
HMST-Seq-Analyzer: A New
Package for Differential
Methylation Analysis of

Whole-Genome Methylation Data

Sindre Grønmyr

Thesis submitted for the degree of
Master in Informatics: Technical and Scientific

Applications
60 credits

Department of Informatics
Faculty of mathematics and natural sciences

UNIVERSITY OF OSLO

Autumn 2019

HMST-Seq-Analyzer: A New
Package for Differential
Methylation Analysis of

Whole-Genome Methylation
Data

Sindre Grønmyr

© 2019 Sindre Grønmyr

HMST-Seq-Analyzer: A New Package for Differential Methylation
Analysis of Whole-Genome Methylation Data

http://www.duo.uio.no/

Printed: Reprosentralen, University of Oslo

Abstract

DNA methylation is essential for normal development and many different
biological processes in genomic DNA. It is also associated with the
development of diseases when there are abnormal methylation patterns.
For example, hypomethylation in certain cells could lead to chromosomal
instability and oncogene activation. Hypermethylation is also commonly
known to silence certain tumor suppressor genes. Thus, the study of DNA
methylation is an active field in cancer epigenomics research.

This thesis presents a new high-level analysis pipeline, called HMST-
Seq-Analyzer, which can do differential methylation analysis on HMST-
Seq datasets. The HMST-Seq technique detects single-base resolution
5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). The new
Python package can simultaneously analyze 5mC and 5hmC data from
single HMST-Seq experiments. The pipeline predicts hypo/hyper differ-
ential methylated/hydroxymethylated regions in predefined genomic re-
gions, such as TSS, gene body, TES, intergenic, 5’-UTR, and enhancer. As a
part of the results, the pipeline creates figures to illustrate useful informa-
tion from the data analysis done in various parts of the pipeline. HMST-
Seq-Analyzer is able to analyze either mouse or human data. Especially, it
can be used to study DNA methylation data generated by other platforms
such as whole-genome bisulfite sequencing (WGBS). The new pipeline is
tested on both public human HMST-Seq data from the ENCODE project
and an in-house mouse sequencing.

In the end, we compare the results of HMST-Seq-Analyzer with that
of another popular DNA methylation analysis tool - methylKit, where
the majority of predictions are overlapping between the two methods. It
proves that HMST-Seq-Analyzer is a reliable tool for differential analysis
of DNA methylation sequencing.

i

ii

Acknowledgements

I would first like to thank my supervisor, Junbai Wang, for involving me in
an interesting project, for always being available answering my questions,
and for providing guidance throughout the entire process. I would also like
to thank Torbjørn Rognes for reading through my thesis and giving helpful
advice. Additionally, apologies go out to my girlfriend, friends, and family
for my absence during parts of 2019.

iii

iv

Contents

I Introduction 1

1 Motivation 3

2 Background 4
2.1 DNA . 4

2.1.1 Nucleotides . 4
2.1.2 Double Helix . 4
2.1.3 Genes . 5
2.1.4 Gene Transcription . 5
2.1.5 Genomic Regions . 5

2.2 DNA Methylation . 7
2.2.1 Detection of DNA Methylation by Using Hydrox-

ymethylation and Methylation Sensitive Tag Se-
quencing - HMST-Seq 8

2.2.2 Detection of DNA Methylation With BS-Seq 10
2.3 Statistical Hypothesis Testing 10

2.3.1 Hypothesis Testing . 10
2.3.2 Wilcoxon Rank-Sum Test 11
2.3.3 Exact p-value by Enumeration 12
2.3.4 Multiple Comparisons Problem 13

2.4 Quantile Normalization . 14
2.5 Data Smoothing . 15

2.5.1 Centered Moving Average 15
2.5.2 One-Dimensional Gaussian Filter 15

II Method and Implementation 17

3 Genetic Data 19
3.1 Reference genome file . 19
3.2 Chromosome sizes file . 20
3.3 Tissue-Specific Enhancers file 20
3.4 HMST-Seq Sample Data . 21
3.5 BS-Seq Sample Data . 21

4 Software and Hardware 22
4.1 Programming Language, Libraries, and Software 22
4.2 Hardware for Testing . 23

v

5 The Pipeline Tasks and Flow 24
5.1 The Pipeline . 24
5.2 Gene Annotation . 26
5.3 Data Preprocessing . 27
5.4 Finding MRs and DMRs . 27

5.4.1 Find MRs . 28
5.4.2 Preparation for DMR Search 29
5.4.3 DMR Search . 31

5.5 Plot Preparation and Plotting 32
5.5.1 Plotting DMR and DhMR Distribution 32
5.5.2 Plotting Relative Density for MRs 33
5.5.3 Plotting Distribution of 5mC/5hmC Levels of MRs in

TSS, Gene Body, TES and Enhancer Regions 33
5.6 Clean Folder . 35

6 Pipeline Architecture and User Interaction 37
6.1 Gene Annotation . 39
6.2 Data Preprocessing . 41
6.3 Find MRs . 42
6.4 Preparation for DMR Search 45
6.5 DMR Search . 47
6.6 Plot Preparation . 49
6.7 Plotting . 50

III Results and Conclusion 53

7 Results and Discussion 55
7.1 Setting Up Pipeline Environment 55
7.2 Test Data . 56
7.3 Test Run . 57
7.4 Result Figures . 58

7.4.1 DMR and DhMR Distribution 58
7.4.2 Relative Density for MRs 59
7.4.3 Distribution of 5mC and 5hmC in TSS, Gene Body,

and TES regions . 60
7.4.4 Distribution of 5mC and 5hmC MRs in enhancer

regions . 60
7.5 Performance Comparison . 60
7.6 Comparison of Execution Time for Different Data Sizes . . . 63
7.7 Method Comparisons for Finding DMRs and DhMRs 65
7.8 Applying Benjamini and Hochberg’s FDR-Controlling Pro-

cedure When Detecting DMRs and DhMRs 69
7.9 Experimental Analysis . 70
7.10 Pipeline Run On Public HMST-Seq Data 70
7.11 Testing on WGBS Data and Comparing Results with methylKit 72

vi

8 Conclusion and Future Work 79
8.1 Conclusion . 79
8.2 Limitations and Future Work 80

8.2.1 Possible Future Improvement in HMST-Seq-Analyzer 80

vii

viii

List of Figures

2.1 The three components of a nucleotide: a phosphate group, a sugar
and a nitrogenous base. The sugar consists of five carbon atoms,
1’ to 5’. 4

2.2 The double helix structure, with sugar (S), phosphate (P), nitroge-
nous bases (A, C, G, and T), the hydrogen bonds between the ni-
trogenous bases (dashed lines), and how they are connected. . . . 5

2.3 An example of the coverage/depth at each nucleotide for some
overlapping reads. 8

2.4 How the DNA is cut at a specific site by the MspI enzyme. We say
that MspI cuts at C^CGG. 9

5.1 The eight pipeline-tasks of the Python pipeline, and the order they
should be run in. 25

5.2 The HMST-Seq-Analyzer Python package directory tree. The files
of the two folders scripts_high and scripts are not shown, but these
are the folders containing the different Python files for all the tasks
of the pipeline. 26

5.3 The help message for hmst_seq_analyzer. It shows the eight tasks
of the pipeline, a small description of each task, and how to run
the tasks. By further entering hmst_seq_analyzer <task> -h, where
<task> is the name of the task, a help message for the specified
task is shown. 27

5.4 The different genomic regions extracted from the genes of the
reference genome, and where they are located relative to each
other. The extracted genomic regions are TSS, gene body, TES,
intergenic, and 5’ UTR. A shows two genes of the reference
genome, while B shows the extracted genomic regions. Both genes
have + strands. 28

5.5 An example of BEDTools intersect where A and B are two sets of
genomic regions. If we run A intersect B with the options -wa and
-wb, we get both the shared interval (yellow) and the regions of
A from which the shared interval came from (red), as seen in the
bottom grey area. 29

5.6 Simplified Python script for finding methylated regions from the
ordered list of methylated sites called possible_MRs. 30

ix

5.7 One MR, where the green and yellow sites represents overlapping
methylated sites, and red represents missing values. The missing
data can for example be handled by imputation, e.g., by filling in
the missing values by for example the median or zeros. 31

5.8 The first two steps of transforming the raw methylation levels
of MRs for plotting the methylation distribution. The x-axes
are showing the genome sites, and the y-axes are showing the
methylation levels. The first row is the raw data of two different
MRs. The second row is step 1, where the raw data has been
translated to be in the span between 0 and 2000. In the third row,
we see step 2, where the translated data have been increased by
nearest-neighbor interpolation, with a step size of 100. After the
second step, we take the average at each site over all MRs and
smooth the data by the centered moving average method. 35

5.9 An example of all the three stages of the methylation level-
averages data: raw averages, after centered moving average
smoothing (subset size=500), and after further smoothing using
a one-dimensional Gaussian filter with sigma=50. The y-axis is
set to -2 and 10 to illustrate how the centered moving average
smoothing fits the raw averages. 36

5.10 The same data as in Figure 5.9, but where we have limited the y-
axis to 0.5 and 1 to better illustrate the noise before and after the
one-dimensional Gaussian filter. 36

6.1 The pipeline architectural design. The seven first tasks of the
pipeline are shown in green, containing the low level main
functions in red. The main input data files that the user must
provide to the pipeline are shown in grey. The blue colored
datasets are the main datasets needed throughout the pipeline,
while the purple datasets are used for the final figure plotting. . . 38

6.2 Illustrating the list files using the two output datasets of the task
Find MRs, and the two list files containing all file names of the
respective dataset. Here, we assume there is no available enhancer
file. 38

6.3 When having multiple processes, we can sort the data by size
before distributing the jobs to the processes, such that the biggest
jobs will start first. Here we see the hypothetical difference of
sorting the data by size (1) and distributing data randomly (2)
between four processes before starting finding MRs. The genomic
regions and methylation states for the different job-sizes used in
this figure are purely chosen to illustrate the idea. 45

6.4 One DMR containing two samples’ 5mC levels. 48

7.1 The input data directory tree for the mouse dataset. 57
7.2 The distribution of hypo and hyper DMRs and DhMRs within

different genomic regions. 5dist on the x-axes is the same as 5’-
UTR. 59

x

7.3 The relative density of significantly modified sites in MRs within
genomic regions. The bars named "genome" are for all methylated
sites, not just sites that are in MRs. 60

7.4 The average 5mC levels of MRs in the combined TSS, gene body,
and TES regions. 61

7.5 The average 5hmC levels of MRs in the combined TSS, gene body,
and TES regions. 61

7.6 The average 5mC levels of MRs in enhancer regions. 62
7.7 The average 5hmC levels of MRs in enhancer regions. 62
7.8 Time consumption for the three pipeline tasks Find MRs, Prepa-

ration for DMR Search, and DMR Search with various number
of processes. 63

7.9 Memory consumption for the three pipeline tasks Find MRs,
Preparation for DMR Search, and DMR Search with various
number of processes. 64

7.10 The execution times from Table 7.2, represented as a bar plot. . . . 66
7.11 Time consumption of the DMR Search task with various number

of processes. 68
7.12 Memory consumption of the DMR Search task with various

number of processes. 69
7.13 The sorted p-values (blue) found using the Pranksum method

on overlapping MRs in 5mC TSS regions, and the threshold line
(orange) at level α = 0.2. 70

7.14 Distribution of overlapping MRs across various lengths. 71
7.15 Distribution of DMRs found by Mranksum, Pranksum, and

Rranksum across various lengths. 71
7.16 Distribution of DhMRs found by Mranksum, Pranksum, and

Rranksum across various lengths. 71
7.17 The distribution of hypo and hyper DMRs and DhMRs of the two

HCC cell lines, 97L and LM6, versus a non-HCC sample, within
different genomic regions. 73

7.18 The realtive density of significantly modified sites in MRs of the
two HCC cell lines, 97L and LM6, and one non-HCC sample,
within the various genomic regions. 73

7.19 The distribution of 5mC levels of MRs of the two HCC cell lines,
97L and LM6, and one non-HCC sample, in the combined TSS,
gene body, and TES regions. 74

7.20 The distribution of 5hmC levels of MRs of the two HCC cell lines,
97L and LM6, and one non-HCC sample, in the combined TSS,
gene body, and TES regions. 74

