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Abstract: Lakes and vegetation are important factors of the Earth’s hydrological cycle 38 

and can be called an "indicator" of climate change. In this study, long-term changes of lakes’ 39 

area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the 40 

climate change were analyzed by using Mann-Kendall method during the past 30 years. 41 

Results showed that: 1) the lakes’ area of the QTP increased significantly during the past 30 42 
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years as a whole, and the increasing rates have been dramatically sped up since the year of 43 

2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, 44 

which increased from 618 km
2
 in the 1980s to 983 km

2
 in the 2010s; 2) Overall, the 45 

Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30 46 

years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year 47 

of 2000; 3) The air temperature increased significantly, the precipitation increased slightly, 48 

and the pan evaporation decreased significantly during the past 30 years. The lake area and 49 

vegetation coverage changes might be related to the climate change. The shifts in the 50 

temporal climate trend occurred around the year 2000 had led the lake area and vegetation 51 

coverage increasing. This study is of importance in further understanding the environmental 52 

changes under global warming over the QTP. 53 

  54 

Key words: lake area; Qinghai-Tibetan Plateau; climate change; vegetation restoration  55 

 56 

1. Introduction 57 

The Qinghai-Tibetan Plateau (QTP), with an average elevation of more than 4000 m, is 58 

the highest and largest highland in the world (Ijmker et al., 2012; You et al., 2008). The area 59 

is about 2.5 million square kilometers. The plateau is known as the "roof of the world" and 60 

"the third pole" (Ijmker et al., 2012). The dense distribution of lakes is a major feature of the 61 

QTP, and the total lake area accounts for about half of the China's total lake area (Zhu et al., 62 

2010). Lakes are an important component of terrestrial hydrosphere, exchanging heat and 63 
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water with the atmosphere (Xu et al., 2007). The QTP is also the headwater area for many 64 

large Asiatic rivers, such as Yangtze River, Yellow River, Mekong River, Yarlung Zangbo 65 

River, Indus River. As lakes in the QTP are rarely influenced by human activities due to the 66 

unique geographic location, therefore, they are extremely sensitive to climatic fluctuations 67 

and can be called an "indicator" of climate change, and the lakes are supposed as natural 68 

water bodies (Liu et al., 2009; Liu et al., 2013; Wan et al., 2014). This is of great theoretical 69 

and practical significance for the study of global environmental change and its response to 70 

climate change (Chen et al., 2014; Ke and Song, 2014; Zhang et al., 2014b). 71 

The vegetation coverage in the QTP is also called an "indicator" of climate change 72 

which plays a pivotal role in linking the biosphere, pedosphere, geosphere, hydrosphere, and 73 

atmosphere in the region, and even the whole of Asia (Huang et al., 2016). NDVI 74 

(Normalized Difference Vegetation Index) is an important indicator of vegetation coverage, 75 

and it can be used as an effective monitoring index between vegetation and natural 76 

environment (Band et al., 1993). The relationship between NDVI and climate had been 77 

extensively demonstrated at the regional scale and the global scale (Ji and Peters, 2003; Kim 78 

et al., 2012; Prasad et al., 2007; Sun et al., 2011; Zhao et al., 2011). Previous studies has 79 

reported that there were good relationships between the vegetation cover and climate change 80 

on the QTP. For example, Kato et al. (2004) found that the vegetation growth 81 

in the QTP was  expected to be sensitive to climate change. Thus, the linkages among 82 

climate change, vegetation growth, and lake area changes might help to further understand 83 
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the climate driving force to changes in lake, as well as the evaluation of regional ecological 84 

environment and sustainable development (Chen et al., 2014). 85 

Satellite remote sensing is an important data source with advantages of vast covering 86 

area, rich information and higher repeated frequency (Fu and Liu, 2007; Wu and Zhu, 2008; 87 

Zhu et al., 2010). In recent years, satellite remote sensing has been successfully used to 88 

detect the changes in the vegetation coverage, lake level, area and volume in the QTP and 89 

other places around the world (Duan and Bastiaanssen, 2013a; Duan and Bastiaanssen, 90 

2013b; Li et al., 2009; Yan and Zheng, 2015; Zhang et al., 2014a). For example , Wang et al. 91 

