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ABSTRACT

We present a Bayesian model for multi-resolution component separation for cosmic microwave background (CMB) applications based
on Wiener filtering and/or computation of constrained realizations, extending a previously developed framework. We also develop an
efficient solver for the corresponding linear system for the associated signal amplitudes. The core of this new solver is an efficient
preconditioner based on the pseudo-inverse of the coefficient matrix of the linear system. In the full sky coverage case, the method
gives an increased speed of the preconditioner, and it is easier to implement in terms of practical computer code. In the case where
a mask is applied and prior-driven constrained realization is sought within the mask, this is the first time full convergence has been
achieved at the full resolution of the Planck data set.
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1. Introduction

The cosmic microwave background (CMB) has proved invalu-
able for our understanding of early universe physics. Providing
a direct image of the cosmos as it appeared only 380 000 years
after the Big Bang, these fluctuations represent the initial condi-
tions for all subsequent structure formation, eventually leading
to the universe we observe today, consisting of galaxies, solar
systems, and planets. Furthermore, through detailed statistical
analysis of these temperature variations, cosmologists are today
able to constrain many important cosmological parameters to
percent-level precision (e.g., Planck Collaboration XIII 2016).

Steadily improving microwave detector technology has
enabled this progress, resulting from a host of ground-based,
sub-orbital, and satellite experiments. Amongst the latter are the
most recent NASA’s Wilkinson Microwave Anisotropy Probe
(WMAP) mission (Bennett et al. 2013) and ESA’s Planck mis-
sion (Planck Collaboration I 2016). The primary goal of all these
experiments is to produce the cleanest possible image of the true
cosmological CMB sky. However, when observing the sky at
millimeter wavelengths, many other physical emission mecha-
nisms contribute to the total sky brightness besides the CMB.
The most important ones on large angular scales are synchrotron,
free-free, thermal, and spinning dust, and CO emission, all
of which arise from particles that are present within our own
galaxy, the Milky Way (e.g., Planck Collaboration X 2015). On
small angular scales, radio and far-infrared emission from dis-
tant galaxies are important, as is the Sunyaev–Zeldovich effect
arising from hot gas in massive clusters. Collectively, all these
signal are called “foregrounds” with respect to the CMB.

The process of extracting the cosmological signal from
foreground-contaminated observations is often called CMB

? The prototype benchmark code is available at https://github.
com/dagss/cmbcr

component separation, which informally refers to combin-
ing observations taken at different frequencies into a sin-
gle estimate of the true cosmological sky. A wide range
of numerical and statistical methods have been developed
for this purpose, including parametric methods (Eriksen et al.
2008; Errard et al. 2011), various internal linear combi-
nation methods (Bennett et al. 2003; Eriksen et al. 2004a;
Remazeilles et al. 2011; Basak & Delabrouille 2012), spectral
matching methods (Cardoso et al. 2008), template fitting meth-
ods (Fernández-Cobos et al. 2012), and many others.

Component separation becomes increasingly important as
the sensitivity of CMB detectors continues to improve, and
the foreground-induced uncertainties make up an increasingly
large fraction of the total CMB uncertainty budget. Indeed,
for the latest generation CMB experiments, which target the
predicted B-mode polarization signal arising from primordial
gravitational waves produced during the Big Bang, component
separation is one of the single most important challenges (e.g.,
BICEP2 Collaboration 2014).

In this paper we consider the Bayesian component separa-
tion framework pioneered by Jewell et al. (2004), Wandelt et al.
(2004), and Eriksen et al. (2008), and in particular efficient
evaluation of the so-called Wiener filter solution employed
by codes such as Commander (Eriksen et al. 2004b). This
framework has been established by the Planck collabora-
tion for astrophysical component separation and CMB extrac-
tion (Planck Collaboration X 2015). However, the Commander
implementation that was used in the Planck 2015 (and earlier)
analysis suffers from one important limitation; it requires all fre-
quency channels to have the same effective instrumental beam,
or “point spread function”. In general, the angular resolution of
a given sky map is typically inversely proportional to the wave-
length, and the solution to this problem adopted by the Planck
2015 Commander analysis was simply to smooth all frequency
maps to a common (lowest) angular resolution. This, however,
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implies an effective loss of both sensitivity and angular resolu-
tion, and is as such highly undesirable. To establish an effective
algorithm that avoids this problem is the main goal of the cur-
rent paper, and the methods presented in this paper have already
been used extensively in the latest Planck 2018 data release, as
described by Planck Collaboration IV (2019).

First, we start by presenting a native multi-resolution ver-
sion of the Bayesian CMB component separation model. This is
a straightforward extension of the single-resolution model pre-
sented in Eriksen et al. (2008). Second, we construct a novel
solver for the resulting linear system, based on the pseudo-
inverse of the corresponding coefficient matrix. We find that
this solver outperforms existing solvers in all situations we have
applied it to. Additionally, the full sky version of the precon-
ditioner is easier to implement in terms of computer code than
the simple diagonal preconditioner that is most commonly used
in the literature (Eriksen et al. 2004b). The big advantage, how-
ever, is most clearly seen in the presence of partial sky coverage,
where the speed-ups reach factors of hundreds. For full sky cov-
erage, where a diagonal preconditioner performs reasonably, the
improvement is a more modest, a factor of 2–3.

The previous Commander implementation (Eriksen et al.
2004b) employs the conjugate gradient (CG) method to solve
the filter equation. (also often referred to as the “constrained
realization” (CR) system when adding a stochastic term on the
right-hand side of the equation), using a preconditioner based
on computing matrix elements in spherical harmonic domain.
While this approach worked well enough for WMAP, the con-
vergence rate scales with the signal-to-noise ratio of the exper-
iment, and for the sensitivity of Planck, it becomes impractical
in the case of partial sky coverage, requiring several thousand
iterations for convergence, if it converges at all.

Elsner & Wandelt (2013) develop a messenger field algo-
rithm that provides an approximate solution to the same
problem, which should be sufficient for many purposes.
This approximate algorithm was recently improved by
Kodi Ramanah et al. (2017). An example of the quality of the
approximation can be seen in Fig. 4 of Kodi Ramanah et al.
(2017); the difference from the exact Wiener-filter is on the level
1%–10%, with the differences being concentrated around the
edges of the mask. The algorithm in this paper, in contrast, com-
putes the exact Wiener filter at a lower computational cost.

To our knowledge the multi-level, pixel-domain solver
described by Seljebotn et al. (2014) represents the state of the
art for exact solvers prior to this paper. However, the multi-level
solver has some weaknesses that became apparent in our attempt
to generalize it for the purpose of component separation. First,
due to only working locally in pixel domain, it is ineffective in
deconvolving the signal on high `, where the spherical harmonic
transfer function of the instrumental beam falls below b` = 0.2
or so. In the case of Seljebotn et al. (2014) this was not a problem
because the solution is dominated by a ΛCDM-type prior on the
CMB before reaching these scales. However, for the purposes
of component separation one wants to apply no prior or rather
weak priors, and so the solver in Seljebotn et al. (2014) fails to
converge. The second problem is that it is challenging to work in
pixel domain with multi-resolution data for which the beam sizes
vary with a factor of 10, as is the case in Planck. Thirdly, exten-
sive tuning was required on each level to avoid ringing problems.
Finally, the algorithm in Seljebotn et al. (2014) requires exten-
sive memory-consuming pre-computations.

In contrast, the solver developed in this paper (1) offers
very cheap pre-computations; (2) does not depend on applying a
prior; (3) is robust with respect to the choice of statistical priors

on the component amplitudes; and (4) has much less need for
tuning. The solver combines a number of techniques, and funda-
mentally consists of two parts:
1. A pseudo-inverse preconditioner, developed in Sect. 3 and

Appendix A, which improves on the simple diagonal precon-
ditioner by better incorporating inhomogeneities in the RMS
maps of the data. This performs very well on its own in cases
with full sky coverage.

2. A mask-restricted solver, which should be applied in addi-
tion in cases of partial sky coverage. This solver is developed
in Sect. 4. By solving the system under the mask as a sepa-
rate sub-step, we converge in about a hundred CG iterations
rather than thousands of iterations.

These two techniques are somewhat independent, and it would
be possible to use the mask-restricted solver together with the
older diagonal preconditioner. Still we present them together in
this paper in order to establish what we believe is the new state
of the art for solving the CMB component separation and/or con-
strained realization problem.

