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Abstract: Climate model response (M) and greenhouse gas emissions (S) uncertainties are 18 

consistently estimated as spreads of multi-model and multi-scenario climate change projections. In 19 

comparison, there has been less agreement in estimating internal climate variability (V). Recently, 20 

an initial condition ensemble (ICE) of a climate model has been developed to study V. This ICE is 21 

simulated by running a climate model using an identical climate forcing but different initial 22 

conditions. Inter-member differences of an initial condition ensemble manifestly represent V. 23 

However, ICE has been barely used to investigate relative importance of climate change 24 

uncertainties. Accordingly, this study proposes a method of using ICEs, without assuming V as 25 

constant, for investigating the relative importance of climate change uncertainties and its temporal-26 

spatial variation. Prior to investigating temporal-spatial variation in China, V estimated using ICE 27 

was compared to that using multi-model individual time series at national scale. Results show that 28 

V using ICE is qualitatively similar to that using multi-model individual time series for temperature. 29 

However, V is not constant for average and extreme precipitations. V and M dominate before 2050s 30 

especially for precipitation, while S is dominant in the late 21st century especially for temperature. 31 

Mean temperature change is projected to be 30%-70% greater than its uncertainty until 2050s, while 32 

uncertainty becomes 10%-40% greater than the change in the late 21st century. Precipitation change 33 

uncertainty overwhelms its change by 70%-150% throughout 21st century. Cold regions (e.g. 34 
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northern China, Qinghai-Tibetan Plateau) tend to have greater projected temperature change 35 

uncertainties. In dry regions (e.g. northwest China), all three uncertainties tend to be great for 36 

changes in average and extreme precipitations. Overall, this study emphasizes the importance of 37 

considering climate change uncertainty in impact studies, especially taking into account that V is 38 

irreducible in the future. Using ICEs without assumption of constant V is an appropriate approach 39 

to study climate change uncertainty. 40 

Key words: Climate change, Uncertainty, Internal climate variability, Global climate model, 41 

Greenhouse gases emissions scenario, China  42 
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1. Introduction 43 

Climate change will affect human economic societies and natural ecologic systems at 44 

various temporal and spatial scales, with its impacts lasting for the whole 21st century 45 

(IPCC, 2014). For the assessment of climate change impacts, future climate projections 46 

are needed, which are usually provided by global climate models (GCMs) (e.g. 47 

Solomon et al., 2007). However, the climate projections usually come into being along 48 

with great, multi-source climate change uncertainties. Specifically, the cascade of 49 

climate change uncertainties goes from assumptions about future greenhouse gas (GHG) 50 

emission scenarios, GCM simulations, impact models, and local impacts (i.e. what 51 

those scenarios mean for real climate adaptation decisions on a local scale) (Wilby and 52 

Dessai, 2010).  53 

The process from GHG emissions to GCM simulation mainly consists of three 54 

sources of climate change uncertainties (Cox and Stephenson, 2007; Mearns, 2010; 55 

Dobler et al., 2012). Economic activities in future human society and relevant policies 56 

for climate change are unknown (Nakicenovic et al., 2000), so there is uncertainty in 57 

future GHG and aerosols emissions. Sets of assumptions for future GHG emissions, 58 

such as Special Report on Emission Scenarios (SRESs) in IPCC Fourth Assessment 59 

Report (Nakicenovic and Swart, 2000) and Representative Concentration Pathways 60 

(RCPs) in IPCC Fifth Assessment Report (Meinshausen et al, 2011), are given to 61 

represent this uncertainty, which can be termed as scenario uncertainty. GCMs are used 62 

to produce future climate projections. However, due to limitations of knowledge of 63 
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physical processes in real climate system and imperfect implementation of the limited 64 

knowledge, GCMs vary in model structure and model parameterization. Therefore, 65 

different GCMs give different responses even to a same future scenario forcing. This 66 

uncertainty can be defined as model response uncertainty (IPCC, 2013). There is also 67 

an inherent source of climate change uncertainty in the chaotic nature of real climate 68 

system, usually termed as internal climate variability. It exists as natural fluctuations 69 

superimposed on a steady climate equilibrium state in pre-industrial time or 70 

superimposed on an anthropogenic climate change trend in industrial time. Internal 71 

climate variability is due to internal forcing such as natural processes within atmosphere 72 

and ocean, and their interactions in real climate system.  73 

However, not all sources of climate change uncertainties are equally important. 74 

The relative importance will depend on factors like spatial and temporal scales, and 75 

climate variables of interest. Previous studies have shown that model response 76 

uncertainty plays a significant role throughout the 21st century (e.g. Hawkins and 77 

Sutton, 2009, 2011; Terray and Boé, 2013; Little et al., 2015), while scenario 78 

uncertainty gradually becomes the most important source in the late 21st century, 79 

especially for temperature (e.g. Stott and Kettleborough, 2002; Hawkins and Sutton, 80 

2009; Yip et al., 2011). Internal climate variability contributes greatly to climate change 81 

uncertainty in near future particularly for precipitation (e.g. Hawkins and Sutton, 2011; 82 

Trenberth, 2012; Hingray and Said, 2014; Fatichi et al., 2016).    83 

The importance of the climate change uncertainties can also be assessed by 84 

comparing them to climate change signals. A fractional uncertainty defined as a ratio of 85 
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climate change uncertainty to mean climate change has been used recently (e.g. Cox 86 

and Stephenson, 2007; Hawkins and Sutton, 2009, 2011). The numerator of fractional 87 

uncertainty can be identified with total climate change uncertainty or with each specific 88 

component of climate change uncertainty. Knutti et al. (2008) have also studied 89 

fractional uncertainty for temperature using various probabilistic methods. In addition, 90 

signal-to-noise ratio is also commonly used. Signal is defined to be mean climate 91 

change while noise is climate change uncertainty (e.g. Christensen et al., 2007; 92 

Hawkins and Sutton, 2009, 2011, 2012; Santer et al., 2011; Deser et al., 2014). For 93 

example, Giorgi and Bi (2009) defined a signal-to-noise ratio as the ratio of mean 94 

precipitation change to a combination of internal precipitation variability and model 95 

response uncertainty.  96 

The three components of climate change uncertainty need to be estimated. Several 97 

methods have been proposed to partition climate change uncertainties in literatures. For 98 

example, Cox and Stephenson (2007) estimated climate change uncertainties based on 99 

a simple linear modeling of climate sensitivity and radiative forcing for temperature. 100 

Most of other studies (e.g. Hawkins and Sutton, 2009, 2011; Blázquez and Nuñez, 2013; 101 

Booth et al., 2013) divided climate projections into climate change trends and residuals. 102 

They defined model response uncertainty as an inter-model variance of trends averaged 103 

over multiple scenarios, and defined scenario uncertainty as an inter-scenario variance 104 

of trends averaged over multiple models. They defined the mean variance of residuals 105 

over multiple models and multiple scenarios as internal climate variability. This method 106 

was first proposed by Hawkins and Sutton (2009, 2011) and is arguably the best 107 
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available for dealing with climate change uncertainty. In this method, three components 108 

of climate change uncertainties are considered as additively independent and internal 109 

climate variability was estimated as a constant value. This analysis of variance method 110 

(Storch and Zwiers, 2001) was also used in some other studies (e.g. Räisänen, 2001; 111 