7.21 Venn diagram comparing common sites of DMRs obtained by the
HMST-Seq-Analyzer with differentially methylated sites obtained
by methylKit. 75

7.22 Venn diagram comparing intersecting sites of DMRs obtained
by the HMST-Seq-Analyzer with differentially methylated sites
obtained by methylKit. 76

7.23 Histogram showing the distribution of unique, merged DMR
lengths found by HMST-Seq-Analyzer. 77

xi

7.24 Histogram showing the distribution of unique, merged DMR
lengths found by methylKit. 77

7.25 Venn diagram showing the number of overlaps where at least 10%
of the merged DMRs from methylKit overlap with HMST-Seq-
Analyzer merged DMRs (yellow), the number of merged DMRs
from HMST-Seq-Analyzer not overlapping (red), and the number
of merged DMRs from methylKit not overlapping (green). 78

7.26 Venn diagram showing the number of overlaps where 100% of
the merged DMRs from methylKit overlaps with HMST-Seq-
Analyzer merged DMRs (yellow), the number of merged DMRs
from HMST-Seq-Analyzer not overlapping (red), and the number
of merged DMRs from methylKit not overlapping (green). 78

xii

List of Tables

2.1 The four different situations that can occur when doing a hypoth-
esis test. There are two types of errors that can be made: (type I
error) the true null hypothesis can be incorrectly rejected and (type
II error) the false null hypothesis can fail to be rejected. 11

2.2 For calculating p-values by enumeration: All possible rank
combinations and respective sums for a combined sample of
length 6. Here we only show the ranks for one sample. The other
sample’s ranks would just be the ranks not present in each row. . 13

3.1 Descriptions of each column in refFlat. We only use the first six
columns, i.e., geneName, name, chrom, strand, txStart and txEnd
in this project. 20

6.1 The Gene Annotation task input arguments, both required (first
four), and optional. 40

6.2 The Data Preprocessing task input arguments. The first seven
arguments are required. The rest has default values. 42

6.3 The Find MRs task input arguments. 44
6.4 Input arguments for the Preparation for DMR Search task. 46
6.5 Input arguments for the DMR Search task. 49
6.6 Input arguments for the Plot Preparation task. 49
6.7 Input arguments for the Plotting task. 52

7.1 Software versions used for pipeline environment in Abel. 56
7.2 Time consumption of pipeline run for two different input data sizes. 65
7.3 The number of hyper and hypo DMRs and DhMRs found using

the different test methods: Mranksum, Pranksum, and Rranksum,
in the chromosome 1 mouse dataset. 67

7.4 Time consumption of DMR Search for the three test methods:
Pranksum, Mranksum, and Rranksum. 68

xiii

xiv

Part I

Introduction

1

Chapter 1

Motivation

Nowadays, high-throughput sequencing technologies are widely utilized
in the biomedical research field. It is easy to generate tons of genome
sequencing datasets from various experiments such as ChIP-seq, RNA-seq,
whole-genome/exome sequencing, and DNA methylation sequencing.
However, it is very challenging to analyze large datasets from various high-
throughput genome experiments.

There are already multiple tools available for analyzing DNA methy-
lation data. Many of them are made for data generated from bisulfite se-
quencing (BS-Seq), but since BS-Seq does not differentiate 5mC and 5hmC,
we cannot use these tools for the current project. There are also tools de-
veloped for analyzing both 5mC and 5hmC data, but it is difficult to use
these existing tools to analyze both datasets simultaneously. Thus, in this
project, we intend to build a new computational analysis pipeline by con-
sidering a proper statistical method for analyzing 5mC and 5hmC datasets
obtained from whole-genome methylation sequencing experiments. The
pipeline will be made as a command-line tool, written in the high-level
programming language Python. The analysis will include finding differ-
entially methylated and hydroxymethylated regions, which is an essential
step in analyzing DNA methylation samples.

3

Chapter 2

Background

2.1 DNA

2.1.1 Nucleotides

Every living organism, from bacteria to plants to humans, possesses
a genome that contains biological information of the organism. Most
genomes, such as human, are made of deoxyribonucleic acid, or DNA.
DNA is a polymer molecule consisting of multiple subunits. These
subunits, called nucleotides, are chemically distinct and are linked together
to form long chains. There are four types of nucleotides: adenine (A),
cytosine (C), guanine (G) and thymine (T). Each nucleotide is built from
three components: a sugar, a phosphate group, and a nitrogenous base,
which decides the A, C, G or T for the nucleotide [1]. This is illustrated in
Figure 2.1.

Figure 2.1: The three components of a nucleotide: a phosphate group, a sugar
and a nitrogenous base. The sugar consists of five carbon atoms, 1’ to 5’.

2.1.2 Double Helix

Individual nucleotides are bonded together to form a chain of single
nucleotides, a polynucleotide, where nucleotides are linked together in a
way that the two ends are chemically distinct. The polynucleotide has a
chemical direction that is expressed either as 3’ -> 5’ or 5’ -> 3’. That is
because the sugar of the nucleotides consists of five carbon atoms, named
1’ to 5’ respectively, which can be seen in Figure 2.1. It is always linked

4

between the 3’ carbon of the first nucleotide to the 5’ carbon of the second
when a nucleotide is bonded to the other one. Two polynucleotide strands
are linked together to form a double helix, by pairing the base A with T or
the base C with G, as shown in Figure 2.2. The DNA strands are then said
to run anti-parallel because the 5’ end of one strand is parallel with the 3’
end of the other strand [1].

Figure 2.2: The double helix structure, with sugar (S), phosphate (P), nitrogenous
bases (A, C, G, and T), the hydrogen bonds between the nitrogenous bases (dashed
lines), and how they are connected.

2.1.3 Genes

The most important feature of a DNA molecule is the nucleotide sequence
and especially the genes, which encode functions. Most human genes
are discontinuous, which means the coding regions and exons are split
between non-coding regions called introns. It is the information that is
encoded in the genes, that is used to control gene regulation [1].

2.1.4 Gene Transcription

Gene expression, which is the process of converting the information
encoded in the genes into a functional product, such as proteins, has three
essential stages: transcription, splicing, and translation. In this project,
we will mostly focus on the transcription part of gene regulation. The
regulation of gene expression represents mechanisms that repress or induce
the expression of a gene. For example, in transcription, the two strands
of the DNA double helix is separated by an enzyme (RNA polymerase)
at a promoter region, where the RNA polymerase reads one strand of the
DNA and copies the other strand of nucleotides into a complementary pre-
mRNA strand, and thymine is replaced with uracil (U).

2.1.5 Genomic Regions

In a gene, there are different genomic regions. In this project, we will
focus on transcription start site (TSS), gene body, transcription end site

5

(TES), 5’-untranslated distance region (5’-UTR), and intergenic regions. In
addition to these five genomic regions, we will also study enhancers. A
short description of the different genomic regions is shown here.

Transcription Start Site

The transcription start site, or TSS, is the location where transcription starts
by RNA polymerase transcribing the first DNA nucleotide into RNA. In
this project, the TSS is an upstream region of a TSS, or the beginning of a
gene.

Gene Body

The gene body is the transcriptional region that is transcribed into mRNA,
i.e., between TSS and TES. This region includes both introns that will be
removed from the mRNA, and exons, which will be translated into protein.

Transcription End Site

The transcription end site, or TES, is the location that marks the end of
transcription. In this project, the TES is a downstream region to the end of
a gene.

5’-Untranslated Region

The pre-mRNA, in addition to a gene, contains sequences from the regions
preceding the first exon and following the last exon. These regions are
called the 5’-untranslated region (5’-UTR) and 3’-untranslated region (3’-
UTR) [1], respectively. A part of the 5’-UTR named Upstream Open
Reading Frame (uORF), even though called untranslated, can sometimes
be translated into a product. uORFs may also affect gene expression by
altering mRNA stability [2].

Intergenic Region

The intergenic region is another type of non-coding region but is located
in between the genes. Earlier, scientists thought all non-coding DNA was
"junk" that did not have any purpose, but it is now known that these
regions also contain important parts that have essential functions. One of
the functions of non-coding regions, including intergenic regions as well as
introns, is the control of gene activity, such as promoters, enhancers, and
silencers. Of these three regulatory elements, only enhancers will be used
in this thesis.

Enhancer Region

Enhancers are short genetic regions that, when bound by transcription
factors, increases the likelihood that transcription of an associated gene
will occur. They are functional regulatory elements, which are important

6

in gene regulation during mammalian development [3]. Although mam-
malian genomes potentially contain millions of enhancers, only some of
them are active in a given cell type or tissue. Furthermore, their location
relative to the target gene can be very variable, e.g., enhancers can be both
upstream, downstream, or within introns of target genes. They are also lo-
cated at distant regions respective to the target genes. The general sequence
of enhancers is, contrary to the sequences of protein-coding genes, poorly
understood. Because of this, the target genes of enhancers are difficult to be
identified from DNA sequences [4]. Previously, enhancers were assigned
to the nearest transcription start sites. However, Y. Shen et al. [3] devel-
oped an algorithm for detecting local clusters of co-regulated promoters
and enhancers, defined as enhancer-promoter units (EPUs). In this thesis,
our predicted enhancers are based on the EPUs method.

2.2 DNA Methylation

Epigenetics is a term that describes processes modifying gene activity
without changing the actual DNA sequence. The most well studied
epigenetic process is DNA methylation [5], where the cytosine bases
in DNA molecules are changed to 5-methylcytosine (5mC) by adding a
methyl-group (CH3) [1]. The addition of CH3 often occurs at CG sites,
which is where a cytosine is directly followed by a guanine, reading from
5’ to 3’. DNA methylation mostly contributes to repress or silence gene
regulation, which means a possible gene expression will not occur if there
is a high level of methylated cytosines in the gene promoter region. It also
affects phenotypic variations [6], which are the observable and measurable
physical traits of an organism [7], such as eye color, height, or the sound of
one’s voice.

For normal development and many different biological processes, the
5mC in genomic DNA is essential [8]. Also, DNA methylation is stable
in most of the CG islands (CGIs), which do not change methylation state
during normal development. CGIs are regions containing a high frequency
of CG sites and are clusters of typically a couple of hundred and more
base-pairs in length [9]. However, DNA methylation is associated with the
development of diseases when there are abnormal methylation patterns:
for example, hypomethylation in cells known to be relevant for cancer
could lead to chromosomal instability and oncogene activation [10]. The
oncogene activation is "turning on" a gene that has the potential to cause
cancer. Hypermethylation is also commonly known to silence certain
tumor suppressor genes [6]. Thus, DNA methylation study is an active
field in cancer epigenomics research.

One critical step in analyzing DNA methylation data is differential
methylation analysis, e.g., by discovering differentially methylated regions
(DMRs) between multiple samples, such as a tumor versus a normal
sample [11]. DMRs are regions that have significantly different methylation
patterns between samples. Many statistical methods can be used to find
this [6, 12].

7

Usually, 5mC can be oxidized to 5-hydroxymethylcytosine (5hmC) by
ten-11 translocation (TET) enzyme family proteins. 5hmC is found in many
tissues and cell types. Its functional role is to reduce local 5mC levels
(e.g., demethylation) and activate the state of a gene. Therefore, 5hmC also
plays a vital role in gene regulation. Though it can be further oxidized to
5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) by TET proteins [8],
the main focus of the current study will be differential analysis of 5mC and
5hmC data.

2.2.1 Detection of DNA Methylation by Using Hydroxymethy-
lation and Methylation Sensitive Tag Sequencing - HMST-
Seq

F. Wang et al. [11] presented an overview of the different technologies
for detecting DNA methylation, but all of these were made before the
discovery [13] of the hydroxylated form of 5mC, 5hmC. Since both 5mC
and 5hmC are of considerable biological importance, they need to be
distinguished unambiguously for a full appreciation [8].

Though there are existing methods for detecting both 5mC and 5hmC,
they suffer from low resolution and are biased towards experiment,
meaning that they are experiment-specific and may only be suited for a
particular type of experiment. Methods that can map 5hmC at genome-
wide level with single-base resolution, e.g., oxBS-Seq and TAB-Seq, have
been made, but they require massive amounts of data to determine both
5mC and 5hmC in parallel for the human genome. In theory, one
would need 180 GB sequenced data to achieve 30x sequencing depth
[8]. Sequencing depth, or coverage, is the average number of reads that
overlap with a region when sequencing, as can be seen in Figure 2.3.
Therefore, a cost-effective and high-resolution strategy was made, called
hydroxymethylation and methylation sensitive tag sequencing (HMST-
Seq). It provides a method for detecting single-base resolution 5mC and
5hmC in MspI sites (5’-CCGG-3’) in the human genome. In theory, it only
requires 5.67 GB data to achieve 30x sequencing depth [8], which decreases
the sequencing cost significantly. HMST-Seq is the method that is used in
this project to generate methylation data.

