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Abstract. Compactness is one of the core notions of analysis: it connects

local properties to global ones and makes limits well-behaved. We study the
computational properties of the compactness of Cantor space 2N for uncount-

able covers. The most basic question is: how hard is it to compute a finite

sub-cover from such a cover of 2N? Another natural question is: how hard is
it to compute a sequence that covers 2N minus a measure zero set from such a

cover? The special and weak fan functionals respectively compute such finite

sub-covers and sequences. In this paper, we establish the connection between
these new fan functionals on one hand, and various well-known comprehension

axioms on the other hand, including arithmetical comprehension, transfinite

recursion, and the Suslin functional. In the spirit of Reverse Mathematics,
we also analyse the logical strength of compactness in Nonstandard Analy-

sis. Perhaps surprisingly, the results in the latter mirror (often perfectly) the
computational properties of the special and weak fan functionals. In partic-

ular, we show that compactness (nonstandard or otherwise) readily brings us

to the outer edges of Reverse Mathematics (namely Π1
2-CA0), and even into

Schweber’s higher-order framework (namely Σ2
1-separation).

1. Introduction

The importance of (open-cover) compactness can hardly be overstated, as it al-
lows one to treat uncountable sets like Cantor space as ‘almost finite’ by connecting
local properties to global ones. A famous example is Heine’s theorem, i.e. the local
property of continuity implies the global property of uniform continuity on the unit
interval. In general, Tao writes:

Compactness is a powerful property of spaces, and is used in many
ways in many different areas of mathematics. One is via appeal
to local-to-global principles; one establishes local control on some
function or other quantity, and then uses compactness to boost the
local control to global control. [57, p. 168]

Compactness already has a long history: the Cousin lemma ([6, p. 22]) on the
open-cover compactness of subsets of R2, dates back1 135 years. Despite its basic
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nature, its central role in analysis, and a long history, little is known about the
logical and computational properties of compactness. The main aim of this paper
is to study these computational properties. In particular, we are interested in the
following most basic and natural question (and its variations):

Given an uncountable cover of 2N, how hard is it to compute a finite sub-cover?

To answer this question, we continue the project initiated in [33], namely we study
the computational properties of special fan functionals (and their variations). The
latter compute the aforementioned finite sub-covers, as detailed in (T.1) below.
In the spirit of Reverse Mathematics, we also analyse the logical strength of com-
pactness in Nonstandard Analysis as in (T.2) below. As it happens, the results in
Nonstandard Analysis mirror (often perfectly) the results in Computability The-
ory. We assume basic familiarity with the aforementioned fields, in particular the
program Reverse Mathematics founded by Friedman (RM hereafter; see [53,54,56]
or [33, §2.2]). In Section 2, we provide an overview of the results in [33], and a list
of the questions to be answered, all pertaining to the following two topics. Many
questions left open in, or raised by, [33] are in fact answered in this paper. We refer
to [33, 34] for an introduction and overview to the project this paper is part of. In
this paper, we explore the following topics:

Topic (T.1): We study two new classes of functionals, namely the special fan
functionals, an instance of which is denoted Θ, and the (computationally weaker)
weak fan functionals, an instance of which is denoted Λ. Intuitively speaking, any
Θ computes a finite sub-cover from an uncountable cover of Cantor space, while
any Λ provides such a cover ‘in the limit’. These functionals are quite natural
mathematical objects: The special fan functionals emerge naturally and directly
from Tao’s metastability ([50]) while the existence of Θ is equivalent to Cousin’s
lemma ([34, §3.3]), and to many basic properties of the gauge integral ; the latter in
turn provides a unique/direct2 formalisation of Feyman’s path integral ([24]). From
the perspective of higher-order computability theory, these new fan functionals are
interesting as they fall outside the well-studied classes, like e.g. the continuous
functionals or the so-called normal functionals. In this paper, we establish the con-
nection between Λ and Θ on one hand, and arithmetical comprehension, transfinite
recursion, and the Suslin functional on the other hand. The new fan functionals
will be seen to exhibit rather surprising behaviour.

Topic (T.2): We study the nonstandard counterparts of the ‘Big Five’ systems
WKL0, ACA0, and Π1

1-CA0 of RM. These counterparts are respectively: the nonstan-
dard compactness of Cantor space STP, the Transfer axiom limited to Π0

1-formulas
Π0

1-TRANS, and the Transfer axiom limited to Π1
1-formulas Π1

1-TRANS. While the
original Big Five systems are linearly ordered as follows

Π1
1-CA0 → ATR0 → ACA0 →WKL0 → RCA0,

the non-implications Π0
1-TRANS 6→ STP 6← Π1

1-TRANS hold for the respective non-
standard counterparts, as proved in [33]. In this paper, we study the strength of

2There are a number of different approaches to the formalisation of Feynman’s path integral.

However, if one requires the formalisation to be close to Feynman’s original formulation, then the

gauge integral is the only approach (see [34, §3.3] for a discussion). Another argument in favour
of the gauge integral is that this formalism gives rise to so-called physical solutions, i.e. in line

with the observations from physics (see [28–30,39]), in particular the absence of ‘imaginary time’.
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Π1
1-TRANS+STP which (indirectly) yields results about the strength of the combi-

nation of Θ and the Suslin functional. We study Schweber’s third-order framework
([51,52]) via Nonstandard Analysis and obtain some results involving compactness
of function spaces. While interesting in its own right, the aforementioned compact-
ness is essential to the gauge integral over function spaces, which in turn formalises
the Feynman path integral.

As it turns out, topics (T.1) and (T.2) are intimately connected: (non-) com-
putability results in (T.1) are obtained directly from (non-) implications in (T.2),
and vice versa. In fact, Θ first arose from nonstandard compactness as in STP
when studying the computational content of Nonstandard Analysis ([44]), while in-
stances of the axiom Transfer give rise to (well-known) comprehension and choice
functionals. As it happens, the connection between Θ and metastability was first
proved via Nonstandard Analysis ([50]). It should be noted that our definition of
these new fan functionals, to be found in Section 2.1, is different from the (original)
definition used in e.g. [44]. The definitions are equivalent as shown in Section 2.6.

We now sketch the main results of this paper as follows. A detailed discus-
sion may be found in Section 2.5. Feferman’s µ2 is introduced in Section 2.3 and
constitutes a form of arithmetical comprehension.

(i) The Suslin functional is not computable from Θ + µ2 (Section 3.2). The
combination Θ + µ2 (directly) computes a realiser for ATR0 (Section 3.3).

(ii) The combination Π1
1-TRANS + STP exists at the level of Π1

2-CA0 (Sec-
tion 4.1). This result yields results not involving Nonstandard Analysis.

(iii) We identify a weak fan functional Λ1 and show in Section 3.4 that Λ1 + µ2

computes the same objects as µ2. This shows that we cannot in general
compute a special fan functional from a weak one.

(iv) We show that some of our results, Theorem 2.19 in particular, generalise
to Schweber’s third-order arithmetic [51,52] (Section 4.2).

Finally, this paper connects Computability Theory and Nonstandard Analysis. The
first author contributed most results in the former, while the second author did so
for the latter. However, many questions were answered by translating them from
one field to the other, solving them, and translating everything back, i.e. both
authors contributed somehow to most of the paper. As suggested by the above,
this paper is part of a series of papers by the authors, as follows. In our first
two papers ([33] and this paper) we link Nonstandard Analysis and higher order
Computability Theory, while in the other three ([34–36]) we focus on the logical
and computational content of classical theorems in mathematical analysis.

2. Previous work and open questions

We introduce the weak and special fan functionals and discuss their connection
to nonstandard compactness. We discuss the associated results in Computability
Theory and Nonstandard Analysis from [33] and list the open questions to be
answered below. We first make our notion of ‘computability’ precise as follows.

(I) We adopt ZFC set theory as the official metatheory for all results, unless
explicitly stated otherwise.

(II) We adopt Kleene’s notion of higher-order computation as given by his nine
clauses S1-S9 (see [20,43]) as our official notion of ‘computable’.
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In Section 3, we provide the basic definitions of Computability Theory needed for
(II), but do assume some familiarity with Computability Theory as a whole. We
refer to [33, §2] or [48] for an introduction to Nelson’s system IST and the fragments
P and P0 which are conservative extensions of Peano arithmetic and RCA0. For
completeness, the systems P and P0 can be found in Appendix A.

Finally, to improve readability, we often omit types if they can be gleaned from
context; we sometimes make use of set theoretical notation. For instance, ‘α1 ≤ 1’
expresses that α is a binary sequence, but could also be written α ≤ 1 or α ∈ 2N

or α ∈ C. Details regarding the former notation may be found in Notation A.2.

2.1. The special and weak fan functionals. First of all, we define two new
classes of functionals. The special fan functionals intuitively output a finite sub-
cover on input an uncountable cover of 2N. The (computationally weaker) weak
fan functionals take an additional input k ∈ N and output a finite sub-cover for
a subset of 2N of measure at least 1 − 1

2k . We usually simplify the type of these
fan functionals to ‘3’. We reserve the symbols Θ and Λ to denote instances of the
special and weak fan functionals. It goes without saying these functionals are not
unique: one can always add extra binary sequences to the finite sub-cover.

We now introduce the class of special fan functionals. We write ‘f ∈ [σ]’ for
f |σ| =0∗ σ, where τ∗ is the type of finite sequences of type τ objects. For wτ

∗
=

〈t0, . . . , tk〉, we write |w| = k + 1 and w(i) = ti for i < |w|. These ‘finite sequence’
notations are discussed in detail in Notation A.1.

Definition 2.1. [Special fan functionals] SFF(Θ) is as follows for Θ2→1∗ :

(∀G2)(∀f1 ≤ 1)(∃g ∈ Θ(G))(f ∈ [gG(g)]), (2.1)

Any functional Θ satisfying SFF(Θ) is referred to as a special fan functional.

Intuitively, any functional G2 gives rise to a ‘canonical cover’ ∪f∈2N [fG(f)] of
Cantor space, and Θ(G) is a finite sub-cover thereof, i.e. ∪g∈Θ(G)[gG(g)] also covers

2N. Note that Cousin ([6]) and Lindelöf ([19]) make use of such canonical covers (for
Rn) rather than the modern/general notion of cover. In light of (2.1), special fan
functionals may be called ‘realisers for the Heine-Borel theorem or Cousin lemma
for C’. As it happens, Θ actually arises from the nonstandard compactness of C as
in Robinson’s theorem ([13, p. 42]), as discussed in Sections 2.2 and 2.6.

Secondly, we introduce the class of weak fan functionals Λ, which are strictly
weaker than Θ in general. As will become clear below, Λ is not just ‘more of the
same’ but occupies an important place relative to Θ. Where Θ(G) provides a finite
sub-cover of C, Λ(G, k) only yields a finite sub-cover of a subset of C with measure
at least 1− 1

2k , i.e. we have the following:

m({f ∈ C : (∃g ∈ Λ(G, k))(f ∈ [gG(g)])}) ≥ 1− 1
2k , (2.2)

where m is the usual coin-toss measure on 2N. It is straightforward, but cumber-
some, to formally express (2.2) in our formal language.

Definition 2.2. [Weak fan functionals] WFF(Λ) is as follows for Λ(2×0)→1∗ :

(∀G2, k0)
[
m({f ∈ C : (∃g ∈ Λ(G, k))(f ∈ [gG(g)])}) ≥ 1− 1

2k

]
. (2.3)

Any functional Λ satisfying WFF(Λ) is referred to as a weak fan functional.
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Weak fan functionals are not realisers of theorems from the literature, but these
functionals do capture the core complexity of several theorems concerning measure-
theoretic approximations, like the Vitali Covering Theorem ([60]). This is investi-
gated further in [36]. As it happens, weak fan functionals also arise from nonstan-
dard compactness, as discussed in Sections 2.2 and 2.6.

Finally, Θ appears similar in name and behaviour to Tait’s ‘classical’ fan func-
tional (esp. on the continuous functionals). However, Θ and Λ behave quite differ-
ently in that they cannot be computed by any type two functional (see Section 2.3).

2.2. Nonstandard compactness and related notions. In this section, we in-
troduce some axioms of Nonstandard Analysis. We will observe that the special and
weak fan functionals emerge from the nonstandard compactness of Cantor space.

First of all, we mention the crucial theorem which connects P and Peano arith-
metic. Definitions may be found in [4], [33, §2], [48, Appendix], or Appendix A

Theorem 2.3 (Term extraction). If ∆int is a collection of internal formulas and
ψ is internal, and

P + ∆int ` (∀stx)(∃sty)ψ(x, y, a), (2.4)

then one can extract from the proof a sequence of closed terms t in T ∗ such that

E-PAω∗ + ∆int ` (∀x)(∃y ∈ t(x))ψ(x, y, a). (2.5)

Proof. See [44, §2] or [48, Appendix]. The route from (2.4) to (2.5) involves a
functional interpretation called ‘Sst’, introduced in [4]. �

The system RCAω0 ≡ E-PRAω + QF-AC1,0 is Kohlenbach’s base theory of higher-
order Reverse Mathematics as introduced in [17, §2]. We permit ourselves a slight
abuse of notation by also referring to the system E-PRAω∗ + QF-AC1,0 as RCAω0 .

Corollary 2.4. The previous theorem and corollary go through for P and E-PAω∗

replaced by P0 ≡ E-PRAω∗ + T ∗st + HACint + I + QF-AC1,0 and RCAω0 .

From now on, the notion ‘normal form’ refers to a formula as in (2.4), i.e. of the
form (∀stx)(∃sty)ϕ(x, y) for ϕ internal. We now provide a general template how
term extraction is used below, as this will shorten a number of proofs.

Remark 2.5 (Using term extraction). First of all, term extraction as in Theo-
rem 2.3 is restricted to normal forms. We now show that normals forms are ‘closed
under implication’, as follows. Let ϕ,ψ be internal and consider the following im-
plication between normal forms:

(∀stx)(∃sty)ϕ(x, y)→ (∀stz)(∃stw)ψ(z, w). (2.6)

Since standard functionals have standard output for standard input, (2.6) implies

(∀stζ)
[
(∀stx)ϕ(x, ζ(x))→ (∀stz)(∃stw)ψ(z, w)

]
. (2.7)

Bringing all standard quantifiers outside, we obtain the following normal form:

(∀stζ, z)(∃stw, x)
[
ϕ(x, ζ(x))→ ψ(z, w)

]
, (2.8)

as the formula in square brackets is internal. Now, (2.8) is equivalent to (2.7), but
one usually weakens the latter as follows:

(∀stζ, z)(∃stw)
[
(∀x)ϕ(x, ζ(x))→ ψ(z, w)

]
, (2.9)

as (2.9) is closer to the usual mathematical definitions.
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Secondly, assuming (2.6) is provable in P, so is (2.9) and we obtain a term t with

(∀ζ, z)(∃w ∈ t(ζ, z))
[
(∀x)ϕ(x, ζ(x))→ ψ(z, w)

]
(2.10)

being provable in E-PAω∗. We now omit the term t and bring all quantifiers inside
again, yielding that E-PAω∗ proves:

(∃ζ)(∀x)ϕ(x, ζ(x))→ (∀z)(∃w)ψ(z, w). (2.11)

Finally, we shall often shorten the below proofs by just providing normal forms and
jumping straight from (2.6) to (2.11) whenever possible.

Secondly, P does not involve Nelson’s axiom Transfer, as ‘small’ fragments are
already quite strong. Indeed, Transfer restricted to Π0

1-formulas as follows

(∀stf1)
[
(∀stn)f(n) 6= 0→ (∀m)f(m) 6= 0

]
(Π0

1-TRANS)

is the nonstandard counterpart of arithmetical3 comprehension as in ACA0. Fur-
thermore, the fragment4 of Transfer for Π1

1-formulas as follows

(∀stf1)
[
(∃g1)(∀n0)(f(gn) = 0)→ (∃stg1)(∀n0)(f(gn) = 0)

]
(Π1

1-TRANS)

is the nonstandard counterpart of Π1
1-CA0. It is an interesting exercise to show that

if the antecedent of (2.6) is Π0
1-TRANS (resp. Π1

1-TRANS), the antecedent of (2.11)
is (µ2) (resp. (µ1)), to be introduced in Section 2.3.

The following fragment of Standard Part is the nonstandard counterpart of weak
König’s lemma ([14]):

(∀α1 ≤ 1)(∃stβ1 ≤ 1)(α ≈1 β), (STP)

where α ≈1 β is (∀stn)(α(n) =0 β(n)). Note that STP expresses the nonstandard
compactness of 2N as in Robinson’s theorem ([13, p. 42]), The following fragment of
Standard Part is the nonstandard counterpart of weak weak König’s lemma ([55]).
We reserve the variable ‘T 1’ for trees and ‘T 1 ≤ 1’ means that T is a binary tree.

(∀T ≤ 1)
[
µ(T )� 0→ (∃stβ ≤ 1)(∀stm)(βm ∈ T )

]
, (LMP)

where ‘µ(T )� 0’ is just the formula (∃stk0)(∀stn0)
(
{σ∈T :|σ|=n}

2n ≥0
1
2k

)
.