2. Bayesian multi-resolution CMB component
separation

2.1. Spherical harmonic transforms in linear algebra

We assume that the reader is familiar with spherical harmonic
transforms (SHTs), and simply note that they are the spheri-
cal analogue of Fourier transforms (for further details see, e.g.,
Reinecke & Seljebotn 2013). The present work requires us to
be very specific about the properties of these transforms as part
of linear systems. We will write Y for the transform from har-
monic domain to pixel domain (spherical harmonic synthesis),
and YT W for the opposite transform (spherical harmonic analy-
sis). The W matrix is diagonal, containing the per-pixel quadrature
weights employed in the analysis integral for a particular grid.

Of particular importance for the present work is that no per-
fect grid exists on the sphere; all spherical grids have slightly
varying distances between grid points. This means that some
parts of the sphere will see smaller scales than other parts, and
that, ultimately, there is no discrete version of the spherical har-
monic transform analogous to the discrete Fourier transforms
that maps Rn to Rn. Specifically, Y is rectangular and thus not
invertible. Usually Y is configured such that the number of rows
(pixels) is greater than the number of columns (spherical har-
monic coefficients), in which case an harmonic signal is unal-
tered by a round-trip to pixel domain so that YT WY = I. In that
case, the converse operator, YYT W, is singular, but in a very spe-
cific way: it takes a pixel map and removes any scales from it
that are above the band-limit L.

2.2. Component separation model

Eriksen et al. (2008) describe a Bayesian model for CMB com-
ponent separation under the assumption that all observed sky
maps have the same instrumental beam and pixel resolution.
For full resolution analysis of Planck data this is an unrealis-
tic requirement, as the full-width half-maximum (FWHM) of
the beam (point spread function) span a large range, from 4.4
to 32 arc-min, and so one loses much information by downgrad-
ing data to a common resolution. In this paper we generalize the
model to handle sky maps observed with different beams and at
different resolutions.

We will restrict our attention to the CMB component and dif-
fuse foregrounds. Eriksen et al. (2008) additionally incorporate
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Fig. 1. Illustration of the spectral energy density response of each com-
ponent in the microwave emission. The shaded bands indicate the nine
different observation frequencies of the Planck space observatory. Our
goal is to create a map of each component in the sky; “CMB” emission,
“Thermal dust” emission, and so on, after making assumptions about
the spectral behaviour of each component such as we do in this figure.
We model the spectral behaviour as slightly different in each pixel;
hence it is indicated using bands rather than lines. Figure 2 adds further
detail. This figure is reproduced directly from Planck Collaboration X
(2015).

template components in the model for linear component separa-
tion. These are particularly useful for dealing with point sources,
where beam asymmetry is much more noted than for the diffuse
foregrounds. Recent versions of Commander sample template
amplitudes as an additional Gibbs step, rather than as part of
the linear system for component separation, so as to more eas-
ily include a positivity constraint on such amplitudes. We will
therefore ignore templates in this paper.

The microwave sky is observed as Nobs different sky maps dν
with different instrumental characteristics, and we wish to sepa-
rate these into Ncomp distinct diffuse foreground components sk.
The key to achieving this is to specify the spectral energy den-
sity (SED) of each component (see Figs. 1 and 2). Eriksen et al.
(2008) describe the Gibbs sampling steps employed to fit the
SED to data. For the purposes of this paper we will simply
assume that the SED information is provided as input, in the
form of mixing maps. Our basic assumption, ignoring any instru-
mental effects, is that the true microwave emission in a direction
n̂ on the sky, integrated over a given frequency bandpass labelled
ν, is given by

fν(n̂) =
∑

k

qν,k(n̂)sk(n̂), (1)

where sk(n̂) represents the underlying component amplitude, and
qν,k(n̂) represents an assumed mixing map. We will model the
CMB component simply as another diffuse component, but note
that the mixing maps are in that case spatially constant.

We do not observe fν(n̂) directly, but rather take as input
a pixelized sky map dν, where fν has been convolved with an
instrumental beam and then further contaminated by instrumen-
tal noise. To simplify notation we employ a notation with stacked
vectors, and write

d ≡


d30 GHz
d70 GHz
...

 , s ≡


scmb
sdust
...

 .

βlf

−3.6 −2.0

Fig. 2. Example spectral index map β(n̂). Each pixel value corresponds
to the slope in Fig. 1 in that pixel for a single combined low-frequency
emission component (using a single component to represent the “Free-
free”, “Synchrotron” , and “Spinning dust” emission types indicated
in Fig. 1. In reality, each pixel is the sum of multiple slightly differ-
ent spectral behaviours from different clouds of particles behind one
another, but we instead work with a single compromise value for the
dominating emission in the given direction. The mixing maps of this
paper, qν,k(n̂i), are taken to be proportional to νβ(n̂i), where each com-
ponent k has a different β-map. This figure is reproduced directly from
Planck Collaboration X (2015).

Our data observation model can then be written

d = Ps + n, (2)

where P is an Nobs × Ncomp block-matrix where each block (ν, k)
projects component sk to the observed sky map dν, and n rep-
resents instrumental noise, and is partitioned in the same way
as d. The noise nν is a pixelized map with the same resolution
as dν, and assumed to be Gaussian distributed with zero mean.
For our experiments we also assume that the noise is indepen-
dent between pixels, so that Var(nν) ≡ Nν is a diagonal matrix,
although this is not a fundamental requirement of the method.
We do, however, require that the matrix N−1

ν can somehow be
efficiently applied to a vector.

Each component sk represents the underlying, unconvolved
field. In our implementation we work with sk being defined by
the spherical harmonic expansion of sk(n̂), truncated at some
band-limit Lk, that is, we assume s`,m = 0 for ` > Lk. The choice
of Lk is essentially a part of the model, and typically chosen
to match a resolution that the observed sky maps will support.
Additionally, each component sk may have an associated Gaus-
sian prior p(s), specified through its covariance matrix S. The
role of the prior is to introduce an assumption on the smooth-
ness of s. The prior typically does not come into play where the
signal for a component is strong, but in regions that lack the com-
ponent it serves to stabilize the solution, such that less noise is
interpreted as signal. Computationally it is easier to assume the
same smoothness prior everywhere on the sky, in which case the
covariance matrix Var(s) = S is diagonal in spherical harmonic
domain with elements given by the spherical harmonic power
spectrum, Ck,`. However, this is not a necessary assumption, and
we comment on a different type of prior in Sect. 6.

The CMB power spectrum prior, given by Ccmb,`, is particu-
larly crucial. For the purposes of full sky component separation
one would typically not specify any prior so as not to bias the
CMB. For the purposes of estimating foregrounds, however, or
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filling in a CMB realization within a mask, one may insert a fidu-
cial power spectrum predicted by some cosmological models.

We now return to the projection operator P, which projects
each component to the sky. This may be written in the form of a
block matrix with each column representing a component k and
each row representing a sky observation ν, for example,

P =


P30 GHz,cmb P30 GHz,dust . . .
P70 GHz,cmb P70 GHz,dust . . .

...
...

. . .

 , (3)

with each block taking the form

Pν,k = YνBνQ̃ν,k. (4)

The operator Yν denotes spherical harmonic synthesis to
the pixel grid employed by dν. We assume in this paper an
azimuthally symmetric instrumental beam for each sky map,
in which case the beam convolution operator Bν is diagonal
in spherical harmonic domain with elements bν,`. This transfer
function decays to zero as ` grows at a rate that fits the band-limit
of the grid. Finally Q̃ν,k is an operator that denotes point-wise
multiplication of the input with the mixing map qν,k(n̂); compu-
tationally this should be done in pixel domain, so that

Q̃ν,k = YT
ν,kWν,kQν,kYν,k, (5)

where Qν,k contains qν,k(n̂) on its diagonal. The subscripts on the
SHT operators indicate that these are defined on a grid specific to
this mixing operation. We note that Q̃ν,k will cause the creation
of new small-scale modes, implying that, technically speaking,
the band-limit of Q̃ν,k sk is 2Lk rather than Lk for a full-resolution
mixing map qν,k. For typical practical system solving, however,
the mixing matrices are usually smoother than the corresponding
amplitude maps (due to lower effective signal-to-noise ratios),
and the model may incorporate an approximation in that Q̃ν,k
truncates the operator output at some lower band-limit. At any
rate, the grid used for Qν,k should accurately represent qν,k up to
this band-limit. For this purpose it is numerically more accurate
to use a Gauss-Legendre grid, rather than the HEALPix1 grid
(Górski et al. 2005) that is usually used for dν. The solver of the
present paper simply treats this as a modelling detail, and any
reasonable implementation works fine as long as Q̃ν,k is not sin-
gular. However, to achieve reasonable efficiency, we do require
qν,k(n̂) to be relatively flat, such that approximating Q̃ν,k with a
simple scalar qν,k is a meaningful zero-order representation. In
practice we typically find ratios between the maximum and min-
imum values of qν,k(n̂) of 1.5–3. In general, the higher the con-
trast, the slower is the convergence of the solver.

