
estimating cerebral water diffusion
metrics from mri using different model

assumptions and sequence
configurations

a simulation study

by

Live Wang Jensen

Thesis
for the degree of

Master of Science

Department of Physics
Faculty of Mathematics and Natural Sciences

University of Oslo

December 2019





Abstract
Diffusion-weighted imaging (DWI or DW-MRI) is a widely applied and clinically
important MRI technique probing the diffusion displacement of water molecules in
biological tissue on a micrometer length scale. DWI is however an indirect probe,
because the extraction of quantitative diffusion metrics requires modeling of the
diffusion signal. A plethora of diffusion models have been adapted trying to ac-
curately characterize and quantify the true biological microstructure. Many of the
established diffusion models provide the same type of information, with a varying
degree of additional information, and there is no gold standard for when to use a
given model of a certain complexity.

Two well-established diffusion models of different complexity were investigated in
this study; diffusion tensor imaging (DTI) and diffusion kurtosis imaging (DKI).
DTI is effective in measuring the dominant direction of water diffusion, however,
the model is based upon the assumption that water molecules follow a Gaussian
diffusion distribution. Real tissue contains complex cellular structures causing the
water molecules to diffuse through highly heterogeneous environments, which leads
to a deviation from the Gaussian distribution. DKI is an expansion of the DTI
model, including an excess kurtosis term that quantifies the degree of non-Gaussian
diffusion. Both models provide information about the standard diffusion parame-
ters; fractional anisotropy (FA), mean diffusion (MD), radial diffusion (RD), axial
diffusion (AD). In addition, DKI provides information about mean kurtosis (MK),
radial kurtosis (RK) and axial kurtosis (AK).

DWI measures diffusion with the use of magnetic gradients, and the precision of the
diffusion parameter estimations depends on the signal-to-noise ratio (SNR), number
of signal averages (NSA), number of gradient directions, as well as the degree of
diffusion-weighting (b-value) used in the image acquisition.

In this study, DTI and DKI signals simulating white matter, gray matter and cere-
brospinal fluid were generated based on DWI signals extracted from real DW-MRI
acquisitions in healthy volunteers. Monte Carlo simulations were performed to in-
vestigate the effect of SNR, NSA, number of gradient directions and b-values on the
parameter estimations of DTI and DKI, with the aim of optimizing the parameter
estimation while keeping the acquisition time at a minimum.

The results showed that DTI is more sensitive to noise than DKI in the white matter
regions of the brain. In contrast, DKI was more sensitive to noise in the gray matter
and cerebrospinal fluid. Increasing the NSA resulted in a general improvement in
the parameter estimations for both models. The number of b0-images also had a
remarkable influence on the parameter estimations. Using 6 b0-images instead of
1 b0 resulted in a noteworthy increase in precision. The analyses showed that the
optimal gradient set for DTI was 6 b0-images and 30 b = 1000 s/mm2 measurements,
while the optimal gradient set for DKI was 6 b0-images, 12 b = 500, 30 b = 1000
and 50 b = 3000 s/mm2 measurements.
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Chapter 1

Introduction

Magnetic resonance imaging (MRI) is a widely applied medical imaging technique
used in research and in the clinic as a tool for disease detection, diagnostics and
treatment monitoring. The technique produces detailed anatomical pictures of the
human body, revealing both structural and functional information, and is especially
suitable for imaging of soft tissue. The concept of MRI is based on the discovery
made by Felix Block and Edward Purcell, namely that atomic nuclei in possession of
spin angular momentum can interact with magnetic fields. They were later awarded
with the Nobel Price in Physics in 1952, “for their development of new methods
for nuclear magnetic precision measurements and discoveries in connection there-
with”[1]. Subsequently, their discovery lead to the development of the MR-scanner,
where the combination of strong magnetic fields, radiofrequency waves and magnetic
gradients are used to generate images of the human body. The technique is based on
the magnetic properties of the hydrogen nuclei. When placed in a strong magnetic
field, the hydrogen nuclei align in the direction of the magnetic field. Radiofre-
quency waves then stimulate the hydrogen nuclei to precess in an orderly fashion,
which results in an induced current in a receiver coil.

The adult human body consists of approximately 60% water[2]. It is here, as part
of the water molecules, the vast amount of hydrogen nuclei are located. The water
molecules in the tissue constantly move around, both inside and in between cells.
The random, thermal movement of water molecules is referred to as diffusion. The
diffusion pattern of the water molecules is very sensitive to the microstructure of the
tissue. Various biological barriers may restrict the diffusion, like cell membranes,
organelles and macromolecules. The neural tissue of the brain mainly consists of
neurons and glial cells. The axons, which is a part of the neurons, are organized in
bundles forming fiber tracts that connect the different parts of the brain. Diffusion
is more likely to occur along the axons than across. Diffusion measurements might
therefore reveal important information about the underlying microstructural char-
acteristics of the tissue. It is possible to measure the diffusion displacement with
a special MRI technique called diffusion-weighted MRI (DWI or DW-MRI). DWI
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4 Introduction Chapter 1

is a widely applied and clinically important imaging technique that measures the
diffusion of water molecules on a microscopic length scale[3]. Particularly, the tech-
nique offers a method for non-invasively displaying both healthy and pathological
anatomy of the brain. DWI has proven to be a unique and powerful tool in both
diagnostics and in research.

1.1 Motivation

DWI uses magnetic gradients to measure the diffusion displacement of water molecules.
Diffusion of water molecules results in a signal loss, and the greater the diffusion
displacement, the greater the signal loss. A magnetic gradient measures the signal
loss, and hence the diffusion occurring in one specific direction. Because diffusion
is direction-dependent, the signal loss must be measured in several non-collinear
directions to get the full picture of the diffusion process.

Water diffusion in biological tissue is a complex process, due to multiple tissue com-
partments with different diffusion properties usually separated by semi-permeable
membranes, allowing transfer of water molecules between the different compart-
ments. Parameters describing the diffusion characteristics are estimated by fitting
the measured signal to a suitable model. However, to account for all possible dif-
fusion processes using DWI techniques is challenging, and practical models make
certain assumptions and simplifications to enable implementation with acceptable
scan times.

Several DWI-based models have been established. One of the challenges today is
that many of the established DWI-based models provide the same type of informa-
tion, with a varying degree of additional information. One of the most frequently
employed diffusion models is diffusion tensor imaging (DTI). The DTI model as-
sumes a mono-exponential signal decay, hence it only takes into account so-called
non-restricted diffusion, where water molecules are diffusing freely and unrestricted
during the acquisition time[4]. This implies a Gaussian probability distribution of
the water diffusion over time.

However, biological tissue contains hindrances that may restrict the diffusion of
water molecules. In this case, the assumption of free diffusion is no longer valid, and
more complex models may be employed. One such non-Gaussian diffusion model is
diffusion kurtosis imaging (DKI). The DKI model is an extension of the DTI model
and may provide complementary information about the tissue microstructure[5, 6].

The challenge with using more complex models is that more model parameters are
needed, with the potential risk of overfitting in cases where the SNR (signal-to-noise
ratio) is low. There is no gold standard for when to use a given model of a certain
complexity. In some cases, applying a more complex model results in overfitting
and a less complex model would be sufficient. In other cases however, a less com-
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plex model may not be able to detect subtle differences in the underlying tissue
microstructure that a more complex model would have. More complex models also
require larger data sets to be acquired. Diffusion imaging of the brain can be time-
consuming, as it requires measurements in many directions. The acquisition time
increases with the number of gradient directions, as well as the number of b-values,
defined by the strength, duration and spacing of the gradients. It is therefore benefi-
cial to reduce the number of gradient directions and b-values in order to improve the
acquisition time. However, reducing these parameters will also reduce information
collected from the acquisition. Hence, finding a balance between improving the scan
time and preserving enough relevant information to enable proper modeling is of
great importance. A short acquisition time in general is preferred, as it may reduce
the stress of the patient lying in the scanner and consequent motion induced arte-
facts, as well as shorten the wait for patients in line. With the ageing population,
the demand will only increase. Reducing the acquisition time is both cost-effective
and beneficial as it results in more scans per day and earlier diagnoses.

1.2 Research question and outline

The main objective of this thesis is to compare two DWI models which differ in
complexity and, based on computer simulations, study the effect of number of gra-
dient directions, b-values and NSA (number of signal averages) on SNR and model
complexity. Based on the axiom that the simplest model able to properly describe
a given phenomenon should be preferred, the main research question of this thesis
is thus:

What effect does the number of gradient directions and b-values have on the estima-
tion of diffusion parameters, and are there any significant differences between the
DTI and the DKI model?

The research question is investigated with computer simulations in Matlab by gen-
erating synthetic data based on a given DWI model, and simulating the signals
from different regions of the brain based on DWI signals extracted from DW-MRI
acquisitions in healthy volunteers. A number of simulation experiments using dif-
ferent number of gradient directions and b-values are then executed and the results
analyzed by investigating the accuracy and precision of the parameter estimation.
Three simulation experiments form the basis of the analysis:

1. Analyzing the parameter estimation as a function of SNR.

2. Analyzing the parameter estimation as a function of NSA.

3. Analyzing the parameter estimation as a function of number of gradient di-
rections and b-values.

The simulations and analyses were performed in Matlab version R2018b, a compre-
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hensive numerical computing environment especially suitable for matrix manipula-
tion, plotting of functions and data, and implementation of algorithms.

Finally, the famous Occam’s razor principle deserves to be mentioned: “Entia non
sunt multiplicanda praeter necessitatem” (William of Ockham, 14th century)[7],
which roughly translates to “More things should not be used than are necessary”.
The statement was later rephrased by Isaac Newton: “We are to admit no more
causes of natural things other than such as are both true and sufficient to explain
their appearances. Therefore, to the same natural effects we must, so far as possible,
assign the same causes” [8].
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Chapter 2

Fundamental MR physics

The MR scanner uses a combination of magnetic fields and radiofrequency waves
to generate images of the inside of the human body. In order to better understand
how an image can be formed by these means, it is necessary to take a closer look at
how an atomic nucleus behaves under the influence of an external magnetic field.

The following sections are written with the intention of giving the reader a brief in-
troduction to the large and complex field of MRI physics. Unless stated otherwise,
the theory in this chapter is collected from The Physics of Magnetic Resonance
Imaging (A. Bjørnerud)[9], and Methods in Molecular Biophysics: Structure, Dy-
namics, Function (I. N. Serdyuk et al.)[10].

2.1 Spin, energy states and magnetic fields

In quantum mechanics, atoms are characterized by their mass, electric charge and
spin. The following analogy might be helpful to better understand the behavior of a
spinning nucleus. Imagine that the nucleus can be modeled as a spherical body with
the nuclear charge distributed uniformly over its surface. Spin angular momentum,
or just spin for short, is then often described as the particles’ rotation around its own
axis. According to this model, a non-spinning nucleus will have a nuclear spin of zero.
A spinning nucleus, however, will give rise to a circulating charge which generates a
magnetic field, analogous to the field produced when electric current flows through
a coil. The induced magnetic field results in a magnetic dipole moment µ1 oriented
along the axis of spin, as illustrated in figure 2.1. This nucleus has a non-zero spin
value. The magnetic dipole moment can be compared to a bar magnet with a north
and a south pole. Nuclei with a magnetic dipole moment can interact with external
magnetic fields, just like when a compass needle interacts with the magnetic field of
the Earth.

1Vectors will be denoted by bold typeface.

9
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!

Figure 2.1: Schematic view of a spinning nucleus and its corresponding
magnetic dipole moment, µ.

Remember that the image of spin as a nucleus literally spinning around its own axis
can be misleading. Spin is an intrinsic physical property, meaning it is a property
that the particle has of itself, unrelated to its motion in space, just like a particles’
mass or electric charge. Spin is carried by most elementary particles and has both
magnitude and direction. It is therefore characterized by a vector I2. Unlike angular
momentum in classical physics, the spin angular momentum is quantized. It can
only take on discrete values that are integer multiples of ~, and all particles with
spin follow the quantization condition

|I| =
√
I(I + 1)~ (2.1)

where |I| is magnitude of the spin angular momentum, I is the spin quantum number
and ~ is the reduced Planck constant where ~ = h

2π . The spin quantum number I is
determined by the number of unpaired protons and neutrons in the nucleus, where
each unpaired nucleon contributes 1

2 to the spin quantum number I. Generally the
different elementary particles takes on either integer or half-integer values of I,

I = 0, 1
2 , 1,

3
2 , ... (2.2)

In a nucleus with an even atomic mass number and an even nuclear charge, each
proton pairs with a proton of opposite sign, and so does the neutrons, leaving zero
unpaired nucleons and hence a spin quantum number of zero. In contrast, a nucleus
with odd numbers of both protons and neutrons usually has an integer non-zero
spin quantum number, due to the even number of unpaired nucleons, which each
contributes 1

2 to the spin quantum number I. Finally, nuclei with an odd number of
unpaired nucleons generally have half-integer spin quantum numbers. The proton,

2Although they have exactly the same properties, nuclear spin is commonly denoted I while
electron spin is denoted S.
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electron, and neutron are all examples of elementary particles having I = 1
2 . A

number of nuclei of particular interest in structural biology (1H, 15N, 13C, 19F and
31P) also have a spin quantum value of 1

2 . Keep in mind that it is the value of the
spin quantum number I, and not the spin angular momentum |I| that is referred to
when particles with “spin 1

2” are mentioned, because the spin angular momentum
|I| bears the value

|I| =
√

1
2

(1
2 + 1

)
~ =
√

3
2 ~

when I = 1
2 . The z-component of the spin angular momentum vector is given as

Iz = m~ (2.3)

where

m = −I,−I + 1, ..., I − 1, I (2.4)

is the magnetic quantum number. An atomic nucleus can take on a set of 2I +
1 magnetic quantum numbers, or energy states, in integral steps between −I and
+I. Spin 1

2 nuclei therefore have two energy states related to m = ±1
2 , and the

corresponding z-component can take on two permitted directions, Iz = ±1
2~.

Nuclei with spin induce a magnetic field with a corresponding magnetic dipole mo-
ment µ. The size of µ is directly proportional to the spin angular momentum I:

µ = γI (2.5)

where γ is a proportionality constant commonly called the gyromagnetic ratio. This
constant is unique for each type of nucleus in possession of spin. The magnetic
dipole moment is a vector quantity oriented parallel (or antiparallel, for negative
γ values) to the spin angular momentum. The 1H nucleus3 has a gyromagnetic
ratio of γ/2π = 42.6 MHz/T, which is relatively high compared to other spin 1

2
nuclei commonly used in NMR. In fact, 1H has the highest gyromagnetic ratio of
all isotopes present in vivo. It is known that the adult human body consists of

3Remember that 1H is a hydrogen isotope with a single proton as nucleus, meaning that a 1H
nucleus is simply a proton.
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approximately 60% water[2]. It is here, in the water molecules, the vast amount of
1H atoms can be found. The high abundance of 1H in the human body combined
with its relatively large gyromagnetic ratio makes the 1H nucleus the ideal imaging
isotope in clinical MRI. However, a single dipole moment is not large enough to
induce a measurable signal. In order to detect a signal, it is necessary to look at a
large sample of magnetic dipole moments. The sum of all the individual magnetic
dipole moments,

M =
n∑
i=1
µi (2.6)

is referred to as the macroscopic magnetization. A sample of living tissue typically
contains 1022 protons per cm3. In the absence of an external magnetic field, the
dipole moments are pointing in all possible directions, so the spin’s z-axis is oriented
arbitrary in space. The net magnetization M is therefore 0 and not measurable.

A strong magnetic field is able to manipulate the orientation of a spinning nucleus by
interacting with its magnetic dipole moment. When placed in an external magnetic
field B, the magnetic dipole moment experiences a torque,

τ = µ×B. (2.7)

This torque causes the spins to line up parallel or antiparallel to the magnetic field
(see figure 2.2), just like a tiny compass needle aligns with the magnetic field of the
Earth[11].

If the magnetic field B is defined to be directed along the z-axis, B can be expressed
as

B = B0k̂ (2.8)

where B0 is the strength of the field and k̂ is the unit vector pointing in the z-
direction. The magnetic field exerts a torque which not only causes the spins to
align but also to precess. When the rotational axis of a rotating body is itself
rotating about a second axis, the body is said to precess about the second axis. In
our case the rotating body is the spinning nucleus, the rotational axis is the magnetic
dipole moment, and the second axis is the external magnetic field, as shown in figure
2.3. The torque exerted by the magnetic field causes the spins to precess with an
angular frequency of
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Figure 2.2: Spinning nuclei are oriented in arbitrary directions in the absence
of a magnetic field, resulting in a net magnetization of zero. When placed in
an external magnetic field however, the spinning nuclei align either parallel or
antiparallel with the magnetic field.

ω0 = γB0. (2.9)

This angular frequency is often referred to as the Larmor frequency or as Larmor
precession. The spin’s dipole moment precesses about the z-axis of the magnetic
field with an angular frequency proportional to the strength of the magnetic field
B0.

B !

Figure 2.3: When a magnetic field is applied, the magnetic dipole moment of
a spinning nucleus starts to precess about the z-axis of the external magnetic
field. The precession frequency is proportional to the strength of the magnetic
field.

The 2I + 1 orientations of a spin I nucleus have different energy states. In the
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presence of a magnetic field, these energy states are made evident by the Zeeman
effect (see figure 2.4). The Zeeman effect is caused by interactions between the
magnetic dipole moment of the spins and the external magnetic field. When a
proton is placed in a magnetic field, it can only take on certain energy states. These
are the quantum states of the proton, and each quantum state corresponds to a
different energy level. When a proton goes from a higher energy state to a lower
energy state, a photon is emitted. The frequency of the emitted photon depends
on the strength of the magnetic field. A stronger magnetic field results in a larger
energy difference, ∆E, between the energy states[12]. The energy of a proton when
placed in a magnetic field is

E = −µ ·B, (2.10)

or, when inserting equation (2.8) and (2.5),

E = −µzB0 = −γB0Iz = −mγB0~ (2.11)

where µz = γIz = γm~ is the z-component of the magnetic dipole moment. Spin
1
2 nuclei give rise to two energy states corresponding to m = −1

2 and m = 1
2 . This

gives us the energies

E± = ∓γB0~
2 (2.12)

where E+ is the energy level of the m = 1
2 state, and E− is the energy level of

the m = −1
2 state. If γ is a positive value, which is the case for 1H nuclei, then

the m = 1
2 state has the lower energy. Traditionally, the energy state with m = 1

2
is often referred to as “spin up”, while m = −1

2 is described as “spin down”[13].
Protons with spin up are oriented parallel to B0 and are in the lower energy state,
while protons with spin down are oriented antiparallel to B0 and are in a higher
energy state. The energy difference between the two states is

∆E = γB0~. (2.13)

In thermal equilibrium, there will always be a tiny proportion of spins in the lower
energy state. Therefore, 1H nuclei tend to assume the m = 1

2 state, which is parallel
to the magnetic field. A population of spins can be represented by
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Figure 2.4: The energy states of a spin 1
2 nucleus. When placed in a magnetic

field, the spin can assume one of two energy states. A spin in the lower energy
state is oriented parallel to the direction of the magnetic field, while a spin in
the higher energy state is oriented antiparallel to the direction of the field.

N = N+ +N− (2.14)

where N is the total number of spins, N+ is the number of spins in the lower energy
state, andN− the number of spins in the higher energy state. In thermal equilibrium,
the distribution of spins in each energy state is governed by the Boltzmann law by
the following relationship:

Nm

N
= exp(−Em/kBT )

I∑
n=−I

exp(−En/kBT )
(2.15)

where Nm is the number of spins in energy state m, Em is the energy of state m,
En is the energy of state n, kB is the Boltzmann constant and T is the absolute
temperature. The relationship between the two spin populations N+ and N− is
then

N+

N−
= exp(∆E/kBT ) = exp(γ~B0/kBT ). (2.16)

Equation (2.16) states that there is just a small excess of spins in the lower energy
state.
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The Larmor precession of the spins in a sample is not coherent. When the magnetic
dipole moment vector is decomposed into µx, µy and µz, the components in the
positive x -and y-direction are canceled out by components in the opposite, negative
x -and y-direction. This results in a net magnetization of zero in the xy-plane, Mxy
= 0. However, as seen by equation (2.16), there is a tiny excess of spins in the lower
energy state, meaning that the positive z-components are not completely canceled
out by the negative z-components. This results in a net magnetization (illustrated
in figure 2.5) in the positive z-direction,

Mz = Nγ2~2I(I + 1)
3kBT

B0 (2.17)

where N is the total number of spins. This equation is known as Curie’s law. It
is made evident by equation (2.17) that a stronger magnetic field will result in a
larger Mz, and thus a stronger MR signal. In a magnetic field of 1.5 T at room
temperature, only about 1 out of every 105 spins will contribute to the macroscopic
magnetization. This emphasizes the fact MRI signals are rather weak, which is why
strong magnetic fields are used in order to increase Mz. The former equation also
states that Mz ∝ γ2. The fact that 1H exists in great numbers in living tissue and
has a large gyromagnetic ratio comes in handy when it comes to signal detection.
Nevertheless, since Mz points in the same direction as the external magnetic field,
it is difficult to detect it. In order to detect a signal from Mz, it has to be flipped
an angle α away from the z-axis. This is done by applying a radio frequency (RF)
pulse. When Mz is oriented in another direction than B0, its signal can be detected.

2.2 RF excitation

The macroscopic magnetization vector originates from a large ensemble of spins.
A single spin nucleus belongs to the quantum realm and thus follows quantum
mechanical laws. It is therefore not possible to predict the behavior of a single spin
with the laws of classical mechanics. However, the signal observed in MRI derives
from a large population of spins, and hence the magnetization vector obeys classical
mechanics. Therefore, the behavior of M under the influence of B can be described
classically by the Bloch equation as

dM
dt

= γ(M×B), (2.18)

which states that the change in time of the magnetization vector M is orthogonal
to both B and M. The magnetization vector M is therefore rotating, or precessing,
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Figure 2.5: The blue arrows represent the magnetic dipole moments, while
the red arrow is the net magnetization in the positive z-direction. When
protons are under the influence of a magnetic field B0, they align either parallel
or antiparallel to the field direction. The protons will also start to precess
about the z-axis, as indicated by the dashed, circular line. A small excess
of spins assume the lower energy state, parallel to the direction of B0. This
results in a net magnetization Mz in the positive z-direction.

about the direction of B at the Larmor frequency given in equation (2.9). When the
system is in equilibrium, the net magnetization is oriented in the z-direction of the
field, so M = Mz. In order to detect M, it has to be flipped, or tilted away from
its equilibrium orientation. This is done by applying a second magnetic field, B1,
perpendicular to the main field B0. The second magnetic field B1 is oscillating at
the same frequency Ω as the precessing spins. In this way, energy can be exchanged
between the spins and B1. The exchange of energy between spins and an oscillating
magnetic field is called magnetic resonance. The behavior of M under the influence
of B0 and B1 can be expressed as

dM
dt

= γM× (B0 + B1). (2.19)

In order to describe the motion of M, it is helpful to introduce a new Cartesian
coordinate system, (x′, y′, z′), that rotates around the z-axis of the fixed coordinate
system (x, y, z), with the same angular velocity Ω as B1. These coordinate systems
are referred to as the rotating frame and the laboratory frame, respectively. In
the rotating frame, both B0 and B1 are constant, and the effective magnetic field
experienced by M can be expressed as
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Beff = B0 + B1 −
Ω
γ

(2.20)

where Beff is the effective magnetic field. The behavior of M in the rotating frame
can then be expressed as

dM′

dt
= γM×Beff. (2.21)

When the B1 field oscillates at the same frequency as the spins, Ω = ω0 = γB0.
The effective field then becomes Beff = B1, and equation (2.21) is reduced to

dM′

dt
= γ(M×B1). (2.22)

According to the rotating frame, M′ rotates about B1 with an angular velocity of
ω1 = −γB1. When B1 has a frequency equal to the frequency of the protons, reso-
nance is created and there will be an exchange of energy. The protons absorb energy
and are excited from a lower energy state to a higher energy state. The exchange of
energy flips the macroscopic magnetization vector away from equilibrium. As long
as B1 is turned on, M′ moves away from its equilibrium orientation and is rotated
an angle α = γB1t down towards the xy-plane. This angle of rotation is called the
flip angle, and the size of it depends on the duration of t and the strength of B1.
The oscillating magnetic field is switched on for only a few milliseconds, which is
why the application of B1 is often referred to as an RF-pulse; it is short and it
oscillates in the radio frequency range.