Note that there is no deep philosophical meaning to be found in the words ‘non-
standard counterpart’: this is just what the principles STP, LMP, Π0

1-TRANS, and
Π1

1-TRANS are called in the literature ([14, 46, 55]). The following theorems from
[33] provide normal forms for STP and LMP and establish the latter’s relationships
with the special and weak fan functionals. In particular, the latter emerge from
STP and LMP when applying Theorem 2.3. Recall the ‘finite sequence’ notations
from Notation A.1.

Theorem 2.6. In P0, STP is equivalent to the following:

(∀stg2)(∃stw1∗ ≤ 1, k0)(∀T 1 ≤ 1)
[
(∀α1 ∈ w)(αg(α) 6∈ T ) (2.12)

→ (∀β ≤ 1)(∃i ≤ k)(βi 6∈ T )
]
,

3Similar to how one ‘bootstraps’ Π0
1-comprehension to the latter, the system P0 + Π0

1-TRANS

proves ϕ↔ ϕst for any internal arithmetical formula (only involving standard parameters).
4The ‘bootstrapping’ trick for Π0

1-TRANS does not work for Π1
1-TRANS (or Π1

1-CA0) as the

latter is restricted to type one objects (like g1 in Π1
1-TRANS) occurring as ‘call by value’.
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and is equivalent to (∀stG2)(∃stw1∗)(∀f1 ≤ 1)(∃g ∈ w)(f ∈ [gG(g)]), and to:

(∀T 1 ≤ 1)
[
(∀stn0)(∃β0∗)(|β| = n ∧ β ∈ T )→ (∃stα1 ≤ 1)(∀stn0)(αn ∈ T )

]
. (2.13)

Furthermore, P0 proves (∃stΘ)SFF(Θ)→ STP.

Proof. All results are established in [33], except the following equivalence:

STP↔ (∀stG2)(∃stw1∗)(∀f1 ≤ 1)(∃g ∈ w)(f ∈ [gG(g)]). (2.14)

To establish (2.14), use HACint to establish that (∃stg ≤ 1)(∀stk0)(fk =0 gk) is
equivalent to (∀stG2)(∃stg ≤ 1)(fG(g) =0∗ gG(g)) (by considering the negations of
the latter two formulas). Now prepend ‘(∀f1 ≤ 1)’ to the latter formula and use
Idealisation to pull the ‘(∃stg ≤ 1)’ to the front as in (2.14). �

By (2.13) in the theorem, STP is just WKLst with the leading ‘st’ dropped; this
observation explains why STP deserves the monicker ‘nonstandard counterpart of
WKL’. The following theorem follows in the same way.

Theorem 2.7. In P0, the principle LMP is equivalent to:

(∀stg2, k0)(∃stw1∗ ≤ 1, n0)(∀T ≤ 1)
[
(∀α ∈ w)(αg(α) 6∈ T )→ |{σ∈T :|σ|=n}|

2n ≤ 1
2k

]
.

Furthermore, P0 proves (∃stΛ)WFF(Λ)→ LMP.

Despite STP and LMP being the nonstandard counterparts of WKL and WWKL,
the former behaves quite differently from the latter (and (2.15)) in that the former
does not follow from Π0

1-TRANS or Π1
1-TRANS, i.e. the nonstandard counterparts

of ACA0 and Π1
1-CA0, as discussed in Section 2.4.

Finally, we discuss the exact connection between our systems of Nonstandard
Analysis and Computability theory provided by Theorem 2.3. The crucial point
here is that in the syntactic theory of Nonstandard Analysis, the usual quantifiers
∃ and ∀ play the role of ‘uniform quantifiers’ (see [5]) which are ignored by the
functional interpretation Sst used in the proof of Theorem 2.3, while the standard
quantifiers ∃st and ∀st are given computational meaning. Indeed, the functional
interpretation Sst applied to the proof of (2.4) yields a term t(x) in which the
(∀stx) quantifier in (2.4) describes the input variables, while the (∃sty) quantifier
describes the output variables. This gives each of the nonstandard axioms a clear
computational meaning entirely independent of Nonstandard Analysis per se, which
may be of comfort to some who find Nonstandard Analysis alien. Those interested
in this kind of development should consult [48].

2.3. Known results in Computability Theory. A substantial number of results
regarding the special and weak fan functionals were obtained in [33,34,50], some of
which we list in this section as they are needed below or give rise to open questions.
We recall an oft-made observation regarding WWKL0 and the ‘Big Five’ of RM,
namely that these six systems satisfy the strict implications:

Π1
1-CA0 → ATR0 → ACA0 →WKL0 →WWKL0 → RCA0. (2.15)

We mention (2.15) as our results show that the situation is quite different in a
higher-order or nonstandard setting. More results of this nature are in [34–36].

First of all, it turns out that the fan functionals Θ and Λ are hard to compute.

Theorem 2.8. Let ϕ2 be a type two functional. There is no functional Θ3 as in
SFF(Θ) and no functional Λ3 as in WFF(Λ) computable in ϕ.
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Proof. Immediate from [33, Cor. 3.8 and Theorem 3.14]. �

We now list some well-known type two functionals which will be needed below.
Feferman’s search operator as in (µ2) (see e.g. [1, §8]) is equivalent to (∃2) over
Kohlenbach’s system RCAω0 by [18, §3]:

(∃µ2)
[
(∀f1)

(
(∃n0)(f(n) = 0)→ f(µ(f)) = 0

)]
, (µ2)

(∃ϕ2)
[
(∀f1)

(
(∃n0)(f(n) = 0)↔ ϕ(f) = 0

)]
, (∃2)

Furthermore, ACAω0 ≡ RCAω0 + (µ2) is a Π1
2-conservative extension of ACA0 ([42,

Theorem 2.2]). The Suslin functional (S2) and the related (µ1) (see [1, §8.4.1],
[17, §1], and [42, §3]) give rise to Π1

1-CA0:

(∃µ1→1
1 )(∀f1)

[
(∃g1)(∀x0)(f(gx) = 0)→ (∀x0)(f(µ1(f)x) = 0)

]
. (µ1)

(∃S2)(∀f1)
[
(∃g1)(∀n0)(f(gn) = 0)↔ S(f) = 0

]
. (S2)

In fact, Π1
1-CAω0 ≡ RCAω0 + (µ1) is a Π1

3-conservative extension of Π1
1-CA0 ([42,

Theorem 2.2]). We let SU(S) and MUO(µ1) be (S3) and (µ1) without the leading
existential quantifiers. Similarly, we introduce Π1

k-CAω0 ≡ RCAω0 + (S2
k), where (S2

k)
states the existence of a type two function S2

k which decides Π1
k-formulas; note that

S1 is the Suslin functional. The higher-order version of second-order arithmetic Z2

is ZΩ
2 ≡ RCAω0 + (∃3), where the latter is

(∃ξ3)(∀Y 2)
[
(∃f1)(Y (f) = 0)↔ ξ(Y ) = 0

]
. (∃3)

Note that ZΩ
2 and Z2 prove the same sentences by [12, §2]. We reserve ‘∃3’ for

the unique functional ξ3 from (∃3). We do the same for other functionals, like
µ2, µ1, S

2, . . . introduced above.

Theorem 2.9. A functional Θ3 as in SFF(Θ) can be computed from ∃3.

Proof. Immediate from [33, Theorem 3.9]. �

By the following theorem, the exotic properties of Θ are not due to its high type.
As discussed in [34], HBU is essentially Cousin’s lemma, dating as far back as 1882.

Theorem 2.10. ACAω0 + QF-AC2,1 proves (∃Θ)SFF(Θ)↔ HBU; the latter is

(∀Ψ2 : R→ R+)(∃w1∗)(∀x1 ∈ [0, 1])(∃y ∈ w)(x ∈ IΨ
y ), (HBU)

where IΨ
y is (y −Ψ(y), y + Ψ(y)). No system Π1

k-CAω0 proves HBU.

Proof. Immediate from [34, Theorems 3.1 and 3.3]. �

A similar result can be obtained for Λ: the existence of the latter is equivalent to
the fact that a finite sub-cover exists for any open cover of the Martin-Löf random
reals in Cantor space minus some Uk, where the latter is the k-th set in the universal
Martin-Löf test (see [45]). This result originates from the RM of WWKL as in [2].

Theorem 2.10 already deals a significant blow to the elegant picture in (2.15), but
HBU can even collapse part of the latter linear order, namely as in Theorem 2.11.
Now, ATR0 is ACA0 plus arithmetical transfinite recursion as follows:

(∀X1)
[
WO(X)→ (∃Y 1)Hθ(X,Y )

]
, (ATRθ)

for any arithmetical θ. Here, WO(X) expresses that X is a countable well-ordering
and Hθ(X,Y ) expresses that Y is the result from iterating θ along X. Details and
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definitions may be found in [54, V.2]. For Theorem 2.11, we need the following
‘trivially uniform’ version of ATR0:

(∃Φ1→1)(∀X1, f1)
[
WO(X)→ Hf (X,Φ(X, f))

]
, (UATR)

where Hf (X,Y ) is just Hθ(X,Y ) with θ(n,Z) defined as (∃m0)(f(n,m,Zm) = 0).
Note that the base theory in the following theorem is conservative over WKL0.

Theorem 2.11. The system RCAω0 + HBU + QF-AC2,1 proves (µ2)↔ UATR.

Proof. Immediate from [33, Cor. 6.7] and [34, Theorem 3.3]. �

The previous theorem is based on an effective result where Φ as in UATR0 is
defined from Θ and µ2 via a term of Gödel’s T . This effective result in turn derives
from Theorem 2.19, i.e. via term extraction applied to Nonstandard Analysis.

Theorem 2.12. RCAω0 + (∃Θ)SFF(Θ) is a conservative extension of RCA2
0 +WKL.

Proof. Immediate from [33, Cor. 3.5]. �

Combining Theorems 2.10 and 2.11, it would seem that Θ produces non-hyper-
arithmetical outputs, which turns out to be correct. By contrast, there are weak
instances of Λ which are ‘closed on the hyperarithmetical’.

Theorem 2.13. For any Θ such that SFF(Θ), there is hyperarithmetical G2 such
that Θ(G) is not hyperarithmetical.

Proof. Immediate from [33, Theorem 5.1]. �

Theorem 2.14. There is a Λ0 such that WFF(Λ0) and such that for any total,
hyperarithmetical G2, Λ0(G, k) is a finite list of hyperarithmetical functions.

Proof. Immediate from [33, Cor. 5.14]. �

As noted in [33, Appendix], and proved in full in Section 3.4, one can define a
weak fan functional that is very weak as follows:

Theorem 2.15. There exists a functional Λ1 satisfying WFF(Λ1) such that all
functions computable in Λ1 and ∃2 are hyperarithmetical.

Proof. The proof is given in Section 3.4. See Theorem 3.31. �

Corollary 2.16. There exists a functional Λ1 satisfying WFF(Λ1) such that no Θ
satisfying SFF(Θ) is computable in Λ1 and ∃2.

Proof. Theorems 2.13 and 2.15 immediately yield the corollary. �

Finally, Theorem 2.12 is proved using the ECF-translation, which will be needed
below. We therefore discuss the proof of the former theorem in some detail.

Remark 2.17 (ECF-translation and Θ). As discussed in [17, §3], one can modify
the proofs in [58, §2.6] to establish that RCAω0 + (∃Ω3)MUC(Ω) is conservative over
RCA2

0 + WKL, where Ω3 is called the intuitionistic fan functional as follows:

(∀Y 2)(∀f1, g1 ≤ 1)(fΩ(Y ) = gΩ(Y )→ Y (f) = Y (g)), (MUC(Ω))

In the latter reference, the so-called ECF-interpretation is defined which, intuitively
speaking, replaces all higher-order functionals (of type two or higher) by type one
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codes (in the sense of Reverse Mathematics) which represent (automatically contin-
uous) higher-type functionals. The ECF-interpretation has the following convenient
property (discussed in [17, §3]) for any formula in the language of finite types:

If RCAω0 ` A, then RCA2
0 ` [A]ECF. (2.16)

Now, the ECF-interpretation of (∃Ω3)MUC(Ω) expresses that there is a code α1

which yields a modulus of uniform continuity on Cantor space on input a code β1

representing an (automatically continuous) type two functional. As follows from the
discussion in [20, p. 459], we have [(∃Ω3)MUC(Ω)]ECF ↔ WKL. Alternatively, one
can explicitly define the aforementioned code α1 and show that it has the required
properties using (the contraposition of) WKL, as done in [58, 2.6.6] and [32, p. 101].

Theorem 2.12 can now be obtained in at least two ways: First of all, one considers
(∃Ω)MUC(Ω) → (∃Θ)SFF(Θ) → WKL (provable in RCAω0 ), which follows from the
results in [33, §3] or [44, §3], and applying the ECF-translation and the above results
yields WKL → [(∃Θ)SFF(Θ)]ECF → WKL. Secondly, one can also explicitly define
the code for Θ required for [(∃Θ)SFF(Θ)]ECF in terms of the aforementioned code
α1, as the classical fan functional trivially computes Θ(G) in case G2 is continuous
on Cantor space. This finishes the proof of Theorem 2.12.

2.4. Known results in Nonstandard Analysis. A substantial number of results
regarding nonstandard compactness were obtained in [33], some of which we list in
this section as they are needed below or give rise to open questions.

First of all, although the Big Five and WWKL0 are linearly ordered as in (2.15),
the nonstandard counterparts behave quite differently.

Theorem 2.18. P + Π1
1-TRANS and P + Π0

1-TRANS do not prove STP or LMP.

Proof. Immediate from [33, Cor. 4.6]. �

Secondly, in light of the failure of Π0
1-TRANS → STP, it is a natural question

how strong the combination Π0
1-TRANS+STP is. As it turns out, we readily obtain

ATRst from Π0
1-TRANS + STP. The same theorem for LMP fails.

Theorem 2.19. The system P0 + Π0
1-TRANS + STP proves ATRst

0 while P +
Π0

1-TRANS + LMP does not.

Proof. Immediate from [33, Theorems 6.3 and 6.4]. �

Note that WKL and WWKL (and hence STP and LMP) are ‘very close’ in the
sense that there is nothing between them in the RM zoo ([7]) or the Weihrauch
degrees ([3]).

Theorem 2.20. The system P + Π0
1-TRANS + LMP does not prove STP.

Proof. Immediate from Theorem 2.19. �

Finally, we often use this theorem without mention.

Theorem 2.21. If RCA0 proves A, then P0 proves Ast.

Proof. One readily verifies that P0 proves the axioms of RCA0 relative to ‘st’. �
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2.5. Open questions. The above listed theorems from [33] give rise to the follow-
ing open questions. They will be answered in this paper.

First of all, in light of Theorem 2.11, it is a natural question how strong Θ + µ2

is compared to well-known functionals. We show in Section 3.2 that S2 is not
computable from Θ+µ2. In Section 3.3, we also provide a direct proof (not involving
Nonstandard Analysis) of the fact that Θ + µ2 computes a realiser for ATR0.

Secondly, in light of Theorem 2.18, it is a natural question ‘how high’ Π1
1-TRANS+

STP actually goes. We show in Section 4.1 that the latter combination exists at
the level of Π1

2-CA0, i.e. strictly stronger than Π1
1-CA0 and Π1

1-TRANS. As a result,
Π1

1-CAω0 + QF-AC2,1 + HBU proves the Π1
3-consequences of Π1

2-CA0.

Thirdly, in light of Theorem 2.14 and 2.19, it is a natural question whether weak
fan functionals carry non-trivial strength. The answer is negative, in the following
sense: we will identify a weak fan functional Λ1 and show in Section 3.4 that Λ1+µ2

computes the same objects as µ2. This shows that we cannot in general compute a
special fan functional from a weak one. This provides mathematical evidence for the
intuition that compactness up to measure is strictly weaker than full compactness.

Fourth, in light of Theorem 2.19, it is a natural question whether our results
somehow generalise to Schweber’s generalisation of ATR0 in third-order arithmetic
[51,52]. We obtain such a generalisation for Theorem 2.19 in Section 4.2.

2.6. Equivalent definitions. We show that the definition of the special and weak
fan functionals from Section 2.1 is equivalent to the original definition from [44].

The following definition for special fan functionals was used in [44]. We reserve
the variable ‘T 1’ for trees and denote by ‘T 1 ≤ 1’ that T is a binary tree.

Definition 2.22. The formula SCF(ν) is as follows for ν(2→(0×1∗)):

(∀g2, T 1 ≤ 1)
[
(∀α ∈ ν(g)(2))(αg(α) 6∈ T )→ (∀β ≤ 1)(∃i ≤ ν(g)(1))(βi 6∈ T )

]
.

The provenance of the name of the specification ‘SFF(Θ)’ for the special fan
functional is obvious. Similarly, SCF(η) was initially (and incorrectly) believed to
be a special case of the (classical) fan functional, explaining its name. We now have
the following theorem.

