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Abstract: This study proposes a method to estimate the timing of human-induced climate change 13 

(HICC) emergence from internal climate variability (ICV) for hydrological impact studies based on 14 

climate model ensembles. Specifically, ICV is defined as the inter-member difference in a multi-15 

member ensemble of a climate model in which human-induced climate trends have been removed 16 

through a detrending method. HICC is defined as the mean of multiple climate models. The 17 

intersection between HICC and ICV curves is defined as the time of emergence (ToE) of HICC from 18 

ICV. A case study of the Hanjiang River watershed in China shows that the temperature change has 19 

already emerged from ICV during the last century. However, the precipitation change will be masked 20 

by ICV up to the middle of this century. With the joint contributions of temperature and precipitation, 21 

the ToE of streamflow occurs about one decade later than that of precipitation. This implies that 22 

consideration for water resource vulnerability to climate should be more concerned with adaptation 23 

to ICV in the near-term climate (present through mid-century), and with HICC in the long-term 24 

future, thus allowing for more robust adaptation strategies to water transfer projects in China.   25 
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INTRODUCTION 1 

The Intergovernmental Panel on Climate Change (IPCC, 2014) states that consecutive 2 

changes of precipitation pattern and temperature will give rise to a wide scope of 3 

environmental and socio-economic impacts by the end of the 21st century. Global 4 

climate change is driven on all timescales beyond that of individual weather events by 5 

internal and external forcing (IPCC, 2014). Internal forcing includes naturally occurring 6 

processes in ocean and atmosphere, and interactions of ocean and atmosphere within 7 

the climate system. Internal forcing exists as far back as pre-industrial time, when the 8 

climate system was more likely in an idealized state of climatic equilibrium with a fixed 9 

atmospheric composition and an unchanging sun (IPCC, 2014). It gives rise to internal 10 

climate variability which contributes to variations in climate. In this way, internal 11 

climate variability is natural fluctuations superimposed on a stable average climate state 12 

in pre-industrial time or a human-induced climate change trend in industrial time. 13 

Variations in climate may also result from external forcing of the climate system. 14 

External forcing consists of anthropogenic forcing, such as greenhouse gas emissions 15 

and disruptive land use, and natural external forcing, such as volcanic eruptions and 16 

solar variations. The impact of volcanic eruptions generally lasts for less than a decade 17 

(IPCC, 2014), while solar variations take place at multi-decadal, multi-centennial and 18 

millennial scales (Helama et al., 2010), which are considerably longer than decades. 19 

However, the classical period for estimating climate change is 30 years, as defined by 20 

the World Meteorological Organization (IPCC, 2014). Regardless of climate change 21 
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due to natural forcing with quite different timescales (a few years for volcanic eruptions 1 

and tens of thousands of years for solar radiation (Milankovitch cycles)), climate 2 

change mainly consists of human-induced climate change (HICC) and internal climate 3 

variability (ICV).  4 

Climate change impacts have been given much attention in recent literature, 5 

among which the importance of ICV has been discussed in several studies. For example, 6 

Deser et al. (2012b) suggested presenting the role of ICV in overall climate change on 7 

timescales of a few decades. Fyfe et al. (2013) claimed that ICV could help explain the 8 

fact that recent observed global warming is significantly less than that simulated by 9 

climate models. Swart et al. (2015) found that ICV can obscure or strengthen 10 

anthropogenic sea-ice loss at annual, decadal and multi-decadal timescales and should 11 

be properly considered in order to interpret projections and evaluate models. Fyfe et al. 12 

(2016) support the view that the effects of ICV imposed on HICC have contributed to 13 

the global surface warming slowdown or hiatus. In addition, Dai et al. (2015) concluded 14 

that ICV, mainly manifested in Interdecadal Pacific Oscillation, was largely responsible 15 

for recent global warming slowdown, as well as for earlier slowdowns and accelerations 16 

in global-mean temperature, with preferred spatial patterns different from those 17 

associated with human-induced warming or aerosol-induced cooling.  18 

One of the other aspects of studying ICV is to investigate its contribution to the 19 

uncertainty of climate change projections. For example, Hawkins and Sutton (2009) 20 

quantified the relative contribution of ICV to the uncertainty of global temperature 21 

projections over the 21st century, using the Coupled Model Intercomparison Project 22 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

4 
 

Phase 3 (CMIP3) archive. They found that ICV contributed significantly to the 1 

uncertainty of inter-decadal temperature before 2010. A follow-up study by Hawkins 2 

and Sutton (2011) for precipitation at a regional scale showed that ICV was the 3 

dominant source of uncertainty for decadal changes of precipitation in the first few 4 

decades of the 21st century. Deser et al. (2012a) investigated the uncertainty in climate 5 

change projections (surface air temperature, precipitation and sea level pressure) arising 6 

from ICV, using a 40-member ensemble of the National Center for Atmospheric 7 

Research Community Climate System Model Version 3 (CCSM3) under the A1B 8 

greenhouse gas emission scenario. Their results showed that ICV accounts for at least 9 

half of the inter-model uncertainty in projected climate (surface air temperature, 10 

precipitation and sea level pressure) trends during 2005-2060. Deser et al. (2014) also 11 

examined the contribution of ICV to the uncertainty in projected surface air temperature 12 

and precipitation trends during 2010-2060 at local and regional scales over North 13 

America from large ensembles of simulations with two comprehensive climate models, 14 

the CCSM3 and the European Centre Hamburg Model 5 (ECHAM5)-Max Planck 15 

Institute Ocean Model (MPI-OM). This study showed that ICV has significant impact 16 

on precipitation trends, and that intrinsic atmospheric circulation variability is mainly 17 

responsible for the uncertainty in future climate trends.  18 

In addition to investigating the role and contribution of ICV in climate projection, 19 

a few studies have also quantified the magnitude of ICV relative to HICC in overall 20 

climate change using Time of Emergence (ToE) as a criterion. ToE is defined as the 21 

timing of when the magnitude of HICC becomes greater than the noise of ICV 22 
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(Hawkins and Sutton, 2012). For example, Giorgi and Bi (2009) defined HICC as the 1 

mean precipitation change over models with multiple projections, and ToE as the time 2 

when HICC emerges from a combination of inter-model variability and ICV for 3 

precipitation. Inter-model variability is defined as a variance of individual model 4 

change time series after averaging over the projections within each model. Regarding 5 

