix. See listing 4.8 for
the Python method.

1 def unit system data(self ,length):

2 for i in range(length):

3 yield {

4 #" id": str(uuid.uuid4()),

" index": "unit system."{date today,
6 "doc": {

7 "unit": unit system.unit (),

8 "prefix": unit system.prefix (),
9 }

10 }

Listing 4.8: Unit System Data Generator

Food data includes information like vegetables, fruit, dish, drink, and spices.

Refer to listing 4.9 for the Python code to generate food data.

1 def food data(self ,length):
2 for i in range(length):

yield {

4 #" id": str(uuid.uuid4()),

5 " index": "food."{date today,

6 "doc": {

7 "vegetable": food.vegetable (),
8 "fruit": food.fruit (),

9 "dish": food.dish (),
10 "drink": food .drink (),
11 "spices":food.spices (),

12 "current locale":food.get current locale(),

Listing 4.9: Food Data Generator

Finally, all those methods will generate data in JSON format, which will be
used in the bulk API of Elasticsearch to index them into the cluster.

37

4.3 Running ESRally

ESRally can be run using Docker container, the command to run ESRally is:

$docker run elastic/rally —track=nyc taxis —test—mode —
pipeline=benchmark—only —target—hosts=elasticsearch:9200

Where —track is the designed queries and indices to test and insert in the Elast-
icsearch. And —pipeline is a number of steps that are performed to get results
from the benchmark. And finally, the —target-hosts is the Elasticsearch node
that will be tested.

4.4 SPSA Algorithm

The SPSA implementation in Elasticsearch includes several Python files :

e ESRallyConnector: Responsible for the connection with the ESRally tool.
See appendix C

e Parameters: Elasticsearch parameter definitions will go through this file.

See appendix D
e Perturbation Optimizer: Perform the actual algorithm. See appendix E

e Race Reader: This file will read the JSON output from ESRally, it converts
the output of JSON to variables in the code to calculate the objective

function later. See appendix F

def SPSA(self ,current par, max iter):
Defining variables
current par will include the parameters values

max _iter will decide how many iterations to perform

best of best = {}

best = {}

candidate = {}

self .x plus minus improvement = 0

self .current par = current par

#the iterations will happen in this loop

for i in range(max iter):

38

30

X positive, X negative = self.x plus minus(self.
current par)
candidate ['vector positive'] = X _positive

candidate ['vector negative'] = X negative

get objective function of the X+ and X—

of plus = self.takes vector(candidate|'vector positive'

1) [0]

of minus = self.takes vector(candidate['vector negative

') [0]

get the improvement percentage of of+ and of—
self .x plus minus improvement = self.

calculate percentage difference(float (of plus), float (of minus)

)

find which of (x+ x—) is best
if (of plus > of minus):
best ['cost'] = of plus best ['vector '|=candidate [
vector positive'|
#update the new parameter's values from the X+
parameter values

self . update parameters(best)

else s
best ['cost'] = of minus best['vector'|=candidate]|'
vector mnegative'|

self .update parameters(best)

#This will save the best value in all iterations
if not best_of best or best['cost'|] > best_of best['
cost ']:
best of best|['cost'] = best.get('cost')
best of best|'vector'] = best.get('vector')

#update the step size using this method
self .update step size()

return best of best

39

40

Chapter 5

Result and Discussion

5.1 Test Designs

This section handles the test’s design and specifications that were performed.
For each test, there is an indexing operation, and that is, inserting new data
to the Elasticsearch cluster to test the performance during the indexing task.
Then, there are several types of operations that will be performed on those
indexed data, and that is, several types of search queries. Besides, each test will

have a list of specifications like the following list:

1. The number of documents: The number of data inserted in Elasticsearch,

a document is represented by a JSON object.
2. Bulk Size: How many documents to index per request

3. Type of Operations: Performing different types of search queries like ag-

gregations, range, match all, etc.

4. The number of iteration per operation: Keep repeating an operation for

a specific number.

41

1

N}

5.1.1 Taxi rides data

The Taxi Rides documents will include data like pickup location, pickup dateline,

passenger account, improvement surcharge, etc. See listing 5.1

{

"total amount": 28.3,

"improvement surcharge": 0.3,

"pickup location": [—73.9931869506836, 40.66499328613281]|
"pickup datetime": "2015—-01-01 00:39:28",

"trip type": "1",

"dropoff datetime": "2015—-01—-01 01:17:07",

"rate code id": "1",

"tolls amount": 0.0,

"dropoff location": [—73.91593933105469, 40.7042236328125],
"passenger count": 1,

"fare amount": 27.0,

"extra": 0.5,

"trip distance": 5.72,

"tip _amount": 0.0,

"store and fwd flag": "N",

"payment type": "2",

"mta_tax": 0.5,

"vendor id": "2"

Listing 5.1: Example Taxi Ride Document

Test Specifications

1. Number of documents: 16 5346692
2. Bulk Size: 10 000
3. Type of Operations: 6

4. Number of iteration per operation: 100

5.1.2 Geo-Names Data

Geo-names data represents geographical information about specific areas, as

seen in listing 5.2, such data includes country code, population, timezone, etc.

42

1 {

"geonameid": 3039805,

3 "name": "Montaup",

4+ "asciiname": "Montaup",
5 "feature class": "L",

¢ "feature code": "AREA",
7 "country code": "AD",

¢ "adminl code": "02",

o "population": 0,

10 "dem": "2243"

11 "timezone": "Europe/Andorra",

12 "location": [1.58156, 42.58328]

13 }

Listing 5.2: Example Geonames Docuemnt

Test Specifications

1. Number of documents: 11 396505
2. Bulk Size: 5000
3. Type of Operations: 22

4. Number of iteration per operation: 100

5.1.3 HTTP Log Data

Http logs data represents Http requests. Htpp requests include information like
the type of request, the status of the request, size of the request, and the client
IP. See listing 5.3.

1

2 "@timestamp": 898459201,

: "clientip": "211.11.9.0",

' "request": "GET /english/index.html HITTP/1.0",
5 "status": 304,

6 "size": O

7}

Listing 5.3: Example HTTP Log Docuemnt

43

Test Specifications

1. Number of documents: 27 08746
2. Bulk Size: 5000
3. Type of Operations: 10

4. Number of iteration per operation: 100

5.2 Objective Function Results

This section will show the results of the objective function in all iterations for
several types of data. For each iteration, there are two objective function results,

the direction of the tuning will follow the one with the better result.

5.2.1 Taxi rides data

Figure 5.1 shows the tuning performance of the algorithm on Taxi Rides data. At
the first iteration, the objective function value was 19547.21, while the value was
21381.25 at the last iteration. On iteration 2, the value increased to 24040.57,
and since the goal was to maximize the objective function, the higher the value,
the better. However, on iteration 3, the value decreased to 12525.87 as the
lowest drop down of this test. This means that the system at iteration 3 did
not perform well within the testing context. However, the value of the objective
function kept increasing and decreasing from an iteration to another, on iteration
78 the objective function reached 26619.54 as the largest value among other
iterations. This means that the set of parameters used at iteration 78 gave the

best performance.

44

Objective function

Iteration

Figure 5.1: Tuning Iterations - Taxi Rides Data

Figure 5.2 is similar to figure 5.1, however the difference is that on each iteration
there are two results of the objective function, which are the results of both
directions, the dots with line represent the best direction and hence the direction
for the tuning process, while the dots without a line are the ones with the worse
tuning direction. For example, at iteration 78, which the tuning process was
at its best with a value of 26619.54, the other tuning direction was 19985.26.
However, SPSA will choose the best path of these two. In that case, the system
tuning process followed the path with a value of 26619.54.

45

Objective Function

M Better Direction B All Results of the objective function
30000
.
25000
.
L |
50000 o | *el b .
.
L] - 3
. M * = - .
. L ale
. . PO . o » e
° o* LN) L]
000 |e . . * O . * e . * .
. . L
. - . . . - . .
. ~ O .
. -
. . .
000C
(2 (75 0r
Iteration

Figure 5.2: Directions of Objective Function - Taxi Rides Data

5.2.2 Geo-Names Data

Figure 5.3 shows the tuning performance of the algorithm on Geo-names data.
The starting value of the objective function was 46799.96, while it ended with
a value of 47432. The lowest performance was at iteration 33 with the value of
33920.05. Oppositely, at iterations 31, 68, and 49, the values of the objective
function reached 62659.34, 63690.46, and 61740.11 while the most significant
value reached 67200.09 at iteration 17. This indicates that the set of parameter
values at iteration 17 showed the best performance of the system during the
test.