2.3. Constrained realization linear system

We have specified a model for the components s where the
likelihood p(d) and component priors p(s) are Gaussian, and
so the Bayesian posterior is also Gaussian (Jewell et al. 2004;
Wandelt et al. 2004; Eriksen et al. 2004b, 2008), and given by

p(s|d,S) ∝ e−
1
2 sT (S−1+PT N−1P)−1 s. (6)

To explore this density we are typically interested in either i)
the mean vector, or ii) drawing samples from the density. Both
can be computed by solving a linear system Ax = b with

A ≡ S−1 + PT N−1P (7)
1 http://healpix.jpl.nasa.gov

and

b ≡ PT N−1d + PT N−1/2ω1 + S−1/2ω2. (8)

The vectors ω1 and ω2 should either be
(i) zero, in which case the solution x will be the mean E(s|d,S),

also known as the Wiener-filtered map; or
(ii) vectors of variates from the standard Gaussian distribution,

in which case the solution x will be samples drawn p(s|d,S).
We refer to such samples as the constrained realizations.

For convenience we refer to the system as the constrained real-
ization (CR) system in both cases. The computation of the right-
hand side b is straightforward and not discussed further in this
paper; our concern is the efficient solution of the linear system
Ax = b.

For current and future CMB experiments, the matrix A is
far too large for the application of dense linear algebra. How-
ever, we are able to efficiently apply the matrix to a vector, by
applying the operators one after the other, and so we can use
iterative solvers for linear systems. Since A is symmetric and
positive definite, the recommended iterative solver is the conju-
gate gradients (CG) method (see Shewchuk 1994, for a tutorial).
One starts with an arbitrary guess, say, x1 = 0. Then, for each
iteration, a residual ri = b−Axi is computed, and then this resid-
ual is used to produce an updated iterate xi+1 that lies closer to
the true solution xtrue.

The residual ri, which is readily available, is used as a proxy
for the error, ei = xtrue − xi, which is unavailable as we do not
know xtrue. The key is that since Axtrue = b,

ri = b − Axi = A(xtrue − xi) = Aei,

and since A is linear, reducing the magnitude of ri will also lead
to a reduction in the error ei. In a production run the error ei is
naturally unavailable, but during development and debugging it
is highly recommended to track it. This can be done by gener-
ating an xtrue, then generating b = Axtrue, and tracking the error
ei while running the solver on this input. The benchmark results
presented in this paper are generated in this manner.

The number of iterations required by CG depends on how
uniform (or clustered) the eigenspectrum of the matrix is. There-
fore the main ingredient in a linear solver is a good precondi-
tioner that improves the eigenspectrum. A good preconditioner
is a symmetric, positive definite matrix M such that Mx can be
quickly computed, and where the eigenspectrum of MA is as flat
as possible, or at least clustered around a few values. Intuitively,
M should in some sense approximate A−1.

3. Full sky preconditioner based on
pseudo-inverses

3.1. Pseudo-inverses

The inspiration for the solver presented below derives from the
literature on the numerical solution of saddle-point systems. Our
system A, in the form given in Eq. (7), is an instance of a so-
called Schur complement, and approximating the inverse of such
Schur complements plays a part in most solvers for saddle-point
systems. An excellent review on the solution of saddle-point
systems is given in Benzi et al. (2005). The technique we will
use was originally employed by Elman (1999) and Elman et al.
(2006), who use appropriately scaled pseudo-inverses to develop
solvers for Navier-Stokes partial differential equations.

The pseudo-inverse is a generalization of matrix inverses to
rectangular and/or singular matrices. In our case, we will deal
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with an m × n-matrix U with linearly independent columns and
m > n, in which case the pseudo-inverse is given by

U+ ≡ (UT U)−1UT .

We note that in this case, U+ is simply the matrix that finds
the least-squares solution to the linear system Ux = b, i.e., that
minimizes minx ||Ux − b||2. This matrix has the property that

U+U = (UT U)−1UT U = I,

and so it is a left inverse. Unlike the real inverse however,
UU+ , I. This follows from U+ having the same shape as UT ,
so that UU+ is necessarily a singular matrix. For small matri-
ces, U+ can be computed by using the QR-decomposition. In
the case that U does not have full rank, the pseudo-inverse has
a different definition and should be computed using the singular
value decomposition (SVD); the definition above is, however,
sufficient for our purposes.

3.2. Full-sky, single component, without prior

For the first building block of our preconditioner we start with a
much simpler linear problem. Assuming a model with a single
sky map d, a single component, no mixing maps, and no prior,
the linear system of Eq. (7) simply becomes

BYT N−1YBx = b. (9)

We note that YT is not the same as spherical harmonic analy-
sis, which in our notation reads YT W. Without the weight matrix
W, YT represents adjoint spherical harmonic synthesis, and sim-
ply falls out algebraically from the transpose sky projection PT .

Since the basis of x is in spherical harmonic domain, the
beam convolution operator B is diagonal and trivially inverted.
The remaining matrix YT N−1Y is diagonal in pixel domain, so
if only Y had been invertible we could have solved the system
directly. Inspired by Elman (1999), we simply pretend that Y is
square, and let YT W play the role of the inverse, so that

(BYT N−1YB)−1 ≈ B−1YT WNWYB−1. (10)

We stress that because Y is not exactly invertible and YT W
is a pseudo-inverse, this is only an approximation that should
be used as a preconditioner inside an iterative solver. For the
HEALPix grid in particular, YT W is rather inaccurate and we
only have YT WY ≈ I; it is, however, a very good approximation,
as can be seen in Fig. 3.

3.3. Full sky, multiple components, with priors

Next, we want to repeat the above trick for a case with multi-
ple sky maps dν, multiple components xk, and a prior. We start
by assuming that the mixing operators Q̃ν,k can be reasonably
approximated by a constant,

Q̃ν,k ≈ qν,kI,

although, as noted above, this is only a matter of computational
efficiency of the preconditioner. The optimal value for qν,k is
given in Appendix A.2. In the following derivation we will sim-
ply assume equality in this statement, keeping in mind that all
the manipulations only apply to the preconditioner part of the
CG search, and so do not affect the computed solution.

First we note that the matrix of Eq. (7) can be written

A =
[

PT I
] [ N−1

S−1

] [
P
I

]
.
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Fig. 3. Convergence of preconditioner of Eq. (10) (black circles) com-
pared to a simple diagonal preconditioner (grey ticks). In this case, we
fit a single CMB component to a single 143 GHz Planck band with-
out specifying a prior. Section 5 gives further details on the benchmark
setup and the diagonal preconditioner.
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Fig. 4. Visualization of the matrix U in an example setup. For each
component k we plot the coefficients along the corresponding column of
U, normalized so that the sum is 1 for each `. We note how the CMB has
most support from the 100 GHz band for low `, then gradually switches
to the 353 GHz band and finally the prior as ` increases.

Writing the system in this way makes it evident that in the
Bayesian framework, the priors are treated just like another
“observation” of the components. These “prior observations”
play a bigger role for parts of the solution where the instrumental
noise is high, and a smaller role where the instrumental noise is
low (see Fig. 4).

The idea is now to further rearrange and re-scale the system
in such a way that all information that is not spatially variant is
expressed in the projection matrix on the side, leaving a unit-free
matrix containing only spatial variations in the middle. Since S−1

is assumed to be diagonal, it is trivial to factor it and leave only
the identity in the centre matrix. Turning to the inverse-noise
term N−1, we find experimentally that re-scaling with a scalar
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performed well. Specifically, we define

Ñ−1
ν ≡ α−2

ν YT
ν N−1

ν Yν,

where α takes the value that minimizes ‖Ñ−1
ν (αν) − I‖2. Comput-

ing αν is cheap, and its optimal value is derived in Appendix A.1.
A similar idea is used by Elsner & Wandelt (2013), as they split
N−1 into a spherical harmonic term and a pixel term, but their
split is additive rather than multiplicative. Our system can now
be written

A = UT TU, (11)

where T contains the unit-free spatial structure of the system,
and U the spatially invariant, but `-dependent, structure of the
system:

T ≡
[

Ñ−1

I

]
, U ≡

[
αBQ̃
S−1/2

]
.