ICV itself, different changes between each simulation and the ensemble mean were 6 

obtained. Mahlstein et al. (2011) estimated HICC using the multi-model mean of 7 

summer average surface temperature. Model data were first linearly detrended, and then 8 

summer average surface temperatures were determined for each year. ICV was defined 9 

as 2 standard deviations of summer average surface temperature after detrending. 10 

Hawkins and Sutton (2012) assumed that HICC of global mean surface air temperature 11 

follows a nonlinear trend. Thus, a 4th-order polynomial was used to fit the annual 12 

temperature. ICV was defined as the inter-annual standard deviation of seasonal (or 13 

annual) mean temperatures, using pre-industrial control simulations assumed without 14 

anthropogenic forcing. Their study implies that ToE is a basic property of climate 15 

system; the true values of which are unknown but which can be estimated using model 16 

simulations. Similarly, Maraun (2013) defined HICC as the multi-model mean of 17 

precipitation. Model data were first linearly detrended by a parametric trend model, and 18 

then ICV was defined as the inter-annual variability measured by the standard deviation 19 

of the detrended model data. 20 

Even though the magnitude of ICV relative to HICC has been investigated in some 21 

studies, far fewer studies have discerned the timing of HICC’s departure from ICV for 22 
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hydrological climate change impact studies. For example, Leng et al. (2016) detected 1 

the emergence of hydrologic changes in surface water resources in the conterminous 2 

United States under future warming. They used a two-sample Kolmogorov–Smirnov 3 

test to compare the probability distribution functions of historical and future 4 

streamflows. The emergence of significant changes is defined as the time when the 5 

future distribution differs significantly from the reference period, and when the 6 

distributions in all subsequent 30-year periods also differ significantly from the 7 

reference period. This study did not separately estimate HICC and ICV to find ToE.  8 

Moreover, since ICV manifests itself at various temporal and spatial scales, there 9 

are many modes of ICV for climate system. Hawkins and Sutton (2012) and Maraun 10 

(2013) investigated inter-annual variability and defined the ToE of climate change 11 

signal as a specific year. While others (e.g. Giorgi and Bi, 2009; Mahlstein et al., 2011; 12 

Leng et al., 2016) investigated multi-decadal variability and defined the ToE as a period 13 

of 20 or 30 years. Since climate change impact studies are commonly conducted for 14 

multi-year periods (e.g., of 30 years) (IPCC, 2014), it may be more reasonable to 15 

estimate ICV at a multi-decadal time scale when the goal is to investigate the role of 16 

ICV in climate change impact studies. In addition, ToE estimated for a multi-year period 17 

may be more reliable and credible, since inter-annual variability is mostly smoothed by 18 

calculating the multi-year average.  19 

The main objective of this study is to propose a method to estimate the timing of 20 

climate change emergence from ICV for hydrological impact studies based on a multi-21 

member ensemble of a climate model. Hanjiang River watershed above the 22 
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Danjiangkou reservoir (in China) is selected to exemplify the proposed method.  1 

STUDY AREA AND DATA 2 

Study area 3 

The Hanjiang River has a mainstream river length of 1577 km and a drainage area of 4 

159,000 km2 (figure 1). It is one of the longest tributary rivers of the Yangtze River. In 5 

the Hanjiang River watershed (a subtropical monsoon region), average annual 6 

precipitation varies from 700 mm to 1100 mm (Wang et al., 2014), mainly due to 7 

southeastern and southwestern maritime monsoons. Three quarters of the total 8 

precipitation falls from June to October, usually giving rise to great floods (Xu et al., 9 

2012). According to hydrological regimes (e.g. Chen et al., 2012; Yang et al., 2016), 10 

May to October are considered as the wet season and the other months are considered 11 

to be the dry season. Average annual temperature is 15.5 C. Mean annual discharge of 12 

the Hanjiang River is about 1150 m3/s (Wang et al., 2015). 13 

The watershed above the Danjiangkou reservoir, with a drainage area of about 14 

89,540 km2, is used in this study. Located in the middle and upper reaches of the 15 

Hanjiang River watershed, the Danjiangkou reservoir is the water source for the Middle 16 

Route Project of the South-to-North Water Diversion Project (Yang and Zehnder, 2005; 17 

Chen et al., 2007). In December 2014, it began to provide water for people in 20 large 18 

and medium cities in 4 provinces/municipalities, including the capital (Beijing). It also 19 

provides comprehensive benefits such as flood control, power generation, irrigation, 20 

shipping, livestock farming, tourism, and so on. The assessment of climate change 21 
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impacts on hydrology is therefore of great importance for water resource managers.                   1 

Data  2 

This study uses both observed and model-simulated climate data. Observed data include 3 

precipitation, maximum and minimum temperatures at daily scale over 1971-2000 4 

derived from 11 meteorological stations in the study region. Observed meteorological 5 

data were provided by the China Meteorological Data Sharing Service System. To run 6 

a lumped hydrological model, meteorological data from the 11 stations were averaged 7 

to areal mean time series using the Thiessen polygons method. The inflow to the 8 

Danjiangkou Reservoir over 1961-2000 was provided by the Bureau of Hydrology of 9 

the Changjiang Water Resources Commission in China. The reservoir inflow was 10 

calculated using a water mass balance method (e.g. Chow et al., 1988; Fenton, 1992; 11 

