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Abstract 

Uncertainty is recognized as a critical consideration for accurately predicting stream 

water nitrogen (N) loading, but identifying the relative contribution of individual 

uncertainty sources within the total uncertainty remains unclear. In this study, a 

powerful method, referred to as the Bayesian inference combined with analysis of 

variance (BayeANOVA) was adopted to detect the timing and magnitude of multiple 

uncertainty sources and their relative contributions to total uncertainty in simulating 

daily loadings of three stream water N species (ammonium-N: NH4
+
-N, nitrate-N: 

NO3
-
-N and total N: TN) in a rice agricultural watershed (the Tuojia watershed) as 

influenced by non-point source N pollution. Five sources of uncertainty have been 

analyzed in this study, which arise from model structure, parameters, inputs, 

interaction effects between parameters and inputs, and internal variability (induced by 

random errors of model or environment). The results show that uncertainty in 

parameters relating to the processes of both N and hydrologic cycles contributed the 

largest fractions of total uncertainty in N loading simulations (58.83%, 63.48% and 

61.64% for NH4
+
-N, NO3

-
-N and TN loading, respectively). Additionally, three of the 

largest uncertainties (i.e. parameters, inputs and interaction effects) in all three 

simulated N loadings were on average significantly greater in the rice-growing season 

relative to the fallow season, primarily due to the excess fertilization application 

during the rice-growing season. The predicted TN uncertainty was mainly attributed 

to the inaccuracy of NO3
-
-N simulation, which contributed to 75.48% of predicted TN 

uncertainty. It is concluded that reducing the parameter uncertainty of NO3
-
-N loading 

simulation during the rice-growing season is the key factor to improving stream water 

N modeling precision in rice agricultural watersheds. 
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1. Introduction 

Hydrologic nutrient transport models are practical tools to investigate watershed 

nutrient (such as nitrogen and phosphorus) dynamics, which have important 

implications in biogeochemical cycles (Bosch, 2008; Jiang et al., 2015; Qian et al., 

2017). Excessive riverine nitrogen (N) content, responsible for N eutrophication and 

non-point source pollution of aquatic resources, has raised increasing concern 

worldwide (Bouraoui and Grizzetti, 2014; Eshleman et al., 2013; Hamilton, 2012; 

Wang et al., 2016). With growing interest in predicting the impact of climate change 

and human activity on watershed N, hydrologic N models are widely applied by 

environment managers and decision makers (Alexander et al., 2002; Bardule et al., 

2017; Chen et al., 2014). 

However, considerable uncertainty inherent in the predictions of N processes is a 

major obstacle to model applications for effectively managing stream water N (Jiang 

et al., 2015). Overvaluation of hydrologic N model uncertainty will lower utility 

values of the model, while undervaluation of uncertainty may lead to the inability to 

accurately capture the dominant observational trends. Therefore, analyzing 

uncertainty that originates from potential sources is one of the most important aspects 

of hydrologic N modeling (Hrachowitz et al., 2013; Wellen et al., 2015). 

Multiple sources of uncertainty affect the accuracy of hydrologic N models 

(Arabi et al., 2007; Arhonditsis et al., 2008). The first uncertainty source is related to 

model structure. A key issue of N modeling is the multiple biogeochemical processes 

among various N species in watershed discharge, and our process-based models 

cannot capture the detailed reactions. Typically, nitrification and denitrification 

processes occur at the same time and are mutually affected by each other. In this sense, 



poor model performance indicates a knowledge gap of dominant processes depicting 

N cycling, causing conceptual bias and structural misrepresentations (i.e. structure 

uncertainty) (Arhonditsis et al., 2008). The second source of predictive uncertainty 

originates from over parameterization and equifinality (i.e. parameter uncertainty) in 

complex N models (Beven, 1993, 2006). Ideally, a model should have a parsimonious 

set of parameters, along with a high degree of mechanistic detail to depict the 

dominant controlling processes in the fate of N (Young and Parkinson, 2002). The 

third aspect of uncertainty is linked to forcing inputs. Input data, such as precipitation, 

soil, temperature and land use/cover, play a significant role in driving watershed N 

simulations (Du et al., 2017; Harmel and Smith, 2007), whereas the amount of 

information contained in input data is often limited. This is partly due to the absence 

of near-continuous monitoring, leading to input uncertainty. Two kinds of statistical 

components, i.e., the interaction effects between two of the three uncertainties listed 

above (Lovenduski et al., 2016) and some random variability from the model itself or 

the internal environment in nature (namely internal variability) (Ahn et al., 2016), can 

have more than negligible contributions on the total uncertainty in model applications. 

Apart from the sources of uncertainty discussed above, there are other aspects, beyond 

anthropogenic episteme, which potentially influence N prediction. 

In practice, the most commonly used approaches for analyzing uncertainty 

sources of stream N dynamic modeling include two categories: single-source and 

multi-source uncertainty analysis. For single-source uncertainty analysis, the 

parameter uncertainty in N process simulation has been widely investigated in 

different regions and watersheds (Alexander et al., 2002; Arabi et al., 2007). As for 

multi-source uncertainty analysis, some studies have documented the parameter 

uncertainty combined with output/prediction uncertainty (Gardner et al., 2011; Jiang 



et al., 2015), observation data uncertainty (Du et al., 2017) and structure errors 

(Harmel et al., 2006; McIntyre and Wheater, 2004), to name a few. Additionally, a 

conceptual framework entitled the integrated uncertainty of multiple sources was 

proposed by Sullivan et al. (2004) for N deposition simulation in regional stream 

systems, and Yen et al. (2014) used this framework in watershed modeling. The 

drawback of these pioneering methods is that current sources of uncertainty are 

neither entirely incorporated nor considered under an integrated statistical framework. 

Thus far, explicit partition and comprehensive comparison of multiple sources of 

uncertainty in stream water N modeling have not yet been examined. 