46

Objective Function

Iterations

Figure 5.3: Tuning Iterations - Geo-names

Figure 5.4 is similar to figure 5.3. The difference is that figure 5.3 presents
all objective function results on each iteration while figure 5.4 only presents
the tuning process direction that was chosen by the algorithm. For example,
at iteration 17, which was the largest objective function result with a value
of 67200.09, the opposite direction for that iteration was valued 49285.52, the
algorithm at iteration 17 decided to go for the better value to achieve better per-
formance. Figure 5.4 makes it easy to observe the performance of the algorithm

by comparing the dots with the lined dots.

47

Objective Function
M Better Direction B All Results of the objective function

Iterations

Figure 5.4: Tuning Iterations - Geo-names Data

5.2.3 HTTP Log Data

Figure 5.5 shows the tuning performance of the algorithm on HTTP logs. On
the first iteration, the objective function value was 11925.94 at the first iteration.
It then increased to 12357.94 at iteration 4, which was the second-largest value
of this test. The tuning process reached its best at iteration 42 with the value
of 13996.42. Also, the lowest value was at iteration 67, with a value of 7126.78.
And finally, at the last iteration, the objective function value was 10300.35.
This means that the set of parameter values of iteration 42 are the best set for

performance in comparison with the other iterations.

48

Objective Function

Iteraiton

Figure 5.5: Tuning Process - HT'TP Logs Data

Figure 5.5 showed the tuning process of the system. However, the algorithm
performs two tests in each iteration and chooses the best direction of the two.
Figure 5.6 shows all results on each iteration, and the dots with a line are the
ones with the best path while the dots without a line are the ones with the
worse path. For example, the largest value, hence the best performance, was
at iteration 42 with a value of 13996.42. On that same iteration, the opposite
direction was 11129.87.

49

Objective Function

M Better Direction B All Results of the objective function
d |
L -
L]
1 .
. . & . . .
. . S, & .
. - .t L] . -~ . .
-, { . R 0 5 . . . - -'.. -
. = . = . - . L]
. L]
L] L] L]
L] L]
. % . . -, -
-
.
Iteration

Figure 5.6: Directions of Objective Function - HT'TP Logs Data

5.3 Number of Indexed Documents

This section will show the results of several documents indexed in Elasticsearch
node. Each test includes 200 Elasticsearch indexing operations, that is, on
each operation, some documents are inserted in Elasticsearch node and indexed.
From the same test results of the objective function, the indexing operation

performance will be shown in this section.

5.3.1 Taxi Rides Data

Figure 5.7 shows the process of the indexing operation on Taxi Rides data.
The operation was performed 200 times. The Y-axes presents the number of
documents indexed per second, and the X-axes presents the iteration number of

the indexing operation. The starting performance showed that 7595 documents

a0

were indexed per second. It then dropped down to 7025 documents/second.
Similarly, the lowest drop down was at indexing operation number 186 in which
the number of documents indexed was 4318.19 document/second. However, the

best performance was at iteration 193 with 9390 documents/second.

Number of Indexed Documents Per Second

Indexing Operation

Figure 5.7: Number of Documents Indexed - Taxi Rides Data

5.3.2 Geo-Names Data

Figure 5.8 shows the process of the indexing operation on Geo-names data.
The operation was performed 200 times. The starting performance showed
that 4001 documents were indexed per second. It then increased at its best to
reach 5594 documents/second. However, the lowest drop down was at indexing
operation number 77 in which the number of indexed documents was 2996.43

document /second.

o1

Number of Indexed Documents Per Second

Indexing Operation

Figure 5.8: Number of Documents Indexed - Geo-names Data

5.3.3 HTTP Log Data

Figure 5.9 shows the process of the indexing operation on HTTP logs data. The
starting performance showed that 4339 documents were indexed per second. But
then it dropped to 1356 documents/second at index operation number 3 as the
lowest result. However, the top performance was at iteration 52 where the

number of indexed documents was 4998 documents/second.

92

Number of Indexed Document Per Second

2000

Indexing Operation

Figure 5.9: Number of Indexed Documents - HTTP Logs Data

93

5.4 Discussion

This section discusses the different challenges in this project. It also evaluates
the work done in this report. The goal of this thesis was to write an SPSA

algorithm that would give a solution to tune the performance of Elasticsearch.

5.4.1 Problem Statement

This thesis solves the following problem statement: How to achieve better Elast-
icsearch performance by applying Simultaneous Perturbation Stochastic Approz-

imation algorithms while Flasticsearch cluster keeps on scaling.

However, to solve the problem statement, one has to break down the prob-

lem statement into a few questions:

e How to dynamically change Elasticsearch configuration without resetting
the node?

e To what extent the new solution is improving the current configuration?

The goal of this thesis was to use optimization solutions to tune Elastic-
search configuration to get a better performance. The implemented algorithm
for the optimization was SPSA. The SPSA algorithm iterates several times by
testing the current performance of the system. On each iteration, SPSA will
observe the system by applying a set of parameters, which is a representation
of a parameter combination values. Those values are updated every iteration,
and the updates are dependant on the previous iteration in which the system

performance was observed.

Finding the correct set of parameters that would tune the performance is
difficult when the Elasticsearch node is storing more data and performing more
queries. Therefore, using optimization solutions such as SPSA improves the

process of choosing the set of parameters that would provide good performance.

The implemented SPSA algorithm provides dynamic tuning to the Elast-
icsearch nodes. It keeps performing tests on the node while observing the per-
formance. The best solution will be saved, and once all tests are done, the
Elasticsearch node will be updated with the best solution without any need to

reset the node.

94

Configuring Elasticsearch has to be done manually by providing which
parameters to change to reach a better performance. This makes it imprac-
tical when continuous data is being inserted and indexed with respect to the
hosting machine specifications. Therefore, the proposed solution provides auto-
matic reconfiguration by testing a different set of parameters and updating the

configuration with the best solution.

99

96

Chapter 6

Conclusion And Future Work

6.1 Future Work

Although the results achieved in this work were satisfactory, there is more to
build on top of it. This chapter gives suggestions to carry on with the current

work.

6.1.1 Improvements

This work can be improved by performing more tests with more parameters.
Moreover, in Elasticsearch, there are static parameters, and those parameters
cannot be updated without resetting the node. Therefore, covering the static

parameters would improve the work.

6.1.2 Features

Since Elasticsearch can be used for different purposes, a good feature would allow
the prioritization of indexing throughput over latency and vice versa. This will

help scenarios that are totally focusing on indexing operations or response time.

In addition, it is possible to add different optimization algorithms to the

tool. By following the same tuning process, increasing the optimization methods

57

would be sufficient.

6.1.3 Framework

The scope of this thesis covers a few parameters with the tuning algorithm.
However, this can be further enhanced towards building a framework in which
all Elasticsearch parameters are defined. With such a framework, it would be
possible to define which parameters to tune on the run time. Also, adding
several tuning algorithms to the framework would give the option to the system

admins to test based on their desires.

6.2 Conclusion

The main goal of this thesis was to enhance the performance of Elasticsearch
by implementing an optimization algorithm to tune its parameter configuration.
After several tests, the Elasticsearch node showed improvements in its perform-
ance after implementing the simultaneous perturbation stochastic approxima-
tion algorithm. The algorithm implemented in this thesis relies on observing
the system two times on each iteration, and based on that, the tuning process

takes a step toward optimizing the configuration.

Being able to tune the configuration using different types of data means
that the algorithm can find a better set of values for specific kinds of data.
Hence, finding an optimized version of the configuration where both latency

and indexing are quality factors.

Performing several experiments on the designed system resulted in effi-
ciently tuning the Elasticsearh parameters. Overall, the Elasticsearch configur-
ation and the implemented algorithm relied on the latency of operations and
the number of inserted documents. As a result, the configuration adapted to a

better set of values, which serves the objectives of this report.

98

Bibliography

[1]

2]

13l

4]

[5]

[6]

7]

18]

19]

(2018). Data never sleeps 6.0, www.Domo.com, [Online|. Available: https:
/ /www.domo.com / assets /downloads /18 domo _data- never-sleeps- 6+
verticals.pdf (visited on 05/10/2019).