Theorem 2.23. There are terms s, t of Gödel’s T of lowest level such that

(∀Θ)(SFF(Θ)→ SCF(t(Θ))) ∧ (∀ν)(SCF(ν)→ SFF(s(ν))). (2.17)

Proof. We first provide a proof based on Computability Theory. Define s(ν) :=
λg.ν(g)(2) and define t(Θ) := λg.(max{g(α) | α ∈ Θ(g)}+1,Θ(g)). Assume SCF(ν)
and for given g consider ν(g) = (n, {α1, . . . , αk}). If SFF(s(ν)) fails for g, there is
a β ≤ 1 that is not in any [αjg(αj)]. Let T be the tree of all sequences β̄m. Then
the antecedent in SCF(ν) holds for g and this T , but not the conclusion.

Now assume SFF(Θ) and let g be given. We have that Θ(g) = {α1, . . . , αk}
where C = [α1g(α1)] ∪ · · · ∪ [ᾱkg(αk)]. We must prove SCF(t(Θ)). Again we argue
by contradiction. Let T be a binary tree such that there is a β with βi ∈ T , where
i = (max{g(α) | α ∈ Θ(g)} + 1, i.e. the conclusion in SCF (t(Θ)) fails for this T .
Then β ∈ [ᾱjg(αj)] for some 1 ≤ j ≤ k and ᾱjg(αj) will be a sub-sequence of β̄i.
Thus the assumption in SCF(t(Θ)) does not hold for this T either.
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We also provide a proof based on Nonstandard Analysis. Following Theorem 2.6,
P0 proves that the normal form (2.12) is equivalent to the normal form

(∀stG2)(∃stw1∗)(∀f1 ≤ 1)(∃g ∈ w)(f ∈ [gG(g)]). (2.18)

Since standard functionals provide standard output for standard input, (∃stΘ)SFF(Θ)
implies (2.18). Hence, P0 also proves the following:

(∀stΘ)[SFF(Θ)→ (2.12)]. (2.19)

Now bring outside the standard quantifiers in the consequent of (2.19) and apply
term extraction as in Corollary 2.4 to obtain the first conjunct of (2.17). The
second conjunct follows in the same way. �

We now discuss the definition of the weak fan functionals similar to Defini-
tion 2.22. We first introduce weak weak König’s lemma.

Definition 2.24. [Weak weak König’s lemma]

(i) For T ≤ 1, define Ln(T ) := |{σ∈T :|σ|=n}|
2n .

(ii) For T ≤ 1, define5 ‘µ(T ) >R 0’ as ‘limn→∞ Ln(T ) >R 0’.
(iii) We define WWKL as (∀T ≤ 1)

[
µ(T ) >R 0→ (∃β ≤ 1)(∀m)(βm ∈ T )

]
.

As noted right after Definition 2.1, special fan functionals intuitively provide a
finite sub-cover on input an uncountable cover of 2N. Similarly, weak fan functionals
provide an enumerated set of neighbourhoods covering a set of measure one. Again
similar to the special ones, the weak fan functionals originate from a weak version
of the nonstandard compactness of Cantor space, as discussed in Section 2.2.

Definition 2.25. The formula WCF(η) is as follows for η(2→(1×1∗)):

(∀k0, g2, T 1 ≤ 1)
[
(∀α ∈ η(g, k)(2))(αg(α) 6∈ T )→ Lη(g,k)(1)(T ) ≤ 1

2k

]
.

In contrast to ν, η only outputs (via the function λk.η(g, k)(1)) a modulus for
µ(T ) = 0 rather than a finite upper bound for T . The antecedent in the definition
of η is similar to that of ν: a finite sequence of paths not in T is provided (via
η(g, k)(2)). Thus, there is a trivial term of Gödel’s T computing η in terms of ν.

Similar to Theorem 2.17, we have the following equivalence.

Theorem 2.26. There are terms s, t of Gödel’s T of lowest level such that

(∀Λ)(WFF(Λ)→WCF(t(Λ))) ∧ (∀η)(WCF(η)→ SFF(s(η))). (2.20)

The first proof of Theorem 2.23 is easily adjusted to a proof of Theorem 2.26.

3. Uniform computability for Θ, Λ, and µ2

In this section, we investigate uniform Kleene-computability for respectively spe-
cial and weak fan functionals Θ and Λ, combined with Feferman’s µ. In Section 3.1
we discuss some preliminary results and notation. In Section 3.2, we show that only
hyperarithmetical functions can be uniformly computed by Θ and µ; as a result,
the latter combination does not compute the Suslin functional. In Section 3.3, we
provide a direct proof that ATR0 can be obtained from Θ and µ2, which was es-
tablished indirectly (using term extraction from Nonstandard Analysis) in [33, §6].

5Note that a statement of the form ‘limn→∞ an >R b’ always makes sense as a formula of
second-order arithmetic, namely (∃N0)(∃k0)(∀n0 ≥ N)(an >R b + 1

2k
), even if limit at hand

cannot be proved to exist in a weak system, like the base theory RCA0.
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Thus, the combination Θ plus µ2 can compute non-hyperarithmetical functions, but
only non-uniformly. By contrast, in Section 3.4, we construct Λ1, a weak fan func-
tional such that only hyperarithmetical functions are computable in Λ1 and µ. As
a consequence, special fan functionals are in general not computable from a weak
fan functional Λ combined with µ.

3.1. Preliminaries.

3.1.1. Introduction. In this section, we introduce the Kleene schemes S1-S9 and
consider some minor modifications due to the need for notational simplicity. We
are primarily interested in the computational power of special fan functionals Θ or
weak fan functionals Λ, in conjunction with Feferman’s µ. We establish our results
with respect to full Kleene computability. For this, it does not matter if we consider
Kleene’s ∃2 or Feferman’s µ, but in case we restrict ourselves to primitive recursion,
µ is no longer computable in ∃2. Thus, for studying the computational power of
sub-classes of S1-S9 like fragments of Gödel’s T , it is better to use µ.

For the reader unacquainted with (higher-order) computability theory, we point
to some well-known facts that we will use without further reference:

(i) For subsets of N or NN, the hyperarithmetical sets are exactly those com-
putable in µ, or equivalently in ∃2, and exactly the ∆1

1-sets.
(ii) The Π1

1-sets are exactly the sets semi-computable in µ (or ∃2), i.e. the
domains of functions partially computable in µ.

(iii) The ordinal ωCK
1 (‘CK’ for Church-Kleene) is the least ordinal without a

computable code. Gödel’s LωCK
1

, the fragment of the universe of the con-

structible sets up to ωCK
1 , is the least Σ1-admissible structure6.

3.1.2. The functionals Θ and Λ. We will investigate uniform Kleene-computability
for respectively Θ and Λ combined with µ. We now provide suitable alternative
definitions of these fan functionals to be used below.

According to the specification SFF(Θ), Θ is a functional of type 2→ 1∗ where for
each F , the set of neighbourhoods Cḡ(F (g)), with g ∈ Θ(F ), is a cover of the Cantor
space. For adjustment to the Kleene schemes, it is better to use an alternative
presentation, coding a finite sequence from C into one, as follows.

In this section, we let Θ(F ) be an element of Cantor space that is not constant
zero. Each such object f will code a finite sequence 〈g1, . . . , gk〉 of binary functions
by letting k be the least positive number such that f(k − 1) = 1, and then decode
g(n) = f(n + k) into k elements using the standard k-partition of N, i.e. gi(m) =
g(m · k + i − 1). When s is a finite binary sequence, we also use Cs to denote
the corresponding basic neighbourhood in C, essentially meaning the same as the
formal expression [s]. We will write Θ(F ) = 〈g1, . . . , gk〉 and we will assume that
Θ satisfies that for all F , {Cḡi(F (gi)) | i = 1, . . . , k} is a cover of Cantor space. The
latter is equivalent to stating that for some n ∈ N and for all binary sequences s of
length n there is some i such that ḡi(F (gi)) is an initial segment of s.

Similarly, according to the specification WFF(Λ), Λ(F )(k) is a finite sequence
〈f1, . . . , fn〉 from Cantor space such that m(

⋃n
i=1 Cf̄i(F (fi))) ≥ 1 − 1

2k , where m

6A structure is Σ1-admissible if it satisfies the Kripke-Platek axioms ∆1-comprehension and
Σ1-replacement. We say that an ordinal α is admissible if the corresponding fragment of L is

admissible.
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denotes the standard product measure on Cantor space C. When studying aspects
of computability relative to Λ and µ, we may equivalently let Λ(F ) be a sequence
(f) = (fi)i∈N such that m(

⋃
i∈N Cf̄i(F (fi))) = 1. For notational reasons, this is the

form for Λ we will use in this section.

3.1.3. The Kleene Schemes. Turing’s famous model of computability ([59]) is re-
stricted to inputs of types zero and oracles of type one. By way of generalisation,

Kleene introduces computations taking sequences ~Φ of higher order functionals Φ
of pure types as arguments ([15]). In particular, via the schemes S1-S9, that are

clauses in a grand monotone inductive definition, he defined the relation {e}(~Φ) = a,

i.e. the e-th (Kleene) computation with input ~Φ terminates with output a ∈ N.

For the purpose of this section, we will introduce the Kleene schemes S1-S9 with
some minor modifications, motivated by he following:

(i) In all our computations, at most one functional of type 2 is used as an
argument, namely Feferman’s µ.

(ii) The scheme S8 for functional application was originally designed for func-
tionals of pure type. However, special fan functionals are of mixed type
(NN → N)→ (N→ N) while weak fan functionals are of type (NN → N)→
(N→ (N→ N)).

Instead of coding Θ and Λ as objects of pure type 3, we modify the schemes S1-S9
so that they make sense for the one argument µ of type 2 and for any functionals Θ,
and later Λ, of the relevant mixed types. The only motivation for this adjustment to
mixed types is readability: we will let the special and weak fan functionals appear
directly in the schemes, and not in coded form. It is a matter of unpleasant routine
to show that this modification yields the same notion of computation as Kleene’s
original schemes via the standard reductions to pure types. In [20, Section 5.1.3],
Kleene’s notion of computation is extended to all finite types via some form of
λ-calculus, but we prefer not to introduce the general machinery here.

Assume that the functional Θ is of the specified type. Let ~g be a sequence of func-

tions and~b be a sequence of numbers. We now define the relation {e}(Θ, µ,~g,~b) = a
by induction as follows.

Definition 3.1 (Modified Kleene S1-S9).

(S1) {〈1〉}(Θ, µ,~g, a,~b) = a+ 1

(S2) {〈2, a〉}(Θ, µ,~g,~b) = a

(S3) {〈3〉}(Θ, µ,~g, a,~b) = a
(S4) If e = 〈4, e1, e2〉 and for some b we have that

(i) {e1}(Θ, µ,~g,~b) = b

(ii) {e2}(Θ, µ,~g, b,~b) = a

then {e}(Θ, µ,~g,~b) = a
(S5) If e = 〈5, e1, e2〉 then (with the obvious interpretation, in analogy with S4)

(i) {e}(Θ, µ,~g, 0,~b) = {e1}(Θ, µ,~g,~b)
(ii) {e}(Θ, µ,~g, a+ 1,~b) = {e2}(Θ, µ,~g, a, {e}(Θ, µ,~g, a,~b),~b)

(S6) Let ~g = (g1, . . . , gk), ~b = (b1, . . . , bm) and let τ1, τ2 be permutations of
{1, . . . , k} and {1, . . . ,m} respectively. If e = 〈6, e1, τ1, τ2〉 then

{e}(Θ, µ, g1, . . . , gk, a1, . . . , an) = {e1}(Θ, µ, gτ1(1), . . . , gτ1(k), bτ2(1), . . . , bτ2(m))
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(S7) {〈7〉}(Θ, µ, g,~g, b,~b) = g(b)

(S8.1) If e = 〈8, 1, e1〉 and {e1}(Θ, µ,~g, a,~b) is defined for all a ∈ N then

(i) {e}(Θ, µ,~g,~b) = 0 if {e1}(Θ, µ,~g, a,~b) = 0 for all a

(ii) {e}(Θ, µ,~g,~b) = a for the least a such that {e1}(Θ, µ,~g, a,~b) > 0 oth-
erwise

(S8.2) If e = 〈8, 2, e1〉, let F (g) = {e1}(Θ, µ, g,~g,~b). If F is total, we let {e}(Θ, µ,~g, a,~b) =
Θ(F )(a).

(S9) If e = 〈9, i, j〉, i ≤ k and j ≤ m, then

{e}(Θ, µ, g1, . . . , gk, d, b1, . . . , bm) = {d}(Θ, µ, g1, . . . , gi, b1, . . . , bj)

If we leave out S9 in the previous definition, we have the schemes for Kleene prim-

itive recursion. Furthermore, a definition of the relation {e}(Λ, µ,~g,~b) = a, where
Λ is a weak fan functional, is obtained by replacing Θ with Λ everywhere in S1 -
S7, S9 and S8.1, and replacing S8.2 with the following formula:

(S8.3) If e = 〈8, 3, e1〉, put F (g) = {e1}(Λ, µ, g,~g,~b). If F is total, define the value

{e}(Λ, µ,~g, i, a,~b) as Λ(F )(i)(a).

All these schemes are viewed as clauses in a strictly positive inductive definition.
If we leave out S9, then the definition may be viewed as a recursion on e. The
set of indices, together with the relevant arities, can then be defined by standard
primitive recursion over N. Moreover, in this case all ‘computations’ will terminate,
as partiality is only introduced via S9.

3.2. Uniform computability in Θ. In this section, we will introduce the notion
of a Θ-structure (see Definition 3.5) and use the associated model theory to prove
two crucial theorems (Theorems 3.2 and 3.3) regarding computability in µ and Θ.
As a corollary, we obtain that Θ+µ does not compute S2. The proof in this section
can be viewed as an elaboration on the proof of [20, Theorem 5.2.25].

First of all, as to notation, recall that ωf1 is the least ordinal not represented by
any well-ordering Turing-computable in f (see [43, X.2.9]). Also, throughout this
section, the quantifier ‘∀Θ’ is to be understood as ‘for all special fan functionals Θ’,
i.e. (∀Θ)(SFF(Θ)→ . . . ), which we omit for reasons of space.

Theorem 3.2. There is a special fan functional Θ such that for all functions f

computable in Θ and µ we have that ωf1 = ωCK
1 .

Theorem 3.3. The set {(e, ~y, a) | ∀Θ.{e}(Θ, µ, ~y) = a} is Π1
1, where ~y ranges over

all finite sequences of non-negative integers.

The following corollary implies that Θ and µ cannot uniformly compute S2.

Corollary 3.4. Let f be a function such that for some e, {e}(Θ, µ, n) = f(n) for
all n and all special fan functionals Θ. Then f is hyperarithmetical.

We could, in Theorem 3.3, let ~y range over all sequences of objects of type
zero and one, but we have not found any use for this observation. The proof of
Theorem 3.3 will essentially be an application of the Löwenheim-Skolem theorem,
establishing the fact that the following statements are equivalent:

(i) For all Θ, {e}(Θ, µ,~g,~b) = a.
(ii) For all countable models M containing ~g and a special fan functional ΘM

(in the sense of the model as indicated), M |= {e}(ΘM, µ,~g,~b) = a.
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We must, however, show some care in what we mean by ‘a model’ and what we

then mean by ‘M |= {e}(ΘM, µ,~g,~b) = a’. For instance, we cannot use the usual
inductive definition involved in Kleene computability directly, because the least
fixed point of the Kleene schemes, even when restricted to a countable structure,
is Π1

1 itself. Moreover, the Löwenheim-Skolem argument does not work for second-
order concepts, so we need to replace Kleene’s definition with something first-order.
It turns out that it suffices to consider all fixed points of the Kleene schemes. Also,
the proof of Theorem 3.3 yields Theorem 3.2 ‘almost for free’.

We introduce the notion of a Θ-structure as follows.

Definition 3.5. A Θ-structure is a tuple M = 〈N,M1,M2,ΘM, µ,R〉 such that

(i) M1 is a set of functions f : N→ N and M2 is a set of functions G : M1 → N.
(ii) µ ∈M2 satisfies the usual definition of µ.

(iii) ΘM : M2 → {0, 1}N and satisfies the modified SFF(Θ) relative to M1,M2,
see Section 3.1.2.

(iv) R stands for a relation [e]R(ΘM, µ,~g,~b) = a, where ~g is a finite sequence

from M1 and ~b is a finite sequence from N, that satisfies:

(a) For each ~g,~b there is at most one a such that [e]R(ΘM, µ,~g,~b) = a.

(b) If for some ~g,~b, e, we have (∀b ∈ N)(∃a)([e]R(ΘM, µ,~g, b,~b) = a), then

there is an f ∈M1 such that (∀b ∈ N)([e]R(ΘM, µ,~g, b,~b) = f(b)).

(c) If for some ~g,~b, e we have (∀g ∈M1)(∃a)([e]R(ΘM, µ, g,~g,~b) = a), then

there is a G ∈M2 such that (∀g ∈M1)[e]R(ΘM, µ, g,~g,~b) = G(g).
(d) The relation R is a fixed point of the Kleene schemes from Defini-

tion 3.1 interpreted over M.