Yip et al., 2011; Pelt et al., 2014; Little et al., 2015) to decompose model response 112 

uncertainty to a scenario-dependent model response uncertainty and a scenario-113 

independent model response uncertainty. Essentially, this method is similar to the 114 

method of Hawkins and Sutton (2009, 2011). However, these studies estimated internal 115 

climate variability as a multi-scenario and multi-model mean of variances over several 116 

runs for a climate model. In this way, internal climate variability estimated was not 117 

constant over time.  118 

To our knowledge, estimation methods for model response uncertainty and 119 

scenario uncertainty are identical in most studies (e.g. Giorgi and Bi, 2009; Hawkins 120 

and Sutton, 2009, 2011; Yip et al., 2011). In addition, model response uncertainty and 121 

scenario uncertainty are generally judged to be potentially reducible in the literature 122 

(e.g. Cox and Stephenson, 2007; Hawkins and Sutton, 2009, 2011; Deser et al., 2012a; 123 

Fischer et al., 2013). However, internal climate variability is irreducible as it is an 124 

inherent property of a climate system (e.g. Hawkins and Sutton, 2012; Deser et al., 125 

2012a; Fischer et al., 2013; Maraun, 2013; Fatichi et al., 2016). In addition, there has 126 

been less agreement in terms of estimating internal climate variability. There are 127 

different assumptions in definition and methods in the estimation of internal climate 128 

variability. For example, Hawkins and Sutton (2009, 2011) estimated internal climate 129 
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variability as the decadal variability over each climate projection and assumed it to be 130 

constant with time. Conversely, Yip et al. (2011) defined internal climate variability as 131 

a variance of two runs which is not constant.  132 

In real climate system, internal climate variability is relatively steady but actually 133 

not constant (Solomon et al., 2007). In fact, there are initial condition ensembles in 134 

particular for studying the role of internal climate variability in future climate change 135 

(e.g. Hu and Deser, 2013; Kang et al., 2013; Lu et al., 2014; Kay et al., 2015; Fasullo 136 

and Nerem, 2016). The members in this ensemble are produced within the same climate 137 

model under identical emissions scenario, but using different initial conditions. In other 138 

words, only internal variability within the climate system gives rise to inter-member 139 

differences. Therefore, inter-member differences can be used to estimate internal 140 

climate variability which is not constant over time. In recent literatures, internal climate 141 

variability is usually investigated using initial condition ensembles (Selten et al., 2004; 142 

IPCC, 2014; Chen et al., 2015, 2016) and defined as inter-member differences (Deser 143 

et al., 2012b; Deser et al., 2014; Zhuan et al., 2018). Previous studies (e.g. Seager et al., 144 

2011; Chen and Brissette, 2018) have shown that initial condition ensembles are 145 

capable of capturing observed patterns of internal variability for temperature and 146 

precipitation. However, far fewer studies involve in using initial condition ensembles 147 

to investigate the relative importance of climate change uncertainties derived from 148 

different sources, especially for climate extremes.   149 

Accordingly, this study proposes a method of using initial condition ensembles 150 

(ICEs) to estimate internal climate variability for investigating the relative importance 151 
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of multi-source climate change uncertainties (i.e. internal climate variability, model 152 

response uncertainty and scenario uncertainty) and its temporal-spatial variation over 153 

the 21st century using China as a case study. Uncertainties of climate model responses 154 

and emission scenarios are estimated based on multi-model and multi-scenario 155 

ensembles, respectively. Since the relative importance of multi-source climate change 156 

uncertainties depends on climate variables of interest and on whether the mean climate 157 

or extremes are considered, this study investigates average temperature and 158 

precipitation as well as extreme precipitation. Prior to looking at the temporal-spatial 159 

variation in the importance of each uncertainty, internal climate variability estimated 160 

using ICE method is compared with that estimated using multi-model individual time 161 

series at the national scale.    162 

2. Data 163 

This study used climate simulations (precipitation and temperature) obtained from 20 164 

GCMs (table 1) in the Coupled Model Inter-comparison Project Phase 5 (CMIP5) 165 

(Taylor et al., 2012). These climate simulations are driven under historical forcing in 166 

1981-2005 and under three different Representative Concentration Pathways (RCPs 2.6, 167 

4.5 and 8.5) forcing in 2006-2100 (Moss et al., 2010). These three RCP scenarios were 168 

chosen for that they correspond to the lowest, medium and the highest anthropogenic 169 

forcings for the 21st century, respectively. Although RCP 4.5 and RCP 6.0 both are 170 

medium scenarios, only one of them is chosen and RCP 4.5 is probably more often used. 171 

For ICEs, a 40-member ensemble under RCP8.5 from the Community Earth System 172 
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Model version1 (CESM1) and a 10-member ensemble under RCP8.5 from the 173 

Commonwealth Scientific and Industrial Research Organization Mark version 3.6.0 174 

(CSIRO-Mk3.6.0) are used. Totally, climate simulations from 20 GCMs, a 40-member 175 

ensemble from CESM1 and a 10-member ensemble from CSIRO-Mk3.6.0 over 1981-176 

2100 were used. Model climate data were all uniformly interpolated to 1× 1 177 

longitude-latitude resolution in the study area, mainland China. 178 

This study also used observed climate data for climate model weighting 179 

calculations. Observed climate data include maximum, minimum temperatures and 180 

precipitation over 1961-2010 in China, from one 0.5× 0.5 grid dataset of Chinese 181 

surface daily precipitation and daily temperature. The dataset is derived from 2472 182 

national meteorological stations and provided by the China Meteorological Data 183 

Service Center (http://data.cma.cn/data/cdcindex/cid/00f8a0e6c590ac15.html).  184 

Appendix figure A1 presents national mean climate changes estimated by 20 185 

GCMs under RCP2.6, 4.5, 8.5 for the 1961-2100 period. Observed average temperature 186 

and precipitation changes are with the range of model simulations before 2005 187 

(historical forcing), while observed extreme precipitation changes vary around model 188 

simulations. Annual mean temperature is projected to increase 4-8°C under RCP8.5, 189 

1.7-4°C under RCP4.5 and 0-2.5°C under RCP2.6 at the end of the 21st century. Annual 190 

precipitation is projected to change from -6-35% under RCP8.5, -8-20% under RCP4.5 191 

and -8-18% under RCP2.6. Annual extreme precipitation is projected to change 10-40% 192 

under RCP8.5, 0-25% under RCP4.5 and -4-20% under RCP2.6. The estimated climate 193 

changes in China are consistent with global climate change (IPCC, 2014). Climate 194 
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changes under RCP2.6, 4.5, 8.5 (averaged over 20 climate models) of grids nationwide 195 

are also provided as appendix figures A2-A4 for three future periods (the 2nd, 6th, 10th 196 

decades of the 21st century). 197 

3. Methodology 198 

To study the relative importance of multi-source climate change uncertainties, each 199 

source (i.e. internal climate variability, model response uncertainty and scenario 200 

uncertainty) of total climate change uncertainty needs to be estimated. Internal climate 201 

variability is estimated using both the method of multi-model individual time series of 202 

Hawkins and Sutton (2009, 2011) and the initial condition ensemble method proposed 203 

in this study. Model response uncertainty and scenario uncertainty are respectively 204 

estimated using multi-model and multi-scenario ensembles following the method of 205 

Hawkins and Sutton (2009, 2011). For mean temperature, precipitation and maximum 206 

daily precipitation at annual and seasonal (i.e. summer: June, July and August; winter: 207 

December, January and February) scales, the estimation has been done for national 208 

mean climate as well as climate in 1×1 grids nationwide in China. 209 

3.1 Estimation of multi-source climate change uncertainties 210 

Internal climate variability manifests itself at various temporal scales including inter-211 

annual variability to multi-decadal variability. This study focused only on decadal 212 

variability, which is one of the key components of internal climate variability. In order 213 

to study internal decadal variability and the other two climate change uncertainties at 214 

decadal scale, precipitation and temperature time series over 1981-2100 period are 215 
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divided into 111 time periods using a 10-year moving window running from the first to 216 

the last year in a one-year increment. Climate data are averaged over each one of the 217 