During, and a short time after the application of B1, a component of M will be
present in the xy-plane, Mxy.4 Seen from the laboratory frame, this vector compo-
nent rotates around the z-axis of B0 (see figure 2.6). If the sample is surrounded
by a coil, the rotation of Mxy will induce a current in the coil. The induced current
makes it possible to detect the transverse component Mxy of the magnetization
vector, which is the MR-signal. It is not possible to detect a signal from the longi-
tudinal component Mz, because it does not induce a current in a coil. The strength
of the signal is proportional to the size of Mxy. Due to proton relaxation processes,
the size of Mxy will decrease over time, and so will the signal intensity.

4Other sources may denote the transverse magnetization vector as MT or M⊥.
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Figure 2.6: The application of an RF-pulse causes the magnetization vector
M to move an angle α from the z-axis, down towards the xy-plane. M can be
decomposed into the longitudinal magnetization vector Mz and the transverse
magnetization vector Mxy. The transverse component rotates around the z-
axis and gives rise to a measurable MR-signal.

2.3 Proton relaxation processes

When the RF-pulse is switched off, the strength of the signal rapidly decays due
to proton relaxation processes, and M returns to its equilibrium state. In MRI,
the term relaxation is associated with how a signal changes over time. After the
RF-pulse, the signal deteriorates by getting weaker and broader with time. The de-
terioration of the MRI signal can be explained by two separate relaxation processes,
T1 relaxation and T2 relaxation.

2.3.1 T1 relaxaton

T1 relaxation5 is related to the recovery of the longitudinal magnetization Mz. This
process is characterized by the relaxation time T1. More precisely, T1 is the time it
takes for Mz to reach 1 - 1/e, or roughly 63% of its initial value. After the RF-pulse
is switched off, Mz goes back to be in thermodynamic equilibrium with its environ-
ment, the lattice. The rate at whichMz reaches its equilibrium state is dependent on
the surrounding lattice. In T1 relaxation, the excited protons leave their high energy
state and enter the low energy state by stimulated emission.6 Stimulated emission

5Often referred to as longitudinal relaxation or spin-lattice relaxation.
6It is also possible for a proton to go from a high energy state to a low energy state by sponta-

neous emission, and as the name suggests, this process occurs at random intervals without regard
to the external environment. In MRI, stimulated emission is of most relevance, as spontaneous
emission is highly unlikely in the RF range[9].
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involves the release of a photon and occurs when the excited protons interact with
their external environment at or near the Larmor frequency. The interaction may
be induced through the magnetic fields generated by other molecules that are lo-
cated in the surrounding lattice. As time goes by, more and more of the excited
protons will undergo stimulated emission, causing the longitudinal component of the
macroscopic magnetization to return to its equilibrium state.

2.3.2 T2 relaxaton

T2 relaxation7 is the process where the transverse component of the macroscopic
magnetization vector, Mxy, decays towards its equilibrium state, and is associated
with a loss of phase coherence among the spinning protons. When the RF-pulse is
switched on, the protons are precessing in an orderly fashion. Due to the RF-pulse,
the protons precess in phase, and their magnetic dipole moments can be summed
up. Mxy is then at its maximum value.

When the RF-pulse is switched off, the protons will start to lose their phase co-
herence. Biological tissue is made up of many kinds of atoms and molecules with
different local magnetic fields, and individual protons are influenced by the local
magnetic fields from neighboring nuclei. As illustrated by the Larmor equation
(2.9), the precession frequency depends on the strength of the magnetic field sensed
by the proton. When there are local variations in the magnetic field, the protons are
affected by the local field, Bloc as well as the external field, B0. As a consequence,
different protons start to precess at different frequencies. This results in a loss of
phase coherence, and Mxy starts to decay. The rate at which Mxy decays is char-
acterized by the T2 relaxation time, which denotes when Mxy has decayed to 1/e,
or 37% of its maximum value. However, there are not only local variations in the
magnetic field that causes the protons to dephase. The external magnetic field B0 is
not completely homogeneous, it has minor irregularities in magnetic field strength.
The inhomogeneities of B0 causes the protons to precess at different frequencies
and lose phase coherence. The relaxation time T ∗2 takes the irregularities of B0 into
account. It is the T ∗2 relaxation that is measured when the signal decays. This is
referred to as the free induction decay, or FID for short. T ∗2 includes both local
inhomogeneities and B0 inhomogeneities, and is usually much shorter than T2,

1
T ∗2

= 1
T2

+ γ∆B0 (2.23)

where ∆B0 is the difference in field strength of the locally varying field. Their
relation shows that the T ∗2 relaxation time always is shorter than the T2 relaxation
time. Another relation that also holds true in all situations is that T2 ≤ T1. It

7Also called transverse relaxation or spin-spin relaxation.
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is important to notice that T1 and T2 relaxation are independent processes, even
though their relaxation times are related by the previous expression.

The effect of the relaxation processes can be included in the Block equation,

dM
dt

= γM×Beff + Mxy

T2
− Mz −M0

T1
(2.24)

whereM0 is the equilibrium magnetization. The effects of the relaxation processes on
the magnetization components can be obtained by solving the differential equation
above. The solution yields

Mz(t) = M0
[
1− e− t

T 1
]

+Mz(0)e− t
T 1 (2.25)

Mxy(t) = Mxy(0)e− t
T 2 . (2.26)

Equations (2.25) and (2.26) make it possible to predict the signal behavior of both
the longitudinal and transverse component of the magnetization vector following an
RF-pulse (illustrated in figure 2.7).

2.4 Image formation

The RF-pulse excites the protons in the sample and tilts the macroscopic magne-
tization vector down into the xy-plane. In clinical use however, it is preferable to
only look at a specific part of the sample (read: patient), like a slice through the
head or the abdomen. In order to excite only the protons located in a specific slice,
a slice selective magnetic gradient is applied.

A magnetic gradient is a magnetic field with position-dependent field strength and
is measured in mT/m. A slice selective gradient is, in other words, a magnetic field
that causes the protons to precess with a position-dependent frequency. The Larmor
frequency of the protons now becomes a function of position along this gradient. The
slice selective gradient is commonly referred to as Gs(t). It is possible to place Gs(t)
along any arbitrary direction in order to select the slice of interest. However, it is
common to place the slice selective gradient along the z-axis, and in that case, Gs
= Gz. The z-axis is usually oriented in the same direction as the patient when the
patient is lying down inside the MR-scanner, from feet to head. This creates a slice
through the transverse plane (also known as an axial or horizontal plane) of the
patients’ body. Protons at different positions along the z-axis will have different
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Figure 2.7: T1, T2 and T ∗2 relaxation processes. The RF-pulse is applied at
t = 0. In T1 relaxation, excited protons leave their high energy state (spin
down) and enter the low energy state (spin up), leading to the recovery of
the longitudinal magnetization Mz. M0 is the size of Mz in thermodynamic
equilibrium. In T2 relaxation, local variations in the magnetic field result
in a loss of phase coherence among the protons, leading to the decay of the
transverse magnetization Mxy. T ∗2 relaxation include local variations in the
magnetic field as well as inhomogeneities of the external magnetic field, leading
to a much more rapid decay of Mxy.

resonance frequencies, while protons at different positions in the xy-plane will have
the same resonance frequency. The effective field strength along the z-axis is now

Bz(t) = B0 + Gs(t) · r (2.27)

where r is the position vector. The effective field strength can now be written as

Beff(t) = B0 + Gs(t) · r + B1 + Ω
γ
. (2.28)

The resonance frequency of the protons depends on the magnetic field they experi-
ence. The varying magnetic field makes it possible to select and excite the protons
located in a desired slice along the z-axis. Only the protons with the same resonance
frequency as the RF-pulse will be excited. The position of the slice can be adjusted
by adjusting the frequency Ω of the RF-pulse, or by adjusting the field strength of
the magnetic gradient.

So far, the assumption has been that the RF-pulse consists of only a single frequency,
Ω. In practice, however, the RF-pulse contains a range of frequencies within a small
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interval. This is the bandwidth ∆ω of the RF-pulse. The result of this is that the
RF-pulse excites protons located in a slice with a thickness ∆z along the z-axis,

∆z = ∆ω
γGz

. (2.29)

According to (2.29), the thickness of the slice can be adjusted by either increasing
or decreasing the bandwidth of the RF-pulse, or by adjusting the gradient Gz. If
a thinner slice is desired, the bandwidth can be made smaller by increasing the
duration of the RF-pulse. The cost of this is a longer scan-time.

The slice selective gradient makes it possible to select a slice within the volume at
hand. All the protons in the slice are precessing with the same frequency and giving
off signals. In order to encode the signals, two new magnetic field gradients are
introduced; the phase encoding gradient and the frequency encoding gradient. The
phase encoding gradient Gy is usually placed along the y-axis, while the frequency
encoding gradient Gx is placed along the x-axis (see figure 2.8). The phase encoding
gradient gives the protons a position-dependent phase shift along the y-axis, and
the frequency encoding gradient gives the protons a position-dependent frequency
along the x-axis, making the frequency a function of x.
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Figure 2.8: Magnetic field gradients inside an MR-scanner. The red ar-
rows are normal vectors, and their size indicates the magnetic field strength
in a plane perpendicular to the vector. The slice selective gradient Gz is di-
rected along the z-axis and gives the protons a position-dependent frequency
along the z-axis. The frequency encoding gradient Gx gives the protons a
position-dependent frequency along the x-axis. The phase encoding gradi-
ent Gy gives the protons a position-dependent phase shift along the y-axis.
Adapted from[14].

The slice can be divided into smaller subvolumes called voxels, where each voxel
contains protons with a unique combination of frequency and phase. During an MR
scan, all the frequency and phase information is collected into the Fourier domain
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called k-space. The k-space represents the spatial frequency distribution of the MR
image, and is the Fourier transform of the MR image. By simply doing an inverse
Fourier transform of the k-space, the MR image is obtained.8

2.5 Pulse sequences

The spatial frequency distribution collected in k-space forms the basis for the quality
of the resulting MR image. It is necessary to sample the k-space representation of
the object evenly in order to get a good quality image. There are several different
ways to properly sample information in k-space, depending on how the gradients
and RF-pulses are applied. A pulse sequence is when gradients and RF-pulses are
applied in a certain sequence and with certain time intervals. Two of the most
common pulse sequences are the gradient echo (GRE) sequence and the spin echo
(SE) sequence.

In diffusion weighted imaging, the technique in focus in this thesis, the SE sequence
is most commonly used. In the SE sequence, a 90◦ RF-pulse first flips the magne-
tization vector towards the xy-plane. The protons will start to dephase under the
influence of the frequency encoding gradient Gx, which results in a signal loss. A
180◦ RF-pulse then flips the proton spins 180◦ about the xy-plane. This inverts
the phase of the protons. The dephasing effect of Gx will then be reverted, and a
signal peak, called a spin echo, is observed after a time TE (echo time). The process
of dephasing and rephasing spins is illustrated in figure 2.9. The 180◦ pulse also
reverts the dephasing effect caused by inhomogeneities in the main magnetic field.
The signal therefore decays with T2, and not with T ∗2 . The time interval between
two 90◦ pulses is called the repetition time (TR).

The GRE sequence uses a frequency encoding gradient G′x of opposite polarity in-
stead of a 180◦ pulse to rephase the spins. This results in a gradient echo. Note
that a bipolar frequency encoding gradient does not revert the dephasing effect due
to field inhomogeneities. The signal therefore decays with T ∗2 in a GRE sequence.

The process of rephasing the spins by either gradient reversal or a 180◦ RF-pulse
can be illustrated by analogy to a running competition. The fast runners represent
spins with a high precessing frequency, while the slow runners represent spins with a
slower precessing frequency. After a time t, the fast runners have traveled a greater
distance than the slower ones. The fast precessing spins will accumulate a bigger
phase shift than the slower ones. After a time t = TE/2, a flute is blown, and the
competitors have to turn around and run back. The flute represents the 180◦ pulse
or the change in polarity of Gx. Assuming that they all run at a constant speed
throughout the race, the fast runner will eventually reach the slow runner, and the

8For a thorough discussion of k-space, please seek out Atle Bjørnerud’s The Physics of Magnetic
Resonance Imaging[9].
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Figure 2.9: Principle of dephasing and rephasing of spins in the SE sequence.
A 90◦ pulse flips the magnetization vector into the xy-plane. The spins will
start to dephase with time due to relaxation processes. A 180◦ pulse the flips
the spins 180◦ about the xy-plane, inverting the phase-shift. The spins start
to rephase, and the refocusing of the spins generates a spin echo with a peak
amplitude occurring at the echo time, TE.

net phase shift among the spins gets smaller and smaller. A signal echo starts to
form. In the end, they will all arrive at the finish line at the same time t = TE. The
peak amplitude of the echo occurs at the finish line when the phase shift among the
spins is zero.

The conventional SE and GRE sequence reads out a single line in k-space per TR
interval. This is a time demanding process, especially when larger volumes are
imaged. The acquisition time can be significantly reduced by a so-called echo-planar
imaging (EPI) sequence. In an EPI sequence, multiple lines in k-space are acquired
per TR interval. By applying short ‘blips’ of the phase encoding gradient, a train of
echoes is generated following the 90◦ excitation pulse. The EPI sequence provides
faster acquisition time and reduces the effects of patient motion, but the downside
is an extreme sensitivity to field inhomogeneities and a general sensitivity to many
artefacts[9].

An EPI sequence can be combined with a GRE sequence or a SE sequence. In a
GRE-EPI sequence, the spins are rephased between each echo by applying a fre-
quency encoding gradient of opposite polarity. A SE-EPI sequence uses a 180◦ pulse
between each echo to rephase the spins[15].

The most common sequence in DWI is the single shot SE-EPI sequence. In a
single shot EPI sequence, data from all of k-space is acquired following a single 90◦
excitation pulse. The amplitudes of the last echoes in the echo train are therefore
going to be very low, thus a single shot sequence requires large system stability and
field homogeneity.
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2.5.1 Image contrast

By careful manipulation of the echo time TE, and the repetition time TR, is it
possible to achieve different types of image contrasts. Different biological tissues
have different T1 -and T2 time constants, and this difference is what gives the final
image its contrast.

The differences in T1 can be demonstrated in a T1-weighted image. A T1-weighted
image can be achieved by using a short TR and a short TE, where TR ≈ T1. Because
the signal intensity decays with T2 in a spin echo sequence, a short TE will minimize
the T2-effects. A short TR highlights the differences in T1 recovery times among the
tissue types. It is the signal from the Mz component of the magnetization vector
that is measured in a T1-weighted image. When the RF-pulse is switched off, Mz
starts to recover, and after a time t, tissue types with a short T1 will have a larger
Mz than tissue types with a long T1. The signal intensity is proportional to the size
of Mz. Tissues with short T1, like fat, therefore appears bright in a T1-weighted
image, while tissues with longer T1, like the cerebrospinal fluid, appear darker.

If the time between consecutive 90◦ pulses is too long (when TR is longer than T1
of most tissue types), Mz will completely recover and the differences in T1-times
are minimized. Therefore, a T2-weighted image has a long TR and TE in order
to minimize the T1 effects and emphasize the T2 effects. The T2 relaxation time is
connected to time it takes for Mxy to decay. Tissues with a long T2 appear bright
in a T2-weighted image, while tissues with a short T2 appear dark. However, the
T1-effects can not be completely eliminated, even with a long TR, because some
tissue types with a long T1 are still able to create some T1-weighting in the image.
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Diffusion-weighted MRI

Diffusion is the random movement of molecules in a fluid or gas. Biological tissue
contains large amounts of water molecules. The water molecules do not stay at the
same place inside the tissue, but tend to move about in a random manner due to
what is called Brownian motion. If the diffusion is free and unrestricted, the diffusion
of molecules is equal in all directions. This is referred to as isotropic diffusion.
Biological tissues often contain barriers, such as macromolecules, membranes and
nerve fibers. When diffusion is directionally dependent, the diffusion is said to
be anisotropic. Certain tissue types, like muscle and brain, consist of coherently
oriented fibers, and the water molecules tend to diffuse along these fibers[14]. Hence,
the degree of diffusion depends on the direction of the measurement, and the diffusion
pattern may reveal the underlying structure of the tissue. One clear example is the
anatomy of the white matter in the brain. The structure of white matter is highly
complicated and not always understood. Measurement of the diffusion anisotropy
makes it possible to uncover the intricate fiber structures of the brain.

Diffusion-weighted magnetic resonance imaging (DWI or DW-MRI) is an MRI tech-
nique that measures the diffusion of water molecules by applying diffusion sensitizing
gradients. A diffusion-weighted image can then be generated based on the degree
of diffusion in each voxel. Diffusion-weighted MRI has several advantages. It maps
the diffusion process in vivo non-invasively and without the help of contrast agents.
The diffusion can be measured along any arbitrary axis. A diffusion-weighted image
gives access to new information about the underlying tissue structure that can not
be provided by conventional MRI. It is known that a number of pathological condi-
tions may alter the morphology of the tissue, and a diffusion-weighted image makes
it possible to visualize and hopefully detect these changes.

The theory in this chapter is collected from The Physics of Magnetic Resonance
Imaging (A. Bjørnerud)[9], Introduction to Diffusion Tensor Imaging (S. Mori)[14]
and Introduction to diffusion tensor imaging mathematics: Part I. Tensors, rota-
tions, and eigenvectors (P. B. Kingsley)[16], unless otherwise specified.
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3.1 Diffusion

Molecular diffusion, or simply just diffusion, is the movement of molecules in a gas
or fluid from a region of high concentration to a region of lower concentration. The
change in concentration from one region to another is called a concentration gradi-
ent. The diffusion process leads to a net flux of molecules along the concentration
gradient, and the result is a gradual mixing of the different molecules. The gradual
mixing eventually leads to a homogeneous distribution of molecules in the mixture.
To exemplify: Imagine that a drop of ink is released into a glass of water. Even
though the water is completely still, the ink molecules will start to spread out and
mix with the water molecules. After some time, the ink molecules will be completely
mixed with the water molecules. The distribution of water and ink has become ho-
mogeneous, due to diffusion. Even after the mixture has become homogeneous and
the concentration gradient is no longer present, the molecules continue to move
about randomly.

The random movement of particles suspended in a fluid is known as Brownian
motion. The phenomenon is named after Robert Brown, who in 1827 observed
the continuous jittery motion of pollen grains suspended in water. The random
movement of a particle in a homogeneous fluid is caused by a large number of
collisions between the particle and the fast-moving molecules of the fluid. The
collisions happen at random and cause the particle to move in arbitrary directions.

The driving force in diffusion is the concentration gradient, and molecules are trans-
ported along this gradient by random collision motions. The diffusion process is
slower in fluids than in gases, because the density of molecules is higher in a fluid,
resulting in more collisions. The process of diffusion and Brownian motion is illus-
trated in figure 3.1.

a)

!

b) c)

Figure 3.1: a) A particle suspended in a fluid at time t0. No concentration
gradient is present. b) After a time t, the particle has moved around due to
Brownian motion. c) A group of particles suspended in a fluid. The concentra-
tion gradient is equal in all directions and the diffusion is isotropic. Adapted
from[14].
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The diffusion flux is the amount of particles per unit area per unit time, and can in
one dimension be described by Fick’s first law of diffusion,

J = −D∂φ
∂x

(3.1)

where J is the diffusion flux (mol m−2 s−1), D is the diffusion coefficient or diffusivity
(m2/s), φ is the particle concentration per unit volume (mol/liter) and x is the
position. ∂φ

∂x
is the change in concentration with respect to x, and is the driving force

of diffusion. The negative sign (-) indicates that the diffusion flux goes from regions
of high concentration to regions of low concentration. The diffusion coefficient D
can be expressed as

D = kBT

6πηR (3.2)

where kB is the Boltzmann constant, T is the absolute temperature measured in
Kelvin, η is the viscosity and R is the particle radius. In the three-dimensional case,
a small modification of equation (3.1) is made, and Fick’s first law can be expressed
as

J = −D∇φ (3.3)

where ∇ =
(
∂
∂x
, ∂
∂y
, ∂
∂z

)
is the del or gradient operator in <3. Fick’s first law does

not take into account that the concentration gradient changes in time. Fick’s second
law of diffusion was therefore developed, and can in three dimensions be expressed
as

∂φ

∂t
= D∆φ (3.4)

where ∆ = ∇2 is the Laplace operator, which generalizes the second derivative. If
the diffusion is unrestricted and one-dimensional, equation (3.4) has the solution

φ(x, t) ∝ 1√
Dt

exp
(
−x2

4Dt

)
. (3.5)
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Equation (3.5) shows that the particle concentration at a given position x after
a certain time t is given by a Gaussian distribution. A particle that is diffusing
freely, will move a certain distance from the starting point after a given time t. The
diffusion probability P(x, t) that a particle is located at a position x after a time t
is equivalent to the concentration distribution, giving

P (x, t) ∝ 1√
Dt

exp
(
−x2

4Dt

)
. (3.6)

The mean square displacement < r2(t) > of a particle, as derived by Albert Einstein
in 1905, is given by

< r2 >= qiDt (3.7)

where < r2 > is the mean square displacement, and r is the mean distance from the
starting point that a particle will have diffused after time t. qi is a numerical constant
which depends on dimensionality (qi = 2, 4, or 6 for 1, 2 or 3 dimensional diffusion,
respectively), and D is the diffusion coefficient. In three-dimensional space, the
mean-square displacement is

< r2 >= x2 + y2 + z2 = 6Dt. (3.8)

When the diffusion is isotropic, the mean diffusion distance is the same in all direc-
tions. This can be illustrated by a sphere, where the diffusion probability is highest
at the origin and lower closer to the bounding circle of the sphere. The radius of
the sphere is given by the mean diffusion distance, which can be found by taking
the square root of equation (3.8)

r =
√

6Dt. (3.9)

The typical water diffusion distance during MR measurements is approximately 5-10
µm, while the voxel size is usually around 2 mm.
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3.2 Imaging diffusion

Diffusion can be measured by introducing a diffusion sensitizing gradient G1. Dif-
fusion gradients can be added to any type of pulse sequence, but the majority of
diffusion-weighted images are done with an SE or SE-EPI sequence. A pulse se-
quence where a pair of diffusion sensitizing gradients are added is called a Stejskal-
Tanner sequence. Figure 3.2 illustrates the diffusion sensitization of a SE sequence.
The diffusion gradient G is applied before and after the 180◦ refocusing pulse. The
gradient induces a position-dependent phase shift, γδGr, to the protons along the
gradient direction, where δ is the duration of the gradient, G is the gradient strength,
and r is the position of the proton. The protons are now tagged with a certain phase
shift. After a time t = τ , the 180◦ refocusing pulse is applied. The second diffusion
gradient then reverses the phase shift with −γδGr′, where r′ is the position of the
proton at the time of the second gradient application. The net phase shift of the
proton is therefore

∆φ = γδG(r − r′) = γδGR (3.10)

where R is the net displacement of the proton. If the proton has remained stationary
(r = r′) during the gradient separation time ∆, the net phase shift is zero. Protons
that have diffused a distance (r 6= r′) have a non-zero phase shift which is propor-
tional to the diffusion distance R. These protons have a different phase than the
neighboring protons, and they will not realign perfectly during the rephasing. The
signal from the diffused protons is lost, as made evident by the attenuated signal
echo amplitude. The diffusion gradient pair thus induces a signal loss due to the
diffusion of water molecules. The signal attenuation is proportional to the strength
G and duration δ of the diffusion gradients, as well as the diffusivity D. The larger
the diffusion distance, the more the signal is attenuated (assuming the diffusion took
place in the gradient direction).