Deng et al., 2014). Specifically, it was calculated by adding a change of the 12 

Danjiangkou reservoir storage to the outflow at the Danjiangkou reservoir.  13 

Climate model data used in the study include 29 global climate model (GCM) 14 

simulations obtained from the Coupled Model Intercomparison Project Phase 5 (CMIP5) 15 

and a 40-member ensemble from the Community Earth System Model version 1 16 

(CESM1) (Table 1). All 40 members of CESM1 are simulated by one climate model 17 

under the same external forcing, but with different initial conditions. In other words, 18 

differences among 40 members are only due to internal forcing in the climate model. 19 

Therefore, the differences among 40 members in the climate model naturally represent 20 

internal climate variability in the virtual world. Multi-member ensembles (e.g. CESM1) 21 
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from Community Earth System Model (CESM) were developed to study the role of 1 

ICV in climate change impact studies (e.g. Hu and Deser, 2013; Kang et al., 2013; Lu 2 

et al., 2014; Kay et al., 2015; Fasullo and Nerem, 2016). Multi-member ensembles from 3 

CESM were verified in terms of estimating the internal precipitation and temperature 4 

variability at the multi-decadal scale at the global scale and showed a reasonable 5 

performance (e.g. Otto-Bliesner et al., 2015; Ricke and Caldeira, 2014; Kay et al., 2015). 6 

All climate model simulations cover the 1970-2100 period. The historical period is 7 

driven by historical climate forcing and the future period is driven by Representative 8 

Concentration Pathway (RCP) 8.5 forcing. The RCP8.5 implies the greatest HICC, and 9 

tends to result in the greatest rise in both climate projections and hydrological impacts.  10 

METHODOLOGY 11 

To estimate the timing of when HICC emerges from ICV for hydrological climate 12 

change impacts, HICC and ICV need to be estimated. HICC is defined as the ensemble 13 

mean of 29 GCM simulations and the first member of CESM1 (a mean of 30 14 

simulations) after bias correction. For estimating ICV, a detrending method is used to 15 

remove human-induced climate trend, and then the remainder is used to calculate ICV. 16 

Since climate model simulations are usually too biased to be used as direct inputs to a 17 

hydrological model, a bias correction is used to reduce their biases. More specifically, 18 

a traditional two-step (bias correction and hydrological simulation) modeling chain is 19 

applied when assessing the climate change impact on hydrology. To assess the impacts 20 

of ICV on hydrology, one more step (detrending) is added in the modeling chain to 21 
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remove climate trend from the CESM1 ensemble. The other two steps are the same. 1 

More details are given below. 2 

Detrending methods 3 

A two-stage detrending method was used to remove climate trend from the CESM1 4 

ensemble. The climate trend is assumed to follow a linear trend. Since all CESM1 5 

members are simulated using the same model structure and driven by identical climate 6 

forcing, it is expected that all members include the same climate trend. Thus, the climate 7 

trend is estimated based on a 40-member ensemble mean. 8 

Since the CESM1 simulations are driven by different forcings during the historical 9 

period (1970-2005) and the future period (2006-2100), the climate trend may be 10 

different between these two periods. Thus, a two-stage method is used to detect and 11 

remove trends of climate change for the two periods separately. For each period, a 12 

Mann-Kendall test is used to discern if a significant trend exists. In the first stage, if a 13 

significant trend exists in the historical period, the Mann-Kendall test is further used to 14 

find a breakpoint that separates the historical period into sub-periods with and without 15 

a climate trend. In other words, the first sub-period is free of human-induced climate 16 

trend, while the detected trend begins at the breakpoint and extends throughout the 17 

second sub-period. Since several breakpoints may exist when using the Mann-Kendall 18 

test, the sum of squared errors (SSE) is used as a criterion to find the real breakpoint, 19 

which can best distinguish the two sub-periods. The SSE of prediction is calculated 20 

based on the mean value over the first sub-period and the fitted linear trend over the 21 
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second sub-period. To detrend the climate trend for the historical period, the first sub-1 

period is assumed to be unchanged, while a linear curve is fitted to the second sub-2 

period with its first point forced to pass through the mean of the first sub-period; that 3 

same trend is then removed from each of the 40 members. In the second stage if a 4 

significant trend exists for the future period, a linear curve is fitted to the ensemble 5 

mean of 40 members. The same trend is then removed from each of the 40 members. 6 

The difference between the mean values of the historical and future periods is removed 7 

in the last step. The observed precipitation and mean temperature may also contain 8 

climate trends. If the Mann-Kendall test shows a significant trend, the first stage of the 9 

above method is used to remove the climate trend for the single time series. ICV is the 10 

residual of the data after the trend removal step.    11 

Bias correction  12 

A quantile mapping bias correction was used to correct the bias for a multi-member 13 

ensemble of CESM1 and 29 climate model simulations. This method (Schmidli et al., 14 

2006; Mpelasoka and Chiew, 2009; Chen et al., 2013) is a combination of the Daily 15 

Transition (DT) (Mpelasoka and Chiew, 2009) and Local Intensity Scaling (LOCI) 16 

(Schmidli et al., 2006; Chen et al., 2011b) methods, and is known as daily bias 17 

correction (DBC) in Chen et al. (2013). The LOCI method is first used to correct 18 

precipitation occurrence, insuring that the frequency of precipitation occurrence of 19 

corrected data at the reference period is equal to that of observed data for each month. 20 

Next, the DT method is applied to correct the frequency distribution of precipitation 21 
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amounts and temperatures based on quantile differences between model data and 1 

observed data.  2 

The DBC method was calibrated at a historical period (1971-2000) and applied to 3 

multiple 30-year periods. The multiple periods are sliding 30-year time windows that 4 

vary by one year, e.g. 1970-1999, 1971-2000, 1972-2001, etc., over the whole period 5 