111 time periods. Thus, one hundred and eleven values are obtained for each climate 218 

projection. This time period division is conducted prior to estimating three components 219 

of climate change uncertainty. 220 

In order to separate climate change signal and climate noise (i.e. manifestation of 221 

internal climate variability), a trend fitting is adopted. The 111 values of each simulation 222 

from 20 GCMs (Nm=20) are fitted with a fourth-order polynomial using an ordinary 223 

least squares method (e.g. Hawkins and Sutton, 2009, 2011). Therefore, each simulation 224 

X is separated into three components: the reference climate r (i.e. the mean of the fitted 225 

trend over reference period (1981-2010)), the climate change signal x (i.e. the fitted 226 

trend relative to the reference climate r), the climate noise  (i.e. the residual from the 227 

fitted trend). For precipitation, x,  are relative changes to the reference climate r, while 228 

they are absolute changes for temperature.   229 

( , , ) ( , , ) ( , ) ( , , )m s t m s t m s m s tX x r   ,                         (1) 230 

where, subscript m means for each GCM and s means for each RCP scenario. For trend 231 

fitting, subscript t refers to the 111 time periods over 1981-2100 as trend fitting covers 232 

the reference period (i.e. 1981-2010). While for uncertainty estimations, subscript t 233 

refers to 86 time periods over 2006-2100, as future climate scenarios start at 2006.  234 

Internal climate variability  235 

The method of Hawkins and Sutton (2009, 2011) (hereafter, HS0911) assumes that 236 

internal climate variability (VHS0911) is constant over time. Internal climate variability 237 
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is manifested as the climate noise. For each GCM, climate noises under all three 238 

scenarios are pooled together to create one time series of climate noise. A second-order 239 

origin moment of the climate noise is calculated over the whole time series. Then, the 240 

mean of second-order origin moments over multiple models is defined as internal 241 

climate variability. The calculation can be written as 242 

2

0911 , ( , , )

1
HS s t m s t

mm

V E
N

      .                        (2) 243 

where, E denotes mathematical expectation for this and following equations. 244 

Climate model uncertainty 245 

Climate model uncertainty is manifested as the spread of climate change signals 246 

projected by all GCMs under one future scenario and can be estimated as the variance 247 

of these climate change signals. A variance (i.e. second-order central moment) of 248 

climate change signals from all GCMs under one RCP scenario is first calculated. Then, 249 

a multi-scenario (Ns=3) mean of three variances is defined to be an estimate of model 250 

response uncertainty (M) (Hawkins and Sutton, 2009, 2011). The calculation can be 251 

written as 252 

 

2

( , , ) (m,s,t)

1
m m s t mt

ss

M E x E x
N

            
 .                   (3) 253 

Scenario uncertainty 254 

Scenario uncertainty is manifested as the spread of climate change signals 255 

projected by the same GCM under all future scenarios and can be estimated as the 256 

variance of these climate change signals. A multi-model mean of climate change signals 257 

under one RCP scenario is first calculated. Then, scenario uncertainty (S) is then 258 
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defined as a variance of three multi-model means (Hawkins and Sutton, 2009, 2011). 259 

The calculation can be written as  260 

 

2

( , , ) ( , , )

1 1
s m s t s m s tt

m mm m

S E x E x
N N

     
      
      

  .                (4) 261 

For equations (2)-(4), a simple model weighting method (e.g. Hawkins and Sutton, 262 

2009, 2011) is used to give weights to different climate models. This method gives 263 

weights to GCMs for each climate variable. The weight of each GCM is calculated 264 

according to its performance in simulating observed national-mean precipitation or 265 

temperature for the 2001-2010 period. The summation of all GCMs’ weights is equal 266 

to one. The weight of each GCM is presented in Table A1.  267 

3.2 Initial condition ensemble method 268 

An initial condition ensemble method (hereafter, ICE) is used in particular for the 269 

estimation of internal climate variability. The ICE method uses a 40-member ensemble 270 

from CESM1. Development of this 40-member ensemble is intended to investigate 271 

internal climate variability in climate change impacts (e.g. Kay et al., 2015; Fasullo and 272 

Nerem, 2016). Until now, it is one of the initial condition ensembles with the most 273 

members. The results of other initial condition ensembles, e.g. a 10-member ensemble 274 

of CSIRO-Mk3.6.0, were also calculated and presented in the limitation discussion 275 

section 4.4. This ICE method defines the difference among the 40 members as internal 276 

climate variability (e.g. Chen et al., 2011, 2016; Deser et al., 2012b; Kang et al., 2013; 277 

IPCC, 2014; Kay et al., 2015; Fasullo and Nerem, 2016), which is not assumed to be 278 

constant with time.  279 
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Prior to estimating internal climate variability using the ICE method, the same 280 

time period division and a similar trend fitting procedure are applied to the 40 members. 281 

Specifically, one hundred and eleven mean values are first calculated over 111 time 282 

periods for each of 40 members. Since all members are generated under the same 283 

climate forcing, they are supposed to have an identical climate change trend. A fourth-284 

order polynomial is used to fit the 40-member ensemble mean to get only one trend. 285 

Then, the trend of the ensemble mean is removed from each of the 40 members. In this 286 

way, each member projection Yi (i =1, 2, …, 40) can be written as 287 

(i, ) ( ) (i, )t t tY y r   ,                            (5) 288 

where reference climate r is estimated as the fitted trend of ensemble mean averaged 289 

over reference period (1981-2010), y refers to the climate change signal for this specific 290 

model, i (i= 1, 2, …, 40) refer to climate noises for 40 members (for precipitation, y,  291 

are relative changes to the reference climate; for temperature, they are absolute 292 

changes). A second-order origin moment of climate noises of 40 members is defined as 293 

internal climate variability (VICE). The calculation can be written as 294 

2
ICE( ) ( , )t i i tV E     .                                  (6) 295 

3.3 Estimation of total climate change uncertainty  296 

Similar to most of other studies (e.g. Papoulis, 1991; Hawkins and Sutton, 2009, 2011), 297 

the three sources of uncertainty are treated independently (i.e. interactions between 298 

them are not considered). Thus, the variance for total uncertainty (T) can be defined as 299 

the sum of internal climate variability (VHS0911 or VICE), climate model uncertainty (M) 300 
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and scenario uncertainty (S). When considering the standard deviation for total 301 

uncertainty, it can be defined as the sum of scaled standard deviations of V, M and S, 302 

following the method of Hawkins and Sutton (2011). The scaling factor can be 303 

calculated as the ratio of the sum of standard deviations of V, M and S, to the standard 304 

deviation of total uncertainty. 305 

3.4 Relative importance of climate change uncertainties in climate change 306 

When studying the relative importance of climate change uncertainty in climate change, 307 

two ratios between climate change and its uncertainty, and a superposition of climate 308 

change uncertainty on climate change were considered. 309 

These two ratios include fractional uncertainty and signal-to-noise ratio (S/N). 310 

Fractional uncertainty (90% confidence level) is a ratio of climate change uncertainty 311 

to mean climate change (e.g. Cox and Stephenson, 2007; Knutti et al., 2008; Hawkins 312 

and Sutton, 2009, 2011). The climate change uncertainty (i.e. standard deviation) can 313 

be each one of three uncertainty components or the total uncertainty (IPCC, 2013). 314 