To solve this problem of partitioning multiple uncertainty sources, a powerful 

statistical approach, referred to as the Bayesian inference combing analysis of 

variance (BayeANOVA), was developed (Northrop and Chandler, 2014). The analysis 

of variance (ANOVA) method focuses on seeking a full interpretation of various 

sources of the total uncertainty (Lovenduski et al., 2016; Yip et al., 2011), while the 

Bayesian method introduces random effects into the partitioned multi-source 

uncertainty components generated from a finite population, and thus, it circumvents 

the problem of a sparse and highly unbalanced dataset. Traditionally, the 

BayeANOVA approach has been considered to characterize the multi-source 

uncertainties in climate or hydrologic variables regarding global climate models 

(Hawkins and Sutton, 2009; Hawkins and Sutton, 2011; Kudo et al., 2017; 

Lovenduski et al., 2016; Yip et al., 2011) but without the inclusion of stream water 

nutrient constituents. We adopted this model-based BayeANOVA approach for 

partitioning and quantifying the multiple sources of stream water N modeling 

uncertainty. 

Hence, the main objective of this paper was to establish and apply the 



BayeANOVA approach for explicitly partitioning individual uncertainty sources and 

comparing their relative contributions to the total uncertainty in simulating daily 

stream N loading. To apply the proposed method, we selected three N species 

(ammonium-N: NH4
+
-N, nitrate-N: NO3

-
-N and total N: TN) in a rice agricultural 

watershed, the Tuojia watershed in subtropical region of China. These three N species 

are critical constituents that reflect environmental risk in the streams. However, the 

uncertainty sources in modeling these three N species have not yet been investigated. 

The remainder of the paper is organized as follows: In Section 2, the Tuojia 

watershed and available datasets are described. In Section 3, the framework, coupling 

the ensemble output of Catchment Nutrient Management Model (CNMM) with the 

partitioning procedure of BayeANOVA, is developed. Then in Section 4, the timing 

and magnitude of multi-source uncertainties in simulating N loadings and relative 

contributions to the total uncertainty are examined. Section 5 discusses the results, 

and finally, Section 6 concludes the study. 

2. Study area and data acquisition 

The Tuojia watershed, located at Jinjing Town (112°56′-113°36′E; 27°55′-28°40′N; 

elevation: 43-460 m) of Hunan Province, China, topographically represents 

floodplains and hilly landscape, covering an area of 52.1 km
2
 (Fig. 1a). The land use 

mainly consists of Masson pine (Pinus massoniana Lamb) woodlands (58.0%) and 

rice paddy fields (32.2%). Paddy fields are the dominant agricultural land use type, 

primarily located in valleys and floodplains along with streams. Rice is cropped twice 

a year, with the early rice growing during mid-April to the end of June and late rice 

growing during mid-July to the mid-October. There is no crop growing in the paddy 

fields during the fallow season from mid-October to the following mid-April. The 

study area belongs to a typical subtropical monsoon climate, and receives 1,400 mm 



yearly rainfall on average, of which more than 68.4% occurs during the months of 

April-August. The mean annual air temperature is 17.5℃. The main stream begins 

from the northern forest areas and flows through paddy fields and ditches before 

discharging to the southeast outlet (Fig. 1b). 

The Tuojia watershed was selected as the study area for the following reasons: 

Previous studies conducted worldwide (Bouman et al., 2007; Krupa et al., 2011), 

report that severe N pollution is linked to agricultural watershed featured by rice 

cropping. Rice agriculture characterizes unique crop rotation, fertilization and land 

management and, therefore, has indirect connections with N chemical composition, 

concentration and loading in watershed streams. China has the second-largest area of 

rice agriculture, resulting in widespread N pollution. Therefore, investigating stream 

water N has significant importance to agricultural production and socio-economic 

development in these areas. 

<Fig. 1>  

Multiple databases were used in this study, including variables of meteorology, 

hydrology and water chemistry in the Tuojia watershed, which have been monitored 

by the Institute of Subtropical Agriculture, Chinese Academy of Sciences since 2010. 

Instantaneous discharge data were automatically collected every 15 minutes, and 

thereafter, the daily cumulative streamflow was calculated. A stream water sampling 

campaign, with the average interval of 10 days from November 2010 to October 2013, 

was conducted at approximately 0.2 m below the water surface at the outlet of the 

Tuojia watershed. Briefly, each water sample was divided into two portions: the first 

portion was dissolved in a K2S2O8–NaOH solution to determine the TN concentration 

using a continuous flow analyzer method; the other was filtered through a 0.45-µm 

membrane, and the NH4
+
-N and NO3

-
-N concentrations were determined in the filtrate, 



based on the modified Berthelot reaction and cadmium reduction method, respectively, 

using a continuous flow analyzer (Tecator FIA Star 5000 analyzer, Foss Tecator, 

Sweden). Daily N loading from the watershed was calculated by multiplying the 

stream N concentration and corresponding daily amount of stream discharge, then 

dividing the covering area of the watershed (Eq. (1)). 
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where NL  denotes the estimated daily N loading (kg km
-2

 d
-1

), Q is the instantaneous 

discharge (m
3
 s

-1
), C is the concentration of NH4

+
-N, NO3

-
-N or TN (mg L

-1
), i is the 

ith second in one day (i = 1,2,3… n), and Ar is the area of watershed (km
2
). 

Meteorological data, including daily precipitation, wind speed, short/long wave 

radiation, air temperature and relative humidity were recorded by three 

meteorological stations in the Tuojia watershed during the same time period as the 

hydrologic-water quality data. All data, exhibited in Fig. 2, were tested for their 

representativeness and reliability. For the meteorological data, the representativeness 

was commonly quantified by the regional coefficient of variation (c.v.) at each time 

step (Bhowmik and Costa, 2015; Hill et al., 2006). Accordingly, the set of 

meteorological data from three meteorological stations (see Fig. 1b) in this study area 

was used to calculate the average c.v. value. All meteorological indices were 

considered highly representative. The reliability of all datasets used was realized by 

statistical pre-processing before modeling, i.e., interpolating missing observed values 

and diagnosing outliers. Specifically, the autoregressive moving averaging approach 

(ARMA(2, 1), Eq. (2)) was used to interpolate missing data (Valipour et al., 2013). 