Figure 2.3: An example of the coverage/depth at each nucleotide for some
overlapping reads.

The HMST-Seq method creates three different types of libraries based
on the same genomic DNA, called "C"-, "C + mC"- and "C + mC +

8

hmC"-library, where "C" is comprised of unmodified cytosines, "C + mC"
of both unmodified and methylated cytosines, while "C + mC + hmC"
of all unmodified, methylated and hydroxymethylated cytosines. The
DNA samples go through three slightly different processes to generate the
respective libraries, where the main difference is that the samples are cut by
different restriction enzymes. Restriction enzymes are enzymes that cleave
DNA at a specific site, as can be seen in an example in Figure 2.4.

Figure 2.4: How the DNA is cut at a specific site by the MspI enzyme. We say
that MspI cuts at C^CGG.

The sample that is represented in the "C + mC" library is first
glucosylated, which blocks MspI from cutting 5hmC. This sample is then
digested with MspI restriction enzyme. The sample represented in the
"C" library is digested directly with HpaII restriction enzyme, while the
"C + mC + hmC" library is made from direct MspI digestion. MspI
and HpaII are isoschizomers, which means that they both recognize the
same sequence, in this case, 5’-CCGG-3’, the difference being that HpaII
only recognizes the sequence when CG is unmethylated, while MspI
can recognize all unmethylated, methylated and hydroxymethylated CGs.
After the digestion, each DNA fragment goes through the same genetic
engineering, which will not be discussed in detail here, before it, in the end,
is sequenced. This results in short sequence tags, or reads, of 16-17 bp being
obtained. These tags then go through some low-level analysis, consisting
of mapping the raw sequencing tags to a virtual library consisting of a
genome sequence, such as the human or mouse genome sequence. The
result of mapping the sequencing tags to this virtual library is the three
libraries containing tag counts, the tag counts being the number of tags,
i.e., the sequencing depth in a particular genome site.

The tag counts described above can be normalized among the libraries
to make the tags more robust and to give accurate comparisons of results
between the different sample conditions because they might contain bias
from the library construction and sequencing [8]. The normalization can,
for example, be done by using an algorithm called Global rank-invariant
set normalization (GRSN). This method creates a reference, called Global
Rank-invariant Set (GRiS), based on the tags in the libraries and the
variance at each site over the libraries. Then the library tags are normalized
based on the GRiS method [14]. Since the input tags are already normalized
by the GRiS method, we will implement another method called quantile

9

normalization [15] in the pipeline that can be used to perform similar
normalization on raw tag counts. The three libraries: "C", "C + mC" and
"C + mC + hmC" will from now on be referred to as HpaII, β-GT/BGT and
MspI libraries respectively.

2.2.2 Detection of DNA Methylation With BS-Seq

When sequencing biological data using the HMST-Seq method, we can
detect 5mC and 5hmC at CG sites with single-base resolution. However,
methylation can also occur at CHG and CHH sites, where H = A, C, or T.
Bisulfite sequencing (BS-Seq) can be used to detect 5mC and 5hmC with
single-base resolution in all CG, CHG, and CHH context. This is done by
treating the DNA sample with sodium bisulfite before sequencing. The
bisulfite treatment converts unmethylated cytosines to uracils, whereas
methylated forms of cytosine such as 5mC and 5hmC remain unchanged
[9]. The problem with this method is that it does not distinguish between
5mC and 5hmC. However, there will be an alternative in the pipeline for
doing differential methylation analysis on datasets generated by the whole-
genome bisulfite sequencing (WGBS) method also.

2.3 Statistical Hypothesis Testing

When doing differential methylation analysis, there are many statistical
tests that could be used. In this section, we will present a few general
statistical hypothesis testing methods that can be used to find differentially
methylated regions. We will also show what the multiple comparisons
problem is and how to handle multiple comparisons in the current work.

2.3.1 Hypothesis Testing

Hypothesis testing refers to the process of using sample data to decide
whether the null hypothesis should be rejected [16]. There are two types of
statistical hypotheses: the null hypothesis, denoted H0, and the alternative
hypothesis, denoted H1. The null hypothesis is a statement containing
a zero difference, representing what is assumed to be true. It is this
hypothesis that goes through the test procedure. Because the alternative
hypothesis is the opposite of the null hypothesis, the alternative hypothesis
must be true if the null hypothesis is false. The alternative hypothesis can
be either two-tailed or one-tailed. A one-tailed hypothesis test allows us
to test the statistical significance in one direction of interest, disregarding
the possibility of a relationship in the other direction. However, if we use
a two-tailed test, we can test the statistical significance in both directions at
the same time. The strength of evidence supporting the null hypothesis
can then be calculated by the p-value. A p-value is the probability of
finding the observed or more extreme results under the assumption that
the null hypothesis is true. The null hypothesis is then rejected if the
calculated p-value is less than a chosen significance level, denoted α.
Typical significance levels are 0.05 or 0.01.

10

Depending on whether H0 is rejected or accepted and which of H0 and
H1 is true, one of four possible situations will occur. They are shown in
Table 2.1. Here we can see that two of the situations are correct decisions,
and two are decisions that give errors. We say that a type I error occurs
when we reject the null hypothesis when it is true. A type II error occurs
when we do not reject the null hypothesis even though it is false [16]. Type
I errors and type two errors are sometimes also referred to as false positives
and false negatives, respectively.

Table 2.1: The four different situations that can occur when doing a hypothesis
test. There are two types of errors that can be made: (type I error) the true null
hypothesis can be incorrectly rejected and (type II error) the false null hypothesis
can fail to be rejected.

Statistical Decision
True state of null hypothesis

H0 True H0 False
Reject H0 Type I Error Correct

Do not Reject H0 Correct Type II Error

We can divide statistical hypothesis tests related to differences into two
categories: parametric tests and non-parametric tests. A parametric test is
a hypothesis test where there is an assumption that the sample data comes
from a specific underlying distribution such as the normal distribution.
Non-parametric tests, on the other hand, are used when we do not have
any distributional assumptions, i.e., when we cannot assume that the data
is following any specific distribution. Parametric tests are in general more
powerful than non-parametric tests. For example, for rank-based non-
parametric tests, we substitute ranks for the original values. We will then
lose information, which makes it less powerful. However, non-parametric
tests are often necessary. For example, if the distribution is skewed or
unknown, or the sample size is too small (< 30) to have any distributional
assumption, non-parametric tests should be used [17].

2.3.2 Wilcoxon Rank-Sum Test

The Wilcoxon rank-sum test is a non-parametric test for comparing two
unpaired groups of observations [18, 19]. It is essentially identical to the
Mann-Whitney U test, and the two are used interchangeably, but the Mann-
Whitney U test uses a different test statistic. The goal of the Wilcoxon rank-
sum test is to detect if there are any departures from the null hypothesis
(H0), where H0 : A = B and A, B are two populations containing nA
and nB observations respectively. The Wilcoxon test is based on ranking
the n = nA + nB observations of the combined sample. We will here try
to give a short overview of how the basics of this rank-based hypothesis
test are. The rank is determined from the sorted, combined sample and
is starting at 1, increasing based on the data point. If there are duplicate
values, called ties, the ranks are adjusted to receive the median rank for
the entire identically sized group. Thus, if the values of rank 1 and 2 are
identical, they will both receive the rank of 1.5. The test statistic is then the

11

sum of the ranks for observations from one of the samples. For sample A,
we will call the test statistic wA. For sample B, we will call the test statistic
wB. The corresponding rank-sum for A when H0 is true is called WA, and
the distribution of this can be found in a table [18, 19]. To find out if there
is any evidence pointing against H0, we test H0 versus H1, which can be
either one of A > B or A < B. By finding the p-value for this, calculated
by: P(WA ≥ wA) for H1 : A > B or P(WA ≤ wA) for H1 : A < B, we
can see if there is any evidence against H0 [18, 19]. If we have no strong
prior reason for expecting a shift in one particular direction, we can use
the two-sided alternative. This can be done by doubling the probability of
falling into the tail of the distribution closest to wA, such that if wA is in the
lower tail then p-value=2P(WA ≤ wA), and if wA is in the upper tail then
p-value=2P(WA ≥ wA).

For the Mann-Whitney U test, the test statistic, U, is given by the smaller
of UA and UB, defined as:

UA = wA −
nA(nA + 1)

2
,

UB = wB −
nB(nB + 1)

2
.

If the p-value is less than 0.01, we usually say that there is very
strong evidence against H0, but everything below 0.05 is considered strong
evidence.

2.3.3 Exact p-value by Enumeration

If the sample sizes are small, we can compare two groups of observations
using enumeration by utilizing the exact distribution of the test statistic by
giving each possible outcome a probability. If we have a null hypothesis
that two populations are equal and an alternative hypothesis that the
populations are not equal, we can by ranking the observations of the
combined population and generating all possible combinations of ranks,
find the probability for the observed outcome. By calculating the sum
of ranks for each possible rank-combination, we can find the probability
of observing the already observed or more extreme [20]. Because we
have to find the probability for every possible combination, the number
of calculations will quickly get big. The number of possible combinations
for one population can be given by the binomial coefficient:(

n
k

)
=

n!
k!(n− k)!

,

where n is the size of the one population, and k is the number of ranks.
This means that if the population sizes are, for example, of size nine each,
(9

18) = 48620, where 18 is the number of ranks. We then have to find the
sum of 48620 combinations. Therefore, the exact method for calculating p-
value, should only be used for small sample sizes even though it, in theory,
could work for all sample sizes.

12

If we have two populations of equal length, where one population has
ranks: [1, 4, 2], and the other population has ranks: [3, 5, 6], the respective
rank-sums are 7 and 14. All combinations of ranks and their sums for one
sample is then, as shown in Table 2.2. We can with this information find
out how many of these sums are less than or equal to, and bigger than or
equal to the first observed sample with the sum of ranks equal to 7, which
is 2 and 19 respectively. We want to find the tail set, so because 2 is smaller
than 19, the probability of observing ranks where the sum equal to 7 or less
is 2/20=0.1. If we want the two-sided test, we can multiply this by 2 and
get a p-value of 0.2.

Table 2.2: For calculating p-values by enumeration: All possible rank combina-
tions and respective sums for a combined sample of length 6. Here we only show
the ranks for one sample. The other sample’s ranks would just be the ranks not
present in each row.

Combinations Sum
1, 2, 3 6
1, 2, 4 7
1, 2, 5 8
1, 2, 6 9
1, 3, 4 8
1, 3, 5 9
1, 3, 6 10
1, 4, 5 10
1, 4, 6 11
1, 5, 6 12
2, 3, 4 9
2, 3, 5 10
2, 3, 6 11
2, 4, 5 11
2, 4, 6 12
2, 5, 6 13
3, 4, 5 12
3, 4, 6 13
3, 5, 6 14
4, 5, 6 15

2.3.4 Multiple Comparisons Problem

Rejecting a null hypothesis because a calculated p-value is less than the
chosen significance level does not necessarily mean that the null hypothesis
is false. It actually might be true, and the significant result might be due to
chance. When testing a set of hypotheses simultaneously, the probability of
type I errors increases. For example, if we have 1000 true null hypothesis
that we perform tests on with significance level 0.05, we would have to
expect 50 of these results to be significant just due to chance. These are 50
incorrect rejections, or type I errors, as previously described. This problem,

13

that some fraction will be type I errors when doing multiple statistical tests,
is called multiple comparisons or multiple testing problem. The goal is,
therefore, to reduce the number of false positives. One thing one should
have in mind when correcting for multiple comparisons is that the number
of false negatives might increase [21]. A false negative is when there is
statistical significance, but the test does not detect it.