Mean climate change is estimated as the mean of climate change signals over all GCMs 315 

and all RCP scenarios. For example, the fractional uncertainty for the total uncertainty 316 

is a ratio of 1.645 standard deviations (5-95% range) of total uncertainty to mean 317 

climate change. The signal-to-noise ratio (S/N) is the reciprocal of the fractional 318 

uncertainty for the total uncertainty (Christensen et al., 2007). It is usually used to 319 

represent the robustness or reliability of climate projections (e.g. Christensen et al., 320 

2007; Hawkins and Sutton, 2011; IPCC, 2014). 321 
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A superposition method is used to indicate possible future climate change. 322 

Specifically, three components of climate change uncertainty (i.e. ±1.645 times of the 323 

scaled standard deviations in section 3.3) are superimposed onto the mean climate 324 

change in turn. Thus, the width of total uncertainty is ±1.645 standard deviations (5-95% 325 

range). In this way, different climate change uncertainty regions are given. The climate 326 

change uncertainty regions provide insight into what could happen in the single climate 327 

projection that will occur in the real world. The boundaries of regions are defined 328 

following the superposition method used by Hawkins and Sutton (2011). 329 

4. Results and discussion 330 

4.1 Contribution of climate change uncertainties  331 

Three components of climate change uncertainty (i.e. V, M and S) were estimated, with 332 

the estimation of V using two methods of HS0911 (i.e. VHS0911) and ICE (i.e. VICE, using 333 

the 40-member ensemble from CESM1). Figure 1 presents evolutions of three 334 

uncertainties over time, for annual mean temperature, annual precipitation and annual 335 

maximum precipitation in China. Three climate variables were all calculated based on 336 

decadal mean on national average. Figures 1(A) to 1(C) present results using VHS0911, 337 

while figures 1(D) to 1(F) present results using VICE. The results show that VHS0911 is 338 

about 0.01C for annual mean temperature and VICE is mostly similar. For annual 339 

precipitation, VHS0911 is constant with a value of 1.6 %2, while VICE increases from 340 

around 2 %2 before 2050s to almost 3.2 %2 at 2080s and then decreases to 2.5 %2 at the 341 

end of the 21st century. For annual maximum precipitation, VHS0911 is about 4.9 %2, 342 
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while VICE increases from around 5 %2 before 2050s to around 14 %2 at 2080s then 343 

decreases till the end of this century.  344 

With an assumption of internal climate variability following a normal distribution, 345 

the significance of the change in internal climate variability (i.e. normal distribution 346 

variances) is tested by using F-test [Figure 1(G-I)]. The change is significant (outside 347 

the 5-95% range), if internal climate variability (variance of 40 members) for one period 348 

is greater than 1.7 times (the ratio of two normal distribution variances by F-test) of 349 

those for another period. The results show that the change in internal variability is not 350 

significant for annual mean temperature. To the horizon of this century, VICE is similar 351 

to VHS0911 for annual mean temperature. However, internal variability of annual 352 

precipitation during 2075-2090 is greater than 1.7 times of that before 2020s, and 353 

internal variability of annual maximum precipitation during 2075-2090 is greater than 354 

1.7 times of that before 2055. This implies that the internal variability is not constant 355 

for average and extreme precipitations. Changes in internal variability may depend on 356 

the chosen emissions scenario. In this study, internal climate variability is estimated 357 

from simulations made for the high end RCP8.5 scenario. The resulting change in it 358 

may be an upper estimate. This is especially true for annual maximum precipitation. 359 

Investigation of internal climate variability for extreme precipitation usually need long 360 

time periods and great samples. Since 40-member ensemble is already a great enough 361 

sample (1200 values), the variation in internal variability is more likely due to climate 362 

change rather than a stochastic process. The inconstant internal climate variability 363 

presents the advantage of using ICEs. 364 
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For annual mean temperature and annual precipitation, scenario uncertainty grows 365 

quickly while model response uncertainty only has a little growth over the 21st century. 366 

However, both scenario uncertainty and model response uncertainty have a gradual 367 

growth for annual maximum precipitation. Total climate change uncertainty grows 368 

remarkably for all three climate variables by the end of the 21st century. For example, 369 

total uncertainty of annual precipitation change increases from less than 3 %2 at the 370 

beginning to 44 %2 at the end of the 21st century. This is because that internal climate 371 

variability remains relatively constant, model response uncertainty grows by 26 %2 and 372 

scenario uncertainty grows by 16 %2 at the end of this century for annual precipitation 373 

change. 374 

Figure 2 presents contributions of the three components to the total climate change 375 

uncertainty in national mean annual temperature, annual precipitation and annual 376 

maximum precipitation. Results of VICE are consistent with those of VHS0911 for average 377 

temperature. While for average and extreme precipitations, the contribution of VICE 378 

tends to be greater than that of VHS0911 in the late 21st century. For all three climate 379 

variables, internal climate variability plays an important role in climate change 380 

uncertainty during 2010s to 2040s. For example, internal variability takes up from 20% 381 

to 65% of total uncertainty for annual precipitation during 2010s to 2040s. This is 382 

consistent with previous studies (e.g. Hawkins and Sutton, 2011; Trenberth, 2012; 383 

Hingray and Said, 2014; Fatichi et al., 2016). Model response uncertainty also 384 

considerably contributes to total climate change uncertainty during early decades and 385 

its contribution becomes even greater in mid-century for both annual precipitation and 386 
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annual maximum precipitation. In addition, the contribution of scenario uncertainty 387 

keeps growing for all three climate variables, and becomes dominant at the end of this 388 

century for temperature and extreme precipitation. For example, scenario uncertainty 389 

takes up 60%-85% of total uncertainty for annual mean temperature since the mid-term 390 

of the 21st century.      391 

4.2 Relative importance of climate change uncertainties  392 

Fractional total climate change uncertainty and its three components are shown in Fig. 393 

3 for national means of annual mean temperature, annual precipitation and annual 394 

maximum precipitation. This indicates the variation of the importance of climate 395 

change uncertainty components relative to climate change over time. 396 

For annual mean temperature, fractional uncertainty of internal variability presents 397 

a slight decrease, and that of model response uncertainty presents a slight decrease 398 

during the first decades of the 21st century while remains constant afterwards. 399 

Fractional uncertainty of scenario increase rapidly and becomes the largest after about 400 

2040 (Figures 3(A and D)). Given that the temperature will increase over the 21st 401 

century and the internal temperature variability is estimated to remain relatively steady 402 

with time (i.e. figure 1(D)), decrease of its fractional uncertainty is expected. Fractional 403 

uncertainty of model response uncertainty remains approximately constant, since the 404 

mean temperature change signal and model response uncertainty increase at same 405 

relative rate with time. However, fractional uncertainties of scenario uncertainty and 406 

total uncertainty increase greatly. This indicates that the growth of scenario uncertainty 407 
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is likely to overwhelm the magnitude of mean temperature change in this century. The 408 

great growth of scenario uncertainty implies that the average temperature change may 409 

be sensitive to GHG emission scenarios. 410 

Due to increase of annual precipitation change and steadiness of internal 411 

precipitation variability (figure 1(E)), fractional uncertainty of internal precipitation 412 

variability decreases (figure 3 (B, E)). In particular, fractional uncertainties for model 413 

response uncertainty, scenario uncertainty and total uncertainty are observed to 414 

decrease first and then increase, resulting in different turning points. For scenario 415 

uncertainty, the turning point is in the 2025-2034 period; for model response uncertainty, 416 

it is in the 2025-2064 period; and for total precipitation uncertainty, it is in the 2055-417 