A single voxel contains a large number of water molecules with completely random
diffusion paths. The diffusion gradient can only measure diffusion along a single,
predetermined axis, and diffusion occurring in other directions will not be registered
by the gradient. In anisotropic diffusion, the degree of diffusion varies with the
direction. Diffusion gradients are therefore applied in several noncollinear directions
to get the full picture of the diffusion process.

Diffusion only affects the transverse component of the magnetization vector, which
can be written as MT = Mx + jMy in complex notation. The behavior of MT under
both relaxation and diffusion is described by the Bloch-Torrey equation,

1Not to be confused with the slice selecting gradient Gz or the phase- and frequency encoding
gradients Gy and Gx.
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Figure 3.2: Illustration of a Stejskal-Tanner sequence. Here diffusion gradi-
ents have been added to a SE sequence with echo time TE = 2τ . The diffusion
gradients induce a measurable signal loss which is proportional to the degree
of diffusion. The duration of G is given by δ and the gradient separation time
is ∆. The gradient pair have the same polarity due to the 180◦ refocusing
pulse.

dMT

dt
= −MT

T2
− jγ(Gs(t) · r)MT +D∆MT (3.11)

where ∆ is the Laplace operator. The last term in equation (3.11) is the diffusion
term, which describes the behavior ofMT under the effects of diffusion. The diffusion
term can be compared to Fick’s second law in equation (3.4). Fick’s second law,
∂φ
∂t

= D∆φ, describes the temporal change in particle concentration as a result of
particle diffusion along the direction of the concentration gradient. The diffusion
term, D∆MT , describes the temporal change in MT as a result of water diffusion
along the direction of the diffusion gradient. Diffusion that occurs along the gradient
direction causes decay in MT , resulting in a signal loss. When diffusion is isotropic,
the signal intensity can be expressed as

S(b) = S0 exp(−bD) (3.12)

where S0 is the signal intensity without diffusion gradients, and

b = γ2G2[δ2(∆− δ/3) + ε2/30− δε2/6] (3.13)
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is the b-factor (s/m2) or b-value, which determines the amount of diffusion weighting
in the sequence. ε is the rise and fall time of the gradient. If the rise and fall time
is neglected (ε ≈ 0), the result is perfectly rectangular pulses. The b-factor is then
reduced to

b = γ2G2δ2(∆− δ/3). (3.14)

The signal intensity S decays mono-exponentially with the diffusivity D and the
amount of diffusion weighting, b. A high b-factor gives the sequence a high diffusion
weighting, whereas a low b-factor gives low diffusion weighting. The amount of
diffusion weighting is determined by the gradient strength G, the gradient separation
time ∆, and the duration time δ of the gradients. S0 is the signal intensity without
any diffusion sensitizing gradients, and only decays with T2. The S0 signal forms a
T2-weighted image, and because no diffusion weighting is applied (b = 0), it is often
called the b0 image.

3.2.1 Apparent Diffusion Coefficient

The diffusion coefficient D of a voxel can be estimated after the signal intensity S is
obtained. The estimated diffusivity Dapp is called the apparent diffusion coefficient
(ADC), and is not the true diffusivity of the tissue, but the observed diffusivity. The
apparent diffusion coefficient can be found by taking signal measurements at two
different b-factors, a low b-factor b1 and a higher b-factor b2. When all other pulse
sequence parameters are held constant, the two signals can be expressed as

S1 = S0 exp(−b1Dapp) (3.15)

and

S2 = S0 exp(−b2Dapp). (3.16)

Dapp can be found by dividing equation (3.15) by equation (3.16)

S1/S2 = exp[(b2 − b1)Dapp]. (3.17)

Solving equation (3.17) with respect to Dapp gives
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ADC = − 1
b2 − b1

ln
(
S2

S1

)
(3.18)

where Dapp = ADC. It is also possible to estimate D with more than two b-factors.
This is done by a linear least-squares fit of the log-transformed signal intensities. The
ADC values of each voxel can be illustrated in an ADCmap, where the pixel intensity
is proportional to the ADC value. A high ADC value indicates high diffusivity and
gives a bright pixel. A low ADC value indicates reduced diffusivity, and the pixel
becomes dark. Note that the intensities of an ADC map are opposite of that of
a diffusion-weighted image, where a high degree of diffusion results in a low signal
intensity S, and hence a low pixel intensity.

3.3 Artefacts

An MRI artefact is a feature appearing in the final image that is not present in
the original object. The artefacts are typically classified as either patient-related,
signal-processing dependent or hardware-related[17]. A brief overview of the most
common artefacts in DWI are presented in the following sections.

3.3.1 Motion artefacts

Motion artefacts are one of the most common artefacts in MRI. The DW-MRI tech-
nique is sensitive to stochastic motions in the micrometer range. As a consequence,
the technique is particularly sensitive to macroscopic motions of the object being
imaged. The two main components of motion in brain imaging are bulk movements
of the head (translational and rotational) and periodic local movements of brain
tissue due to cardiac-induced pulsations of the cerebrospinal fluid[18]. Motions dur-
ing the image acquisition may give rise to a ‘ghost image’, where the object being
imaged appears shifted over a distance, commonly referred to as ghosting.

3.3.2 Susceptibility artefacts

Susceptibility artefacts may arise due to differences in magnetic susceptibilities of
the tissues and materials being imaged. In transitions where the differences are
large, typically around tissue/air boundaries (such as the frontal lobe) or metal
implants, local magnetic field distortions may arise in the B0 field. The field distor-
tions causes a change in the frequency precession of the spins. The EPI-sequences
are very sensitive to B0-variations due to the single-shot nature of the k-space read-
out. The off-resonance frequency of the spins produces an additive phase during
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the EPI trajectory, resulting in a geometric distortion, or warping, of the image.
Rapid changes in the magnetic field also give rise to signal variations, seen as signal
brightening and signal voids, due to the displacement of signal registration during
image reconstruction relative to true location[19].

3.3.3 Eddy currents

DWI uses rapidly changing magnetic gradients during the diffusion measurements.
The rapid change in magnetic fields may induce eddy currents in the metallic com-
ponents of the MR scanner, as well as in wires and devices within the patient, or
in the patient as a whole. The eddy currents generate off-resonance magnetic fields,
causing the spins to dephase, which results in warping of the image. The warping
caused by eddy currents is different than the warping caused by constant magnetic
field inhomogeneities, as the eddy currents change with each diffusion-encoding gra-
dient direction. The eddy currents induced by diffusion gradients can be corrected
for by either fitting a small constant gradient to each diffusion-weighted image, or
by reducing the eddy currents by hardware revisions[19].





Chapter 4

Diffusion Tensor Imaging

So far the discussion has been about unrestricted, isotropic diffusion. Measurements
of isotropic diffusion along any arbitrary axis give the same result, hence only one
measurement is needed to describe isotropic diffusion. However, the diffusion of
water molecules in biological tissues is often restricted by various barriers, like cell
membranes, muscle fibers and nerve fibers. Water molecules tend to diffuse along
these fibers, which results in anisotropic diffusion. This means that the diffusion is
more likely to occur in one direction than another. Anisotropic diffuision can not
be described by measurements in just one direction, simply because the diffusivity
is direction specific. In order to deduce the underlying tissue anatomy, diffusion
has to be measured in a number of non-collinear directions. The measurement
orientation with the highest diffusivity is most likely aligned with the fiber, while
the measurement orientation with the lowest diffusivity is aligned perpendicular to
the fiber. In theory, the diffusivity could be measured in thousands of different
directions to find the primary axis of diffusion. In a clinical situation however, the
scanning time is often limited, and so is the number of diffusion measurements.
Mathematical models are used to describe anisotropic diffusion when the number of
gradient directions are limited.

Unless stated otherwise, the theory in this chapter is collected from The Physics of
Magnetic Resonance Imaging (A. Bjørnerud)[9] and Introduction to diffusion tensor
imaging mathematics: Part I. Tensors, rotations, and eigenvectors (P. B. Kings-
ley)[16].

4.1 DTI mathematics

Diffusion tensor imaging (DTI) is a mathematical model that uses tensor calculations
to describe the diffusion anisotropy in a voxel. In DTI, the diffusion anisotropy
is represented by a three-dimensional tensor called the diffusion tensor, D. The
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eigenvectors and eigenvalues of the diffusion tensor describe the size and orientation
of the diffusion in a voxel, and can be illustrated as an ellipsoid (see figure 4.1 b).
The eigenvectors ε1, ε2 and ε3 determine the orientation of the principal axes of the
ellipsoid, and the eigenvalues λ1, λ2 and λ3 represent the length of the principal
axes. An ellipsoid with center at the origin of a Cartesian coordinate system can be
described mathematically by the equation

(x′)2

6λ1t
+ (y′)2

6λ2t
+ (z′)2

6λ3t
= 1 (4.1)

where λ1, λ2 and λ3 are the eigenvalues of the corresponding eigenvectors ε1, ε2 and
ε3 of the ellipsoid. More often than not, the eigenvectors of the ellipsoid are not
aligned with the x, y- and z-axes of the laboratory frame. The marked coordinates
(x′, y′, z′) represent the coordinate system of the ellipsoid, defined by the direction
of the eigenvectors. The eigenvalues symbolize the diffusivity along the principal
axes. The principal axes of the ellipsoid are axes of symmetry, which means that
the diffusivity along one direction of the axis is the same in the other direction. If
the diffusivity is equal in all three directions (λ1 = λ2 = λ3), equation (4.1) reduces
to that of a sphere, and the diffusion is isotropic (see figure 4.1 a).

In DTI, the diffusion in a voxel is described by the three-dimensional diffusion tensor
D,

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 . (4.2)

The diffusion tensor is symmetric, Dij = Dji where i, j = {x, y, z}, as a result of
the symmetric properties of the diffusion ellipsoid. The diagonal elements, Dxx,
Dyy and Dzz, represent the diffusivity along the primary axes of the ellipsoid. The
off-diagonal elements are non-zero when the diffusion ellipsoid is rotated relative to
the laboratory reference frame.

The primary objective in DTI is to measure the diffusion in a sufficient number of
directions to determine D. When the elements of D are known, the eigenvectors
and eigenvalues can be obtained by linear algebra.

If the orientation of the diffusion ellipsoid was known beforehand, the diffusion
gradients could be placed in the same direction as the eigenvectors of the ellipsoid
straight away. The off-diagonal elements in D would then be zero. In this case,
exactly three measurements would be sufficient in order to determine the diffusion
tensor. However, the orientation of the diffusion ellipsoid is never known beforehand,
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Figure 4.1: a) In isotropic diffusion, the diffusion probability is the same in all
directions, resulting in a sphere where the radius is given by the mean diffusion
distance

√
6Dt. b) Anisotropic diffusion can be illustrated by an ellipsoid,

where the eigenvectors determine the axes of the ellipsoid, and the eigenvalues
determine the mean diffusion distance along the axes. The principal axes are
axes of symmetry. Adapted from[9, 15].

and different voxels have different tensor orientations. It is therefore necessary to
measure the diffusion in more than three directions. Due to its symmetric properties,
there are only six unique elements in the diffusion tensor; Dxx, Dyy, Dzz, Dxy, Dxz and
Dyz. The minimum number of gradient directions needed in order to uniquely define
D is therefore six, provided that the gradient directions are optimally distributed in
space. A sample DTI acquisition is shown in figure 4.2.

The diffusion matrix b describes the diffusion weighting along the different directions
and is given by

b =

bxx bxy bxz
bxy byy byz
bxz byz bzz

 . (4.3)

The diffusion gradient G can be expressed as a vector with coordinates gx, gy and
gz
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Figure 4.2: Diffusion-weighted images of the brain. The figure shows DW
images for six different diffusion directions (b 6= 0), together with the non
diffusion-weighted image (b = 0). Notice that the white matter signal intensity
varies with the direction of the diffusion measurement. Diffusion must be
measured in a minimum of six different directions to determine the diffusion
tensor.

G =

gxgy
gz

 (4.4)

where the length of G is normalized, g2
x + g2

y + g2
z = 1, such that the gradient

amplitude is the same for all measurements in all directions. The diffusion matrix
b can be expressed as the product of the diffusion weighting constant b and the
normalized diffusion vector G

b = bg (4.5)

where g is the outer product of G, given by

g = GnGT
n =

gxgy
gz

 [gx gy gz
]

=

 g2
x gxgy gxgz

gygx g2
y gygz

gzgx gzgy g2
z

 . (4.6)

Gn is the nth gradient vector, and GT
n is the transpose of Gn. The signal intensity

is a mono-exponentially decreasing function, where the signal attenuation is related
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to the dot product1 of the diffusion tensor D and the diffusion matrix b,

S = S0e
−b·D = S0e

−Tr(bD) (4.7)

where b·D is the dot product and bD is the matrix product of the two matrices.
Tr(bD) is the trace of the square matrix bD, which is the sum of the elements on
the main diagonal of bD. The dot product b·D is equal to the trace of bD, with
the solution

b ·D = Tr(bD) = bxxDxx + byyDyy + bzzDzz + 2bxyDxy + 2bxzDxz + 2byzDyz. (4.8)

By inserting equation (4.5), which states that b = bg, into equation (4.7), the signal
attenuation now becomes

S = S0e
−Tr(bD) = S0e

−b·Tr(gD) (4.9)

where the exponent can be expressed as

−b·Tr(gD) = −b(Dxxg
2
x+Dyyg

2
y+Dzzg

2
z+2Dxygxgy+2Dxzgxgz+2Dyzgygz). (4.10)

When the diffusion is measured along N different directions, where N ≥ 6, the signal
attenuation in each direction can be expressed as a vector with N elements on the
form

Yi = 1
b

ln
(
S0

Si

)
, i = {1, ..., N}. (4.11)

The signal attenuation vector containing all the gradient directions is therefore

Y = 1
b

[
ln
(
S0
S1

)
ln
(
S0
S2

)
... ln

(
S0
SN

)]
. (4.12)

Rearrangement of quation (4.9) gives the expression
1also called the scalar product
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Tr(gD) = 1
b

ln
(
S0

Si

)
(4.13)

where Si is the signal amplitude in the ith gradient direction. Combining equation
(4.13) with equation (4.11) gives

Yi = Tr(gD) = Dxxg
2
xi+Dyyg

2
yi+Dzzg

2
zi+2Dxygxigyi+2Dxzgxigzi+2Dyzgyigzi (4.14)

which can be expressed in matrix form as

Yi =
[
g2
xi g2

yi g2
zi 2gxigyi 2gxigzi 2gyigzi

]


Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


. (4.15)

The first part of equation (4.15) describes the ith gradient direction, and is defined
as

Hi =
[
g2
xi g2

yi g2
zi 2gxigyi 2gxigzi 2gyigzi

]
, i = {1, ..., N}. (4.16)

The second part in equation (4.15) is defined as d, and contains the six unique
elements of the diffusion tensor,

d =
[
Dxx Dyy Dzz Dxy Dxz Dyz

]T
. (4.17)

The N gradient directions are collected into one big matrix H, where the ith row
represents the ith gradient direction

H =


g2
x1 g2

y1 g2
z1 2gx1gy1 2gx1gz1 2gy1gz1

g2
x2 g2

y2 g2
z2 2gx2gy2 2gx2gz2 2gy2gz2

... ... ... ... ... ...
g2
xN g2

yN g2
zN 2gxNgyN 2gxNgzN 2gyNgzN

 . (4.18)
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The signal attenuation in all the gradient directions can now be expressed in matrix
form. This results in the following matrix equation

Y = Hd. (4.19)

In order to determine the elements of d, equation (4.19) must be solved. If the
diffusion is measured in the minimum number of required directions, then N = 6.
H is then a square 6×6 matrix, and an exact analytical solution to equation (4.19)
exists,

d = H−1Y (4.20)

where H−1 is the inverse of H. The solution of equation (4.20) returns the elements
of d. In practice, diffusion is measured along more than six directions. When N
> 6, H is no longer a square 6×6 matrix, but an N×6 matrix. In order to solve
equation (4.20) one can use linear regression methods like ordinary least squares
(OLS) or weighted least squares (WLS).

4.2 Ordinary least squares

The signal attenuation Yi in the ith gradient direction is linearly related to the
signal amplitude Si and Hi, and can be expressed as

Yi = 1
b

ln
(
S0

Si

)
= Hid =

N∑
j

Hijdj (4.21)

where N is the number of directions. When N > 6, the OLS method can be used
to solve equation (4.21) by finding the lowest sum of squared residuals,

R =
n∑
i=1

(ri)2 (4.22)

where the residual ri is the difference between the observed data and the model,
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R = (Y−Hd)2

= YTY− 2dTHTY + dTHTHd.
(4.23)

The residual R is minimized by deriving equation (4.23) with respect to d and
setting the equation equal to zero. This results in the expression

HTHd = HTY (4.24)

where d can be expressed as

d = (HTH)−1HTY. (4.25)

The term (HTH)−1HT is called the pseudoinverse of H,

HΨ = (HTH)−1HT (4.26)

and the solution to equation (4.20) can now be obtained by solving the expression

d = HΨY. (4.27)

4.3 Weighted least squares

The WLS method is a generalization of the ordinary least squares method, and uses
non-negative constants, or weights, on the measurements. Instead of minimizing
the sum of squared residuals, as seen in OLS, WLS minimizes the sum of weighted
squared residuals,

R =
n∑
i=1

wi(ri)2. (4.28)

The weights give more precise measurements a bigger influence than less precise
measurements. With OLS, all the measurements are assumed to be equally precise,
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thus all of the weights are equal to 1.

Conventional MR images are not completely noise-free. For a set of MRI-signals,
the natural logarithm of the signals S̃ can be modeled as

Y = Hβ + ε (4.29)

where

Y =
[

ln S̃(b1,g1), ..., ln S̃(bN ,gN)
]T

(4.30)

is the vector containing all the signals, H is the design matrix with all the diffusion
gradient directions and gradient strengths, β is the parameter vector with all the
tensor elements and the noise-free non-diffusion-weighted signal, and ε is the vector
containing the error terms[20].

When the error vector ε is zero, the OLS estimation can be used to solve equation
4.29, where

β̂OLS = d =
(
HTH

)−1
HTY. (4.31)

When ε is non-zero, the best linear estimator of β can be designed by including a
weight matrix W into equation (4.31),

β̂WLS =
(
HTWH

)−1
HTWY, (4.32)

where the weights are expressed as

W = diag
(
S2(b,g)

)
. (4.33)

Because the noise-free signals S are unknown, the weight matrix must be estimated.
There are several ways of estimatingW. This thesis uses a method where the weights
are given by
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W̃ = diag
(

exp(2Hβ̂OLS)
)
. (4.34)

4.4 Obtaining the diffusion tensor

The eigenvectors and eigenvalues of D are obtained by solving the equation

D · ε = λ · I3 · ε (4.35)

where ε is the matrix containing the eigenvectors, λ is the eigenvalues and I3 is the
identity matrix. In matrix from the equation becomes

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 ·
ε1x ε2x ε3x
ε1y ε2y ε3y
ε1z ε2z ε3z

 =

λ1 0 0
0 λ2 0
0 0 λ3

 ·
ε1x ε2x ε3x
ε1y ε2y ε3y
ε1z ε2z ε3z

 (4.36)

where εi = [εix, εiy, εiz] is eigenvector number i, and λi the corresponding eigenvalue,
for i = {1, 2, 3} . The solution of equation (4.35) with respect to λ is obtained by
solving

det(D− λI) = 0. (4.37)

In the special case, where the orientation of the ellipsoid is known, a calculation
of equation (4.37) is unnecessary. When the diffusion gradients are placed in the
direction of the eigenvectors, the off-diagonal elements of D are reduced to zero.
The diffusion tensor becomes diagonal, where the diagonal elements simply are the
eigenvalues of the ellipsoid,

D =

λ1 0 0
0 λ2 0
0 0 λ3

 (4.38)

with the eigenvectors ε1 = [1 0 0], ε2 = [0 1 0] and ε3 = [0 0 1].
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4.5 Diffusion anisotropy in the brain

Diffusion of water molecules in the brain can be either isotropic or anisotropic,
depending on the region of interest. The tissue of the brain can be divided into
two types; white matter and gray matter. Gray matter is made up of neuron cell
bodies, dendrites and axon terminals, and white matter is made up of myelinated
axons, or nerve fibers (see figure 4.3). The myelin coating of the axon speeds up
the electrical signals sent from one cell body to another. Myelin is a lipid-rich
substance, and white matter gets its bright appearance from the lipid content of
myelin. The axons are organized in bundles, forming nerve tracts that connect the
different regions of gray matter to each other. In addition to gray and white matter,
there is cerebrospinal fluid (CSF), a clear and colorless fluid that can be found in
the brain and spinal cord.

Myelin

AxonCell body
Nucleus

Dendrite Axon terminals

Figure 4.3: Simplified anatomy of a neuron. The human brain has two kinds
of tissue, gray matter and white matter. Gray matter contains neuron cell
bodies, dendrites and axon terminals, and white matter is made of myelinated
axons. The dendrites receive signals, while the axon terminals transmit signals.
The axons in white matter form nerve tracts, connecting the various parts of
gray matter to each other.

Diffusion is free and isotropic in regions with few or no barriers, which is typical in
the CSF. Diffusion is more anisotropic in white matter, because the water molecules
tend to diffuse along the nerve tracts. Gray matter has a complex structure and
contain lots of biological barriers, but is not organized in the same way as white
matter. The typical resolution of a diffusion-weighted MR image is of the order
of 2-3 mm in all three directions. With an observational window of this size, the
diffusion will still appear isotropic, even though the diffusion is hindered. This
happens because the gray matter structures change direction on a smaller scale
than the length scale of a voxel. On the other hand, many regions of white matter
have nerve tracts that are 2 mm or longer, which is why the diffusion anisotropy of
white matter stand out in DTI. The diffusion processes are illustrated in figure 4.4.
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a) b) c)

Figure 4.4: The diffusion process in different regions of the brain. a) The
diffusion process is unrestricted and isotropic in the CSF. b) Diffusion in gray
matter is hindered, but also isotropic on the length scale of a voxel because
of the structural complexity. c) Diffusion in white matter is anisotropic, with
primary diffusion direction along the nerve fibers. Adapted from[21].

4.6 DTI parameters

Aniostropic diffusion can not be fully described by a single scalar, because of its
direction specific properties. In order to generate an MR image that illustrates the
diffusion anisotropy, a scalar value has to be derived from the diffusion tensor D.
The scalar value reflects the degree of diffusion anisotropy in that specific voxel.
Each voxel can then be assigned a scalar value, and the intensity of each voxel
in the image is dependent on the value of the scalar. These scalars are referred
to as DTI parameters. There are several different DTI parameters that describe
anisotropic diffusion, the two most frequently used being the mean diffusivity (MD)
and fractional anisotropy (FA).

The direction of the eigenvectors depend on the orientation of the diffusion tensor. If
the patient moves, or the slice orientation is changed, the direction of the eigenvec-
tors also change. The tensor eigenvalues however, remain the same, because they are
rotationally invariant. This means that eigenvalues do not change under rotation.
The eigenvalues are the same even when the patient moves, or the orientation of
the slice is changed. The tensor eigenvalues are ideal for characterizing anisotropic
diffusion, because of their rotationally invariant properties. DTI parameters can
therefore be compared between patients.
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4.6.1 Mean Diffusivity

The mean diffusivity describes the average diffusion properties of a voxel. It repre-
sents the degree of diffusivity in a voxel, where unrestricted, free diffusion results
in a high MD, and hindered diffusion results in a low MD. The value of MD gives
an indication of the space available for the diffusion process to occur. The mean
diffusivity can be found by taking the mean of the diagonal elements of D, which is
equivalent to the mean of the tensor eigenvalues,

MD = Dxx +Dyy +Dzz

3 = λ1 + λ2 + λ3

3 . (4.39)

The mean diffusivity can also be calculated by taking the average of the ADC values,

MD =
∑N
i=1 ADCi

N
(4.40)

where the ADC values are given in equation (3.18). The mean diffusivity can be
represented by an MD map where the intensity of the pixel is proportional to the
MD value (see figure 4.5). Regions with free and unrestricted diffusion result in high
intensity pixels. The CSF has a high degree of diffusion and appears bright in an
MD map. In regions where the diffusion is limited, like in the white matter, the
pixels appear darker.