Controlling the False Discovery Rate with the Benjamini-Hochberg
Procedure

Several statistical techniques have been made for preventing incorrect
rejections from happening. We will only be looking at one technique: the
Benjamini-Hochberg procedure [22]. By controlling the false discovery rate
(fdr), i.e., the proportion of significant results that are false positives, using
this procedure, we can reduce the number of false positives. Having a set of
p-values from multiple hypothesis tests and a chosen false discovery rate,
the procedure can be divided into the following steps:

1. sort the p-values in ascending order, p1 ≤ p2 ≤ ... ≤ pN ;

2. rank the sorted p-values, the smallest p-value with rank i = 1, the
next smallest with rank i = 2, and so forth, where equal p-values get
the same rank;

3. compare each p-value to its Benjamini-Hochberg critical value,
defined as:

Hi =
i
m

α

where i is the rank, m is the total number of p-values, and α is the
chosen false discovery rate;

4. reject the null hypothesis for all p-values that are smaller than or equal
to the largest p-value that satisfies p < Hi, also called the threshold
[23].

2.4 Quantile Normalization

Quantile normalization is a statistical technique for normalizing two or
more arrays in a set. This can be done either by normalizing the set to
a reference distribution, such as the Gaussian distribution or the Poisson
distribution or by normalizing the arrays to each other, as we will be doing
in this thesis. By sorting each array independently, from smallest to biggest,
we can find the mean at each entry, such that the biggest value of all arrays
has a mean, the second biggest value has a mean, and so forth. The array
of means is then used to replace each entry in the original set at the correct
entries so that every array has the same ordering as the original. The
short version is that it is transforming the set of arrays to have a common
distribution of values. Since we in this thesis will be having the set of arrays
stored as a matrix, the algorithm will consist of the following steps:

14

1. given matrix X of size p× n, where each array is a column;

2. sort each column of X to give Xsorted;

3. take the means across the rows of Xsorted and store this mean to each
element at each row to get X′sorted, the mean being the arithmetic
mean, defined by the formula:

A =
1
n

n

∑
i=1

ai =
a1 + a2 + ... + an

n
;

4. get Xnormalized by rearranging each column of X′sorted to have the same
ordering as the original X [15].

2.5 Data Smoothing

As a part of the results created by our pipeline, some figures containing
information about the data obtained during various tasks of the pipeline
will be created. Methylation datasets can contain a lot of noise, and we
must, therefore, smooth some of the data to be able to present the results.
We here present two data smoothing techniques which are utilized in the
pipeline.

2.5.1 Centered Moving Average

A moving average is a calculation to get averages of different subsets of a
full dataset. Given a list of numbers and a fixed subset size n, we replace
the original numbers with the averages of nearby numbers. In this study,
we will use a centered moving average, meaning that the averages will be

calculated from the subset between
n
2

numbers to the left and
n
2

numbers
to the right of the original number. If the subset is cut off because of it being
at either end of the full dataset, only the numbers available will be a part of
the subset used.

2.5.2 One-Dimensional Gaussian Filter

The Gaussian filter is also used for smoothing data, but it uses a different
kernel than the moving average smoothing, which uses the mean. The
kernel of the Gaussian filter represents the shape of a Gaussian "bell curve,"
and the one-dimensional Gaussian function is:

G(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2

where σ (sigma) is the standard deviation of the distribution, and µ is the
expected value. We smooth the dataset by convolving it with a Gaussian
function. Convolution is the process of multiplying each number of the
original list with the neighbor numbers weighted with filter weights from
the Gaussian function. The degree of smoothing is determined by the

15

standard deviation of the Gaussian, such that a larger standard deviation
means a larger convolution kernel [24].

16

Part II

Method and Implementation

17

Chapter 3

Genetic Data

In biomedical research, the laboratory mouse genome is one of the key
information tools for understanding the function of the human genome.
Because the protein-coding regions of the mouse are, on average, 85 percent
identical to that of the human, a thorough annotation of the mouse genome
is of significant value to understanding the content of the human genome.
The final pipeline-tool can take both human and mouse datasets as input,
and, hence, we will do test runs on both types of datasets. In this chapter,
we try to describe what the various input data files are, their format, and
how they have been collected.

3.1 Reference genome file

A reference genome is a data structure that represents genetic information
for a species. This can be accessed and downloaded from online databases
such as UCSC Genome Browser [25], NCBI [26], EMBL-EBI [27], etc. The
human reference genome is derived from the sequencing of DNA from
numerous anonymous individuals, and the official name for the newest
assembly is called Genome Reference Consortium Human Build 38, or
GRCh38. In the UCSC Genome Browser, it is referred to as hg38. The
most recent mouse reference genome is called GRCm38, or mm10 in
the UCSC Genome Browser. In this thesis, we use the refFlat data as
reference. The refFlat data files are tab-separated text files containing gene
predictions, which are formatted by each row being a gene prediction.
What information is stored for each prediction is shown in Table 3.1. In
this project, we will only be using the first six of the eleven columns, which
are: the gene name as it appears in the Genome Browser, the gene name,
the chromosome name, which strand it is, i.e., if the gene is 5’ -> 3’ (+) or
3’ -> 5’ (-), the transcription start site of the gene, and the transcription end
site of the gene. One gene name as it appears in the Genome Browser can
have several gene names in the refFlat file. Typically, this means that either
the transcription start sites differ, or that the transcription end sites differ.

When downloading the refFlat reference data from the UCSC Genome
Browser, it will for human contain genes in the 23 chromosome pairs: 22
autosomes and one allosome. The autosome chromosomes are chromo-

19

somes that are not related to sex, named chromosome 1 to 22. The allosome
chromosome pair normally consist of one X and one Y chromosome in fe-
males and two X chromosomes in males. These are also called sex chro-
mosomes. Mouse only has 20 chromosome pairs: 19 autosome and the one
allosome. The downloaded reference data for both human and mouse ad-
ditionally contain genes of the mitochondrial chromosome, as well as fix
patches, and unfinished and uncertain chromosomes. In this project, we
will only use the genes of autosome, allosome, and mitochondrial chro-
mosomes, making the number of chromosomes for human and mouse 25
and 22, respectively. Thus, the rest of the chromosomes not needed in the
pipeline must be removed by the user before gene annotation.

Table 3.1: Descriptions of each column in refFlat. We only use the first six
columns, i.e., geneName, name, chrom, strand, txStart and txEnd in this project.

Column Type Description
geneName string Name of gene as it appears in

Genome Browser
name string Name of gene
chrom string Chromosome name
strand char[1] + or - for strand
txStart uint Transcription start site
txEnd uint Transcription end site
cdsStart uint Coding region start
cdsEnd uint Coding region end
exonCount uint Number of exons
exonStarts uint[exonCount] Exon start positions
exonEnds uint[exonCount] Exon end positions

3.2 Chromosome sizes file

A file containing chromosome sizes respective to the chromosomes of the
reference file is needed in the pipeline. This file is called the genome file, or
chromosome sizes file, and can be downloaded from the UCSC Genome
Browser for the needed species. It is a tab-separated text file that only
contain two columns: chromosome names and chromosome sizes. The
chromosome sizes are reported as the number of base pairs. The unwanted
chromosomes, as mentioned in the previous section, must also be removed
from this data file before being input to the pipeline. Additionally, the file
must be sorted, based on the chromosome names, such that the order is as
following: chr1, chr2, ..., chr21, chr22, chrX, chrY, chrM.

3.3 Tissue-Specific Enhancers file

The tissue-specific enhancer files used in this project are obtained from the
paper by Y. Shen et al. [3]. The enhancer files input to the pipeline must
be in BED format. The BED format consists of three required fields, or

20

columns, and several additional optional fields. The first three fields are
the chromosome name, the chromosome start site, and the chromosome
end site. The optional field is, in the case of the enhancer files input to the
pipeline, information on the specific tissue of the enhancers.

3.4 HMST-Seq Sample Data

As previously mentioned, the methylation data for this project is generated
by the HMST-Seq method. The general goal for identifying DMRs is
to detect regions under certain biological conditions that have different
methylation levels when compared to controlled cases [11]. In the current
study, we will focus on both 5mC and 5hmC levels. One genetic technique
for controlling the conditions of specific genes is called gene knockout
(KO). This is a procedure that can be used to silence or inactivate one
or multiple genes. Knocking out multiple genes is called double gene
knockout (DKO). One reason for knocking out genes is for making
a comparison between a KO condition sample and a wild type (WT)
condition sample. A WT condition sample is the natural form of a sample,
i.e., where there has not occurred any editing or changes of genes. By
having one KO condition sample and one WT condition sample, we can,
with the analysis-pipeline, possibly detect differences in 5mC and 5hmC
regions. One can also use data that does not come from doing controlled
gene knockout, but instead having two samples: one test sample and one
normal (control) sample, such that the test sample can be from a disease
tissue while the control sample can be from a healthy tissue. However, we
will, for the most part, refer to test and control samples as KO and WT
samples, respectively, in this thesis.

The pipeline can only handle HMST-Seq datasets containing tag counts.
This means that the low level analysis, including mapping the raw
sequencing tags to a genome sequence and counting the number of tags
at each genome site, must already be done before inputting the data to the
pipeline. The format of these datasets generated by the HMST-Seq method
must be tab-separated text files containing the five columns: chromosome
name, genome site, and the tag counts for the three libraries HpaII, BGT
and MspI, in that order. The tag counts can, however, be pre-normalized or
not. There will be an option in the pipeline-tool for normalizing across the
three libraries using quantile normalization.

3.5 BS-Seq Sample Data

Even though the pipeline is primarily developed for handling HMST-
Seq datasets, it can be used for doing differential methylation analysis
on BS-Seq datasets as well. The datasets sequenced using the BS-Seq
method should also be BED-formatted, but where the optional fields are
the methylation level and a background level. The background level is not
needed in this project and will be removed by the pipeline.

21

Chapter 4

Software and Hardware

4.1 Programming Language, Libraries, and Software

In this project, we have developed a pipeline working as a command-
line tool for analyzing methylation datasets from the HMST-Seq method.
Ideally, the pipeline shall have a graphical user interface to make it simpler
to use for users, such as biologists, that do not know how to use the
command line. However, because of time restrictions, we focused on
creating a simple-to-use command-line interface. The pipeline is developed
as a Python [28] package that in theory, can be installed on any machine
having Python accessible. The pipeline is implemented using Python
version 3.6, but test runs are conducted using Python 2.7. The test runs
of the pipeline will be described in more detail in Chapter 7.

Python is a high-level, general-purpose programming language, and is
a very popular tool for data science and data mining methods. Because it
is a general-purpose language, it can be used for doing everything from
creating websites to analysis using machine learning techniques. We used
Python for this project, because it is a simple language to learn, because of
its code readability, and because Python performs very good when doing
analysis on large datasets. It comes with a standard library distributed
with it. Some of these modules are used in the pipeline, such as argparse
and multiprocessing. The module called argparse is used to make a
user-friendly command-line interface. It helps with generating help and
usage messages automatically, and issues errors when the program is given
invalid arguments. For parallelization of some of the most computationally
heavy tasks in the pipeline, we have used the multiprocessing module,
which allows Python to use multiple processors on the given machine.
Other modules that are distributed as a part of the standard Python library
are also utilized. Further Python packages which are not in the standard
library are used in the pipeline as well. This includes pandas [29], NumPy
[30], Matplotlib [31], seaborn [32], and SciPy [33]. These can be installed
using a package manager such as pip or conda [34]. The pandas package
is a data analysis library which is heavily used in the implementation of
the pipeline. The package offers in-memory data structures as well as a
broad set of operations for manipulating datasets. The data manipulation
operations of the module make it easy to do operations on whole data
structures at the same time. It also makes the reading and writing of the
data between the in-memory data structures and different file formats very

22

simple. Matplotlib and seaborn are data visualization packages used for
plotting the results, while NumPy is the fundamental package for scientific
computing in Python. To be able to install the pipeline itself, we utilize a
Python library called setuptools, which is a system for developing software
packages in Python. It allows us to have a setup.py script for easily
building the analysis pipeline package so that it can be installed using the
following command:

$ python setup.py install

Besides packages and modules related to Python, we utilize software
in the pipeline that is outside of the Python library. BEDTools [35] is
one of them. BEDTools is a library of command-line tools for a wide-
range of genomics analysis tasks. It is available for installment through
various package managers such as conda. There is also an option for using
MATLAB [36] in the Python pipeline. This is done through a MATLAB
engine API which can be installed as a Python package. MATLAB
is a numerical computing environment and proprietary programming
language. Proprietary, meaning that it is a non-free, closed source software.
Because MATLAB is proprietary, users of the pipeline might not have
access to it. Hence, R [37] can be used for the same task MATLAB is used.
R is a software environment for statistical computing and graphics that is
freely available under the GNU General Public License. What features of
BEDTools, MATLAB, and R we use, for what purpose, the necessity, and
why, is discussed in more detail in the next two chapters.