2064 period. Take scenario uncertainty as an example, given the constant increase of 418 

annual precipitation change, the decrease of fractional uncertainty indicates that the 419 

increase of scenario uncertainty is relatively small compared to that of annual 420 

precipitation change. The later increase of fractional uncertainty indicates that the 421 

growth of scenario uncertainty becomes faster with time, exceeding the growth of 422 

annual precipitation change. Therefore, the turning point in the 2025-2034 period 423 

indicates a time when scenario uncertainty is the least relative to annual precipitation 424 

change. Compared to temperature, precipitation changes may not be that sensitive to 425 

GHG emission scenarios. For extreme precipitation, fractional uncertainty of VICE is 426 

slightly greater than that of VHS0911 in the late 21st century. The annual maximum 427 

precipitation presents a similar pattern with the annual precipitation in fractional 428 

uncertainty (figure 3 (C, F)). Its turning point is in the 2030-2039 period for model 429 
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response uncertainty, while in the 2015-2024 period for scenario uncertainty and in the 430 

2042-2051 period for total extreme precipitation uncertainty (i.e. 10 to 15 years earlier 431 

than those for annual precipitation).  432 

Three climate change uncertainty components were superimposed on mean 433 

climate change. Figure 4 shows this superposition for annual mean temperature, annual 434 

precipitation and annual maximum precipitation on national average. Superposition 435 

using VICE is similar to that using VHS0911 for annual mean temperature. While for 436 

average and extreme precipitations, the band of VICE is wider than that of VHS0911 in the 437 

late 21st century. For example, in Figure 4(E), the band of VICE represents how much 438 

annual precipitation change could ‘wander’ if the future scenario and model response 439 

are perfectly known. In other words, the VICE band indicates that annual precipitation 440 

change could become as great as 10 % or as small as 7 % at the end of the 21st century, 441 

due to only internal climate variability. The combination of VICE and M bands shows 442 

how much annual precipitation change could ‘wander’, as if the future scenario is 443 

specified. Specifically, it implies that annual precipitation change can be as great as 15 % 444 

or as small as zero at the end of the 21st century, due to the combination of internal 445 

climate variability and model response uncertainty. The combination of all three bands 446 

gives the spread of how much annual precipitation change could ‘wander’ due to total 447 

precipitation uncertainty. It indicates that annual precipitation change can be -3 % to 448 

20% at the end of the 21st century due to total precipitation uncertainty. 449 

Similarly, annual mean temperature change (figure 4(D)) is projected to be -0.8℃ 450 

to 7℃ at the end of the 21st century due to total temperature uncertainty, and annual 451 
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maximum precipitation change (figure 4(F)) is projected to be -5 % to 35 % at the end 452 

of the 21st century due to total extreme precipitation uncertainty.  453 

4.3 Temporal-spatial variation of climate change uncertainty  454 

4.3.1 Contribution of climate change uncertainties 455 

Three components of climate change uncertainty were also estimated for grids 456 

nationwide. Only VICE is presented to show internal climate variability. Figures 5-7 457 

present contributions of three climate change uncertainties to the total climate change 458 

uncertainty nationwide for annual mean temperature, annual precipitation and annual 459 

maximum precipitation, respectively. The 2nd, 6th and 10th decades of the 21st century 460 

are chosen to represent the temporal variation.  461 

For annual mean temperature (figure 5), model response uncertainty and internal 462 

climate variability are dominant in the 2nd decade of the 21st century. Then in the 6th 463 

decade, dominant sources become model response uncertainty and scenario uncertainty. 464 

Scenario uncertainty overwhelms the other two uncertainty components, becoming the 465 

most important in the 10th decade. This temporal variation tendency applies to almost 466 

all grids nationwide. In addition, in the 2nd decade, the relative contribution of internal 467 

variability is small in mid-eastern China but still great in southwestern China. In the 468 

same period, the relative contribution of model response uncertainty is the largest in 469 

mid-eastern China while relatively small in southwestern China. In the 6th decade, 470 

model response uncertainty is low while scenario uncertainty is large in most mid-471 

western China. In terms of the absolute amplitudes of temperature uncertainties 472 

(Appendix figure A5), there are much stronger spatial variation tendencies nationwide. 473 
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Internal climate variability is strongest in the Qinghai-Tibetan Plateau and northern 474 

China with its magnitude constant throughout the 21st century. Grids with great model 475 

response uncertainty are mainly distributed in the Qinghai-Tibetan Plateau, northern 476 

China in the 2nd decade of the 21st century, spreading to southern and eastern China in 477 

the 6th and 10th decades, with the greatest uncertainty still in the Qinghai-Tibetan 478 

Plateau and northern China. In the 2nd decade, some areas in the Qinghai-Tibetan 479 

Plateau, northern China have greater scenario uncertainty than other regions. While 480 

areas with great scenario uncertainty rapidly spread southward and eastward to cover 481 

almost whole China in the following decades.  482 

For annual precipitation (figure 6), internal climate variability and model response 483 

uncertainty dominate until the 6th decade of the 21st century. Internal climate 484 

variability is not important in the 10th decade while model response uncertainty 485 

becomes more dominant in the 10th decade. This temporal variation tendency applies 486 

to most grids nationwide. For the absolute amplitudes presented in Appendix figure A6, 487 

grids with strong internal precipitation variability are mainly distributed in northern and 488 

southeastern China. Model response uncertainty is the strongest in northwestern China 489 

with its magnitude much greater in the end of this century. Scenario uncertainty 490 

becomes great for northwestern China since the 6th decade. However, the spatial 491 

patterns of the relative contributions remain similar with time as shown in Figure 6. For 492 

example, the contribution of internal climate variability to the total uncertainty of 493 

annual precipitation change decreases more in southwestern and northern China than 494 

the other regions in the 10th decade. While contributions of model response uncertainty 495 
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and scenario uncertainty grow faster in these two regions. In addition, scenario 496 

uncertainty also has an obvious contribution in northeastern China at the end of the 21st 497 

century. 498 

Annual maximum precipitation (Figure 7 and Appendix Figure A7) has a similar 499 

temporal variation pattern to that of annual precipitation. Difference lies in that internal 500 

climate variability and model response uncertainty dominate throughout the 21st 501 

century. In addition, the annual maximum precipitation presents more variations than 502 

the annual precipitation.  503 

  504 

4.3.2 Relative importance of climate change uncertainties in climate change 505 

Climate change (signal) to the total climate change uncertainty (noise) ratio (signal-to-506 

noise ratio, S/N) has been calculated for all grids nationwide. Internal climate 507 

variability as a part of noise is defined with VICE. This has been done at annual scale 508 

and for two seasons (i.e. winter and summer). Figures 8-10 present S/Ns of mean 509 

temperature, mean precipitation and maximum precipitation for the 2nd, 6th and 10th 510 

decades of the 21st century, respectively.  511 

Results show that S/Ns of annual mean temperature decrease over time (Figure 8). 512 

Specifically, S/Ns are around 1.7 in the 2nd decade and around 0.9 in the 10th decade. 513 

This temporal variation tendency is consistent over most grids nationwide. This implies 514 

that, for most regions in China, the magnitude of annual temperature change is greater 515 

than the magnitude of total annual temperature uncertainty before the 6th decade while 516 

the other way round afterwards. In other words, the turning point around the 6th decade 517 

corresponds to S/N value of 1. Differently, seasonal mean temperatures (Figure 8) do 518 
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not have a mono-directional temporal variation tendency for S/Ns. For example, S/Ns 519 

of winter mean temperature are around 0.9 for most grids in the 2nd decade and around 520 