(1970-2100), totaling 102 periods. When correcting CESM1, all members were pooled 6 

together to estimate bias correction factors. In other words, correction factors were 7 

estimated as the difference between observed data and all the members of the model 8 

data during a reference period (1971-2000). For each of the 40 ensemble members, 9 

correction factors, assumed to be constant over time, were applied to model data for the 10 

whole period (1970-2100). All the members of CESM1 are treated as a whole because 11 

all CESM1 members were simulated using the same climate model with identical 12 

climate forcing, and therefore it is expected that all members have the same model 13 

biases. When correcting the other 29 GCM simulations, correction factors were 14 

estimated for each GCM simulation. In other words, each climate simulation was 15 

corrected individually.  16 

Hydrological simulation 17 

The hydrological modeling was carried out using a lumped conceptual rainfall-runoff 18 

model, HMETS, developed at the École de technologie supérieure, University of 19 

Quebec (Martel et al., 2017). HMETS has been used in a number of flow prediction and 20 

climate change impact studies (e.g. Arsenault et al., 2013; Chen et al., 2014). It accounts 21 
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for evapotranspiration, infiltration, snow accumulation, melting and refreezing 1 

processes, and flow routing to a watershed’s outlet. The model has up to 21 free 2 

parameters: one for evapotranspiration, ten for snow accumulation and snowmelt, four 3 

for vertical water balance, and six for horizontal water movement. For rainfall-4 

dominated watersheds (as is the case in this study), HMETS’ snow module is not used, 5 

and so the model used in this study has 11-parameter to be determined. The required 6 

daily input data for HMETS are the daily averaged precipitation and daily mean air 7 

temperature. If the maximum and minimum temperatures are input to the model, they 8 

are automatically averaged to the mean temperature. The daily inflow discharge time 9 

series is also used for calibration (1961-1980) and validation (1981-2000) purpose. 10 

Model calibration was done automatically using the Covariance Matrix Adaptation 11 

Evolution Strategy (CMAES) (Hansen and Ostermeier, 2001). The Nash-Sutcliffe 12 

efficiency was used for model evaluation. The chosen set of parameters yielded Nash-13 

Sutcliffe criterion values of 0.79 and 0.78 for the calibration and validation periods, 14 

respectively. Considering the fact that climate data from only 11 meteorological stations 15 

were used in model calibration at the daily scale, the performance of HMETS is 16 

considered acceptable for the studied watershed. The mean hydrographs of the observed 17 

and simulated flows over both the calibration and validation periods are drawn in figure 18 

2.  19 

Estimation of the Time of Emergence  20 

The timing of HICC emerging from ICV (time of emergence, ToE) was estimated both 21 
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for climate projections and hydrological simulations. HICC and ICV were estimated 1 

using the method described below. 2 

The HICC is calculated with the following four steps. (1) Using the DBC method, 3 

102 bias-corrected periods were obtained for all 30 simulations. The 102 periods are 4 

30-year horizons varying by one year over the whole period (1970-2100), i.e. 1970-5 

1999, 1971-2000, 1972-2001,…, 2071-2100. (2) The 30-year mean value was 6 

calculated for each period. A total of 102 mean values were obtained for each climate 7 

simulation. (3) The change (relative change for precipitation and streamflow, and 8 

absolute change for temperature) in each of 102 mean values relative to mean value at 9 

the reference period (1971-2000) was calculated. (4) The mean value of these changes 10 

over 30 simulations was defined as HICC.  11 

The multi-decadal inter-member variability is used to represent ICV in this study. 12 

Specifically, the following four steps are involved. (1) Using the detrended and bias-13 

corrected 40-member ensemble, 102 30-year periods were divided for each ensemble 14 

member. (2) The 30-year mean value was calculated for each period and a total of 102 15 

mean values were obtained for each ensemble member. (3) The change (relative change 16 

for precipitation and streamflow, and absolute change for temperature) in each of the 17 

102 mean values relative to mean value at the reference period (1971-2000) was 18 

calculated. (4) The standard deviation of these changes over 40 members was calculated 19 

for each period and a total of 102 standard deviation values were obtained. ICV was 20 

then defined as ±2 standard deviations of inter-member differences. According to the 21 

‘3’ principle of normal distribution, the chance for absolute values of climate change 22 
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(attributed to ICV) to exceed +2 standard deviations of inter-member differences is only 1 

2.3% and the same is true for -2 standard deviations (Hansen et al., 2012). Therefore, 2 

when absolute values of climate change become greater than ±2 standard deviations of 3 

inter-member differences, the climate change is most likely to be attributed to HICC. 4 

Similar method has also been used in other studies (e.g. Hulme et al., 1999, Mahlstein 5 

et al., 2011; Hansen et al., 2012; IPCC, 2013). 6 

With the above steps, 102 HICC values form a curve and 102 ICV values form 7 

another curve; the intersection of these two curves is defined as the ToE. If an HICC 8 

curve intersects an ICV curve of +2 standard deviations, it implies that there is an 9 

increasing climate change trend. If an HICC curve intersects an ICV curve of -2 10 

standard deviations, then there is a decreasing climate change trend. No intersection 11 

implies that HICC does not emerge from ICV or that there is no obvious HICC. To 12 

produce conservative adaptation strategies for HICC impacts, 1 standard deviation is 13 

also calculated. The period between the intersections of 2 and 1 standard deviations 14 

is defined as an unpredictable time period. The same procedure was carried out for 15 

precipitation, mean temperature and streamflow at annual and seasonal scales (wet 16 

season: May to October; dry season: January to April and November to December). The 17 

dry and wet seasons were defined based on climatic and hydrological regimes in the 18 

Hanjiang River watershed. 19 
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RESULTS  1 

Performance of the detrending method 2 

The detrending method was applied to mean temperature and precipitation time series 3 

over the 1971-2000 reference period for observations and over the 1970-2100 period 4 

for a CESM1 40-member ensemble. Figure 3 presents the detrending results for mean 5 

temperature and precipitation of a CESM1 40-member ensemble at annual and seasonal 6 

time scales. For this specific watershed, annual and wet season mean temperatures show 7 

little trend, while dry season mean temperature shows a significant decreasing trend for 8 

the historical period tested by the Mann-Kendall test at the p=0.05 significant level. 9 