0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

Figure 4.5: Example of an MD map. The CSF typically has a high degree
of diffusion, hence a high MD, and appears bright in an MD map. Regions
with high degree of hindrance have lower MD and appears darker.
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4.6.2 Axial Diffusivity

The axial diffusivity (AD, or λ‖) is simply the eigenvalue of the eigenvector oriented
along the primary axis of the diffusion ellipsoid,

AD = λ1 (4.41)

and is a measure of the diffusivity in the axial direction. An AD map can be
generated in the same manner as an MD map, where the intensity of the pixel is
proportional to the AD value, as illustrated in figure 4.6a.

4.6.3 Radial Diffusivity

The radial diffusivity (RD, or λ⊥) is the mean diffusivity in the transverse plane of
the diffusion ellipsoid, and given by

RD = λ2 + λ3

2 . (4.42)

The axial diffusivity is usually larger than the radial diffusivity, because it is oriented
along the primary axis of diffusion. When AD is larger than RD, the diffusion is
anisotropic. If AD is close to RD, the diffusion is more isotropic. An RD map is
illustrated in figure 4.6b.

4.6.4 Fractional Anisotropy

Fractional anisotropy (FA) quantifies the pointedness of the diffusion ellipsoid, with-
out providing any information about the direction it is pointing to. Several different
formulas exist for calculating the FA index. The formula used in this project is given
by

FA =
√

3
2

√√√√(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2

λ2
1 + λ2

2 + λ2
3

(4.43)

where
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(b) RD map

Figure 4.6: AD and RD parametric maps illustrates the degree of axial and
radial diffusion, respectively. High intensity pixels represent a high degree of
diffusion in the axial (a) or radial (b) direction.

λ̄ = λ1 + λ2 + λ3

3 (4.44)

is the mean diffusivity. The values of FA range from 0 to 1. If λ1 = λ2 = λ3,
the diffusion is completely isotropic, and the FA index is reduced to 0. The FA
index gets closer to one with progressive diffusion anisotropy (see figure 4.7). An
FA index of 1 means that the diffusion is completely anisotropic, it is then fully
restricted, and diffusion only occurs along one axis. In this case the diffusion tensor
only has one non-zero eigenvalue, one eigenvector, and the ellipsoid is reduced to a
line pointing in the direction of the eigenvector. This is however rarely the case in
real measurements.

The FA values can be used to generate an FA image. An FA image, also called an
FA map, is an MR image where the intensity of the pixel is related to the FA value
in that pixel (see figure 4.8). The intensity of a pixel is represented by a grayscale.
A pixel with FA = 1 appears white, and a pixel with FA = 0 appears black.
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FA = 0 0 < FA < 1

Figure 4.7: The FA index quantifies the pointedness of the diffusion ellipsoid,
without providing any information about the direction of the principal axes.
Isotropic diffusion results in an FA index of 0, and the diffusion ellipsoid
becomes a sphere. Anisotropic diffusion has an FA index between 0 and 1,
and the more anisotropic the diffusion is, the closer the FA index is to 1.
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Figure 4.8: An FA map illustrates the degree of anisotropy in the tissue.
The nerve tracts in the white matter of the brain are highly anisotropic and
appears bright in an FA map, while the gray matter is less anisotropic and
appears darker.



Chapter 5

Diffusion Kurtosis Imaging

The theory in this chapter is collected from the articles Diffusion kurtosis imaging:
an emerging technique for evaluating the microstructural environment of the brain
(A. J. Steven, J. Zhuo and E. R. Melhem)[22] and MR diffusion kurtosis imaging
for neural tissue characterization (Ed X. Wu and Matthew M. Cheung)[23].

Diffusion kurtosis imaging (DKI) is a diffusion-weighted imaging model that takes
into account the non-Gaussian diffusion of water molecules in biological systems. It
is a simple extension of the diffusion tensor imaging (DTI) model. The DTI model
assumes a monoexponential signal decay as a function of b, which is typical for
Gaussian mediums, where the diffusion is free and unrestricted, or so-called isotropic.
It is important to note that the DTI model does not assume that the diffusion
occurs in a Gaussian medium, but rather that biological tissue is indistinguishable
from a Gaussian medium when lower b-values are used[24]. However, when higher b-
values are used, the assumption about the monoexponential signal decay is no longer
valid. The microstructural environment of the tissue is filled with biological barriers
like macromolecules, cell membranes, and nerve axons. These barriers restrict the
diffusion of water molecules, leading to a diffusion pattern that deviates from the
Gaussian diffusion distribution. DKI provides a more accurate diffusion model,
especially at higher b-values, by quantifying the deviation from a Gaussian diffusion
distribution. The deviation is quantified by the kurtosis1 K, and the value of K
may be used as an indicator of the complexity of the microstructural environment of
the tissue. In the DKI model, the signal attenuation is related to both the apparent
diffusivity, Dapp, and the apparent kurtosis Kapp.

DKI provides a new imaging metric useful in many clinical applications. Several
different pathologies cause changes in the morphology of the brain, which may alter
the diffusion anisotropy of the tissue. The mean kurtosis, which is the average
kurtosis measured along with all diffusion gradient directions, has been shown to

1In this document, the term kurtosis refers to the excess kurtosis. The excess kurtosis is simply
the kurtosis minus 3, to provide the comparison to the normal distribution.
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offer an improved sensitivity in detecting pathological changes, in comparison to
conventional DTI.

Some neurodegenerative diseases, like Alzheimer’s, cause neuronal loss, which can
result in a decreased kurtosis value. This is because the loss of neuron cell bodies,
synapses and dendrites lead to an increase in extracellular space and less restricted
diffusion[25]. Neuronal loss is also associated with the aging of the brain, and there
is a significant relationship between the age of the brain and the mean kurtosis
value[26]. Diffusion kurtosis imaging can therefore be used in the evaluation of the
aging brain or as a biological marker for neurodegenerative diseases.

Demyelination of axons increases the water exchange between the intra-axonal and
extra-axonal compartments. The diffusion in the radial direction is therefore in-
creased due to demyelination, resulting in a decreased radial kurtosis[27]. The ra-
dial kurtosis may therefore act as a marker for demyelinating diseases, like multiple
sclerosis.

5.1 Kurtosis

In probability theory and statistics, the kurtosis K is a term that reflects the devi-
ation of a probability distribution from the Gaussian distribution. The kurtosis is
a unitless measure, and the higher the K, the bigger the deviation. When water is
diffusing freely, the diffusion distribution is Gaussian, with K = 0. A probability
distribution with a positive kurtosis has a higher peak and heavier tails, and a dis-
tribution with a negative kurtosis has a lower peak and lighter tails, compared to
the Gaussian distribution, as illustrated in figure 5.1.

A positive, non-zero kurtosis value, K > 0, indicates tissue heterogeneity and that
the diffusion is directional, while K = 0 signifies Gaussian diffusion (see figure 5.2).
The (mean) kurtosis typically becomes higher with increasing tissue complexity
and is related to the degree of non-Gaussian diffusion. White matter usually has
a higher kurtosis value, because the diffusion is directional along the nerve fibers.
Gray matter has a complex structure, but is not as organized as white matter, and
has a lower kurtosis value. In the CSF, the kurtosis is zero, because the diffusion
follows a Gaussian distribution probability. In biological systems, the kurtosis term
is always non-negative, K ≥ 0. A negative diffusion kurtosis would not be possible,
because the diffusion process can not become more homogeneous than it already is
in a Gaussian distribution, where K = 0.

5.2 The DKI signal

The signal attenuation as predicted by the DTI model can be expressed as
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Gaussian (K = 0)
Negative kurtosis (K < 0)

Positive kurtosis (K > 0)

Displacement [m]

Probability

0

Figure 5.1: Different degrees of kurtosis. A probability distribution with pos-
itive kurtosis has a higher peak and heavier tails. A negative kurtosis results
in a lower peak and lighter tails. A Gaussian distribution has a kurtosis of
zero. Biological systems always have a non-negative kurtosis, K ≥ 0. Adapted
from[22].

K > 0

K = 0

Gaussian distribution

Non-gaussian distribution

Figure 5.2: Free and unrestricted diffusion (top figure) can be described by
a Gaussian diffusion distribution, where the diffusion is equal in all directions.
A Gaussian distribution has a kurtosis of zero, K = 0. Diffusion in biological
tissue (bottom figure) can be both restricted and hindered, which results in
a non-Gaussian diffusion distribution. The diffusion is directional, and has a
positive, non-zero kurtosis, K > 0. Adapted from[22].
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ln
(
S(b)
S0

)
= −bDapp (5.1)

where S(b) is the diffusion-weighted signal in a certain direction with diffusion
weighting b, S0 is the signal without diffusion weighting (b = 0), and Dapp is the
apparent diffusion coefficient (ADC). Equation (5.1) predicts a monoexponential
signal decay, and there is a linear relationship between the logarithmic signal decay
ln(S(b)/S0) and the b-value, as illustrated in figure 5.3. However, when diffusion is
measured at higher b-values, the diffusion pattern deviates more and more from a
Gaussian distribution. This is often the case in biological systems, where diffusion
is restricted. An excess kurtosis term might be added to the previous expression
(5.1), resulting in the DKI signal attenuation

ln
(
S(b)
S0

)
= −bDapp + 1

6b
2D2

appKapp (5.2)

where Kapp is the apparent diffusion kurtosis in a certain direction. When Kapp = 0,
the kurtosis term disappears, and the DKI model is reduced to the DTI model
(5.1). The DKI model describes the diffusion-weighted signal attenuation without
imposing any biophysical modeling. In other words, it is simply a mathematical
model that describes the signal behavior without making any assumptions about
the underlying tissue being imaged. Thus, it can be used on any type of tissue[24].

Measurements of the diffusion-weighted signal indicate that the signal attenuation
deviates from the monoexponential decay predicted by the DTI model. This be-
comes evident at higher b-values, where b > 1500 s/mm2. Higher b-values give the
signal a stronger diffusion-weighting, making the diffusion gradient more sensitive to
shorter diffusion distances. A high b-value therefore highlights the tissue complexity
even more, and the diffusion gradient picks up more signals. The signal attenuation
is therefore not completely monoexponential at higher b-values. The DKI model
predicts a signal attenuation that deviates from a monoexponential decay. Diffusion
signal measurements have shown that the real data fits the curve shape of the DKI
model better than the monoexponential DTI model at higher b-values.

5.3 The diffusion kurtosis tensor

The diffusivities along the different directions are characterized by the diffusion
tensor (DT), a 2nd order 3×3 tensor whose eigenvectors point in the direction of
the principal axes of the diffusion ellipsoid and eigenvalues represent the diffusivities



Section 5.3 The diffusion kurtosis tensor 57

0 500 1000 1500 2000 2500
b value

-1.5

-1

-0.5

0

ln
(S

(b
)/S

0)

Signal attenuation

DTI model
DKI model

Figure 5.3: Graph showing the logarithmic signal decay as predicted by
the DTI model and the DKI model in equation (5.1) and (5.2), with apparent
diffusion coefficient Dapp = 0.6×10−3 mm2/s and Kapp = 0.7. The DTI model
predicts a monoexponential signal decay, which results in a linear decay in a
logarithmic plot. However, at higher b-values, measurements has shown that
the real signal deviates from the linear diffusion function, and that the DKI
model fits the real data better.

along the principal axes. Since the diffusion is directional, the diffusion kurtosis
also varies with direction. The directional kurtosis is represented by a 4th order
3×3×3×3 tensor called the kurtosis tensor (KT), often denoted as Wijkl. The
kurtosis tensor describes the non-Gaussian behavior of the diffusing water molecules.
The spatial distribution of the kurtosis tensor is complex and can not be illustrated
by an ellipsoid, like the diffusion tensor. Instead, it is often illustrated by an oblate
ellipsoid (see figure 5.4), with the directional kurtosis values K1, K2 and K3 along
the eigenvectors ε1, ε2 and ε3 of DT.

The apparent kurtosis coefficient (AKC, or Kapp) along an arbitrary direction is
estimated through the kurtosis tensor Wijkl:

Kapp = MD2

D2
app

·
3∑
i=1

3∑
j=1

3∑
k=1

3∑
l=1

ninjnknlWijkl (5.3)

where MD is the mean diffusivity and ni is the ith element of the diffusion direction.
The diffusion process may be asymmetric in biological systems. However, in the scale
of a voxel, the diffusion can be seen as symmetric, because the diffusion distance of
a water molecule is much smaller than the voxel dimension, during a measurement.
The symmetry of the diffusion process reduces equation (5.3) to
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Figure 5.4: Graphical illustration of the 3D diffusion distribution and kurto-
sis distribution. The diffusion distribution is illustrated by an ellipsoid, were
the eigenvectors ε1, ε2 and ε3 of the diffusion tensor define the principal axes
of the ellipsoid. The 3D kurtosis distribution is complex and can not be illus-
trated by an ellipsoid. For simplicity, the kurtosis distribution is represented
by an oblate ellipsoid, with directional kurtoses K1, K2 and K3 along the
eigenvectors ε1, ε2 and ε3. Adapted from[23].
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The symmetric properties of KT (Wijkl) results in 15 unique tensor elements. In
order to construct KT and estimate Kapp, diffusion has to be measured along at
least 15 different gradient directions. The diffusion tensor DT has 6 unique tensor
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elements. The number of diffusion measurements must therefore be greater than or
equal to 21 (6 + 15) in order to uniquely define the diffusion and kurtosis tensor in
DKI.

5.4 DKI parameters

Both diffusivity and kurtosis parameters are estimated in DKI. The DKI parameters
are extracted from the kurtosis tensor Wijkl. Similar to the DTI parameters, the
DKI parameters are rotation invariant and can be presented in DKI parametric
maps where the pixel intensity signifies the parameter value.

5.4.1 Mean kurtosis

The mean kurtosis (MK) is the average diffusion kurtosis along all diffusion direc-
tions, given by

MK = 1
n

n∑
i=1

(Kapp)i (5.5)

where n is the number of gradient directions, and Kapp is the apparent kurtosis along
a certain direction, given by equation (5.4). The MK is a measure of the overall
kurtosis and is believed to be proportional to the heterogeneity and complexity of
the tissue microstructure. Higher MK values are typically found in white matter,
due to the higher degree of restriction and diffusion complexity. An increased MK
may indicate an environment with more densely packed cells, which is common in
cancer tumors. A decreased MK however, may indicate a loss of cellular structure.
An example of an MK map is given in figure 5.5a.

5.4.2 Axial kurtosis

Axial kurtosis (AK, or K‖) is the kurtosis along the principle diffusion tensor eigen-
vector (ε1),

AK = K1 (5.6)

To calculate the value of K1, the kurtosis tensor first have to be transformed from



60 Diffusion Kurtosis Imaging Chapter 5

the Cartesian coordinate system to the coordinate system defined by the three eigen-
vectors of the diffusion tensor,

Ŵijkl =
3∑

i′=1

3∑
j′=1

3∑
k′=1

3∑
l′=1

ei′iej′jek′kel′lWi′j′k′l′ (5.7)

with a rotation x = Pn, where P is the 3D rotation matrix, and eij are the elements
of P . The value of K1 can then be calculated by the following general equation,
which expresses the diffusion kurtosis along the ith diffusion tensor eigenvector,

Ki = MD2

λ2
i

· Ŵiiii, i = {1, 2, 3} (5.8)

where λi is the ith DT eigenvalue. The axial kurtosis is usually low in white matter
because the main diffusion direction is along the axial direction of the diffusion
ellipsoid. Water molecules diffuse more freely and unrestricted in this direction. This
leads to a diffusion probability with a small deviation from the Gaussian distribution,
hence a small AK. An AK map is shown in figure 5.5b.

5.4.3 Radial kurtosis

The radial kurtosis (RK, or K⊥) is the kurtosis perpendicular to the principal dif-
fusion eigenvector of the diffusion ellipsoid and is defined as

RK = K2 +K3

2 . (5.9)

The radial kurtosis is typically high in white matter, because diffusion in the radial
direction is often restricted, leading to a non-Gaussian diffusion distribution of water
molecules. It is therefore the radial kurtosis that contributes to the overall high MK
values in white matter. Evaluation of RK may reveal the integrity of the nerve cell
membranes and myelin sheaths. An RK map is shown in figure 5.5c.

5.4.4 Fractional anisotropy of kurtosis

The fractional anisotropy of kurtosis (FAK) is a measure of the anisotropy of the
kurtosis distribution, and can be calculated in the same manner as the fractional
anisotropy of diffusivity (FA) in DTI, defined as



Section 5.4 DKI parameters 61

0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

(a) MK map

0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

(b) AK map

0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

(c) RK map

Figure 5.5: DKI-derived parametric maps. Note that AK is generally lower
than RK in white matter. Water diffuses more freely in the axial direction
than in the radial direction, leading to a low diffusion kurtosis in the axial
direction and hence a low AK.

FAK =
√

3
2

√√√√(K1 − K̄)2 + (K2 − K̄)2 + (K3 − K̄)2

K2
1 +K2

2 +K2
3

(5.10)

where

K̄ = 1
3

3∑
i=1

Ki (5.11)

is the average of the three directional kurtoses K1, K2 and K3. K̄ is not the same at
the mean kurtosis (MK), as it only takes the average of the three principal kurtoses.
The fractional anisotropy of kurtosis will not be considered in this project, however.
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Chapter 6

Experimental data

Real diffusion-weighted signals were extracted from DW-MRI acquisitions in three
healthy volunteers and used as a baseline for the signal generation. The signals were
extracted from voxels located in three different regions of the brain; white matter,
gray matter and the cerebrospinal fluid. One voxel was selected from each region for
each of the subjects. Hence a total of nine voxels provided the basis for the signal
generation. The following sections describe the details about the image acquisition,
preprocessing of data and the selection of the voxels used in the analysis, and covers:

1. Extraction of baseline MRI diffusion signals

2. Diffusion MRI data

3. Data preprocessing

4. Slice selection

5. Tissue segmentation

6. Voxel selection

The images were preprocessed in FSL (FMRIB Software Library v6.0), a comprehen-
sive library of analysis tools for FMRI, MRI and DTI brain imaging data1. Matlab
was used for the tissue segmentation and voxel selection.

6.1 Extraction of baseline MRI diffusion signals

In theory, synthetic MRI signals could be generated based on the mathematical
expression of the diffusion model, given predefined parameters.

1

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
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For the DTI model, a signal generation based on the mathematical expression is
straightforward. The 3D geometry of the diffusion tensor (DT) is intuitive and the
eigenvalues and eigenvectors of the tensor have a direct physical relevance to the
diffusion processes. The tensor elements could therefore be user-defined to simulate
a certain diffusion distribution.

For the DKI model, the signal generation proved to be more challenging. The
derivation of the kurtosis term Kapp requires a 4th order kurtosis tensor (KT),
containing 15 independent elements. The KT is also needed when paramters like
MK, RK and AK are calculated. The tensor elements could in theory be user-defined
to resemble a certain diffusion kurtosis distribution. Nevertheless, the determination
of the tensor elements is not straightforward, due to the mathematical complexity
of KT. As of today, a direct interpretation of the individual elements of KT has yet
to be explored[23].

Because of the challenges of generating a realistic KT from scratch, a high quality
diffusion-weighted MRI data set was imported into Matlab and used as a baseline for
the signal generation. This was done with the intention of minimizing the difference
between the computer simulations and real-life diffusion signals. A few voxels that
represented white and gray matter as well as CSF were selected from the real DWI
data set, and the signal from these voxels were extracted. Diffusion and kurtosis
tensors could then be estimated and used in the generation of the synthetic DKI
signal.

To ensure consistency, the same approach was used for the DT in the DTI model.
The simulated DTI signals were therefore generated based on DTs found in real
DWI signals.

6.2 Diffusion MRI data

Diffision-weighted images covering the whole brain (76 axial slices) from three healthy,
young adults were used in this project. The scans were performed on a 3.0 Tesla
Siemens Prisma scanner in connection with an ongoing sleep-deprivation study at
Oslo University Hospital, Rikshospitalet. Images for each subject were obtained
using a full-brain multishell Stejskal-Tanner sequence with single shot SE-EPI. Dif-
fusion was measured along Ngrad equally spaced directions for 4 b-values (500, 1000,
2000 and 3000 s/mm2). Six b0 images were also obtained. The gradient directions
were noncollinear and isotropically distributed in space to obtain an optimal sam-
pling of diffusion. The 3D distribution of the gradient directions is plotted in figure
6.1. Details about the scan protocol can be found in table 6.1.
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Table 6.1: Sequence parameters, b-values and number of gradient directions
Ngrad used per b-value in the image acquisition.

Number of slices 76
TR [ms] 2450
TE [ms] 85

FoV [mm2] 212×212
Slice thickness [mm] 2

Matrix size 106×106
Voxel size [mm3] 2×2×2
Flip angle (α) 78◦

Multiband (MB) acceleration factor 4
Phase encode direction anterior-posterior

Total scan time 8 min 31 sec
b-value [s/mm2] Ngrad

0 6
500 12
1000 30
2000 40
3000 50

6.3 Data preprocessing

The image data was preprocessed prior to the analysis2. The technique involves
several methods to remove noise and artefacts, according to the following steps:

1. Noise correction: A LPCA (local principal component analysis) noise filter
was applied to reduce the random noise in the images. The denoising fil-
ter improves data quality by taking into account the multicomponent nature
of multi-directional DWI datasets, thereby increasing the SNR. The denoise
algorithm is described in Manjón et al., 2013[28].

2. Gibbs-ringing correction: A truncation in k-space gives rise to Gibbs-
ringing artefacts. The tool for removal of the Gibbs-ringing artefact is based
on the algorithm described in Kellner et al., 2016[29].

3. Correction of susceptibility induced distortions: The diffusion weighted
SE-EPI sequence is very sensitive to non-zero off-resonance fields caused by
susceptibility variations and eddy currents. Diffusion weighted images are nor-
mally acquired using the same phase encode direction. A separate b0 image is
therefore acquired using the opposite phase encode direction. This b0 image,
along with the b0 image from the DWI set, creates an image pair with dis-
tortions going in opposite directions. The FSL tool topup[30] estimates and

2The images were preprocessed by supervisor Tuva Hope.
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(a) b = 500 s/mm2 (b) b = 1000 s/mm2

(c) b = 2000 s/mm2 (d) b = 3000 s/mm2

Figure 6.1: The coordinates of the diffusion gradients plotted as vectors in
space, illustrating the isotropic distribution of gradient directions for the DWI
data sets used as basis for the simulations. The number of gradient directions
typically increases with the b-value.

corrects for the susceptibility induced field using the b0 image pair. Based on
the correction of the image pair, toptup correction is applied to the rest of
the DWIs, creating a corrected multishell DWI set. The susceptibility induced
fields are estimated using a method similar to that described in Andersson et
al., 2003[31].

4. Correction of motion induced artefacts and eddy currents: The FSL
tool eddy corrects for eddy current-induced distortions and subject movements
in the image data. eddy distinguishes bewteen signal variations caused by
diffusion and by eddy currents or subject movements. The method is described
in detail in Andersson et al., 2006[32].
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6.4 Slice selection

Mainly two types of tissue were of interest in this project; white matter (WM) and
gray matter (GM). In addition to those, the properties of CSF were also investigated.
One slice from each volume was selected based on the amount of WM, GM and CSF
present in the slice. The most interesting slices were located in the middle of the
brain, where large white matter fiber tracts, as well as areas GM and CSF were
visible. The slices used in this project are illustrated as DWIs3 along with FA and
MD maps in figure 6.2.

6.5 Segmentation

The diffusion patterns of WM, GM and CSF are all different, and the degree of
anisotropy can be described by the FA value. The FA values measured in WM are
typically much higher than in GM, while in the CSF, where diffusion is free, the
value should be close to zero.

The brain tissue in each of the selected slices was therefore segmented into two
groups based on the FA value of the voxels (threshold value defined below). Voxels
with small FA values were sorted into segment 1, while voxels with large FA values
were sorted into segment 2. Segment 1 could then represent GM and CSF, and
segment 2 represent WM.