1.3 for most grids in the 6th decade, while they are less than 0.9 in the 10th decade. 521 

Spatial variations are observed in all cases. Specifically, S/Ns are less than one for 522 

annual and summer mean temperature in northeastern China but greater than one in 523 

other regions in the 2nd decade. The same applies in winter in the 6th decade.  524 

S/Ns of precipitation increase over time while still less than one at the end of the 525 

21st century (Figure 9). This indicates that annual precipitation change is less than its 526 

total uncertainty for the whole 21st century. This temporal variation tendency is 527 

consistent over most regions in China at both annual and seasonal scales. Spatial 528 

variation is mostly evident in the 2nd decade for both annual and seasonal precipitation, 529 

with the sign of the mean change (and hence S/N) being different between northern and 530 

southern China. For example, in the 2nd decade, S/Ns of annual precipitation are 531 

positive in most regions of China while negative in parts of southern China. Negative 532 

S/Ns are due to negative (decrease) precipitation change as the numerator. The area 533 

with negative S/Ns is more widespread in southern China for winter precipitation in the 534 

2nd decade.  535 

Similarly, S/Ns also increase over time but still remain less than one for maximum 536 

precipitation (Figure 10). This temporal variation tendency applies to almost all regions 537 

of China at both annual and seasonal scales. Spatial variation is observed for winter 538 

maximum precipitation in the 2nd decade, i.e. S/Ns are mainly negative in southern 539 

China, while positive in other regions. 540 
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4.4 Limitation discussion 541 

In this study, model response uncertainty has been defined as spread among multiple 542 

climate models. This measure is often used in literature (e.g. Hawkins and Sutton, 2009, 543 

2011), however it still has some limitations. For example, this method does not take 544 

into account climate model dependence (e.g. Masson and Knutti, 2011; Pennell and 545 

Reichler, 2011; Knutti et al., 2013). Some climate models may be similar in model 546 

structure or parameterization to some extent resulting in similar or close climate 547 

simulations, which is known as model dependence (e.g. Bishop and Abramowitz, 2013). 548 

If climate model dependence is taken into account, a sample of climate simulations may 549 

be more representative of the distribution of possible climate realizations. Based on this 550 

sample, the measure of model response uncertainty may be larger (e.g. Jewson and 551 

Hawkins, 2009). Future development in climate models for a better representation of 552 

the real climate system may result in quantitatively different estimates for the model 553 

response uncertainty, while the results are expected to remain qualitatively similar. 554 

Model response uncertainty belongs to model uncertainty, which comprehensively 555 

reflects how accurate climate models represent the real climate system and reflect the 556 

approximations required in the development of climate models (IPCC, 2013). In other 557 

words, model uncertainty with a far more comprehensive sense has not been discussed 558 

in this study. 559 

For estimation of scenario uncertainty, RCP scenarios were used. Although RCP 560 

scenarios span a wide range of total forcing values, they do not span the full range of 561 

uncertainty in the future anthropogenic forcing, e.g. uncertainty in aerosol forcings and 562 
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ozone precursor (IPCC, 2014). The range of anthropogenic aerosol emissions across all 563 

scenarios has a larger impact on near-term climate projections than the corresponding 564 

range of long-lived greenhouse gases, particularly on regional scales and for 565 

hydrological cycle variables (IPCC, 2014). The carbon cycle climate feedbacks are also 566 

not represented in the concentration-driven RCP scenarios (IPCC, 2014). RCPs only 567 

account for future changes in anthropogenic forcings. Neither future volcanic eruptions 568 

nor deviations from the 1985-2005 mean solar cycle and their uncertainties are 569 

considered (IPCC, 2014). 570 

Some studies (e.g. Kiehl 2007; Yip et al., 2011) considered model-scenario 571 

interaction, i.e. non-constancy of the variance across scenarios in different models. To 572 

address this concern, they further decomposed model response uncertainty into 573 

scenario-independent uncertainty and scenario-dependent uncertainty. Since the goal of 574 

this study is to propose a method to estimate internal climate variability for studying 575 

the contribution of three uncertainty components, a further partition in model response 576 

uncertainty was not considered, especially taking into account the fact that the sum of 577 

scenario-dependent uncertainty and scenario-independent uncertainty is equivalent to 578 

model response uncertainty (Hawkins and Sutton, 2009, 2011).  579 

This study estimates internal climate variability based on a large-member 580 

ensemble of CESM1. However, the estimated internal climate variability may be 581 

different when using different initial condition ensembles. It may be more reasonable 582 

to simultaneously use multiple initial condition ensembles to estimate the average 583 

internal variability (e.g. Ruosteenoja et al., 2016). However, one of our previous studies 584 
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(i.e. Chen and Brissette, 2018) showed that initial condition ensembles performed 585 

similarly in estimating internal climate variability for average precipitation and 586 

temperature at the multi-decadal scale, if the number of ensemble member is more than 587 

five. In addition, not all CMIP5 models present multiple initial condition ensembles on 588 

the public domain. To address this concern to a certain extent, internal climate 589 

variability is also estimated based on a 10-member ensemble of CSIRO-Mk3.6.0. The 590 

results are presented in Figures 11(A) to 11(C). Overall, internal temperature variability 591 

estimated using CSIRO-Mk3.6.0 is mostly similar to that estimated using CESM1. For 592 

annual precipitation, CSIRO-Mk3.6.0 simulates a slightly greater internal climate 593 

variability than CESM1 for a few periods. However, for annual maximum precipitation, 594 

CSIRO-Mk3.6.0 projects 5 to 8 %2 less internal climate variability than CESM1 after 595 

2050s. Similar results are also observed for fractional uncertainties as presented in 596 

Figures 11(D) to 11(F). Significances of changes in internal climate variability (Figures 597 

11(G-I)) have been tested by using the F-test. The change is significant (outside the 5-598 

95% range) if internal climate variability (variance of 10 members) of one period is 599 

greater than 3 times (the ratio of two normal distribution variances by F-test) of that of 600 

a previous period. The results show that the significances for average temperature and 601 

precipitation are consistent with those using CESM1. However, the change in internal 602 

variability for extreme precipitation using CSIRO-Mk3.6.0 is not significant, which is 603 

different from using CESM1. This implies that the use of the 40-member ensemble 604 

(CESM1) may perform better than the use of the 10-member ensemble (CSIRO-605 

Mk3.6.0) at estimating internal variability for extreme precipitation, since the study of 606 
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variability for extreme values usually needs long time periods and large samples. These 607 

results also emphasize the importance of using multiple large ensembles to estimate 608 

internal climate variability for climate change impact studies.  609 

In general literature, there is little agreement in estimating climate change signals 610 

from climate projections. However, it is generally recognized that climate change 611 

signals follow a nonlinear trend. Following the previous studies (e.g. Hawkins and 612 

Sutton, 2009, 2011), this study uses a fourth-order polynomial to fit the climate change 613 

signal. The uncertainty related to the choice of a detrending method may need to be 614 

considered in future studies. Furthermore, definition of climate change uncertainty in 615 

this study refers to the spread of multiple climate simulations from climate models 616 

rather than the differences between climate model simulations and observed climate, 617 

because of the inexistence of future observations.  618 

5. Conclusion 619 

This study proposes a method of using ICEs to estimate internal climate variability 620 

without assuming that it is constant with time. Based on this method, contributions of 621 

internal climate variability, model response uncertainty and scenario uncertainty to 622 

overall climate change uncertainty were quantified for temperature and precipitation 623 

change projections over the 21st century in China. The following conclusions are drawn: 624 