(2014) monitored the changes of lake areas in the QTP during the past 30 years with satellite 92 

remote sensing data, and they found that 5 lakes whose original area was more than 1 km² 93 

have disappeared; Yamzhogyum Co is in constant shrinking, but the area of some lakes, 94 

such as Selin Co, is expanding. Zhang et al. (2014) analyzed the characteristics of lake level 95 

change from 1972 to 2012, and summarized the characteristics of the dynamic changes of 96 

typical lake water levels in the QTP under the background of climate warming in recent 97 

decades with multi-source remote sensing data. 98 

However, some studies have focused only on the lake area changes with qualitative 99 

analysis, and the in-depth discussion on the dominant factors which affected the area of lakes 100 

is still lacking. Zhu et al. (2010) analyzed the lake area and water changes quantitatively in 101 

the past 34 years and their results indicated that the glacier melt caused by climate warming 102 

was the main reason which caused the rapid expansion of Nam Co Lake. Lei et al. (2013) 103 

reported that increased precipitation and runoff, and decreased lake evaporation were the 104 



 

6 

 

main causes for the coherent lake growth and could contribute by about 70% of total increase 105 

in lake storage over the central QTP. 106 

Therefore, a review of previous studies of the impacts of climate change on the lake 107 

areas over the QTP revealed that most of these studies ignored the response of lake areas 108 

and vegetation coverage changes to the climate change in the QTP, which is an important 109 

research gap. The research questions to be investigated in this study include: (1) Has the 110 

lakes’ area increased in the QTP during the past 30 years? (2) Has the vegetation coverage 111 

restored in the QTP during the past 30 years? (3) Does the climate change affect the lakes’ 112 

area and vegetation coverage over QTP during the past 30 years? This study is of 113 

importance in further understanding the environmental changes under global warming over 114 

the QTP. 115 

 116 

2. Data and Methodology 117 

Study Area  118 

Qinghai-Tibetan Plateau (QTP) is located in the southwest of China with the territory 119 

area about 2.4 million square kilometers (You et al., 2008). The climate in the plateau is 120 

marked by low temperature and strong solar radiation (Piao et al., 2011). The QTP lake 121 

region has the largest number of lakes in China. There are 1055 lakes, accounting for 39.2% 122 

of the total number of lakes in China (Piao et al., 2011; Xiao et al., 2013). In this study, a 123 

total of 51 lakes in the QTP were analyzed, of which 44 are mainly salt water lakes, and 7 124 

are freshwater lakes. The characteristics of the studied 51 lakes in the QTP are presented in 125 
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Figure 1 and Table 1. 126 

 127 

Fig.1 Location of selected 51 lakes over the QTP and concerned meteorological stations 128 

 129 

Datasets processing 130 

Meteorological data such as air temperature, precipitation and pan evaporation were 131 

collected from 86 meteorological stations in the QTP from the China Meteorological Science 132 

Data Sharing Service Network.  133 

The NDVI dataset at a spatial resolution of 8 km × 8 km and 15-day interval were 134 

derived from GIMMS (global inventory modeling and mapping studies) group. The dataset 135 

spanned from 1982 to 2013. It has been calibrated for sensor shift, cloud test 136 

and removed the effects of solar zenith angles and other factors (Piao et al., 2011).  137 

The lake area data were derived from Landsat satellite imagery data. Landsat is a NASA 138 

land satellite program and had launched eight missions since July 23, 1972. The data in this 139 

paper are mainly from Landsat 4,5,7 and 8. The remote sensing software ENVI was used to 140 
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extract the lake area for the studied period. 141 

Table 1 Characteristics of the 51 lakes in the QTP. 142 

Name 
Longitude 

(E) 

Latitude 

(N) 

Elevation 

(m) 
Brackish 

Lake areas (km
2
) Changes 

Past Present (%) 