However, annual and seasonal mean temperatures exhibit a significant increasing trend 10 

for the future period. For annual and seasonal precipitation, a significant downtrend is 11 

observed for the historical period, while a significant uptrend is observed for the future 12 

period. The detrending method performs reasonably well in terms of removing the trend 13 

of the multi-member ensemble. Residual ensemble spread represents ICV, which 14 

obviously has been preserved throughout the detrending process, since fluctuations and 15 

ensemble spread remain almost the same with raw data for the same time series.  16 

Performance of the bias correction method 17 

To verify the performance of bias correction in correcting multi-member ensemble, the 18 

multi-member ensemble of CESM1 mean temperature and precipitation is compared to 19 

the observed counterparts for the reference period (1971-2000). Figure 4 presents 20 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

17 
 

empirical cumulative distribution functions (CDFs) of the detrended annual mean 1 

temperature and precipitation for raw and bias-corrected 40-member ensembles of 2 

CESM1. The empirical cumulative distribution function (e.g. F(x)) is defined as the 3 

ratio of the number (e.g. a) of annual mean temperatures or annual precipitations that 4 

are less than a certain value (e.g. x) and sample size (e.g. n) plus one (i.e. F(x) =a/ (n+1)). 5 

For each empirical probability, a horizontal range was constructed by 40 values 6 

corresponding to 40 members of CESM1. All members were pooled together to plot an 7 

empirical CDF curve and CDFs for observed annual mean temperature and 8 

precipitation were also plotted for comparison.  9 

For raw model data, wet biases are observed for annual precipitation and cool 10 

biases are observed for annual mean temperature. In other words, the CESM1 ensemble 11 

underestimates annual mean temperature and overestimates annual precipitation. After 12 

bias correction, wet biases in precipitation and cool biases in mean temperature were 13 

removed, as indicated by the fact that the CDFs of corrected ensembles are almost 14 

identical to those of observed data for both mean temperature and precipitation. This 15 

result proves the good performance of bias correction in terms of removing bias from 16 

multi-member ensemble means.  17 

In a departure from traditional studies that use single climate simulation, this study 18 

used a bias correction method for a multi-member ensemble. This approach should not 19 

only reduce the biases of climate model outputs, but also preserve the simulated ICV. 20 

ICV can be represented by a spread of 40 CDFs corresponding to 40 CESM1 members. 21 

If the bias correction was conducted for each member individually, the CDFs of all 22 
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members should be almost identical to observed CDFs. Figure 4 shows that, after bias 1 

correction, the spread of 40 ensemble members remains almost the same as those of 2 

raw model data for temperature and precipitation. This indicates the reasonable 3 

performance of the bias correction methods in terms of preserving the inter-member 4 

variability of multi-member ensembles.  5 

Performance of hydrological simulation 6 

Figures 5(A) and 5(B) show mean hydrographs simulated by raw and corrected 7 

climate simulations, respectively. Specifically, hydrographs were calculated by 8 

averaging daily streamflows over 30-year reference period (1971-2000) for each of 40 9 

members. Figures 5(C) and 5(D) present empirical CDFs of annual 95th percentile high 10 

flow and annual 5th percentile low flow. The empirical CDFs of high- and low-flows 11 

were calculated as with those of precipitation and temperature in Figure 4.  12 

The raw CESM1 ensemble considerably overestimates mean, high and low flows. 13 

The 40-member ensemble hydrograph envelope simulated by raw data is totally beyond 14 

the hydrograph simulated by observed climate data. Similar results are also observed 15 

for high- and low-flows, as empirical CDFs are all greater than counterparts of observed 16 

data. This was as expected, because the CESM1 ensemble overestimates precipitation 17 

and underestimates temperature. With bias correction, the 40-member hydrograph 18 

envelope covers the observed counterpart, and also the envelope of empirical CDFs 19 

embraces the observed counterpart for both high- and low-flows. This indicates that the 20 

model bias in climate data has been removed and so the hydrological simulation is 21 
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reliable. The variation between observed and simulated hydrographs is caused by ICV. 1 

Times of emergence of climate change projection 2 

Times of emergence for temperature 3 

Figures 6(A) to 6(C) present the ToEs for annual and seasonal mean temperatures. Both 4 

annual and seasonal mean temperature HICCs display a gradually increasing pattern. 5 

For example, annual mean temperature HICC increases by 4C from the end of the 20th 6 

century to the end of the 21st century. ICV in mean temperature is generally constant 7 

during the studied period, as indicated by the horizontal curve. In addition, ICV is small 8 

for annual and seasonal mean temperatures, as it is less than 0.5C. Both annual and 9 

seasonal mean temperature HICCs first increase slowly and then faster, and then after 10 

a certain point they increase steadily. For example, annual mean temperature HICC 11 

increases slowly from period 1971-2000 to period 1980-2009. It then increases at a rate 12 

that gradually becomes greater until period 2017-2046; thereafter the rate of increase 13 

stays relatively constant.  14 

Two curves intersect at the 1981-2010 period for annual mean temperature, at the 15 

1981-2010 period for wet season mean temperature, and at the 1984-2013 period for 16 

dry season mean temperature. When using 1 standard deviation to represent ICV, the 17 

ToE will move backwards by around 5 years. 18 

Times of emergence for precipitation 19 

Figures 6(D) to 6(F) present the ToE for annual and seasonal precipitations. In contrast 20 
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to mean temperature changes, annual and wet season precipitation HICCs first show a 1 

slight decreasing trend until the 2030s, and then they start gradually increasing. Dry 2 

season precipitation HICC shows a significant increasing pattern over the 1970-2100 3 

period. Wet season precipitation HICC contributes more to annual precipitation HICC, 4 

as rainfall in the studied watershed mainly happens in the wet season. ICV is generally 5 

constant during the 1970-2100 period. 6 

The HICC curve crosses the ICV curve at the 2043-2072 period for annual 7 

precipitation, at the 2052-2081 period for wet season precipitation and at the 2001-2030 8 

period for dry season precipitation, respectively. When using 1 standard deviation to 9 

represent ICV, the ToE will move backwards by about 10 years. 10 

Time of emergence for hydrological impact 11 

Figures 7(A) to 7(C) present the ToE for annual and seasonal mean streamflows. 12 