We will not distinguish in notation between µ in the structureM and µ in the full
universe. For the below proofs, we need to code countable Θ-structures as objects
of type 1. Clearly, the set of codes for countable Θ-structures will be arithmetical:

Definition 3.6. Let M = 〈N,M1,M2, µ,ΘM, R〉 be a countable Θ-structure.
A code for M is a function f = 〈f1, f2, f3, f4〉 such that

(i) f1 = 〈f1,i〉i∈N enumerates M1 in a 1-1-way.
(ii) Let f2 = 〈f2,j〉j∈N and let Fj(f1,i) = f2,j(i). Then {Fj}j∈N enumerates M2

in a 1-1-way.
(iii) f3(〈j, a〉) = ΘM(Fj)(a) for all j and a.
(iv) f4(〈e, 〈i1, . . . , ik〉, 〈b1, . . . , bm〉, a〉) = 0 if and only if

[e]R(ΘM, µ, fi1 , . . . , fik , b1, . . . , bm) = a.

It is essential for the below argument that the set of codes for Θ-structures is
arithmetical (or at least hyperarithmetical). The crucial part here is the first-order
definition of special fan functionals. The same result can be obtained for some other
(classes of) functionals, but e.g. not for the Superjump or the Suslin functional. For
those interested in such a generalisation, note that replacing SFF with another class
of functionals Γ requires that one can relativise Γ to type structures M.

Definition 3.7. Let M be a Θ-structure. An extension of ΘM is a special fan
functional Θ1 such that whenever F of type 2 is an extension of G ∈ M2 then
Θ1(F ) = ΘM(G).

Lemma 3.8. For any Θ-structure M, the functional ΘM has an extension Θ1.
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Proof. Let Θ0 be any special fan functional, for instance the one constructed in
[33, §5]. We define

Θ1(F ) :=

{
ΘM(G) if G ∈M2 and F extends G

Θ0(F ) if there is no such G ∈M2

.

The definition of special fan functionals does not require any connection between
the values of Θ(F1) and Θ(F2) when F1 6= F2: we have only specified how F and
Θ(F ) are related for each F . This relation will hold point-wise for each (F,Θ1(F ))
by construction, so Θ1 will also be a special fan functional. �

We could provide a similar construction and prove a similar lemma for other
classes of type 3 functionals, but not for all. Actually, we would always be able to
find extensions in a set-theoretical sense as above, but not necessarily in the class of
functionals that we are interested in. The key property for us is that for a given F
we specify, individually for that F , what an acceptable output of F will be in such
a way that we only have to know F restricted to a countable (in this case, finite)
set to justify that an alleged output is an acceptable one. If we, for instance, were
interested in computations relative to ∃3, we could not prove an extension lemma
as above, since the constant zero in M will have extensions that are not constant
zero, so the value of ∃3

M cannot be preserved through extensions.

Even though the relation R does not have to represent the least fixed point of
the Kleene schemes restricted toM, we will see that it will contain this least fixed
point as a sub-relation. In fact, we have the following lemma, where we only make
use of extensions in general, not of the fact that we deal with special fan functionals.

Lemma 3.9. Let M = 〈N,M1,M2,ΘM, µ,R〉 be a Θ-structure. Let Θ1 be an

extension of ΘM as above. Let ~g be a sequence from M1 and ~b a sequence from N.

If {e}(Θ1, µ,~g,~b) = a, then [e]R(ΘM, µ,~g,~b) = a.

Proof. We prove this by induction on the ordinal rank of the computation of

{e}(Θ1, µ,~g,~b). The proof will be given by cases following the schemes. For the
schemes S1, S2, S3 and S7, the cases of initial computations, the claim follows di-
rectly from the assumption that R is a fixed point of the inductive operator whose
least fixed point is the true set of terminating computations.

For the schemes S4 (composition), S5 (primitive recursion), S6 (permutation of
arguments) and S9 (enumeration), the claim follows by the induction hypothesis
and the assumption on R. This leaves us with the two special instances of S8:

• {e}(Θ1, µ,~g,~b) = µ(λx0.{d}(Θ1, µ,~g, x,~b)). By the induction hypothesis
and the closure properties of M we have

λx.{d}(Θ1, µ,~g, x,~b) = λx.[d]R(ΘM, µ,~g, x,~b) ∈M1,

and the application of µ will yield the same result if we consider µ as an
element of M2 or as an element of full type 2. Then, since R is a fixed point
of the Kleene computation operator, we have that

[e]R(ΘM, µ,~g,~b) = {e}(Θ1, µ,~g,~b).

• {e}(Θ1, µ,m,~g,~b) = Θ1(λg.{d}(Θ1, µ, g,~g,~b))(m). By the induction hy-
pothesis and the closure properties of M, we have that

λg ∈M1.{d}(Θ1, µ, g,~g,~b) = λg ∈M1.[d]R(ΘM, µ, g,~g,~b) ∈M2. (3.1)
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LetG2 be the function defined by (3.1). Then F = λg ∈ NN.{e}(Θ1, µ, g,~g,~b)
is a total extension of G, so Θ1(F ) = ΘM(G) by the assumption on Θ1.
The induction step then follows as above.

We have now treated all nine schemes, and the proof is done. �

We need one more lemma as follows.

Lemma 3.10. For each finite sequence ~f from NN and special fan functional Θ1,

there is a countable Θ-structure M = 〈N,M1,M2, µ,ΘM, R〉 with ~f in M1 such

that for all e, ~g ∈M∗1 , ~b ∈ N∗, and a ∈ N, we have that

[e]R(ΘM, µ,~g,~b) = a↔ {e}(Θ1, µ,~g,~b) = a.

Proof. We define M1 as a kind of Skolem hull, and we define M2, ΘM, and R
explicitly from M1 and Θ1. We will need that Θ1 is a special fan functional in
order to show that M models that ΘM is a special fan functional, but the rest of
the proof works for all type three objects.

Thus, let M1 be countable such that

(i) Each fi from ~f is in M1

(ii) If g is computable in Θ1, µ and a sequence ~g from M1, then g ∈M1

(iii) If F is a partial functional of type 2 computable in Θ1, µ, and some ~g from
M1, and there is some g for which F (g) is undefined, then there is some
g ∈ M1 such that F (g) is undefined. (This is the main Skolem hull part,
and here we need the axiom of choice in a non-trivial way.)

We then let M2 consist of all restrictions of F to M1, where F is total and com-
putable in Θ1, µ and some ~g in M1. If G is the restriction of F in this way, we put

ΘM(G) := Θ1(F ). We put [e]R(ΘM, µ,~g,~b) = a if and only if {e}(Θ1, µ,~g,~b) = a
for ~g in M1. Then (iii) will ensure that totality of functionals of type 2 is absolute for

M: If M |= ∀g∃a[e]R(Θ, µ, g,~g,~b) = a, then F , defined by F (g) = {e}(Θ1, µ,~g,~b),
is total, and the restriction to M is in M2.

By a similar argument, we observe that ΘM will be extensional: If F1 6= F2,
both are total and computable in Θ1, µ and elements from M1, then the partial
functional F3, where F3(g) = 0 when F1(g) = F2(g) and undefined otherwise, will
also be computable in Θ1, µ and elements from M1, and by (iii), M1 will contain
a g such that F1(g) 6= F2(g). Thus, the restriction operator will be 1-1, and ΘM
is thus extensional, that is, well defined. Except for the construction of M1, the
construction of M is explicit. Moreover, if F ∈ M2 and G is the unique extension
of F computable in Θ1, µ and elements from M1, we have that Θ1(G) ∈ M1, and
that ΘM(F ) = Θ1(G) codes a finite subset of M1 that, together with G (or F )
forms a finite cover of C, so ΘM will be a special fan functional from the point of
view of M. Thus M will satisfy the claim of the lemma. �

Finally, we can prove Theorems 3.2 and 3.3 as follows.

Proof. (of Theorem 3.2) First of all, the functional Θ0 is defined in [33, §5] and
Lemma 3.10 implies that there is at least one countable Θ-structure M, i.e. the
set of codes for Θ-structures is hyperarithmetical and non-empty. By (essentially)
the Gandy basis theorem ([43, III.1.4]), there is then a code f for a countable Θ-

structure M = 〈N,M1,M2, µ,ΘM, R〉 such that ωf1 = ωCK
1 . By Lemma 3.8, ΘM
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has an extension Θ1, and by Lemma 3.9, all functions g computable in Θ1 and µ
are elements of M1, and thus Turing computable in f . Then also ωg1 = ωCK

1 . �

The following provides a proof for Theorem 3.3.

Proof. By Lemmas 3.8, 3.9 and 3.10, the following are equivalent, given e,~g,~b, a:

(i) For all special fan functionals Θ, we have that {e}(Θ, µ,~g,~b) = a
(ii) For all countable Θ-structures M = 〈N,M1,M2, µ,ΘM, R〉, we have that

[e]R(ΘM, µ,~g,~b) = a.

Via coding, the relation in (ii) is Π1
1, so the relation in (i) must also be Π1

1. �

3.3. Beyond the hyperarithmetical via Θ and µ2. In this section, we provide
a direct proof that the combination Θ and µ2 computes a realiser for ATR0.

We proved in [33] that there is no instance Θ such that all functions computable
in Θ and µ are hyperarithmetical. We gave two proofs: one by a direct construction
of a hyperarithmetical functional F such that Θ(F ) can never be contained in the
hyperarithmetical functions, and one by applying term extraction to

P0 ` Π0
1-TRANS + STP→ [ATR0]st

which (indirectly) yields a realiser for ATR0 in terms of Θ and µ2. There are thus
two proofs of essentially the same result, one explicit construction where we do not
analyse the logical strength needed and one indirect, via term extraction, where
the underlying logic is explicit. We consider both approaches to be of value.

In a nutshell, the aim of this section is to prove (inside ACA0) that ATR0 follows
from the Arithmetical Compactness of C, defined as follows.

Definition 3.11 (Arithmetical Compactness of C). For any arithmetically defined
F : C → N, where we allow function parameters, there are f1, . . . , fn ∈ C such that

C ⊆ Cf̄1(F (f1)) ∪ · · · ∪ Cf̄n(F (fn)).

With the exception that we have used the symbol ‘Θ’ for other purposes (namely
to denote a special fan functional), we mostly adopt Simpson’s notation regarding
ATR0 from [54, V.2], namely as follows.

Notation 3.12. Let Γ(n,X,Z) be an arithmetical formula, inducing the operator

Γ̂(X,Z) = {n | Γ(n,X,Z)}
seen as an inductive operator in the first set variable X. We assume A ⊆ N
and let <A be a total ordering of A. We use A and <A as hidden parameters,
and when using the variable Y , we implicitly assume that Y ⊆ N2. We define
Ya := {n | (a, n) ∈ Y } and Y a := {(b,m) | (b,m) ∈ Y ∧ b <A a} for a ∈ A. Finally,

H(Y, Z) is the arithmetical statement (∀a ∈ A)(Ya = Γ̂(Y a, Z)).

Theorem 3.13. Given Γ as above, there is an arithmetical function G2 such that
if F (g) = G(g,A,<A, Z) (g varies over C) and g1, . . . , gn are as in Arithmetical
Compactness for F , then we can construct (uniformly arithmetically in Z, A, <A
and g1, . . . , gn) a pair (Y, h) such that either H(Y, Z) or h : N → N is a strictly
<A-descending sequence in A. The verification can be formalised in ACAω0 .

Proof. Given g, we put Y [g] := {(b, k) | g(〈b, k〉) = 0}. We now define G as follows:
the number G(g,A,<A, Z) is defined to be
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(i) 0 ifH(Y [g], Z) or there is no<A-minmal a such that (Y [g])a 6= Γ̂((Y [g])a, Z).

(ii) 〈a, k〉+ 1 if a is <A minimal such that (Y [g])a 6= Γ̂((Y [g])a, Z) and k is the

least integer in the symmetric difference of (Y [g])a and Γ̂((Y [g])a, Z).

Let F (g) = G(g,A,<A, Z) and let g1, . . . , gn be such that C = Cḡ1(G(g1)) ∪ · · · ∪
Cḡn(G(gn)). If for some i we have F (gi) = 0, then either H(Y [gi], Z) or this is not

the case since there is no <A-minimal a such that (Y [gi])a 6= Γ̂((Y [gi])
a, Z). We

select the least such gi in the lexicographical ordering on C. In the first case, we
let Y = Y [gi] and h be the constant zero, and in the second case we may also
let Y = Y [gi], but we combine µ-recursion and primitive recursion and let h be a

strictly descending <A sequence of a’s such that (Y [gi])a 6= Γ̂((Y [gi])
a).

The other possibility is that F (gi) = 〈ai, ki〉 + 1 for i = 1, . . . , n. If there are
i 6= j such that Y [gi] ∩ A × N 6= Y [gj ] ∩ A × N and there is no <A-minimal a
with (Y [gi])a 6= (Y [gj ])a, we can extract an infinite descending sequence in A from
this information. We will show that the absence of such i and j will lead to a
contradiction. So assume that there is no such i and j. Without loss of generality,
we may assume that a1 ≤A a2 ≤A · · · ≤A an. We make three observations:

(i) If Y [gi] ∩ (A× N) = Y [gj ] ∩ (A× N), then ai = aj .
(ii) If Y [gi] ∩ (A × N) 6= Y [gj ] ∩ (A × N) and a is the A-least number where

(Y [gi])a and (Y [gj ])a differ, then minA{ai, aj} ≤A a.
(iii) Given i, if g is such that (Y [g])ai = (Y [gi])

ai and (Y [g])ai = Γ̂((Y [gi])
ai , Z),

then g is not covered by Cḡi(F (gi)). Moreover, if ai <A aj , then gj will
satisfy this property of g.

It follows that if g is such that (Y [g])an = (Y [gn])an and (Y [g])an = Γ̂((Y [gn])an , Z),
then g is not in any of the sets Cḡi(F (gi)), so these sets do not form a cover. This
is the desired contradiction.

It is easy to see that all steps here can be formalised. �

This gives an alternative proof of the following corollary.

Corollary 3.14. There is no special fan functional Θ that, together with µ, com-
putes only hyperarithmetical functions.

Proof. It is well established that there is no hyperarithmetical realiser for ATR0,
see e.g. the proof of V.2.6 in [54]. �

We also have the following corollary relativising the proof above.

Corollary 3.15. There is an arithmetically defined function F : C2 → N such that
for no special fan functional Θ, the function F (x) = Θ(λy.F (x, y)) is Borel.

Proof. For X ⊂ N, there is a total ordering computable in X that is not a well-
ordering, but such that there is no descending sequence in the ordering hyperarith-
metical in X. Hence, there is no realiser for ATR0 hyperarithmetical in any X, i.e.
no realiser that is Borel. Since we can obtain a realiser for ATR0 by section-wise
application of Θ to an arithmetical functional of two variables, we are done. �

Finally, Hunter introduces a functional in [12, p. 23] that constitutes a ‘uniform’
version of ATR0. This functional is computable from Θ plus µ, as follows
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Corollary 3.16. Uniformly primitive recursive in µ2 and Θ3 there is a functional
T : NN×(2N → 2N)→ 2N such that when f1 codes a well-ordering <f , then T (f, F )
satisfies the following recursion equation for a in the domain of <f :

{b : 〈b, a〉 ∈ T (f, F )} = F ({〈c, d〉 ∈ T (f, F ) : d <f a}).

Proof. In the proof of Theorem 3.13, note the fact that Γ is arithmetical is (only)
used to prove that the defined functional G is arithmetical. The full proof therefore
relativises to any F of the relevant type. �

3.4. Not beyond the hyperarithmetical via Λ and µ2. In this section, we
introduce a functional Λ1 of type (C → N) → (N → C), where C = 2N is the
Cantor space, with the following two properties:

(i) If Λ1(F ) = {fi}i∈N, then
⋃
i∈N Cf̄i(F (fi)) has measure 1.

(ii) Only hyperarithmetical functions are (S1-S9) computable in Λ1 and µ2.

Our motivation for introducing Λ1 is to show that there is a weak fan functional in
which no special fan functional is computable relative to µ2. In [36], this result is
linked to the RM of measure theory, the original Vitali Covering theorem ([60]) in
particular, and it is also generalised to recursion relative to the Suslin functional.

As discussed in Section 3.1.2, item (i) just means that Λ1 is a weak fan func-
tional up to computational equivalence. The existence of a functional Λ satisfying
item (i) follows from the existence of Θ, and we let Λ0 be some fixed instance of
Θ. We define Λ1 in equation (3.4) below, namely in terms of Λ0 and by specify-
ing a different value for certain F . Since item (i) does not require any connection
between Λ1(F ) and Λ1(G) when F 6=2 G, we have much freedom in constructing
Λ1. Of course, item (ii) puts some clear restrictions on how we can define Λ1.
For instance, if F is hyperarithmetical, i.e. computable in µ, we must have that
Λ1(F ) is hyperarithmetical. This can be arranged using basic measure theory and
the Sacks-Tanaka theorems for measure-theoretic uniformity (see below). The next
challenge is presented by ‘iterated’ outputs like for instance

Λ1(λf.Λ1(λg.F (f, g))(17)); (3.2)

these also need to be hyperarithmetical whenever F is. Again, basic measure theory
and the Sacks-Tanaka machinery come to our rescue: as it turns out, except for
a set of f ’s of measure zero, we can use the same value for Λ1(λg ∈ CF (f, g))
independent of f . However, we cannot expect to be able to use the same value as

the output value in (3.2): the more involved Λ1 is in a computation {e}(Λ1, µ,~b),
the harder it is to find a hyperarithmetical output. Our guiding idea is that we
may us the same hyperarithmetical value of Λ(F ) for almost all F computable at
a certain countable level. We make this precise, as follows.