A. Jacobs, ‘The pathologies of big data’, Communications of the ACM,
vol. 52, no. 8, pp. 36-44, 2009.

(2019). Elasticsearch, [Online|. Available: https://www.elastic.co/ (visited
on 08,/10/2019).

(2019). Stories from users like you, www.elastic.co, [Online|. Available:
https://www.elastic.co/customers/ (visited on 05/10/2019).

L. Konig and A. Steffens, ‘Towards a quality model for devops’, Continu-
ous Software Engineering € Full-scale Software Engineering, p. 37, 2018.

C. Ebert, G. Gallardo, J. Hernantes and N. Serrano, ‘Devops’, Iece Soft-
ware, vol. 33, no. 3, pp. 94-100, 2016.

C.-P. Bezemer, S. Eismann, V. Ferme, J. Grohmann, R. Heinrich, P. Jam-
shidi, W. Shang, A. van Hoorn, M. Villaviencio, J. Walter et al., ‘How is
performance addressed in devops? a survey on industrial practices’, arXiv
preprint arXiw:1808.06915, 2018.

A. F. Nogueira, J. C. Ribeiro, M. Zenha-Rela and A. Craske, ‘Improv-
ing la redoute’s ci/cd pipeline and devops processes by applying machine
learning techniques’, in 2018 11th International Conference on the Quality
of Information and Communications Technology (QUATIC), IEEE, 2018,
pp- 282-286.

M. McCandless, E. Hatcher and O. Gospodnetic, Lucene in action: covers
Apache Lucene 3.0. Manning Publications Co., 2010.

99

https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://www.domo.com/assets/downloads/18_domo_data-never-sleeps-6+verticals.pdf
https://www.elastic.co/
https://www.elastic.co/customers/

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

S. Bagnasco, D. Berzano, A. Guarise, S. Lusso, M. Masera and S. Vallero,
‘Monitoring of iaas and scientific applications on the cloud using the elast-
icsearch ecosystem’; in Journal of physics: Conference series, IOP Pub-
lishing, vol. 608, 2015, p. 012 016.

V.-A. Zamfir, M. Carabas, C. Carabas and N. Tapus, ‘Systems monitoring
and big data analysis using the elasticsearch system’, in 2019 22nd Inter-
national Conference on Control Systems and Computer Science (CSCS),
IEEE, 2019, pp. 188-193.

M. S. Divya and S. K. Goyal, ‘Elasticsearch: An advanced and quick search
technique to handle voluminous data’, Compusoft, vol. 2, no. 6, p. 171,
2013.

C. Gormley and Z. Tong, Elasticsearch: The definitive guide: A distributed
real-time search and analytics engine. " O’Reilly Media, Inc.", 2015.

G. Amato, P. Bolettieri, F. Carrara, F. Falchi and C. Gennaro, ‘Large-
scale image retrieval with elasticsearch’, in The /1st International ACM
SIGIR Conference on Research & Development in Information Retrieval,
ACM, 2018, pp. 925-928.

O. Kononenko, O. Baysal, R. Holmes and M. W. Godfrey, ‘Mining mod-
ern repositories with elasticsearch’, in Proceedings of the 11th Working
Conference on Mining Software Repositories, ACM, 2014, pp. 328-331.

R. Kuc and M. Rogozinski, FElasticsearch server. Packt Publishing Ltd,
2013.

(2017). Basic concepts, [Online|. Available: https://www . elastic.co /
guide /en /elasticsearch /reference /6.2/ basic _ concepts.html (visited on
08/10/2019).

J. Bai, ‘Feasibility analysis of big log data real time search based on hbase

and elasticsearch’, in 2018 ninth international conference on natural com-
putation (ICNC), IEEE, 2013, pp. 1166-1170.

N. N. M. R. Subhani Shaik, ‘A review of elastic search: Performance
metrics and challenges’, International Journal on Recent and Innovation
Trends in Computing and Communication, vol. 5, pp. 222-229, 2017.

U. Thacker, M. Pandey and S. S. Rautaray, ‘Performance of elasticsearch
in cloud environment with ngram and non-ngram indexing’, in 2016 In-

ternational Conference on Electrical, Electronics, and Optimization Tech-
niques (ICEEOT), IEEE, 2016, pp. 3624-3628.

60

https://www.elastic.co/guide/en/elasticsearch/reference/6.2/_basic_concepts.html
https://www.elastic.co/guide/en/elasticsearch/reference/6.2/_basic_concepts.html

[21]

[22]

[23]

[24]
[25]

[26]

[27]

28]

[29]
[30]

[31]

[32]

(2019). Basic concepts, [Online]. Available: https://www.elastic.co/guide/
en / elasticsearch / reference / current / indices - forcemerge . html (visited on
08/10,/2019).

(2019). Tune for search speed, [Online|. Available: https://www.elastic.

co/guide /en / elasticsearch / reference / master / tune- for- search- speed . html
(visited on 08/10/2019).

(2019). Tune for indexing speed, [Online|. Available: https://www.elastic.
co/guide/en /elasticsearch /reference / master /tune-for-indexing-speed. html
(visited on 11/10/2019).

J. Turnbull, The Logstash Book. James Turnbull, 2013.

H. Akshaya, J. Vidya and K. Veena, ‘A basic introduction to devops tools’,
International Journal of Computer Science €& Information Technologies,
vol. 6, no. 3, pp. 05-06, 2015.

W. Takase, T. Nakamura, Y. Watase and T. Sasaki, ‘A solution for secure
use of kibana and elasticsearch in multi-user environment’, arXiv preprint
arXiv:1706.10040, 2017.

H. Waagsnes and N. Ulltveit-Moe, ‘Intrusion detection system test frame-
work for scada systems.’, in ICISSP, 2018, pp. 275-285.

J. Pokorny, ‘Nosql databases: A step to database scalability in web envir-
onment’, International Journal of Web Information Systems, vol. 9, no. 1,
pp- 69-82, 2013.

K. Banker, MongoDB in action. Manning Publications Co., 2011.

G. Wang and J. Tang, ‘The nosql principles and basic application of cas-
sandra model’, in 2012 International Conference on Computer Science
and Service System, IEEE, 2012, pp. 1332-1335.

J. C. Anderson, J. Lehnardt and N. Slater, CouchDB: the definitive guide:
time to relax. " O’Reilly Media, Inc.", 2010.

S. Gupta and R. Rani, ‘A comparative study of elasticsearch and couchdb
document oriented databases’, in 2016 International Conference on In-
ventive Computation Technologies (ICICT), IEEE, vol. 1, 2016, pp. 1-
4.

61

https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/indices-forcemerge.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-search-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-search-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-indexing-speed.html

[33] P. Seda, J. Hosek, P. Masek and J. Pokorny, ‘Performance testing of nosql
and rdbms for storing big data in e-applications’, in 2018 3rd Interna-
tional Conference on Intelligent Green Building and Smart Grid (IGBSG),
IEEE, 2018, pp. 1-4.

[34] U. Taware and N. Shaikh, ‘Heterogeneous database system for faster data
querying using elasticsearch’, in 2018 Fourth International Conference on
Computing Communication Control and Automation (ICCUBEA), IEEE,
2018, pp. 1-4.

[35] G. Tassey, ‘The economic impacts of inadequate infrastructure for soft-
ware testing’, National Institute of Standards and Technology, RTI Pro-
ject, vol. 7007, no. 011, pp. 429-489, 2002.

[36] J.D. Strate and P. A. Laplante, ‘A literature review of research in software
defect reporting’, IEEE Transactions on Reliability, vol. 62, no. 2, pp. 444—
454, 2013.

[37] G. R. Perez, G. Robles and J. M. G. Barahona, ‘How much time did
it take to notify a bug? two case studies: Elasticsearch and nova’, in
2017 IEEE/ACM 8th Workshop on Emerging Trends in Software Metrics
(WETSoM), IEEE, 2017, pp. 29-35.

[38] (2019). Esrally benchmarking, [Online]. Available: https://github.com/
elastic/rally (visited on 09/09/2019).

[39] (2019). Esrally documentation, [Online|. Available: https://esrally.readthedocs.
io/en/stable/ (visited on 08/09/2019).