Anzi Co 87.10  31.02  4535 Salty 394.78 461.76 16.97  

Aqikulu Lake 88.40  37.08  4250 Salty 358.76 495.14 38.01  

Aruco 82.40  33.95  4940 Salty 104.5 103.74 -0.73  

Ayakkum Lake 89.38  37.55  3870 Salty 618.21 935.68 51.35  

Bangdag Co 81.55  34.95  4902 Salty 105.99 135.14 27.50  

Cabo Co 84.20  33.37  4505 Salty 32.65 48.37 48.15  

Cetacean lake 89.42  36.33  4708 Salty 257.38 328.72 27.72  

Chibzhang Co 90.27  33.38  4931 Salty 477.9 544.58 13.95  

Cona 91.47  32.02  4800 Fresh 180.91 188.07 3.96  

Cuodarima Lake 91.07  35.30  4775 Salty 86.19 95.56 10.87  

Cuorendejia 92.57  35.23  4688 Salty 165.29 206.96 25.21  

Dagze Co 81.55  34.95  4459 Salty 255.23 292.91 14.76  

Dongqia Co 90.42  31.78  4616 Salty 48.76 71.83 47.31  

Duoersuidong Co 89.87  33.38  4921 Salty 377.67 447.35 18.45  

Duoma 84.95  32.95  4688 Salty 12.18 14.45 18.64  

Eling Lake 97.70  34.90  4272 Salty 608.37 662.11 8.83  

Guozhacuo 81.08  35.03  5080 Salty 246.55 247.7 0.47  

Gyaring Co 88.33  31.13  4650 Salty 475.14 478.46 0.70  

Hala Lake 97.58  38.27  4078 Salty 589.62 606.29 2.83  

Hohxil Lake 91.12  35.57  4950 Salty 309.92 348.55 12.46  

Jiarebu Co 87.78  32.20  4635 Salty 35.74 50.56 41.47  

Jiezechaka Lake 80.90  33.95  4524 Salty 106.25 113.61 6.93  

Kusai Lake 92.83  35.68  4470 Salty 267.43 289.09 8.10  

Lexiewudan lake 90.17  35.75  4854 Salty 223.61 273.01 22.09  

Longmu Co 80.47  34.62  5002 Salty 99.18 104.95 5.82  

Lumajangdong Co 81.62  34.03  4800 Salty 358.77 379.72 5.84  

Luotuo Hu 81.95  34.43  5103 Salty 62.65 67.03 6.99  

Mapam YumCo 81.47  30.67  4588 Fresh 408.44 408.42 0.00  

Nam Co 90.55  30.70  4718 Salty 1944.61 2026.74 4.22  

Ngangla Ringsto 83.10  31.55  4689 Salty 521.09 500.16 -4.02  

Orba Co 81.03  34.53  5465 Salty 92.99 92.13 -0.92  

Palung Co 83.57  30.87  5166 Salty 141.8 146.43 3.27  

Pei Cuo 85.58  28.92  4590 Salty 275.32 268.82 -2.36  

Peng Co 90.97  31.50  4522 Salty 137.22 177.66 29.47  

Pengyan Co 88.20  35.88  4522 Salty 55.79 64 14.72  

Pumoyum Co 90.42  28.57  5100 Fresh 285.53 291.44 2.07  
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Rinchen Shuptso 83.45  31.27  4756 Salty 182.93 188.12 2.84  

Selin Co 89.00  31.83  4530 Salty 1755.17 2337.33 33.17  

Senlicuo 84.07  30.42  5386 Fresh 142.41 142.26 -0.11  

Sugan Lake 93.87  38.85  2795 Salty 100.79 107.89 7.04  

Taro Co 84.10  31.12  4566 Fresh 484.42 486.55 0.44  

Ulan Ul Lake 90.50  34.80  5100 Salty 527.76 624.63 18.35  

Wuru Co 88.00  31.72  4548 Fresh 433.93 442.74 2.03  

Xijirulan Hu 90.35  35.22  4769 Salty 286.41 351.04 22.57  

Xuru Co 86.40  30.30  4718 Salty 207.09 210.55 1.67  

Yamzhog YumCo 90.68  28.93  4441 Salty 586.38 554.12 -5.50  

Ze Co 79.78  34.15  4961 Salty 113.59 118.37 4.21  

Zhaling Lake 97.27  34.92  4294 Fresh 520.28 530.59 1.98  

Zharinam Co 85.63  30.92  4613 Salty 1000.16 1004.63 0.45  

Zigetang Co 90.85  32.07  4561 Salty 198.89 234.11 17.71  

Zonag Lake 92.00  35.53  4800 Salty 259.27 271.6 4.76  

 143 

The spectral water index was a single number derived from an arithmetic operation 144 

