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Abstract

Life expectancies at birth are usually computed from period life tables, i.e. on the basis of mortality
in a particular calendar year. Over the last century, there has been a worldwide decline in mortality
rates at most ages leading to an increase of the life expectancy. But comparing countries based on
the life expectancy from period life tables may ignore different historical mortality developments in
those countries and therefore lead to a wrong conclusion. Consequently, instead of comparing life
expectancy for countries based on period life tables, it may be more appropriate do such comparison
based on life expectancy from cohort life tables. Since cohort life expectancies can only be obtained for
older cohorts i.e. those born more than a hundred years ago, in this thesis we suggest that for younger
cohorts one may consider the expected number of years lost up to a given age. When we consider life
expectancy based on period mortality, one finds that since the 80’s, women in Spain and Italy have
had higher life expectancy than those in Norway and Sweden. However, if we consider the expected
number of years lost for different cohorts in Spain, Italy, Norway and Sweden, we observe that women
in Scandinavia are still expected to lose fewer years, i.e. live longer, than those in the Mediterranean.
The results indicated by period data may be due to a selection effect and may therefore be an artifact.
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CHAPTER 1

INTRODUCTION

According to data from Statistics Norway, life expectancy at birth for Norwegian and Swedish women in
2017 was respectively 84.3 years and 84.1 years, while in Italy and Spain it was respectively 85.2 years and
86.1 years. But about 60 years earlier (in 1960), women in Scandinavia had higher life expectancy than
women in the Mediterranean ( Norway 76.0 years, Sweden 74.9 years, Italy 72.3 years and Spain 72.2
years). Thus, there has been a major change in life expectancy at birth over the last fifty years. (Sønstebø
2019)

Life expectancies at birth are usually computed from period life tables, ie. on the basis of mortality in a
particular calendar year. When there are major changes in mortality, and these changes occur at different
times in different countries, life expectancy calculated based on period life tables can give a misleading
picture of life expectancy in different countries. It would then be better to calculate life expectancy based
on a cohort, ie. from the mortality rates of persons who were born in the same year. However, a problem
with the latter approach is that one cannot find the life expectancy of a cohort until the entire cohort has
died out. A partial solution is to compute the expected number of years lost for the cohorts up to given
ages. (Borgan and Keilman 2019)

As a cohort of people ages, the individuals at highest risk tend to die first. This differential selection
can produce patterns of mortality for the population as a whole that are surprisingly different from the
patterns for sub-populations or individuals. This can be illustrated by the use of frailty models. (Aalen,
Borgan, and Gjessing 2008)

The data we will use are from the Human Mortality Database (HMD) which contains a wealth of
information about detailed mortality and population data for about 40 countries. The input data consist
of death counts from vital statistics, plus census counts, birth counts, and population estimates from
various sources. Detailed information about mortality rates for different countries can reveal information
about changes in life expectancy.

This thesis is organized into five main chapters. We will start in the second chapter by considering
some basic concepts and results in survival analysis and also consider parametric inference for survival
data. The third chapter contains information about Lexis diagram and how it is constructed. And then
we will see how life line, age, period and cohort data are visualize in a Lexis diagram. We will define
mortality rate and show how the exposure and the number of deaths are computed from the Lexis triangles.
These are then used to compute the mortality hazard for period data and cohort data for Norwegian
females from the calendar year 1900 to the calendar year 2014. We will plot the period mortality rates for
Norwegian females during five different periods and similarly for the cohort mortality rates. We define
and compute the life expectancy. We then plot the life expectancy at birth for period data. We also plot
the life expectancy up to age a first as a function of cohort and then as a function age for different choices
of a for Norwegian females. We end the second section by computing and plotting the expected number
of years lost up to a certain age a for different cohorts of Norwegian females.

In the fourth chapter we compare the mortality for two countries in the Mediterranean and two
countries in Scandinavia. We begin by computing and plotting the mortality rates for Italy, Spain, Norway
and Sweden.To have uniform data sets for the four countries we choose to look at developments from
the calendar year 1910 to the calendar year 2014.The ages varies between 0 and 110 years. We then
compare the evolution of mortality in those countries over the years. The mortality rates are again use to
compute and plot the period life expectancy for the years 1920, 1950, 1980 and 2014. We also compute
the expected number of years lost where we first fix the age and consider the expected number of years
lost as a function of cohort and then we fix the cohort and look at the expected number of years lost as a
function of age.

The fifth chapter of the thesis focuses mainly on the frailty model. In the sixth chapter, we use the
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1. INTRODUCTION

two-points frailty distribution with a baseline death intensity of the Gompertz-Makeham form to illustrate
the difference between Scandinavia and the Mediterranean and discuss a possible explanation of why
period data and cohort data may lead to different results.
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CHAPTER 2

SURVIVAL ANALYSIS BACKGROUND

The term survival data is commonly used to denote data that measure the time to some event. In this
thesis, the event is death. The term is also used with other events, like the time to failure of a component
in an unit, the occurrence of a disease or a complication. Usually to have an equal footing among the
individuals, the time origin must be specified. e.g. the date of birth or the time point of diagnosis of a
type of cancer. Survival data are generally described and modelled in terms of two related quantities,
namely survival and hazard. (Clark et al. 2003)

In the following we will consider some basic concepts and results in the survival analysis set-up and
also consider parametric inference for survival data taken from lecture notes in life history analysis by
Borgan (1990).

2.1 Basic concept and results

We consider a survival time, i.e. positive random variable T with cumulative distribution function (c.d.f)
F (t) = P (T ≤ t), and the probability density function (p.d.f) f(t) = F ′(t). We usually consider the
survival distribution

S(t) = 1− F (t) = P (T > t) (2.1)
instead of the distribution function itself. Furthermore, we introduce the death intensity, or the hazard,
defined as

µ(t) = f(t)/S(t) (2.2)
To get an alternative, and more directly interpretable expression for µ(t), note that

P (t < T ≤ t+ ∆t|T > t) = [S(t)− S(t+ ∆t)]/S(t).
Hence using (2.1) and (2.2), we get

µ(t) = −S′(t)/S(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)/∆t (2.3)

This shows that for small values of ∆t, µ(t)∆t equals approximately the probability of dying in (t+ ∆t]
for an individual who is still alive at age t. In this respect µ(·) measures the instantaneous risk of dying.
To express the survival distribution and the density in terms of the death intensity, we see that (2.3) yields

µ(t) = − d

dt
lnS(t)

The well known formula

S(t) = e
−
∫ t

0
µ(v)dv (2.4)

results. Differentiating (2.4) we get

f(t) = µ(t)e−
∫ t

0
µ(v)dv (2.5)

The expected life length (life expectancy at birth) is given by

E[T ] =
∫ ω

0
tf(t)dt, (2.6)

3



2. SURVIVAL ANALYSIS BACKGROUND

where ω is the highest possible age. Integrating by parts, and making use of the fact that −f(t) is the
derivative of S(t), which has limits or boundary conditions S(0) = 1 and S(ω) = 0 , one can show that:

E[T ] =
∫ ω

o

S(t)dt (2.7)

In words, the expected life length is simply the integral of the survival function. We will also be interested
in the expected number of years lived up to a given age a. We introduce therefore :

Ta = min(T, a)

and find that the expected number of years lived up to age a is :

E[Ta] =
∫ a

0
tf(t)dt+ aP (T > a) =

∫ a

0
S(t)dt

Finally we will also look at the expected number of years lost up to age a . It is given as :

a− E[Ta] (2.8)

2.2 Piece-wise constant mortality

In this section we will look specially at the situation where mortality is constant over one year intervals.
We suppose that mortality can be given by:

µ(t) =
ω−1∑
j=0

µjIj(t) (2.9)

where ω is the highest possible age and

Ij(t) =
{

1 for j ≤ t < j + 1
0 otherwise;

For k ≤ t < k + 1 ≤ ω the survival function can be given as :

S(t) = exp(−
∫ t

0
S(u)du) = exp (

k−1∑
j=0

µj − (t− k)µk) (2.10)

The expected life length becomes

E[T ] =
∫ ω

0
S(t)dt =

ω−1∑
k=0

∫ k+1

k

S(t)dt

=
ω−1∑
k=0

∫ k+1

k

exp (−
k−1∑
j=0

µj − (t− k)µk)dt

=
ω−1∑
k=0

exp (−
k−1∑
j=0

µj) exp(kµk)
∫ k+1

k

exp (−tµk)dt

=
ω−1∑
k=0

exp (−
k−1∑
j=0

µj) exp (kµk) 1
µk

[− exp ((k + 1)µk) + exp (−kµk)]

=
ω−1∑
k=0

exp (−
k−1∑
j=0

µj)
1
µk

(1− exp (−µk))

When a is an integer we also find that
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2.3. Maximum likelihood estimation

E[Ta] =
∫ a

0
S(t)dt =

a−1∑
k=0

∫ k+1

k

S(t)dt

=
a−1∑
k=0

exp (−
k−1∑
j=0

µj)
1
µk

(1− exp (−µk))

2.3 Maximum likelihood estimation

Suppose we have a population with n individuals and that we observe the individual i from the age Vi to
the age Ti. Here Ti corresponds to the time of death or censoring. Let δi = 1 if Ti corresponds to the
time of death and δi = 0 if it corresponds to censoring. We suppose that the hazard µ(t) is dependent on
a vector of parameters θ = (θ1, θ2, . . . , θp)T and write µ(t) = µ(t; θ). We want to derive the maximum
likelihood estimator (ML-estimator) for θ. The likelihood corresponding to individual i is given as :

Λi(θ) = µ(Ti; θ)δi exp (−
∫ Ti

Vi

µ(u,θ)du) (2.11)

and the total likelihood is

Λi(θ) =
n∏
i=1

µ(Ti; θ)δi exp (−
∫ Ti

Vi

µ(u,θ)du) (2.12)

The ML-estimator θ̂ for θ is the value of θ which maximizes (2.11), or equivalently maximizes

ln Λ(θ) =
n∑
i=1

δi lnµ(Ti; θ)−
n∑
i=1

∫ Ti

Vi

µ(u; θ)du (2.13)

Now θ̂ is found by solving the set of equations

∂ ln Λ(θ)
∂θj

= 0 j = 1, ..., p;

and checking that the solution of these equations yields a maximum of (2.13).
We then suppose that the mortality hazard is piece-wise constant over one year intervals as in (2.9),

here we have θ = (µ0, µ1, . . . , µω−1) . The part of the likelihood corresponding to individual i may now
be written as

Λi = Λi(θ) = µ(Ti; θ)δi exp(−
∫ Ti

Vi

µ(u; θ)du)

= µDi0
1 µDi1

2 µDi2
2 ...µ

Di(w−1)
w−1 exp(−

w−1∑
k=0

Tikµk),

where

Dik =
{

1 for k ≤ Ti < k + 1, δi = 1;
0 otherwise;

Tik =


0 if Vi > k + 1 or Ti < k,

k + 1− Vi if k ≤ Vi < k + 1 ≤ Ti,
Ti − Vi if k ≤ Vi < Ti ≤ k + 1,
Ti − k if Vi < k ≤ Ti < k + 1,

1 if Vi < k and Ti ≥ k + i;

We see that Dik is the number of times we observe a death for the ith individual in [k, k + 1), while Tik is
the total time the ith individual is observed to live in this interval.

Now the total likelihood is:
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2. SURVIVAL ANALYSIS BACKGROUND

Λ =
n∏
i=1

Λi =
n∏
i=1

[
ω−1∏
k=0

(µDik

k ) exp (−
ω−1∑
k=0

Tikµk)] =
ω−1∏
k=0

(µDk

k ) exp(−
ω−1∑
k=0

Rkµk),

where Dk =
n∑
i=1

Dik is the observed number of deaths in [k, k + 1), and Rk =
n∑
i=1

Tik is the total exposure

in this interval.
Thus we have

ln Λ =
ω−1∑
k=0

Dk lnµk −
ω−1∑
k=0

Rkµk,

and we find that

∂ ln Λ
∂µk

= Dk

µk
−Rk.

It follows that the ML-estimator for µk is

µ̂k = Dk

Rk
(2.14)

i.e an occurrence/exposure rate.
These concepts and results in the survival analysis and parametric inference for survival data that

are presented in this chapter will be used through out the rest of the thesis. In the next chapter, we will
introduce the Lexis diagram and show how the mortality rates are computed from the Lexis diagram.
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CHAPTER 3

COHORT AND PERIOD DATA

3.1 Data description

Our analysis are based on data from the Human Mortality Database (HMD, Last modified: 26 Sep 2017),
which are freely accessible at http:// www.mortality.org. The HMD contains aggregate mortality statistics
such as death counts, population estimates, exposure to risk estimates, life tables as well as some other
statistics. Input data files for more than 35 countries, are accessible from each country page. In the HMD,
every country is identified by a specific code. For example "NOR" identifies the national population of
Norway . We used " Deaths by Lexis triangles " and " Exposure-to-risk by Lexis triangles " as describe
later in connection with figures 3.8 and 3.10.

At the time of writing, the following periods, age and cohorts were available for Norway: For the
period data we have information for all periods, from the calendar year 1846 to the calendar year 2014
and the age varying between 0 and 110+. For the cohort data we have information for all ages until the
age of the cohort in 2014.(e.g for the cohort born in 1960 we have information up to the age of 54.)

3.2 Construction of the Lexis diagram

Any dynamics such as births and deaths involve change over calendar time, age, and/or cohort. Those
dynamics can be visualized with the help of the Lexis diagram, named after the German statistician,
economist, and social scientist Wilhelm Lexis (1837-1914). For a review of Lexis diagram, see e.g.
Carstensen (2007).

The lexis diagram consist of a Cartesian coordinate system where the calendar time ("period") is
depicted on the x-axis and age on the y-axis. Every demographic event can therefore be located based on
the time and age. However, the Lexis diagram can not be resume to a Cartesian diagram because of two
characteristics (Vandeschrick 2001):

- The Lexis diagram has two axes but allows the use of three separate coordinates.

- Moreover, on the Lexis diagram each individual under observation belong to a forced trajectory
from which he can not escape, namely his ’Life line’.

The life line is a specificity of Lexis diagram and it is essential for defining cohort. Generally events that
are observed on a Lexis diagram can be classified according to three coordinates. For example death will
have:

- The date of death (time designated by T),

- The age of the person at the time of death (age designated by A),

- and the moment of birth of the person (designated by M).

On the Figure 3.1 we have a lexis grid from year 1990 to year 1995, representing the age 0 to 5. The
units on those axes are identical. The moment of birth for each individual correspond to the age of
exactly 0 year. The diagram is divided into 1 x 1 cells (i.e one year of age by one year of time). A simple
mathematical relationship connects the three variables time, age and time of birth : A = T - M. Since
these three variables are expressed in the same unit (year), all the life lines will have the same slope,
drawing a 45 degrees angle with the time of birth axis.