In order to elucidate the block structure of these matrices, we
write out an example with three bands and two components:

T =



Ñ−1
1

Ñ−1
2

Ñ−1
3

I
I


, U =


α1B1Q̃1,1 α1B1Q̃1,2

α2B2Q̃2,1 α2B2Q̃2,2

α3B3Q̃3,1 α3B3Q̃3,2

S−1/2
1

S−1/2
2


.

Under the assumption that Q̃ν,k = qν,kI, the matrix U is block-
diagonal with small blocks of variable size when seen in `- and
m-major ordering. Specifically, the entries in the “data-blocks”
(ν, k′) in the top part of U are given by

U(`,m,ν),(`′,m′,k′) = ανbν,`qν,k′δ`,`′δm,m′ , (12)

and the entries in the “prior-blocks” (k, k′) in the bottom part of
U are given by

U(`,m,k),(`′,m′,k′) = C−1/2
k,` δk,k′δ`,`′δm,m′ . (13)

In the event that no prior is present for a component, the
corresponding block can simply be removed from the system,
or one may equivalently set C−1/2

k,` = 0.
At this point we must consider the multi-resolution nature of

our setup. Our model assumes a band-limit Lk for each com-
ponent, so that each component has (Lk + 1)2 corresponding
columns in U, and, if a prior is used, an additional corresponding
(Lk + 1)2 rows. Each sky observation has a natural band-limit Lν
where the beam transfer function bν,` has decayed so much that
including further modes is numerically irrelevant, and so each
band has (Lν + 1)2 corresponding rows in U. When we view U in
the block-diagonal `- and m-major ordering, the block sizes are
thus variable. Each band-row only participates for ` ≤ Lν, and
each component-column and component-row only participates
for ` ≤ Lk. A way to see this is to consider that the first blocks
for ` = 0 have size (Nobs + Ncomp) × Ncomp for all m; then, as `
is increased past some Lν or Lk, corresponding rows or columns
disappear from the blocks.

In code it is easier to introduce appropriate zero-padding for
` > Lk and ` > Lν so that one can work with a single con-
stant block size. Either way, the numerical results are equivalent.
Since U consists of many small blocks on the diagonal, comput-
ing the pseudo-inverse is quick, and the memory use and com-
pute time for constructing U+ scales as O(Ncomp

2NobsL2).

With this efficient representation of U+ in our toolbox, we
again use the trick of Elman (1999) to construct a preconditioner
in the form

A−1 = (UT TU)−1 ≈ U+T−1(U+)T . (14)

The lower right identity blocks of T require no inversion. The
Ñ−1
ν -blocks in the upper left section of T can be approximately

inverted using the technique presented in Sect. 3.2, so that

(Ñ−1
ν )−1 ≈ α2

νY
T
ν WνNνWνYν.

Let T+ denote T−1 approximated in this manner, and the
resulting preconditioner is

MPI = U+T+(U+)T . (15)

Computationally speaking, this has the optimal operational
form: the pseudo-inverse U+ and its transpose can be applied
simply by a series of small matrix-vector products in parallel
using the pre-computed blocks, while application of T+ as an
operator requires 2Nobs SHTs.

So far we have only considered the pseudo-inverse as an
algebraic trick, but some analytic insights are also available. First
we look at two special cases. The preconditioned system can be
written

MPIA = (UT U)−1UT T+U(UT U)−1UT TU.

First, we note that if the real model indeed has a flat inverse-
noise variance map, then T+ = T = I and the preconditioner
is perfect, MA = I. Second, we consider the case in which
the inverse-noise variance maps are not flat, but that rather (1)
Ncomp = Nobs; (2) there are no priors; and (3) the band-limit of
each sky observation matches that of its dominating component.
In this case, U is square and invertible, and (UT U)−1UT = U−1,
and thus MA = U−1T+TU ≈ I, using the very good approxima-
tion developed in Sect. 3.2.

In the generic case, T , I, and U has more rows than
columns. First we note that for an other equivalent model with
constant inverse-noise variance maps, the corresponding system
matrix is AF ≡ UT U. Further, we can define a system that acts
just like A in terms of effects that are spatially invariant, but
which has the inverse effect when it comes to the scale-free
spatial variations: ASPI ≡ UT T+U. With these definitions we have

MPIA = A−1
F ASPIA−1

F A.

The operator above applies the spatially variant effects once
forward and once inversely, and the spatially invariant effects
twice forward and twice inversely. Everything that is done is also
undone, and in this sense MPIA can be said to approximate I.

To see where the approximation breaks down, one must con-
sider what ASPI actually represents, which is a linear combination
of the spatial inverses of the inverse-noise maps and the priors.
The U matrix gives more weight to a band with more informa-
tion for each component. For instance, in a Planck-type setup
that includes a thermal dust component, the spatial inverse of
the 857 GHz band will be given strong weight, while the spa-
tial inverse of 30 GHz will be entirely neglected, as desired.
Likewise, the prior terms will be given little weight in the data-
dominated regime at low multipoles, and then gradually be intro-
duced as the data becomes noise dominated.

However, the weights between the spatial inverses ignore
spatial variations, and only account for the average within each
multipole `. Thus the preconditioner only works well when faced
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Fig. 5. Left panel: relative amplitudes of the prior term (solid lines; S−1
k ) and inverse-noise term (diffuse bands;

∑
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ν Pν,k ) on the diagonal

of the coefficient matrix A. Each full inverse-noise band has been evaluated by summing over the nine Planck frequency bands. The darker part
of each band displays the extents of the inverse-noise terms if one reduces contrast by adding synthetic regularization noise to the 1% least noisy
pixels. This in turn reduces the condition number of the full matrix. Where the solid lines lie above the diffuse bands, the full matrix is prior
dominated; where they lie below, the full matrix is data dominated. Right panel: schematic setup of which term dominates A in different regimes.
The pseudo-inverse preconditioner of Sect. 3 automatically resolves the low-` versus high-` split, taking into account cross-component couplings.
To handle the crucial low-` regime inside the mask (red), the extension described in Sect. 4 is required.

with modest spatial variations in the inverse-noise maps. This is
illustrated in Fig. 5. For the spatially invariant part of the pre-
conditioner, the crossover between the inverse-noise dominated
regime and the prior-dominated regime must happen at a single
point in `-space, whereas in reality this point varies based on
spatial position for ` in the mid-range where the prior lines are
crossing the inverse-noise bands.

Figure 6 summarizes the performance of the above precondi-
tioner in a realistic full sky component separation setup in terms
of iteration count. The analysis set-up corresponds to a stan-
dard nine-band Planck data set in terms of instrumental noise
levels and beam characteristics, as most recently reported by
Planck Collaboration IV (2019).
1. Synchrotron with a band-limit of Lsynch = 1000, a Gaus-

sian prior Csynch,` with FWHM of 30 arc-minutes, and with
signal-to-noise ratio of unity at ` = 350.

2. CMB with a band-limit of Lcmb = 4000, a ΛCDM power
spectrum prior, and with signal-to-noise ratio of unity around
` = 1600.

3. Thermal dust with a band-limit Ldust = 6000 and a signal-to-
noise ratio of unity around ` = 4500.

All mixing matrices are adopted from the Commander tem-
perature analysis described by Planck Collaboration IV (2019),
which accounts for full spatial variations in both the syn-
chrotron2 and thermal dust components.

In the top panel we show a model for which the full-
resolution high-contrast mixing maps are retained for both the
dust and synchrotron components. The spatial variations in the
mixing maps qν,k(n̂) are not modelled in the preconditioner, and
so both preconditioners struggle in this case, but the pseudo-
inverse preconditioner is still twice as fast as the block-diagonal
preconditioner. In the middle panel, we apply a Gaussian low-
pass filter to the mixing maps, reducing both local spatial vari-
ation and contrast. We applied Gaussian filters with a FWHM
of 20 arc-minutes for the dust component and 1◦ for the syn-
chrotron component. This improves the convergence rate by

2 We note that although we refer to this component as “synchrotron”,
it does in fact include contributions from both free-free and spinning
dust emission. However, for the purposes of the present paper, the spe-
cific astrophysics is irrelevant, and we adopt for convenience the simpler
naming convention.
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Fig. 6. Convergence of the pseudo-inverse preconditioner (shown in
black lines) for a full-sky component separation model for three
different sets of mixing matrices with varying spatial structure. For
comparison, grey lines show the convergence of a block diago-
nal preconditioner. The top panel shows a case with full-resolution
mixing matrices; the middle panel shows a case with mixing matri-
ces smoothed to 20′ and 1◦ FWHM for thermal dust and syn-
chrotron emission, respectively; and the bottom panel shows a case
with spatially uniform mixing matrices. Further details are given in
Sect. 3.3.
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about a factor of two. Finally, in the bottom panel the mixing
maps have no spatial variation at all, and the entire foreground
model is described by the preconditioner. This represents the
limiting optimal case for this particular setup.