(e.g., ratio, difference, and normalized difference) of two or more spectral bands. An 145 

appropriate threshold of the index was then established to separate water bodies from other 146 

land-cover features based on the spectral characteristics. The design of a spectral water 147 

index was based on the fact that water absorbs energy at near-infrared (NIR) and 148 

shortwave-infrared (SWIR) wavelengths (Ji et al., 2009). In this study, the lake area was 149 

extracted by water index method in multi-spectral remote sensing water identification 150 

method, which includes: Normalized Difference Water Index (NDWI), Normalized 151 

Difference Vegetation Index (NDVI), Normalized Difference Snow Index (NDSI) and Ratio 152 

Vegetation Index (RVI) (Gu et al., 2007). The NDWI method is adopted in our paper which 153 

has been widely used in the world (Gao, 1996; Ji et al., 2009; McFeeters, 1996). 154 

Adopting the format of the normalized difference vegetation index (NDVI), McFeeters 155 

(1996) developed the normalized difference water index (NDWI), defined as 156 
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Where NDWI is water index; GREEN is green band; NIR is near infrared band. The 157 

method includes the following steps: View the spectral curve after the band operation, set 158 

reasonable threshold value, count the number of pixels within the threshold value, and then 159 

according to the resolution of the satellite image, calculate the area value of the lake. 160 

 161 

Methods 162 

The non-parametric rank-based Mann–Kendall (MK) test was used to analyze the trends 163 

of climate and vegetation coverage change in this study (Kendall, 1975; Mann, 1945). 164 

Non-parametric tests make no assumptions about the distribution of data and are useful for 165 

detecting monotonic trends (Huth and Pokorna, 2004; Nepal, 2016). In addition, the MK test 166 

is based on sign differences rather than value, and is thus robust to the effect of extreme 167 

values and outliers (Helsel and Hirsch, 2002). It is widely used for trend analysis (Zhang et 168 

al., 2011b). The Kendall rank correlation coefficient, commonly referred to as Kendall's tau 169 

(τ) coefficient, is used to measure the association between two measured quantities. The 95% 170 

confidence interval was used as a threshold to classify the significance of positive and 171 

negative MK trends (Xu, 2001). The non-parametric Sen’s method was used to estimate the 172 

true slope of the identified trends (Sen, 1968). 173 

Simple linear regression was used in this paper for long-term linear trend test as well. 174 

The simple linear regression method is a parametric T-test method, which consists of two 175 

steps, fitting a linear simple regression equation with the time t as independent variable and 176 

the hydrological variable (i.e. precipitation or streamflow in this study) as dependent variable; 177 

http://en.wikipedia.org/wiki/Association_(statistics)
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testing the statistical significance of the slope of the regression equation by the t-test (Xu, 178 

2001; Zhang et al., 2009).  179 

 180 

3. Results and discussion 181 

3.1 The temporal and spatial variation of lake area in the QTP 182 

Figure 2 showed that there were 30 lakes have shown area decrease and 21 lakes with 183 

area increase during the period of 1981-2000 by using Mann-Kendal method. There were 8 184 

lakes have shown significant area decrease during this period, while there were 3 lakes with 185 

significant area increase at 5% significance level. As for the period of 1980-2013, most of 186 

the lake areas have increased and 32 lakes’ areas have increased significantly. However, 187 

there were only 6 lakes’ areas decreased during this period. 188 

   189 

 190 

Fig.2 Trends of annual lake area changes in the QTP by using MK method during the past 191 

30 years (a, 1981-2000; b, 1981-2013) 192 
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In order to reveal the spatial and temporal variabilities of the lake areas during the past 193 

30 years, 6 lakes in the central QTP were selected for illustration purposes (Figure 3). It can 194 

be found that the lake areas increased obviously for the selected 6 lakes during the past 30 195 

years. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, 196 

which increased from 618 km
2
 in the 1980s to 983 km

2
 in the 2010s. While the Gyaring 197 

Lake was the slowest growth lake with the area increased from 520 km
2
 in the 1980s to 525 198 

km
2
 in the 2010s. As for the lakes of Nam Co and Selin Co, Nam Co was the second largest 199 

saltwater lake in China and Selin CO was the third largest salt lake in China in before the 200 

year of 2000. However, the area of Selin CO increased rapidly after the year of 2000 making 201 

it the second largest saltwater lake in China now, and Nam Co became the third largest 202 

saltwater lake in China although it increased from 1845 km
2
 in the 1980s to 2019 km