Figure 3.2 is a Lexis diagram with the straight red lines representing "life line". As we can observe,
the line begins on the time axis at the person’s birth. The line is continuous and the ends point represent

7



3. COHORT AND PERIOD DATA

Figure 3.1: Lexis grid

(a) (b)

Figure 3.2: Lexis diagram with life line

the person’s death. So in the figure on the left we have a person born the 23 of September 1991 and died
on the 11 of June 1994. On the right we have the representation of a person born the 23th of September
1991 and still alive at the end of 1994. If we add together all the life line lengths in a particular portion of
the Lexis diagram, we will obtain the person-years lived or exposure in that area.

A cohort can be defined as a group of persons who experience an event at the same time. On Figure 3.3
we have a Lexis diagram presenting a cohort of persons born in the year 1990 and lived until the end
of 1994. The Lexis diagram can present a cohort through their life experience or a cohort in a specific
interval.

Many demographic investigations are conducted on period data. On Figure 3.4 we have the age group
from 0 year to 5 years during the year 1992, i.e population during year 1992. Finally, on Figure 3.4 we
have highlighted all points that belong to the age of 2 years.

In summary, demographers use the term "diagram" to refer to their graphical representation of the data
rather than "graph". On the Lexis diagram, the x-axis and the y-axis usually support the calendar time
and the age respectively. On this diagram it is possible to identify events according to two coordinates on
the axes such as it is the case in any type of Cartesian diagram, but the Lexis diagram has the specificity
of having a third coordinate, the moment of birth. (Wilmoth et al. 2007)

8



3.3. Mortality rate

Figure 3.3: Cohort from 1990

Figure 3.4: Lexis diagram with year 1992

3.3 Mortality rate

One way of understanding population change is to measure and analyse its components. Demographers
therefore measure events in terms of rates. A mortality rate µ̂ can be defined as the ratio of the number
of deaths (D) in a specified time period by the exposure (i.e person-years) during the period (R):

µ̂ = D

R
(3.1)

As shown previously in (2.14), this is the maximum likelihood estimate of the mortality hazard. We will
first look at how the mortality rate is computed in the case of period data and then the cohort data.

3.3.1 Period data

An individual age x, where x is an integer, has an exact age within the interval [x, x+ 1). This concept is
called "last birthday". Similarly an event that occurs in year t occurs during the calendar time interval
[t, t+ 1). The same apply to the exposure to risk of dying. The person-years age x in year t refers to all
person-years lived in the age interval [x, x+ 1) during calendar time [t, t+ 1). We assume that mortality
hazard is constant over each one-year age interval and calendar year (period) and denote its value for age
x and year t by µx,t see figure 3.7. The mortality hazard may be estimated by:

9



3. COHORT AND PERIOD DATA

Figure 3.5: Lexis diagram with age group 2

Figure 3.6: Summary of Lexis with age, year and cohort

µ̂x,t = Dx,t

Rx,t
(3.2)

where Dx,t is the number of deaths at age x in year t and Rx,t the exposure (i.e person-years) at age x in
year t.

If the coordinates of all life-lines are known, then the exposure Rx,t can be calculated precisely by
adding up the length of each line segment within the cell. The actual length of each segment must be
divided by

√
2, since life-lines are 45◦ from the age or time axes. However in studies of large national

populations we do not need to make calculations to obtain Dx,t and Rx,t because they may be obtained
from the Human Mortality Database (HMD). More specifically, what may be obtained from the HMD are
the number of deaths and the exposures (i.e person years) for the triangles in lexis diagram. We denote
by D(l)

x,t and D
(u)
x,t the number of deaths in the lower and upper triangles for age x in year t, see figure 3.8

and let R(l)
x,t and R

(u)
x,t be the corresponding exposures.

In order to compute the mortality rate (3.1) for the period data, we then add up the upper (blue) and
the lower (yellow) Lexis triangle of the same cell. See figure 3.8. This gives

Dx,t = D
(u)
x,t +D

(l)
x,t (3.3)

and similar for the exposure:
Rx,t = R

(u)
x,t +R

(l)
x,t (3.4)

10



3.4. Plots of mortality rate

x

x+ 1

t t+ 1

µx,t

Figure 3.7: Mortality hazard for age x and
year t.

x

x+ 1

t t+ 1

D
(l)
x,t

D
(u)
x,t

Figure 3.8: lower and upper triangle.

3.3.2 Cohort data

For cohort data we assume constant mortality hazard in the parallelogram in figure 3.9 and denote its
value for cohort c in age x by µx,c. In this case, we add together the deaths in the yellow and green
triangles of figure 3.10 to obtain the number of deaths at age x for the cohort born in year c. The cohort
death rates is then estimated by:

µ̂x,c = Dx,c

Rx,c
(3.5)

where
Dx,c = D

(l)
x,c+x +D

(u)
x,c+x+1 (3.6)

and similar for the exposure:
Rx,c = T

(l)
x,c+x +R

(u)
x,c+x+1 (3.7)

3.4 Plots of mortality rate

The graph in figure 3.11 presents the mortality rates for Norwegian females at each age for period data
during the years 1900, 1930, 1960, 1990 and 2014. The mortality rates are presented here on logarithmic
scale "per 1000" person years. We can observe that the mortality rates are quite high just after birth and
the first year of life. But the overall trend is that after this the rates of dying fall gradually, attaining
minimum risk at age 5 for the year 2014 (graph in blue) and 15 for the year 1900 (graph in red). Then
the risk starts increasing in adolescence, we can observed an exponential rise from one age year to the
next. From the age 100 and above, it may be difficult to have an accurate estimation because of the very
low number of persons alive and therefore low number of deaths.

The graph in figure 3.12 presents the mortality rates for females at each age for cohort data for the
cohorts born in 1900, 1920, 1940, 1960 and 1980 in Norway. As for the period data, we can observe here
that the risk of dying is quite high immediately after birth but falls considerably reaching a minimum risk
around 10 year for the cohort 1980 (graph in blue) and 15 for the cohort 1900 (graph in red). Between
the age 18 and 43 we can observe some small fluctuations without any significant increase or decrease of
the risk of dying. Around age 50 we can observe an exponential rise from one year to the next of the risk
of dying. We also observe that the cohorts 1960 (graph in gold) and 1980 (graph in blue) stop at ages 54
and 34 respectively. That is due to the fact that we don’t have data after that age for these cohorts. As
seen in graphs in figures 3.11 and 3.12 we can conclude that there is a continuous decrease of the risk of
dying from year to year for all age groups. This mortality decline could be a result of an improvement of
healthy lifestyle and diet during the past years and the development of new drugs and techniques in the
medical field.

3.5 Life expectancy

Life expectancy in any given year can be defined as the average number of years a person born in that
year is expected to live if mortality rates at each age were to remain the same in the future. The life
expectancy can be shown separately for males and females, as well as a combined figure. In figures 3.13
and 3.14 we focus on Norwegian females. Life expectancy can be used as a measure or indicator of the
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quality of healthcare in a country, an ongoing war, or a pandemic. Figure 3.13 shows the evolution of the
life expectancy at birth for Norwegian females in the period 1900-2014. In 1900, life expectancy was 55.09
years and 84.09 years for 2014. We observe that life expectancy has increased more or less continuously
over the years, but in 1918 we can see a clear interruption due to the Spanish flu pandemic. It went from
59.05 years two years earlier (1916) to 52.03 years in 1918, that is a loss of about 7 years in life expectancy
in a very short period of time. We also observe a little fluctuation from year to year during the period
1900-1916 and a small decrease during the world wars.