4.2 Hardware for Testing

The test run conducted in this thesis was performed on the Abel computer
cluster - a high performance computing resource at the University of Oslo,
hosted at USIT by the Research Infrastructure Services group. The Abel
cluster is comprised of more than 650 compute nodes, each running on dual
Intel E5-2670 (Sandy Bridge) with 2.6 GHz, yielding 16 physical computer
nodes, and 64 GB Samsung DDR3 memory operating at 1600 MHz. All
compute nodes are running Linux, 64 bit Centos 6. Abel uses the queue
system: Slurm Workload Manager, to ensure effective utilization of the
Abel infrastructure.

23

Chapter 5

The Pipeline Tasks and Flow

There are already multiple tools available for analyzing DNA methylation
data. Many of them are made for data generated from bisulfite sequencing
(BS-Seq). Since BS-Seq does not differentiate 5mC and 5hmC, we cannot
use these tools for the current project. There are also tools developed
for analyzing both 5mC and 5hmC data, but it is challenging to use
these existing tools to analyze both datasets simultaneously. Thus, a
new computational pipeline considering a proper statistical method for
analyzing DNA methylation data produced by the HMST-Seq method has
been made: HMST-Seq-Analyzer. Even though the main focus in the current
thesis will be differential analysis of 5mC and 5hmC data, the pipeline will,
as a bonus, also be able to do differential analysis on datasets generated
by the BS-Seq method. In this chapter, we will give an overview of the
pipeline, and the various tasks of the pipeline, where the focus will be
on what each task does. In the next chapter, we will look more into the
architecture of the pipeline, and the inputs and outputs of the various tasks.

5.1 The Pipeline

High level, the pipeline consists of eight tasks that must be run separately
and in a certain order to function as intended. The pipeline’s eight tasks
and main flow is shown in Figure 5.1. In this figure, we can see the names
of the different tasks and the order they are meant to be run in from start
to finish. The first two tasks, Data Preprocessing and Gene Annotation,
can be run regardless of the order because they are not dependent on
each other. After these two steps, the running order shall be: Find MRs,
Preparation for DMR Search, DMR Search, Plot Preparation, Plotting,
and Clean Folder. The first seven tasks have to be run in order to produce
all possible results such as DMR findings, and all of the results for figures.
The eighth task does not influence the final results, but is for removing
temporary files from the output folder that are created during the pipeline-
run. In this way, by having a pipeline divided into multiple tasks, users can
have an opportunity for experimental variation.

As previously mentioned, the pipeline is developed in Python.
An overview of the package folder, called HMST-Seq-Analyzer, is

24

Figure 5.1: The eight pipeline-tasks of the Python pipeline, and the order they
should be run in.

shown in Figure 5.2. Within this folder, there is another folder,
hmst_seq_analyzer, which contains the scripts of the pipeline. The main
file, hmst_seq_analyzer.py, is the Python script that is called every time
a user interacts with the pipeline. When a user wants to run a pipeline-
task, hmst_seq_analyzer.py is called, with the input argument being the
name of the task. When the pipeline is successfully installed as described
in section 4.1, the name of the pipeline is hmst_seq_analyzer, and users
can interact with it using the hmst_seq_analyzer command. By entering
hmst_seq_analyzer -h in the command line, a help message showing what
the names of the various tasks are, a short task description, as well as the
usage of the pipeline will be shown. This help message can be seen in Fig-
ure 5.3. In addition to the main pipeline file, the hmst_seq_analyzer folder
contains the folder called scripts_high, where scripts of each separate task
will be found. The pipeline consists of 14 functions, spread across the first
seven tasks. These functions are in the folder called scripts.

The readme file contains essential information for users of the package,
such as how to install the package, how to install the requirements, a
demo run, as well as some general information that can be useful for a
user to know. The file named requirements.txt contains names of Python
packages and software that must be installed by the users. setup.py is
the file allowing users to install the Python package. When the pipeline,
the required packages, and software has been installed, users can utilize
the pipeline package from anywhere, meaning that it can be run from
whichever directory the user wants to.

25

Figure 5.2: The HMST-Seq-Analyzer Python package directory tree. The files of
the two folders scripts_high and scripts are not shown, but these are the folders
containing the different Python files for all the tasks of the pipeline.

5.2 Gene Annotation

In order to find differentially methylated and hydroxymethylated regions
(DMRs) in the methylation data, we first need to extract genomic regions
from the reference genome file, refFlat. The reference genome represents a
set of genes for a species, which for this project are either mouse or human,
as described in section 3.1. The genomic regions we extract from each gene
during this task are transcription start site (TSS), gene body, transcription
end site (TES), 5’ untranslated region (5’UTR), and intergenic. These
genomic regions will in the Find MRs task be used to assign the methylated
sites of the sequencing data to. TSS and TES are considered sites and not
regions, but we will, in this thesis, consider them as regions. This is because
we are interested in the regions around the TSSs and TESs. By doing gene
annotation on the reference genome, we can identify locations for all such
genomic regions.

Before the gene annotation, the reference is cleaned. Cleaning
the reference includes removing duplicates and specific genes called
microRNA genes. MicroRNAs are non-coding RNAs that regulate the
gene expression negatively by inhibiting transcription from occurring [38].
These have gene names starting with the text "MIR" in the refFlat files.
Users of the pipeline can decide whether such genes shall be removed or
not. We will get back to what the user options for each task of the pipeline
are in the next chapter. As mentioned in section 3.1, the refFlat file can have
more than one of the same gene name, but that has different transcription
start or end sites. When extracting regions such as TSS and TES, this could
result in there being multiple of the same region. Therefore, we merge such
regions into one unique. For example, if two genes have the same TSS but
different TES, we would after gene annotation have two of the same TSS
region, which is not wanted.

The length of the different genomic regions, such as TSS, gene body,
TES, 5’UTR, and intergenic, can be influenced according to a user’s
preferences. Figure 5.4 illustrates how these five genomic regions are
extracted from the genes of a reference genome, i.e., where the extracted
genomic regions are located relative to each other. If a user plans to use
the same genomic region sizes across multiple experiments with the same
species, this task only needs to be done once.

26

Figure 5.3: The help message for hmst_seq_analyzer. It shows the eight tasks of
the pipeline, a small description of each task, and how to run the tasks. By further
entering hmst_seq_analyzer <task> -h, where <task> is the name of the task, a help
message for the specified task is shown.

5.3 Data Preprocessing

The task called Data Preprocessing consists of two parts. The first part is
applying normalization to the tag counts among the three libraries HpaII,
BGT, and MspI, of the HMST-Seq datasets. The normalized libraries are
then used in the second part of this task, which is calculating the relative
abundance of 5mC and 5hmC. The abundance of 5mC can be determined
as the ratio between the tag counts in the libraries BGT and HpaII, while
the abundance of 5hmC can be determined as the ratio between tag counts
in the MspI and BGT libraries [8]. This is done by simply dividing the tags
in BGT by the tags in HpaII for 5mC, and dividing the tags in MspI by the
tags in BGT for 5hmC, at each site. These new numbers are what we call
5mC and 5hmC levels in this thesis.

5.4 Finding MRs and DMRs

The process of finding DMRs and DhMRs in methylation data includes
finding the genomic distribution of 5mC and 5hmC and comparing
methylated genomic regions across different biological conditions. Find
MRs, Preparation for DMR Search, and DMR Search are the three tasks
doing exactly this. These are the three most computationally heavy tasks
in the pipeline. They are closely related, and thus, we present these tasks

27

Figure 5.4: The different genomic regions extracted from the genes of the
reference genome, and where they are located relative to each other. The extracted
genomic regions are TSS, gene body, TES, intergenic, and 5’ UTR. A shows two
genes of the reference genome, while B shows the extracted genomic regions. Both
genes have + strands.

under the same section.

5.4.1 Find MRs

The first of the three tasks related to finding DMRs/DhMRs is called Find
MRs. During this task, we find the genomic distribution of 5mC and
5hmC, as well as defining 5mC and 5hmC regions, called methylated and
hydroxymethylated regions (MRs and hMRs). To make things simpler, we
will from now on refer to both MRs and hMRs as MRs.

An MR can be defined as a cluster of 5mC or 5hmC sites in one genomic
region of a gene from the reference. To find MRs, we must first align
the 5mC/5hmC sites to the genomic regions of the reference. This can
be done by mapping the 5mC/5hmC sites to the genomic regions, or by
identifying overlaps between the genomic regions and 5mC/5hmC sites
using the BEDTools feature called intersect. The intersect feature is one of
the BEDTools tools, and it allows a user to look for overlaps between two
sets of genomic data, which is why we chose to use this for the mentioned
mapping. When we run BEDTools intersect between the two sets: one
genomic region and either one of 5mC/5hmC set of a condition sample,
we will without specifying any options get the shared interval between
the sets. This means we cannot tell from which each intersection came.
However, if we add the options -wa and -wb when running the intersection
command, both the shared interval and the regions of the first set from
which the shared interval comes from, will be in the output. This is
illustrated in Figure 5.5. In the figure we have two sets of genomic regions,
A and B, that, when A intersect B is run with the -wa and -wb options will
give both the shared interval and the regions from A. The output of this
will be all genomic regions and the 5mC/5hmC sites within the start and
end site of the genomic regions. However, BEDTools does not give us MRs
when finding overlaps. That will be the next step.

As previously mentioned, an MR is a cluster of 5mC or 5hmC sites in a
gene’s specific genomic region. However, in this pipeline, the cluster must
fulfill two requirements to be considered as an MR: (1) the cluster must
have at least N 5mC or 5hmC sites, and (2) there can not be more than a bps

28

Figure 5.5: An example of BEDTools intersect where A and B are two sets of
genomic regions. If we run A intersect B with the options -wa and -wb, we get both
the shared interval (yellow) and the regions of A from which the shared interval
came from (red), as seen in the bottom grey area.

between each adjacent site in the cluster, which is ordered by the genome
sites. This means that if we have a cluster of length 5 and N is equal to
5, but the inter-distance between the two sites in the middle of the cluster
is more than the specified a, it will be discarded, i.e., not be considered as
an MR. A simple Python script illustrating this logic is shown in Figure
5.6. In this code, the variable possible_MRs is an ordered list containing
methylated sites overlapping with one genomic region. For example, if the
genomic region is the leftmost red block in Figure 5.5, the two yellow blocks
overlapping with it are the clusters of methylated sites. The goal is to find
out if these two clusters are MRs or not. If they are MRs, they will, in the
Python code in Figure 5.6, be included in the list called MRs. If a cluster
of sites is split because adjacent sites are having inter-distance longer than
a, both parts of the split can still be MRs if the requirements for each part
being an MR, are fulfilled. This part does not separate each MR of such a
split but finds all sites that are included in MRs. In the next task, each MR
is separated from each other.

5.4.2 Preparation for DMR Search

While finding MRs is done for one sample at a time, finding DMRs
is on the other hand done by comparing two samples, such as a WT
condition sample and a KO condition sample, as described in section 3.4.
Before we can find DMRs using a statistical hypothesis test, we must
first find overlapping MRs between two samples. This is done in the
task of the pipeline called Preparation for DMR Search. In this task,
we use IDs to find overlapping MRs. An ID is a unique combination of
chromosome name, gene name as at appears in the Genome Browser, gene
name, strand, start and end position of this genomic region, and original
transcription start and end sites of the gene from the reference genome.
It is used such that the same genomic regions can be found between the
samples. By finding all unique IDs from the combined data of KO and
WT condition samples, we could extract all 5mC/5hmC sites from both

29

Figure 5.6: Simplified Python script for finding methylated regions from the
ordered list of methylated sites called possible_MRs.

samples. However, we are not interested in MRs of WT data that are not
present in KO data, and can, therefore, extract all 5mC/5hmC sites for both
KO and WT data from the unique IDs of the KO data alone. The way this
is done is by doing a full outer join on the 5mC/5hmC sites of the unique
IDs. A full outer join gives all 5mC/5hmC sites in MRs from both KO data
and WT data whether the sites are in common or not.