The pseudo-inverse preconditioner is at a greater advan-
tage in situations with moderate structure and contrasts in the
mixing maps. Unlike the diagonal preconditioner, the pseudo-
inverse preconditioner solves for the structure in the inverse-
noise matrix N−1, but neither solves for the spatial structure in
mixing maps. On a harder problem in general, it seems that diag-
onal preconditioner is put at a (relative) advantage by having
more iterations at which to also work on the inverse-noise term.

It should be noted that the pseudo-inverse preconditioner
requires extra SHTs compared to a standard diagonal precon-
ditioner, and so requires more computing time per iteration. This
penalty is highly model specific as it depends on Ncomp and Nobs.
In general, each multiplication with A requires (2Ncomp + 4Nobs),
which translates into 42 SHTs for our case, whereas applica-
tion of the pseudo-inverse preconditioner requires 2Nobs = 18
SHTs. Additional optimizations can be made if one or more mix-
ing matrices are spatially uniform, as for instance is the case for
the CMB component. If all components have the same resolu-
tion, this translates to each iteration of the pseudo-inverse solver
taking about 33% longer than the block-diagonal preconditioner,
and with a third of the iterations needed, we end up with a total
run-time reduction of 60%. For this model, the synchroton with a
flat mixing map has much lower angular resolution than the dust
component with a variable mixing map, and so the speed-up is
somewhat larger. In the future it could be possible to use approx-
imate SHTs to significantly reduce this overhead (see Sect. 6).

4. Constrained realization under a mask

So far we have only considered the full sky case. In many prac-
tical applications, we additionally want to mask out parts of the
sky, either because of missing data, or because we do not trust
our model in a given region of the sky. Within such scenarios, it
is useful to distinguish between two very different cases:
(i) Partial sky coverage, where only a small patch of the sky has

been observed, and we wish to perform component separa-
tion only within this patch. The typical use case for this setup
is ground-based or sub-orbital CMB experiments.

(ii) Natively full sky coverage, but too high foregrounds in a
given part of the sky to trust our model. In this case, one often
masks out part of the sky, but still seeks a solution to the sys-
tem under the mask, constrained by the observed sky at the
edges of the mask and determined by the prior inside the
mask. By ignoring data from this region we at least avoid the
CMB component being contaminated by foreground emis-
sion. Of course, the solution will not be the true CMB sky
either, but it will have statistically correct properties for use
inside of a Gibbs sampler (Jewell et al. 2004; Wandelt et al.
2004; Eriksen et al. 2004b, 2008).

We expect the solver developed in the previous section to work
well in case (i) given appropriate modifications, but leave such
modifications for future work, and focus solely on case (ii) in
what follows.

4.1. Incorporating a mask in the model while avoiding ringing
effects

We recall from Sect. 2.2 that our data model reads

d = YνBνQ̃ν,k s + n,

where d are the pixels of the observed sky maps. We follow
Eriksen et al. (2004b) and Seljebotn et al. (2014) and introduce
a mask in the model by declaring that the masked-out pixels are
missing from d, or, equivalently, that N−1 is zero in these pixels.
This is straightforward from a modelling perspective, but has an
inconvenient numerical problem: ideally, we want to specify the
beam operator B using a spherical harmonic transfer function
b`, but, because b` must necessarily be band-limited, B exhibits
ringing in its tails in pixel basis. Specifically, in pixel space the
beam operator first exhibits an exponential decay, as desired, but
then suddenly stops decaying before it hits zero. At this point, it
starts to observe the entire sky through the ringing “floor” (see
figures in Seljebotn et al. 2014), and it becomes non-local. When
the signal-to-noise ratio of the data in question is high enough
compared to such numerical effects, the model will try to predict
the signal component s within the mask through deconvolution
of the pixels at the edge of the mask, regardless of their distance.
This causes a major complication for all solvers of this type, and
in Seljebotn et al. (2014) we had to carefully tune the solver to
avoid this ringing effect.

In the present solver we introduce the mask in the mix-
ing maps Qν,k, rather than in the noise model, but only in the
preconditioner. This corresponds to making the approximation
that beam convolution and masking commute, even though these
operations do in fact not commute. The sky is then split cleanly
into one set of pixels outside the mask that hits the full matrix
S−1 + PT N−1P, and another set of pixels (those under the mask)
that only hits the prior term S−1. We then proceed to apply sepa-
rate preconditioners in the two regions. This simple approxima-
tion, although far from exact, is good enough to support good
convergence for the final solver.

4.2. Independently solving for signals under a mask

Let us consider the schematic description of each regime in the
right panel of Fig. 5. The pseudo-inverse preconditioner, which
we will denote MPI, automatically finds a good split per com-
ponent for the low- and high-` regimes, respectively, but is, in
the same way as a block-diagonal preconditioner, blind to the
different regimes inside and outside of the mask. As a result, it
performs poorly for large scales inside the mask, that is, for mul-
tipoles lower than the point of unity signal-to-noise ratio shown
in Fig. 7.

To solve this, we supplement the pseudo-inverse precondi-
tioner with a second preconditioner that is designed to work well
only inside the mask, where it is possible to simplify the system.
Let Z denote spherical harmonic synthesis to the pixels within
the mask only; that is, we first apply Y, and then select only the
masked pixels. Then, building on standard domain decomposi-
tion techniques, a preconditioner that provides a solution only
within the masked region is given by

Mmask = ZT (ZAZT )−1Z = ZT (ZS−1ZT )−1Z. (16)

We will develop a solver for the inner mask-restricted sys-
tem in Sect. 4.4. The idea is then to use both the full-sky solver
developed in Sect. 3.2 MPI, and the mask-restricted solver Mmask.
The simplest possible way of doing this is simply to add them
together, Madd ≡ MPI + Mmask, and we find experimentally that
this simple combination performs well for our purposes. In our
experiments we have chosen MPI to simply be the unaltered full
sky pseudo-inverse. As the full system matrix A does not in fact
include values from the RMS map inside the mask, there is some
freedom here to choose other values, although we found other
choices to have little effect on overall convergence.
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Fig. 7. Harmonic filtering of the mask-restricted system ZS−1ZT . Top
panel: inverse CMB power spectrum 1/C` (solid blue), on the diagonal
of the S−1 matrix behaves as `2 near the beginning, increasing in steep-
ness to `8 at ` = 6000. It crosses the diagonal of the inverse-noise term
N−1 (dotted green) at around ` = 1600. Above this point the system
becomes prior dominated and the pseudo-inverse preconditioner works
well both inside and outside the mask. Since we do not need the dedi-
cated mask solver to solve for high `, we apply a filter r` as described
in Sect. 4.4, resulting in a filtered prior r2

` /C` (dashed orange). Bottom
panel: S−1 operator in pixel domain. The plot displays (YS−1YT )i j as
a function of the distance between grid points i and j. Both the unfil-
tered operator 1/C` (solid blue) and the low-pass filtered r2

` /C` (dashed
orange) have a “Mexican hat” or Wavelet-like azimuthally symmetric
shape. The low-pass filter ensures that the oscillations decay quickly,
making the system easier to solve in pixel domain than the unfiltered
version.

The preconditioner described above, however, may break
down for more demanding models. We found that the most impor-
tant feature in how well Madd works is how far the inverse-noise
term decays before it is overtaken by the prior term (see Fig. 7).
In the case of analysing Planck data, we find that the inverse-
noise term decays by a factor of roughly λ = 0.15 at this point,
which is unproblematic. In simulations with lower resolution or
higher noise, such thatλ = 0.01, convergence is hurt substantially,
and at λ = 0.001 the preconditioner breaks down entirely.

Since our own use cases (which are targeted towards Planck)
are not affected by this restriction, we have not investigated this
issue very closely. We have, however, diagnosed the effect at low
resolution with a dense system solver for (ZS−1Z)−1. In these
studies, we find that the problem is intimately connected with
how the two preconditioners are combined, and it may well be
that more sophisticated methods for combining preconditioners
will do a better job. For the interested reader, we recommend
Tang et al. (2009) for an introduction to the problem, as they
cover many related methods arising from different fields using
a common terminology and notation. In particular it would be
interesting to use deflation methods to “deflate” the mask sub-
space out of the solver. it will still be limited by the fundamental
approximation in which we moved the mask from the inverse-
noise term N−1 to the mixing term Q, and this sets a limit to how
well the preconditioner can work along the edges of the mask.