Figure 3.14 shows the life expectancy up to a certain age a for different choices of a for cohorts of
Norwegian females. In this case we fix the age a and consider life expectancy as a function of the cohort
c. The cohorts vary between 1900 and 2010. The life expectancy up to 100 years for the cohort born in
1900 was 62.43 years and 69.93 years for the cohort born in 1915. That is an increase of 7.05 years. The
evolution for that age group can be observed on the plot in red. The life expectancy up to 80 years for the
cohort born in 1920 was 68.35 years and 71.97 years for the cohort born in 1935. Between 1920 and 1935
we observe an increase of 3.62 years (magenta line). The increase of life expectancy for age 100 and 80
and their various cohorts is due to the drop in mortality we saw in figure 3.12. For the age 60 and cohorts
born in 1940, 1950 and 1955, we obtain respectively 55.95 years, 57.54 years and 57.94 years. That can
been observed on the green line. On the line in gold, with age 40 and cohorts 1960, 1970 and 1975, we
obtain respectively 39,06 years, 39,36 years and 39,42 years. For the, age 20 and cohorts 1980, 1990 and
1995 we obtain respectively 19.82 years, 19.85 years and 19.90 years (blue line). The life expectancy up
the ages 60, 40 and 20 and their various cohorts have a small increase. Most of the individual in those
different cohorts are still alive while the individuals for the cohort 1900, 1920 and 1935 are all death or
almost all death.

100 years is the maximum age, that means we will need 100 years of data for each cohort between 1900
and 2010. But that is not possible since very few cohorts have 100 years of data. To avoid this problem
we have above used the "partial" life expectancy, that i.e we take the number of years lived up to a certain
age a (e.g. 100, 80, 60, 40, 20 . . . ).
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Figure 3.11: Period mortality rate for Norwegian females.

If there had been no mortality, the partial life expectancy up to age a would have been equal to a
years. When there is mortality, the difference between age a and the partial life expectancy up to age a is
called the expected number of years lost up to age a:

a− E[Ta]

On the figures 3.16 and 3.17 we have the plots of the expected number of years lost up to age a, first
as a function of cohort for given age and then as a function of age for given cohorts for Norwegian women.
We can observe on the figures that for all ages the number of years lost is lower for the more recent cohorts
than the earlier ones. In the next chapter, we will apply the same methodology to some countries in
Scandinavia and in the Mediterranean and compare the evolution of life expectancy in those two regions.
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Figure 3.12: Cohort mortality rate for Norwegian females.

Figure 3.13: Life expectancy at birth for Norwegian females, period data.
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Figure 3.14: Life expectancy up to age a as a function of cohort for different choices of a for Norwegian
females.
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Figure 3.15: Life expectancy up to age a as a function of a for different cohorts of Norwegian females.
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Figure 3.16: Expected number of years lost up to age a as a function of cohort for different choices of a
for Norwegian females.

Figure 3.17: Expected number of years lost up to age a as a function of a for different cohorts of Norwegian
females.
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CHAPTER 4

COMPARING THE COUNTRIES

In this chapter, we want to compare four countries: Italy, Spain, Sweden and Norway. That is two
countries from the Mediterranean and two countries from Scandinavia. The availability of the data in the
Human Mortality database varies for these countries. The mortality series are as follow: in Norway we
have data for 1846-2014, Sweden 1751-2017, Italy 1872-2014 and Spain 1908-2016. To have uniform data
sets for the four countries we choose to look at developments from the calendar year 1910 (since mortality
data for Spain are available only from the year 1908) to the calendar year 2014 (since Norway and Italy
have mortality data until only 2014). The ages varies between 0 and 110 years.

4.1 Period data

4.1.1 Period Mortality

Over the last century, countries across the Mediterranean and Scandinavia have seen a lot of variation
in mortality. In this section we will see how the period mortality has change during the years. The
visualization from figure 4.1 to figure 4.4 shows the evolution of the period mortality rates in Italy, Spain,
Sweden and Norway during the years 1920, 1950, 1980 and 2014. For all four countries, we can observe
that the mortality rate is generally very high from birth but decrease drastically and attain a minimum
level around age 10. During the adolescence until around the age of 30, we can observe a stagnation of
the mortality. From age 35 years and beyond, we observe an exponential increase of mortality. We also
note that for all ages the mortality has decreased over time. (Note that the scale of the y-axis differs from
figure 4.1 to figure 4.4).

Spain (plotted in green on the figures) has the highest mortality in 1920 and 1950, followed by Italy.
Figures (4.1 and 4.2) Sweden and Norway have the lowest mortality and their plots almost overlap during
the period 1920. We also observe a high variation of mortality in Spain during that period.

In the ages 0-55 years there is a gap between the four countries, but after that we observe that Italy
and Spain catch up Sweden and Norway, having almost the same mortality. Approaching the age 80, we
can see on figures 4.1 and 4.2 that Spain has the lowest mortality rate in 1920 and 1950.

Figure 4.3 shows that during the calendar year 1980 the mortality is very low for all the four countries,
Norway (plotted in blue) has the lowest mortality and reaches the lowest level at age 10 on figure 4.3.

Figure 4.4 shows that there is no major difference of mortality between the four countries during the
period 2014. We observe small jumps between ages 0-40 years for all four countries. This is due to the use
of logarithmic scale on the y-axis and a very low mortality for the low ages. We observe here that the
mortality in Spain and Italy is slightly lower than the mortality in Sweden and Norway around the age 45
and upward.

We can conclude that the trend over the years remains almost the same for Sweden and Norway on
one side and for Spain and Italy on the other side. The mortality in the earlier period was higher in Spain
and Italy than in Sweden and Norway, but from the 80s as figure 4.3 illustrates, the gap has gradually
reduced as Spain and Italy have surpassed Sweden and Norway as we can observe in figure 4.4.

4.1.2 Period life expectancy

The life expectancy for the period data are based on the period mortality as we have shown in the figures
4.1 to figure 4.4 for the years 1920, 1950, 1980 and 2014.

Figure 4.5 shows the period life expectancy at birth for Italy, Spain, Sweden and Norway from the
calendar year 1910 to the calendar year 2014. We observe a sudden decrease of life expectancy for all the
four countries around the period year 1918. This sudden decrease could be the result of the influenza
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Figure 4.1: Period mortality rate for 1920 for all countries.

pandemic of 1918-1919 also known as the Spanish flu. The outbreak of this influenza virus, spread with
astonishing speed around the world, killing millions of people. That may be why the effect is visible in all
the four countries. The plots show that during that period Italy and Spain had the lowest life expectancy
around 26 and 28 years respectively, while during the same period Sweden and Norway had about the
same life expectancy around 52 years. Between the two groups we can notice a very big difference of life
expectancy, about 24 years. We also observe a little drop in life expectancy around the calendar years
1938 and 1943 in Spain and Italy respectively, but this time Sweden and Norway remain stable. This
is probably the result of the Spanish civil war and the world war II. Apart from the irregular pattern
observed in 1918 for all the four countries and during 1938-1943 for Spain and Italy, we observe an
increasing trend in life expectancy for all the four countries. The gap between the two groups, Sweden
and Norway on one side and Spain and Italy on the other keeps decreasing over time. In the latter four
decades of the century, life expectancy improvements resulted from mortality reductions for younger ages
and those over age 45. Notice that life expectancy in the 80s is almost the same for all the four countries
and beyond that we can observe that women in Spain and Italy seem to have a longer life expectancy
than women in Sweden and Norway. For the period 2014 the life expectancy at birth for women in Spain
was 85.62 years, 85.17 years in Italy, 84.09 years in Norway and 84.05 years in Sweden. Thus, women
in the Mediterranean are expected to live about one and a half year longer than those in Scandinavia.
Progress in the treatment of cardiovascular disease and some forms of cancer on the one hand, and on the
other the progress made in the prevention of certain "man-made" diseases, such at alcoholism, smoking or
accidents, have made the life expectancy increase rapidly in the Mediterranean. (Vallin and Meslé 2004)