 1 1 2 2 1 1t t t t tY a Y a Y b         (2) 

where t  and 1t   comply with white noise distribution with zero mean and 



constant variance; and Yt is the missing data at time step t. In the datasets used, the 

percentage of missing data was very small (< 5% of total data length). 

A method coupling the maximum-value test with experience-based judgment 

was used to remove the outliers or outlying observations (Chebana et al., 2012). 

<Fig. 2> 

3. Methods 

The proposed framework for partitioning and quantifying each uncertainty source is 

presented in Fig. 3. The background of the selected hydrologic nutrient model 

(CNMM) is first briefly described in Section 3.1. Schemes across different model 

structures, parameter sets and input data, were then configured for CNMM to generate 

ensemble model outputs in Section 3.2. Finally, the BayeANOVA approach, which 

couples ANOVA with Bayesian inference, is outlined in Section 3.3. 

The total uncertainty in predicting the loadings of three N species (ammonium-N: 

NH4
+
-N, nitrate-N: NO3

-
-N and total N: TN) was partitioned into five sources: model 

structure, parameters, forcing inputs, interaction effects between parameters and 

inputs, and internal variability (induced by random errors of model or environment). It 

is important to note that we only considered the interaction effects between parameter 

and input uncertainty. This is because previous studies indicate the suitability of a 

specific parameter set to the model system depends on the given input scenario and 

vice versa (Shields and Tague, 2012). For the relatively small structure uncertainty 

and the purpose of controlling complexity, we neglected the interaction effects 

between structure and other source uncertainties. Consequently, it was hypothesized 

that the five different sources of uncertainty are statistically independent, except for 

the interaction effects existing between parameter and input uncertainty. 



3.1 Background of Catchment Nutrient Management Model (CNMM) 

As a physically-based and spatially-distributed hydrologic nutrient model, CNMM 

can simulate multiple processes, including water dynamics, plant-soil 

carbon-nitrogen-phosphorus cycling, and stream nutrient transfer and loss via runoff 

(Li et al., 2007). The calculation of CNMM is driven by meteorological observations, 

and its discretization in space is supported by the ArcGis platform, which can extract 

the information of Digital Elevation Model (DEM) and land use types. Multi-scale 

spatial-time steps are available for CNMM to simulate key biogeochemical processes. 

One day and 100 m were chosen as the temporal and spatial steps for the 

discretization scheme in this study. Considering N modeling using CNMM, the 

advantage lies in the integration of the hydro-ecological process, which couples a 

hydrologic-water quality module and a crop growth module to influence watershed N 

processes. One module facilitates the design of hydrologic-N process in stream and 

solute N transport in soil water, while the other module considers the absorption of 

water, nutrients and light by vegetation. CNMM is widely used for agricultural 

management practice and environmental risk assessment in subtropical agricultural 

watersheds of China. The detailed description of CNMM can be found in a recently 

published work by Li et al. (2017). 

3.2 Configuration of individual model solution in CNMM 

Schemes across different model structures, parameter sets and forcing inputs of the 

CNMM model are outlined as follows: As for the model structure uncertainty, unlike 

multi-model inter-comparison experiments used in previous studies (Duan et al., 2006; 

Lindenschmidt et al., 2007), we introduced three versions of CNMM (i.e. the basic 

CNMM added two modified versions) to test structure uncertainty. On the basis of 

CNMM, two functions controlling N cycle processes in soil and stream were changed 



to generate modified versions. The first modification was to remove the function of N 

uptake by plants, affecting the storage of soil N and indirectly changing stream water 

N content. The second was to change a rate coefficient descripted by the 

Streeter-Phelps formula (Eq. (3)) used in diffusion-convection equation of in-stream 

N transformation. The modification made the rate coefficient a specified constant 

instead of a water temperature-dependent variable. The temperature-dependent 

coefficient, TX  can be written as: 

 (T 20)

20TX X    (3) 

where 20X  is the coefficient at the standard temperature (20℃);   is an empirical 

value; and   is the observed temperature. 

To quantify parameter uncertainty and its interactive effects on precipitation 

input, ten sensitive parameters, including four hydrologic parameters (three soil 

moisture related parameters and one stream channel parameter) and six N-process 

parameters (Table 1), were selected through literature investigation (Liang et al., 2016; 

Uniyal et al., 2015). Furthermore, the specific parameter set was classified into three 

levels for analyzing uncertainty linked to parameters, based on the optimal defaults 

and prior range recommended by Brown and Barnwell (1987) (Table 2). 

<Table 1> 

Precipitation, which drives multiple hydrologic and biogeochemical processes 

(Gao et al., 2014), was selected as the configuration variable of the forcing input. To 

concisely consider the input uncertainty of CNMM, a fixed sample from uniform 

distribution, instead of random sample from normal distribution, was used to estimate 

the variability of precipitation. The precipitation input was set to seven hypothetical 

levels, ranging in ±50% of raw measurements at each time step, t (Table 2). 

In particular, to analyze the internal variability arising from random model errors 



or natural internal processes in the environmental system (e.g. variability in climate), 

each individual CNMM solution was performed a number of times ranging from 1 to 

4 (see the subscript m in Section 3.3). Each CNMM routine was primed with a 

“warm-up” period of ten months (January to October 2010) to allow the model to 

reach a steady state. Additionally, in the post-processing of the CNMM output, all 

simulated streamflow and N loadings were statistically downscaled using a 

polynomial fit model over the study period. Then, they were separated based on the 

rice-growing/fallow season to further compare the contrasting effect of all uncertainty 

sources. 

<Table 2> 

3.3 Construction of statistical framework for partitioning total uncertainty 

After the individual model solution was defined, a three-step statistical method, the 

BayeANOVA approach, used to partition total uncertainty was derived. The 

BayeANOVA approach characterizes integration of variance decomposition and 

Bayesian random sampling, addressing the problem of data unbalance and sparseness 

in multi-dimensional space. First, the variances of individual model solutions, 

representing 5-source uncertainties of streamflow and three N loadings, were 

calculated using classical ANOVA based on respective finite-populations. Then, the 

standard deviations of individual model solutions, corresponding to the 5-source 

uncertainties, were estimated using the Bayesian stochastic method coupled with a 

half-Cauchy prior distribution. Finally, Bayesian inference was employed to obtain 

the 95% confidence intervals of simulated streamflow and N loadings, based on the 

ensemble output derived from ANOVA. 