[40] (2019). Docker documentation, [Online]. Available: https://docs.docker.
com/ (visited on 05/10/2019).

[41] H. Robbins and S. Monro, ‘A stochastic approximation method. in herbert
robbins selected papers’, 1985, pp. 102-109.

[42] Z.B. Zabinsky, Stochastic adaptive search for global optimization. Springer
Science & Business Media, 2013, vol. 72.

[43] J. Brownlee, ‘Clever algorithms’, Nature-Inspired Programming Recipes,
vol. 436, 2011.

[44] J. C. Spall et al., ‘Multivariate stochastic approximation using a sim-
ultaneous perturbation gradient approximation’, IEEE transactions on
automatic control, vol. 37, no. 3, pp. 332-341, 1992.

62

https://github.com/elastic/rally
https://github.com/elastic/rally
https://esrally.readthedocs.io/en/stable/
https://esrally.readthedocs.io/en/stable/
https://docs.docker.com/
https://docs.docker.com/

[45]

[46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

J. Kiefer, J. Wolfowitz et al., ‘Stochastic estimation of the maximum of a
regression function’, The Annals of Mathematical Statistics, vol. 23, no. 3,
pp- 462-466, 1952.

H. J. Kushner and D. S. Clark, Stochastic approximation methods for con-
strained and unconstrained systems. Springer Science & Business Media,
2012, vol. 26.

H. Zhao and T. Liu, ‘A parallelized combined direction simultaneous per-
turbation stochastic approximation algorithm’, in 2017 2nd IEEE Inter-
national Conference on Computational Intelligence and Applications (IC-
CIA), IEEE, 2017, pp. 141-144.

Z. Xu, ‘A combined direction stochastic approximation algorithm’, Op-
timization Letters, vol. 4, no. 1, pp. 117-129, 2010.

R. Blgtekjaer, ‘Performance tuning apache drill on hadoop clusters with

evolutionary algorithms’, Master’s thesis, 2018.

G. Yildirim, I. R. Hallac, G. Aydin and Y. Tatar, ‘Running genetic al-
gorithms on hadoop for solving high dimensional optimization problems’,
in 2015 9th International Conference on Application of Information and
Communication Technologies (AICT), IEEE, 2015, pp. 12-16.

S. F. Rodd and U. P. Kulkarni, ‘Adaptive self-tuning techniques for per-
formance tuning of database systems: A fuzzy-based approach’; in 2013

2nd International Conference on Advanced Computing, Networking and
Security, IEEE, 2013, pp. 124-129.

S. Kumar, S. Padakandla, P. Parihar, K. Gopinath, S. Bhatnagar et al.,
‘Performance tuning of hadoop mapreduce: A noisy gradient approach’,
arXww preprint arXiw:1611.10052, 2016.

M. A. Rahman, J. Hossen and C. Venkataseshaiah, ‘Smbsp: A self-tuning
approach using machine learning to improve performance of spark in big

data processing’, in 2018 7th International Conference on Computer and
Communication Engineering (ICCCE), IEEE, 2018, pp. 274-279.

64

Appendices

65

1

)

3

Appendix A

Docker-compose.yml

version: '3.3'
services:

elasticsearch :

4 image: docker.elastic.co/elasticsearch /elasticsearch:7.3.0
5 container name: elasticsearchl

6 environment :

— node.name=elasticsearchl

8 — cluster .name=docker—cluster

9 — cluster.initial master nodes=elasticsearchl

10 — bootstrap.memory lock=true

11 — "ES JAVA OPTS=—Xmsl6G —Xmx16G"

2 — http.cors.enabled=true

— http.cors.allow—origin=x

— network.host=_eth0

ulimits :

nproc: 65535

memlock :
soft: —1
hard: —1
cap_add:
— ALL

privileged: true
deploy:
replicas: 1
update config:

parallelism: 1

delay: 10s

resources :

66

limits:
cpus: 'l

memory :

1

256M

reservations:

cpus: 'l

memory :

1

256M

restart policy:

condition :

delay: b5s

on—failure

max__attempts:

window: 10s

volumes :

— type: volume

source: logs

target: /var/log

— type: volume

source: esdatal

target: /usr/share/elasticsearch/

networks:

— elastic

— ingress
ports:

— 9200:9200

— 9300:9300

elasticsearch?2:

image: docker.
container name

environment :

— node.name=elasticsearch?2

elastic.co/elasticsearch /elasticsearch:7.3.0

: elasticsearch2

— cluster .name=docker—cluster

— cluster .initial master nodes=elasticsearchl

— bootstrap.memory lock=true

— "ES JAVA OPTS=—Xmsl6GM —Xmx16GM"

— "discovery .zen.ping.unicast.hosts=elasticsearchl"
— http.cors.enabled=true

— http.cors.allow—origin=x

— network.host=_ethO

ulimits:
nproc: 65535
memlock :
soft: —1
hard: —1
cap add:
— ALL
privileged :
deploy:

true

67

75 replicas: 1

76 update config:

77 parallelism: 1
78 delay: 10s

79 resources:

80 limits:

81 cpus: 'l1'

82 memory: 256M
83 reservations:
84 cpus: 'l1'

85 memory: 256M
86 restart policy:
87 condition: on—failure
88 delay: 5s

89 max_attempts: 3
90 window: 10s

91 volumes :

92 — type: volume

93 source: logs

94 target: /var/log

95 — type: volume

96 source: esdata2

o7 target: /usr/share/elasticsearch/
98 networks:

99 — elastic

100 — ingress

101 ports:

102 — 9201:9200

103
104 logstash:

105 container name: logstash

106 build :

107 context:

108 dockerfile: Dockerfile—logstash
109 restart: always

110 ports:

111 — "5000:5000"

112 environment :

113 LS JAVA OPTS: "—Xmx256m —Xms256m"
114 networks:

115 — elastic

116 — ingress

117

118 kibana :

119 image: docker.elastic.co/kibana/kibana:7.3.0

120 container name: kibana

68

environment :

ELASTICSEARCH HOSTS: http://128.39.120.25:9200/

ports:

— 5601:5601

volumes :

— type: volume
source: logs
target: /var/log

ulimits :

nproc: 65535

memlock :
soft: —1
hard: —1

cap_add:

— ALL

deploy:

replicas: 1

update config:

parallelism: 1

delay: 10s
resources:
limits:
cpus: '1'

memory: 256M
reservations:
cpus: 'l'
memory : 256M
restart policy:
condition: on—failure
delay: 30s
max_attempts: 3
window: 120s
networks:
— elastic

— ingress

filebeat :
image: docker.elastic.co/beats/filebeat:7.3.0
command: —strict .perms=false
environment :
— setup.kibana.host=kibana:5601
— output.elasticsearch.hosts=["elasticsearch:9200"]
ports:
— 9000:9000

volumes :

— /var/lib /docker/containers:/var/lib/docker/containers:ro

69

— /var/run/docker.sock:/var/run/docker.sock
networks:

— elastic

volumes :
esdatal:
esdata2:
logs:

networks:

elastic:

ingress:

70

Appendix B

Data Generator

#!/usr/local /bin/python3.6
import json

from datetime import datetime

from elasticsearch import Elasticsearch

from elasticsearch import helpers
from json import dumps

import os, uuid

import time

from threading import Thread
from mimesis import x

import sys

import logging

5 #Defining variables

person = Person ()

food = Food ()

unit system = UnitSystem ()
hardware = Hardware ()
internet = Internet ()

file = File ()

address = Address ()

5 # this variable will be used with the
date today = datetime.today ().strftime ('%Y-Y%m%d—%H. %M. %S ')

index name

take input of elasticsearch IP and Port

71

20 host = "localhost"

30 port = 9200

31 number of documents = 0

32 # connect to the elasticsearch

33 client=Elasticsearch ([{'host':host,'port':port}])

37 def enable stdout(value):

38 if (value):

39 # log everything to stdout
10 root = logging.getLogger ()

11 root .setLevel (logging .DEBUG)

42 handler = logging.StreamHandler (sys.stdout)

13 handler.setLevel (logging .DEBUG)

14 formatter = logging.Formatter ('%(asctime)s — %(name)s — %(
levelname)s — %(message)s ')

45 handler.setFormatter (formatter)

16 root .addHandler (handler)

47

48

51 class Fake data:

53 # open file for storing some info

54 logfile = open("log.txt", "a")