4.2 Cohort data

In order to have complete information on a cohort, it has to be observed from birth to extinction (i.e., the
date by which all cohort members are assumed to have died). However, for our data this is only the case
for the cohorts born around 1910. For the younger cohorts, we only have mortality information up to the
age of the cohort in 2014.
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4.2. Cohort data

4.2.1 Cohort mortality

Figure 4.6 shows the mortality rates of the cohorts born in 1910. We can observe that mortality gradually
decrease for all the countries and reaches a minimum level around 12 years. Between the ages 0-8, we can
see that Spain has the highest mortality, followed by Italy while the mortality in Sweden and Norway
are almost the same. We observe a reduction in mortality from the age 15 until the age 50 for all those
countries. This is most likely caused by increased living standard. From age 50 mortality starts to increase
gradually and the gap between the countries decreases. On figure 4.6 we can observed that the mortality
from age 70 is almost the same in all the four countries.

The mortality for the cohort born in 1930 is shown in figure 4.7. We can observe that there is a clear
difference of mortality between the four countries from the age 5 years until the age 40 years. This is
contrary to the cohort 1910 where the mortality in Sweden overlaps with Norway and the mortality in
Spain with the one in Italy. Spain and Italy have the highest mortality up to ages 50-60 years, but it is
the contrary for older ages.

Figure 4.8 shows that Norway (blue line) has the lowest level of mortality for the cohort 1950 with
the minimum around the ages 10 years and 24 years. We also observe an unstable development in
the Norwegian mortality with a lot of jumps from age 10 years to age 50 years. Her also the unstable
development could be due to the very low mortality and the logarithmic scale. We also have low mortality
in Sweden and Norway up to around 50 years, but we observe the contrary beyond that.

Figure 4.9 shows a decrease of the mortality for all the countries, reaching minimum mortality at age
12 years for Norway and 14 years for Sweden. Sweden and Norway show an increase from the minimum
to a plateau for young adults. From age 15 to age 45, we can observe a quite stable and low variation of
mortality for all the countries, forming a plateau.

We can conclude that the gap of mortality is bigger in the earlier age groups for cohort data than
in period data. We also observed a slower decrease of mortality among the younger in the cohort data
than in the period data. In the case of cohort, we can observe a smaller concentration of mortality in the
earlier ages than in the older ages group. While Sweden and Norway have the lowest mortality in the
younger ages, we observe the contrary for the aged.

Figure 4.2: Period mortality rate for 1950 for all countries.
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Figure 4.3: Period mortality rate for all countries.

4.2.2 Expected number of years lost for cohorts

In this section, we want to look at the expected number of year lost for cohort data. In order to compute
the cohort life expectancy accurately, we need the complete mortality history of a cohort, and this is only
possible for older cohorts that were born more than 100 years ago. For younger cohorts, we are not able
to compute the cohort life expectancy. In this thesis, we therefore suggest that one may instead consider
the expected number of years lost for a cohort up to a given age. (Andersen 2013) Then, by computing
the expected number of years lost for a number of cohorts, one will obtain a good picture of the longevity
in a country that is only based on the available data for the cohorts.

Figures 4.10 - 4.15 show the expected number of years lost up to the ages 90, 80, 70, 60, 50 and 40
in Spain, Italy, Sweden and Norway. The scales on the y-axis are adjusted in order to have a better
visualization of the four countries. The expected number of years lost up to 90 years, figure 4.10, shows
that Spanish (green plot) and Italian (red plot) women have lost more years of life than Swedish (orange
plot) or Norwegian (blue plot). We can observe some little variations in Italy and Spain for the cohort
1919 and 1920 respectively.

The expected number of years lost up to age 80 in figure 4.11, have almost the same trend as in figure
4.10. Sweden and Norway remain close to each other but the gap between them and Spain and Italy is
still very high. Here also we observe a little jump around the cohort 1930 but only in Spain.

Figure 4.12 shows the expected number of years lost up to age 70. We observe that the gap between
all the countries is larger for 70 years than for 80 years. Women in Sweden and Norway lose fewer years
than women in Spain and Italy.

On figures 4.14 and 4.13, we can observe that the expected number of years lost decreases with time
for all the cohorts. But it seems to decrease faster in Spain and Italy than in Sweden and Norway. We
can also observe an increase of variation for all the countries.

Figure 4.15 shows the plots of the expected number of years lost up to the age 50 for the four countries.
Around the 70s we can see that Spain and Italy have gained about 12 and 14 years respectively but
Sweden and Norway still have the lowest expected number of years lost.

Figures 4.16 - 4.19 show the expected number of years lost but this time we fix the cohort and look at
the expected number of years lost as a function of age. The lines on these figures slope upwards to the
right. As the cohort increases, the expected number of years lost decreases.

The gap between Spain and Italy on one side and Sweden and Norway on the other side has been
considerably reduced as we can observe in figure 4.19. But for all cohorts and ages, women in Spain and
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Figure 4.4: Period mortality rate for 2014 for all countries.

Italy may expect to loose more years than women in Sweden and Norway.

4.3 Summary of the chapter

The plots of our estimates suggest that during the 20th century, mortality rates have declined quite rapidly
in the Mediterranean and the Scandinavian countries. We saw that mortality was highly concentrated
among the younger and the aged in all those countries. Despite the fact that mortality was very high for
all those countries, there was a huge gap between the two regions and that gap has continuously decreased
over time. The steady reduction of mortality over the years leads to an improvement of live expectancy.
The period data suggested that from the first decade of the 20th century to the 80s, women lived longer
in Sweden and Norway than in Spain and Italy. But after the 80s we observed that women in Spain and
Italy seemed to have caught up and even passed Sweden and Norway, having the higher life expectancy.
But looking at the cohort data we can see a different picture. In fact the figures of the expected number
of year lost tells us that women in Norway and Sweden are still expected to lose fewer years than those in
Spain and Italy. In the next chapters we will look at a possible explanation of the conflicting results for
period and cohort data.
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Figure 4.5: Period life expectancy for all the countries.

Figure 4.6: Cohort mortality rate for cohort born in 1910 for all countries.
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Figure 4.7: Cohort mortality rate for cohort born in 1930 for all countries.

Figure 4.8: Cohort mortality rate for cohort born in 1950 for all countries.
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Figure 4.9: Cohort mortality rate for cohort born in 1970 for all countries.

Figure 4.10: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.
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Figure 4.11: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.

Figure 4.12: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.
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Figure 4.13: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.

Figure 4.14: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.
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Figure 4.15: Number of years lost. Here we fix the age and consider the expected number of years lost as
a function of cohort.

Figure 4.16: Number of years lost. Here we fix the cohort and look at the expected number of years lost
as a function of age.
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Figure 4.17: Number of years lost. Here we fix the cohort and look at the expected number of years lost
as a function of age.