The total uncertainty in simulating streamflow or N loadings can be quantified on 

the basis of variance ( 2U ) (Eq. (4)) or standard deviation (U ) (Eq. (5)) of all the 



predictions in a given time. The total variance 
2U  is equal to the sum of the 

variances due to model structure 2

SU , parameter set 2

PU , model input 2

IU , 

interaction effects between parameters and inputs 2

PIU , and system internal 

variability 2

vU : 

 2 2 2 2 2 2

S P I PI vU U U U U U       (4) 

where 
2U  on the left side of Eq. (4) is the variance across all configuration 

combinations. 
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where NS, NP, NI and Nv are the number of structure versions, parameter sets, input 

levels and internal variability, respectively, and in our case study, NS = 3, NP = 6, NI = 

7, and 4vN  ; ijkmY  represents the specified output (streamflow or N loadings) of an 

individual model run; and ....Y  is the mean of all ijkmY , which can be derived as: 

 (S, I, )   or   (S, I, )
Nijkm str ijkm LY f Y f     (6) 

where ()strf  and ()
NLf  are the ensemble functions in CNMM for modeling stream 

discharge and stream water N loadings, respectively; S, I, and   denote the structure, 

input, and parameter set, respectively, within a specific model solution. 

In the ANOVA model, the form of ijkmY  can be defined as: 

,  1,..., N , 1,..., N , 1,..., N ,

1,..., N

ijkm i j k jk ijkm S P I

v

Y i j k

m

             


 (7) 

where   (equal to ....Y ) is the mean discharge or N loadings; the parameters i , 

j , k , jk  and ijkm  are mutually independent random variables. The term i

represents the expected difference between the output simulated by model structure i 



and the mean  , over all parameter sets, input levels and internal variability. The 

variance of i  is the variance due to structure uncertainty. Similarly, the 

interpretation of terms j , k , jk  and ijkm  can be obtained. Detailed 

information is listed in Table 3, and in the calculations, the bar denotes averaging and 

the dots indicate which component has been averaged over. 

<Table 3> 

Following the style of Northrop and Chandler (2014), finite-populations and 

superpopulations denote sampling space under finite case and probability case, 

respectively. In practice, the variances from finite-populations were written as

2 2 2 2 2( , , , , )S P I PI vU U U U U , while variances from superpopulations in Bayesian inference 

were called 2 2 2 2 2( , , , , )S P I PI v     , in order to distinguish the respective cases. 

In Bayesian inference, our preliminary interest focused on estimating the 

parameter ( , , , , )S P I PI v      . The Bayesian law can be given by: 

 
( ) L(y | )

( | y)
L(y)

L
L

 
    (8) 

where ( )L   denotes the prior distribution; L(y | )  is the likelihood function, a 

function of   ; and L(y)  denotes the evidence. Because the relative posterior 

( | y)L   of parameters is independent of L(y) , it can be conveniently removed from 

the denominator. Then, the posterior is proportional to ( ) L(y | )L   . In the Bayesian 

approach, i , differences in model structure are handled as independent, identically 

distributed normal random variables with zero mean and 
2

S  variance, i.e. 

2~ (0, )i SN  . And similar notations for j , k , jk  and ijkm  can be written as 

2~ (0, )j PN  , 
2~ (0, )k IN  , 

2~ (0, )jk PIN  , and 
2~ (0, )ijkm vN  , respectively. 



A primary step of the Bayesian implementation is to define the form of prior 

belief of parameters, derived from existing information. Commonly used prior 

distributions include the vague non-informative prior, normal distribution, Beta 

distribution and inverse-Gamma distribution (Jarraya et al., 2014). However, in the 

case of limited data length, the information provided by existing data is very little, 

frequently resulting in distorted inferences owing to an abnormally high density of 

probability near zero. Therefore, we derived prior from the half-Cauchy distribution, 

whose appealing feature is that it only provides a weak prior and encapsulates some 

basic constraints on parameters, instead of concentrating more of prior close to zero 

(Gelman, 2006). Half-Cauchy distribution follows the probability density form of: 
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By controlling the scale parameter A, the prior mass of standard deviations in 

superpopulation can range over a plausible interval. At the present context, as a rule of 

thumb, A is roughly set to one-quarter of the prior range (for details of A, see Fig. 9). 

The realization of Bayesian sampling depends on the DiffeRential Evolution 

Adaptive Metropolis (DREAM) method, using Markov Chain Monte Carlo (MCMC) 

as its main building block (Joseph and Guillaume, 2013; Vrugt and Ter Braak, 2011; 

Yang et al., 2008), via R package “dream” (Joseph and Guillaume, 2013). This 

ensures that multiple parameter sets can be evaluated simultaneously and a 

spectacular reduction in time is obtained due to the parallel strategy. The DREAM 

algorithm, which runs multiple Markov chains in parallel and automatically adjusts 

the scale, explores the posterior target distribution before converging to a limiting 

distribution. The DREAM method is recommended for its attempt to disentangle the 

contribution of input, parameter and model structure uncertainty to total model 

uncertainty in our case study (Vrugt and Robinson, 2007; Vrugt et al., 2009). 



For comparing the difference of each uncertainty source among individual 

configuration schemes, Bayesian inference was also employed to obtain the medians 

and 75%/95% percentiles of simulated streamflow and three N loadings, based on the 

ensemble output derived from ANOVA. The method used here is the same as above, 

i.e. Eqs. (6)-(7) and DREAM algorithm. 

<Fig. 3> 

4. Results 

4.1  Total uncertainty in predicting streamflow and N loadings 

Fig. 4 presents the medians and 95% confidence intervals of predicted daily mean 

streamflow and watershed-averaged loadings of three N species using the 

BayeANOVA method, demonstrating larger prediction uncertainty of simulated high 

values than that of low values, especially for NO3
-
-N and TN. Simulated streamflow 

and N loadings showed a distinct seasonal variation across the 3-year study period. 