The results show that the human-induced change in annual and wet season mean 13 

streamflows display a slight decreasing trend until the 2030s and then they start to 14 

increase gradually. While for the dry season streamflow, the turning point is at the 2000s.  15 

The HICC curve crosses the ICV curve at the 2055-2084 period for annual mean 16 

streamflow, at the 2056-2085 period for wet season mean streamflow, and at the 2061-17 

2090 period for dry season mean streamflow, respectively. This indicates that the 18 

human-induced changes in annual and seasonal streamflows are likely to move out of 19 

the range of the internal streamflow variability in the second half of the 21st century. 20 

When using 1 standard deviation to represent ICV, the ToE will move backwards by 21 
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around 10 years in particular for annual and wet season mean streamflows.  1 

DISCUSSION 2 

This study investigated the importance of ICV relative to HICC in hydrological climate 3 

change impact studies. To achieve this, a method to estimate the ToE of climate 4 

projections and hydrological simulations is proposed. This method estimates ICV based 5 

on the spread of a multi-member ensemble, and HICC based on the mean over multi-6 

model projections together with that of a multi-member ensemble. A case study was 7 

conducted on the Hanjiang River watershed. 8 

The results show that the ToE of mean temperature has already occurred during 9 

the end of the last century and the beginning of this century, but this is not the case for 10 

precipitation. Instead, for precipitation, the ToE is projected to occur around the 2050s, 11 

several decades later than for mean temperature. ICV for precipitation is large enough 12 

to obscure HICC for precipitation for the next few decades of the 21st century, until the 13 

constantly-increasing HICC becomes greater thereafter. With the joint contribution of 14 

temperature and precipitation, ToE of mean streamflow occurs about one decade later 15 

than that of precipitation, near the horizon of 2100. This is as expected, because the 16 

increase in temperature partly offsets the increase in streamflow resulting from 17 

precipitation increase through the increase in evapotranspiration.  18 

The estimated ToE is dependent on how ICV and HICC are defined. In other words, 19 

different methods in estimating ICV and HICC may result in different ToEs. This study 20 

defined HICC as a multi-model ensemble mean. Even though some individual climate 21 
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model simulations may not be reliable in calculating the climate change signal, due to 1 

model uncertainty and climate variability, the multi-model ensemble mean can be 2 

considered as a more reliable solution, since the climate variability and model 3 

uncertainty are largely filtered out (Giorgi and Bi, 2009; Mahlstein et al., 2011; Maraun, 4 

2013). When calculating the ensemble mean, all climate projections were considered 5 

equiprobable in this study. However, other studies (e.g. Giorgi and Mearns, 2002, 2003; 6 

Hawkins and Sutton, 2009) proposed that climate models should be weighted based on 7 

their ability to better represent various metrics over a reference period. Weighting 8 

climate model simulation is controversial when using multiple climate models for 9 

impact studies; and is especially so between climate modeling and impact assessment 10 

communities. However, a recent study (Chen et al., 2017) showed that weighting GCMs 11 

has a limited impact on projected future climate both in terms of precipitation and 12 

temperature changes and hydrological impacts.  13 

The magnitude of HICC is also dependent on the greenhouse gas (GHG) emission 14 

scenario. Thus, the estimated ToE may also be sensitive to the GHG emission scenario, 15 

as has been pointed out in some studies (e.g. Giorgi and Bi, 2009). The magnitude of 16 

GHG-forced precipitation changes tends to become greater as the GHG forcing 17 

increases (Giorgi and Bi, 2009). The alternative scenarios for anthropogenic emissions 18 

give rise to changes in the ToE by a magnitude of a decade or more (Hawkins and Sutton, 19 

2012). For example, warm scenarios tend to lead to earlier ToEs, while lower levels of 20 

emissions result not only in later ToEs, but also in a more gradual rise in temperature 21 

HICC, thus producing a large increase in the uncertainty of ToEs (Hawkins and Sutton, 22 
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2012). In order to make a conservative decision to counter climate change impacts, only 1 

one extreme GHG emission scenario is used to estimate HICC in this study. 2 

ICV has been defined as the inter-member difference of a climate model. Since 3 

these ensemble members are projected within the same model structure and under the 4 

same forcing, inter-member difference can be considered as ICV. In other words, 5 

different ensemble members show how much climate can vary in the model world as a 6 

result of random internal variations. To the extent that the model simulates relevant 7 

physical processes, the range of ensemble provides insight into what could happen in 8 

the single realization that will occur in the real world (Deser et al., 2012a, 2012b). The 9 

same method has been used in several previous studies (e.g. Hulme et al., 1999; Deser 10 

et al., 2012a, 2012b; Fatichi et al., 2014). The results showed that multi-member 11 

ensemble of climate models can represent the observed ICV well at both regional and 12 

global scale. However, it should be noted that ICV is inherently complex and manifests 13 

itself over various temporal and spatial scales. This study only used multi-decadal 14 

variability to represent ICV at the multi-decadal scale. Multi-decadal variability is just 15 

one component of ICV, even though it is one of the key components for most climate 16 

change impact studies. Although some studies (e.g. Hawkins and Sutton, 2012; Maraun, 17 

2013) defined the ToE as a specific year, the ToE estimated for a multi-year period may 18 

be more reliable and credible, since inter-annual variability is mostly filtered out by 19 

calculating multi-year averages. Moreover, climate change impact studies are 20 

commonly conducted at the multi-decadal time scale. For example, the classical period 21 

for estimating climate change is 30 years, as suggested by the World Meteorological 22 
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Organization (IPCC, 2014).  1 