2
 in the 203 

2010s. Therefore, it can be inferred that the growth rate of the lake area for Selin Co was 204 

obviously higher than that of Nam Co after 2000.  205 

 206 

Year(Area,km
2
)

1980s(618)

1990s(630)

2000s(835)

2010s(983)

(a) Ayakekumu Lake

Year(Area,km
2
)

1980s(520)

1990s(515)

2000s(518)

2010s(525)

(b) Gyaring Lake
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 207 

 208 

Fig.3 The temporal variation of lake area for the selected six lakes during the past 30 years 209 

Figure 4 showed the temporal variation of 6 lake areas during the past 30 years. It can 210 

be seen that the 6 lakes’ area increased significantly during the past 30 years, although the 211 

lake areas decreased in the 1990s. The findings were consistent with other studies (Li et al., 212 

2009; Yan and Zheng, 2015). Yan and Zheng (2015) analyzed the dynamic changes of the 213 

saline lake surface areas from 1973 to 2010 in the QTP and they found that the total surface 214 

areas of these saline lakes increased, especially since around 2000, and the total surface 215 

areas increased by 47% during 1973-1977 to 2008-2010. While the saline lake areas 216 

decreased during 1973-1977 to 1989-1992 in the northern and middle parts of the Tibet 217 

Plateau and nearly all the saline lakes expanded since around 2000. Zhang et al. (2014a) 218 

also reported that the number of lakes with areal extent of 1 km
2
 decreased between the 219 

1970s and 1990, followed by a clear increase from 1990 to 2010. Moreover, ninety-nine new 220 

(c) Ulan UL Lake

Year(Area,km
2
)

1980s(528)

1990s(482)

2000s(585)

2010s(650)

Year(Area,km
2
)

1980s(282)

1990s(289)

2000s(291)

2010s(292)

(d) Pumoyum Co

Year(Area,km
2
)

1980s(1945)

1990s(1952)

2000s(2013)

2010s(2019)

(e) Nam Co

Year(Area,km2)

1980s(1714)

1990s(1797)

2000s(2291)

2010s(2359)

(f) Selin Co
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lakes were identified between the 1970s and 2010 and 71 of which were found between 221 

1990 and 2010. 222 

 223 

224 

225 

 226 

Fig.4 The temporal variation of lake area for the selected six lakes during the past 30 years 227 

 228 

3.2 Trends of vegetation coverage in the QTP during the past 30 years 229 

With a mean elevation of approximately 4000 m above sea level, the annual mean NDVI 230 

has not only generally small value but also different spatial distributions (Fig.5a). It can be 231 
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found that the grasslands occupy nearly three quarters of the land surface of the QTP 232 

(Fig.5b). Higher NDVI value can be found in the Hengduan Mountains with rich forest, 233 

however, lower NDVI value appeared in the north of QTP where distributes large desert 234 

(Fig.5). 235 

236 

 237 

Fig.5 Annual mean NDVI in the QTP during 1981-2013 (a) and the land use spatial 238 

distribution in the year of 2010 (b) 239 

 240 

Figure 6 showed the long-term trends of NDVI during the period of 1981-2013. It can 241 
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be found that the NDVI exhibits obvious increasing trends for the whole QTP during the 242 

period of 1981-2000, especially in the mountainous areas of southern Tibet region. 243 

According to the statistical analysis of pixel, the number of pixels with increasing trends of 244 

NDVI was 79% of the total number of pixels, of which 26.4% of the pixels increased 245 

significantly. However, the number of pixels with decreasing trends of NDVI was 5.58% 246 

which indicated that the vegetation recovery in the 1990s was better than that of 1980s 247 

(Fig.6a). Compared with the period of 1981-2000, there were obvious deterioration in 248 

vegetation in general terms, especially in the north of the QTP during the period of 249 

1981-2013. The increasing trends can be found in the Kunlun Mountains, Qilian Mountains, 250 

Gangdise Mountains and Hengduan Mountains during this period. The pixels of NDVI with 251 

increasing trends in the whole region were less than half of the total number of pixels, of 252 

which 19.54% of the pixels showed significant increasing trends. While the proportion was 253 

as high as 31.17% for the pixels with decreasing trends and of which 14.73% decreased 254 

significantly (Fig.6b). Huang et al. (2016) also found the grassland growth has improved 255 

obviously through most of the Plateau from 1986 to 2000 and the condition of grassland 256 

growth became worse, especially in the arid regions across QTP from 2000 to 2011.  257 
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258 