Finally, we give a word of warning: in the full sky case,
we have been able to re-scale the CR system arbitrarily without
affecting the essentials of the system. For instance, Eriksen et al.
(2008) scale A with S1/2 so that the system matrix becomes
I + S1/2PT N−1PS1/2. This has no real effect on the spherical har-
monic preconditioners, but in pixel domain it changes the shape
of each term. The natural unscaled form of A is localized in pixel
domain. The inverse-noise term essentially looks like a sum of
the instrumental beams, while the prior defines smoothness cou-
plings between a pixel and its immediate neighbourhood. How-
ever, S1/2 is a highly non-local operator, and multiplying with
this factor decreases locality and causes a break-down of our
method. There may of course be other filters that would increase
locality in pixel domain instead of decrease it, in which case it
could be beneficial to apply them.

4.3. Including a low-pass filter in the mask-restriction

The feature that most strongly defines the mask-restricted sys-
tem ZS−1ZT is the shape of the mask, and thus pixel basis is
the natural domain in which to approach this system. The oper-
ator ZS−1ZT acts as a convolution with an azimuthally sym-
metric kernel on the pixels within the mask. In Fig. 7 we plot
a cut through this convolution kernel (blue in bottom panel).
Mainly due to the sharp truncation at the band-limit L, oscilla-
tions extend far away from the centre of the convolution kernel.
To make the system easier to solve, we follow Seljebotn et al.
(2014) and insert a low-pass filter as part of the restriction oper-
ator Z, so that the projection from spherical harmonics to the
pixels within the mask is preceded by multiplication with the
transfer function

r` = exp(−β`2(` + 1)2), (17)

where we choose β so that r2
L/2 = 0.05. The resulting system now

has a transfer function of r2
`/C`, whose associated convolution

kernel is much more localized (dashed orange), making it easier
to develop a good solver for ZS−1ZT .

After introducing this low-pass filter we no longer have
equality in Eq. (16), but only approximately that ZAZT ≈
ZS−1ZT . This appears to not hurt the overall method, as r` is
rather narrow when seen as a pixel-domain convolution (unlike√

C`, as noted above). Also we note that we have now over-
pixelized the system ZS−1Z, as higher frequency information has
been suppressed and the core of the convolution kernel is sup-
ported by two pixels. Our attempts at representing ZS−1Z on a
coarser grid failed however, because the solution will not con-
verge along the edge of the mask unless the grid of Z exactly
matches the grid of the mixing map Qν,k. While the resulting
system ZS−1ZT on the full-resolution grid is poorly conditioned
for the smallest scales, this does not prevent us from applying
iterative methods to solve for the larger scales.

4.4. Multi-grid solver for the mask-restricted system

Finally we turn our attention to constructing an approximate
inverse for ZS−1ZT . We now write the same system matrix as

G = ZS−1ZT = YDYT , (18)

where D is a diagonal matrix with d` = r2
`/C` on the diagonal,

and it should be understood that the spherical harmonic synthesis
Y only projects to grid points within the mask.

As noted in Seljebotn et al. (2014), in the case where d` ∝ `2

this is simply the Laplacian partial differential equation on the
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sphere, and the multi-grid techniques commonly used for solving
this system are also effective in our case. We will focus on the
case where C` is the CMB power spectrum; in this case 1/C`

starts out proportional to `2, increasing to `6 around ` ∼ 1600,
eventually reaching `8 at ` ∼ 6000. In theory this should make
the system harder to solve than the Laplacian, but it seems that
in our solver the application of the low-pass filter described in
the previous section is able to work around this problem.

To solve the system Gx = b using iterative methods, we
might start with a simple diagonal approximate inverse,

M ≡ diag(G)−1,

which is in fact a constant scaling since G is spatially invariant.
This turns out to work well as a preconditioner for the intermedi-
ate scales of the solution. For smaller scales (higher `) the quickly
decaying restriction r` starts to dominate over 1/C` such that the
combined effect is that of a low-pass filter; such filters cannot to
our knowledge be efficiently deconvolved in pixel domain and
an harmonic-domain preconditioner would be required. Luck-
ily, we do not need to solve for these smaller scales, as the
pseudo-inverse preconditioner will find the correct solution in
this regime, and the restriction operator Z will at any rate filter
out whatever contribution comes from the solution of G.

The problem at larger scales (lower `) is that the approx-
imate inverse would have to embed inversion of the coupling
of two distant pixels through a series of intermediate pixels in-
between; this is beyond the reach of our simple diagonal pre-
conditioner. For this reason we introduce a multi-grid (MG)
V-cycle, where we recursively solve the system on coarser res-
olutions. For each coarsening, the preconditioner is able to see
further on the sphere, as indirect couplings in the full-resolution
system are turned into direct couplings in the coarser versions
of the system. A basic introduction to multi-grid methods can be
found for example in Hackbush (1985) or the overview given in
Seljebotn et al. (2014).

The first ingredient in MG is an hierarchy of grids, which
are denoted relatively, with h denoting an arbitrary level and H
denoting the grid on the next coarser level. We have opted for
a HEALPix grid for Qν,k and G, and use its hierarchical struc-
ture to define the coarser grid, simply letting Nside,H = Nside,h/2.
We also need to consider which subset of grid points to include
to represent the region within the mask. We got the best results
by only including those pixels of H that are covered 100% by
the mask in the fine grid h, so that no pixel on any level ever
represents a region outside the full-resolution mask.

The second ingredient in MG is the restriction operator IHh ,
which transfers a vector from grid h to grid H. We tried restric-
tion operators both in pixel domain and spherical harmonic
domain, and spherical harmonic restriction performed better by
far. Thus we define

IHh = YHRHYT
h Wh, (19)

where we use subscripts to indicate the grid of each operator, and
where RH has some harmonic low-pass filter rH,` on its diago-
nal. In Seljebotn et al. (2014) the corresponding filter had to be
carefully tuned to avoid problems with ringing, because the N−1-
term created high contrasts in the system matrix. In the present
method we no longer have to deal with the N−1 term, and the
requirements on the low-pass filter are much less severe, as long
as they correspond to a convolution kernel with a FWHM of
roughly one pixel on the coarse grid. A Gaussian band-limited
at LH = 3Nside,H = Lh/2 performed slightly better than the filter
of Eq. (17) in our tests, even if it has somewhat more ringing at
this band-limit.

The third ingredient in MG is the coarsened linear system

GH = IHh GhIhH = YHDHYT
H , (20)

where dH,` = r2
H,`dh,` is band-limited at LH = Lh/23. We stress

again that the grid H embeds the structure of the mask, so that
YH in this context denotes spherical harmonic synthesis only to
grid points within the mask. In computer code, zero padding is
used outside of the mask before applying YT

H , and entries outside
the mask are discarded after applying YH .

The fourth ingredient in MG is an approximate inverse, in
this context named the smoother. The name refers to removing
small scales in the error xtrue − x. Removing these scales happens
through approximately solving the system, and should not be con-
fused with applying a low-pass filter. In our case we will use the
simple constant smoother M discussed above, although in com-
bination with a damping factor ω = 0.2, so that the eigenvalues
of ωMG are bounded above by 2 as required by the MG method.
We write Mh = ω diag(Gh)−1 for the smoother on level h.

Finally, the ingredients are combined in the simplest possible
MG V-cycle algorithm (see Fig. 8). It turns out that the restric-
tion and interpolation operations can share one SHT each with
the associated system matrix multiplication, so that six SHTs
are required per level. Furthermore, the SHTs can be performed
at different resolutions for additional savings. Like the pseudo-
inverse preconditioner, the mask-restricted solver appears to
work well with approximate SHTs, enabling further savings in
the future (see Sect. 6).

Figure 9 shows the results of solving the full system when
inserting this algorithm as an approximation of (ZS−1ZT )−1 in
Eq. (16). While the diagonal preconditioner degrades, Madd con-
verges very quickly. The pseudo-inverse preconditioner MPI by
itself shows much the same behaviour as the diagonal precondi-
tioner in this situation (not plotted).