In the construction of Λ1, we use the available machinery from measure theory
and hyperarithmetical theory (i.e. the computability theory of µ), to construct a
well-ordered sequence of possible values for Λ1 indexed over the first non-computable
ordinal ωCK

1 and (indirectly) a set X of measure 1 so that whenever F is computable
in Λ1 and elements from X, then we may let Λ1(F ) be in that sequence. This may
look circular, but in reality, Λ1 and our sequence will be defined by a simultaneous
transfinite recursion over ωCK

1 . This transfinite recursion is unfortunately (and
unavoidably, we believe) a rather complex one.
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Now, let us consider the machinery we need. First of all, we assume without
mentioning that all sets and functions are measurable. Actually, we will only work
with subsets of finite or countable products of the Cantor space C that are Σ1

1 or
Π1

1 relative to objects of type 1, so measurability will not be an issue. The Cantor
space C will have measure 1, so all products will have measure 1. We use m for the
measure on all such product spaces. We will let “almost everywhere” mean that
the property holds except possibly on a set of measure 0, which in our cases means
that the property holds on a set of measure 1. We write ‘a.a.’ as short for ‘almost
all’. We will rely on two facts from measure theory, where all spaces are products
E or D of the Cantor space C.

Proposition 3.17.

(i) A countable intersection of sets with measure 1 has measure 1.
(ii) If X ⊂ E × D then m(X) = 1 if and only if m({e | (e, d) ∈ X}) = 1 for

a.a. d ∈ D (if and only if m({d | (e, d) ∈ X}) = 1 for a.a. e ∈ E).

These facts can be found in any standard textbook on measure theory. Item (ii)
is actually a special case of Fubini’s theorem for characteristic functions.

By convention, we denote infinite sequences of binary functions as (f) := {fj}j∈N.

Definition 3.18. Let F be a partial function from C to N and let (f) be a sequence.

(i) We say that (f) suffices for F if F (fj) is defined for all j ∈ N and
m(
⋃
j∈N Cf̄j(F (fj))) = 1.

(ii) We say that (f) fails F if F (fi) is undefined for some i ∈ N.

Now, (f) suffices for F exactly when (f) can be an acceptable value of Λ1(G) for
all total G extending F . In the next lemmas, we will make the following intuition
precise: we can choose the same value Λ1(F ) for large parameterised classes of F s,
and we have a lot of freedom in choosing this common value.

All the below arguments are elementary from the point of view of measure theory.

Lemma 3.19. Let F : C → N be a partial (measurable) functional with measurable
domain.

(i) If the domain of F has measure 1, then {(f) | (f) suffices for F} has
measure 1.

(ii) If the domain of F has measure less than 1, then {(f) | (f) fails F} has
measure 1.

Proof. Proof of item (i): for k ∈ N, we will prove that the set of (f) such that
m(
⋃
j∈N Cf̄j(F (fj))) > 1− 2−k, has measure 1. To this end, let nk be so large that

m({f ∈ C | F (f) < nk}) > 1 − 2−k. Let sk,1, . . . , sk,mk
be the binary sequences

sk,l of length nk such that m({f ∈ Csk,l
| F (f) < nk}) > 0. Let rk,l be this

positive measure. Then m(
⋃mk

l=1 Csk,l
) > 1 − 2−k and for each sk,l the set of (f)

such that for some fj , F (fj) < nk and fj extends sk,l, has measure 1. Indeed the
probability of not satisfying this is

∏∞
j=0(1 − rk,l) = 0. Since a finite intersection

of sets of measure 1 still has measure 1, our claim follows; the previous generalises
to countable intersections and item (i) holds.

Proof of item (ii): in this case, the probability that fi is in the domain of F is
smaller than 1 by a fixed value. Then the infinite product of the domain of F has
measure 0. Thus, (f) fails F when (f) is in the complement of this product. �
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Lemma 3.20. Let F : C2 → N be a partial, measurable functional defined on a
measurable set and put Fg(f) = F (f, g). Then the set of (f) ∈ CN such that for
a.a. g ∈ C we have that

(i) If the domain of Fg has measure 1, then (f) suffices for Fg
(ii) If the domain of Fg has measure < 1 then (f) fails Fg

has measure 1.

Proof. Let X be the set of 〈g, (f)〉 such that either Fg is defined on a set of measure
1 and (f) suffices for Fg or Fg is defined on a set of measure < 1 and (f) fails Fg.
By Lemma 3.19, this set has measure 1, since for all g we have for almost all (f)
that 〈g, (f)〉 ∈ X. Then, by Proposition 3.17, the set of (f) such that 〈g, (f)〉 ∈ X
for almost all g has measure 1, and we are done. �

Since all (finite or countable) products of C we consider are isomorphic (with the
exception of C0), we will apply the previous lemma in other cases than for C2 as
well. For technical reasons, we shall need a strengthening of Lemma 3.20 as follows.

Definition 3.21. Let ~c be a non-repeating sequence from N. We define (f)~c as the
sequence of fi indexed via ~c.

Lemma 3.22. Let ~c be a non-repeating sequence of length k′ and let X ⊆ Ck
′+k

have measure 1. Let F : C × Ck′+k → N be a partial functional that is measurable

with a measurable domain and put F~h,~g(g) := F (g,~h,~g) for ~h ∈ Ck′ and ~g ∈ Ck.

Then the set of pairs 〈(f), ~g〉 such that 〈(f)~c, ~g〉 ∈ X and

(i) if the domain of F(f)~c,~g has measure 1, then (f) suffices for F(f)~c,~g, and
(ii) if the domain of F(f)~c,~g has measure < 1, then (f) fails F(f)~c,~g,

has measure 1.

Proof. Combining Proposition 3.17.(ii) with the arguments of Lemmas 3.19 and 3.20,
the lemma follows easily. The assumption that ~c is non-repeating is essential here,
since otherwise the set of possible (f)~c will have measure 0 and not 1. �

Now we have established the measure-theoretical lingo we need for the construc-
tion of Λ1. In order to prove the main technical lemma, we also need some theorems
from higher computability theory. We have formulated them in the form we need.
For proofs, see [43, Sections IV.1-2 and Section X.4]. We will actually need some
of these results in relativised forms, as follows.

Proposition 3.23.

(i) If A ⊂ C is computable in f and µ via index e, then the relation m(A) = 1
is decidable in µ, uniformly in f and e.

(ii) [Sacks,Tanaka] If A ⊂ C is hyperarithmetical and m(A) > 0, then A
contains a hyperarithmetical element.

(iii) [Gandy Selection] If a Π1
1-set of functions contains a hyperarithmetical el-

ement, we may find one, effectively in µ.
(iv) [Sacks, Tanaka] The set of g ∈ C such that ωg1 = ωCK

1 has measure 1.

Proof. The items from the theorem are proved as follows in [43]. Item (i) is Theorem
IV.1.3. Item (ii) is Theorem IV.2.2. Item (iii) is proved as Theorem X.4.1 in a more
general form. Item (iv) is Corollary IV.1.6. �
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We have established the general machinery needed below, and now start working
towards the main result of his section.

Convention 3.24. From now on, we let ‘≺’ be a total, computable ordering of N
such that the well-ordered initial segment has length ωCK

1 ; ≺ may not be a well-
ordering, but we will not actively use this fact. We let W = W (≺) be the elements
in the well-ordered part, and for i ∈W we let αi be the ordinal rank of i in ≺.

It is well-known that orderings as in Convention 3.24 exist. The set of com-
putable total orderings that in addition are well-orderings, is complete Π1

1; the
set of computable total orderings without hyperarithmetical infinite descending se-
quences is Σ1

1. Thus there is one ordering that is of the latter kind but that is not
of the former kind. Such orderings are known as computable pseudo-wellorderings.
The well-ordered initial segment is Π1

1, but not ∆1
1 or hyperarithmetical.

Let [f ] be a (double) sequence {(fi)}i∈W = {fi,j}i∈W,j∈N in (W × N) → (N →
{0, 1}). Each [f ] like this will define a partial approximation Λ[f ] to a weak fan
functional in the following sense:

Definition 3.25. Let [f ] be as above. For F : C → N, we define

(i) Λ[f ](F ) = (fi) if i ∈ W , (fi) is sufficient for F and no (fi′) is sufficient for
F for i′ ≺ i.

(ii) Λ[f ](F ) is undefined if there is no such i ∈W .

Our aim is to construct [f ] is such a way that all functions computable in any to-
tal extension Λ of Λ[f ] and µ2 are hyperarithmetical. However, such a construction
requires controlling the complexity of computations relative to any such extension.
One obstacle is the requirement in Kleene’s S8 that the input functional F must be
total. We get around this obstacle by considering a more liberal interpretation of
S8, so that it works for partial inputs as well, as long as they contain the relevant
information. Such interpretations are well-established; see e.g. [20, §6.4].

Definition 3.26. We define the relation ‘{e}[f ](Λ[f ], µ,~g,~b) = a’ by transfinite
recursion. We keep the schemes S1-S7, S8.1 and S9 from Definition 3.1, only adding
[f ] as an index everywhere. We omit S8.2 and give a new interpretation of S8.3:

(S8.3) If e = 〈8, 3, e1〉, let F (g) = {e1}[f ](Λ[f ], µ, g,~g,~b). Then F is in general a
partial function of type 2. Let i ∈W be the ≺-least number such that:

(i) the value F (fi′,j) is defined for all i′ � i and all j ∈ N,
(ii) the sequence (fi) suffices for F . If there is one such i, then define

{e}[f ](Λ[f ], µ,~g, a, b,~b) := fi,a(b); undefined otherwise.

Since ‘{e}[f ](Λ[f ], µ,~g,~b) = a’ as in the previous definition is defined as the

least fixed point of a positive inductive operator, each sequence 〈e,Λ[f ], µ,~g,~b, a〉
in the relation has an ordinal rank. Since we only require -even in the case of
S8.3- a countable set of immediate sub-computations to terminate, the rank of any
terminating computation modulo a given [f ] is countable, and actually an ordinal
computable in [f ] and the argument list ~g.

We will only apply this definition in the case where the map i 7→ (fi) is a
function that is partially Kleene-computable in µ2. In this case, the partial function

{e}[f ](Λ[f ], µ,~g,~b) will be computable in µ2 as well. Our goal is to construct [f ] in
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such a way that for all indices e, input arguments ~b from N, and total extensions Λ
of Λ|f ], we have that

{e}(Λ[f ], µ,~b) ' {e}[f ](Λ[f ], µ,~b), (3.3)

where ‘'’ means that both sides are undefined or both sides are defined and equal.
If we succeed, we obviously have that all functions Kleene-computable in Λ will be
hyperarithmetical when Λ is a total extension of Λ|f ]. We will not need that the
total extension Λ itself is a weak fan functional for this argument.

After the construction of [f ], we will prove (3.3) by induction on the ordinal rank

of the true Kleene-computation {e}(Λ, µ,~b). In order to make this proof work, we
have to take into account that there are sub-computations with arguments from
C. We will see that it will be possible to construct [f ] such that we only have to
consider argument sequences ~g of length k from a Σ1

1-set Xk of measure 1. Let us
now outline the construction, and what we attempt to achieve at each step:

(i) We will construct [f ] by defining (fi) by recursion on i ∈W
(ii) In parallel to defining (fi), we will for each integer k construct a hyper-

arithmetical set Xi,k ⊆ Ck of measure 1 such that for any set of parameters

~g ∈ Xi,k, integer parameters ~b, and index e, we will have that the intended

proof by induction will work for computations {e}(Λ, µ,~g,~b) of ordinal rank
bounded by αi, the rank of i in (W,≺).

(iii) (fi) will be chosen as a hyperarithmetical sequence that is sufficient for
almost all functionals that are total on a set of measure 1 via computations
strictly bounded by αi, and fails almost all the others.

(iv) To verify the key Lemma 3.29, we have to consider inputs ~g together with

inputs of the form fi,j . Thus we will consider input sequences ~h,~g where

the sequences ~h are ’specified’ as certain fi,j and the sequences ~g will vary
over sets of measure 1.

We will point out where the sequences ~h are needed in our technical argument.
The underlying idea is that we may pick Λ(F ) ‘at random’ and the probability of
success is 1. However, this random value must be random with respect to values of
Λ obtained while computing F from Λ. Making this idea precise, the need arises
to take previous values of Λ into account.

As a convention, when we write {e}ind(Λind, µ,~g,~b), where ‘ind’ is any index, we
assume without mentioning that the length of ~g fits the expression.

Convention 3.27. If (fk) is a sequence {fk,j}j∈N for all k � i ∈W , then we write
[f ]i for {fk,j}k�i,j∈N. Similarly, if (fk) is a sequence {fk,j}j∈N for all k ≺ i, then
we write [f ]≺i for {fk,j}k≺i,j∈N.

Our definition of Λ[f ] readily generalises to Λ[f ]i and Λ[f ]≺i
, and so does the

recursive definition of {e}Λ[f]
(Λ[f ], µ,~g,~b).

Convention 3.28. In the formulation of the next lemma, we make us of three
kinds of inputs: integers, elements of the form fi,j that can be seen as parameters,
and sequences ~g from Ck that can be seen as variables. As a convention, we order

them (~h,~g,~b). There is no harm in this since we may always use S6 to permute
inputs. In the proof, we shall introduce a fourth category (fi)~c in the recursion
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step, objects that may be in the ~h-part at later stages, but whose values have not
been decided before we select the one (fi) we want to use.

There is a small twist to this notation: for our construction and argument it
is important that the sequence ~c is non-repeating, but for our application we may
want to consider computations where the same function is used in several locations
in the list of arguments. Instead of building up an unbearable notation, we assume

that we have one case for each way of distributing the arguments (~h, (fi)~c, ~g,~b) as
a list of inputs. Thus, each case we treat in the proof in theory covers countably
many cases. We will inform the reader when we actually make use of this.

We have formulated our next item as a lemma, but it is in reality a combina-
tion of a construction by recursion and a verification of the key properties of this
construction. We will refer to the details of the construction in later proofs.

Lemma 3.29. By transfinite recursion on i ∈W , we can construct [f ] = {(fi)}i∈W
and sets Xi,k ⊆ Ck of measure 1 (for each k ∈ N and i ∈ W ) such that an alleged

computation {e}[f ]i

(
Λ[f ]i , µ,

~h,~g,~b
)

will terminate whenever the parameters satisfy
the following:

(i) i ∈W has norm αi, e is a Kleene-index, ~b ∈ seq and ~g ∈ Xi,k,

(ii) ~h is a sequence from {fi′,j | i′ � i ∧ j ∈ N}
(iii) there is some extension [f ′] of [f ]i such that {e}[f ′](Λ[f ′], µ,~h,~g,~b)↓ with a

computation of ordinal rank at most αi.

Proof. We will show how to construct (fi) and Xi,k from [f ]≺i and {Xi′,l | i′ ≺
i, l ∈ N}. The key steps in our construction are:

(a) For each k, find a hyperanalytical set Zi,k ⊆ CN×Ck with measure 1, such
that the induction step works for all 〈(f), ~g〉 ∈ Zi,k if we use (f) as our (fi).

(b) We let Yi be the set of (f) such that for each k ∈ N, we have m({~g |
〈(f), ~g〉 ∈ Zi,k}) = 1. Then Yi has measure 1 and is hyperarithmetical by
Proposition 3.23.(i).

(c) We then select (fi) ∈ Yi computably in µ by the Sacks-Tanaka basis theorem
(see Proposition 3.23.(ii)) and Gandy Selection (see Proposition 3.23.(iii))
computably in µ.

(d) Finally, we define Xi,k := {~g | 〈(fi), ~g〉 ∈ Zi,k}.
The hard work will be to carry out step (a): the remaining steps then all follow by
our general machinery.

Now assume that [f ]≺i and each Xi′,l, for i′ ≺ i and l ∈ N, are constructed
satisfying the claim of the lemma. We define X≺i,k =

⋂
i′≺iXi′,k, noting that

if i0 is the ≺-least integer, then X≺i0,k is Ck. The induction hypothesis is that

m(X≺i,k) = 1 and that for each e, each ~b, each ~h from {fi′,j | i′ ≺ i∧ j ∈ N} , each
k ∈ N and each ~g ∈ X≺i,k we have that if there is any extension [f ′] of [f ]≺i such

that {e}[f ′](Λ[f ′], µ,~h,~g,~b)↓ with a computation of ordinal rank less than αi, then

{e}[f ]≺i
(Λ[f ]≺i

, µ,~h,~g,~b) ↓.
Since at the end, we use the recursion theorem for µ, we also assume that X≺i,k

is hyperartithmetical, with an index computable from µ, i and k.