 259 

 260 

Fig.6 Trends of annual mean NDVI in the QTP by using MK method during the past 30 261 

years (a, 1981-2000; b, 1981-2013) 262 

 263 

3.3 Trends of climate change in the QTP during the past 30 years 264 

Assessing the impact of climate change on the lake area is very important for water 265 

resources management and ecological protection. As the QTP is one of the most sensitive 266 

areas of ecological environment change and the lake area variations are highly vulnerable to 267 
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the climate change. It can be found that the areal mean precipitation has increased slightly 268 

during the past 50 years, while the annual mean temperature increased significantly and the 269 

pan evaporation decreased significantly (Fig.7). Figure 8 showed the spatial distribution of 270 

annual mean precipitation trends in the QTP by using MK method during the past 30 years. 271 

The results showed that the precipitation increasing trends can be found in the southern part 272 

of the QTP and decreasing trends appeared in the northern part during the period of 273 

1981-2000. As for the period of 1981-2013, the precipitation increased in most areas of the 274 

QTP and the number of the rain gauge stations with increasing trend has increased markly 275 

than that of 1981-2000. 276 

 277 
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 279 

Fig.7 The changes of areal mean precipitation (a), air temperature (b) and pan 280 

evaporation (c) over the QTP during the past 30 years 281 

 282 

 283 

 284 

Fig.8 Trends of annual mean precipitation in the QTP by using MK method during the past 285 

30 years (a, 1981-2000; b, 1981-2013) 286 

 287 

Figure 9 showed the spatial trends of annual mean temperature in the QTP during the 288 
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past 30 years. It can be found that the annual mean temperature increased almost in the 289 

whole QTP during the period of 1981-2000 and 1/3 of the gauge stations showed significant 290 

increasing trends in this period. While the temperature increased significantly almost in the 291 

whole region of the QTP during the period of 1981-2013. Therefore, it can be inferred that 292 

the temperature increased more quickly after the year of 2000. 293 

The annual mean pan evaporation in the QTP during the past 30 years was also 294 

analyzed and shown in Figure 10. It can be found that half of the gauge stations in the QTP 295 

showed downward or upward trends in the year of 1981-2000, and among them, around 10% 296 

of the gauge stations increased or decreased significantly. While the number of the gauge 297 

stations with decreasing trends of pan evaporation in the period of 1981-2013 was obviously 298 

more than that the period of 1981-2000 and the number of gauge stations with decreasing 299 

trends increased from 10% to 66% during 1981-2000 to 1981-2013. 300 

 301 

 302 
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Fig.9 Trends of annual mean temperature in the QTP by using MK method during the past 303 

30 years (a, 1981-2000; b, 1981-2013) 304 

 305 

These results were similar to the previous researches, for example, Li et al. (2010) 306 

reported that the QTP had experienced significant warming and wetting trends during the 307 

period 1961-2007 and it had exhibited increases in the precipitation amount, the number of 308 

precipitation days and extreme high temperature events. Li et al. (2015) also found that 309 

precipitation experienced a statistically insignificant increasing trend at a rate of 6.32 310 

mm/10a, and the air temperature increased significantly at the rate of 0.32℃/10a in the 311 

Yarlung Zangbo River which is the largest river system in the QTP. 312 

 313 

 314 

 315 
Fig.10 Trends of annual mean pan evaporation in the QTP by using MK method during the 316 

past 30 years (a, 1981-2000; b, 1981-2013) 317 

 318 

3.4 The response of lake area and vegetation coverage to the climate change 319 



 

22 

 

Both of the lakes’ surface area and vegetation coverage are the indicators of climate 320 

change and climate variability in the QPT. Moreover, vegetation plays a critical role in 321 

regulating the ecological and hydrological functions of the QTP. Figure 11 showed the 322 

long-term changes of areal annual mean NDVI in the whole QTP during the period of 323 

1981-2013. It can be found that the NDVI increased significantly in the 1980s and then 324 

maintained a higher equilibrium in the 1990s, however, the NDVI decreased after the year of 325 

2000. Although the annual mean NDVI varied greatly in the QTP, it takes on a rising trend 326 

generally. It can also be found that the annual variabilities of NDVI was in good line with 327 

temperature (Fig.11a). The relationship between NDVI and precipitation seems contradictory 328 