5. Benchmark notes

The implementation used for the convergence plots in this paper
are produced using a prototype implementation written in a mix-
ture of Fortran, Cython, and Python, and is available under an
open source license4. As a prototype, it does not support polar-
ization or distributed computing with the Message Passing Inter-
face (MPI). A full implementation in the production quality
Commander code is in progress.

Simulations are performed with a known xtrue drawn ran-
domly from a Gaussian distribution, and a right-hand side given
by b = Axtrue. Then the convergence statistic denoted “relative
error” in these figures simply reads

ei ≡ ‖xi − xtrue‖.
Finally, unless otherwise noted, we add regularization noise

to the 1% of the highest signal-to-noise pixels in the RMS maps.
As noted in Fig. 3, this is more of an advantage for the diagonal
preconditioner than the pseudo-inverse preconditioner, but this
typically mimics what one would do in real analysis cases.

In the present paper we have focused strictly on algorithm
development, and as such the prototype code is not optimized;
we have not invested the effort to benchmark the preconditioners

3 The matrix coarsening must be done in another way if using a pixel-
domain restriction operator. In that case DH is in principle a dense
matrix due to pixelization irregularities, but can still be very well
approximated by a diagonal matrix. Details are given in Appendix B.
4 https://github.com/dagss/cmbcr
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Basic-V-cycle(h, b):
Inputs:

h – The current level
b – Right-hand side

H denotes the coarser level relative to h.
Output:

Approximation of G−1
h b

if h is bottom level:
x← G+

h b By SVD pseudo-inverse
else:

x← Mh b Pre-smoothing
rh ← b − Gh x Compute residual
rH ← IH

h rh Restrict residual
cH ← Basic-V-Cycle(H, rH) Recurse for coarse correction
ch ← (IH

h )T cH Interpolate correction
x← x + ch Add correction
x← x + Mh(b − Gh x) Post-smoothing

return x

Optimized-V-cycle(h, b):
Inputs:

h – The current level
b – Right-hand side

H denotes the coarser level relative to h.
Output:

Approximation of G−1
h b

if h is bottom level:
x← G+

h b
else:

x← Mh b
u← YT

h x SHT at Lh, Nh
r̃← YT

h Wh b − JDhu SHT at LH , Nh
rH ← YHRH r̃ SHT at LH , NH
cH ← Optimized-V-Cycle(H, rH)
c̃← RHYT

H cH SHT at LH , NH
x← x + WhYh c̃ SHT at LH , Nh
x← x + Mh(b − YhD(u + Jc̃)) SHT at Lh, Nh

return x

Fig. 8. Pseudo-code for the MG V-cycle. The matrices involved are defined in the main text. Basic-V-Cycle: the clean textbook version, exposing
the basic structure of the algorithm. The important feature of the algorithm is that the solution vector x is never transferred directly between levels.
Instead, a residual rH is computed, which takes the role as the right-hand side b on the coarser level. The coarse solution is a correction cH that
is then added to the solution vector x. The resulting full V-cycle is a symmetric linear operator that can be used as a preconditioner for CG. We
keep recursing until there are less than 1000 coefficients left, and then solve using a pseudo-inverse based on the SVD, G+

h ≈ G−1
h , as Gh may,

depending on the size of the mask, be singular due to Dh being truncated at Lh. Optimized-V-Cycle: in this code we have inserted IH
h = YHRHYT

h Wh

and Gh = YhDhYT
h , and then reorganized the expressions so that the restriction and interpolation steps each share one SHT with the corresponding

application of Gh. The J operator denotes YT
h WhYh. The effect of this operator is to zero out any contribution that falls outside of the mask in the

(full sky) spherical harmonic vectors; but numerical experiments indicate that the term can in practice be neglected also when using a small mask.
In our numerical experiments we approximate J ≈ I, reducing the total number of SHTs to six per level. The comments indicate the required
resolution for each SHT, with Lh (LH) referring to fine (coarse) harmonic band-limit, and Nh (NH) referring to fine (coarse) grid.

in terms of CPU time spent. As detailed in Sects. 3.3 and 4.4, the
additional cost for a particular use case can be calculated from
the number of extra SHTs.

The block-diagonal preconditioner we use as a comparison
point is described in further detail by Eriksen et al. (2004b). In
the notation of this paper, it can be written

Mdiag ≡ (UT diag(T)U)−1,

where each element of diag(T) can be computed in O(L) time by
a combination of Fourier transforms and computing the associ-
ated Legendre polynomials, which is available for example in the
latest version of Libsharp5. Since the matrix UT diag(T)U con-
sists of (`max + 1)2 blocks of size Ncomp × Ncomp , the inversion is
cheap.

For the component separation case we provide three bench-
marks in Fig. 7, with varying degrees of difficulty introduced
through the mixing maps. For the benchmark of Fig. 9, we only
included the CMB component, and so only a flat mixing map
was in use.

6. Discussion and outlook

In this paper we have presented a versatile Bayesian model
for the multi-resolution CMB component separation and con-
strained realization problem, as well as an efficient solver for
the associated linear system. This model is currently in active
use for component separation for the Planck 2017 collaboration.
The final result is the ability to perform exact, full-resolution,
multi-resolution component separation of full-sky microwave
data within a reasonable number of conjugate gradient iterations.

5 https://github.com/dagss/libsharp.

To achieve such good convergence several novel techniques
were employed. First, we developed a novel pseudo-inverse
based preconditioner. For the full sky case this provides a speed-
up of parameters. Second, we extended the model with a mask
through the mixing maps, rather than through the noise covari-
ance matrix, to avoid ringing problems associated with going
between spherical harmonic domain and pixel domain. Third, we
solved for the solution under the mask using a dedicated multi-
grid solver in pixel domain restricted to the area under mask,
where the linear system can be simplified.

We note that the pseudo-inverse preconditioner not only per-
forms very well for the full sky case with reasonably uniform
mixing maps, but it is also very simple to implement, signif-
icantly simpler than the previously standard diagonal precondi-
tioner. As mentioned earlier, this technique is of course not novel
for or restricted to CMB component separation; it has been in
use for solving Navier-Stokes equations for some time. The fun-
damental idea is to approximate the total inverse of a sum with
the best linear combination of inverses of each term. A prob-
lem related to this paper, which in particular fits this description,
is the basic CMB map-making equation (e.g., Tegmark 1997).
This equation is a sum over individual time segments of obser-
vations, which can in isolation be inverted in Fourier domain. If
the pseudo-inverse preconditioner works well in this case, as we
believe it will, it may speed up exact maximum likelihood map
makers substantially.

Regarding more direct extensions of the work in the present
paper, a natural next step is the use of a pixel domain basis
instead of spherical harmonic coefficients to represent the
microwave components. We have so far assumed an isotropic
prior for all components that can be specified in the form of
a power spectrum C`, with a sharp band-limit L. This model
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Fig. 9. Convergence of the Madd preconditioner (top panel) when includ-
ing sky mask (Planck Collaboration XI 2016) in the model (bottom
panel). We fit a single CMB component to hypothetical foreground-
cleaned maps on all nine Planck bands, specifying a fiducial C` prior
for the CMB power spectrum. We plot the convergence when using a
diagonal preconditioner (grey) and the Madd preconditioner developed
in Sect. 4 (black). Section 5 gives details on the benchmark setup.
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Fig. 10. Effect of employing approximate SHTs in the preconditioner.
To simulate approximate SHTs, for every SHT computer, we have mul-
tiplied each coefficient of the result with a random variate drawn uni-
formly from the interval [1 − ε, 1 + ε], simulating numerical noise at
the ε-level. Note that we carried out these simulations on a resolution
of Nside = 128, using the downgrade procedure outlined in Appendix C.
The experiment is otherwise identical to the one in Fig. 9. The approxi-
mate SHTs are employed both in the pseudo-inverse preconditioner and
the mask-restricted multi-grid solver, while the (non-preconditioner)
matrix-vector multiplication uses the full accuracy provided by Lib-
sharp.

has a tendency to excite ringing in the resulting maps around
sharp objects, unless much time is spent tuning the priors, or one
adopts a very high band-limit L for all components. Working
with pixel-domain vectors and, with the exception of the CMB,
pixel-domain prior specifications, one could easily define the
models that are more robust against this problem. Also, we know

that the diffuse foregrounds have much variation where their sig-
nal is strong, but should be more heavily stabilized where their
signal is weak. Such a non-isotropic prior is easier to model
using a sparse matrix in pixel domain. Of particular interest are
the so-called conditional auto-regressive (CAR) models, which
have a natural interpretation and which directly produce sparse
inverses S−1.