<Fig. 4> 

The observed values of streamflow and N loadings are also presented in Fig. 4. 

Almost all observation data of streamflow followed the median curve and were within 

the 95% confidence intervals, indicating good performance of the model. The 

performance of simulated N loadings was not as good as that of streamflow. As 

described in Fig. 4b, a small part of observed NH4
+
-N loadings could not be captured 

accurately, mainly in the first year. Compared to the simulated NH4
+
-N loading, the 

modeling of NO3
-
-N and TN loadings was much better, since more observation data 

were overlapped by the uncertainty band. For the three N loadings, the outliers were 

primarily distributed in the extreme areas, suggesting that improving simulation of 

extreme values has significant importance for watershed N modeling. 



4.2 Comparison of multi-source uncertainties 

To comprehensively assess the timing and magnitude of individual multi-source 

uncertainties as well as the relative contributions to the total uncertainty in simulating 

streamflow and N loadings, we quantified the individual variances corresponding to 

five uncertainty sources and their fractional proportions using ANOVA. Since we did 

not distinguish the concepts of uncertainty and variability, the variance in each source 

acted as an available alternative to the uncertainty. 

4.2.1 Relative contribution of five sources of uncertainty 

Among the five sources, the precipitation input uncertainty resulted in the greatest 

uncertainty in simulating streamflow, with its variance ranging from nearly 0 to 20.3 

(m
3
 s

-1
)
2 

over the study period (Fig. 5). Conversely, the model structure uncertainty 

had nearly no influence on streamflow formation, with variance of approximately 0 

(m
3
/s)

2
. The uncertainty linked to parameters was slightly lower than that to inputs, in 

most cases. Uncertainties generated from the interaction effects and internal 

variability were relatively small when compared to that from inputs and parameters. 

<Fig. 5> 

In the three N loading simulations, parameter uncertainty contributed the greatest 

fractional proportion of total uncertainty over the three-year average period, with 

fraction values of 58.83%, 63.48% and 61.64% for NH4
+
-N, NO3

-
-N and TN loading, 

respectively (Figs. 6, 7 and 8). The second contributor to total uncertainty was input 

uncertainty, with fraction values of 31.49%, 18.04% and 22.51%, respectively. 

<Fig. 6> 

Furthermore, from the fractional variances in Figs. 5b, 6b, 7b and 8b, it was 

apparent that the interaction effects between parameters and inputs were very 

comparable in timing and magnitude among simulated streamflow and three N 



loadings (the average contribution approximately ranged from 6.12% to 8.47%, Table 

4). This suggests a steady contribution of the uncertainty arising from interaction 

effects to the total uncertainty. Contrary to streamflow, structure uncertainty in 

modeling three N loadings was obvious, especially for the case of NO3
-
-N loading. A 

feature of internal variability should be noted: the internal variability of N loadings 

exhibited a disproportionately great influence on total uncertainty in the first six 

months, compared to the later period. Although each CNMM run was allotted a 

relatively long “warm-up” period of ten months before stepping into the study period, 

the random errors generated from the model itself in the first few months still 

produced non-negligible uncertainty. Shorter “warm-up” periods have been explored 

(not shown here); however, the results from these studies gave even larger internal 

variability. This suggests that a suitable “warm-up” period plays a significant role in 

enhancing the modeling ability, since the inherent uncertainty in environmental 

system is uncontrollable. 

<Fig. 7> 

<Fig. 8> 

4.2.2 Comparison of uncertainties in the rice-growing season and fallow season 

Comparisons of multi-source uncertainties in the rice-growing season against fallow 

season were carried out (Figs. 5a, 6a, 7a, 8a and Table 4), and contrasting results were 

obtained. The total uncertainty of simulated streamflow averaged across three years 

was larger in the fallow season (2.04 (m
3
 s

-1
)
2
) than that in the rice-growing season 

(1.52 (m
3
 s

-1
)
2
) (gray band in Fig. 5a). 

Unlike the case of uncertainty in streamflow simulation, three of the largest 

uncertainty components (i.e. parameters, inputs and interaction effects) among the 

five sources and the total uncertainty of three simulated N loadings were, on average, 



significantly greater in the rice-growing season than those in the fallow season (Table 

4). Take TN loading for example, the uncertainties related to parameters, inputs, 

interaction effects and total uncertainty were 3.31, 1.07, 0.32 and 4.86 (kg km
-2

 d
-1

)
2
 

respectively, in the rice-growing season, which were greater than those in the fallow 

season (with values of 2.75, 0.55, 0.16 and 3.81 (kg km
-2

 d
-1

)
2
, respectively). 

Specifically, the peaks of multi-source uncertainties in all three N loadings occurred 

in the rice-growing season for the first two years, although in 2013 the peak values of 

uncertainty components did not occur during the rice-growing season. Both the 

average uncertainty components across three years and those in 2012-2013 were 

much larger in the rice-growing season than that in the fallow season. The magnitude 

of multi-source uncertainties among three N loading simulations in the rice-growing 

season showed great differences. For instance, the averaged multi-source uncertainties 

of simulated NH4
+
-N loading were smallest, with the maximum component of 0.25 

(kg km
-2

 d
-1

)
2
 in parameter uncertainty, while the simulated TN loading uncertainties 

were the largest, with the maximum component of 3.31 (kg km
-2

 d
-1

)
2
 in parameter 

uncertainty. In addition, in the simulated TN loading uncertainty, the NO3
-
-N fraction 

contributed a dominant proportion (75.48%), compared to that from NH4
+
-N. 

<Table 4> 

4.3  Bayesian estimation of multi-source uncertainties 

After the multi-source uncertainties were partitioned chronologically for simulated 

streamflow and N loadings, the Bayesian technique was applied to estimate the 

standard deviations of sampling from a superpopulation under the stochastic 

framework. 