56 #create number of ojbects for Person

57 def person data(self ,length):

58 for i in range(length):

59 yield {

60 #" id": str(uuid.uuid4()),

61 " index": "person."{date today,

62 "doc": {

63 "last name": person.surname (),

64 "first name": person.name() ,

65 "Academic degree": person.academic degree(),
66 "email": person.email ()

70 #create number of ojbects for Address

71 def address data(self ,length):
72 for i in range(length):
73 yield {

72

74 #" id": str(uuid.uuid4()),

75 " index": "address."4date today,

76 "doc": {

77 "address": address.address(),

78 "country code": address.country code(),
79 "country": address.country (),

80 "continent":address.continent () ,

81 "city":address.city (),

82 "current locale":address.get current locale(),
83 "coordinates":address.coordinates (),

84 "latitude":address.latitude (),

85 "longitude": address.longitude ()

88
89

90 def file data(self ,length):

91 for i in range(length):

92 yield {

93 #" id": str(uuid.uuid4()),

94 " index": "file."{+date today,

95 "doc": {

96 "file name": file.file name(),
97 "size": file.size (),

98 "mime type": file .mime type(),
99 "extension": file .extension (),

100 }
101 }

102

103 def hardware data(self ,length):

104 for i in range(length):

105 yield {

106 #" _id": str(uuid.uuid4()),

107 " index": "hardware."+date today,

108 "doc": {

109 "cpu": hardware.cpu(),

110 "frequency": hardware.cpu_frequency (),
111 "codename": hardware.cpu_ codename() ,

112 "model code":hardware.cpu model code(),
113 "generation":hardware. generation (),

114 "manufacturer":hardware. manufacturer () ,
115 "graphics":hardware. graphics (),

116 "phone model" : hardware . phone model () ,
117 "ram size": hardware.ram size (),

118 "ram type": hardware.ram type(),

119 "resolution": hardware.resolution (),

73

120 "ssd_or hdd": hardware.ssd or hdd(),

121 "screen size": hardware.screen size ()

125 def internet data(self , length):

126 for i in range(length):

127 yield {

128 #" _id": str(uuid.uuid4()),

129 " index": "internet."+date today,

130 "doc": {

131 "content type": internet.content type(),

132 "ip": intermet.ip v4(),

133 "ip v6": internet.ip v6(),

134 "emoji":internet.emoji(),

135 "home page":internet .home page(),

136 "network protocl":internet.network protocol(),
137 "mac address":internet.mac address(),

138 "user agent":internet.user agent(),

139 "port": internet.port(),

140 "http method": internet.http method(),

141 "http status code": internet.http status code(),
142 "http status message": internet.http status message

46

147

148 def unit_ system data(self ,length):

149 for i in range(length):

150 yield {

151 #" _id": str(uuid.uuid4()),

152 " index": "unit system."+date today,
153 "doc": {

154 "unit": unit system.unit (),

155 "prefix": unit system.prefix (),

158

159 def food data(self ,length):

160 for i in range(length):

161 yield {

162 #" id": str(uuid.uuid4()),

163 " index": "food."+date today,
164 "doc": {

74

165

166

167

168

169

180

189

191

192

194

195

196

197

198

199

200

201

"vegetable": food.vegetable(),
"fruit": food. fruit (),

"dish": food.dish (),
"drink":food .drink (),
"spices":food.spices (),

"current locale":food.get current locale(),

}

def generate all types(self,length=500000):
start = time.time ()
try:

Thread (target=helpers.bulk, args=[client
self .person data(length)|]).start ()

Thread (target=helpers.bulk, args=[client
self .internet data(length)]|]) .start ()

Thread (target=helpers.bulk, args=[client
self.file data(length)]]).start ()

[i for i in

for i in

=

[i for i in

Thread (target=helpers.bulk, args=[client, [i for i in
self . food data(length)]|]).start ()
Thread (target=helpers.bulk, args=[client, [i for i in

self .hardware data(length)]|]) .start()

Thread (target=helpers.bulk, args=[client
self . unit system data(length)]]).start()

Thread (target=helpers.bulk, args=[client
self .address data(length)]|]) .start ()

[i for i in

for i in

-

end =time.time () — start

self.logfile.write(date today+" : The proess to bulk "+
str(length*7) + " documents took "+ str(end) + " seconds"+'\n
")
self.logfile.close ()
except Exception as e:
self . logfile.write(date today+ " : "+ str(e)+"\n")
self.logfile.close ()

class main

def main():
global host
global port
global client

global number of documents

7

if

if len(sys.argv) >= 3:
host = sys.argv[1]
port = sys.argv|[2]
number of documents = sys.argv|[3]

with stdout = sys.argv[4].lower() = 'true'

enable stdout(with stdout)
client=Elasticsearch ([{ 'host':host,'port':port}])
generator = Fake data()

generator.generate all types(int(number of documents))

n

~name = " main ":

main ()

76

Appendix C

ESRally Connector

import json

from datetime import datetime

from elasticsearch import Elasticsearch
from elasticsearch import helpers

from json import dumps

import os, uuid

import time

from threading import Thread

import requests

class ESRally connector (object):
datetime=datetime .now () .strftime ("%Y—%m-%d—YF-YNVE%S ")

dir name = "rally"+ str(datetime)
command = ""
def _ init__ (self , elasticsearch node):
self .elasticsearch node = elasticsearch node

self .command = "sudo docker run —rm —v $PWD/"+self .
dir _name+":/rally /.rally elastic/rally —track=nyc taxis —test
—mode —pipeline=benchmark—only ——target—hosts="+self .
elasticsearch node

#128.39.120.25:9200

def get race json(self):
print ("Creating new directory to store the test ...")
os.system ('mkdir '+ self.dir name)
os.system ('sudo chgrp 0 $PWD/'+ self .dir name)

7

os.system (self.command)

os.system (self.command)

f = [(os.getcwd ()+"/"+self.dir name+"/benchmarks/races/"+dI
) for dI in os.listdir (self.dir name+'/benchmarks/races /") if
os.path.isdir (os.path.join (self.dir name+'/benchmarks/races /',
a1))

os.chdir (str(£[0]))

print ('path of race.json : 'f+str(f[0])+"/race.json")

return str(f[0])+"/race.json"

def update node settings(self ,RF,TS,SI ,RMB):

in future, make it read a list

referesh interval = "5"

url = "http://"+self.elasticsearch node+"/ settings"

data = {'index' : {'refresh interval' : RF,'translog' : {"
flush threshold size": TS, "sync_interval": SI }}}

headers = {'Content—type': 'application/json'}

r = requests.put(url, data=json.dumps(data), headers=
headers)

#Hupdating cluster parameters

url cluster = "http://"+self.elasticsearch node+"/ cluster/
settings"

data _rmb = {"persistent" : {"indices.recovery.
max_bytes per sec" : RMB}}

cluster request = requests.put(url, data=json.dumps(data),

headers=headers)

print (r)
print (cluster request)

8

Appendix D

Parameters

import math

class Elasticsearch Parameters:

def _ _init__ (self , index_refresh interval=10,

index translog flush threshold size=300,

_translog sync interval=100, recovery max bytes per sec=50):
self. index refresh interval = index refresh interval
self. index translog flush threshold size =

_index translog flush threshold size
self. translog sync interval = translog sync interval
self. recovery max bytes per sec =

__recovery max_bytes per sec

using property decorator

a getter function

index.referesh interval
Qproperty
def index refresh interval(self):

return self. index refresh interval

@index refresh interval.setter
def index refresh interval(self, value):
if (value > self.minmax index refresh interval()[1]):
self. index refresh interval = self.
minmax _index refresh interval() [1]
if (value < self.minmax index refresh interval()[0]):
self. index refresh interval = self.

minmax _index refresh interval() [0]