Missing Data

Missing data due to experimental and technical noise is quite common
in datasets obtained through high-throughput sequencing. Hence, some
5mC/5hmC sites may not be observed during the sequencing experiment.
This means that not all 5mC/5hmC sites in an overlapping MR are
in common, but can have one or many missing sites from both data
conditions. An illustration showing an overlapping MR where both KO
and WT data have one missing site each is shown in Figure 5.7. Missing
data can, in general, be handled in three different ways: by imputation,
by removing the affected data, or by continuing with the data as it is. By
imputation, we mean replacing the missing entries by some value, like
the mean, median, or simply just zeros. One argument for replacing the
missing values of overlapping MRs by zeros in this project is that it is
similar to the real situation. Because, when a site is not observed, it means
it is not present in the experiment, and a methylated level of zero resembles
that. Another way of imputing missing values is by interpolation, but
we will not have that option in this project because it might add noise to
the data. If we were to discard overlapping MRs having missing values,
we would lose a lot of possible important data. Therefore, discarding
overlapping MRs missing values would not be appropriate. The last
method for handling missing data is to leave the data untouched. The only

30

problem with this is that it is not certain that the test method or function we
will use for the comparison of the two sets of 5mC/5hmC sites can handle
non-existing numbers or NaNs in Python. NaN means "not a number" and
is a Python float that cannot be expressed as a number.

Figure 5.7: One MR, where the green and yellow sites represents overlapping
methylated sites, and red represents missing values. The missing data can for
example be handled by imputation, e.g., by filling in the missing values by for
example the median or zeros.

The 5mC/5hmC sites of the overlapping MRs might not fulfill the re-
quirements to be considered MRs. Therefore, we validate each overlapping
MR and its 5mC/5hmC sites, as previously described and shown in Figure
5.6, before going to the next step: finding DMRs and DhMRs. This valida-
tion is also done so that each MR is one row in the output, such that if a
split occurs, as mentioned in section 5.4.1, within one genomic region, each
part is on separate rows.

5.4.3 DMR Search

Differentially methylated and hydroxymethylated regions (DMRs and
DhMRs), are genomic regions having different methylation status across
biological samples. When testing if an MR has different 5mC/5hmC levels
across two samples, a proper statistical hypothesis test should be used. In
the article by Y. Xia et al. [8], the authors found DhMRs and DMRs in
H9 human embryonic stem cells (hESCs) by using a Wilcoxon rank-sum
test with the p-value less than 0.05 to define DhMRs and DMRs. In F. Gao
et al. [10] they also used a Wilcoxon rank-sum test with the p-value less
than 0.05, to specify DMRs and DhMRs between hepatocellular carcinoma
(HCC) and non-HCC samples, sequenced with HMST-Seq. Since both Y.
Xia et al. [8] and F. Gao et al. [10] used Wilcoxon rank-sum test to find
DMRs and DhMRs in HMST-Seq data, it encouraged us to apply the same
method for the present project. In section 2.3.2, we described the basics of
such a test. For simplicity, we will mostly use DMRs when referring to both
DhMRs as DMRs.

The biological samples should already be overlapping, and missing
sites should be handled accordingly, as described in the previous section,
which means we can now detect DMRs by comparing 5mC/5hmC levels of
the two samples in overlapping MRs. The pipeline will have an option for
users to choose between a few different approaches for detecting DMRs,

31

which we will get back to in the next chapter. After running a statistical
hypothesis test on all overlapping MRs, each of the tests will give a
corresponding p-value. Users can then chose to reject all hypotheses having
p-value less than a chosen α, or run a Benjamini-Hochberg correction. The
MRs that are rejected are then considered differentially methylated. A
DMR can be either of the two types: hypomethylated or hypermethylated.
If a DMR is hypomethylated, it means there is a decrease in the methylation
levels, i.e., that the KO condition sample is less methylated than the WT
condition sample in this specific DMR. If, on the other hand, a DMR is
hypermethylated, it means there is an increase in methylation levels. The
way we measure if there is an increase or decrease in methylation levels in
a DMR is by finding the relative ratio [39] (rratio) between the two. The
rratio is given by the following formula:

rratio =
µKO − µWT

(
µKO + µWT

2
)

,

where µKO is the median of the unimputed methylated levels in the KO
data, and µWT is the median of the unimputed methylated levels in the WT
data. If rratio is above 0, the DMR is considered hypermethylated. If it is
below 0, the DMR is considered hypomethylated.

5.5 Plot Preparation and Plotting

In addition to finding DMRs, the pipeline stores different information
about the methylation data that is obtained during a run of the various
tasks. In the next chapter, we will show where the different information
comes from, i.e., from which task. To visualize this information, the
pipeline creates four different kinds of figures. In this section, we will
describe the different figures that are created and how they are made. In
chapter 7, we will do test runs of the pipeline, where all figures produced
by the pipeline will be shown.

Since the mentioned tasks are closely related, we will present the
different kinds of figures that are made by the pipeline instead of the two
separate tasks, Plot Preparation and Plotting. In the next chapter, we will
show the input arguments for these tasks separately.

5.5.1 Plotting DMR and DhMR Distribution

To present the distribution of DMRs and DhMRs over the various genomic
regions we plot a figure showing the number of DMRs as percentages
of the total number of overlapping MRs in the specified genomic region
in a bar chart. In this figure, we differ between hypomethylated and
hypermethylated DMRs, where hypermethylation is an increase in the
methylation level, and hypomethylation is a decrease. Hence, the figure
will contain four separate subplots, each showing the distribution across
genomic regions. The four plots shows hyper-DMRs, hypo-DMRs, hyper-
DhMRs, and hypo-DhMRs as percentages of overlapping MRs.

32

5.5.2 Plotting Relative Density for MRs

The next figure that is created in the pipeline shows the distribution of
significantly modified MR sites across the various genomic regions. This
figure is presented as a bar chart as well, showing the ratio of significantly
modified MR sites against all MR sites. A significantly modified site can
be defined as a methylated site (5mC or 5hmC), having methylation level
above a certain threshold, such as 1, which they used in Y. Xia et al. [8].
This figure will contain two subplots, one for 5mC distribution, and one
for 5hmC distribution.

5.5.3 Plotting Distribution of 5mC/5hmC Levels of MRs in TSS,
Gene Body, TES and Enhancer Regions

As mentioned in section 5.2, each genomic region such as TSS, gene body,
TES, 5’-UTR, and intergenic, is calculated based on the gene annotation
in the reference genome. In the pipeline, the length of every gene’s TSS
and TES region is the same across all samples. Thus, we can generate
figures that show the distribution of 5mC and 5hmC levels of MRs around
the genomic regions, such as TSS and TES. We are also interested in the
distribution of 5mC and 5hmC levels of MRs in the gene body region, even
though different genes have different lengths. Thus, we create a combined
figure showing the distribution of methylation levels of TSS, gene body,
and TES regions, for both 5mC and 5hmC. Additionally, the distribution of
5mC and 5hmC levels of MRs in enhancer regions are also illustrated.

To plot the distribution of 5mC and 5hmC MRs for one of the
genomic regions, we have made an approach for computing the average
methylation level of each site in a set of MRs. For all MRs of one sample
in a given genomic region, the transformation is divided into the following
four steps:

1. The first step is to map the methylated sites of each MR to the same
range. Because each MR in TSS and TES region have the same length,
the methylated sites of these two regions can be mapped easily to the
same range. However, gene body MRs have different lengths and
must be mapped to a common range. We do this by normalizing and
scaling the methylated site to be in a new range. We can then find the
number y in the new range [c, d], from a number x in the old range
[a, b]. The formula for this transformation is:

y =
x− a
b− a

(d− c) + c

For example, if we have a methylated site at genome site 100 in an
MR with start and end positions 0 and 200 and we want to transform
this site to the range [1000, 2000], the translated number is 1500. This
translation is done for all MR sites.

2. Normally, the span of an MR will be anywhere from a couple of
hundred to hundreds of thousands of base pairs long. The number

33

of methylated sites in each MR can also vary a lot, depending on the
sequenced samples. If we have many MRs with few methylated sites
but long spans, we have a very sparse data set. Therefore, we shall
increase the number of methylated sites in each MR. For example, we
can increase the number of methylated sites using data interpolation,
which is a method to approximate the data distribution based on a
function such as y = f (x). We can then use this function to find
values for new data points, which, in our case, will be the methylated
sites. There are many different types of interpolation algorithms such
as spline and linear interpolation, and we apply a one-dimensional
nearest neighbor algorithm in this pipeline. The nearest-neighbor
interpolation chooses the nearest value for a new data point. By
using this algorithm, we are able to obtain new data points and
increased data size based on the distribution of the input data, and
hence making the data denser. In our case, we are estimating new
methylation sites between the first and last methylated site in an MR,
with a specific step size. In Figure 5.8, the estimated methylated sites
from the nearest-neighbor interpolation method are illustrated using
a simple example, where we show the data before step 1, after step 1,
and after step 2 of the data transformation.

3. When the data has been increased by interpolation, we can take the
mean of all methylation levels at each site of the new span, across all
MRs in the genomic region. The resulting data contains methylation
level-averages in the new span.

4. If we plot the methylation level-averages, it will contain a large
amount of noise and no informative figure will be produced.
Therefore, we apply a simple centered moving average method, as
discussed in section 2.5.1, to smooth the averages, giving a better and
more informative figure.

Since the genomic regions TSS, gene body, and TES are very closely related,
the obtained averages of these regions are plotted together in the same
figure, by concatenating the three data sets in the above order. However,
if one or more of these regions does not contain any MRs, each genomic
region will be plotted separately. Enhancer regions will be plotted in
separate figures, regardless.

After applying the centered moving average, a one-dimensional Gaus-
sian filter, as described in section 2.5.2, is further applied to smooth the
remaining noise of the data. In Figure 5.9 and Figure 5.10, we illustrate the
three stages of the data: raw averages, after applying the centered moving
average, and after further applying a one-dimensional Gaussian filter. We
see in these figures that there is much noise in the raw average data. If the
trends of the data should be shown, the moving average smoothing is nec-
essary. There is still some small noise after the average smoothing, which
is decreased as shown in the latter figure.

34

Figure 5.8: The first two steps of transforming the raw methylation levels of MRs
for plotting the methylation distribution. The x-axes are showing the genome sites,
and the y-axes are showing the methylation levels. The first row is the raw data
of two different MRs. The second row is step 1, where the raw data has been
translated to be in the span between 0 and 2000. In the third row, we see step 2,
where the translated data have been increased by nearest-neighbor interpolation,
with a step size of 100. After the second step, we take the average at each site over
all MRs and smooth the data by the centered moving average method.

5.6 Clean Folder

The last task of the pipeline is a simple deletion of temporarily created files
that are not needed after the figures have been plotted. The files that are
removed have been created by the two tasks Data Preprocessing and Find
MRs. This is not an important task but can be of some help to make the
output folder of the pipeline cleaner.

35

Figure 5.9: An example of all the three stages of the methylation level-
averages data: raw averages, after centered moving average smoothing (subset
size=500), and after further smoothing using a one-dimensional Gaussian filter
with sigma=50. The y-axis is set to -2 and 10 to illustrate how the centered moving
average smoothing fits the raw averages.

Figure 5.10: The same data as in Figure 5.9, but where we have limited the y-
axis to 0.5 and 1 to better illustrate the noise before and after the one-dimensional
Gaussian filter.

36

Chapter 6

Pipeline Architecture and User
Interaction

In the previous chapter, we have described the workflow of the pipeline
and the first seven tasks in detail. Here, we will look at the architecture
of the pipeline: how the different tasks interact with each other, the input
arguments and their role in the pipeline, the input files, and the output files.