First, Fig. 9 illustrates the posterior distributions of standard deviations related to 

the five sources of uncertainty, with the prior distributions plotted as red lines. It is 



worth noting that the prior lines were virtually flat except for the interaction effects 

    of streamflow, implying the prior weakly restricted the likelihood values. As 

anticipated in section 3.3, for parameters                , the information derived 

from the likelihood functions dominated the formation of posterior distributions. In 

general, the half-Cauchy prior distribution had an expected robust behavior on the 

Bayesian posterior estimation. 

<Fig. 9> 

Then, a comparison of inter-category difference between a specific uncertainty 

source from the model structures, parameters or inputs, was conducted in the 

rice-growing season and compared against the fallow season. The posterior statistics 

(median values, 25th-75th and 5th-95th percentiles) of prediction results from an 

individual model solution can provide more details on different levels of each 

uncertainty source. The predicted streamflow medians non-uniformly increased with 

increasing precipitation inputs to CNMM, along with higher 75th/95th percentiles in 

the fallow season, relative to the rice-growing season (Fig. 10a). The medians of 

simulated N loadings did not always increase with increasing precipitation, suggesting 

nonlinearity between change in N loading and change in precipitation. Under different 

precipitation input levels, although the medians of simulated N loadings were 

comparable between the two seasons, the uncertainty ranges (25th-75th and 5th-95th 

percentiles) were apparently larger in the rice-growing season when compared with 

the fallow season. 

Fig. 10b shows the change of model structures had little impact on streamflow 

simulation, while it induced an apparent change in N loading modeling. Notably, the 

basic model (S1) produced minimal simulation error in all three N loadings, 

demonstrating that the initial structure, i.e., S1 of CNMM, with relatively complete N 



processes can give better performance. In most cases, the 75th/95th percentiles of N 

loadings in the rice-growing season were slightly higher than those in the fallow 

season. 

<Fig. 10> 

H1, H2 and H3 denote half of optimal set, optimal set and twofold optimal set of 

hydrologic parameters, respectively, and N1, N2 and N3 represent the same meaning 

of N parameters (Fig. 10c). The increase in parameter set from H2 to H3 caused an 

extreme decrease in both median and 75th/95th percentiles of simulated streamflow. 

The change in N parameters (from N1 to N3) led to a slight change in 95th percentiles 

of the streamflow, despite the unaffected medians. Both medians and 75th/95th 

percentiles of three simulated N loadings with H1 decreased, while those with H3 

dramatically increased, compared to those with optimal set, H2. The increase from N1 

to N3 resulted in increasing median and 75th/95th percentiles of NO3
-
-N loading, 

without an observed uniform trend for NH4
+
-N or TN loading. 

5 Discussion 

5.1  Main factors controlling multi-source uncertainties in N loading simulation 

Failure to identify major sources of uncertainty in simulating watershed behavior is 

known to bias model prediction (Ajami et al., 2007; Yen et al., 2014), but the main 

contributor to multi-source uncertainties in simulating N dynamics at watershed scale 

remains largely unknown. Consistent with previous modeling studies on several 

environmental constituents (N and phosphorus loadings: Shen et al., 2013; pesticide 

leaching: Steffens et al., 2013; streamflow: Tian et al., 2014), parameter uncertainty 

dominantly controlled the total uncertainty in N loading simulations in the present 

study. This phenomenon was attributed to the heterogeneity of stream N and 

nonlinearity of the distributed hydrologic nutrient model, thus leading to high 



sensitivity of predicted stream water N loadings to the selected parameters. Another 

feature of parameter uncertainty found in this study revealed that streamflow and N 

loading simulations could be controlled by both hydrologic and N process parameters 

(Fig. 10). This suggests that the quantity and quality of water should be given equal 

importance, rather than separately calibrating their modeling effects in uncertainty 

analysis, as is commonly practiced. Zhang et al. (2016) provided a similar 

recommendation for considering high interactions of runoff and NH4
+
-N 

concentration prediction in an integrated water system model using a combined 

auto-calibration multi-process approach. The stream water N loading prediction was 

highly constrained by parameter uncertainty, indicating the importance of optimizing 

the parameter set, while other sources of uncertainty also augment the total 

uncertainty. 

The primary purpose of model uncertainty analysis is to control and further 

reduce the uncertainty, mainly focusing on anthropogenic epistemic uncertainties (Li, 

2012). However, the distributed hydrologic-water quality models (e.g. CNMM) are 

time-consuming tools with high computational complexity. Therefore, allocating 

limited computational resources to obtain optimal precision is challenging when 

confronting the uncertainties that arise from model structures, parameter sets, inputs 

and other potential sources. One possible route, provided in our study, would be to use 

a weighting scheme according to the contribution of different uncertainty sources in 

statistical models related to scientific questions. Therefore, when simulating 

streamflow, the precision of input data should be improved, since precipitation input 

uncertainty is the main source of significant degree of uncertainty. Given the 

important role of parameter uncertainty, as the largest source of uncertainty in 

simulating N loadings, parameter identification should be given particular attention. 



5.2  Increased uncertainty and pollution risk resulting from rice agriculture 

The large uncertainty in modeling N loadings in the present study was probably 

linked to human activities in the Tuojia watershed. According to previous studies in 

this study area (Li et al., 2015; Wang et al., 2014), high values of N loadings in stream 

water are induced by large applications of N fertilizer and herbicide to paddy fields 

during the rice-growing season for yield improvement purpose. Fertilizer utility 

directly increases N input to the watershed, while herbicide decreases the N uptake of 

plants by killing weeds indirectly, resulting in more N leaching into subsoil. In our 

study, three of the largest uncertainty components (i.e. parameters, inputs and 

interaction effects) and total uncertainty in all three simulated N loadings increased 

dramatically in magnitude over the course of three years during the rice-growing 

season when compared to the fallow season (Table 4). This indicates that high 

loadings of N and large uncertainties were largely induced by rice cropping in the 

Tuojia watershed. Specifically, agricultural management practice (especially for the 

input of excessive fertilization) conducted during the rice-growing season leads to the 

acceleration of N cycle and more residual N transported into stream water. This 

management practice and resulting high N loadings cause more difficulties in 

predicting N loading and larger uncertainties in N modeling. 