Figure 4.18: Number of years lost. Here we fix the cohort and look at the expected number of years lost
as a function of age.
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Figure 4.19: Number of years lost. Here we fix the cohort and look at the expected number of years lost
as a function of age.
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CHAPTER 5

FRAILTY MODELS

A frailty model is a random effects model for life times where the random effect (the frailty) has a
multiplicative effect on the death intensity. It can be used to describe the influence of unobserved
heterogeneity in a population. In a frailty model one has to distinguish between the individual death
intensity and the population death intensity, where the individual death intensity refers to a single
individual. Here the mortality varies among the individuals or groups of individuals due to specification
of frailty for each groups. An individual with a frailty of 1 might be called a "standard" individual. As
one may see from formula (5.2) below, if a standard individual has a 50 percent chance of surviving to
some age, an individual with a frailty of 2 will have (0.50)2 = 0.25, i.e 25 percent chance of surviving to
this age, and an individual with frailty of 1/2 on the other hand will have (0.50)1/2 = 0.71, i.e 71 percent
chance of surviving to this age.

5.1 The frailty model

As in chapter 2, let the positive random variable T be the life time of an individual with corresponding
c.d.f F (t) = P (T ≤ t) and p.d.f f(t) = F ′(t). Then the survival distribution is written as,

S(t) = 1− F (t) = P (T > t)

and the instantaneous death rate or the hazard rate as,

µ(t) = f(t)/S(t)

To get an alternative, and more directly interpretable expression for µ(t), note that

P (t < T ≤ t+ ∆t|T > t) = [S(t)− S(t+ ∆t)]/S(t).

Hence using the survival distribution and the death intensity, we get

µ(t) = −S′(t)/S(t) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)/∆t

So far we have assumed that the death intensity is the same for each individual. Now we will allow the
death intensity to vary between individuals.

We assume that the death intensity of an individual is given as the product of an individual specific
quantity Z and a basic rate α0(t):

α(t|Z) = Z · α0(t) (5.1)

Here Z is considered as a random variable over the population of individuals, specifying the level of frailty.
The frailty Z captures heterogeneity in the population. Z and α0(t) are unobservable. What may be
observed in a population is not the individual death intensity, but the death intensity for the population.
Frailties can therefore describe situations where what is observed on a population level may differ from
what goes on at the individual level. The definition of the frailty assumes that in the population each
individual comes to life with specific level of frailty and stays at this level all his or her life.
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5.2 The population survival function and death intensity

Given the frailty model of one individual (5.1), we have the individual survival function:

S(t|Z) = P (T > t|Z) = exp(−Z ·A0(t)) (5.2)

where A0(t) =
∫ t

0 α0(u)du. The population survival function is found by integrating over the distribution
of Z, that is,

S(t) = P (T > t) = E[I(T > t)]
= EE[I(T > t)|Z]
= E[P (T > t)|Z)]
= E[S(t|Z)]
= E[exp(−Z ·A0(t))]

Let MZ(t) be the moment generating function of Z:

MZ(t) = E[exp(tZ)]
The Laplace transform is related to the moment generating function, and for a positive random variables
Z with density g(z) it is given by:

LZ(t) = MZ(−t) = E[exp(−tZ)] =
∫ ∞

0
exp(−tz)g(z)dz

The population survival function can then be written as follows:

S(t) = E[exp(−A0(t) · Z)] = LZ(A0(t)) (5.3)
Using (5.3) the population death intensity denoted by µ(t) may now be written,

µ(t) = −S
′(t)
S(t) = L′Z(A0(t))

LZ(A0(t))α(t) (5.4)

The difference between the individual death intensity and the population death intensity is determined by
the factor L′Z(A0(t))

LZ(A0(t)) in (5.4). In general the population death intensity cannot be interpreted as giving
information on individual development in risk. In the population, the individuals with high frailty values
will have the tendency of dying first. That will lead to a decrease of the frailty of the whole population.
In other words, the value of the frailty in a population will decrease as the population gets older.

5.3 Modeling the Gamma frailty distribution

In the frailty literature, it is quite common to assume that the frailty Z is gamma distributed. The gamma
distribution is chosen because it is a flexible distribution that takes on a variety of shapes as shown in
figure 5.1. Frailty cannot be negative and the gamma distribution is, along with the log-normal and
Weibull distribution, one of the most used distribution to model variables that are necessarily positive.
The density of the gamma distribution is given as:

g(z) = 1
βαΓ(α)z

(α−1) exp(−z/β) (5.5)

where β is the scale parameter and α the shape parameter.
Figure 5.1 plots the shape of gamma p.d.f’s for four values of α. When α = 1 it is identical to the well

know exponential distribution; When α = 2 we observe a more bell-shaped form. The moment generating
function of the gamma distribution is given as:

MZ(t) = 1
(1− βt)α

Using the Laplace transform, we obtain:

LZ(t) = MZ(−t) = 1
(1 + βt)α (5.6)
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Figure 5.1: Gamma density for different values at α when β = 1.

It is common to assume that E[Z] = 1. It then follows that αβ = 1 and α = 1/β. Further we then have
that V (Z) = αβ2 = β. Equation (5.6) then becomes:

LZ(t) = MZ(−t) = 1
(1 + βt)1/β = (1 + βt)−1/β (5.7)

Using (5.3), the survival function can now be written as:

S(t) = LZ(A0(t)) = (1 + βA0(t))−1/β (5.8)

Using (5.4), the population death intensity becomes:

µ(t) = 1
1 + βA0(t)α0(t) (5.9)

This equation is useful because it gives a clear understanding of the effect of frailty on the death intensity
of the population. It becomes clear to observe from (5.9) that when β = 0 there is no frailty and µ(t)
and α0(t) are identical. We observe that when the frailty of the population decreases, the death intensity
increase. This can be observe in Figure 5.2 where we have chosen the basic rate α0(t) = t3. We also
observe that the population death intensity decreases with a strength determined by β.

5.4 Two points frailty distribution

An alternative to the gamma frailty model is a two-points model for the frailty. Here we assume that
the frailty Z can take the two values z1 and z2 with probabilities P (Z = z1) = π1 and P (Z = z2) = π2;
π1 + π2 = 1.
The Laplace transform becomes:

LZ(t) = E[exp(−tZ)] = exp(−tz1)π1 + exp(−tz2)π2 (5.10)

The individual hazard can be written as :

α(t|Z) = Z · α0(t) (5.11)
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Figure 5.2: Population hazard rates with various values of β

With a two points frailty distribution we have two groups with respective death intensity, z1α0(t) and
z2α0(t). The population survival function is given by

S(t) = LZ(A0(t)) = exp(−A0(t)z1)π1 + exp(−A0(t)z2)π2 (5.12)

In order to derive the population death intensity, we differentiate the survival function

S′(t) = exp(−A0(t)z1)(−z1α0(t))π1 + exp(−A0(t)z2)(−z2α0(t))π2

= −[π1z1 exp(−A0(t)z1) + π2z2 exp(−A0(t)z2)] · α0(t)
(5.13)

The population death intensity becomes :

µ(t) = −S
′(t)
S(t)

= π1z1 exp(−A0(t)z1) + π2z2 exp(−A0(t)z2)
π1 exp(−A0(t)z1) + π2 exp(−A0(t)z2) · α0(t)

= W (t)z1α0(t) + (1−W (t))z2α0(t)

(5.14)

where

W (t) = π1 exp(−A0(t)z1)
π1 exp(−A0(t)z1) + π2 exp(−A0(t)z2) (5.15)

Thus the population death intensity is a weighted average of the death intensities in the two groups. The
life expectancy up to age a is :

E[Ta] =
∫ a

0
S(u)du

= π1

∫ a

0
exp(−A0(u)z1)du+ π2

∫ a

0
exp(−A0(u)z2)du

(5.16)
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If we introduce S0(t) = exp(−A0(t)), we have

exp(−A0(t)zi) = S0(t)zi

for i = 1, 2. Thus we obtain

E[Ta] = π1

∫ a

0
S0(u)z1du+ π2

∫ a

0
S0(u)z2du (5.17)

5.5 Gompertz-Makeham

We now assume a Gompertz-Makeham model for the basic hazard with parametrization

α0(t) = a+ act = a+ b exp(t log(c)) (5.18)

where the constant a can be interpreted as the risk of death from all causes which do not depend on age
and the second element of the equation is the age-dependent component, which increases exponentially
with age. Then we have

A0(t) =
∫ t

0
α0(u)du

=
∫ t

0
(a+ b exp(u log(c)))du

=
[
au+ b

log(c) exp(u log(c))
]t

0

= at+ b(exp(t log(c))− 1)
log(c)

= at+ b(ct − 1)
log(c)

(5.19)

The corresponding survival function is:

S0(t) = exp(−A0(t)) = exp(−at− b(ct − 1)
log(c) ) (5.20)

The population hazard may then be obtained from (5.14) and (5.15) using (5.18) and (5.19) and the life
expectancy up to age a is given by (5.17).