Firstly, we construct sets of measure 1 dealing with each of the following cases:

{e}(Λ, µ,~h, (fi)~c, ~g,~b),
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where e is a fixed Kleene-index, ~b is a fixed input of integers, ~h is as above , ~c is
a sequence of length k′ and ~g ∈ Ck. Recall that each such case covers countably
many cases by Convention 3.28. Then we let Zi,k be the intersection of the sets
constructed for each of the cases. The purpose of ~c is to specify which elements
in the sequence (fi) we are about to construct, will be used as arguments in the
computation without specifying (fi) itself. All together, there are only countably
many cases, so our set Zi,k will also have measure 1. The constructions are quite
explicit and the induction hypothesis readily implies that Zi,k is hyperarithmetical.

We now show what to do in the two cases of composition and application of Λ;
the rest of the cases are trivial, or they follow the pattern of ‘S4 - composition’. We

first treat the scheme S4 as follows: let ~h and ~c be as above and consider the case

{e}(Λ, µ,~h, (fi)~c, ~g,~b) = {e1}(Λ, µ,~h, (f)~c, ~g, {e2}(Λ, µ,~h, (f)~c, ~g,~b),~b).

We need to find a set of pairs 〈(f), ~g〉 of measure 1 that guarantees that the induction
step for this case goes through. Now, by Proposition 3.17.(ii) and the induction
hypothesis, the set of 〈(f), ~g〉 such that (f)~c, ~g ∈ X≺i,k′+k has measure 1. Choose
(f) and ~g in this set, and let [f ′] be any extension of [f ]≺i(f), where we add the
sequence (f) to the end of the double sequence [f ]≺i. If we have

{e}[f ′](Λ[f ′], µ,~h, (f)~c, ~g,~b) =

{e1}[f ′](Λ[f ′], µ,~h, (f)~c, ~g, {e2}[f ′](Λ[f ′], µ,~h, (f)~c, ~g,~b),~b) = a

via a computation of ordinal rank at most αi, then {e2}[f ′](Λ[f ′], µ,~h, (f)~c, ~g,~b) = c

for some c, and also {e1}[f ′](Λ[f ′], µ,~h, (f)~c, ~g, c,~b) = a, both with computational
ranks strictly below αi. Then, since (f)~c, ~g ∈ X≺i,k′+k, we can apply the induction
hypothesis and conclude that

{e2}[f ]≺i
(Λ[f ]≺i

, µ,~h, (f)~c, ~g,~b) = c and {e1}[f ]≺i
(Λ[f ]≺i

, µ,~h, (f)~c, ~g, c,~b) = a.

Thus, with any choice of (f) as (fi) and ~g as above, we have

{e}[f ]i(Λ[f ]i , µ,
~h, (fi)~c, ~g,~b) = a,

as required for this case.

We now turn to the cases with application of Λ, i.e. computations of the form

Λ(λg.{e}(Λ, µ,~h, g, (f)~c, ~g,~b)).

As before, we see that the set of 〈(f), g,~g〉 such that g, (f)~c, ~g ∈ X≺i,1+k′+k has
measure 1.

We now define F(f),~g(g) := {e}[f ]≺i
(Λ[f ]≺i

, µ,~h, g, (f)~c, ~g,~b) provided this com-
putation terminates with ordinal rank < αi. We claim that the following three sets
all have measure 1:

(i) The set of 〈(f), ~g〉 such that

m({g | (f)~c, g,~g ∈ X≺i,1+k′+k}) = 1 and (f)~c, fj , ~g ∈ X≺i,1+k′+k for all j ∈ N.

(ii) The set of 〈(f), ~g〉 such that (f)~c, ~g ∈ X≺i,k′+k.
(iii) The set of 〈(f), ~g〉 such that either (a) or (b) holds, as follows:

(a) The domain of F(f),~g has measure 1 and (f) is sufficient for F(f),~g.
(b) The domain of F(f),~g has measure < 1 and (f) fails F(f),~g via an fj

such that the sequence (f)~c, fj , ~g is in X≺i,1+k′+k.
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For item (i), we use the second item of Proposition 3.17 and the fact that a countable
product of sets of measure 1 will have measure 1. Item (ii) is a consequence of the
second item of Proposition 3.17 and item (iii) is a consequence of Lemma 3.22.

We now consider 〈(f), ~g〉 in the intersection of these three sets. Let [f ′] be an ex-

tension of [f ]≺i(f). Assume that Λ[f ′]

(
λg{e}|f ′](Λ[f ′], µ,~h, g, (fa)~c, ~g,~b)

)
terminates

with a computation of ordinal rank at most αi.

First assume that Λ[f ′](F(f),~g) = (fi′) for some i′ ≺ i. Then, for all i′′ � i′and
all j we have that

{e}[f ′](Λ[f ′], µ, fi′′,j , (f)~c, ~g,~b) ↓
by a computation of ordinal rank below αi. Since (f)~c, ~g ∈ X≺i,k′+k, we may apply

the induction hypothesis, and see that {e}[f ]≺i
(Λ[f ]≺i

, µ, fi′′,j , (f)~c, ~g,~b) ↓ by the
same computation. Then by a computation of ordinal rank not exceeding αi:

Λ[f ]≺i(f)(λg.{e}[f ]≺i
(Λ[f ]≺i

, µ,~h, g, (f)~c, ~g,~b)) = (fj)

This is the one spot where we need extra parameters from [f ]≺i, in his case fi′′,j ,
when we formulate the properties of ~g used at step αi. Since fi′′,j may already be

in ~h, this is also the spot where we need Convention 3.28.

Secondly, suppose that the assumption from the previous paragraph is not the case.
By the argument above, we then have the following:

{e}[f ]≺i
(Λ[f ]≺i

, µ, fi′,j , (f)~c, ~g,~b) ↓

for all i′ ≺ i and j ∈ N. There are two sub-cases to consider:

(i) If the domain of F(f),~g has measure 1, we get that Λ[f ]≺i(f)(F(f),~g) = (f)
since (f) is the first single sequence in the double sequence [f ]≺i(f) that is
sufficient for F(f),~g. By the definition of F(f),~g, this observation verifies the
induction step in this case.

(ii) If the domain of F(f),~g has measure < 1, there is one fj for which F(f),~g

does not terminate. In light of item (i), we have that (f)~c, fj , ~g is in
X≺i,1+k′+k, and using the induction hypothesis negatively, we see that

{e}(Λ[f ′], µ,~h, fj , ~g,~b) does not terminate before αi. Since this value is re-
quired for the Λ[f ′]-computation in question to terminate at all, the latter
cannot terminate at stage αi or earlier.

We are now through all cases, i.e. the proof of Lemma 3.29 is finished. �

We now let [f ] and each Xi,k be as constructed above. For each k ∈ N, we define
the intersection Xk =

⋂
i∈W Xi,k.

Lemma 3.30. For each k and ~g ∈ Xk we have m({g | g,~g ∈ Xk+1}) = 1.

Proof. It suffices to show that m({g | g,~g ∈ Xi,k+1}) = 1 for co-finally many
i ∈ W , and it is the requirement in item (i) from the proof of Lemma 3.29 in
the treatment of Λ-application that does the trick. Let ~g ∈ Ak and consider
{e}(Λ, µ,~g) = Λ(λg.{e1}(Λ, µ, g,~g)) for any e1 of suitable arity. When we treat
this case stepping from X≺i,k to Xi,k, the aforementioned item (i) restricts our
attention to ~g additionally satisfying m({g | g,~g ∈ X≺a,k+1}) = 1. In the limit,
this required property thus holds. �
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Let Λ0 be any weak fan functional, and let [f ] be as constructed in the proof of
Lemma 3.29. We define Λ1 as follows:

Λ1(F ) =

{
Λ[f ](F ) if defined
Λ0(F ) otherwise

(3.4)

and prove our main theorem as follows.

Theorem 3.31. If f : N→ N is computable in Λ1 + µ, then it is computable in µ.

Proof. We will prove the stronger claim (3.5) below by induction on the length of
the computation. We need some notation as follows. Let e be a Kleene index, let
~b be a sequence from N and let ~g of length k be a sequence from

⋂
i∈W Xi,k such

that ωCK
1 = ωCK,~g

1 . By Proposition 3.23.(iv), the final restriction does not alter the
measure of the set. Now consider the claim:

{e}(Λ1, µ,~g,~b) = a→ (∃i ∈W )({e}[f ]i(Λ[f ]i , µ,~g,
~b) = a). (3.5)

The theorem follows from the claim (3.5) and the total instances λc.{e}(Λµ, c).
We now prove the claim (3.5) by induction on the ordinal rank of the computation

{e}(Λ1, µ,~g,~b) = a. The proof is split into cases according to which Kleene scheme
e represents, and all cases except those for application of µ or Λ1 are trivial. We
will consider the two cases (3.6) and (3.7). First, we consider

{e}(Λ1, µ,~g,~b) = µ(λc.{e1}(Λ1, µ,~g, c,~b)). (3.6)

Then, by the induction hypothesis, we have the following termination property:

(∀c ∈ N)(∃i ∈W )
[
{e1}[f ]i(Λ[f ]i , ~g, c,

~b)↓
]
.

Since ωCK
1 is Σ1-admissible relative to ~g (see footnote 6), there is a bound on how

far out in W we need to go, i.e. (∃i ∈ W )(∀c ∈ N)[{e1}a[f ]≺i
(Λ[f ]≺i

, ~g, c,~b)↓], and

{e}[f ]i

(
Λ[fi], µ,

~h,~g,~b
)
↓ follows.

For the second case, consider the following (involving a slight abuse of notation):

{e}(Λ1, µ,~g,~b) = Λ1(λg.{e1}(Λ1, µ, g,~g,~b)). (3.7)

Since this is a classically valid Kleene computation, we have that λg.{e1}(Λ1, µ, g,~g,~b)
is total. By Lemma 3.30 and the induction hypothesis, for almost all g there is an

ig ∈W such that {e1}[f ]ig

(
Λ[f ]ig

, µ, g,~g,~b
)
↓. Now consider the sequence

i 7→m
(
{g | {e1}[f ]i(Λ[f ]i , µ, g,~g,

~b)↓}
)
.

This sequence is increasing, computable in ~g and µ, and has limit 1, implying that

(∀k)(∃ik ∈W )
(
m({g | {e1}[f ]ik

(Λ[f ]ik
, µ, g,~g,~b)↓}) > 1− 2−k

)
.

Hence, by the fact that ωCK
1 = ωCK,~g

1 and is Σ1 -admissible in ~g, we see that there
must be i ∈W such that

m({g | {e1}[f ]i(Λ[f ]i , µ, g,~g,
~b)↓}) = 1.

In this light, our construction guarantees that (fi) is sufficient for λg.{e1}(Λ1, µ, g,~g,~b).
Unless some (fi′) already does the job for i′ ≺ i, we may conclude that

{e}(Λ1, µ,~g,~b) = (fi) = {e}[f ]i(Λ[f ]i , µ,~g,
~b).

This ends the induction step, and we are done. �
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4. Reverse Mathematics of the special fan functional

We show how Θ (and its generalisations) can reach the current outer edge of RM
(and its higher-order generalisation).

First of all, in Section 4.1, we investigate the strength of the combination of Θ
and S2, which will be seen to reach the current upper limit of RM. Indeed, we
have shown in [34] that the combination S2 + Θ computes Gandy’s Superjump, a
functional intimately connected to ∆1

2-CA0. As a complementary result, we show
in Section 4.1 that the system Π1

1-CAω0 +QF-AC2,1 +HBU behaves as follows: (i) it
implies ∆1

2-CA0, and (ii) it proves the same Π1
3-sentences as Π1

2-CA0. To establish
these results, we derive [Π1

2-CA0]st in P0 + Π1
1-TRANS + STP.

Secondly, Θ, STP, and HBU express the compactness of Cantor space and the
unit interval (in various forms). Since the compactness of function spaces is essential
to the study of the gauge integral (see e.g. [24, 26]), it is a natural question how
strong such compactness properties are. As a first step, we study in Section 4.2
the strength of such a compactness property inspired by STP. In particular, we
formulate a generalisation of Theorems 2.19 and 4.1 to higher types suggested by
[51, 52]. As a result, the compactness of function spaces seems quite strong from
the point of view of RM.

4.1. At the limit of Reverse Mathematics. In this section, we derive [Π1
2-CA0]st

in P0 + Π1
1-TRANS + STP, which is a result similar to Theorem 2.19. We obtain

interesting corollaries involving ∆1
2-CA0 and Π1

2-CA0. We first discuss some of the
history of Π1

2-CA0 and related systems.

The system Π1
2-CA0 appears in the study of the Reverse Mathematics of topology

by Mummert and Simpson ([27]), who identify this system as the ‘current limit’ of
RM. The coding used by Mummert and Simpson is however not unproblematic, as
discussed by Hunter ([12]). Furthermore, it is known that Π1

2-CA0 is equivalent to
Σ1

2-DC0 and Σ1
2-SEP0 by [54, VII.6.9 and VII.6.14].

To the best of our knowledge, Π1
2-CA0 is also the current limit of ordinal analysis;

according to Rathjen ([40]), the strength of Π1
2-CA0 dwarfs that of Π1

1-CA0. By the
following theorem and its corollaries, STP and HBU are however all that is needed
to step from the latter system to the former (in various guises).

Theorem 4.1. The system P0 + Π1
1-TRANS + STP proves [Π1

2-CA0]st.

Proof. As noted in [54, VII.6.14], ACA0 proves that Π1
2-CA0 is equivalent to Σ1

2-SEP,
where the latter is: For ϕ1, ϕ2 ∈ Σ1

2 not involving the variable Z1,

(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))→ (∃Z1)(∀n0)
[
ϕ1(n)→ n ∈ Z ∧ ϕ2(n)→ n 6∈ Z

]
. (4.1)

We shall prove [Σ1
2-SEP]st in P0 + Π1

1-TRANS+ STP. Since P0 + Π0
1-TRANS proves

the axioms of ACA0 relative to ‘st’, we obtain [Π1
2-CA0]st.

Let ϕi(n) be short for the formula (∃g1
i )(∀h1

i )(∃x0
i )(fi(hixi, gixi, n) = 0) and fix

standard f1
i for i = 1, 2. Then assume

[
(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))

]st
, which is

(∀stn0)
[
(∀stg1

1)(∃sth1
1)(∀stx0

1)(f1(h1x1, g1x1, n) 6= 0)

∨ (∀stg1
2)(∃sth1

2)(∀stx0
2)(f2(h2x2, g2x2, n) 6= 0)

]
.
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Using (µ1)st, which follows7 from Π1
1-TRANS, the previous formula implies that:

(∀stn0, g1
1 , g

1
2)
[

(∀stx0
1)(f1

(
µ1(λσ1.f1)x1, g1x1, n

)
6= 0) (4.2)

∨ (∀stx0
2)(f2

(
µ1(λσ2.f2)x2, g2x2, n

)
6= 0)

]
,

where we suppressed parameters, as the ‘full’ notation of λσi.fi is λσ0∗

i .fi(σi, gixi, n).
Now fix nonstandard N0 and apply Π0

1-TRANS to (4.2) to obtain:

(∀stn0, g1
1 , g

1
2)
[

(∀x0
1 ≤ N)(f1

(
µ1(λσ1.f1)x1, g1x1, n

)
6= 0) (4.3)

∨ (∀x0
2 ≤ N)(f2

(
µ1(λσ2.f2)x2, g2x2, n

)
6= 0)

]
.

Now let Ai(n, gi) be the (equivalent to quantifier-free) following formula

(∀x0
i ≤ N)(fi( µ1(λσi.fi)xi, gixi, n) 6= 0),

and let A(n, g1, g2) be the formula A1(n, g1) ∨ A2(n, g2), i.e. the formula in square
brackets in (4.3). By assumption, (∀stn0, g1

1 , g
1
2)A(n, g1, g2). Now consider:

(∀stv1∗ , x0∗)(∃w1∗ , y0∗)(∀g1 ∈ v, n0 ∈ x) (4.4)[
g ∈ w ∧ n ∈ y ∧ (∀h1, h2 ∈ w,m ∈ y)A(m,h1, h2)

]
.

Note that (4.4) holds by taking w = v and y = x. Applying I to (4.4), we obtain

(∃w1∗ , y0∗)(∀stg1, n0)
[
g ∈ w ∧ n ∈ y ∧ (∀h1, h2 ∈ w,m ∈ y)A(m,h1, h2)

]
, (4.5)

which -intuitively speaking- provides two sequences w, y (of nonstandard length)
encompassing all standard functions and standard numbers and such that all of
its elements satisfy A. In particular, one can view (4.5) as obtained by applying
overspill to (4.3) while making sure all standard functions are in w.

Next, define the set Z1
0 (actually a binary sequence) as follows: n ∈ Z0 ↔ (∃g1 ∈

w)¬A1(n, g), where w is the sequence from (4.5). Note that the right-hand side of
the equivalence is actually ‘(∃i0 < |w|)¬A1(n,w(i))’, i.e. Z0 is definable in P0.