A threshold value had to be established in order to define the upper and lower limits
of FA in the two segments. The limits were determined by calculating the 90th and
10th percentile of the FA values of the whole brain. When sorting all the FA values
in ascending order, the 10th percentile marks the upper limit of the 10% smallest
FA values, and the 90th percentile marks the lower limit of the 10% largest FA
values4. Voxels with FA values lower than the 10th percentile would then belong
to segment 1, while voxels with FA values higher than the 90th percentile would
belong to segment 2.

The voxels in the two segments are visualized in figure 6.3. This visualization
confirms that voxels with higher FA values are mainly located in the WM, while
the voxels with lower FA values are found in the GM and CSF regions of the brain.
Histograms of the FA and MD values for the two segments are illustrated in figure
6.4.

3Visualization provided by Horos, an open source medical image viewer.
https://horosproject.org/

4Details can be found in the Matlab script percentile.m. A code snippet is provided in
Appendix B.5
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Figure 6.2: The slices were selected based on the content of WM, GM and
CSF. Here the DWIs are presented with diffusion-weighting b = 1000 s/mm2

in one direction. The FA map clearly visualizes the WM fiber tracts, while
the MD map provides visualization of the CSF in the ventricles and around
the brain.



Section 6.5 Segmentation 71

0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

(a) Segment 1 0
20

40
60

80
10
0

12
0

10 20 30 40 50 60 70 80 90 10
0

(b) Segment 2

Figure 6.3: The tissue was segmented into two groups based on the voxel’s
FA value. Segment 1 contains pixels with FA values smaller than the 10th
percentile and could be classified as GM or CSF, while segment 2 contains
pixels with FA values higher than the 90th percentile, classified as WM.
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Histogram of MD values
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Figure 6.4: Histograms illustrating the frequency distribution of FA and MD
values in the two segments. Segment 1 represents gray matter and CSF and
segment 2 represents white matter. Per definition, there is a large difference in
FA values in the two segments. The MD values however show a slight overlap
between the two segments.
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6.6 Voxel selection

The purpose of dividing the brain into two segments was to make the process of
selecting ideal voxels from each tissue type more convenient. Two voxels were se-
lected from segment 1, and one voxel was selected from segment 2. This resulted in
three voxels per subject; one in white matter (voxel 1), one in gray matter (voxel
2) and one in the CSF (voxel 3). The reason for selecting single voxels instead of
a larger group of voxels in a region of interest (ROI), was to ensure consistency in
the orientation of the diffusion tensor. It was discovered that even in smaller ROIs,
there was a noticeable variation between neighboring voxels. The selected voxels
are presented in figure 6.5, and the extracted signals are shown in figure 6.6 for one
diffusion direction.

Figure 6.5: Three voxels were selected from each subject, each representing
a different type of tissue. Voxel 1 is white matter, voxel 2 is gray matter, and
voxel 3 is CSF.
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Figure 6.6: DW-MRI signals from the selected voxels in one diffusion direc-
tion. For each subject, signals were extracted from white matter, gray matter
and CSF.
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Simulations

DTI and DKI signals were generated based on real DWI signals extracted from
DW-MRI acquisitions in healthy volunteers. The generated signals were used as
baseline signals in the simulations. The following sections describe the pipeline of
the simulation process, and covers:

1. Tensor estimation

2. Signal generation

3. Establishing ground truth

4. Adding synthetic noise

5. Calculation of diffusion parameters

6. Statistical analysis

In addition, completely synthetic DTI signals were generated based on diffusion
tensors extracted from the real DWI signals by using the mathematical expression
of the DTI model. All computer simulations were executed in Matlab.

7.1 Tensor estimation

For the DKI analysis, DT and KT were calcualted for each voxel using the Matlab
code dki_fit[33], developed by Veraart and colleagues at the MRI Biophysics group
at the New York University School of Medicine1. dki_fit estimates the tensor
elements of DT and KT using constrained weighted linear least squares estimation
(WLS) (weights given by equation (4.34)). WLS is the method of choice because

1More information can be found at:
https://github.com/NYU-DiffusionMRI/DESIGNER
Code snippet is provided in Appendix B.1
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it is better at modeling signals containing noise than the OLS method, where all
measurements are assumed to be equally precise. For the DTI analysis, a modified
version of dki_fit was developed, namely dti_fit2, which do not take the kurtosis
effects into consideration. The input data included:

• Diffusion-weighted images: The DWIs were preprocessed prior to the ten-
sor fitting as outlined in chapter 6.

• Diffusion encoding information: All gradient directions and b-values (for
each specific analysis) which were used for the tensor fitting.

• Brain mask: A mask is a binary matrix with elements that are either zero or
one. The matrix must have the same dimension as the diffusion image, where
each matrix element corresponds to a specific voxel in the diffusion image.
If the matrix element has the value zero, the corresponding voxel is ignored.
By providing a mask, the calculations are limited to a user-defined region
of interest (ROI). A considerable amount of time can be saved if the voxels
outside of the brain are neglected, as these only contain background noise. A
brain mask was therefore generated in FSL.

• Constraints: An array which imposes a user-defined constraint to the WLS
estimation of the tensors. The constraints are given as a boolean, [c1, c2,
c3], where

c1: Dapp > 0
c2: Kapp > 0
c3: Kapp > b/(3*Dapp)

Although a negative Kapp is mathematically possible, empirical evidence in-
dicates that the kurtosis (and diffusivity) is always non-negative in biological
tissue[34]. The constraints were therefore set to [1 1 1] for the DKI analysis
and [1 0 0] for the DTI analysis, as it does not consider kurtosis effects.

• Maximum b-value: A scalar which puts an upper bound on the b-values
being used in the analysis. The value was set to 3000 s/mm2 for the DKI
analysis, and 1000 s/mm2 for the DTI analysis, as this is considered optimal
for the DTI model[35].

7.2 Signal generation

The elements of the diffusion and kurtosis tensor were estimated using dki_fit
and dti_fit for the DKI and DTI model, respectively. The scripts use a WLS
approximation given by equation (4.32), where the weights are given by equation

2Code snippet is provided in Appendix B.2
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(4.34). Baseline signals were then generated based on the estimated diffusion and
kurtosis tensors through the expression

Ŝ = exp(−b · dt) (7.1)

where b is a matrix containing all the b-values and gradient directions and dt is a
vector containing all the unique tensor elements. For the DTI model, dt contains 6
unique elements, and (7.1) is equivalent to calculating the DTI signal given by equa-
tion (4.7). For the DKI model, dt contains 21 unique elements, and the logarithm
of (7.1) is equivalent to the DKI signal given by equation (5.2).

7.3 Establishing ground truth

Diffusion and kurtosis tensors were estimated from the generated signals using
dki_fit and dti_fit. 6 b0-images, 12 b = 500 and 30 b = 1000 s/mm2 measure-
ments were used in estimating of ground truth for the DTI model, while 6 b0-images,
12 b = 500, 30 b = 1000, 40 b = 2000 and 50 b = 3000 s/mm2 were used for DKI,
resulting in a total of 48 images for DTI and 138 images for DKI.

The DKI- and DTI-derived diffusion parameters were then calculated from the tensor
elements using the Matlab scripts dki_paramters[36] and dti_parameters, respec-
tively3. An overview of the ground truth parameter values for the baseline signals
are given in table 7.1.

7.4 Adding synthetic noise

Synthetic noise was added to the baseline signals after the ground truth values had
been established. Conventional MR images have a Rician noise distribution[37].
Synthetic noise was therefore incorporated by adding Gaussian noise to the signal
S, through the expressions

Sr = S +Nr (7.2)

and

Si = Ni (7.3)
3Code snippets can be found in Appendix B.3 and B.4
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Table 7.1: Table showing the ground truth values for the baseline signals.
MD, RD and AD are given in 10−3 mm2/s.

Subject 1
Diffusion model DKI DTI

Voxel 1 2 3 1 2 3
Tissue type WM GM CSF WM GM CSF

FA 0.8974 0.1497 0.1284 0.8730 0.1435 0.0883
MD 0.7629 0.7900 3.3811 0.7384 0.7254 3.2055
RD 0.1823 0.7327 3.1306 0.2078 0.6771 3.0466
AD 1.9241 0.9047 3.8820 1.7996 0.8221 3.5233
MK 1.1866 0.6263 0.2975
RK 4.3780 0.6408 0.3200
AK 0.5266 0.6001 0.2580

Subject 2
Diffusion model DKI DTI

Voxel 1 2 3 1 2 3
Tissue type WM GM CSF WM GM CSF

FA 0.8922 0.1423 0.1127 0.8897 0.1251 0.1176
MD 0.7644 1.9270 2.6081 0.6981 1.7760 2.8186
RD 0.1937 1.7736 2.4531 0.1796 1.6534 2.6370
AD 1.9059 2.2338 2.9181 1.7352 2.0212 3.1818
MK 0.9876 0.5156 0.3854
RK 2.3172 0.5550 0.4088
AK 0.4541 0.4460 0.3433

Subject 3
Diffusion model DKI DTI

Voxel 1 2 3 1 2 3
Tissue type WM GM CSF WM GM CSF

FA 0.9084 0.1596 0.1371 0.9237 0.1557 0.0973
MD 0.7019 0.7782 2.5100 0.6223 0.7184 2.1814
RD 0.1531 0.7128 2.3390 0.1170 0.6590 2.0821
AD 1.7995 0.9089 2.8519 1.6331 0.8372 2.3799
MK 0.8148 0.4883 0.4009
RK 0.0784 0.5052 0.4295
AK 0.4415 0.4119 0.3513

where Nr and Ni are random numbers generated from a Gaussian distribution with
zero mean and standard deviation σ = S0/SNR. Rician noise could then be added
to the baseline signals though the following expression
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S̃ =
√
S2
r + S2

i (7.4)

where S̃ is the noise-incorporated signal. The SNR level was varied from 10 to 100
in 10 steps; 10, 15, 20, 25, 30, 40, 50, 60, 80 and 100.

The SNR is defined as the ratio of the average signal value in a selected region-of-
interest (ROI) to the standard deviation of the background noise,

SNR = signal
noise = µ

σ
(7.5)

where µ is the signal mean and σ is the standard deviation of the background noise.
However, it is important to stress that the baseline signals already contained a
certain level of SNR, as they were based on tensors estimated from real DW-MRI
signals that were not completely noise-free (in practice, real signals can never be
completely noise-free). At higher signal intensities, the Rician noise distribution
approaches a Gaussian distribution[38], and the process of adding noise to a signal
that already contains some level of noise simply results in an extra noise contribution
to the signal S. The signal with added noise can then be expressed as

Snoise = S + σmeasured + σadded (7.6)

where S is the DW-MRI signal, σmeasured is the noise measured in the DWI, and
σadded is the added noise. On average, the standard deviation of the background
noise in the b0-images were σmeasured ≈ 3,7, with an SNR of approximately 532, 836
and 1253 in white matter, gray matter and CSF, respectively. However, since the
noise has a Rician distribution at lower SNR, equation (7.6) should be seen as an
approximation.

7.5 Calculation of diffusion parameters

For the DKI analysis, DT and KT were again estimated using dki_fit, only this
time from the noise-corrupted signals S̃. The DKI-derived parameters were then
calculated using dki_parameters.

The DTI analysis used dti_fit in the estimation of DT, and the DTI-derived
parameters were calculated using dti_parameters.

Each parameter was estimated n = 1000 times per voxel.
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7.6 Statistical analysis

7.6.1 Outlier removal

Outliers were removed from the parameter estimation sample using Tukey’s method[39].
A parameter is considered as an outlier if the value is less than

Q1(θ̂i)− 1.5QI(θ̂i) (7.7)

or greater than

Q3(θ̂i) + 1.5QI(θ̂i) (7.8)

where Q1(θ̂i) is the first quartile, Q3(θ̂i) is the third quartile, and QI(θ̂i) is the
interquartile range of the estimated parameter, θ̂i. A quartile divides a sorted data
set into four equal parts where each part represents 1/4 of the data set. The first
quartile is the same as the 25th percentile, and the third quartile is the same as the
75th percentile. The interquartile range is the difference between the first and the
third quartile.

7.6.2 Relative error

The performance of the estimations was evaluated by calculating the relative error
for each fitted parameter. The relative error is a measure of accuracy[37] and gives
an indication of how good an estimation is relative to the ground truth. The relative
error is measured in percent, and is defined as

Relative error = θ̂i − θ
θ
× 100 (7.9)

where θ̂i is the estimated parameter and θ is the ground truth.

7.6.3 Box plots

The results from the three subjects were pooled together and presented in box plots
(see figure 7.1). The box plot combines the minimum and maximum values, or the
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range, of the data points with the quartiles into one useful graph. The central mark
in each box indicates the median, and the bottom and top edges of the box indicate
the 25th and 75th percentiles, or the interquartile range, respectively. The whiskers
extend to the most extreme data points, and the outliers are plotted individually
using the ’+’ symbol. The default whisker length extends to approximately ± 2.7σ,
which corresponds to 99.3 % coverage if the data are normally distributed.
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Figure 7.1: The results are presented in box plots.

7.7 Noise images

To demonstrate the effect of adding noise to the signal, parametric maps were gen-
erated for various levels of noise. Signals were estimated for each voxel in the image
using dki_fit. Rician noise was then added to the signals, and the diffusion pa-
rameters were estimated for each voxel.

7.8 Analytic DTI signal generation

For comparison purposes, completely synthetic DTI signals were generated based
on the mathematical expression of the DTI signal attenuation, using the diffusion
tensors estimated from the real DW-MRI signals. By using the expression Y = Hd
given by (4.19), where H is the matrix containing all the gradient directions, and
d is the vector with all the tensor elements from the DWI signal, S was calculated
through the expression
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S = S0 exp(−b ·Y) (7.10)

where S0 signal intensity at b0, and b is the vector containing all the b-values. The
signal attenuation vector, given by (4.12), could then be expressed as Y = 1

b
ln(S0

S
).

The tensor elements were calculated using OLS (4.27), where d = HΨY, and HΨ is
the pseudoinverse of H, given by HΨ = (HTH)−1HT in equation (4.26). A snippet
of the code is provided in Appendix B.7.

The diffusion parameters were then estimated using dti_parameters.m, with the
elements of d as input.

The diffusion tensors were visualized as ellipsoids to demonstrate the degree of
diffusion anisotropy. This was done by calculating the eigenvalues of the diffusion
tensor using the Matlab command eig(D). The eigenvalues λ1, λ2 and λ3 could then
define the semi-axes length of the ellipsoid.
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Simulation experiments

A number of simulation experiments using different levels of SNR, number of gradi-
ent directions and b-values were executed and the results analyzed by investigating
the accuracy and precision of the parameter estimation.

8.1 Parameter estimation as a function of SNR

The parameter estimations were evaluated as a function of SNR. In this analysis,
6 b0, 12 b = 500, 30 b = 1000, 40 b = 2000 and 50 b = 3000 s/mm2 were used for
the DKI parameter estimation, and 6 b0, 12 b = 500 and 30 b = 1000 s/mm2 were
used for the DTI parameter estimation. Ground truth values were calculated before
increasing levels of noise was added to the signal1.

8.2 Parameter estimation as a function of NSA

There are several parameters that may influence the SNR. The number of signal
averages (NSA) is one such example. The NSA (also called the number of excitations,
NEX) represents the number of times that each line in k-space is sampled, and
is normally used to increase the SNR. Increasing the NSA is commonly used in
clinical practice if the SNR is marginal. The cost of increasing the NSA is a longer
acquisition time. The SNR scales with

√
N , where N is the number of acquisitions.

Doubling the NSA only improves the SNR by
√

2 because the background noise is
also sampled during the acquisitions.

NSA was increased from NSA = 1 to NSA = 2 to investigate the effect of multiple
acquisitions. The effect of multiple signal averages was included in the simulations

1A code snippet is provided in Appendix B.6
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by repeating the acquisition loop N times. In this analysis, 6 b0, 12 b = 500, 30
b = 1000, 40 b = 2000 and 50 b = 3000 s/mm2 were used for the DKI parameter
estimation, while 6 b0, 12 b = 500 and 30 b = 1000 s/mm2 were used for the DTI
parameter estimation.

8.3 Parameter estimation as a function of number
of gradient directions and b-values

The influence of the number of gradient directions, Ngrad, per b-value shell was
evaluated by the accuracy of the parameter estimations. The SNR was kept at a
constant level of 50. For the DTI model, the minimum requirement for estimat-
ing the diffusion tensor is one b-value, where diffusion is measured in 6 directions
(in addition to one b0 image). For the DKI model, the minimum requirement is
two b-values, measured in 6 and 15 directions, respectively (in addition to one b0
image)[24]. Based on these requirements, a number of gradient sets were generated.

Some of the gradient sets were reduced to half its size by manually removing every
second gradient direction in Matlab. The coordinates of the remaining gradients
were then plotted as vectors in space (using the same method as in figure 6.1) to
ensure that the distribution of gradients remained fairly isotropic and noncollinear2.
The gradient sets are listed in table 8.1 below.

Table 8.1: Gradient sets used in the DTI and DKI analysis. b-values are
given in s/mm2.

DTI
Set name Ngrad per b-value

1 1 b = 0; 15 b = 1000
2 1 b = 0; 30 b = 1000
3 6 b = 0; 30 b = 1000
4 1 b = 0; 6 b = 500; 15 b = 1000
5 1 b = 0; 12 b = 500; 30 b = 1000
6 6 b = 0; 12 b = 500; 30 b = 1000
7 1 b = 0; 12 b =500; 30 b = 1000; 50 b = 3000
8 6 b = 0; 12 b = 500; 30 b = 1000; 50 b = 3000

DKI
Set name Ngrad per b-value

1 6 b = 0; 12 b = 500; 30 b = 1000
2 1 b = 0; 6 b = 500; 25 b = 3000
3 1 b = 0; 12 b = 500; 50 b = 3000
4 6 b = 0; 12 b = 500; 50 b = 3000
5 1 b = 0; 6 b = 500; 15 b = 1000; 25 b = 3000
6 1 b = 0; 12 b = 500; 30 b = 1000; 50 b = 3000
7 6 b = 0; 12 b = 500; 30 b = 1000; 50 b = 3000
8 6 b = 0; 12 b = 500; 30 b = 1000; 40 b = 2000; 50 b = 3000

2A code snippet is provided in Appendix B.8
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Chapter 9

Results

A number of simulation experiments were conducted in order to study the effect of
SNR, NSA, number of gradient directions and number of b-values on the diffusion
parameter estimations of the DTI and the DKI model. The results were evaluated
in terms of accuracy by calculating the relative error of the parameter estimation.
Baseline DTI and DKI signals simulating white matter, gray matter and CSF were
used in the experiments. A total of nine signals were investigated; three signals
simulating white matter, three simulating gray matter and three simulating CSF.

The most relevant results are presented in the following sections. Additional results
can be found in the Appendix. The results are presented as follows:

1. Results from the signal generation

2. Results from the parameter estimation as a function of SNR

3. Results from the parameter estimation as a function of NSA

4. Results from the parameter estimation as a function of number of gradient
directions and b-values

9.1 Signal generation

Baseline signals were generated based on the estimated diffusion and kurtosis tensors
of the extracted DW-MRI signals in the white matter, gray matter and CSF. Figure
9.1 illustrates the fitted (baseline) signals together with the actual DW-MRI signals
in one gradient direction for one of the subjects.
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Figure 9.1: Actual DW-MRI signals vs the fitted DKI and DTI signals in the
white matter, gray matter and CSF in one diffusion direction for one of the
subjects. The upper bound on the DTI analysis was set to b = 1000 s/mm2.
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9.1.1 Noise images

To demonstrate the effect of adding noise to the signal, parametric maps were gen-
erated for various levels of SNR. The FA and MK maps for one of the subjects are
shown in figure 9.2 and 9.3, respectively. Histograms showing the distribution of
FA and MK values in the parametric maps for various noise levels are presented in
figure 9.4.

Figure 9.2: FA maps generated with various levels of noise added to the
baseline signals. The FA map without added noise is presented in (f).
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Figure 9.3: MK maps generated with various levels of added noise. (f)
illustrates the MK map without any noise added to the baseline signal.
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Figure 9.4: Histograms illustrating the FA and MK values for increasing
levels of SNR in the whole brain.
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9.1.2 Analytic DTI signal generation

Analytic DTI signals were generated based on the mathematical expression of the
DTI signal attenuation, using the tensor elements of the extracted DW-MRI signals.
The generated signals are plotted in figure 9.5 together with the actual DW-MRI
signals and the DTI signals approximated by the WLS method. The diffusion tensors
used in the signal generation are visualized as ellipsoids in figure 9.6 for one of the
subjects.
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Figure 9.5: Actual DW-MRI signals vs the generated DTI signals in the
white matter, gray matter and CSF in one gradient direction for one of the
subjects. The signals were generated by WLS approximation and by using the
mathematical expression for the DTI signal attenuation.
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Figure 9.6: Diffusion tensors from the white matter, gray matter and CSF
for one of the subjects, visualized as ellipsoids. The tensor elements were used
in the generation of the analytic DTI signal.

9.2 Parameter estimation as a function of SNR

The results of the parameter estimations as a function of SNR are presented in box
plots where the x-axis represents SNR and the y-axis represents the relative error
of the parameter estimation. Note however that the x-axis represents the level of
added SNR, as the baseline signals already contained a certain level of noise. A
blue, horizontal line marks where the relative error is equal to zero; this is where the
estimations are equal to the ground truth. The results of the DTI and DKI analyses
are presented in the same box plot for FA, MD, RD and AD, as these parameters
are common for both models. The DKI-derived parameters MK, RK and AK are
presented in separate figures. Next follows the results of the simulations for signals
representing white matter, gray matter and CSF. The results of the analytic DTI
signal are included for comparison purposes.

9.2.1 White matter

The relative error of the parameter estimations of FA, MD, RD and AD in the white
matter is illustrated in figure 9.7. For convenience, the DTI and DKI estimations
are presented side by side in the same box plot. The results of the analytic DTI
signal are included for comparison. The differences between the analytic DTI and
the WLS appoximated DTI analyses are generally small, although the errors appear
to be a bit smaller for the analytic DTI signal.

While the parameter estimations become progressively better for increasing SNR in
both models, figure 9.7 demonstrates a trend where the error-range is larger for the
DTI model than for the DKI model. This goes for both the interquartile range and
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the extent of the whiskers, and becomes evident especially at lower SNR. Despite
the low precision in the DTI estimations, the median seems to remain accurate and
close to ground truth, even at lower SNR. The DKI estimations however have a
higher precision, but lower accuracy at lower SNR1.

Furthermore, the estimation of RD should be mentioned. While the other parame-
ters have relatively small errors ranging from ± 20 % or less, RD has a relative error
of ± 100 % at worst.

In general, it seems like the estimations are stabilizing around SNR = 50, as a
further increase in SNR does not improve the estimations noteworthy.
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1The accuracy is measured by the median, and the precision is measured by the range of the
data set.
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Figure 9.7: Relative error of the parameter estimations in the white matter as
a function of SNR for the DTI and DKI model. The results of the analytic DTI
signal are included for comparison purposes. The precision of the estimation
increases with decreasing levels of noise. The figure demonstrates a general
trend where the DKI estimations appear to have a higher precision, but a lower
accuracy than the DTI estimations at lower SNR. Of all diffusion parameters,
the estimations of RD are the least precise.
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9.2.2 Gray matter

The results of the estimations of FA, MD, RD and AD in the gray matter are
presented in figure 9.8. The precision of the estimations decreases with increasing
noise. Interestingly, the results from the gray matter demonstrate the opposite of
what was observed in white matter; the DTI model has an overall higher precision
than the DKI model in estimating MD, RD and AD, this is especially evident at
lower SNR. The differences between the models are however not as apparent as in
the white matter.

The largest errors are observed in the estimations of FA, with relative errors stretch-
ing from - 50 % to 200 % at worst. The estimations seem to stabilize around SNR
= 50.
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Figure 9.8: Relative error of the parameter estimations in the gray matter
as a function of SNR. The precision increases with the SNR. As opposed to
what was observed in white matter, the precision of the parameter estimations
in DTI are higher than DKI in gray matter. The estimations of FA were the
least precise of all diffusion parameters in gray matter.
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9.2.3 CSF

The results of the parameter estimations in the CSF are presented in figure 9.9.
There is a clear distinction in both accuracy and precision between the models that
can be observed among all diffusion parameters. For MD, RD and AD, the DTI
analysis is most accurate, while the DKI analysis was the least accurate.