(Fig.11b), however, the relationships between NDVI, temperature and precipitation were not 329 

stable during the past 30 years which indicated that the factors affecting the vegetation were 330 

various in the QTP.  331 
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 333 

Fig.11 Variabilities of annual mean NDVI, precipitation and temperature in the QTP during 334 

the period of 1981-2013 335 

 336 

The precipitation of the QTP was increasing and the annual mean pan evaporation was 337 

decreasing significantly; and the climate warming and wetting resulted in the vegetation 338 

restoration in the QTP during the past 30 years. Overall, decreased evaporation and enhanced 339 

precipitation increased the area of lakes in the QTP, and increased temperature and enhanced 340 

precipitation favored vegetation growth in the QTP. The result was the same as previous 341 

studies who claimed that the most likely reason for the expansion of Qinghai Lake and 342 

vegetation restoration was the increasing precipitation, temperature and decreasing 343 

evaporation due to the change of summer monsoon (Huayu et al., 2010; Wan et al., 2014). 344 

Zhu et al. (2010) thought that the lake area changes were closely linked to climate change 345 

under global warming. Li et al. (2000) found that the NDVI was significantly correlated with 346 

both precipitation and temperature. However, it should be noted that the glacial retreats 347 

caused by warming is an important factor in the increase of lake area and elevation of water 348 
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level, for example, the rise in the water level of Nam Co and Selin Co might be related to the 349 

increase of meltwater (Li, 2012). The ecosystem environment recovery not only reflected the 350 

changing trend of warm and wet climate but also was a response of the ecological protection 351 

project of the Key Ecological Function Zone in the Three-River Headwaters (Zhu et al., 352 

2015). Therefore, the influencing factors of lake area and vegetation coverage changes are 353 

very complex in the QTP (Huang et al., 2016; Yan and Zheng, 2015; Zhang et al., 2011a). 354 

It can be found that pronounced shifts in the temporal climate trend occurred around the 355 

year 2000 which had arose the lake areas and vegetation coverage change greatly in the QTP. 356 

The lakes’ area increased significantly since the year of 2000 and the vegetation coverage 357 

had also undertaken a great change since the year of 2000. The vegetation coverage 358 

increased in the south of the QTP, while it decreased significantly in the north of QTP. Huang 359 

et al. (2016) also reported that a wetter and warmer climate improved grassland growth 360 

through most of the Plateau from 1986 to 2000, while the drier and hotter climate disfavored 361 

grassland growth, especially in the arid regions across QTP from 2000 to 2011. 362 

 363 

4 Conclusions 364 

In this study, the long-term variations of lake areas, vegetation coverage and associated 365 

climate changes in the QTP were analyzed by using MK method with the aim of exploring 366 

the climate transformation during the past 30 years. Main conclusions drawn from the study 367 

are summarized as follows: 368 

(1) Overall, the lake areas increased significantly during the past 30 years in the QTP，369 

and increasing magnitude for the lake areas accelerated after the year of 2000. Among them, 370 
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Ayakekumu Lake was the fastest growing lake with area increased from 618 km2 in the 371 

1980s to 983 km2 in the 2010s at a rate of 51.35%.  372 

(2) The vegetation coverage of the QTP increased in the whole QTP during the past 30 373 

years and the vegetation coverage in the southeast was obviously better than that in the 374 

northwest. The NDVI exhibits obvious increasing trends for the whole QTP during the 375 

period of 1981-2000, 79% of the total number of pixels showed increasing trends, of which 376 

26.4% of the pixels increased significantly. However, the number of pixels showed 377 

increasing trends in the whole region was less than half of the total number of pixels during 378 

the period of 1981-2013. The proportion was 31.17% for the pixels with decreasing trends 379 

during this period.  380 

(3) The precipitation and temperature of the QTP showed increasing trend during the 381 

past 30 years and the temperature in most areas increased significantly, especially after the 382 

year of 2000. While the pan evaporation decreased significantly during the year of 383 

1981-2013. It can be inferred that the lake area and vegetation changes might be related to 384 

climate change. The shifts in the temporal climate trend occurred around the year 2000 had 385 

arose the lake areas and vegetation coverage change greatly in the QTP. The lakes’ area 386 

increased significantly since the year of 2000 and the vegetation coverage had also 387 

undertaken a great change since the year of 2000. 388 
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