Other studies (e.g. Giorgi and Bi, 2009) defined the ToE as a time when HICC 2 

emerges from a combination of inter-model variability and natural variability (similar 3 

to ICV in this study). In other words, the noise of climate change was estimated based 4 

on ICV plus the inter-model variability. However, climate model uncertainty and ICV 5 

are different in origin, as ICV is a fundamental property of a climate system whilst 6 

model uncertainty is not (Hawkins and Sutton, 2012; Maraun, 2013). Moreover, 7 

consideration of ICV combined with model uncertainty is likely to give rise to a late 8 

warning of ToE, thus delaying detection and attribution for HICC. Therefore, it is more 9 

reasonable to use multi-member ensembles of climate models to estimate ICV, since 10 

climate model uncertainty plays a vital role in climate projection uncertainty (Jenkins 11 

and Lowe, 2003; Wilby and Harris, 2006; Chen et al., 2011a). 12 

In addition, based on previous studies (e.g. Hulme et al., 1999; Mahlstein et al., 13 

2011; Hansen et al., 2012; IPCC, 2013), ICV was defined as 2 standard deviations of 14 

inter-member variability in this study. As justified by Hansen et al. (2012), it is 15 

commonly assumed that climate variability can be approximated as a normal 16 

distribution. A normal distribution of variability has only 68% of its climate change 17 

values falling within 1 standard deviation of mean value. The tails of normal 18 

distribution decrease rapidly that there is only a 2.3% chance for climate change values 19 

to exceed 2 standard deviations. Therefore, ±2 standard deviations give a conservative 20 

criterion for detection of HICC. However, higher thresholds will cause later ToEs and 21 

lower thresholds will cause earlier ToEs. To date, the usage of the thresholds for ICV 22 
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estimation has not been exactly elucidated, a subject which deserves further studies.  1 

This study only uses one hydrological model for hydrological simulations. 2 

However, the hydrological model itself is one of uncertainty sources for climate change 3 

impact studies. Thus, it may be necessary to consider hydrological model uncertainty 4 

in estimating the importance of ICV in climate change impact studies. On the other 5 

hand, previous studies (e.g. Wilby and Harris, 2006; Chen et al., 2011a) also showed 6 

that climate model uncertainty is more significant than the uncertainty related to 7 

hydrological models.  8 

CONCLUSION 9 

This study investigated the importance of ICV relative to HICC in hydrological climate 10 

change impact studies, using a multi-member ensemble of a climate model for the 11 

Hanjiang River watershed. The following conclusions are drawn:  12 

1. The ToE of temperature has already occurred at around the end of the last century. 13 

However, the ToE of precipitation is projected to happen in the middle of the 21st 14 

century, much later than the ToE for temperature.  15 

2. For mean streamflow, the ToE is projected to happen around the end of the 21st 16 

century, later in wet season than in dry season. In other words, ICV is likely to have 17 

greater importance on climate change hydrological impacts in this century for the 18 

Hanjiang River watershed. 19 

3. Overall, in the near future, ICV is still the main cause of hydrological variability for 20 

the Hanjiang River watershed, and HICC is mostly obscured by ICV. However, as 21 
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the anthropogenic forcing (e.g. greenhouse gas emissions) increases, HICC will 1 

contribute more and more to hydrological changes.  2 

4. The results of this study imply that adapting to ICV may well turn out to be the most 3 

efficient approach in the near future, but in the long-term future, more attention 4 

should be paid to HICC. 5 
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Table 

Table 1 General information of 30 GCMs used 

Modeling 

center 
Institution Model name 

Horizontal 

resolution (lon. 

x Lat.) 

ID 

CSIRO-

BOM 

CSIRO (Commonwealth Scientific and Industrial Research 

Organisation Australia), and BOM (Bureau of Meteorology, Australia) 

ACCESS1.0 1.875 x 1.25 1 

ACCESS1.3 1.875 x 1.25 2 

BCC Beijing Climate Center, China Meteorological Administration 
BCC-CSM1.1 2.8 x 2.8 3 

BCC-CSM1.1(m) 1.125 x 1.125 4 

GCESS 
College of Global Change and Earth System Science, Beijing Normal 

University 
BNU-ESM 2.8 x 2.8 5 

CCCma Canadian Centre for Climate Modelling and Analysis 
CanESM2 2.8 x 2.8 6 

CESM1-CAM5 1.25 x 0.9 7 

NCAR National Center for Atmospheric Research CESM1 1.25 x 0.9 8 

CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici 

CMCC-CESM 3.75 x 3.7 9 

CMCC-CM 0.75 x 0.7 10 

CMCC-CMS 1.875 x 1.875 11 

CNRM-

CERFACS 

Centre National de Recherches Meteorologiques/Centre Europeen de 

Recherche et Formation Avancees en Calcul Scientifique 
CNRM-CM5 1.4 x 1.4 12 

CSIRO-

QCCCE 

Commonwealth Scientific and Industrial Research Organisation in 

collaboration with the Queensland Climate Change Centre of 

Excellence 

CSIRO-Mk3.6.0 1.875 x 1.875 13 

ICHEC Irish Centre for High-End Computing EC-EARTH 1.1x 1.1 14 

LASG-

CESS 

LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences; and CESS, Tsinghua University 
FGOALS-g2 1.875 x 1.25 15 

NOAA-

GFDL 
Geophysical Fluid Dynamics Laboratory 

GFDL-CM3 2.5 x 2.0 16 

GFDL-ESM2G 2.5 x 2.0 17 

GFDL-ESM2M 2.5 x 2.0 18 

NIMR-KMA National Institute of Meteorological Research HadGEM2-AO 1.875 x 1.25 19 