1. The ICE method gives results qualitatively similar to those obtained by using multi-625 

model individual time series in estimating internal variability of annual mean 626 

temperature. However, internal variability of annual precipitation and annual 627 
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maximum precipitation are not constant during the studied period, which may imply 628 

the advantage of using ICEs for studying internal climate variability.  629 

2. Internal climate variability and model response uncertainty dominate climate 630 

change uncertainty before 2050s, especially for precipitation. However, for the 631 

latter half of the 21st century, scenario uncertainty becomes the dominant source of 632 

uncertainty, especially for temperature. 633 

3. Mean temperature change in China is projected to be greater than its total 634 

uncertainty before the mid-term of the 21st century. While at the end of the 21st 635 

century, the total temperature change uncertainty exceeds the change itself. 636 

However, the precipitation change in China is projected to be less than its total 637 

uncertainty throughout the whole 21st century. 638 

4. In terms of spatial variability, cold regions (e.g. northern China, the Qinghai-639 

Tibetan Plateau) tend to have great temperature change uncertainties. In addition, 640 

all sources of uncertainty for annual mean and annual maximum precipitation 641 

changes tend to be great in dry regions (e.g. northwestern China).  642 
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Table 851 

Table 1 General information of 20 GCMs used 

ID 
Modeling 

center 
Institution Model name 

Horizontal 

resolution 

(Lon. x Lat.) 

1 

2 
BCC 

Beijing Climate Center, China 

Meteorological Administration 

BCC-CSM1.1 2.815 x 2.815 

BCC-CSM1.1(m) 1.125 x 1.125 

3 GCESS 

College of Global Change and 

Earth System Science, Beijing 

Normal University 

BNU-ESM 2.8 x 2.8 

4 

5 
CCCma 

Canadian Centre for Climate 

Modelling and Analysis 

CanESM2 2.815 x 2.815 

CESM1-CAM5 1.25 x 0.9 

6 NCAR 
National Center for Atmospheric 

Research 
CESM1 1.25 x 0.9 

7 
CNRM-

CERFACS 

Centre National de Recherches 

Meteorologiques/Centre Europeen 

de Recherche et Formation 

Avancees en Calcul Scientifique 

CNRM-CM5 1.4 x 1.4 

8 
CSIRO-

QCCCE 

Commonwealth Scientific and 

Industrial Research Organisation 

in collaboration with the 

Queenland Climate Change 

Centre of Excellence 

CSIRO-Mk3.6.0 1.875 x 1.875 

9 ICHEC 
Irish Centre for High-End 

Computing 
EC-EARTH 1.125 x 1.1121 

10 

11 
IPSL Institut Pierre-Simon Laplace 

IPSL-CM5A-LR 3.75 x 1.875 

IPSL-CM5A-MR 2.5 x 1.25 

12 
LASG-

CESS 

LASG, Institute of Atmospheric 

Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua 

University 

FGOALS-g2 1.875 x 1.25 

13 MOHC Met Office Hadley Centre HadGEM2-ES 1.875 x 1.25 

14 

15 
MPI-M 

Max Planck Institute for 

Meteorology 

MPI-ESM-LR 1.875 x 1.8496 

MPI-ESM-MR 1.875 x 1.8496 

16 MRI Meteorological Research Institute MRI-CGCM3 1.125 x 1.125 

17 NCC Norwegian Climate Centre NorESM1-M 2.5 x 1.8947 

18 
NIMR-

KMA 

National Institute of 

Meteorological Research 
HadGEM2-AO 1.875 x 1.25 

19 

20 

21 

NOAA-

GFDL 

National Oceanic and 

Atmospheric 

Administration/Geophysical Fluid 

Dynamics Laboratory 

GFDL-CM3 2.5 x 2.0 

GFDL-ESM2G 2.5 x 2.0 

GFDL-ESM2M 2.5 x 2.0 
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Figure list 853 

Figure 1 Internal climate variability (V), model response uncertainty (M) and scenario 854 

uncertainty (S) (units: C2 or %2) for annual mean temperature (Temp), annual 855 

precipitation (Precip) and annual maximum precipitation (Extre) on national 856 

average of China over 2006-2100, with V estimated using HS0911 method (A-C) 857 

and using ICE method with the 40-member ensemble of CESM1 (D-F). The 858 

significances of the change in internal climate variability estimated using ICE (G-859 

I).  860 

 861 

Figure 2 Uncertainty fraction (units: %) of internal climate variability (V), model 862 

response uncertainty (M) and scenario uncertainty (S) for annual mean 863 

temperature (Temp), annual precipitation (Precip) and annual maximum 864 

precipitation (Extre) on national average of China over 2006-2100, with V 865 

estimated using HS0911 method (A-C) and using ICE method with the 40-member 866 

ensemble of CESM1 (D-F).  867 

 868 

Figure 3 Fractional uncertainty (F, units: 1) of internal climate variability (V), model 869 

response uncertainty (M), scenario uncertainty (S) and total climate change 870 

uncertainty (T) for annual mean temperature (Temp), annual precipitation (Precip) 871 

and annual maximum precipitation (Extre) on national average of China over 872 

2006-2100, with V estimated using HS0911 method (A-C) and using ICE method 873 

with the 40-member ensemble of CESM1 (D-F). Vertical bars indicate the lowest 874 

points. 875 

 876 

Figure 4 Possible future climate changes (units: C or %) due to internal climate 877 

variability (V), model response uncertainty (M) and scenario uncertainty (S) (5-878 

95% ranges) for annual mean temperature (Temp), annual precipitation (Precip) 879 

and annual maximum precipitation (Extre) on national average of China over 880 

2006-2100, with V estimated using HS0911 method (A-C) and using ICE method 881 

with the 40-member ensemble of CESM1 (D-F).  882 

 883 

Figure 5 Uncertainty fraction (units: %) of internal climate variability (V), model 884 

response uncertainty (M) and scenario uncertainty (S) for annual mean 885 

temperature over 2nd, 6th, 10th decades of the 21st century in China, with V 886 

estimated using ICE method with the 40-member ensemble of CESM1.  887 

 888 

Figure 6 Uncertainty fraction (units: %) of internal climate variability (V), model 889 

response uncertainty (M) and scenario uncertainty (S) for annual precipitation over 890 

2nd, 6th, 10th decades of the 21st century in China, with V estimated using ICE 891 

method with the 40-member ensemble of CESM1. 892 

 893 

Figure 7 Uncertainty fraction (units: %) of internal climate variability (V), model 894 
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response uncertainty (M) and scenario uncertainty (S) for annual maximum 895 

precipitation over 2nd, 6th, 10th decades of the 21st century in China, with V 896 

estimated using ICE method with the 40-member ensemble of CESM1.  897 

 898 

Figure 8 Signal-to-Noise ratios for annual and seasonal mean temperature over 2nd, 6th, 899 

10th decades of the 21st century in China, with V estimated using ICE method 900 

with the 40-member ensemble of CESM1.  901 

 902 

Figure 9 Signal-to-Noise ratios for annual and seasonal precipitation over 2nd, 6th, 10th 903 

decades of the 21st century in China, with V estimated using ICE method with the 904 

40-member ensemble of CESM1.  905 

 906 

Figure 10 Signal-to-Noise ratios for annual and seasonal maximum precipitation over 907 

2nd, 6th, 10th decades of the 21st century in China, with V estimated using ICE 908 

method with the 40-member ensemble of CESM1.  909 

 910 

Figure 11 (A-C) Internal climate variability (V), model response uncertainty (M),  911 

scenario uncertainty (S), total climate change uncertainty (T) (units: C2 or %2) 912 

and (D-F) their fractional uncertainties (F, units:1) for annual mean temperature 913 