The pipeline consists of 14 main functions, which is spread across
the first seven tasks. The seven task scripts do not perform any of
the computations but call the low-level functions with a combination of
various input files and a set of input arguments. The architectural design
of the pipeline is shown in Figure 6.1, where the first seven tasks are in
green and the 14 main functions inside the respective tasks are in red. The
pipeline has three primary input datasets that must be provided by the
user. They are shown in grey such as the refFlat file, the chromosome sizes
file, and the methylation datasets. Also, users can input a tissue-specific
enhancer file, but it is not required. Output files from various tasks are
shown in blue and purple. The blue-colored datasets are the main data
files that are needed throughout the pipeline, while the purple files are used
for the final plotting. With each of the blue datasets, comes a separate file
containing the file names and file paths for all files of the respective dataset.
We call these separate files "list" files. By having these "in-between"-files
users can input the list file containing the file names of a dataset instead of
inputting each of the dataset files separately. This makes the pipeline more
manageable for the user. In Figure 6.2, we illustrate this idea by using the
output file sets from the Find MRs task. Users can then input these two list
files, shown in the figure as: "MRs files KO list" and "MRs files WT list", for
KO and WT data, respectively, to the task Preparation for DMR Search.
All the main data files created in the pipeline (blue) are stored in a folder
named data inside the main output folder, while the list files are stored
directly in the main output folder. This avoids data files getting mixed up
with the list files.

37

Figure 6.1: The pipeline architectural design. The seven first tasks of the pipeline
are shown in green, containing the low level main functions in red. The main input
data files that the user must provide to the pipeline are shown in grey. The blue
colored datasets are the main datasets needed throughout the pipeline, while the
purple datasets are used for the final figure plotting.

Figure 6.2: Illustrating the list files using the two output datasets of the task Find
MRs, and the two list files containing all file names of the respective dataset. Here,
we assume there is no available enhancer file.

38

6.1 Gene Annotation

As mentioned, by entering hmst_seq_analyzer followed by a task name
and the -h argument in the command line, more detailed information will
be shown, such as the usage of the task, what the input files, and input
arguments are. For example, entering hmst_seq_analyzer gene_annotation
-h in the command line, a help message for the gene_annotation task
will be displayed. As mentioned earlier, some input files, such as the
reference genome file and the chromosome sizes file are required. Besides
the required arguments, a few optional arguments are needed too, which
have default values. For the Gene Annotation task, all arguments
are shown in Table 6.1, where the first four arguments are required.
The two files, refFlat and chromosome sizes file, are input to this task
by the arguments -r and -g, respectively. The user also needs to tell
whether the methylation data comes from human or mouse. The human
genome contains 25 chromosomes while the mouse genome contains 22
chromosomes, as discussed in section 3.1. This is specified by the argument
-hu. If the argument -n is no, the chromosome sizes file has non-numerical
chromosome names, and the output data will also have non-numerical
chromosome names. However, if it is yes, then the output data will have
numerical chromosome names (e.g., chromosomes X, Y, and M are changed
to 23, 24, and 25 for human, and 20, 21, and 22 for mouse, respectively).

The optional arguments -X and -Y are related to calculating the genomic
regions TSS, TES, and gene body. For a gene, the TSS region starts X bps
upstream from the transcription start site, and ends Y bps downstream
from the transcription start site. The TES region starts Y bps upstream of
transcription end site, and ends X bps downstream of transcription end
site. Thus, the gene body regions are contracted by Y in both directions.
The optional arguments -M and -N specify the start and end of 5’-UTR
regions, where both numbers are upstream of the genes transcription start
site (N>M). The default values of the input arguments X, Y, M, and N have
been chosen based on the paper by B. Tang et al. [40].

If the argument -i is yes, then intergenic regions will be defined
between the raw genes (i.e., excluding the regions inside the reference’s
transcription start and end sites). If -i is no, then the TSS and TES regions
will also be excluded from the intergenic regions. For an intergenic region
to be included in the output dataset, it has to be of a certain length. By
using the argument -l, users can specify the intergenic region’s minimum
bp length. There are some genes in the reference that are quite short. If X
and Y are big enough, then the lengths of some gene body regions will be
less than zero. These gene body regions will not be included in the output
dataset. However, a user still might want to keep the TSS, TES and 5’-UTR
regions of such genes. Hence, if option -rem is set to no, then TSS, TES and
5’-UTR are kept. If it is set to yes, then such genes will not be included in
the output dataset at all. All output data of each task can be stored in a
specific folder based on a user’s selection by using the optional argument
-F. The default output folder name is out.

The gene annotation task’s primary goal is to find TSS, gene body, TES,

39

Table 6.1: The Gene Annotation task input arguments, both required (first four),
and optional.

Default Argument Description

None

-r/--referenceFile reference genome file
-g/--genomeFile chromosome sizes file

-hu/--human yes if sample is from human, no
if mouse

-n/--numericalChr
yes if the chromosome names
of the chromosome sizes file is
numerical, no if not

yes -rm/--removeMir
yes if gene names starting with
"MIR" should be removed, no if
not

1000 -X the number of upstream bp to
the transcription start/end site

1000 -Y
the number of downstream bp
from the transcription start/end
site

10000 -M the number of upstream bp from
the transcription start site

1000000 -N
the number of upstream bp
from the transcription start site
(N>M)

yes -i/--intergenicBTGenes

yes if intergenic regions should
exclude only original reference
genes, no if TSS and TES should
be excluded as well

2000 -l/--minIntergenicLen minimum number of bp in inter-
genic region to be included

yes -rem/--removeShort

yes if TSS, TES and 5’-UTR
should not be included when
gene body size is less than zero,
no if they should be included

out -F/--folderOut the name of the output folder

40

5’-UTR, and intergenic regions based on the genes of the reference file.
Hence, the output consists of five BED-formatted files, one for each of the
five genomic regions. The five file names are also put in a separate list
file. In addition, a filtered and BED-formatted reference file will also be an
included output of this task, cleaned as described in section 5.2.

6.2 Data Preprocessing

All input arguments for the Data Preprocessing task is shown in Table 6.2.
The main function of this task is to preprocess the data of the methylation
files. Therefore, the two main inputs are the KO and WT condition sample
data files, which are presented to the pipeline by the two arguments -
fko and -fwt. The pipeline can handle one or more of each condition
sample by adding each argument multiple times. Since the pipeline can
be applied to methylation data produced by both bisulfite sequencing (BS-
Seq) and HMST-Seq, the input argument -m can be used to distinguish the
two: yes implies the input data already contains methylation-levels (BS-
Seq), and no means the data contains the HMST-Seq library tag counts.
The computation of 5mC/5hmC levels is not needed for the BS-Seq data
because it does not contain the HpaII, BGT, and MspI libraries. However,
the BS-Seq data still has to be transformed into BED-format.

Many of the methylation data files are very large, especially if the
datasets are generated from whole genome sequencing. Therefore, there
is a big advantage for users to input compressed data. Hence, the option
-z followed by yes can be used to specify that the input methylation
data files are in gzip format. The arguments -g, -hu, and -n are the
same in this task as they are in the Gene Annotation task. Whether the
methylation data samples come from human or mouse, and whether the
chromosome names are numerical or not, are used for the same reasons
as in the previously described task as well. This includes the naming
of the chromosomes in the output files and the difference of the number
of chromosomes between human and mouse samples. If the HMST-Seq
input data is not normalized, then users can apply quantile normalization
on the three libraries before calculating 5mC and 5hmC levels, with the
optional argument -qn followed by yes. In the next task, which is the task
identifying overlaps between the genomic regions from Gene Annotation
and 5mC/5hmC sites, the intersect feature of BEDTools can be influenced
by extending the methylated sites such that sites located just outside of
genomic regions will have a higher probability of being included in a
cluster, or MR. The argument -e can be used to specify the extension of
sites. This extends the methylated sites e bps in each direction.

The output files of this task are the 5mC and 5hmC BED-formatted
files, for each of the input methylation samples. If the input methylation
files come from BS-Seq, then 5hmC data will not be exported, because the
bisulfite sequenicing technique does not differentiate 5hmC and 5mC. As
previously mentioned, we try to make the user interaction of the whole
pipeline as simple as possible. Hence, two list files containing the file

41

Table 6.2: The Data Preprocessing task input arguments. The first seven
arguments are required. The rest has default values.

Default Option Description

None

-fko/--fileKO KO condition methylation file
-fwt/--fileWT WT condition methylation file

-m/--methylated yes if methylation files already con-
tains methylation-levels, no if not

-z/--gzip yes if the methylation files are in gzip
format, no if they are not

-g/--genomeFile chromosome sizes file

-hu/--human yes if sample is from human, no for
mouse

-n/--numericalChr
yes if the chromosome names of the
chromosome sizes file is numerical,
no if they are not

no -qn/--quantileNorm yes if quantile normalization should
be run on methylation data, no if not

0 -e/--bpExtension bp extension from 5mC/5hmC site

1 -c/--cutoff above this level: significantly modi-
fied sites

out -F/--folderOut the name of the output folder

names of the 5mC and 5hmC outputs are created: one for KO condition
samples and one for WT condition samples. As seen in Figure 6.1, this
task also export count files, which are files that contain the number of
all 5mC/5hmC sites and significantly modified 5mC/5hmC sites in each
chromosome. In addition, they include chromosome sizes, which are
extracted from the chromosome sizes file. Users can define the level of
significantly modified sites with the argument -c. The count files are used
when creating the figures in the Plotting task. The file names of these files
are also listed in a list file.

6.3 Find MRs

As described in section 5.4.1, there are multiple steps of the approach to
locate MRs. In Table 6.3, all input arguments of the Find MRs task are
shown. Users can input the KO and WT condition samples’ 5mC/5hmC
data files, which are the output from the Data Preprocessing task, with the
arguments -fko and -fwt followed by the respective list file. The genomic
region files, which are the output from the Gene Annotation task, are input
to this task with the argument -reg. When Identifying 5’-UTR regions when
doing gene annotation, we do not remove genes overlapping with 5’-UTR
regions. Therefore, before finding MRs in 5’-UTR regions, we discard other
genes from these regions. We do this by finding overlaps between all 5’-
UTR regions and the reference file, only keeping the regions having no
overlap with genes in the reference. We use BEDTools intersect including

42

the option -v to do this. Hence, the BED-formatted reference file, created by
the Gene Annotation task, is needed for this task and must, therefore, be
input with the argument -ref. Users can input a tissue-specific enhancer file
with the argument -e. Because enhancer regions can not be located based
on the reference genome, users must provide these files themselves.

When mapping 5mC/5hmC sites to the genomic regions using BED-
Tools intersect, one optional input argument is -f, which can be explained
as the minimum overlap required as a fraction of genomic regions. As long
as the 5mC/5hmC sites are single sites and are not extended as described
in the previous section: the Data Preprocessing task, this number will not
make a difference in the outcome. However, if the 5mC/5hmC sites are
extended in each direction, and we increase the -f argument, there must
be more than just 1 bp overlap for a region to be included in the output.
For example, if this input is set to 0.5, this means that at least 50% of an
extended methylated site must overlap with the genomic region.

The Find MRs task can be quite computationally heavy. Therefore,
there is an option for parallelizing the work. By setting the argument -p
to be bigger than 1, users decide how many processes will run in parallel.
If there are five genomic region files, and two samples such as one KO
condition sample and one WT condition sample, both samples having 5mC
and 5hmC sites, there will be 5 ∗ 2 ∗ 2 = 20 combinations where MRs
need to be found. The work is then split between the processes by each
process finding MRs in one combo at a time. When a process is finished,
it starts finding MRs in the next combination. To parallelize this task, we
have used Pythons multiprocessing module, which spawns subprocesses.
Subprocesses are spawned by the Pool object of the module, while the file
combinations are distributed among the processes by the module’s map
function. Some of the genomic regions, such as 5’-UTR, usually cover
a larger area of a genome. Thus, it often contains a higher amount of
methylation clusters and MRs, which makes the computations more time
demanding. Therefore, we sort the input data by size, largest to smallest,
before beginning the MR finding. By doing this, when we have multiple
processes, the most computationally heavy jobs will start first. Optimally,
this makes the most computationally heavy jobs run while the rest of the
processes work on the less computationally heavy jobs, as illustrated in
Figure 6.3. In this figure, we see that by starting the most substantial jobs
right away, as in in block 1, all jobs are finished earlier than if the jobs
were distributed randomly to the processes, as in block 2. This procedure,
i.e., sorting the files by size, is implemented for all tasks in the pipeline
that have the option of parallelizing. In chapter 7, we will have a look at
whether this works as intended or not.