MOHC Met Office Hadley Centre 
HadGEM2-CC 1.875 x 1.25 20 

HadGEM2-ES 1.875 x 1.25 21 

INM Institute for Numerical Mathematics INM-CM4 2.0 x 1.5 22 

IPSL Institut Pierre-Simon Laplace 

IPSL-CM5A-LR 3.75 x 1.875 23 

IPSL-CM5A-MR 2.5 x 1.25 24 

IPSL-CM5B-LR 3.75 x 1.875 25 

MPI-M Max Planck Institute for Meteorology 
MPI-ESM-LR 1.875 x 1.8 26 

MPI-ESM-MR 1.875 x 1.8 27 

MRI Meteorological Research Institute 
MRI-CGCM3 1.125 x 1.125 28 

MRI-ESM1 1.1 x 1.1 29 

NCC Norwegian Climate Centre NorESM1-M 2.5 x 1.9 30 
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Figure Lists 1 

Figure 1. Location of the Hanjiang River watershed. 2 

 3 

Figure 2. Observed and HMETS-simulated mean hydrographs for (A) calibration 4 

(1961-1980) and (B) validation (1981-2000) periods for the Hanjiang River watershed. 5 

 6 

Figure 3. Raw and detrended CESM1 (A-C) mean temperature and (D-F) precipitation 7 

time series at annual and seasonal time scales, respectively, over the 1970-2100 period 8 

in the Hanjiang River watershed.  9 

Note: grey and orange shades show the ranges of precipitation or temperature 10 

ensembles with and without detrending, respectively. The orange and black curves 11 

show the ensemble means for non-detrended and detrended data, respectively. Red 12 

and bright green lines are the best-fit linear trends to the orange curves for the 13 

second historical sub-period and the future period, respectively. 14 

 15 

Figure 4. Empirical cumulative distribution functions (CDFs) for annual (A) mean 16 

temperature and (B) precipitation. (RA: all raw 40 members; CA: all corrected 40 17 

members; Obs: observed data; RS: each of the raw 40 members and the green symbols 18 

represent the spread of the 40 ensemble members; CS: each of the corrected 40 19 

members and the gray symbols represent the spread of the 40 ensemble members). 20 

 21 

Figure 5. Mean hydrographs simulated by (A) raw and (B) corrected climate data for 22 

reference period (1971-2000) and empirical cumulative distribution functions (CDFs) 23 

of (C) annual 95th percentile high flow and (D) annual 5th percentile low flow for the 24 

same period. (Mod: hydrographs of ensemble; Obs: hydrograph of observed data; RA: 25 

all raw 40 members of annual flows; CA: all corrected 40 members of annual flows; 26 

OBs: observed data of annual flows; RS: each of the raw 40 members and the green 27 

symbols represent the spread of the 40 ensemble members; CS: each of the corrected 28 

40 members and the gray symbols represent the spread of the 40 ensemble members). 29 

 30 

Figure 6. ToEs for annual and seasonal (A-C) mean temperatures and (D-F) 31 

precipitations in the Hanjiang River watershed. (Green dot lines: ICV estimated as 1 32 

standard deviation of inter-member differences; red dash lines: ICV estimated as 2 33 

standard deviations of inter-member differences; blue solid lines: human-induced 34 

climate change). 35 

 36 

Figure 7. ToEs for annual and seasonal mean streamflows in the Hanjiang River 37 

watershed. (Green dot lines: ICV estimated as 1 standard deviation of inter-member 38 

differences; red dash lines: ICV estimated as 2 standard deviations of inter-member 39 

differences; blue solid lines: human-induced climate change). 40 
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Figure 1. Location of the Hanjiang River watershed. 
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Figure 2. Observed and HMETS-simulated mean hydrographs for (A) calibration (1961-1980) and (B) validation 

(1981-2000) periods for the Hanjiang River watershed. 
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Figure 3. Raw and detrended CESM1 (A-C) mean temperature and (D-F) precipitation time series at annual and 

seasonal time scales, respectively, over the 1970-2100 period in the Hanjiang River watershed.  

Note: grey and orange shades show the ranges of precipitation or temperature ensembles with and without detrending, 

respectively. The orange and black curves show the ensemble means for non-detrended and detrended data, 

respectively. Red and bright green lines are the best-fit linear trends to the orange curves for the second historical 

sub-period and the future period, respectively. 
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Figure 4. Empirical cumulative distribution functions (CDFs) for annual (A) mean temperature and (B) precipitation. 

(RA: all raw 40 members; CA: all corrected 40 members; Obs: observed data; RS: each of the raw 40 members and 

the green symbols represent the spread of the 40 ensemble members; CS: each of the corrected 40 members and the 

gray symbols represent the spread of the 40 ensemble members). 
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Figure 5. Mean hydrographs simulated by (A) raw and (B) corrected climate data for reference period (1971-2000) 

and empirical cumulative distribution functions (CDFs) of (C) annual 95th percentile high flow and (D) annual 5th 

percentile low flow for the same period. (Mod: hydrographs of ensemble; Obs: hydrograph of observed data; RA: 

all raw 40 members of annual flows; CA: all corrected 40 members of annual flows; OBs: observed data of annual 

flows; RS: each of the raw 40 members and the green symbols represent the spread of the 40 ensemble members; 

CS: each of the corrected 40 members and the gray symbols represent the spread of the 40 ensemble members). 
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Figure 6. ToEs for annual and seasonal (A-C) mean temperatures and (D-F) precipitations in the Hanjiang River 

watershed. (Green dot lines: ICV estimated as 1 standard deviation of inter-member differences; red dash lines: ICV 

estimated as 2 standard deviations of inter-member differences; blue solid lines: human-induced climate change). 
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Figure 7. ToEs for annual and seasonal mean streamflows in the Hanjiang River watershed. (Green dot lines: ICV 

estimated as 1 standard deviation of inter-member differences; red dash lines: ICV estimated as 2 standard deviations 

of inter-member differences; blue solid lines: human-induced climate change). 
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