Let Z1 be a standard set such that Z0 ≈1 Z as provided by STP. Furthermore,
since µ1 is standard, we have the following implications (for standard n):

(∃stg1
1)(∀sth1

1)(∃stx0
1)(f1(h1x1, g1x1, n) = 0)

→ (∃stg1
1)(∃stx0

1)(f1(µ1(λσ1.f1)x1, g1x1, n) = 0)

→ (∃g1
1 ∈ w)(∃x0

1 ≤ N)(f1(µ1(λσ1.f1)x1, g1x1, n) = 0)

→ (∃g1
1 ∈ w)¬A1(n, g1)→ n ∈ Z0 → n ∈ Z.

Now, since y from (4.5) contains all standard numbers, the second conjunct of (4.5)
implies (by definition) that for standard m (by the definition of A):

(∀h1 ∈ w)A1(m,h1) ∨ (∀h2 ∈ w)A2(m,h2). (4.6)

7In the definition of Π1
1-TRANS, bring outside the standard quantifiers and apply HACint.

Introduce standard quantifiers in the antecedent using Π0
1-TRANS to obtain (µ1)st.
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Similarly, consider the following series of implications (for standard n):

(∃stg1
2)(∀sth1

2)(∃stx0
2)(f2(h2x2, g2x2, n) = 0)

→ (∃stg1
2)(∃stx0

2)(f2(µ1(λσ2.f2)x2, g2x2, n) = 0)

→ (∃g1
2 ∈ w)(∃x0

2 ≤ N)(f2(µ1(λσ2.f2)x2, g2x2, n) = 0)

→ (∃g1
2 ∈ w)¬A2(n, g2) (4.7)

→ (∀g1
1 ∈ w)A1(n, g1) (4.8)

→ n 6∈ Z0 → n 6∈ Z.

Note that (4.8) follows from (4.7) by (4.6). Thus, Z is as required for [Σ1
2-SEP]st. �

The following corollary was proved in [33] by using the fact that no type two
functional (hence including µ1) can compute an instance of Θ. Hence, we observe
that the computability-theoretic approach ‘scales’ better than our above approach
via Nonstandard Analysis, but the latter may be called ‘conceptually simpler’.

Corollary 4.2. The system P0 + Π1
1-TRANS cannot prove STP.

Proof. The system E-PRAω + (µ1) is a Π1
3-conservative extension of Π1

1-CA0 by
[42, Theorem 2.2]. Furthermore, let ϕ be an arithmetical sentence (resp. not)
provable in Π1

2-CA0 (resp. Π1
1-CA0). Suppose P0 + Π1

1-TRANS ` STP and note that
P0 + Π1

1-TRANS ` ϕ by the theorem (and the fact that ϕ↔ ϕst given Π0
1-TRANS).

Since Π1
1-TRANS is converted into (µ1) by term extraction, we obtain RCAω0 +(µ1) `

ϕ, a contradiction with the aforementioned conservation result for (µ1). �

To be absolutely clear, we now discuss what does, and more importantly, what
does not follow from Theorem 4.1.

Remark 4.3. First of all, one of the main consequences of the Transfer axiom
of IST is the equivalence ϕ ↔ ϕst (for any internal ϕ with standard parameters).
In the absence of the full axiom of Transfer, as is the case for e.g. the system
in Theorem 4.1, this equivalence may no longer hold. Hence, the system from
Theorem 4.1 does not necessarily prove Π1

2-CA0. By contrast, the former system
does prove the arithmetical consequences of Π1

2-CA0, thanks8 to Π0
1-TRANS.

Secondly, an interesting corollary of Theorem 2.19 is that (µ2) + (∃Θ)SFF(Θ)
implies ATR0 over RCAω0 (see Theorem 2.11). To obtain this corollary, one observes
that ATRst

0 implies (using Π0
1-TRANS) the following normal form:

(∀stX1, f1)(∃stY 1)
[
WO(X)→ Hf (X,Y )

]
. (4.9)

One then applies term extraction to P0 + Π0
1-TRANS + STP ` (4.9); omitting the

extracted term, one obtains that [(µ2) + (∃Θ)SFF(Θ)] → ATR0 over RCAω0 . How-
ever, we can only obtain the latter implication because ATRst

0 implies an equivalent
normal form, namely (4.9), which is highly similar to ATR0 itself. The existence of
such a ‘highly similar’ normal form (given a relatively weak system) is exceptional
in that e.g. [WKL]st, [Σ1

1-SEP]st, and [Π1
2-CA0]st do not9 have them, to the best of

8For internal and arithmetical ϕ with standard parameters, P0 + Π0
1-TRANS ` [ϕ↔ ϕst].

9Let WKLns be the statement that a standard and infinite binary tree has a standard path if
the former contains sequences of arbitrary length. Then P0 + WKLst (resp. P0 + WKLns) has the

proof-theoretic strength of WKL0 (resp. ACA0), i.e. WKLst 6↔WKLns over P0.
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our knowledge. More generally, applying a proof interpretation (on which term ex-
traction as in Theorem 2.3 is based) to the proof of a theorem, tends to completely
warp the latter, i.e. ATRst

0 is the exception, not the rule.

In light of Remark 4.3, it seems the system from Theorem 4.1 cannot prove
Π1

2-CA0; we now derive ‘the next best thing’ ∆1
2-CA0 from the result in Theorem 4.1.

Corollary 4.4. The system RCAω0 + QF-AC2,1 + (µ1) + HBU proves ∆1
2-CA0.

Proof. Note that Π1
2-SEP↔ ∆1

2-CA0 over ACA0 by [54, VII.6.14], where Π1
2-SEP is

(4.1) for ϕ1, ϕ2 ∈ Π1
2. By Theorem 4.1, P0 + Π1

1-TRANS + STP proves [Π1
2-SEP]st.

The antecedent of the latter has the form (∀stn0)(∃stg1)(∀sth1)ϕst(n, g, h), where
ϕst is arithmetical. Hence, the antecedent in [Π1

2-SEP]st may be strengthened to

(∃stΦ0→1∗)(∀n0)(∃g1 ∈ Φ(n))(∀h1)ϕ(n, g, h) (4.10)

using Π0
1-TRANS. On the other hand, the consequent of [Π1

2-SEP]st has the form

(∃stZ1)(∀stn0)(∃stg1)(∀sth1)ψst(n, g, h, Z), (4.11)

where ψst is arithmetical. Now apply Π1
1-TRANS (which readily follows from

(∃stµ1)MUO(µ1)) to the underlined formula in (4.11). In the resulting formula,
apply HACint to obtain a standard functional Φ0→1∗ such that:

(∃stZ1)(∀stn0)(∃g1 ∈ Φ(n))(∀h1)ψ(n, g, h, Z), (4.12)

Now apply Π0
1-TRANS to the ‘(∀stn0)’ quantifier in (4.12); note that (∃stµ1)MUO(µ1)

guarantees that the formula following the ‘(∀stn0)’ quantifier is equivalent to a
quantifier-free one. Thus, we obtain:

(∃stΨ0→1∗ , Z1)(∀n0)(∃g1 ∈ Ψ(n))(∀h1)ψ(n, g, h, Z) (4.13)

using (∃stµ1)MUO(µ1) and HACint. Now apply term extraction to

P0 + (∃stµ1)MUO(µ1) + STP ` [(4.10)→ (4.13)]

and omit all terms. Finally note that (µ1) + QF-AC0,1 yields Φ0→1∗ satisfying
(∀n0)(∃g1 ∈ Φ(n))(∀h1)ϕ(n, g, h) from (∀n0)(∃g1)(∀h1)ϕ(n, g, h), as the underlined

formula may be treated as quantifier-free. One thus obtains that RCAω0 +QF-AC0,1+
(µ1) + (∃Θ)SFF(Θ) proves Π1

2-SEP, and hence ∆1
2-CA0 as discussed above. �

If one repeats the previous proof for [Σ1
2-SEP]st (instead of [Π1

2-SEP]st), one will
observe that Transfer for Π1

2-formulas seems needed to treat the consequent of
[Σ1

2-SEP]st in the same way as in the previous proof. However, this instance of
Transfer of course yields Π1

2-CA0 after term extraction. In other words, the system
from the corollary does not imply Π1

2-CA0 using the same proof. We do obtain
the following corollary where Π1

1-TR0 is transfinite recursion for Π1
1-formulas (see

[54, VI.7.1]), i.e. ATRθ from Section 4.9 for any θ ∈ Π1
1.

Corollary 4.5. The system RCAω0 + (µ1) + (∃Θ)SFF(Θ) proves Π1
1-TR0.

Proof. It is known that Π1
2-CA0 implies Π1

1-TR0 (see e.g. [54, VII.7.12]). By The-
orem 4.1, P0 + Π1

1-TRANS + STP proves [Π1
1-TR0]st. Similar to the second part

of Remark 4.3, one observes that Π1
1-TRst

0 implies (using Π1
1-TRANS) the following

normal form:
(∀stX1)(∃stY 1)

[
WO(X)→ Hθ(X,Y )

]
, (4.14)

for any fixed θ ∈ Π1
1. One then applies term extraction to P0 + Π1

1-TRANS+STP `
(4.14); omitting the extracted term, one obtains the corollary. �
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We now discuss some interesting proof-theoretic corollaries. Let con(S) be the
Π0

1-sentence expressing the consistency of S (see [54, II.8.2]).

Corollary 4.6. The system RCAω0 + QF-AC2,1 + (µ1) + HBU proves con(Π1
1-CA0);

the same holds for any Π1
3-sentence provable in Π1

2-CA0.

Proof. Since Π1
2-CA0 ` con(Π1

1-CA0), the system P0 + Π1
1-TRANS + STP proves

[con(Π1
1-CA0)]st and applying Π0

1-TRANS yields con(Π1
1-CA0). Hence, by Theo-

rem 2.6, the stronger system P0+(∃stµ1)MUO(µ1)+(∃stΘ)SFF(Θ) proves con(Π1
1-CA0).

Applying term extraction as in Theorem 2.3, the corollary follows. For a Π1
3-

sentence A ≡ (∀X1)(∃Y 1)(∀Z1)ϕ(X,Y, Z), note that Π1
1-TRANS yields Ast ↔

(∀stX1)(∃stY 1)(∀Z1)ϕ(X,Y, Z). Hence, if Π1
2-CA0 ` A, the same proof as for

con[Π1
1-CA0] yields that RCAω0 + (µ1) + (∃Θ3)SFF(Θ) proves A. �

This corollary is interesting as (µ1) yields a conservative extension of Π1
1-CA0

(see [42, Theorem 2.2]), while HBU is acceptable in intuitionistic mathematics, and
finitistically reducible (in the sense of yielding a conservative extension of WKL0).

Corollary 4.7. The systems P+Π1
1-TRANS+STP and E-PAω∗+(µ1)+QF-AC2,1 +

HBU prove the consistency of Π1
2-CA0, i.e. con(Π1

2-CA0).

Proof. Note that [54, VII.6.21] states Π1
2-CA0 ≡Π1

3
Σ1

3-CA0 and Π1
2-CA0 + Σ1

3-IND `
con(Σ1

3-CA0). Since Σ1
3-CA0 → Π1

2-CA0 by [54, VII.6.6], the corollary follows. �

Finally, by way of mathematical applications of Corollary 4.6, the graph minor
theorem is a Π1

1-sentence provable in Π1
1-CA0+BI ([8]); the latter system is derivable

in Π1
2-CA0, yielding the following corollary.

Corollary 4.8. RCAω0 + (µ1) + QF-AC2,1 + HBU proves the graph minor theorem.

4.2. Generalisations to higher types. In this section, we study compactness
properties of function spaces. In particular, we study a generalisation of Theo-
rems 2.19 and 4.1 to higher types inspired by [51,52]. We first discuss the results in
the latter and its relation to our results. We discuss the mathematical naturalness
of compactness properties of function spaces in Remark 4.12.

First of all, recall that Theorem 2.19 was first proved in [33] by proving [Σ1
1-SEP]st

in P0 + Π0
1-TRANS + STP, where Σ1

1-SEP states that for any ϕ1, ϕ2 ∈ Σ1
1:

(∀n0)(¬ϕ1(n) ∨ ¬ϕ2(n))→ (∃Z1)(∀n0)
(
ϕ1(n)→ n ∈ Z ∧ ϕ2(n)→ n 6∈ Z

)
.

The equivalence ATR0 ↔ Σ1
1-SEP in [54, V.5.1] guarantees that ATRst

0 is provable
in P0 + Π0

1-TRANS + STP. In this section, we study the higher type generalisation
of P0 +Π0

1-TRANS+STP ` [Σ1
1-SEP]st, inspired by results in [51,52], sketched next.

Schweber discusses a higher-order generalisation of the RM of ATR0 in [51, 52].
This generalisation consists in taking theorems from second-order arithmetic and
‘bumping up all types with one’ to obtain a theorem of third-order arithmetic. By
way of example, compare Σ1

1-SEP to the ‘one level up’ separation principle Σ2
1-SEP

(which is still provable in ZF) as follows.

Definition 4.9 (Σ2
1-SEP). For any ϕ1, ϕ2 ∈ Σ2

1, we have that

(∀f1)(¬ϕ1(f) ∨ ¬ϕ2(f))→ (∃Z2)(∀f1)
(
ϕ1(f)→ Z(f) = 1 ∧ ϕ2(f)→ Z(f) = 0

)
.
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As noted by Schweber ([51]), Σ2
1-SEP implies ∆2

1-comprehension, and two de-
terminacy axioms ΣR

1 -DET and ∆R
1 -DET when combined with the axiom of choice

as in SF(R). As noted by Hachtman in [9, 10], ΣR
1 -DET is strictly stronger than

Σ0
4-DET, and Π0

3-DET already goes beyond second-order arithmetic ([23, Cor. 1.3]).

As observed in [51, §1], many implications in the Reverse Mathematics of ATR0

fail when the theorems are generalised from second-order to third-order arithmetic.
It is thus a natural question if the implication [Π0

1-TRANS + STP] → [Σ1
1-SEP]st

generalises to third-order arithmetic. We answer this question positively as follows:
The (obvious) generalisation of the system P0 + Π0

1-TRANS + STP to third-order
arithmetic is P0 + SOT + STP2 where the latter axioms are:

(∀stY 2)
[
(∃f1)(Y (f) = 0)→ (∃stf1)(Y (f) = 0)

]
, (SOT)

(∀Y 2 ≤2 1)(∃stZ2 ≤2 1)(Z ≈2 Y ), (STP2)

which are respectively Π0
1-TRANS and STP with all types ‘bumped up by one’.

Recall that ‘Z ≈2 Y ’ is (∀stg1)(Z(g) =0 Y (g)). We have the following theorem.

Theorem 4.10. The system P0 + SOT + STP2 proves [Σ2
1-SEP]st.

Proof. Let ϕi(f
1) be short for the formula (∃Y 2

i )(∀f1
i )(ψ3

i (Yi, fi, f) = 0) and fix

standard ψ3
i for i = 1, 2. Then assume

[
(∀f1)(¬ϕ1(f) ∨ ¬ϕ2(f))

]st
, which is:

(∀stf1)
[
(∀stY 2

1 )(∃stf1
1 )(ψ1(Y1, f1, f) 6= 0) ∨ (∀stY 2

2 )(∃stf1
2 )(ψ2(Y2, f2, f) 6= 0)

]
.

Now fix nonstandard u1∗ containing all standard sequences (which exists by Ideal-
isation I) and note that we have that for all standard f1, Y 2

1 , Y
1
2 :

(∃f1
1 ∈ u)(ψ1(Y1, f1, f) 6= 0) ∨ (∃f1

2 ∈ u)(ψ2(Y2, f2, f) 6= 0) (4.15)

Let Ai(f, Yi) be the (equivalent to quantifier-free) formula (∃f1
i ∈ u)(ψ1(Yi, fi, f) 6=

0) and let A(f, Y1, Y2) be the formula A1(f, Y1)∨A2(f, Y2), i.e. the formula in (4.15).
By assumption, (∀stf1, Y 2

1 , Y
2
2 )A(f, Y1, Y2). Now consider:

(∀stv2∗ , x1∗)(∃w2∗ , y1∗)(∀Y 2 ∈ v, f1 ∈ x) (4.16)[
Y ∈ w ∧ f ∈ y ∧ (∀Y1, Y2 ∈ w, f ∈ y)A(f, Y1, Y2)

]
.

Note that (4.16) holds by taking w =2∗ v and y =1∗ x. Applying I to (4.16) yields

(∃w2∗ , y1∗)(∀stY 2, f1)
[
Y ∈ w ∧ f ∈ y ∧ (∀Y1, Y2 ∈ w, f ∈ y)A(f, Y1, Y2)

]
, (4.17)

which -intuitively speaking- provides two sequences w, y (of nonstandard length)
encompassing all standard functionals of type two and standard functions and such
that all of its elements satisfy A. In particular, one can view (4.17) as obtained by
applying overspill to (4.15) while making sure all standard functionals and functions
are in w and y. Next, define the functional Z2

0 as follows: Z0(f) = 0 if (∃Y1 ∈
w)¬A1(f, Y1) and 1 otherwise, where w2∗ is the sequence from (4.17). Note that
(∃Y1 ∈ w)¬A1(f, Y1) is actually ‘(∃i0 < |w|)¬A1(f, w(i))’, i.e. Z2

0 is definable in P0.