Figure 5.3 shows the baseline death intensity α0(t) of the Gompertz-Makeham form (black line) and
the population hazards for a two-points frailty distribution when a = 5 ∗ 10−4; b = 2 ∗ 10−5; c = 1.10
and the probabilities are π1 = 0.7 and π2 = 0.3.The red line in Figure 5.3 is the population hazard when
the frailty values are z1 = 0.5 and z2 = 2. We observe that the black and the red line overlap and are
steadily increasing until the age of 70 years where µ (plot in red) starts slowing down. The population life
expectancy is here 83.95 years. We then increase the value of the frailty z2 from 2 to 3 while z1 remains
the same and we obtain a new population hazard µ(t) (plot in blue). We observe on the new plot of the
population hazard that at younger ages the death intensity is higher than the basic hazard α0(t) and also
higher than the population hazard (plot in red) with the lower value of z2. But from age 60 we observe a
change of trend, the population hazard rate µ that had the highest mortality at the younger ages (blue
line) increases less until age 80 where it cross the red line. With the new frailty value, the population life
expectancy becomes 82.39 years. That is the phenomena that was observed in chapter 4 where in Figures
4.6 - 4.8 the cohorts of Norwegian and Swedish women had a lower mortality at the younger ages than the
women in Spain and Italy, but the opposite was the case for older ages. We can conclude that the higher
mortality observed in the population hazard µ(t) (plot in blue) for younger ages is the result of a higher
number of individuals with a big value of frailty, since those individuals have a higher chance of dying
than those with a smaller value of frailty. As the population get older, we have diminution of the number
of frail individuals leading to the reduction of the mortality. That is why population hazard µ(t) (plot in
blue), despite a higher mortality among the younger, has the lowest mortality among the older. In the
next chapter, we will use the Gompertz-Makeham frailty distribution model to study the relationship
between the period and the cohort mortality.
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5. FRAILTY MODELS

Figure 5.3: Basic hazard rate α0(t) and population hazard rates µ(t) for the two points Gompertz-Makeham
frailty distribution. See text for details
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CHAPTER 6

COHORT AND PERIOD LIFE EXPECTANCY
USING THE TWO-POINTS

GOMPERTZ-MAKEHAM FRAILTY
DISTRIBUTION

We observed in chapter 4 that in the early part of the 20th century, there was a very large difference in
life expectancy between Spain and Italy on one hand and Norway and Sweden on the other. Over the last
decade, that inequality has decreased and the period data suggest that since the 80’s women in Spain and
Italy are living longer than those in Norway and Sweden. See Figure 4.5. But the cohort data suggest
that women in Scandinavia are still living longer. see Figures 4.10 - 4.19. In this chapter we will illustrate
with the help of the two-point Gompertz-Makeham frailty model that women in Italy and Spain living
longer than those in Norway and Sweden may just be an artifact.

6.1 Two-points frailty distribution for cohort

In the following, we will study hundred cohorts over a period of hundred years. We index the cohort by
k = 1; . . . ; 100. We assume a two-points frailty distribution for cohort k with a baseline death intensity of
the Gompertz-Makeham form

α0k(t) = ak + bkc
t
k (6.1)

Assume that the frailty Zk for cohort k can take two values z1k and z2k with probabilities P (Z = z1k) = π1k
and P (Z = z2k) = π2k ; π1k + π2k = 1. For the cohort k it follows from (6.1) that:

A0k(t) =
∫ t

0
α0k(u)du = akt+ bk(ctk − 1)

log(ck)

The population survival function for the cohort k is given by:

Sk(t) = exp(−A0(t)z1k)π1k + exp(−A0(t)z2k)π2k (6.2)

cf. (5.12) The corresponding population hazard is obtain from (5.14) and (5.15)

µk(t) = Wk(t)z1kα0k(t) + (1−Wk(t))z2kα0k(t) (6.3)

where

Wk(t) = π1k exp(−A0k(t)z1k)
π1k exp(−A0k(t)z1k) + π2k exp(−A0k(t)z2k) (6.4)

Using that S0k(t) = exp(−A0k(t)), the expected life length of the cohort k up to a given age a for two-point
Gompertz-Makeham frailty model is then:

E[Ta] = π1k

∫ a

0
S0k(u)z1kdu+ π2k

∫ a

0
S0k(u)z2kdu (6.5)

cf. (5.17)
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6. COHORT AND PERIOD LIFE EXPECTANCY USING THE TWO-POINTS GOMPERTZ-MAKEHAM
FRAILTY DISTRIBUTION

6.2 Two-points frailty distribution for period

In order to compute period mortality for a period of 100 years, we need information that describe how the
parameters of the two-point Gompertz-Makeham frailty model have (hypothetically!) developed over a
period of 200 years (namely the 100 years we focus on and a period of 100 years before that). We index
these 200 years by p = −99,−98, . . . , 0, . . . , 100. As discussed in chapter 3 the period mortality for period
p and age t corresponds to the cohort mortality at age t for the cohort born in year k = p− t. The period
population hazard can therefore be obtain by:

µ(p)(t) = µp−t(t) (6.6)

where p is the period and t = 0, 1, 2, · · · , 100 is the age. Because of the difficulty to integrate the hazard
function, an approximation can be given by:∫ t

0
µ(p)(u)du ≈

t−1∑
x=0

µ(p)(t) (6.7)

The population survival function of the period is obtain by:

S(p)(t) = exp(−
∫ t

0
µ(p)(u)du) (6.8)

and the life expectancy of the period can be obtain by:

E(p)[T ] =
∫ ω

0
S(p)(t)dt ≈

ω−1∑
x=0

S(p)(t) (6.9)

where ω is the maximum possible age.

6.3 Comparison of the period and cohort mortality using the two-points frailty
distribution with the baseline death intensity of the Gompertz-Makeham

The parameters choosen for the various cohorts in the two-points Gompertz-Makeham frailty model are
described in table 6.1. Here country A corresponds to Norway and Sweden and country B to Italy and
Spain. Figure 6.1 compares the population mortality for country A and B for three different cohorts
(k = 1, 50, 100). Cohort 1 is the oldest cohort and cohort 100 is the youngest cohort. The rates are on
logarithmic scale.

For cohort 1, we observe a huge difference of mortality rates between country A and country B among
the younger ages. That is due to higher number of frail individuals in country B than in country A. The
mortality rates are therefore lower in country A than in country B. After the age of 60 years, we observe
that the number of frail individuals have steadily decreased resulting in country B having lower mortality
rates than country A.

For cohort 50, we observe that the mortality rates are greater in country B than in country A from
birth until the age of 45 years. Beyond the age of 45 years, country A and country B have about the same
mortality rates (solid and dotted red lines). The overlap of mortality in country A and country B after
the age of 45 year is mainly due to the fact that frail individuals in country B will tend to die first and
those remaining will have the same frailty level as individuals in country A.