79

else:

self. index refresh interval = value

def index refresh interval string(self):

return (str(self. index refresh interval) + "s")

def minmax index refresh interval(self):
return [1,8000]

def minmax index refresh interval current(self ,current):
self. index refresh interval = current

return [1,8000,self. index refresh interval]

def return minmax index refresh interval current(self)):

return [1,8000,self. index refresh interval]

def set scale index refresh interval(self ,h scale):
self.scale index refresh interval = scale
def scale index refresh interval(self):

return self.scale index_ refresh interval

def scale minmax index refresh interval(self):
minmax = self.minmax index refresh interval()
min = math. ceil ((minmax[1] —minmax[0])/100)
max = math. ceil ((minmax|[1l] —minmax[0])/10)

return [min,max|

def calculate step size refresh interval(self,
improvement_percentage) :
res = self.scale minmax index refresh interval()[0] * (1 +
improvement percentage)
if res < self.scale_minmax_index_refresh interval() [1]:
return res
else:

return self.scale minmax index refresh interval()[1]

index . flush threshold size

Q@property
def index translog flush threshold size(self):
return self. index translog flush threshold size

@Qindex translog flush threshold size.setter
def index translog flush threshold size(self, value):

if (value > self.minmax index translog flush threshold size

Oy :

80

66

self. index translog flush threshold size = self.
minmax index translog flush threshold size () [1]
if (value < self.minmax index translog flush threshold size
O lo]) :
self. index translog flush threshold size = self.
minmax _index_translog flush threshold _size () [0]
else:

self. index translog flush threshold size = value

def index translog flush threshold size string(self):
return (str(self. index translog flush threshold size) + "
mbll)

def minmax index translog flush threshold size(self):
return [112,10000]

def minmax index translog flush threshold size current(self,
current) :

self. index translog flush threshold size = current

return [112,10000,self. index translog flush threshold size

def return minmax index translog flush threshold size current(
self ,):
return [112,10000,self. index translog flush threshold size

def set scale index translog flush threshold size(self ,scale):
self.scale index translog flush threshold size = scale
def scale index translog flush threshold size(self):

return self.scale index translog flush threshold size

def scale minmax index translog flush threshold size(self):

minmax = self.minmax index translog flush threshold size()
min = math. ceil ((minmax|[1| —minmax[0])/100)
max = math. ceil ((minmax|[1] —minmax[0])/10)

return [min,max]|

def calculate step size threshold size(self,
improvement percentage) :
res = self.scale minmax index translog flush threshold size
()[0] * (1 + improvement percentage)
if res < self.
scale minmax index translog flush threshold size() [1]:
return res

else:

81

101

return self.

scale minmax index translog flush threshold size() [1]

H , translog sync interval
Q@Qproperty
def translog sync interval(self):

return self. translog sync interval

@translog sync interval.setter

def translog sync interval(self, value):

if (value > self.minmax translog sync interval() [1]) :

self. translog sync interval = self.

minmax _translog sync interval() [1]

if (value < self.minmax translog sync interval() [0]) :

self. translog sync interval = self.
minmax _translog sync_interval() [0]
else:

self. translog sync interval = value

def translog sync interval string(self):

return (str(self. translog sync interval) + "s")

def minmax translog sync interval(self):
return [1,10000]

def minmax translog sync interval current(self ,current):

self. translog sync interval = current

return [1,10000,self. translog sync interval]

def return minmax translog sync interval current(self)):

return [1,10000,self. translog sync interval]

def set scale translog sync interval(self ,scale):
self.scale translog sync interval = scale
def scale translog sync interval(self):

return self.scale_ translog sync_interval

def scale minmax translog sync interval(self):
minmax = self.minmax translog sync interval()

min = math. ceil ((minmax[1] —minmax[0])/100)

max = math. ceil ((minmax[1] —minmax[0])/10)

return [min,max|

def calculate step size translog sync interval(self ,

improvement percentage) :

82

143 res = self.scale minmax translog sync interval()[0] % (1 +

improvement percentage)

144 if res < self.scale minmax translog sync_interval()[1]:

145 return res

146 else:

147 return self.scale minmax index translog sync interval()

(1]

149 / / / indices .recovery.max bytes per_ sec

151 Q@property
152 def recovery max bytes per sec(self):

153 return self. recovery max bytes per_ sec

155 @Qrecovery max bytes per sec.setter
156 def recovery max bytes per sec(self, value):
157 if (value > self.minmax recovery max bytes per sec()[1]):
158 self. recovery max bytes per sec = self.
minmax _recovery max _bytes per sec()[1]
159 if (value < self.minmax recovery max bytes per sec()[0]):
160 self. recovery max bytes per sec = self.
minmax _recovery max_bytes per sec() [0]
161 else:
162 self. recovery max bytes per sec = value
163
164 def recovery max bytes per sec string(self):
165 return (str(self. recovery max bytes per sec) + "mb")
166
167 def minmax recovery max_bytes per sec(self):
168 return [50,10000]
169
170 def minmax recovery max bytes per sec current(self ,current):
171 self. recovery max bytes per sec = current

172 return [50,10000,self. recovery max_ bytes per sec]|

174 def return minmax recovery max_bytes per sec current(self):

175 return [50,10000,self. recovery max bytes per sec]|

177 def set scale recovery max bytes per sec(self 6 scale):

178 self .scale recovery max bytes per sec = scale

179

180 def scale recovery max bytes per sec(self):

181 return self.scale recovery max bytes per sec

182

183 def scale minmax recovery max bytes per sec(self):

184 minmax = self.minmax recovery max bytes per sec()

83

190

min = math. ceil ((minmax[1l] —minmax[0])/100)
max = math. ceil ((minmax|[1] —minmax[0]) /10)

return [min,max|

def calculate step size recovery max bytes per sec(self,
improvement percentage) :
res = self.scale minmax recovery max bytes per sec()[0] =
(1 + improvement percentage)
if res < self.scale_minmax_recovery_ max_bytes_ per_sec() [1]:
return res
else:

return self.scale minmax recovery max_ bytes per_ sec()

(1]

84

Appendix E

Perturbation Optimizer

import random

from race reader import race reader

3 from Parameters import Elasticsearch Parameters

import ESRally Connector
import logging
import math

from Plotting import Plotting

class Optimizer (object):

"""docstring for Optimizer."""

def init (self , Parameters object):
super (Optimizer, self). init__ ()

define the elasticsearch ip and port to connect esrally
self.connector = ESRally Connector.ESRally connector ("
128.39.120.25:9200")

self .par = Parameters object

define a plotting object
self.plotting = Plotting ()

creates a logger

self.logger = logging.getLogger(__name)
self.logger.setLevel (logging .INFO)

self.file handler = logging.FileHandler ('tuning process.log

self.formatter = logging.Formatter ('%(asctime)s : %(

85

levelname)s : %(message)s')
self.file handler.setFormatter (self.formatter)
self.logger.addHandler(self.file handler)

def objective function(self, indexing, response time):
self.plotting .add latency value(response time)
self.plotting .add indexing value(indexing)
self .plotting .add index latency((response time ,indexing))

return indexing/response time, [response time,indexing]|

def next vector value(self, minmax):

i =20
limit = len (minmax)
vector = [0 for i in range(limit) |

get scaling values in a list
scale = [self.par.scale index refresh interval,

self .par.scale index translog flush threshold size

random _operator = [random.choice((—1, 1)) for _ in range(
limit)]

chance = [axb for a, b in zip(scale, random operator) |

print ("the X+ = ", chance)

X negative = [i * —1 for i in chance| # get X— by multply
-1 to X+
print ("the X— = ", X negative)

Siziaiaiaia
for i in range(limit):

vector[i] = self.next(minmax[i], chance[i])
return vector

def next(self, current par, chance):

increase or decrease value of a pramaeter

if (((current par[2] + chance) <= current par[1l]) or ((
current par[2] + chance) >= current par[0])):

return (current par[2] + chance)

def optimizer (self ,current par, max iter):
best of best = {}
best = {}
candidate = {}

86

90

102

self .x plus minus improvement = 0

self.current par = current par

self.logger.info ('Set of Parameters =

" 4+ str(current par)

for i in range(max iter):

X positive, X negative = self.x plus minus(self.

current par)

candidate['vector positive '| = X positive

candidate ['vector negative '] = X negative

self .logger.info ('X+ Parameters '+ str (X positive))
self . logger.info ('X— Parameters '+ str(X negative))

print ("Vector Positive : ", str(candidate]|'

vector positive ']))

vector

"1 (0]

print ("vector negative : ", str(candidate]|'

negative '|))

get objective function of the X+ and X—

of plus = self.takes vector(candidate['vector positive

self . plotting .add dot data((i+1,float (of plus)))

print ("OF of X+ = ", of plus)

self.logger.info ('Objective function of X+ = " + str(
of plus))

of minus = self.takes vector(candidate['vector negative

' (0]

self .plotting .add dot data((i+1,float (of minus)))

print ("OF of X— = ", of minus)
self.logger.info ('Objective function of X— = "' + str(

of minus))

get the improvement percentage of off and of—

self .x plus minus improvement = self.