Let Z2 be a standard functional such that Z0 ≈2 Z as provided by STP2. Fur-
thermore, SOT establishes the following implications (for standard f1):

(∃stY 2
1 )(∀stf1

1 )(ψ1(Y1, f1, f) = 0)→ (∃stY 2
1 )(∀f1

1 )(ψ1(Y1, f1, f) = 0)

→ (∃stY 2
1 )(∀f1

1 ∈ u)(ψ1(Y1, f1, f) = 0)

→ (∃Y 2
1 ∈ w)(∀f1

1 ∈ u)(ψ1(Y1, f1, f) = 0)

→ (∃Y 2
1 ∈ w)¬A1(f, Y1)→ Z0(f) = 0→ Z(f) = 0.
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Note that SOT is (only) necessary to establish the first implication. Now, since y
from (4.17) contains all standard functions, the second conjunct of (4.17) implies
(by definition) that for standard h1 (by the definition of A):

(∀Y 2
1 ∈ w)A1(h, Y1) ∨ (∀Y 2

2 ∈ w)A2(h, Y2). (4.18)

Similarly, consider the following series of implications (for standard f1):

(∃stY 2
2 )(∀stf1

2 )(ψ2(Y2, f2, f) = 0)→ (∃stY 2
2 )(∀f1

2 )(ψ1(Y2, f2, f) = 0)

→ (∃stY 2
2 )(∀f1

2 ∈ u)(ψ2(Y2, f2, f) = 0)

→ (∃Y 2
2 ∈ w)(∀f1

2 ∈ u)(ψ2(Y2, f2, f) = 0)

→ (∃Y 2
2 ∈ w)¬A2(f, Y2) (4.19)

→ (∀Y 2
1 ∈ w)A1(f, Y1) (4.20)

→ Z0(f) = 1→ Z(f) = 1.

Note that SOT is (only) necessary to establish the first implication, while (4.20)
follows from (4.19) by (4.18). Thus, we observe that Z2 is as required for Σ1

2-SEP
relative to ‘st’, and we are done. �

Note that P0 + SOT exists at the level of second-order arithmetic, while Σ2
1-SEP

goes beyond that. In other words, STP2 yields a non-trivial step up in strength. The
previous proof is readily generalised as follows: [Σ2

2-SEP]st follows from STP2 and
Transfer for Σ1

1-formulas. Finally, the axiom STP2 has a normal form as follows.

Theorem 4.11. In P, STP2 is equivalent to

(∀stΨ2→1∗)(∃stW 2∗)(∀Y 2 ≤2 1)(∃Z2 ∈W )(∀f ∈ Ψ(Z))(Z(f) =0 Y (f)). (4.21)

Proof. Clearly, STP2 implies (as standard sequences consist of standard elements):

(∀stΨ2→1∗)(∀Y 2 ≤2 1)(∃stZ2 ≤2 1)(∀f ∈ Ψ(Z))(Z(f) =0 Y (f)), (4.22)

and the implication (4.22) → STP2 is established as follows: Suppose ¬STP2, i.e.
there is Y 2

0 ≤2 1 such that (∀stZ2 ≤2 1)(∃stf1)(Z(f) 6=0 Y (f)). Applying HACint to
the latter, we obtain the negation of (4.22), and the latter is seen to be equivalent
to STP2. Finally, applying Idealisation I to (4.22), we obtain exactly (4.21). �

The normal form (4.21) gives rise to the (non-unique) functional Σ(2→1∗)→2∗

defined by the following specification:

(∀Ψ2→1∗)(∀Y 2 ≤2 1)(∃Z2 ∈ Σ(Ψ))(∀f ∈ Ψ(Z))(Z(f) =0 Y (f)), (CFS(Σ))

Intuitively, the open cover ∪Y ∈{0,1}NNJΨ
Y has a finite sub-cover provided by Σ(Ψ),

where JΨ
Y is the neighbourhood of all Z ∈ {0, 1}NN

which agree with Y on the finite
sequence Ψ(Y ). In contrast10 to special fan functionals, the functional Σ requires
a non-trivial instance of the axiom of choice. The exact properties of Σ are beyond
the scope of this paper and will be studied in a subsequent paper.

Finally, we discuss the mathematical naturalness of compactness properties of
function spaces, and the associated gauge integrals.

10Define SOT(ξ) ≡ (∀Y 2)
[
(∃f1)(Y (f) = 0) → Y (ξ(Y )) = 0

]
. Combining the results from

[34,50], any ξ3 satisfying SOT(ξ) computes Θ via a term of Gödel’s T , provable in RCAω0 + (∃3).

Note that ∃3 introduced in Section 2.3 is a variation of such ξ.
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Remark 4.12. The Feynman path integral is a central and fundamental object
in physics, especially quantum mechanics. The Lebesgue integral does not provide
an adequate formalisation for the path integral, but the latter can be formalised
using the gauge integral ([24, 26]) over function spaces. As shown in [34, §3.3],
compactness as in HBU is essential for the development of the gauge integral on the
unit interval, and the compactness of function spaces is similarly essential for the
formalisation of the Feynman path integral. However, as discussed in [25, §7], the
compactness of function spaces can be treacherous waters. Hence, we only study
STP2 as above in this paper, and will establish the exact connection to the gauge
integral in a later publication.

5. Conclusion

5.1. Summary of results. In this section, we provide a summary of the results
in this paper and [33,34]. Figure 1 below summarises these results concisely.

By way of a legend, in the right column are the linearly ordered ‘Big Five’
systems of RM, with above them full second-order arithmetic Z2 and below them
the system WWKL0 ≡ RCA0 + WWKL. In the middle column, we classify the
functionals studied in this paper as follows: RCAω0 plus the existence of the pictured
functional is (at least or exactly) at the level of the corresponding system on the
right; (struck out) arrows denote (non) S1-S9-computability. In the left column,
we classify the nonstandard axioms studied in this paper as follows: P0 plus the
pictured nonstandard axioms is (at least or exactly) at the level of the corresponding
system on the right; (struck out) arrows denote (non)implication over P0. Many
questions regarding this diagram remain unanswered, as discussed in Section 5.2.

5.2. Future research. We discuss some open questions and future research.

(i) The system Π1
2-CA0 + Π1

3-TI0 proves ∆0
3-determinacy, while Π1

2-CA0 does
not (see [21]). Hence, it is a natural question whether P+STP+Π1

1-TRANS
proves transfinite induction as in [Π1

3-TI0]st.
(ii) What is the strength of nonstandard versions of Hindman’s theorem ([11,
§10.3.5])? The latter is strictly between ACA0 and ATR0.

(iii) What is the strength of nonstandard versions of DNR? Can these be derived
from Λ and LMP?

(iv) What is the strength of nonstandard versions of POS and 2-WWKL? What
is their relation to Λ and LMP?

(v) Combining ∃2 or µ1 with Θ results in a considerable jump in logical strength.
Which functionals yield a similar jump in strength?

(vi) Does the RM of WWKL give rise to interesting variations of Λ?
(vii) There are numerous theorems in classical analysis essentially of the form

(∀x2)(∃y1/0)Φ(x, y), and each of these defines a class of realisers ζ2→1/0 such
that (∀x2)Φ(x, ζ(x)). A general investigation of the relative computational
powers of such realisers, say modulo µ2 or ∃2, is warranted. We believe
this study is intimately related to the RM study of the original theorems
(∀x2)(∃y1/0)Φ(x, y), and associated theorems from Nonstandard Analysis.

Furthermore, we have established a close link between Λ and the Vitali covering
lemma, which we hope to develop further. Finally, the combination of Θ and the
Suslin functional yields Gandy’s Superjump ([34]), and we have additionally estab-
lished that the former combination goes far beyond the latter functional. We hope
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SOT ∃3 Z2

(Π1
2-CA0)st Π1

2-TRANS Π1
1-TRANS + STP S2 + Θ Π1

2-CA0

(S2)st Π1
1-TRANS S2 Π1

1-CA0

ATRst Π0
1-TRANS + STP ∃2 + Θ ATR0

Π0
1-TRANS + LMP ∃2 + Λ

Π0
1-TRANS ∃2 ACA0

STP WKLst Θ3 WKL0

WWKLst LMP Λ3 WWKL0

Figure 1. Summary of results

to establish the exact (logical and computational) strength of the aforementioned
combination in the future.

Appendix A. Some systems of Nonstandard Analysis

In this section, we introduce Nelson’s axiomatic approach to Nonstandard Anal-
ysis internal set theory ([31]), and it fragments based on Peano arithmetic from [4].
This background provides the definition for the systems P0 and P used above.

A.1. Internal set theory. In Nelson’s syntactic approach to Nonstandard Anal-
ysis ([31]), as opposed to Robinson’s semantic one ([41]), a new predicate ‘st(x)’,
read as ‘x is standard’ is added to the language of ZFC, the usual foundation of
mathematics. The notations (∀stx) and (∃sty) are short for (∀x)(st(x)→ . . . ) and
(∃y)(st(y) ∧ . . . ). A formula is called internal if it does not involve ‘st’, and exter-
nal otherwise. The three external axioms Idealisation, Standard Part, and Transfer
govern the new predicate ‘st’; They are respectively defined11 as:

(I) (∀st finx)(∃y)(∀z ∈ x)ϕ(z, y)→ (∃y)(∀stx)ϕ(x, y), for any internal ϕ.
(S) (∀stx)(∃sty)(∀stz)

(
(z ∈ x ∧ ϕ(z))↔ z ∈ y

)
, for any ϕ.

11The superscript ‘fin’ in (I) means that x is finite, i.e. its number of elements are bounded by
a natural number.
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(T) (∀stt)
[
(∀stx)ϕ(x, t) → (∀x)ϕ(x, t)

]
, where ϕ(x, t) is internal, and only has

free variables t, x.

The system IST is just ZFC extended with the aforementioned external axioms; IST
is a conservative extension of ZFC for the internal language, as proved in [31].

Clearly, the extension from ZFC to IST can also be done for subsystems of the
former. Such extensions are studied in [4] for the classical and constructive formal-
isations of arithmetic, i.e. Peano arithmetic and Heyting arithmetic. In particular,
the systems studied in [4] are E-HAω and E-PAω, respectively Heyting and Peano
arithmetic in all finite types and the axiom of extensionality. We refer to [16, §3.3]
for the exact definitions of the (mainstream in mathematical logic) systems E-HAω

and E-PAω. We introduce in Section A.2 the system P, the (conservative) extension
of E-PAω with fragments of the external axioms of IST.

Finally, E-PAω∗ is the definitional extensions of E-PAω with types for finite se-
quences, as in [4, §2]. For the former system, we require some notation.

Notation A.1 (Finite sequences). The systems E-PAω∗ and E-HAω∗ have a ded-
icated type for ‘finite sequences of objects of type ρ’, namely ρ∗. Since the usual
coding of pairs of numbers goes through in both, we shall not always distinguish
between 0 and 0∗. Similarly, we do not always distinguish between ‘sρ’ and ‘〈sρ〉’,
where the former is ‘the object s of type ρ’, and the latter is ‘the sequence of type
ρ∗ with only element sρ’. The empty sequence for the type ρ∗ is denoted by ‘〈〉ρ’,
usually with the typing omitted. Furthermore, we denote by ‘|s| = n’ the length of
the finite sequence sρ

∗
= 〈sρ0, s

ρ
1, . . . , s

ρ
n−1〉, where |〈〉| = 0, i.e. the empty sequence

has length zero. For sequences sρ
∗
, tρ
∗
, we denote by ‘s ∗ t’ the concatenation of s

and t, i.e. (s ∗ t)(i) = s(i) for i < |s| and (s ∗ t)(j) = t(j − |s|) for |s| ≤ j < |s|+ |t|.
For a sequence sρ

∗
, we define sN := 〈s(0), s(1), . . . , s(N)〉 for N0 < |s|. For a

sequence α0→ρ, we also write αN = 〈α(0), α(1), . . . , α(N)〉 for any N0. By way
of shorthand, qρ ∈ Qρ

∗
abbreviates (∃i < |Q|)(Q(i) =ρ q). Finally, we shall use

x, y, t, . . . as short for tuples xσ0
0 , . . . xσk

k of possibly different type σi.

Remark A.2 (Notation). The system E-PAω∗ includes equality between natural
numbers ‘=0’ as a primitive. Equality ‘=τ ’ and inequality ≤τ for xτ , yτ is:

[x =τ y] ≡ (∀zτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk], (A.1)

[x ≤τ y] ≡ (∀zτ11 . . . zτkk )[xz1 . . . zk ≤0 yz1 . . . zk], (A.2)

if the type τ is composed as τ ≡ (τ1 → . . .→ τk → 0). In the spirit of Nonstandard
Analysis, we define ‘approximate equality ≈τ ’ as follows (with the type τ as above):

[x ≈τ y] ≡ (∀stzτ11 . . . zτkk )[xz1 . . . zk =0 yz1 . . . zk] (A.3)

All the above systems include the axiom of extensionality for all ϕρ→τ as follows:

(∀xρ, yρ)
[
x =ρ y → ϕ(x) =τ ϕ(y)

]
. (E)

However, as noted in [4, p. 1973], the so-called axiom of standard extensionality
(E)st is problematic and cannot be included in P or P0.
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A.2. The classical systems P and P0. We first introduce the system P, a con-
servative extension of E-PAω with fragments of Nelson’s IST.

To this end, we first introduce the base system E-PAω∗st . We use the same defini-
tion as [4, Def. 6.1], where E-PAω∗ is the definitional extension of E-PAω with types
for finite sequences as in [4, §2]. The set T ∗ is defined as the collection of all the
constants in the language of E-PAω∗.

Definition A.3. The system E-PAω∗st is defined as E-PAω∗ + T ∗st + IAst, where T ∗st
consists of the following axiom schemas.

(1) The schema12 st(x) ∧ x = y → st(y),
(2) The schema providing for each closed term t ∈ T ∗ the axiom st(t).
(3) The schema st(f) ∧ st(x)→ st(f(x)).

The external induction axiom IAst states that for any (possibly external) Φ:

Φ(0) ∧ (∀stn0)(Φ(n)→ Φ(n+ 1))→ (∀stn0)Φ(n). (IAst)

Secondly, we introduce some essential fragments of IST studied in [4].
Definition A.4.

(1) HACint: For any internal formula ϕ, we have

(∀stxρ)(∃styτ )ϕ(x, y)→
(
∃stF ρ→τ

∗)
(∀stxρ)(∃yτ ∈ F (x))ϕ(x, y), (A.4)

(2) I: For any internal formula ϕ, we have

(∀stxσ
∗
)(∃yτ )(∀zσ ∈ x)ϕ(z, y)→ (∃yτ )(∀stxσ)ϕ(x, y),

(3) The system P is E-PAω∗st + I + HACint.

Note that I and HACint are fragments of Nelson’s axioms Idealisation and Stan-
dard part. By definition, F in (A.4) only provides a finite sequence of witnesses to
(∃sty), explaining its name Herbrandized Axiom of Choice.

The system P is connected to E-PAω by Theorem 2.3 which expresses that we
may obtain effective results as in (2.5) from any theorem of Nonstandard Analysis
which has the same form as in (2.4). The scope of this theorem includes the Big
Five systems of Reverse Mathematics ([46]), the Reverse Mathematics zoo ([49]),
and both classical and higher-order computability theory ([44,47]).

We now introduce the system P0, a conservative extension of RCAω0 with frag-
ments of Nelson’s IST. Recall that the system RCAω0 ≡ E-PRAω + QF-AC1,0 is
Kohlenbach’s base theory of higher-order Reverse Mathematics as introduced in
[17, §2]. The system E-PRAω∗ is an obvious definitional extensional as in Re-
mark A.1. Recall that we permit ourselves a slight abuse of notation by also refer-
ring to E-PRAω∗ + QF-AC1,0 as RCAω0 .

Definition A.5. The system P0 is E-PRAω∗ + QF-AC1,0 + T ∗st + I + HACint.

Finally, the system P0 is connected to RCAω0 by Corollary 2.4.
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[61] Karl Weierstrass, Ausgewählte Kapitel aus der Funktionenlehre, Teubner-Archiv zur Mathe-

matik, vol. 9, BSB B. G. Teubner Verlagsgesellschaft, Leipzig, 1988.


	1. Introduction
	2. Previous work and open questions
	2.1. The special and weak fan functionals
	2.2. Nonstandard compactness and related notions
	2.3. Known results in Computability Theory
	2.4. Known results in Nonstandard Analysis
	2.5. Open questions
	2.6. Equivalent definitions

	3. Uniform computability for , , and 2
	3.1. Preliminaries
	3.1.1. Introduction
	3.1.2. The functionals  and 
	3.1.3. The Kleene Schemes

	3.2. Uniform computability in 
	3.3. Beyond the hyperarithmetical via  and 2
	3.4. Not beyond the hyperarithmetical via  and 2

	4. Reverse Mathematics of the special fan functional
	4.1. At the limit of Reverse Mathematics
	4.2. Generalisations to higher types

	5. Conclusion
	5.1. Summary of results
	5.2. Future research

	Appendix A. Some systems of Nonstandard Analysis
	A.1. Internal set theory
	A.2. The classical systems ¶ and ¶0

	References