(Temp), annual precipitation (Precip) and annual maximum precipitation (Extre) 914 

on national average of China over 2006-2100, with V estimated using ICE method 915 

with the 10-member ensemble of CSIRO-Mk3.6.0. The significances of the 916 

change in internal climate variability estimated using ICE (G-I).  917 
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Figure 1 Internal climate variability (V), model response uncertainty (M) and scenario uncertainty (S) (units: C2 

or %2) for annual mean temperature (Temp), annual precipitation (Precip) and annual maximum precipitation (Extre) 

on national average of China over 2006-2100, with V estimated using HS0911 method (A-C) and using ICE method 

with the 40-member ensemble of CESM1 (D-F). The significance of the change in internal climate variability 

estimated using the ICE (G-I). 
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Figure 2 Uncertainty fraction (units: %) of internal climate variability (V), model response uncertainty (M) and 

scenario uncertainty (S) for annual mean temperature (Temp), annual precipitation (Precip) and annual maximum 

precipitation (Extre) on national average of China over 2006-2100, with V estimated using HS0911 method (A-C) 

and using the ICE method with the 40-member ensemble of CESM1 (D-F).
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Figure 3 Fractional uncertainty (F, units: 1) of internal climate variability (V), model response uncertainty (M), 

scenario uncertainty (S) and total climate change uncertainty (T) for annual mean temperature (Temp), annual 

precipitation (Precip) and annual maximum precipitation (Extre) on national average of China over 2006-2100, with 

V estimated using HS0911 method (A-C) and using the ICE method with the 40-member ensemble of CESM1 (D-

F). Vertical bars indicate the lowest points.  
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Figure 4 Possible future climate changes (units: C or %) due to internal climate variability (V), model response 

uncertainty (M) and scenario uncertainty (S) (5-95% ranges) for annual mean temperature (Temp), annual 

precipitation (Precip) and annual maximum precipitation (Extre) on national average of China over 2006-2100, with 

V estimated using HS0911 method (A-C) and using the ICE method with the 40-member ensemble of CESM1 (D-

F). 
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Figure 5 Uncertainty fraction (units: %) of internal climate variability (V), model response uncertainty (M) and 

scenario uncertainty (S) for annual mean temperature over 2nd, 6th, 10th decades of the 21st century in China, with 

V estimated using the ICE method with the 40-member ensemble of CESM1.
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Figure 6 Uncertainty fraction (units: %) of internal climate variability (V), model response uncertainty (M) and 

scenario uncertainty (S) for annual precipitation over 2nd, 6th, 10th decades of the 21st century in China, with V 

estimated using the ICE method with the 40-member ensemble of CESM1. 
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Figure 7 Uncertainty fraction (units: %) of internal climate variability (V), model response uncertainty (M) and 

scenario uncertainty (S) for annual maximum precipitation over 2nd, 6th, 10th decades of the 21st century in China, 

with V estimated using the ICE method with the 40-member ensemble of CESM1.  
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Figure 8 Signal-to-Noise ratios for annual and seasonal mean temperature over 2nd, 6th, 10th decades of the 21st 

century in China, with V estimated using the ICE method with the 40-member ensemble of CESM1. 
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Figure 9 Signal-to-Noise ratios for annual and seasonal precipitation over 2nd, 6th, 10th decades of the 21st century 

in China, with V estimated using the ICE method with the 40-member ensemble of CESM1. 
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Figure 10 Signal-to-Noise ratios for annual and seasonal maximum precipitation over 2nd, 6th, 10th decades of the 

21st century in China, with V estimated using the ICE method with the 40-member ensemble of CESM1. 
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Figure 11 (A-C) Internal climate variability (V), model response uncertainty (M), scenario uncertainty (S), total 

climate change uncertainty (T) (units: C2 or %2) and (D-F) their fractional uncertainties (F, units:1) for annual mean 

temperature (Temp), annual precipitation (Precip) and annual maximum precipitation (Extre) on national average of 

China over 2006-2100, with V estimated using the ICE method with the 10-member ensemble of CSIRO-Mk3.6.0. 

The significance of the change in internal climate variability estimated using ICE (G-I).  
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Appendix 

Table A1 Weights of 20 GCMs for national-mean climate changes 

ID Model name Precip Temp Extre 

1 BCC-CSM1.1 0.046  0.054  0.038  

2 BCC-CSM1.1(m) 0.064  0.046  0.042  

3 BNU-ESM 0.035  0.041  0.059  

4 CanESM2 0.028  0.037  0.028  

5 CESM1-CAM5 0.028  0.044  0.034  

6 CNRM-CM5 0.069  0.061  0.049  

7 CSIRO-Mk3.6.0 0.074  0.044  0.066  

8 EC-EARTH 0.068  0.063  0.055  

9 IPSL-CM5A-LR 0.049  0.041  0.060  

10 IPSL-CM5A-MR 0.060  0.039  0.067  

11 FGOALS-g2 0.063  0.050  0.075  

12 HadGEM2-ES 0.030  0.038  0.038  

13 MPI-ESM-LR 0.088  0.051  0.063  

14 MPI-ESM-MR 0.080  0.054  0.057  

15 MRI-CGCM3 0.041  0.072  0.063  

16 NorESM1-M 0.044  0.052  0.067  

17 HadGEM2-AO 0.030  0.047  0.036  

18 GFDL-CM3 0.016  0.029  0.025  

19 GFDL-ESM2G 0.044  0.077  0.046  

20 GFDL-ESM2M 0.044  0.061  0.034  

Sum 1.000  1.000  1.000  



52 
 

 

Figure A1 Climate changes estimated by 20 climate models forced by RCP2.6, RCP4.5 and RCP8.5 for the 1960-

2100 period. Color shading represents a range of climate change given by ±1.65 standard deviations (5-95% range) 

of multi-model climate change projections under one RCP scenario. Color thick lines represent multi-model mean 

climate change under one RCP scenario. Black thick lines (Obs) represent observed climate change during historical 

period. (Temp: annual mean temperature; Precip: annual precipitation; Extre: annual one-day maximum precipitation)
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Figure A2 Gridded annual mean temperature changes (C) nationwide, averaged over 20 climate models forced by 

RCP2.6, 4.5, 8.5 over the 2nd, 6th, and 10th decades of the 21st century. 
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Figure A3 Gridded annual precipitation changes (%) nationwide, averaged over 20 climate models forced by RCP2.6, 

4.5, 8.5 over the 2nd, 6th, and 10th decades of the 21st century.
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Figure A4 Gridded annual maximum precipitation changes (%) nationwide, averaged over 20 climate models forced 

by RCP2.6, 4.5, 8.5 over the 2nd, 6th, and 10th decades of the 21st century.
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Figure A5 Internal climate variability (V), model response uncertainty (M) and scenario uncertainty (S) (units: C2) 

for annual mean temperature over 2nd, 6th, 10th decades of the 21st century in China, with V estimated using the 

ICE method with the 40-member ensemble of CESM1. 
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Figure A6 Internal climate variability (V), model response uncertainty (M) and scenario uncertainty (S) (units: %2) 

for annual precipitation over 2nd, 6th, 10th decades of the 21st century in China, with V estimated using the ICE 

method with the 40-member ensemble of CESM1. 
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Figure A7 Internal climate variability (V), model response uncertainty (M) and scenario uncertainty (S) (units: %2) 

for annual maximum precipitation over 2nd, 6th, 10th decades of the 21st century in China, with V estimated using 

the ICE method with the 40-member ensemble of CESM1.  

 