Several SHT algorithms have been developed with a com-
putational scaling of O(L2 log L) or O(L2(log L)2). These are
generally not used within the astrophysical community because
of the large pre-factors involved and lack of optimized imple-
mentations. Some of these algorithms (e.g., Tygert 2008, 2010;
Seljebotn 2012) can produce low-accuracy results at a much
lower cost, since their pre-factor includes a term O(d2) with d
representing the number of digits in the computation. As shown
in Fig. 10, the preconditioner developed in this paper works
well with approximate SHTs, and optimized implementations
of these algorithms may speed up the preconditioner to the
point where its computational cost is negligible compared to the
matrix-vector multiplication.
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Appendix A: Details of the pseudo-inverse
preconditioner

A.1. Approximating the inverse-noise maps

We seek αν such that the distance between Ñ−1
ν and the identity

matrix is minimized:

‖Ñ−1
ν (αν) − I‖2 = ‖α−2

ν YT
ν N−1

ν Yν − YT
ν WνYν‖2

= ‖YT
ν (α−2

ν N−1
ν −Wν)Yν‖2

= ‖YT
ν W1/2(α−2

ν W−1N−1
ν − I)W1/2Yν‖2

= ‖(α−2
ν W−1N−1

ν − I)‖2.
The last equality follows because all the singular values

of YT W1/2 are 1, at least for the Gauss-Legendre grid. For
the HEALPix grid the statement is only approximate, within
10–20%, depending on resolution parameters, and this is close
enough for our purposes. We conclude that the best choice is

αν =

√∑
i(τν(n̂i)/wi)2∑

i τν(n̂i)/wi
, (A.1)

where τi represents the pixels in the inverse-noise variance map
on the diagonal of N−1

ν , and wi are the quadrature weights of
the associated grid. We have verified this expression experimen-
tally by perturbing αν in either direction, and find that either
choice leads to slower convergence. Ultimately, the method may
even fail to converge if αν deviates too much from the optimal
value.

In code, the easiest way to compute τν(n̂i)/wi is by perform-
ing a pair of SHTs, W−1τ = YYTτ. By replacing the usual
analysis YT W with adjoint synthesis YT , we end up implicitly
multiplying τ with W−1.

A.2. Approximating the mixing maps

Following a similar derivation to the previous section, the opti-
mal scalar to approximate the mixing maps is given by minimiz-
ing

‖Q̃ν,k − qν,kI‖ = ‖YT WQν,kY − qν,kYT WY‖ = ‖Qν,k − qν,kI‖,
so that the best choice is

qν,k =

∑
i qν,k(n̂i)2∑
i qν,k(n̂i)

· (A.2)

In our cases, however, the difference between this quantity
and the mean of the mixing map is negligible.

A.3. Possible future extension: Merging observations

Depending on the data model, it may be possible to reduce the
number of SHTs required for each application of the pseudo-
inverse preconditioner. When Nobs > Ncomp, the system in some
ways supplies redundant information. We assume that two rows
in U are (at least approximately) identical up to a constant scaling
factor; this requires that the corresponding sky maps have the
same beams, the same normalized spatial inverse-noise structure,
and are located at the same frequency ν with the same SED for
each component. That is, we require both Ñ−1

1 = Ñ−1
2 and U2 =

γU1, where Uν indicates a row in U and γ is an arbitrary scale
factor. This situation is very typical for experiments with several

independent detectors within the same frequency channel, which
is nearly always the case for modern experiments.

Under these assumptions, we have[
UT

1 UT
2

] [ N−1
1

N−1
2

] [
U1
U2

]
=
[

(γ + 1)1/2UT
1

] [
N−1

1

] [
(γ + 1)1/2U1

]
.

Thus, we may combine the two rows without affecting the
rest of the system, and thereby halve the number of SHTs
required. Of course, two sky observations with such identical
properties could have been co-added prior to solving the system,
as is typically done when creating co-added frequency maps.
In practice, however, there are typically many advantages in
working with detector sub-sets, including an improved ability to
isolate systematics effects (e.g., Planck Collaboration X 2015),
and more easily allow for cross-correlation analysis. In addition,
there may be experiments where some sky maps do not have
identical properties and one does not wish to co-add, but they
are similar enough that co-adding poses no problem if done in
the preconditioner alone. One then needs to somehow produce
compromises for B, N−1 and Mν,k, replace the relevant matrices
with the compromise versions, and finally use the row merge
procedure described above to create a new U solely for use in
the preconditioner.

Appendix B: Alternative strategies for the
mask-restricted solver

We spent some time exploring a pixel-domain restriction opera-
tor before turning to spherical harmonic restrictions. The simple
restriction we attempted, averaging the four nested pixels using
the standard HEALPix udgrade function, more than doubled
the number of iterations required for a small mask when com-
pared to a restriction in spherical harmonic domain, and had
trouble converging at all for a large mask. The spherical har-
monic restrictions are therefore well worth the extra time spent
performing SHTs. Still, it is probably possible to pull out a little
bit more performance by experimenting with averaging over a
larger region with a choice of weights that approximates a Gaus-
sian low-pass filter.

When using a pixel based restriction the system can no
longer be coarsened simply by multiplying spherical harmonic
transfer functions. However, since the operator is rotationally
and spatially invariant it is simple to coarsen the system numer-
ically. The idea is to image the operator in a single pixel,
and then solve for the spherical harmonic transfer function
that would produce this image. Let u represent a unit vector
located on equator on the coarse grid H. We then seek DH such
that

YHDHYT
Hu = IHh GhIhHu = IHh YhDhYT

h IhHu

DHYT
Hu = YT

HWH IHh YhDhYT
h IhHu.

Now, assuming that DH is diagonal, we must have

dH,`,m =
(YT

HWH IHh YhDhYT
h IhHu)`,m

(YT
Hu)`,m

·

In practice, due to pixelization effects, DH cannot be fully
diagonal and this equation cannot be satisfied for all `, m. How-
ever, assuming that Dh is isotropic it should be fully character-
ized by the modes m = 0, and, as u was located on equator,
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these produce a very good estimate. Using this coarsening pro-
cedure instead of the analytical coarsening procedure in Sect. 4.4
produces identical results when applied to the Gaussian restric-
tion operator. With pixel-domain restriction operators, pixeliza-
tion effects will hurt the approximation somewhat. We expect
that the approximation will be hurt less if the averaging weights
are a function of the physical distance between the grid points
rather than the logical distance.

We have also experimented with using a Fourier basis to rep-
resent Gh. When using a thin mask around equator, or a small
point source, applying torus- or flat sky approximations, respec-
tively, allows for using the much faster Fast Fourier Transforms
(FFTs) instead of SHTs. The operator should then be transferred
using the same principle as above. Let F denote a discrete Fourier
transform from harmonic space to real space, then, within a nar-
row equatorial band or a small patch, we require

FDFFTFT u ≈ YDSHTYu, (B.1)

and solve for

DFFT,k,k′ =
(F−1YDSHTYT u)k,k′

(FT u)k,k′
·

Then coarser systems can be produced either analytically
(restriction in harmonic domain) or by appropriate modifications
to the technique above (restriction in pixel domain). We were
able to produce a functional solver using this principle, but feel
that the loss in flexibility was not worth the gain in performance
compared to the solver presented in Sect. 4.4.

Appendix C: Realistically downgrading the system
during development

For development of any solver, it is important to have a realistic
low-resolution version of the system that can be solved in a few
minutes. In our case, the most faithful low-resolution version of
the system is not actually what would arise from a low-resolution
CMB experiment, e.g., from the COsmic Background Explorer
(COBE). This is because it is important to keep the same
signal-to-noise ratio and the same overall growth rate of the
power spectra in harmonic domain. If this is not carried out in the
right manner, it is easy to get situations where the solver works
very well for low resolution, but loses convergence entirely as
resolution is scaled up.

We had good results with the following downgrade proce-
dure:

– Downgrade the RMS maps to a lower Nside using HEALPix
routines;

– Find the best fit Gaussian beam approximation to the instru-
mental beams, and make equivalent low-resolution beams
based on scaling down the FWHM parameter;

– Downgrade each prior C` by sub-sampling coefficients. For
instance, for a degrade from Nside = 2048 to Nside = 256,
we take every eighth coefficient. Similarly, we divide each
band-limit Lk by the relevant downgrade factor;

– Scale C` in such a way that the diagonal of S−1 crosses the
diagonal of PT N−1P at the same `, relative to the full Lk,
ensuring that the system has the same signal-to-noise prop-
erties as the full resolution system.
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