In FA however, the situation appears to be the opposite; the DTI analysis is less
accurate than the DKI analysis. Furthermore, FA seems to have the largest range
of relative errors, regardless of model. In general, the relative error in the parameter
estimations is larger in the CSF than in the white and gray matter.

When the SNR reaches a level of around 50-60, the precision in the estimations seem
to stabilize and a further increase in SNR does not have any remarkable effect on
the estimations.
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Figure 9.9: Relative error of the parameter estimations in the CSF as a
function of SNR. A clear distinction between the models is observed in all
parameters. In the estimations of MD, RD and AD, DTI is the most accurate,
and the DKI model is the least accurate. In the estimations of FA, the DKI
model is the most accurate. Additionally, FA seems to have the largest range
of relative errors.
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9.2.4 MK, RK and AK

Estimations of the DKI parameters MK, RK and AK are presented in figure 9.10
as a function of SNR for signals simulating white matter, gray matter and CSF.
A general trend is observed where the accuracy of the parameter estimations is
remarkably lower in the CSF than in the white and gray matter. The estimations
seem to stabilize at an SNR of 50-60.
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Figure 9.10: Relative error of the parameter estimations of MK, RK and
AK from signals simulating white matter, gray matter and CSF as a function
of SNR. The estimations in the CSF are particularly inaccurate compared to
the estimations in white and gray matter.

9.3 Parameter estimation as a function of NSA

The effect of doubling the NSA from 1 to 2 was investigated for signals simulat-
ing white matter, gray matter and CSF for various levels of SNR. The results are
presented in boxplots illustrating the relative error as a function of SNR.

9.3.1 FA

The effect of doubling the NSA on the estimations of FA for signals simulating
white matter, gray matter and CSF is illustrated in figure 9.11. Both models are
included in the plot for NSA = 1 and NSA = 2. An increased NSA seems to have a
noticeable effect on the parameter estimations in both models. The overall trend is
an improved precision, where the improvement appears to be equivalent to a + 10
increase in SNR, as well as an increase in accuracy. The effect of an increased NSA is
most prominent in the gray matter and CSF, where the errors are of a considerable
size. The same result was observed in MD, RD and AD2.

2These results can be found in Appendix A, figure A.1, A.2 and A.3
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Figure 9.11: Relative error of the estimations of FA from signals simulating
white matter, gray matter and CSF, for NSA = 1 and NSA = 2. Doubling
the NSA resulted in an increase in both the precision and accuracy of the
estimations. The same effect was observed for the diffusion parameters MD,
RD and AD.
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9.3.2 MK

The effect of doubling the NSA on the estimations of MK, RK and AK was investi-
gated for increasing levels of SNR. The results for MK are shown in figure 9.12 for
signals simulating white matter, gray matter and CSF. The apparent effect of in-
creasing the NSA from 1 to 2 was an increased precision. The parameter estimations
of RK and AK yielded the same results3.
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Figure 9.12: Estimations of MK as a function of SNR for signals simulating
white matter, gray matter and CSF. Doubling the NSA resulted in an increase
in the precision of the estimations. The same effect was observed in RK and
AK.

9.4 Parameter estimation as a function of number
of gradient directions and b-values

Diffusion parameters were estimated using gradient sets with various numbers of
gradient directions and b-values. The complete list of gradient sets is given in table
8.1. The results of the simulations are presented in box plots showing the relative
error of the parameter estimations for the various gradient sets. Next follows the

3The results of RK and AK are presented in Appendix A, figure A.4 and A.5
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results of the DTI and DKI analysis, presented in separate sections, for signals
representing white matter, gray matter and CSF.

9.4.1 DTI analysis

The parameters FA, MD, RD and AD were estimated using the DTI model for
various numbers of gradient directions and b-values. The results of the FA and MD
estimations are given in the following sections. The results of RD and AD can be
found in Appendix A, figure A.6 and A.7.

FA

The estimations of FA in white matter, gray matter and CSF are presented in
figure 9.13. The most prominent result is the error-range in white matter, being
remarkably smaller than in the gray matter and the CSF. In the white matter, the
largest errors are to be found in set 1 and set 2, containing only 1 b0-image and 15
and 30 gradient directions for b = 1000 s/mm2, respectively4. Furthermore, there
is only a minor improvement in the estimations between set 1 and 2, despite the
doubling of gradient directions in set 2. Also, note the difference between set 2 and 3;
when going from only 1 b0-image to 6 b0-images, the precision increases drastically.
Surprisingly, the error in the estimations are larger in set 4 and 5 than in set 3,
despite set 4 and 5 having an additional b-value of 500 s/mm2. However, set 4 and
5 contain only 1 b0-image, while set 3 contains 6 b0-images.

A step-wise improvement in the estimations is observed when going from set 4 to set
5 and 6, as the number of gradient directions increases for each set5. Interestingly,
the results of set 3 and set 6 seem to be equally precise, indicating that adding b
= 500 s/mm2 to the measurements has no major effect on the estimations. Also,
adding b = 3000 s/mm2 did not improve estimation accuracy or precision.

As can be seen in 9.13c, the errors of set 7 and 8 in the CSF were of such magnitude
that the results of the remaining sets got overshadowed. Both sets contain b-values
up to 3000 s/mm2, however, while set 7 contains only 1 b0-image, set 8 contains 6 b0-
images6. The differences in the estimations are marginal. The results are presented

4A small reminder of the gradient sets (b-values are given in s/mm2):
Set 1: 1 b0, 15 b = 1000
Set 2: 1 b0, 30 b = 1000
Set 3: 6 b0, 30 b = 1000

5

Set 4: 1 b0, 6 b = 500, 15 b = 1000
Set 5: 1 b0, 12 b = 500, 30 b = 1000
Set 6: 6 b0, 12 b = 500, 30 b = 1000

6

Set 7: 1 b0, 12 b = 500, 30 b = 1000, 50 b = 3000
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without set 7 and 8 in figure 9.13d. With set 7 and 8 removed from the plot, it
appears that the estimations in set 1 and 4 are the least precise in the gray matter
and CSF. Both sets contain only 1 b0-image and have a reduced number of gradient
directions. Otherwise, there seems to be only minor differences across the gradient
sets in the gray matter and CSF.
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(d) FA in the CSF, without set 7 and 8

Figure 9.13: Estimations of FA in the white matter, gray matter and CSF
for various gradient sets using the DTI model with SNR = 50. In general,
the errors are remarkably smaller in the white matter. Also, increasing the
number of b0-images from 1 to 6 results in a noteworthy improvement in the
estimations, as can be seen in (a) when going from set 2 to set 3. Furthermore,
adding an additional b = 500 s/mm2 to the gradient set had no considerable
effect on the estimations, as can be seen in set 3 and set 6. In the gray matter
and CSF, set 1 and set 4 yield the least precise results, as they contain only 1
b0-image and have a reduced number of gradient directions.

Set 8: 6 b0, 12 b = 500, 30 b = 1000, 50 b = 3000
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MD

The estimations of MD in the white matter, gray matter and CSF is presented in
figure 9.14a. The errors in set 7 and 8 were the largest, regardless of tissue type.
The results are presented without set 7 and 8 in figure 9.14b.

First and foremost, the estimations seem to remain reasonably accurate across all
tissue types, with relative errors within ± 10 %. In general, the results found in the
estimations of FA also holds for MD. Set 1 and 2 are the least precise, as they contain
the least amount of gradient directions and b-values. A noteworthy improvement is
observed from set 2 to set 3, where 6 b0-images are used instead of just 1 b0-image.
Set 4 and set 5 have larger errors than set 3, despite the fact that they both contain
an additional b-value of 500 s/mm2. Set 3 and set 6 appears to be equally precise,
even though set 6 has the additional b = 500 s/mm2 measurements.
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(a) Estimations of MD in the white matter, gray matter and CSF for various gradient sets. The errors in
set 7 and 8 are considerable compared to the errors in the remaining sets.
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(b) Estimations of MD, with set 7 and 8 removed from the plot.

Figure 9.14: Estimations of MD with in white matter, gray matter and CSF
using the DTI model. For all tissue types, the errors remain within a 10 %
range. The improvement seen when going from set 2 to set 3 indicates that
adding additional b0-images to the gradient set has a positive effect on the
estimations of MD. Also, the similarity between set 3 and set 6 implies that
adding an additional b-value of 500 s/mm2 only has a minor effect on the
estimations.
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9.4.2 DKI analysis

The DKI parameter estimations of FA, MD and MK for signals simulating white
matter, gray matter and CSF for various gradient sets are presented in the next
pages. The results of RD, AD, RK and AK can be found in Appendix A, figure A.8,
A.9, A.10 and A.11.

FA

The effect of number of gradient directions and b-values on the estimation of FA in
the white matter, gray matter and CSF is illustrated in figure 9.15. As shown by
the figure, the accuracy of the estimations are largely dependent on the anatomy
of the tissue. The estimations are particularly accurate in the white matter, with
relatively small errors across the gradient sets. In the gray matter and CSF however,
the errors range over several hundred percents.

In white matter, the least accurate results are found in set 1, which contains b-values
up to only 1000 s/mm2. Set 2 and 3 are almost equally precise, despite the fact that
set 3 contains twice as many gradient directions than set 27. Furthermore, there
seems to be no clear distinction between set 4 and set 5. While set 4 has 6 b0-images,
set 5 has only 1 b0-image, but with an additional b-value of 1000 s/mm2 and half
the number of gradient directions8. A minor improvement is observed from set 6 to
set 7, when going from 1 b0 image to 6 b0 images9.

Interestingly, the errors are largest in set 2 in the gray matter and CSF. In general,
set 7 and 8 yield the most accurate results for all tissue types, where set 8 is the full
gradient set with all b-values and gradient directions, containing the additional b =
2000 s/mm2 10.

7

Set 1: 6 b0, 12 b 500, 30 b 1000
Set 2: 1 b0, 6 b 500, 25 b 3000
Set 3: 1 b0, 12 b 500, 50 b 3000

8

Set 4: 6 b0, 12 b 500, 50 b 3000
Set 5: 1 b0, 6 b 500, 15 b 1000, 25 b = 3000

9

Set 6: 1 b0, 12 b 500, 30 b 1000, 50 b = 3000
Set 7: 6 b0, 12 b 500, 30 b 1000, 50 b = 3000

10

Set 8: 6 b0, 12 b = 500, 30 b = 1000, 40 b = 2000 and 50 b = 3000
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Figure 9.15: Estimations of FA in white matter, gray matter and CSF for
various gradient sets using the DKI model. The errors are substantially larger
in the gray matter and CSF than in the white matter, ranging over several
hundred percents. In white matter, set 1, with b-values up to only 1000 s/mm2,
gave the least accurate results, while set 7 and 8, with the highest number of
gradient directions and b-values, gave the most accurate results.

MD

The estimations of MD in white matter, gray matter and CSF are presented in figure
9.15 for the various gradient sets. The accuracy of the estimations are particularly
inaccurate in the CSF, even in set 8, where all gradient directions and b-values are
included.

There also seems to be no apparent change in the estimations between set 2 and set
3, despite the fact that set 3 contains twice as many gradient directions than set 2.
They both contain only 1 b0-image, however.

Furthermore, there is no clear distinction between the results of set 4, 5 and 6, which
indicates that having 6 b0, 12 b = 1000 s/mm2 and 50 b = 3000 s/mm2 is equivalent
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to having 1 b0 with an additional 30 directions for b = 1000 s/mm2 in the gradient
set.

As expected, the most accurate estimations of MD were found in set 7 and set 8.
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Figure 9.16: Relative error in the estimation of MD in white matter, gray
matter and CSF for various gradient sets using the DKI model. The figure
clearly illustrates that the estimations of MD are particularly inaccurate in
the CSF. The largest errors are observed in set 2 and set 3, where both sets
contain only 1 b0 measurement. The estimations in set 4, 5 and 6 are fairly
equal, while set 7 and 8 are the most precise.

MK

The estimations of MK in the white matter is given in figure 9.17. As the figure
illustrates, the errors in set 1, containing b-values up to only 1000 s/mm2, were of
such magnitude that the results of the remaining sets got overshadowed. The same
result was observed in the gray matter and CSF. The estimations of MK is therefore
illustrated in figure 9.18 without set 1. There were only minor variations in the
estimations across the gradient sets and tissue types, with the exception of set 8,
which interestingly showed a decreased accuracy despite being the full gradient set
with all diffusion directions and b-values. Set 7 seems to provide the most accurate
estimations of MK.
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Figure 9.17: Relative error in the estimation of MK in the white matter
for various gradient sets. The errors in set 1, with b-values up to only 1000
s/mm2, were of such magnitude that the results of the remaining sets got
overshadowed. The same result was observed in the gray matter and CSF.
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Figure 9.18: Relative error in the estimation of MK in the white matter,
gray matter and CSF for various gradient sets. Set 1 was removed from the
plot due to the large errors in the estimations. Only minor variations are
observed across the gradient sets. Interestingly, the errors were smaller in set
7 than set 8, even though set 8 contains an additional b-value of 2000 s/mm2.
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9.5 Summary

A summary of the most important observations is given in the list below:

1. Parameter estimation as a function of SNR

• In general, the parameter estimations seem to stabilize at an SNR level of
about 50 or 60, as a further increase in SNR did not result in any further
improvement in the estimations.

• The estimations of FA in white matter were least affected by limited SNR,
with errors ranging from ± 10 %.

• The estimations on FA in gray matter and CSF seem to be most affected
by limited SNR, with errors ranging over several hundred percents.

2. Parameter estimation as a function of NSA

• In the estimations of FA, doubling of the NSA resulted in an increase in
both precision and accuracy. In the estimations of MK, doubling the NSA
resulted in an increase in precision. The result holds for both models.

3. Parameter estimation as a function of number of gradient directions and b-
values

• In general, gradient sets containing 6 b0-images yielded more precise re-
sults than gradient sets containing only 1 b0-image.

• In the DTI analysis, using a gradient set with only 1 b0-image and either
15 or 30 gradient directions for b = 1000 s/mm2 gave the least accurate
results in white matter.

• In the DTI analysis, using a gradient set with 6 b0-images and 30 b =
1000 s/mm2 directions was equally precise as using a gradient set with 6
b0-images, 12 b = 500 and 30 b = 1000 s/mm2 directions.

• In the DTI analysis, gradient sets containing b-values up to 3000 s/mm2

did not improve the estimations noteworthy. In some cases, the errors
when using these sets were substantial.

• In the DKI analysis, using a gradient set with b-values up to only 1000
s/mm2 gave the least accurate results in white matter and should not be
preferred.

• In the DKI analysis, going from 1 b0-image to 6-b0 images did only have a
minor impact on the estimations when the gradient set already contained
the maximum number of gradient directions for the b-values 500, 1000
and 3000 s/mm2.
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• In the DKI analysis, using a gradient set with 6 b0-images, 12 b = 500,
30 b = 1000 and 50 b = 3000 s/mm2 was equally precise as using the full
gradient set, containing the additional 40 b = 2000 s/mm2 measurements.
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Chapter 10

Discussion and conclusion

The main objective of this thesis was to compare the two DWI models DTI and
DKI by studying the effect of SNR, NSA, number of gradient directions and b-
values on the diffusion parameter estimation. The motivation for conducting this
study was based on the axiom that the simplest model able to properly describe
a given phenomenon should be preferred. With more complex diffusion models,
more model parameters are needed, and larger data sets must be acquired per scan,
resulting in a longer acquisition time. On the other hand, the increase in model
complexity may be justified by an increased sensitivity and the detection of subtle
changes in the tissue microstructure.

The results from each simulation experiment are further discussed in the following
sections.

10.1 Parameter estimation as a function of SNR

There are some differences in the estimation of the DTI-parameters FA, MD, RD and
AD between the DTI model and the DKI model in the white matter. As figure 9.7
suggests, the errors are generally larger in DTI than in DKI, especially in settings of
limited SNR. Despite the fact that the DKI model is more precise in its estimations,
it demonstrates a lower accuracy at the lowest levels of SNR, being particularly
inaccurate at SNR = 10. Nevertheless, the accuracy of the DKI model improves
gradually as the SNR level increases.

It could be speculated that the reduced accuracy of the DKI model in settings
of limited SNR is a case of overfitting, which may occur when a statistical model
contains more model parameters than can be justified by the data. When the SNR
is sufficiently low, the model may extract some of the residual variation in the signal,
i.e. noise, as if that variation represented the underlying structure of the model[40].
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The errors in the estimations of RD are particularly large, as seen in figure 9.7c,
the errors range from ± 100 % at the lowest levels of SNR. A possible explanation
for this may be the anisotropic structure of the white matter. When diffusion is
highly anisotropic, the size of RD is especially small. As can be seen in table 7.1,
the ground truth values of RD in the selected white matter voxels are all in the
range 0.12-0.21 × 10−3 mm2/s. As stated in formula (4.42), RD is calculated as the
mean of the two eigenvalues λ2 and λ3. The estimation of RD therefore depends on
diffusion measurements in two orthogonal axes. When λ2 and λ3 are small, a small
error in these eigenvalues may lead to substantial errors in the estimation of RD.

In gray matter, the values of RD are generally larger. Figure 9.8c illustrates that the
errors in RD are much smaller in gray matter, in contrast to what was observed in
the white matter. This may substantiate the fact that large errors may arise in the
estimations when diffusion is more restricted in the radial plane and RD is small.

In contrast, there is a substantial increase in the errors in the estimations of FA in
gray matter (figure 9.8a) compared to white matter. As stated in equation (4.43),
FA is calculated through the three eigenvalues of the diffusion tensor. Gray matter
is almost isotropic to water diffusion, as it has a randomly ordered microstructure,
at least on the scale of a voxel. Thus, the differences between RD and AD, and
therefore also the eigenvalues λ1, λ2 and λ3, are small in gray matter. This can be
seen in the ground truth values of RD and AD in table 7.1. Small deviations in one
(or more) of the eigenvalues may therefore have an impact on the calculation of FA,
as the diffusion ellipsoid goes from being almost spherical to being more pointed. As
seen in figure 9.8c and 9.8d, the underestimation of RD is somewhat larger than the
overestimation of AD, which results in an overestimation of the FA value. Image
noise produces a random perturbation of the diffusion tensor, which leads to an
overestimation of AD and an underestimation of RD, hence, diffusion anisotropy is
overestimated in general[41]. In the white matter, where the differences between
RD and AD are larger, this is not an issue however.

In the CSF, diffusion is free, and FA is close to zero. As can be seen in figure 9.9a, the
range of errors in the estimation of FA are substantial, ranging over several hundred
percents. As discussed, the equation for FA becomes more sensitive to errors when
the three eigenvalues are approximately equal in size, which is also the case in the
CSF. Furthermore, when the relative error given by equation (7.9) is calculated, the
denominator in the expression is a small number, as FA is close to zero in the CSF.
Dividing by a small number may result in a very large quotient, which may be a
possible explanation for the large relative errors observed in the CSF. Thus, the
substantially large errors do not necessarily imply that the models are performing
badly in the CSF, as dividing by a small number can have a dramatic effect on the
relative errors. The inaccuracy of the DTI model in the CSF can also impact the
accuracy of gray matter voxels containing a CSF component due to partial volume
effects. Free diffusion also means that the diffusion signal decays rapidly, reaching
the level of background noise at much lower b-values than in white matter, making
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the estimations more sensitive to noise in the CSF. This makes it challenging to
make an exact estimation of FA; even tiny contributions of noise to the signal in any
direction may result in an FA larger than zero, as a small degree of anisotropy is
measured. This results in an overestimation of FA. It should, however, be stressed
that accurate measurements of FA in CSF is rarely relevant in clinical practice, and
is mainly a concern with respect to partial volume effects; i.e. where part of a white
matter or gray matter voxel contains CSF - which may contaminate the underlying
DWI-signal.

The analytic DTI signal was included in the simulations to illustrate the difference
between a completely synthetic, noise-free DTI signal, and the baseline DTI signals
generated from DW-MRI data. The baseline signals have some inherent level of
noise, and the tensor estimations might not be as accurate as the tensor estimations
of a noise-free signal. The difference in the estimations between the baseline signal
and the synthetic, noise-free signal can therefore be thought of as a margin of error,
which indicates how accurate the baseline DTI signal is at estimating the diffusion
tensor. When the differences in the estimations are small, as seen in the white and
gray matter (figure 9.7 and 9.8), the margin of error is small, which substantiates
the results of the baseline signals. When the differences in the estimations are more
prominent, as in the CSF (figure 9.9), the margin of error is larger, suggesting that
these results must be considered with some caution.

In general, there were no notable differences in the estimations between the syn-
thetic DTI signal and the baseline DTI signal extracted from the clinical DWI-MRI
data set (with the exception of in the CSF). This validates the results of the sim-
ulation experiments, as the inherent noise in the baseline signals did not affect the
estimations to a large extent. Based on these results for DTI, one might make the
assumption that the same results hold for DKI.

Finally, it should be emphasized that estimating kurtosis in settings of free diffu-
sion serves no purpose. In the CSF, diffusion is assumed to be free and the water
molecules have a Gaussian probability distribution. Thus, the kurtosis K should be
equal to zero, which makes the second term in the expression for the DKI signal
attenuation (5.2) superfluous. Nevertheless, DKI analyses in the CSF were included
for completeness of the study. Figure 9.10 emphasizes this fact; the kurtosis esti-
mations (MK, RK and AK) in the CSF are are particularly inaccurate. Despite the
fact that MK, RK and AK theoretically should be equal to zero in the CSF, the
ground truth values are not, as seen in table 7.1. Since diffusion is assumed to be
free in the CSF, the diffusion signal decays rapidly as a function of b. This leads to
a monoexponential decay when the signal intensity is plotted in a logarithmic scale.
The additional kurtosis term in the DKI model makes it a second-order polynomial
as a function of b. Thus, the non-zero kurtosis values suggest that the DKI model
fits badly to a monoexponential signal decay, which in consequence leads to inac-
curate estimations of MK, RK and AK in the CSF. Moreover, a small denominator
when calculating the relative error (7.9) might result in a large quotient and thereby
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a large relative error, as discussed earlier.

In general, the parameter estimations seem to stabilize at an SNR of 50-60, as a
further increase in SNR did not result in a noteworthy improvement in the esti-
mations. The histograms in figure 9.4 also illustrate this fact; for high SNR, there
was minimal variation between the parametric maps. At an SNR of 40 and 60, the
estimations of FA and MK were almost equivalent to the estimations without added
noise, while lower levels of SNR had a tendency to overestimate FA and MK. A
previous study has shown that clinical b0-images typically have an SNR of approx-
imately 40 in white matter at 3 T[42], which is positive considering the results of
this experiment.

10.2 Parameter estimation as a function of NSA

As seen in the estimations of FA (figure 9.11), increasing the NSA from 1 to 2
had a positive effect on the parameter estimations for both DTI and DKI, with
an improvement in both precision and accuracy. The improvements in precision
appeared to be equivalent to a + 10 increase in SNR. Doubling the NSA also resulted
in an increased precision in the estimations of MK (figure 9.12).

The improvements are, however, not as prominent as what might have been ex-
pected. The theory states that the SNR scales with

√
NSA[9], which in this case

means that the SNR should increase with a factor
√

2 ≈ 1.4. During the analysis
part of the project, it was confirmed that the signals did, in fact, scale with

√
2.

Yet, this relationship was not reflected in the parameter estimations. Thus, it can
be speculated that the relationship SNR ∝

√
NSA does not apply to the parameter

estimations.

In the analyses, both models used all gradient directions with b-values up to b =
1000 for DTI, and b = 3000 s/mm2 for DKI. The effect of an increased NSA might
have been more prominent in a smaller gradient set with fewer b-values and gradient
directions, which is more sensitive to noise.