As highly vulnerable regions regarding non-point source pollution, rice 

agricultural watersheds are predicted to export large proportions of N (Shi et al., 2010; 

Wang et al., 2015). Reducing N input to the watershed by making a balance between 

socioeconomic performance and affordable environmental pollution risk is the 

fundamental solution for reducing N loading levels and predicting uncertainty. As 

shown in Fig. 11, the cumulative probability curve exhibits a risk assessment of 

estimated TN loading. The predicted medians of TN loading were 2.87 and 3.04 kg 



km
-2 

d
-1

 in the fallow season and the rice-growing season, respectively, with 

corresponding cumulative probabilities of 0.66 and 0.70. In the context of the Tuojia 

watershed, the theoretically reasonable value of TN loading is approximately 1.41 kg 

km
-2 

d
-1

, according to the national standard level (1.0 mg L
-1

). Thus, the predicted TN 

loadings in both seasons significantly exceeded the standard range. Compared to the 

fallow season, the TN loading in the rice-growing season poses a more severe threat 

to the healthy water environment. The averaged risk probability should be reduced to 

0.37 and 0.46 in the fallow season and rice-growing season, respectively, to achieve 

the design objective when taking 1 kg km
-2 

d
-1

 of TN as the baseline for required 

loading reduction. Practical design experiments need to include more complex 

information, such as social and natural demands, and the risk probability depends on 

the specific model and watershed conditions (Chen et al., 2012; Liang et al., 2016; 

Nearing and Gupta, 2015). Nevertheless, the risk estimation approach, in our case, 

can be explored to support decision making and planning in agricultural management 

practices. 

<Fig. 11> 

Both the multi-source uncertainty components and the total uncertainty of 

NO3
-
-N loading were larger than those of NH4

+
-N loading (Figs. 6 and 7). The 

simulated NO3
-
-N loading contributed to 74.50%, 69.82%, 76.38% and 75.48% in the 

parameter uncertainty, input uncertainty, interaction effects and total uncertainty of 

simulated TN, respectively. However, from the observation data of NH4
+
-N, NO3

-
-N 

and TN loadings during the study period (Fig. 4), it appears that the proportion of 

NO3
-
-N to TN loading (39.45%) was similar to that of NH4

+
-N to TN (34.44%). 

Therefore, NO3
-
-N loading contributed a high percentage of the total uncertainty of 

TN loading simulation, and this percentage was disproportionate with the ratio of 



observed NO3
-
-N to TN loading. The significant contribution of NO3

-
-N simulation 

uncertainty to TN simulation uncertainty could be attributed to the tendency of 

simulated soil NO3
-
-N leaching, resulting from paddy tillage and subsoil properties 

(such as texture, bulk density or negatively charged soil particles) (Klatt et al., 2016; 

Wang et al., 2014). The inaccuracy of NO3
-
-N loading prediction was the dominant 

cause of the large uncertainty of TN loading. 

Consequently, summarizing the above discussion of uncertainty in CNMM and 

the risk assessment in practical decision-making, it can be concluded that reducing the 

parameter uncertainty of NO3
-
-N loading simulation during the rice-growing season is 

the key factor to improving N modeling precision in rice agricultural watersheds. This 

conclusion can be extended to other similar regions or watersheds with more detailed 

configuration and implementation of the BayeANOVA method for allowable loading 

calculation and margin of safety determination in agricultural practice and 

environment managements. 

6 Conclusion 

This study employed Bayesian inference combined with ANOVA to partition the 

prediction uncertainty of stream water N loadings into five uncertainty sources. The 

comparison of relative contributions of individual uncertainty sources to the total 

uncertainty showed that in the three N loading simulations, parameter uncertainty was 

the greatest factor inducing uncertainty, while the second was generated from 

precipitation input. Three of the largest uncertainties (i.e. parameters, inputs and 

interaction effects) in all three simulated N loadings, were on average significantly 

greater during the rice-growing seasons when compared to the fallow seasons. This 

was primarily due to the excess fertilization application during the rice-growing 

seasons. The simulated NO3
-
-N loading, contributing to 75.48% of total uncertainty, 



was found to be more inaccurate when compared to the NH4
+
-N loading. Therefore, 

the parameter uncertainty in NO3
-
-N loading prediction during the rice-growing 

season was considerable, and it was the essential problem of N modeling in rice 

agricultural watershed. 

The BayeANOVA approach can be extended to other studies associated with 

multi-source uncertainty analysis. The risk assessment of N pollution in our study can 

provide scientific and technological support for N pollution control and management 

of similar agricultural watersheds. 
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Table 1. Brief attributes of key parameters controlling nitrogen transformation and hydrologic process. 

Parameter Physical meaning Unit Range Optimal 

Hydrologic parameters 
   

phy_fc Field capacity % 0.078-0.708 grid-based 

phy_ks Soil vertical hydraulic conductivity m d
-1

 0.001-9.972 grid-based 

phy_kslat Soil lateral hydraulic conductivity m d
-1

 0.000-4.986 grid-based 

manning The manning roughness coefficient - 0.010-0.700 
channel 

segment-based 

Nitrogen-process parameters 
   

half_satu Michaelis-menton half-saturation constant for N mg L
-1

 0.010-0.300 0.015 

mu_max Maximum specific algal growth rate at 20℃ 1 d
-1

 0-10 1 

p_n Algal preference factor for ammonium - 0-1 0.150 

bc1 
Rate constant for biological oxidation of NH4

+
-N 

to NO2
-
-N in stream at 20℃ 

1 d
-1

 0-5 0.050 

bc2 
Rate constant for biological oxidation of NO2

-
-N 

to NO3
-
-N in stream at 20℃ 

1 d
-1

 0-5 0.200 

bc3 Rate constant for denitrification in stream at 20℃ 1 d
-1

 0-100 15 

  



Table 2. Configuration information of CNMM in different 

precipitation inputs, model structures and parameter sets. 