calculate percentage difference(float (of plus), float (of minus)

print ("calculate percentage difference : ", self.

x_ plus minus improvement)

self.logger.info ('calculate percentage difference = ' +

87

134

str(self.x plus minus improvement))
find which of (x+ x—) is best
self.logger.info ('choosing which direction to go xt+ or

x— ')

if (of plus > of minus):

best ['cost '| = of plus

best['vector '] = candidate['vector positive ']
self.logger.info ('X+ is better than X— with
objective function = '+ str(best|['cost']))

add line plotting to the graph
self . plotting .add line data((i+1,float (of plus)))

self .update parameters(best)
self.logger.info ('setting new parameters value
based on X+ which is '+ str(best['vector ']))

else:
best['cost '] = of minus
best ['vector '] = candidate['vector negative ']
self .logger.info ('X— is better than Xt with
objective function = '+ str(best|'cost']))

add line plotting to the graph
self .plotting .add line data((i+1,float (of minus)))

self .update parameters(best)
self.logger.info ('setting new parameters value
based on X— which is '+ str(best['vector ']))

if not best_of_ best or best['cost'] > best_of_ best|['

cost '] :

best of best|['cost '] = best.get('cost')

best of best|'vector '| = best.get('vector')

self .logger.info ('updating best of best dic with
value :::: '+ str(best of best))

#setting the new list of [min,max,current |
self .current par = [self.par.
minmax index refresh interval current(self.par.
index refresh interval),
self .par.
minmax index translog flush threshold size current(self.par.
index translog flush threshold size),self.par.

minmax _translog sync_interval current(self.par.

88

150

163

164

165

166

translog sync interval),
self .par. minmax recovery max bytes per sec current(self

.par.recovery max _bytes per sec)|

update the scaling values by multiplying to the
percentage difference

self.logger.info ('Updating the step size ')

self .update step size()

#self . update scale()

scale = [self.par.scale index refresh interval, self.par
.scale index translog flush threshold size, self.par.
scale translog sync interval,
self .par.recovery max bytes per sec]
print ("after updating scaling values : ", scale)
self.logger.info ('The new scaling values for each

parameter in order '+ str(scale))

self .logger.info ('returning Best '+ str(best of best))

self.logger.info ("Line data '{0}' and dots data '{1}'".
format (str(self.plotting.get line dots()[0]) ,str(self.plotting.
get line dots()[1])))

self.logger.info("indexing data and latency" + str(self.
plotting .get indexing value ())+" #HHHHHHHHH "+str (self . plotting
.get latency value()))

self .logger.info ("indexing data and latency '{0}'".format (
str(self.plotting.get latency value())))

return best of best

def x plus minus(self , minmax):

i=0

limit = len (minmax)

vector _x_ plus = [0 for i in range(limit)]
vector x minus = [0 for i in range(limit)]|

get scaling values in a list

scale = [self.par.scale index refresh interval, self.par.
scale _index_ translog flush threshold size,self.par.
scale translog sync interval, self.par.

scale recovery max bytes per sec|

make a random + or — to each parameter

random operator = [random.choice((—1, 1)) for _ in range(
limit) |

X positive = [a*xb for a, b in zip(scale, random operator)]

get X— by multply —1 to Xt

X negative = [i * —1 for i in X positive]

89

167

168

169

186

188

189

190

191

192

193

for i in range(limit):
vector x plus[i] = self.next(minmax[i], X positive[i])

vector x minus[i] = self.next(minmax[i], X negative[i])

return x+ and x— in a list

return [vector x plus, vector x minus]

def calculate percentage difference(self, vl, v2):
return ((abs(vl — v2) / ((vl4+v2)/2)) % (100.0))/100

def update parameters(self ,list):

self .par.index refresh interval = list['vector '|[0]

self.par.index translog flush threshold size = list ['vector
(1)

self .par.translog sync interval = list['vector ']|[2]

self .par.recovery max_bytes per_ sec = list ['vector '|[3]

def update scale(self):
H#HHH# refresh interval
get the expected next par value and check if it's within
minmax range
minmax current rf = self.par.
return_minmax index refresh interval current ()
rf tmp plus = math. ceil (((self.par.
scale index refresh interval % self.x plus minus improvement)+
self .par.scale index refresh interval) 4+ minmax current rf[2])
rf tmp minus= math. ceil ((—1x(self.par.
scale index refresh interval * self.x plus minus improvement))+
self .par.scale index refresh interval 4+ minmax current rf[2])
rf mx = minmax current rf[1]

rf min = minmax current rf[0]

self .logger.info ('update scale() minmax current rf,
rf tmp plus ,rf tmp minus '+ str(minmax current rf)+ str(
rf tmp plus)+ str(rf tmp minus))
if rf _min <= rf tmp_plus <= rf _mx and rf min <=
rf _tmp_ minus <= rf mx
self .par.set scale index refresh interval(math.ceil ((
self .par.scale index refresh interval % self.
x_plus minus improvement)+self.par.scale index refresh interval
))
else:
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for RI ' + str(self.

par.scale index refresh interval))

90

200

206

219

H#H## threshold size
minmax current ts = self.par.
return_minmax index translog flush threshold size current()
ts_tmp plus = math. ceil ((self.par.
scale index translog flush threshold size * self.
x_plus_ _minus improvement+self . par.
scale index translog flush threshold size)+ minmax current ts
[2])
ts _tmp minus= math. ceil (((self.par.
scale index translog flush threshold size % self.
x_plus minus improvement)*(—1))+self.par.
scale index translog flush threshold size 4+ minmax current ts
[2])
ts _mx = minmax current ts[1]

ts_min = minmax current ts[0]

if ts min <= ts_tmp plus <= ts _mx and ts_ min <=
ts_tmp_minus <= ts_mx:
self .par.set scale index translog flush threshold size(
math. ceil ((self.par.scale index translog flush threshold size x
self .x plus minus improvement))+self.par.
scale index translog flush threshold size)
else:
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for ' + str(self.par

.scale index translog flush threshold size))

HHHHHH recovery _max _bytes per_sec
minmax_current rmb = self.par.

return _minmax _recovery max bytes per sec current ()
rmb_tmp plus = math. ceil ((self.par.

scale recovery max bytes per sec x self.

x_plus_ minus_improvement+self . par.

scale recovery max bytes per sec)+ minmax current rmb[2])
rmb_tmp minus= math. ceil (((self.par.

scale_recovery max bytes per sec * self.

x_plus minus improvement)*(—1))+self.par.

scale recovery max bytes per sec + minmax current rmb[2])
rmb_mx = minmax current rmb[1]

rmb_min = minmax_current rmb [0]

if rmb_min <= rmb_tmp_plus <= rmb_mx and rmb_min <=
rmb_tmp minus <= rmb_mx:
self .par.set scale recovery max bytes per sec(math.ceil

((self.par.scale recovery max bytes per sec *self.