Nevertheless, the result of this experiment demonstrates the fact that the NSA and
SNR are two closely related properties; when multiple signals are averaged, the signal
becomes more prominent, as the background noise is being canceled out. This again
leads to an increased SNR.
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10.3 Parameter estimation as a function of num-
ber of gradient directions and b-values

Whereas image SNR is ultimately limited by MRI system hardware, coil design etc.,
the DWI sequence configuration can be directly modified by the user in order to
obtain the best trade-off between quality and accuracy of resulting DWI maps and
total scan time. The DWI sequence from which the baseline signals were extracted
was a high-quality multi-shell sequence with an acquisition time of 8 minutes and
31 seconds (table 6.1). Reducing the number of directions for a given b-value will
directly impact the total scan time. For instance, a DWI sequence with 1 b-value
and 12 gradient directions had an acquisition time of 48 seconds, while a sequence
with 1 b-value and 30 gradient directions had an acquisition time of 1 minute and
30 seconds.

One can generally assume that one diffusion measurement is approximately equal
to one TR. As stated in table 6.1, TR = 2450 ms. Thus, by leaving out all 40 b
= 2000 s/mm2 measurements for instance, the total scan time will be reduced by
40×2450 ms = 98 seconds, which in this case is almost a 20 % reduction. Leaving
out the 12 b = 500 s/mm2 measurement reduces the total scan time by 48 seconds,
or approximately 9 %.

Further, reducing the maximum b-value also allows for a shorter echo time, reducing
signal loss and image distortion. Reduced scan time also reduces probability of
motion induced artefacts. Overall, there is therefore a strong incentive to use the
fastest DWI sequence with the lowest maximum b-value and number of b-values
giving a sufficient quality for a given research question or clinical indication.

The results of the DTI analysis and the DKI analysis will be discussed in the fol-
lowing sections.

10.3.1 DTI analysis

The estimations of FA in white matter are illustrated in figure 9.13a. As expected,
the gradient sets containing only 1 b0-image and either 15 or 30 gradient directions
for b = 1000 s/mm2 yielded the least precise results. These were the sets with the
lowest number of gradient directions and b-values. Fewer gradient directions means
fewer diffusion measurements and a less accurate estimation of the diffusion tensor,
which in turn leads to less accurate estimations of the diffusion parameters. Fur-
thermore, with only 1 b0-image, going from 15 to 30 gradient directions only resulted
in a minor improvement in the estimations. In contrast, increasing the number of
b0-measurements from 1 to 6 resulted in a drastic increase in precision, suggesting
that the number of b0-measurements plays an important role in the parameter esti-
mations. Increasing the number of b0-images could therefore be an effective way to
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improve the SNR, since each b0-image only takes a few seconds to acquire.

Interestingly, the were no apparent differences between the set containing 6 b0 and
30 b = 1000 s/mm2, and the set containing 6 b0, 12 b = 500 and 30 b = 1000 s/mm2.
This might indicate that adding extra diffusion measurements at b = 500 s/mm2 does
not provide any new information to the DTI model fitting, as no major improvement
was observed in the estimations. However, the signals from the selected voxels might
also have an influence on the estimations. As seen in the white matter signals in
subject 2 and 3 (figure 6.6), they are noticeable high at b = 500 s/mm2, deviating
from a monoexponential decay. The DTI model may therefore not be optimal for
these selected signals. It might be speculated that the results would have turned
out differently for another set of voxels.

Furthermore, it should be mentioned that adding the additional 50 gradient direc-
tions at b = 3000 s/mm2 did not improve the estimations to a large extent in white
matter. When diffusion is restricted or highly hindered, a deviation from a mono-
exponential decay occurs when higher b-values are used, due to the long diffusion
time. The signal from the restricted or highly hindered water molecules elevates the
tail of the signal decay. The monoexponential fit of the DTI model is not suitable
when b = 3000 s/mm2 is included in the gradient set, as it is not designed to pick
up the deviation that occurs at higher b-values.

As figure 9.13c illustrates, adding b = 3000 s/mm2 to the gradient set can have major
negative effects on the estimations. In the CSF, diffusion is free and the signal decays
rapidly, reaching the level of background noise at much lower b-values than in white
and gray matter. Hence, the signal only consists of background noise at higher
b-values, which makes the b = 3000 s/mm2 measurements unnecessary. Also, even
though diffusion is free in CSF and the signal decays monoexpoentially, the curve
shape will appear to be more biexponential when b = 3000 s/mm2 is included, due to
the noise floor. Gaussian diffusion characteristics can therefore appear non-Gaussian
solely as a result of the noise floor present at higher b-values[43]. A log-conversion
of the signal will therefore not become linear, which results in an underestimation
of the diffusivity, and an overestimation of FA. However, accurate measurements of
FA in CSF are rarely relevant in clinical practice. The estimations were included in
the study for completeness.

When it comes to the estimations of MD, figure 9.14a indicates that MD is highly
underestimated when b = 3000 s/mm2 is included in the gradient set. The under-
estimation of MD in white matter might be due to the elevation of the signal curve
that occurs at higher b-values, when signal from the restricted or highly hindered
water molecules are dominating. As stated in equation (5.1), there is a linear re-
lationship between the logarithmic DTI signal decay and the b-value, expressed as
-bD, where the diffusion coefficient D represents the slope of the curve. Thus, with
a monoexponential fit, the elevated tail at b = 3000 s/mm2 might lead to a lower
diffusion coefficient D and an underestimation of MD. This is has also been shown
in a previous study[44].
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10.3.2 DKI analysis

The least accurate estimations of FA in white matter (figure 9.15a) occurred when
the gradient set had a maximum b-value of only 1000 s/mm2. As stated in equation
(5.2), the logarithmic DKI signal decay can be expressed as -bD + 1

6b
2D2K, making

it a second-order polynomial as a function of b. At higher b-values, the restricted or
highly hindered water molecules are dominating the signal, due to the long diffusion
time. This elevates the tail of the diffusion signal, and a deviation from the mono-
exponential decay occurs. The second term in the DKI model is designed to pick
up this deviation. However, at lower b-values, the diffusion signal is decaying mono-
exponentially, which makes the DKI model unsuitable for gradient sets containing
b-values up to only 1000 s/mm2.

There were only minor differences between the gradient set containing 1 b0, 6 b = 500
and 25 b = 3000 s/mm2, and the gradient set containing 1 b0, 12 b = 500 and 50 b =
3000 s/mm2 in white matter. Thus, doubling the number of gradient directions did
not improve the estimations to a large extent. Both sets had only 1 b0-measurement,
however. Increasing the number of b0-measurements from 1 to 6 did improve both
the precision and accuracy of the estimations. This might suggest that the number
of b0-measurements has a large influence on the estimations. Increasing the number
of b0-images is therefore an effective way of improving the SNR, due to the short
acquisition time.

In general, step-wise improvements are observed as the number of gradient direc-
tions and b-values increases. The gradient sets with the highest number of gradient
directions and b-values yielded the most precise results. However, there were no
appreciable differences between the set containing 6 b0, 12 b = 500, 30 b = 1000 and
50 b = 3000 s/mm2, and the full gradient set, containing 6 b0, 12 b = 500, 30 b =
1000, 40 b = 2000 and 50 b = 3000 s/mm2. The result indicates that the additional
measurements at b = 2000 s/mm2 did not provide any new information to the DKI
model fitting. A reduced acquisition time could therefore be achieved by leaving out
the 40 b = 2000 s/mm2 measurements.

Surprisingly, in the gray matter and CSF (figure 9.15b and 9.15c), estimating FA
with the gradient set containing 6 b0, 12 b = 500 and 30 b = 1000 s/mm2 was more
precise that the gradient set containing 1 b0, 6 b = 500 and 25 b = 3000 s/mm2.
As discussed, the DKI model requires high b-value measurements to pick up the
deviations in the signal from a monoexponential decay. However, the number of
gradient directions also play an important role. At b = 3000 s/mm2, the SNR is low
due to the long diffusion time. Increasing the SNR by a sufficient number of diffusion
measurements is therefore important for a precise estimation of the diffusion- and
kurtosis tensor. It has also been shown in a previous study that DKI achieves
minimum error in gray matter when using b-values less than 1000 s/mm2, whereas
maximal b-values of about 2500 s/mm2 is optimal in white matter[45].

As can be seen in figure 9.16, the estimations of MD were particularly inaccurate
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in the CSF, compared to in white and gray matter. In CSF, diffusion is free, and a
rapid, monoexponential signal decay can be observed in figure 6.6. Thus, the kurtosis
should be equal to zero in the CSF, which reduces the second term in the DKI signal
expression (5.2) to zero. This again reduces the expression of the DKI model to that
of the DTI model. As previously discussed, including the measurements at b = 3000
s/mm2 might therefore result in an underestimation of the diffusion coefficient D,
and hence an underestimation of MD. In contrast, the estimations of MD for the
gradient set with b-values up to only 1000 s/mm2 proved to be reasonably accurate
in the CSF.

The gradient sets containing only 1 b0-measurement and no b = 1000 s/mm2 mea-
surements yielded the least accurate estimations of MD. Increasing the number of
b0-measurements from 1 to 6 resulted in a noticeable improvement in both precision
and accuracy. Furthermore, there were no clear distinction between the set contain-
ing 6 b0, 12 b = 500 and 50 b = 3000 s/mm2, and the set contaning, 1 b0, 12 b =
500, 30 b = 1000 s/mm2 and 50 b = 3000 s/mm2. This might can be interpreted as
increasing b0 from 1 to 6 is more or less equivalent to adding 30 b = 1000 s/mm2

measurements.

The estimations of MK in white matter are shown in figure 9.17. The figure clearly
illustrates the substantial errors in the estimations for the gradient set containing
b-values up to only 1000 s/mm2. Presumably, the large errors occur due to the fact
that at lower b-values, the signal is decaying monoexponentially, and the DKI model
might therefore not be suitable when b = 1000 s/mm2 is the upper limit. Estimating
kurtosis is therefore more suitable when higher b-values are included, which is where
the signal starts deviating from a monoexponential decay.

All in all, only minor variations were observed across the gradient sets containing b
= 3000 s/mm2 (figure 9.18) when estimating MK. Surprisingly, removing the 40 b
= 2000 s/mm2 measurements from the full gradient set resulted in more accurate
and precise estimations. This result suggests that diffusion measurements at b =
2000 s/mm2 might be superfluous, as no apparent improvement was observed in the
estimations of MK. It is, however, not certain that b = 2000 s/mm2 is superfluous
in DKI in general. Previous studies have shown that a maximum b-value of about
2000-2500 s/mm2 is concidered optimal for DKI[45, 46, 47]. It is important to stress
that this analysis is based on the assumption that the full gradient set, containing
all gradient directions and a maximum b-value of 3000 s/mm2, is the optimal set.
The ground truth values were therefore estimated using the full gradient set. This
might have affected the results. If the ground truth values were estimated using a
maximum b-value of 2000 instead of 3000 s/mm2, the results could have turned out
differently.
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10.4 Study limitations

There are certain limitations to this study. First of all, the simulation experiments
were limited to a small sample size of only 3 DW-MRI data sets, which may cause
selection bias. This makes the results of the study only indicative, and therefore, no
hard conclusions can be drawn. The small sample size was due to time limitations.
To avoid selection bias, more data sets should be included in future studies.

Furthermore, the voxels were selected manually from each region which may have
caused additional bias. However, the source data sets from which the baseline DWI
signals were selected were of high quality using a state-of-the-art multi-shell DWI se-
quence acquired on a high-end 3T MRI system. Further, selection of baseline signals
representing the three investigated tissues types were based on pre-segmentation of
FA-values into three classes - ensuring that each baseline signal was a reasonable
representation of the given tissue class (WM, GM and CSF).

Some of the white matter signals in subject 2 and 3 (figure 6.6) had surprisingly
high signal intensities at b = 500 s/mm2, causing the signal to deviate from a
monoexponential decay, which in turn may have affected the results. Nevertheless,
this is a risk one must be willing to take when signals are extracted from experimental
DWI data sets.

Another issue with experimental DWI data sets is the inherent level of noise in
the images. The signals used in the analysis were therefore not completely noise-
free. Also, we do not really know the ‘ground truth’, and our ‘apparent’ ground
truth is the respective models with the full gradient sets, so all metrics of accuracy
and precision are estimated relative to this. As of today, a direct interpretation of
the individual kurtosis tensor elements has yet to be explored[23]. Thus, generat-
ing a representative kurtosis tensor from scratch is quite challenging. Completely
synthetic DKI signals could therefore not be generated due to the mathematical
complexity of the kurtosis tensor.

When it comes to the simulation part on the project, the number of iterations was
set to n = 1000. In Monte Carlo simulations, the number of iterations is usually
higher, and increasing n to 10 000 could have been advantageous. A smaller number
of iterations results in larger variations within the distributions, which may have an
influence on the results. But then, increasing the number of iterations would lead to
a more time demanding simulation process, and a need to speed up the code with
e.g. parallel programming.

Finally, any scientific work that relies on measurements is prone to uncertainties.
The uncertainty in computer simulations is bounded to the floating point precision
of the computer. Modern computers have a floating point precision in the order of
10−38, and round-off errors may accumulate and become significant when multiple
iterations is required for the calculation of a value[48]. However, in this study it was
assumed that other uncertainties were of higher significance, considering the level of
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noise in the baseline signals.

10.5 Conclusion

The presence of noise alters the parameter estimations considerably. In white mat-
ter, the DTI model was found to be most noise sensitive. In gray matter and CSF,
the DKI model was most noise sensitive. In general, the DKI model performs badly
in highly isotropic voxels, presumably due to the fact that the kurtosis is equal to
zero in settings of free diffusion. The results suggest that DKI is preferred in white
matter analysis, while DTI is preferred in gray matter analysis. The parameter esti-
mations stabilized at an SNR of 50-60, as a further increase in SNR did not improve
the estimations to a large extent. Increasing the number of signal averages can also
have a positive effect on the parameter estimations in both models, as an increase
in NSA also increases the SNR.

The number of b0-images can have an important influence on the parameter esti-
mations. More than 1 b0-image is generally preferred. The results of the gradient
sets containing 6 b0-images were more precise than gradient sets containing only 1
b0-image.

The DTI analysis showed that including diffusion measurements at b = 3000 s/mm2

did not improve the estimations noteworthy. Measuring diffusion at b = 3000 s/mm2

is therefore not necessary for DTI. 6 b0-images and 30 b = 1000 s/mm2 measurements
appears to be the optimal choice for DTI, with an acceptable error range and number
of gradient directions and b-values. Leaving out the 12 b = 500 s/mm2 measurements
can therefore reduce the scan time by 9 %.

The DKI analysis showed that an upper bound of b = 1000 s/mm2 in general should
be avoided in DKI, due to the large errors that may arise in the kurtosis estima-
tions. 6 b0-images, 12 b = 500, 30 b = 1000 and 50 b = 3000 s/mm2 measurements
seems to be the optimal gradient set for DKI, which makes the 40 b = 2000 s/mm2

measurements redundant, reducing the scan time by almost 20 %.

All in all, this study has shown that the number of gradient directions and b-values
can have a big impact on the parameter estimations in both DTI and DKI. However,
the small sample size makes the results of the study only indicative. A more extensive
study should be conducted in the future, including a larger range of DWI data sets to
fully understand the effect of SNR, NSA, number of gradient directions and b-values
on the parameter estimations.
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Additional results

A.1 Parameter estimation as a function of NSA
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Figure A.1: Relative error in the estimations of MD from signals simulating
white matter, gray matter and CSF, for NSA = 1 and NSA = 2.
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Figure A.2: Relative error in the estimations of RD from signals simulating
white matter, gray matter and CSF, for NSA = 1 and NSA = 2.
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Figure A.3: Relative error in the estimations of AD from signals simulating
white matter, gray matter and CSF, for NSA = 1 and NSA = 2.
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Figure A.4: Estimations of RK as a function of SNR for signals simulating
white matter, gray matter and CSF.
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Figure A.5: Estimations of AK as a function of SNR for signals simulating
white matter, gray matter and CSF.
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A.2 Parameter estimation as a function of num-
ber of gradient directions and b-values
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Figure A.6: Estimations of RD in white matter, gray matter and CSF for
various gradient sets using the DTI model.
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Figure A.7: Estimations of AD in white matter, gray matter and CSF for
various gradient sets using the DTI model.
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Figure A.8: Estimations of RD in white matter, gray matter and CSF for
various gradient sets using the DKI model.
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Figure A.9: Estimations of AD in white matter, gray matter and CSF for
various gradient sets using the DKI model.
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Figure A.10: Estimations of RK in white matter, gray matter and CSF for
various gradient sets using the DKI model.
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Figure A.11: Estimations of AK in white matter, gray matter and CSF for
various gradient sets. Set 1 has been removed from the plot due to the large
errors in the estimations.



Appendix B

Matlab code

The following sections contain snippets of the most relevant parts of the code. The
code in its entirety can be found at
https://github.com/livewj/Masteroppgave

B.1 dki_fit.m

Diffusion and kurtosis tensor estimation for the DKI signal.

f u n c t i o n [ b0 , dt , w, w_wlls ] = d k i _ f i t ( dwi , grad , mask ,
c o n s t r a i n t s , o u t l i e r s , maxbval )
% D i f f u s i o n Ku r t o s i s Imaging t e n s o r e s t ima t i o n u s i n g
% ( c o n s t r a i n e d ) we ighted l i n e a r l e a s t s qua r e s e s t ima t i o n
% –––––––––––––––––––––––––––––––––––––––––––––––––––––
% p l e a s e c i t e : Veraar t , J . ; S i j b e r s , J . ; Sunaert , S . ;

Leemans , A . & J e u r i s s e n , B . ,
% Weighted l i n e a r l e a s t s qua r e s e s t ima t i o n o f

d i f f u s i o n MRI pa ramete r s :
% s t r e n g t h s , l i m i t a t i o n s , and p i t f a l l s .

NeuroImage , 2013 , 81 , 335–346
%–––––––––––––––––––––––––––––––––––––––––––––––––––––
. . .

% Tensor f i t
[ D_ind , D_cnt ] = c r ea t eTen so rOrde r (2 ) ;
[W_ind , W_cnt ] = c r ea t eTen so rOrde r (4 ) ;

bS = ones ( ndwis , 1) ;
bD = D_cnt ( ones ( ndwis , 1) , : ) .∗ grad ( : , D_ind ( : ,

1) ) .∗ grad ( : , D_ind ( : , 2) ) ;
bW = W_cnt( ones ( ndwis , 1) , : ) .∗ grad ( : , W_ind ( : ,

1) ) .∗ grad ( : , W_ind ( : , 2) ) .∗ grad ( : , W_ind ( : ,
3) ) .∗ grad ( : , W_ind ( : , 4) ) ;

XV
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b = [ bS , – bva l ( : , ones (1 , 6) ) .∗bD , ( b va l ( : , ones (1 ,
15) ) .^2/6) .∗bW] ; % D and W t en s o r

% Uncons t r a i n ed LLS f i t
dt = b\ l og ( dwi ) ; % Moore–Penrose p s e udo i n v e r s e
w = exp ( b∗ dt ) ; % Est imated s i g n a l

n v o x e l s = s i z e ( dwi , 2 ) ;

% WLLS f i t i n i t i a l i z e d wi th LLS
i f any ( c o n s t r a i n t s )

d i r = [0 .382517725304416 – 0.748614094922528
0 .541532202838631 ; . . . ; ] ; % Grad i en t d i r e c t i o n s

n d i r = s i z e ( d i r , 1) ;
C = [ ] ;
i f c o n s t r a i n t s (1 )>0 % TRUE

C = [C ; [ z e r o s ( nd i r , 1) , D_cnt ( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , D_ind ( : , 1) ) .∗ d i r ( : , D_ind ( : , 2) ) ,
z e r o s ( nd i r , 15) ] ] ;

end
i f c o n s t r a i n t s (2 )>0 %TRUE

C = [C ; [ z e r o s ( nd i r , 7) , W_cnt( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , W_ind ( : , 1) ) .∗ d i r ( : , W_ind ( : ,
2) ) .∗ d i r ( : , W_ind ( : , 3) ) .∗ d i r ( : , W_ind ( : , 4) ) ] ] ;

end
i f c o n s t r a i n t s (3 )>0 %TRUE

C = [C ; [ z e r o s ( nd i r , 1) ,
3/max( bva l ) ∗D_cnt ( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , D_ind ( : , 1) ) .∗ d i r ( : , D_ind ( : , 2) ) , –
W_cnt( ones ( nd i r , 1) , : ) .∗ d i r ( : , W_ind ( : ,
1) ) .∗ d i r ( : , W_ind ( : , 2) ) .∗ d i r ( : , W_ind ( : ,
3) ) .∗ d i r ( : , W_ind ( : , 4) ) ] ] ;

end
d = z e r o s ( [ 1 , s i z e (C , 1) ] ) ;
o p t i o n s = opt imse t ( ’ D i s p l a y ’ , ’ o f f ’ , ’ A lgo r i thm ’ ,

’ i n t e r i o r – po i n t ’ , ’ Max I te r ’ , 5000 , ’ TolCon ’ , 1e– 10 ,
’ TolFun ’ , 1e– 10 , ’ TolX ’ , 1e– 10 , ’ MaxFunEvals ’ , 5000) ;

p a r f o r i = 1 : n v o x e l s
t r y

in_ = o u t l i e r s ( : , i ) == 0 ;
wi = w( : , i ) ;
Wi = d i ag ( wi ( in_ ) ) ;
dt ( : , i ) = l s q l i n (Wi∗b ( in_ ,

: ) ,Wi∗ l o g ( dwi ( in_ , i ) ) , –C , d ,
[ ] , [ ] , [ ] , [ ] , [ ] , o p t i o n s ) ;

ca tch
dt ( : , i ) = 0 ;

end
end

e l s e % Uncons t r a i n ed
p a r f o r i = 1 : n v o x e l s

in_ = o u t l i e r s ( : , i ) == 0 ;
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b_ = b( in_ , : ) ;
i f i s empty (b_) | | cond ( b ( in_ , : ) )>1e15

dt ( : , i ) = NaN
e l s e

wi = w( : , i ) ; Wi = d iag ( wi ( in_ ) ) ;
l o g dw i i = l og ( dwi ( in_ , i ) ) ;
dt ( : , i ) = (Wi∗b_) \(Wi∗ l o g dw i i ) ;

end
end

end

b0 = exp ( dt ( 1 , : ) ) ; % S0 s i g n a l
dt_0 = dt ( 1 , : ) ; % dt wi th S0

dt = dt ( 2 : 2 2 , : ) ;
D_apprSq = 1 . / ( sum( dt ( [ 1 4 6 ] , : ) , 1 ) /3) . ^ 2 ;
dt ( 7 : 2 1 , : ) = dt ( 7 : 2 1 , : ) .∗ D_apprSq ( ones (15 ,1 ) , : ) ;

d t_w l l s = [ dt_0 ; dt ] ;
w_wlls = exp ( b∗ d t_w l l s ) ; % S i g n a l e s t ima t ed from WLLS

end

f u n c t i o n [X, cnt ] = c r ea t eTen so rOrde r ( o r d e r )
X = nchoosek ( kron ( [ 1 , 2 , 3 ] , ones (1 , o r d e r ) ) , o r d e r ) ;
X = un ique (X, ’ rows ’ ) ;
f o r i = 1 : s i z e (X, 1)

cnt ( i ) = f a c t o r i a l ( o r d e r ) / f a c t o r i a l ( nnz (X( i , : ) ==1)) /
f a c t o r i a l ( nnz (X( i , : ) ==2)) / f a c t o r i a l ( nnz (X( i , : )
==3)) ;

end
end

f u n c t i o n [ s , mask ] = v e c t o r i z e (S , mask )
i f n a r g i n == 1

mask = ~ i s n an (S ( : , : , : , 1 ) ) ;
end
i f i sm a t r i x (S)

n = s i z e (S , 1) ;
[ x , y , z ] = s i z e (mask ) ;
s = NaN( [ x , y , z , n ] , ’ l i k e ’ , S ) ;
f o r i = 1 : n

tmp = NaN( x , y , z , ’ l i k e ’ , S ) ;
tmp(mask ( : ) ) = S( i , : ) ;
s ( : , : , : , i ) = tmp ;

end
e l s e

f o r i = 1 : s i z e (S , 4)
S i = S ( : , : , : , i ) ;
s ( i , : ) = S i (mask ( : ) ) ;

end
end

end
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B.2 dti_fit.m

Diffusion tensor estimation for the DTI signal.

f u n c t i o n [ b0 , dt , w, w_wlls ] = d t i _ f i t ( dwi , grad , mask ,
c o n s t r a i n t s , o u t l i e r s , maxbval )
% D i f f u s i o n Tensor Imaging t e n s o r e s t ima t i o n u s i n g
% ( c o n s t r a i n e d ) we ighted l i n e a r l e a s t s qua r e s e s t ima t i o n
% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––
% p l e a s e c i t e : Veraar t , J . ; S i j b e r s , J . ; Sunaert , S . ;

Leemans , A . & J e u r i s s e n , B . ,
% Weighted l i n e a r l e a s t s qua r e s e s t ima t i o n o f

d i f f u s i o n MRI pa ramete r s :
% s t r e n g t h s , l i m i t a t i o n s , and p i t f a l l s .