Precipitation input 

Level  Description 

L1  L-50%L 

L2  L-30%L 

L3  L-10%L 

L4  L 

L5  L+10%L 

L6  L+30%L 

L7  L+50%L 

Model structure 

Version  Description 

S1  CNMM 

S2  CNMM without N uptake function by plant 

S3  CNMM with temperature-constant coefficient 

Parameter set 

Classification  Description 

H1  0.5Par 

H2  Par 

H3  2.0Par 

N1  0.5Par 

N2  Par 

N3  2.0Par 

L: precipitation series of measurements; H: hydrologic parameters; N: 

nitrogen parameters; Par: optimal parameter sets. 

  



Table 3. Decomposition of total uncertainty into components in ANOVA. 

Sources of uncertainty Difference/Variance Expression 

Model structure (S) Difference                

 
Variance   

  
 

    
          

 
 

Parameter set (P) Difference                 

 
Variance   

  
 

    
          

 
 

Precipitation input (I) Difference                 

 
Variance   

  
 

    
          

 
 

Interaction effect (PI) Difference                                

 
Variance    

  
 

            
           

  
 

Internal variability (v) Difference                      

 
Variance   

  
 

                        
             

    
 

A bar denotes averaging and the dots indicate which component has been averaged over.    denotes the 

average number of repeated model runs generating uncertainty in internal variability. 

  



Table 4. Summary of the averaged variances and fractional variances in ANOVA. 

  Sources of 

uncertainty 

Min Max Mean   Fraction 

 
Streamflow: (m

3
 s

-1
)

2
/N loading: (kg km

-2
 d

-1
)

2
 

 
% 

        Fallow season 
Rice-growing 

season 
Average     

Streamflow   
  5.93E-04 20.33 1.22 0.84 1.04   60.96 

 
  

  5.67E-12 2.51E-04 7.82E-06 2.65E-05 1.73E-05 
 

2.66E-03 

 
  

  0.15 14.74 0.73 0.54 0.63 
 

30.10 

 
   

  0.00 0.86 0.09 0.15 0.12 
 

8.47 

 
  

  6.10E-07 3.56E-02 6.65E-04 1.60E-03 1.15E-03 
 

0.48 

 
   

  
2.04 1.52 1.78 

  

         NH4
+
-N   

  6.05E-04 0.95 0.07 0.13 0.10 
 

31.49 

 
  

  6.39E-07 0.01 1.53E-03 1.29E-03 1.39E-03 
 

0.57 

 
  

  2.28E-03 0.98 0.24 0.25 0.24 
 

58.83 

 
   

  5.80E-04 0.20 0.01 0.03 0.02 
 

7.42 

 
  

  2.05E-06 9.71E-03 1.26E-03 4.61E-05 6.64E-04 
 

1.68 

 
   

  
0.32 0.40 0.36 

  

         
NO3

-
-N   

  5.17E-03 4.14 0.33 0.46 0.39 
 

18.04 

 
  

  1.85E-05 0.92 0.06 0.16 0.11 
 

2.89 

 
  

  9.94E-03 9.33 1.47 1.91 1.67 
 

63.48 

 
   

  2.13E-03 1.49 0.10 0.19 0.14 
 

6.24 

 
  

  1.71E-05 1.59 0.25 0.01 0.13 
 

9.36 

 
   

  
2.20 2.72 2.45 

  

         TN   
  5.13E-03 9.62 0.55 1.07 0.80 

 
22.51 

 
  

  3.48E-05 0.89 0.07 0.15 0.11 
 

1.57 

 
  

  2.33E-02 15.88 2.75 3.31 3.01 
 

61.64 

 
   

  6.23E-03 2.65 0.16 0.32 0.24 
 

6.12 

 
  

  5.24E-05 1.85 0.28 0.01 0.15 
 

8.15 

 
        3.81 4.86 4.30     

Min/Max: the minimal/maximal value of streamflow or N loading;   
 ,   

 ,   
 ,    

 ,   
  and   : variance of input, 

structure, parameter, interaction effect, internal variability and total; The gray shadow denotes where values are greater in 

the rice-growing season than in the fallow season. 

  



 

Fig. 1 Land use types (a) and stream network (b) of the Tuojia watershed (The red point is the 

location of the watershed outlet and stream discharge station. The black points denote locations of 

meteorological stations). 



 

Fig. 2 Measured precipitation, streamflow discharge (a) and N concentrations (b) at outlet of the 

Tuojia watershed. 

  



 

Fig. 3 Flowchart of this study, including the configuration of CNMM and the BayeANOVA 

framework with DREAM algorithm. 

  



 

Fig. 4 Estimated 95% predicting confidence intervals of streamflow (a) and NH4
+
-N (b), NO3

-
-N 

(c) and TN (d) loadings during 2010.11-2013.10. 

  



 

Fig. 5 Variance of simulated streamflow (a) and its fractional variance among five sources (b) 

during 2010.11-2013.10 in the rice-growing and fallow season. The gray bands indicate the 

rice-growing season. 

  



 

Fig. 6 Variance of simulated NH4
+
-N loading (a) and its fractional variance among five sources (b) 

during 2010.11-2013.10 in the rice-growing and fallow season. The gray bands indicate the 

rice-growing season. 

  



 

Fig. 7 Variance of simulated NO3
-
-N loading (a) and its fractional variance among five sources (b) 

during 2010.11-2013.10 in the rice-growing and fallow season. The gray bands indicate the 

rice-growing season. 

  



 

Fig. 8 Variance of simulated TN loading (a) and its fractional variance among five sources (b) 

during 2010.11-2013.10 in the rice-growing and fallow season. The gray bands indicate the 

rice-growing season. 

  



 

Fig. 9 Posterior distributions (histograms) of superpopulation standard deviations 

( , , , , )S P I PI v      against half-Cauchy prior trends (red lines). 

  



 

Fig. 10 Statistics of posterior distributions for uncertainty in simulating streamflow and loadings 



of NH4
+
-N, NO3

-
-N and TN under individual precipitation inputs (a), model structures (b) and 

parameter sets (c). The thin lines denote the 5th-95th percentiles and the thick lines represent the 

25th-75th percentiles.  



 

Fig. 11 Estimated values of TN loading and corresponding cumulative probability in the fallow 

season (a) and rice-growing season (b) during the study period. 