91

230

N
3

240

x_plus minus improvement))+self.par.
scale recovery max bytes per sec)
else:
self .logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for ' + str(self.par

.scale recovery max_ bytes per sec))

def update step size(self):
H#HHH# refresh interval
get the expected next par value and check if it's within
minmax range
minmax current rf = self.par.
return_minmax index refresh interval current ()
rf tmp plus = math. ceil (self.par.
calculate step size refresh interval(self.
x_plus minus_ improvement)) 4+ minmax current rf[2]
rf tmp minus= math. ceil ((—1x(self.par.
calculate step size refresh interval(self.
x_plus_minus_improvement))) + minmax_current_rf[2])
rf mx = minmax current rf[1]

rf min = minmax current rf[0]

self.logger.info (' update step size() minmax current rf,
rf tmp plus ,rf tmp minus '+ str(minmax current rf)+ str(
rf tmp plus)+","+ str(rf tmp minus))
if rf_min <= rf tmp_plus <= rf_mx and rf_ min <=
rf _tmp_ minus <= rf mx
self .par.set scale index refresh interval(math. ceil(
self .par.calculate step size refresh interval(self.
x_plus minus improvement)))
else:
self .par.set scale index refresh interval(math.ceil(
self .par.scale_index_ refresh interval=0.01))
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for RI ' + str(self.

par.scale index refresh interval))

#HHHE threshold size
minmax current ts = self.par.

return_minmax index translog flush threshold size current()
ts _tmp plus = math. ceil (self.par.

calculate step size threshold size(self.

x_plus minus_ improvement))4 minmax current ts[2]

92

250

264

ts tmp minus= math. ceil (—1x(self.par.
calculate step size threshold size(self.
x_plus minus improvement)) + minmax current ts[2])
ts _mx = minmax current ts[1]

ts_min = minmax current ts[0]

if ts min <= ts_tmp plus <= ts _mx and ts_ min <=
ts_tmp_minus <= ts_mx:
self .par.set scale index translog flush threshold size(
math. ceil (self .par.calculate step size threshold size(self.
x_plus minus improvement)))
else:
self .par.set scale index translog flush threshold size(
math. ceil (self.par.scale index translog flush threshold size
x0.01))
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for TS ' + str(self.

par.scale index translog flush threshold size))

#H##H#+ translog sync interval
minmax current si = self.par.
return_minmax translog sync interval current()
si_tmp plus = math. ceil (self.par.
calculate step size translog sync interval(self.
x_plus minus_ improvement))4 minmax current si[2]
si_tmp minus= math. ceil (—1x(self.par.
calculate step size translog sync interval(self.
x_plus minus_ improvement)) + minmax current si[2])
si_mx = minmax current si[1]

si_min = minmax current si[0]

if si_min <= si_tmp_plus <= si_mx and si_min <=
si_tmp minus <= si_mx:
self .par.set scale translog sync interval(math.ceil (
self .par.calculate step size translog sync interval(self.
x_plus_minus_improvement)))
else:
self .par.set scale translog sync interval (math. ceil (
self .par.scale_ translog sync_interval*0.01))
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for SI' + str(self.

par.scale translog sync interval))

#H###+ recovery max bytes per sec
minmax_current _rmb = self.par.

93

280

return minmax recovery max bytes per sec current ()
rmb _tmp plus = math. ceil (self.par.

calculate step size recovery max bytes per sec(self.

x_plus minus_ improvement))+ minmax current si[2]
rmb_tmp minus= math. ceil (—1%(self.par.

calculate step size recovery max _bytes per sec(self.

x_plus minus improvement)) + minmax current si[2])
rmb_mx = minmax current rmb[1]

rmb_min = minmax_current_rmb [0]

if rmb min <= rmb_tmp plus <= rmb mx and rmb_ min <=
rmb_tmp_minus <= rmb_mx:
self .par.set scale recovery max bytes per sec(math. ceil
(self.par.calculate step size recovery max bytes per sec(self.
x_plus minus_ improvement)))
else:
self .par.set scale recovery max bytes per sec(math. ceil
(self.par.scale recovery max bytes per secx0.1))
self.logger.info ('new scale value exceeds the minmax
range. The same scaling value will be used for RMB' + str(self.

par.scale recovery max bytes per sec))

def takes vector(self, candidate):
take a set of parameters and perofrm the elasticsearch

update and then return the value of the objective function

self .par.index refresh interval = candidate[O]

self .par.index translog flush threshold size = candidate[1]
self .par.translog sync interval = candidate[2]

self .par.recovery max bytes per sec = candidate [3]

self.connector.update node settings(self.par.
index refresh interval string(), self.par.
index translog flush threshold size string(),self.par.
index translog flush threshold size string(),self.par.
recovery max bytes per sec string())
self.logger.info ('Updating Elasticsearch settings ')
self .myRace = race reader(self.connector.get race json())
self.logger.info ('Start ESRally benchamrking ')
return self.objective function (self.myRace.

index _throughput mean (), self.myRace.ops_latency average mean ()

)

def make graph(self):
return self.plotting.plot chart()

94

Appendix F

Race Reader

import json

class race reader(object):

nnn

Reading json files to return certain values
nnn
def init (self, json file):

with open(json file) as js:

self.json file = json.load(js)

def index throughput mean(self):
return float (json.dumps(self.json file["results"|["
op_ metrics"|[0]["throughput"]["mean"]))

def ops latency average mean(self):

#since the number of operations is the same for each type
we take the average

ops_len = len(self.json file["results"|["op metrics"])

res = 0

for i in range(l, ops len):

res = + float (self.json file["results"]["op metrics"|[1i

|["latency" |["mean"])

return res / ops_len

95

Appendix G

Main.py

1 import ESRally Connector

2> import race reader

3

4

from perturbation optimizer import Optimizer

from Parameters import Elasticsearch Parameters

def main():

#get init parameters
par=Elasticsearch Parameters(100,1500,100,7000)

ri = par.index refresh interval

fs = par.index translog flush threshold size
si = par.translog sync_ interval

mbr = par.recovery max _ bytes per sec

seting the scaling value of each parameter

par.set scale index refresh interval(par.

scale minmax index refresh interval()[0])

par.set scale index translog flush threshold size(par.
scale_ minmax index translog flush threshold size() [0])
par.set scale translog sync interval(par.

scale minmax translog sync interval()[0])

par.set scale recovery max bytes per sec(par.

scale minmax recovery max bytes per sec()[0])

current par = [par.minmax index refresh interval current(ri),
par. minmax index translog flush threshold size current(fs), par.
minmax _translog sync interval current(si),par.

minmax _recovery max _bytes per sec current(mbr) |

96

search space = current par

max _iter = 15

execute the algorithm

best = Optimizer (par)

#best = best.search(search space ,max _iter)

best = best.x(search space ,max iter)

#Updating the settings from the best results

self .connector.update node settings(best|['cost '|[0], best['cost
"I[1], best['cost '][2],best['cost '|[3])

best . make graph ()

print ("Done. Best Solution: cost = " + str(best['cost']) + ", v
=" + str(best['vector ']))

97

1

>

+

Appendix H

Plotting

import leather

class Plotting(object):

def

def

def

def

def

__init

(self):

self.line data = []
self .dot data = []
self.latency = []

self.indexing = |[]

self .latency index = []
self.chart = leather.Chart('Results')

add line data(self ,list):
self .line data.append(list)

add _dot_data(self ,list):
self .dot data.append(list)

plot chart(self):
self.chart.add line(self.line data)
self.chart.add dots(self.dot data)

self.chart.to svg('result.svg')

#/home/elasticsearch

get line dots(self):

return

self .line data,

self .dot data

98

def

def

def

def

def

def

add latency value(self ,value):

self.latency .append(value)

add indexing value(self ,value):

self.indexing .append(value)

get latency value(self):

return

self.latency

get indexing value(self):

return

add index latency(self ,list):
self .latency index.append(list)

get index latency value(self):

return

self.indexing

self.latency index

99

	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Thesis Outline

	Background
	Elasticsearch
	Documents
	Clusters
	Elasticsearch Metrics
	Tuning Parameters
	Logstash

	ELK Stack
	Elasticsearch Case Studies
	NoSQL Databases
	Defects Detection

	ESRally
	Docker
	Parameter Perturbation
	Stochastic Approximation
	Adaptive Random Search
	Simultaneous Perturbation Stochastic Approximation

	Related Work

	Approach
	Objectives
	Infrastructure overview
	Elastic Stack Server Specifications
	Documents Generator
	The Optimizer Algorithm
	Initial Parameters
	Updating Elasticsearch Automatically
	ESRally Benchmarking Tests
	Elasticsearch Parameters
	SPSA Algorithm
	Objective Function
	Step Size
	Optimizer Data Flow

	Implementation
	Docker compose
	Data Generator
	Running ESRally
	SPSA Algorithm

	Result and Discussion
	Test Designs
	Taxi rides data
	Geo-Names Data
	HTTP Log Data

	Objective Function Results
	Taxi rides data
	Geo-Names Data
	HTTP Log Data

	Number of Indexed Documents
	Taxi Rides Data
	Geo-Names Data
	HTTP Log Data

	Discussion
	Problem Statement

	Conclusion And Future Work
	Future Work
	Improvements
	Features
	Framework

	Conclusion

	Appendices
	Docker-compose.yml
	Data Generator
	ESRally Connector
	Parameters
	Perturbation Optimizer
	Race Reader
	Main.py
	Plotting