Finally we observe that in cohort 100, there is no difference in mortality in country A and country B
(solid and dotted blue lines).

Figure 6.2 shows the cohort life expectancy in country A in blue and country B in red. We observe that
country A has the highest life expectancy back in time. But for the younger cohorts the life expectancy in
country B increases and attains the same level of life expectancy as in country A.

In figure 6.3 we have an illustration of the period life expectancy in country A and country B. We
observe that country A has the highest life expectancy during the earlier period. But the improvement of
mortality in country B result in a rapid increase of life expectancy. This will result in the cross over we
observed in the figure, where country B have higher life expectancy than country A for the most recent
periods.

Based on the empirical study we had in the earlier chapter and the illustrative result we observed in
this chapter, we can conclude that what we observed on Figure 4.5 in chapter 4 may be due to a selection
effect and may therefore be an artifact. Since the 18th century, life expectancy have been higher in Norway
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6.3. Comparison of the period and cohort mortality using the two-points frailty distribution with the
baseline death intensity of the Gompertz-Makeham

Table 6.1: Values of the parameters in the two-points Gompertz-Makeham frailty model for 200 cohorts
(indexed as k = −99,−98, · · · , 0, 1, 2, · · · , 100)

Parameters Country A Country B

a

Equal to 0.005 for all k =
−99,−98, · · · , 0. Then de-
creasing exponentially to
3.10−5 for k = 100

Equal to 0.010 for all k =
−99,−98, · · · , 0. Then de-
creasing exponentially to
3.10−5 for k = 100

b

Equal to 2.10−5 for all k =
−99,−98, · · · , 0. Then de-
creasing exponentially to
10−5 for k = 100

Same as for country A.

c Equal to 1.100 for all k =
−99,−98, · · · , 100.

Equal to 1.098 for all k =
−99,−98, · · · , 0. Then in-
creasing exponentially to
1.100 for k = 100

π1
Equal to 0.50 for all k =
−99,−98, · · · , 100. Same as for country A.

z1
Equal to 0.50 for all k =
−99,−98, · · · , 100.

Equal to 0.40 for all k =
−99,−98, · · · , 0. Then in-
creasing linearly to 0.50 for
k = 50 and staying at that
value until k = 100

z2
Equal to 2 for all k =
−99,−98, · · · , 100.

Equal to 3 for all k =
−99,−98, · · · , 0. Then de-
creasing linearly to 2 for
k = 50 and staying at that
value until k = 100

and Sweden than Italy and Spain, and that trend still continue despite the significant reduction of the
expected life length gap between countries in the Mediterranean and those in Scandinavia.
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6. COHORT AND PERIOD LIFE EXPECTANCY USING THE TWO-POINTS GOMPERTZ-MAKEHAM
FRAILTY DISTRIBUTION

Figure 6.1: Population mortality for the two points Gompertz - Makeham frailty model for three cohorts
(k= 01, 50, 100) for country A (drawn line) and country B (dashed line)

Figure 6.2: Cohort life expectancy illustrating country A and country B.
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6.3. Comparison of the period and cohort mortality using the two-points frailty distribution with the
baseline death intensity of the Gompertz-Makeham

Figure 6.3: Period life expectancy illustrating country A and country B.
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CHAPTER 7

CONCLUSION AND DISCUSSION

The aim of this study was to interpret and model the changes in life expectancy in Northern Europe
and the Mediterranean countries. This was done in a few chapters. We started in the second chapter by
considering some basic concepts and results in survival analysis and also considered parametric inference
for survival data.

In the third chapter we introduced the Lexis diagram and how age, life line, period and cohort data
are visualized in the diagram. We then defined and computed mortality rates for Norwegian females
from the calendar year 1900 until 2014 for period data. Using those mortality rates we calculated the
life expectancy at birth for some few years and observed that it has considerably increased over the past
hundred years, going from 55.09 years in 1900 to 84.09 years in 2014. (See Figure 3.13). We also computed
the life expectancy up to a certain age for different cohorts and noticed some differences with what was
obtained in the case of period data. For example, the life expectancy up to age 100 years for the cohort
born in 1900 was 62.43 years. Because of the non-availability of information for the cohorts data, we
computed the expected number of years lost up to a certain age for some cohorts and found out that is
has decreased considerably with time.

In order to have a good representation of the historical mortality development in North-Europe and
the Mediterranean, we chose in chapter 4 to focus on the life expectancy for women in Spain, Italy, Norway
and Sweden. Since Spain is not available in the Human Mortality Database before the year 1908, we
used data from the year 1910 to 2014 such that we could have uniform data for all the four countries.
Figure 4.5 indicated that Norway and Sweden had longest life expectancy during 1910-1970, but because
of an improvement of the economical and life condition in the Mediterranean, Spain and Italy became
the countries with highest life expectancy from the 80s. Based on this analysis, one could conclude that
women in the Mediterranean are expected to live longer than women in Scandinavia.

But these results for period data correspond to an hypothetical situation, in real life women in a
specific country are born in a cohort and live their lives years after years under the changing living
conditions of that country. Therefore it would be accurate to compare the countries based on the cohort
data. The difficulty with this approach is the non-availability of the data. To use data for a cohort, we
need to know the complete mortality history of that cohort, i.e all the individuals of that cohort have to
be dead. We therefore chose to compute the expected number of years lost up to a maximum age for a
specific cohort. Figures 4.10, . . . , 4.15 illustrated the expected number of years lost up to ages 90, 80, 70,
60, 50 and 40 as a function of their respective cohorts. We observed that the expected number of years
lost was larger in Spain and Italy for the cohort 1910. For the youngest cohorts, we observed a reduction
of the gap between the two regions. Despite the considerable reduction of the expected number of years
lost in the countries from the Mediterranean, all the cohorts indicated that women in Norway and Sweden
are still expected to lose less years than those in Spain and Italy.

To explain the difference of longevity observed in the case of period and cohort data, we introduce
in chapter 5 and chapter 6 a two-points frailty distribution with the baseline death intensity of the
Gompertz-Makeham form. To illustrate our analysis, we grouped the countries as follow: Norway and
Sweden representing group A, Spain and Italy representing group B. We used information contained
in table 6.1 to plot Figures 6.1,6.2, 6.3. Figure 6.1 indicated that country B had a higher mortality at
younger ages than country A. The higher mortality in country B being the result of a big number of frail
individuals. The mortality in country B get relatively lower and lower with age, caused by a reduction
of the average number of frail individuals. The remaining individuals in country B had a lower frailty
level leading to reduction of the population hazard rates. That may be the reason country B cross over
country A in the case of period data as observed in figure 6.3, becoming the country with the higher life
expectancy at the older ages. In the case of cohort, despite the reduction of the number of frail individuals
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7. CONCLUSION AND DISCUSSION

in country B, we observed in figure 6.2 that the life expectancy in country B increased with age but do
not cross country A.

Hence if we consider life expectancy based on period mortality in figure 6.3, we may conclude that
women in country B have higher life expectancy than those in country A. However if we consider the
expected number of years lost for different cohorts in country A and B, we observed that women in country
A are still expected to live longer than those in country B. Naive acceptance of observed population
patterns may lead to erroneous policy recommendations if an intervention depends on the response
of individuals. Furthermore, because patterns at the individuals level may be simpler than composite
population patterns, both theoretical and empirical research may be unnecessarily complicated by failure
to recognize the effects of heterogeneity. (Vaupel and Yashin 1985)
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