NeuroImage , 2013 , 81 , 335–346
% –––––––––––––––––––––––––––––––––––––––––––––––––––––––––
. . .
%% Tensor f i t
[ D_ind , D_cnt ] = c r ea t eTen so rOrde r (2 ) ;

bS = ones ( ndwis , 1) ;
bD = D_cnt ( ones ( ndwis , 1) , : ) .∗ grad ( : , D_ind ( : ,

1) ) .∗ grad ( : , D_ind ( : , 2) ) ;

b = [ bS , – bva l ( : , ones (1 , 6) ) .∗bD ] ; %D t e n s o r

% Uncons t r a i n ed LLS f i t
dt = b\ l og ( dwi ) ; % = p inv ( b ) ∗ l o g ( dwi ) Moore–Penrose

p s e u do i n v e r s e
w = exp ( b∗ dt ) ; % s i g n a l

n v o x e l s = s i z e ( dwi , 2 ) ;

% Con s t r a i n ed WLLS f i t i n i t i a l i z e d wi th LLS
i f any ( c o n s t r a i n t s )

d i r = [0 .382517725304416 – 0.748614094922528
0 .541532202838631 ; . . . ; ] ;

n d i r = s i z e ( d i r , 1) ;
C = [ ] ;
i f c o n s t r a i n t s (1 )>0 %TRUE

%C = [C ; [ z e r o s ( nd i r , 1) , D_cnt ( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , D_ind ( : , 1) ) .∗ d i r ( : , D_ind ( : , 2) ) ,
z e r o s ( nd i r , 15) ] ] ;

C = [C ; [ z e r o s ( nd i r , 1) , D_cnt ( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , D_ind ( : , 1) ) .∗ d i r ( : , D_ind ( : , 2) ) ] ] ;

end
i f c o n s t r a i n t s (2 )>0
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C = [C ; [ z e r o s ( nd i r , 7) , W_cnt( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , W_ind ( : , 1) ) .∗ d i r ( : , W_ind ( : ,
2) ) .∗ d i r ( : , W_ind ( : , 3) ) .∗ d i r ( : , W_ind ( : , 4) ) ] ] ;

end
i f c o n s t r a i n t s (3 )>0

C = [C ; [ z e r o s ( nd i r , 1) ,
3/max( bva l ) ∗D_cnt ( ones ( nd i r , 1) ,
: ) .∗ d i r ( : , D_ind ( : , 1) ) .∗ d i r ( : , D_ind ( : , 2) ) , –
W_cnt( ones ( nd i r , 1) , : ) .∗ d i r ( : , W_ind ( : ,
1) ) .∗ d i r ( : , W_ind ( : , 2) ) .∗ d i r ( : , W_ind ( : ,
3) ) .∗ d i r ( : , W_ind ( : , 4) ) ] ] ;

end

d = z e r o s ( [ 1 , s i z e (C , 1) ] ) ;
o p t i o n s = opt imse t ( ’ D i s p l a y ’ , ’ o f f ’ , ’ A lgo r i thm ’ ,

’ i n t e r i o r – po i n t ’ , ’ Max I te r ’ , 5000 , ’ TolCon ’ , 1e– 10 ,
’ TolFun ’ , 1e– 10 , ’ TolX ’ , 1e– 10 , ’ MaxFunEvals ’ , 5000) ;

p a r f o r i = 1 : n v o x e l s
t r y

in_ = o u t l i e r s ( : , i ) == 0 ;
wi = w( : , i ) ;
Wi = d i ag ( wi ( in_ ) ) ;
dt ( : , i ) = l s q l i n (Wi∗b ( in_ ,

: ) ,Wi∗ l o g ( dwi ( in_ , i ) ) , –C , d ,
[ ] , [ ] , [ ] , [ ] , [ ] , o p t i o n s ) ;

ca tch
dt ( : , i ) = 0 ;

end
end

e l s e % Uncons t r a i n ed WLLS
p a r f o r i = 1 : n v o x e l s

in_ = o u t l i e r s ( : , i ) == 0 ;
b_ = b( in_ , : ) ;
i f i s empty (b_) | | cond ( b ( in_ , : ) )>1e15

dt ( : , i ) = NaN
e l s e

wi = w( : , i ) ; Wi = d iag ( wi ( in_ ) ) ;
l o g dw i i = l og ( dwi ( in_ , i ) ) ;
dt ( : , i ) = (Wi∗b_) \(Wi∗ l o g dw i i ) ;

end
end

end

b0 = exp ( dt ( 1 , : ) ) ;
dt_0 = dt ( 1 , : ) ; % dt wi th S0

dt = dt ( 2 : 7 , : ) ;
%D_apprSq = 1 . / ( sum( dt ( [ 1 4 6 ] , : ) , 1 ) /3) . ^ 2 ;
%dt ( 7 : 2 1 , : ) = dt ( 7 : 2 1 , : ) .∗ D_apprSq ( ones (15 ,1 ) , : ) ;

d t_w l l s = [ dt_0 ; dt ] ;
w_wlls = exp ( b∗ d t_w l l s ) ; % S i g n a l e s t ima t ed from WLLS
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b0 = v e c t o r i z e ( b0 , mask ) ;
dt = v e c t o r i z e ( dt , mask ) ;

B.3 dki_parameters.m

Parameter estimations of MD, FA, RD, AD, MK, RK and AK used in the DKI
analysis.

f u n c t i o n [ fa , md, rd , ad , fe , mk, rk , ak , ev1 , ev2 , ev3 ] =
dk i_pa ramete r s ( dt , mask )
% d i f f u s i o n and k u r t o s i s t e n s o r paramete r c a l c u l a t i o n
% p l e a s e c i t e : Ve r aa r t e t a l .
% More Accura te E s t ima t i on o f D i f f u s i o n Tensor

Parameter s Us ing D i f f u s i o n Ku r t o s i s Imaging ,
% MRM 65 (2011) : 138– 145 .
% ––––––––––––––––––––––––––––––––––––––––––––––––––––

% DTI pa ramete r s

f o r i = 1 : n v o x e l s
DT = dt ( [ 1 : 3 2 4 5 3 5 6 ] , i ) ;
DT = re shape (DT, [ 3 3 ] ) ;
t r y

[ e i g v e c , e i g v a l ] = e i g s (DT) ;
e i g v a l = d i ag ( e i g v a l ) ;

ca tch
e i g v e c = NaN(3 , 3) ;
e i g v a l = NaN(3 , 1) ;

end
[ e i g v a l , i d x ] = s o r t ( e i g v a l , ’ descend ’ ) ;
e i g v e c = e i g v e c ( : , i d x ) ;
l 1 ( i ) = e i g v a l ( 1 , : ) ;
l 2 ( i ) = e i g v a l ( 2 , : ) ;
l 3 ( i ) = e i g v a l ( 3 , : ) ;

e1 ( : , i ) = e i g v e c ( : , 1) ;
end
md = ( l 1+l 2+l 3 ) /3 ;
rd = ( l 2+l 3 ) /2 ;
ad = l 1 ;
f a = s q r t (1/2) .∗ s q r t ( ( l 1 – l 2 ) .^2+( l 2 – l 3 ) .^2+( l 3 – l 1 ) . ^2 ) . / . . .

s q r t ( l 1 .^2+ l 2 .^2+ l 3 .^2 ) ;

% DKI pa ramete r s
d i r s = g e t 2 5 6 d i r s ( ) ;
akc = AKC( dt , d i r s ) ;
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mk = mean ( akc ) ;
ak = z e r o s ( [ 1 , s i z e ( e1 , 2 ) ] ) ;
rk = z e r o s ( [ 1 , s i z e ( e1 , 2 ) ] ) ;

p a r f o r i = 1 : n v o x e l s
d i r s = [ e1 ( : , i ) , – e1 ( : , i ) ] ’ ;
akc = AKC( dt ( : , i ) , d i r s ) ;
ak ( i ) = mean ( akc ) ;
d i r s = r a d i a l s amp l i n g ( e1 ( : , i ) , 256) ’ ;
akc = AKC( dt ( : , i ) , d i r s ) ;
rk ( i ) = mean ( akc ) ;

end

B.4 dti_parameters.m

Parameter estimations of MD, FA, RD and AD used in the DTI analysis.

f u n c t i o n [md, fa , rd , ad , l1 , l2 , l 3 ] = d t i_pa r ame t e r s (D)
% Ca l c u l a t e s mean d i f f u s i o n (md) , f r a c t i o n a l a n i s o t r o p y ( f a )
% r a d i a l d i f f u s i v i t y ( rd ) , a x i a l d i f f u s i v i t y ( ad )
% from d i f f u s i o n t e n s o r D

[ e i g v e c , e i g v a l ] = e i g s (D) ;
e i g v a l = d i ag ( e i g v a l ) ;

l 1 = e i g v a l ( 1 ) ;
l 2 = e i g v a l ( 2 ) ;
l 3 = e i g v a l ( 3 ) ;

md = ( l 1+l 2+l 3 ) /3 ;
rd = ( l 2+l 3 ) /2 ;
ad = l 1 ;

A = ( l 1 – md)^2 + ( l 2 – md)^2 + ( l 3 – md) ^2;
B = l 1 ^2 + l 2 ^2 + l 3 ^2;
f a = s q r t (3∗A/(2∗B) ) ;

end

B.5 percentile.m

Tissue segmentation based on 10th and 90th percentile of the FA values.

% Load data
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dwi = n i f t i r e a d ( ) ;
[ nx , ny , nz , np ] = s i z e ( dwi ) ;
bvec s = impor tda ta ( ) ;
b v a l s = impor tda ta ( ) ;
grad = [ bvecs ’ bva l s ’ ] ;

% Genera te FA map
[ b0 , d t_bra in ] = d k i _ f i t ( dwi ( : , : , s l i c e , : ) , grad , mask_whole ) ;
[ f a_b r a i n ] = dk i_pa ramete r s ( d t_bra in ) ;

% S e l e c t a l l numbers t ha t a r e not NaN
s e l e c t = ~ i s n an ( f a_b r a i n ) ;
f a_va l u e s = fa_b r a i n ( s e l e c t ) ;

% Sor t i n a s c end i ng o r d e r
f a_ so r t e d = s o r t ( f a_va l u e s ) ;

i ndex10 = l e ng t h ( f a_ so r t e d ) ∗0 . 1 0 ;
i ndex90 = l e ng t h ( f a_ so r t e d ) ∗0 . 9 0 ;

i f mod( index10 , 1 ) == 0 %index=i n t e g e r
p e r c e n t i l e 1 0 = ( f a_so r t ed ( i ndex10 ) + fa_so r t e d ( i ndex10 +

1) ) /2 ;
e l s e

i ndex10 = c e i l ( i ndex10 ) ;
p e r c e n t i l e 1 0 = fa_so r t e d ( i ndex10 ) ;

end

i f mod( index90 , 1 ) == 0
p e r c e n t i l e 9 0 = ( f a_so r t ed ( i ndex90 ) + fa_so r t e d ( i ndex90 +

1) ) /2 ;
e l s e

i ndex90 = c e i l ( i ndex90 ) ;
p e r c e n t i l e 9 0 = fa_so r t e d ( i ndex90 ) ;

end

% 10% sma l l e s t and 90% l a r g e s t FA v a l u e s :
fa_10 = fa_so r t e d ( 1 : i ndex10 ) ; % Gray matte r + CSF
fa_90 = fa_so r t e d ( i ndex90 : end ) ; % White matte r

% P lo t p i x e l s
f o r i = 1 : l e n g t h ( fa_10 )

voxe l s_10 ( i ) = f i n d ( f a_b r a i n == fa_10 ( i ) ) ;
end

f o r i = 1 : l e n g t h ( fa_90 )
voxe l s_90 ( i ) = f i n d ( f a_b r a i n == fa_90 ( i ) ) ;

end

mask_10 = z e r o s (1 , nx∗ny ) ;
mask_10 ( voxe l s_10 ) = fa_10 ;
mask_10 = re shape (mask_10 , s i z e ( f a_b r a i n ) ) ;
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mask_90 = z e r o s (1 , nx∗ny ) ;
mask_90 ( voxe l s_90 ) = fa_90 ;
mask_90 = re shape (mask_90 , s i z e ( f a_b r a i n ) ) ;

% Genera te mask
white_matter_mask = boo l ean (mask_90 ) ;
gray_matter_mask = boo l ean (mask_10 ) ;

B.6 sim_exp1_DKI.m

Parameter estimation as a function of SNR and NSA for the DKI model

% Load data
dwi = n i f t i r e a d ( ) ;
bvec s = impor tda ta ( ) ;
b v a l s = impor tda ta ( ) ;
grad = [ bvecs ’ bva l s ’ ] ;

% Genera te s i g n a l and e s t a b l i s h ground t r u t h from s e l e c t e d v o x e l
f o r v = 1 : s i z e ( S_voxel , 1 )

S = S_voxe l ( v , : ) ;
S = re shape (S , [ 1 1 1 l e n g t h (S) ] ) ;
[ ~ , d t_rea l , w] = d k i _ f i t (S , grad ) ; % f u l l g r a d i e n t s e t
S_DKI ( : , v ) = w; % Est imated s i g n a l

% Est imate pa ramete r s
S = S_DKI ( : , v ) ;
S = re shape (S , [ 1 1 1 l e n g t h (S) ] ) ;
[ ~ , dt ] = d k i _ f i t (S , grad ) ; % b < 3000
[ f a ( v ) , md( v ) , rd ( v ) , ad ( v ) , ~ , mk( v ) , rk ( v ) , ak ( v ) ] =

dk i_pa ramete r s ( dt ) ; % Ground t r u t h
end

% Norma l i ze s i g n a l
i n d s 0 = f i n d ( b v a l s < 10) ;
S_DKI_norm = S_DKI . / nanmean (S_DKI( inds0 , : ) ) ;

S = S_DKI_norm ;
nvox=s i z e (S , 2 ) ;

n = 1000 ;
SNR = [10 15 20 25 30 40 50 60 80 1 0 0 ] ;
NSA = 1 ;

% MAIN LOOP
f o r v = 1 : nvox % ~ 60 sec pe r v o x e l

f o r k = 1 :NSA
f o r i = 1 : n

f o r j = 1 : l e n g t h (SNR)
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% Add r i c i a n n o i s e
N_real = randn (1 , s i z e (S , 1 ) ) ∗(1/SNR( j ) ) ;
N_imag = randn (1 , s i z e (S , 1 ) ) ∗(1/SNR( j ) ) ;
x = N_real + S ( : , v ) ;
y = N_imag ;
S_noise_data ( : , i , j , k ) = s q r t ( x .^2 + y .^2 ) ;

end
end

end
end

% Average s i g n a l s
S_noise_mean = mean ( S_noise_data , 4 ) ;

% Ca l c u l a t e pa ramete r s from ave raged s i g n a l
f o r i = 1 : n

f o r j = 1 : l e n g t h (SNR)
S_noise = S_noise_mean ( : , i , j ) ;

% Ca l c u l a t e t e n s o r from s i g n a l w i th n o i s e
S_no i se_reshaped = re shape ( S_noise , [ 1 , 1 , 1 ,

l e n g t h ( S_noise ) ] ) ;
[ ~ , dt_app ] = d k i _ f i t ( S_noise_reshaped , grad ( : , : ) ) ;

% Parameter e s t ima t i o n
[ fa_data ( i , j ) , md_data ( i , j ) , rd_data ( i , j ) , ad_data ( i , j ) ,

~ , mk_data ( i , j ) , rk_data ( i , j ) , ak_data ( i , j ) ] =
dk i_pa ramete r s ( dt_app ) ;

end
end

% Remove o u t l i e r s : Tukeys method
k = 1 . 5 ;
fa_data ( fa_data < ( p r c t i l e ( fa_data , 25) – k∗ i q r ( fa_data ) ) ) =

NaN;
fa_data ( fa_data > ( p r c t i l e ( fa_data , 75) + k∗ i q r ( fa_data ) ) ) =

NaN;
. . .

% Compute r e l a t i v e e r r o r
f a_ r e l = ( fa_data – f a ) . / f a ∗100 ;
. . .

B.7 sim_exp1_DTI.m

Analytic DTI signal generation.

% Load data
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dwi = n i f t i r e a d ( ) ;
bvec s = impor tda ta ( ) ;
b v a l s = impor tda ta ( ) ;
grad = [ bvecs ’ bva l s ’ ] ;

i nd s1500 = f i n d ( b v a l s < 1500) ;
G = grad ( inds1500 , 1 : 3 ) ;
b = grad ( inds1500 , 4 ) ;
S0 = 1 ;

% Genera te s i g n a l based on r e a l t e n s o r
%d_rea l = [ 1 . 6 0 53 , 0 .1482 , – 0 .0631 , 0 .1654 , – 0 .0197 ,

0 . 1202 ]∗1 e– 3 ; % White matte r
%d_rea l = [ 0 . 6 9 40 , 0 .0090 , – 0 .0606 , 0 .6893 , 0 .0854 ,

0 . 7667 ]∗1 e– 3 ; % GM
%d_rea l = [ 2 . 1 0 55 , 0 .0064 , 0 .0443 , 2 .5200 , – 0 .0087 ,

2 . 3436 ]∗1 e– 3 ; % CSF

f o r i = 1 : l e n g t h (G)
H( i , 1 ) = G( i , 1 ) ^2 ;
H( i , 2 ) = G( i , 2 ) ^2 ;
H( i , 3 ) = G( i , 3 ) ^2 ;
H( i , 4 ) = 2∗G( i , 1 ) ∗G( i , 2 ) ;
H( i , 5 ) = 2∗G( i , 1 ) ∗G( i , 3 ) ;
H( i , 6 ) = 2∗G( i , 2 ) ∗G( i , 3 ) ;

end

Y = H∗ d_rea l ’ ;

% Ca l c u l a t e s i g n a l
S_DTI_2 = S0∗ exp ( –b .∗Y) ;

% Est imate D from S_DTI_2
Y = – (1 . / b ) .∗ l o g (S_DTI_2 . / S0 ) ;
H_ps = i n v (H’∗H) ∗H’ ;
d = H_ps∗Y;

% Parameter e s t ima t i o n
D = [ d (1 ) d (4 ) d (5 ) ; d (4 ) d (2 ) d (6 ) ; d (5 ) d (6 ) d (3 ) ]∗1000 ;
[MD_2, FA_2 , RD_2, AD_2] = dt i_pa r ame t e r s (D) ;

B.8 sim_exp3_DKI.m

Parameter estimation as a function of number of gradient directions and b-values
for the DKI model.

% Load data
dwi = n i f t i r e a d ( ) ;
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bvecs = impor tda ta ( ) ;
b v a l s = impor tda ta ( ) ;
grad = [ bvecs ’ bva l s ’ ] ;

% Crea te g r a d i e n t s e t s
i n d s 0 = f i n d ( bva l s <10) ;
i nd s500 = f i n d (400< bv a l s & bva l s <600) ;
i nd s1000 = f i n d (800< bv a l s & bva l s <1200) ;
i nd s2000 = f i n d (1900< bv a l s & bva l s <2100) ;
i nd s3000 = f i n d (2900< bv a l s & bva l s <3100) ;

% DKI g r a d i e n t s e t s
s e t 1 = [ i nd s 0 i nd s500 inds1000 ] ;
s e t 2 = [ i nd s 0 (1 ) i nd s500 ( 1 : 2 : end ) inds3000 ( 1 : 2 : end ) ] ;
s e t 3 = [ i nd s 0 (1 ) i nd s500 inds3000 ] ;
s e t 4 = [ i nd s 0 i nd s500 inds3000 ] ;
s e t 5 = [ i nd s 0 (1 ) i nd s500 ( 1 : 2 : end ) inds1000 ( 1 : 2 : end )

inds3000 ( 1 : 2 : end ) ] ;
s e t 6 = [ i nd s 0 (1 ) i nd s500 inds1000 inds3000 ] ;
s e t 7 = [ i nd s 0 i nd s500 inds1000 inds3000 ] ;
s e t 8 = [ i nd s 0 i nd s500 inds1000 inds2000 inds3000 ] ;

% ENSURE ISOTROPICALLY DISTRIBUTED GRADIENT DIRECTIONS
% Plo t g r a d i e n t d i r e c t i o n s
i n d s = inds1000 ( 1 : 2 : end )
f i g u r e , ho ld on ,
f o r i =1: l e n g t h ( i n d s )

p l o t 3 ( [ – g r ad_ro i ( i n d s ( i ) , 1 ) g r ad_ro i ( i n d s ( i ) , 1 ) ] ,
[ – g r ad_ro i ( i n d s ( i ) , 2 ) g r ad_ro i ( i n d s ( i ) , 2 ) ] ,
[ – g r ad_ro i ( i n d s ( i ) , 3 ) g r ad_ro i ( i n d s ( i ) , 3 ) ] ) ;

pause ;
end

% Genera te s i g n a l and e s t a b l i s h ground t r u t h
. . .

% Add no i s e
nvox=s i z e (S_DKI_norm , 2 ) ;
n = 1000 ;
SNR = 50 ;
NSA = 1 ;
se t_nr = [{ s e t 1 } { s e t 2 } { s e t 3 } { s e t 4 } { s e t 5 } { s e t 6 } { s e t 7 }

{ s e t 8 } ] ;

% MAIN LOOP
f o r s = 1 : l e n g t h ( se t_nr )

i n d s = se t_nr { s } ;
S = S_DKI_norm( i n d s ) ;
f o r v = 1 : nvox % ~ 60 sec pe r v o x e l

f o r k = 1 :NSA
f o r i = 1 : n

f o r j = 1 : l e n g t h (SNR)
%Add r i c i a n n o i s e
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N_real = randn (1 , s i z e (S , 1 ) ) ∗(1/SNR( j ) ) ;
N_imag = randn (1 , s i z e (S , 1 ) ) ∗(1/SNR( j ) ) ;
x = N_real + S ( : , v ) ;
y = N_imag ;
S_noise = s q r t ( x .^2 + y .^2 ) ;

% Ca l c u l a t e t e n s o r from s i g n a l w i th n o i s e
S_no i se_reshaped = re shape ( S_noise , [ 1 , 1 ,

1 , l e n g t h ( S_noise ) ] ) ;
[ ~ , dt_app ] = d k i _ f i t ( S_noise_reshaped ,

grad ( inds , : ) ) ;

[ fa_n , md_n , rd_n , ad_n , ~ , mk_n , rk_n ,
ak_n ] = dk i_pa ramete r s ( dt_app ) ;

fa_data ( i , j , k , v ) = fa_n ;
md_data ( i , j , k , v ) = md_n ;
rd_data ( i , j , k , v ) = rd_n ;
ad_data ( i , j , k , v ) = ad_n ;
mk_data ( i , j , k , v ) = mk_n ;
rk_data ( i , j , k , v ) = rk_n ;
ak_data ( i , j , k , v ) = ak_n ;

f a_s e t { s } = fa_data ;
md_set{ s } = md_data ;
rd_se t { s } = rd_data ;
ad_set { s } = ad_data ;
mk_set{ s } = mk_data ;
r k_se t { s } = rk_data ;
ak_set { s } = ak_data ;

end
end

end
end

end
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