MRs are, as we know, defined by a minimum number of consecutive
5mC/5hmC sites having a maximum bp inter-distance, within a genomic
region. The minimum number of consecutive sites of each MR can be set
with the arguments -mc1 for TSS and TES regions, -mc2 for gene body, 5’-
UTR, and intergenic regions, and -mc3 for enhancers. We have grouped
them this way because of the length of the various regions. TSS and TES
regions are usually shorter than gene body, 5’-UTR, and intergenic regions.

43

Table 6.3: The Find MRs task input arguments.

Default Option Description

None

-fko/--koFiles
the list file from the Data Preprocess-
ing task containing 5mC/5hmC file
names for KO condition samples

-fwt/--wtFiles
the list file from the Data Preprocess-
ing task containing 5mC/5hmC file
names for WT condition samples

-reg/--regionFiles
the list file from the Gene Annota-
tion task containing genomic region
file names

-ref/--reference the filtered and BED-formatted refer-
ence file

-e/--enhancerFile BED-formatted enhancer region file

1e-9
(i.e. 1bp) -f/--minOverlap

minimum overlap required as a frac-
tion of the region file, for BEDTools
intersect when finding overlaps be-
tween methylated sites and regions

1 -p/--numProcesses the number of processes running this
task at the same time

3 -mc1/--minCons1
the minimum number of consecutive
methylated sites in TSS and TES re-
gions to be considered MRs

5 -mc2/--minCons2

the minimum number of consecutive
methylated sites in gene body, 5’-
UTR and intergenic regions to be
considered MRs

3 -mc3/--minCons3
the minimum number of consecutive
methylated sites in enhancer regions
to be considered MRs

2000 -a/--adjacency the maximum number of bps be-
tween adjacent sites in an MR

out -F/--folderOut the name of the output folder

44

Figure 6.3: When having multiple processes, we can sort the data by size before
distributing the jobs to the processes, such that the biggest jobs will start first. Here
we see the hypothetical difference of sorting the data by size (1) and distributing
data randomly (2) between four processes before starting finding MRs. The
genomic regions and methylation states for the different job-sizes used in this
figure are purely chosen to illustrate the idea.

The argument -a is used to set the maximum inter-distance between sites
of MRs.

The output data of this task are two sets of data: one set containing MRs
for KO samples, and one set containing MRs for WT samples, as well as the
respective list files.

6.4 Preparation for DMR Search

As we know, DMR finding is a process of comparing MRs between the two
different biological condition/samples. The input arguments -ko and -wt
are used for inputting the two list files containing file names for MRs in
KO and WT samples, respectively. These two, as well as the rest of the
input arguments, are shown in Table 6.4. By default, missing values are
replaced by zeros. However, another imputation method can be used, such
as the median method. It replaces missing values by the median of the
5mC/5hmC levels of an MR. Whether to use zeros or median imputation
is specified by the optional argument -i followed by either zeros or median.
The arguments -p, -mc1, -mc2, -mc3, -a, and -F are the same as described
in the Find MRs task. We need these values here as well, for the reasons
described under the Missing Data section of section 5.4.2.

The main output data of this task are the overlapping MRs and a list file.
Additionally, a dataset containing the necessary information for plotting
the distribution of 5mC/5hmC levels of overlapping MRs is output, but
only if there is no more than two samples present. If there are more than
one KO or WT sample, this output will not be created. If there is just one
of each condition sample, a list file containing the file names of the dataset
will also be created.

45

Table 6.4: Input arguments for the Preparation for DMR Search task.

Default Option Description

None

-ko/--KOfilesMRs
the list file from the Find MRs task
containing file names for MRs of KO
condition samples

-wt/--WTfilesMRs
the list file from the Find MRs task
containing file names for MRs of WT
condition samples

zeros -i/--impute what to impute missing values by
1 -p/--numProcesses the number of processes

3 -mc1/--minCons1
the minimum number of consecutive
methylated sites in TSS and TES re-
gions to be considered MRs

5 -mc2/--minCons2

the minimum number of consecutive
methylated sites in gene body, 5’-
UTR and intergenic regions to be
considered MRs

3 -mc3/--minCons3
the minimum number of consecutive
methylated sites in enhancer regions
to be considered MRs

2000 -a/--adjacency the maximum number of bps be-
tween adjacent sites in an MR

out -F/--folderOut the name of the output folder

46

6.5 DMR Search

All input arguments of this task are shown in Table 6.5. The overlapping
MRs created in the previous task are input to this task with the argument
-f followed by the list file containing the overlapping MRs file names. To
set the significance level for the hypothesis tests checking for DMRs, the
optional argument -cp can be used. All results having p-value lower than
the significance level are considered as significant, and the null hypothesis,
that the 5mC/5hmC levels of the samples are similar, is rejected. There is
also an option for parallelizing this task, with the optional argument -p.
For calculating the p-value for overlapping MRs, i.e., finding DMRs, a user
can choose between several statistical test methods. The three main test
methods in the pipeline are: Pranksum, Mranksum, and Rranksum. The
default is Pranksum, where the computation method of the p-value is as
following:

p =

{
exact if nx < 10
mannwhitneyu otherwise

where nx is the number of 5mC/5hmC sites in the KO sample of the
overlapping MR, exact is our implementation of the exact enumeration
method described in section 2.3.3, and mannwhitneyu is the mannwhitneyu
function of the Python package scipy.stats. This function performs a
two-sided Mann-Whitney U test. Because we impute missing values in
overlapping MRs, the samples sizes in an overlapping MR are the same.
Therefore, nx and ny are the same, and it does not matter which we
use when choosing computation method. The scipy.stats.mannwhitneyu
method is only advised to use when the number of observations in each
sample is > 20. However, we have based the Pranksum approach on
the MATLAB function ranksum which, for us, has the same computation
method as our Pranksum. In the pipeline, using MATLAB’s ranksum
(Mranksum) is the next test method option, and the computation method
is as following:

p =

{
exact if min(nx, ny) < 10 and nx + ny < 20
approximate otherwise

where exact is the exact computation of the p-value and approximate is the
two-sided Wilcoxon rank-sum test. Mranksum and Pranksum are similar
in the way p-values are calculated for different sample lengths. Because
MATLAB is a proprietary programming language, not all users might have
access to it. Therefore, we have a third test method, Rranksum, which is
the wilcox.test function of R. This is also a two-sided Wilcoxon rank-sum
test, which is utilized by calling Rscript. Rscript is an alternative front end
for R. The default computation method of the p-value of Rranksum is as
following:

p =

{
exact if nx < 50 and ny < 50 and no ties
approximate otherwise

47

where exact and approximate are the same as in the other two test methods.
However, in this method, an exact computation of the p-value is used if
the sample size is less than 50. This means the Rranksum could potentially
be very slow compared to Pranksum and Mranksum. Also, the since the
computation methods are different between the three test methods, the
results might not be the same. In the next chapter, we will do a test run on
some real data, and show the results and time consumption for the three
test methods.

All approximation methods used by the three test methods, Pranksum,
Mranksum, and Rranksum, use a normal approximation for calculating the
p-value. The methods also apply a continuity correction. This correction
allows for the fact that the normal distribution is continuous, whereas the
distribution of the test statistic is discrete [41].

Users can check the quality of DMRs, by using the optional argument,
-pl followed by yes. This plots all DMRs, and an example of such a plot is
shown in Figure 6.4. Here, we see that the p-value of this DMR is 0.0285.
In the bottom right we see that the WT sample of this DMR was missing
a value, which has been imputed by a zero. By showing these plots, users
can check the significance of DMRs, and may run the task again by fine-
tuning the input arguments, such as changing -cp adding a false discovery
rate control, or change the imputing method for missing values. However,
if there are many DMRs, plotting all of them might take a while.

Figure 6.4: One DMR containing two samples’ 5mC levels.

When all DMRs are found, the results are exported to multiple files,
where each combination of KO and WT sample, genomic region, and
methylation state has their own dataset consisting of:

48

Table 6.5: Input arguments for the DMR Search task.

Default Option Description

None -f/--prepfile
the list file from the Preparation
for DMR Search task containing
file names for overlapping MRs

0.05 -cp/--cutoffPval cut off significance level
1 -p/--numProcesses the number of processes

Pranksum -T/--testMethod which statistical hypothesis test
method to run

None -fdr the false discovery rate for the
Benjamini/Hochberg method

no -pl/--plot yes if figures of each DMR should
be created, no if not

out -F/--folderOut the name of the output folder

• A CSV file containing all DMRs

• A CSV file containing all hyper DMRs

• A CSV file containing all hypo DMRs

• A CSV file containing all gene names of hyper DMRs

• A CSV file containing all gene names of hypo DMRs

6.6 Plot Preparation

The Plot Preparation task has two main functions: create files containing
MR counts and convert the format for MRs in TSS, gene body, TES, and
enhancer datasets. In Table 6.6, the input arguments of this task are shown.
The two list files containing MRs of KO and WT condition samples, as
created in the Find MRs task, are input by the arguments -ko and -wt,
respectively. As in the Data Preprocessing task, the cut off for significantly
modified sites can be specified by the input argument -c.

Table 6.6: Input arguments for the Plot Preparation task.

Default Option Description

None

-ko/--KOfilesMRs
the list file from Find MRs task
containing file names for MRs of
KO condition samples

-wt/--WTfilesMRs
the list file from Find MRs task
containing file names for MRs of
WT condition samples

1 -c/--cutoff above this level: significantly
modified sites

out -F/--folderOut the name of the output folder

49

The output MR count files contain information of the total number of
methylated sites in MRs as well as the number of significantly modified
sites in MRs for each genomic region and sample. These count file names
are stored in a list file. In this task, the data of MRs from the Find MRs
task is converted to only contain the necessary information for showing
the distribution of 5mC/5hmC sites, such as one row per MR. In this way,
it reduces the computational load for the Plotting task. All file names of
these converted datasets are listed in a list file. The MR count files are also
stored in a separate list file.

6.7 Plotting

The set of input arguments for the Plotting task is the most extensive,
where users have the opportunity to input all of the count files, the list
file for the converted MRs dataset from the Plot Preparation task, and the
list file for the overlapping MRs dataset from the Preparation for DMR
Search task. All input arguments for this task is shown in Table 6.7. The
first four arguments are the various count files, while the fifth and sixth
arguments are the list file of the converted MRs dataset and the overlapping
MRs dataset, respectively. Users can input all files at the same time, which
will create all possible figures, but the Plotting task can also be run with one
or more input files. Not inputting all files will result in just the respective
figures being created. The input arguments used for creating the various
figures, are:

• The distribution of significantly modified 5mC/5hmC MRs: -reg
and -sit

• The DMR and DhMR distribution: -cmc and -chmc

• The distribution of 5mC and 5hmC levels in MRs of TSS, gene
body, TES and enhancer region: -aMR and/or -oMR. The -aMR
argument is used for inputting the list file containing prepared MRs,
which is output from the Plot Preparation task. The -oMR can only
be used if there are two samples: one KO and one WT. The difference
between the two is that the -aMR argument file should contain
5mC/5hmC sites of all MRs, while the -oMR argument file should
contain 5mC/5hmC sites of overlapping MRs. The two arguments
--plotENH and --plotTGT can be used to only create either the TSS,
gene body, and TES plots, or the enhancer plots.

The two input arguments -gX and -gY shall have the same values
as that of the -X and -Y arguments in Gene Annotation task. These
are used to map 5mC/5hmC sites of TSS and TES MRs to the same
region span, as discussed in section 5.5.3. Since the gene body regions
may differ in length, we have to map them to the same span as well.
The size of this span can be set by the user with the argument -G.
Another two arguments, enhX and enhY, are used to map enhancer
MRs to the same region span. When plotting the distribution of

50

5mC/5hmC levels of MRs in enhancers, it is possible to only show
tissue-specific MRs by using the -t option. Only the 5mC/5hmC
levels of the selected tissues will then be shown, such as cerebellum,
liver, or lung.

When we increase the number of methylated sites in each MR to make
it denser, we use a one-dimensional nearest neighbor interpolation
algorithm. For influencing the number of estimated data points, users
can set the step size with the optional argument -w. The lower the
step size, the higher the density of methylation levels. When the data
has been increased, and the average of all methylation levels at each
site has been taken, we use a centered moving average for smoothing
the averages. By changing the input argument -ws, users can the
subset size as described in section 2.5.1. The option -s is the sigma,
i.e., the standard deviation of the Gaussian, used when smoothing
the data further using the one-dimensional Gaussian filter.

As mentioned earlier, outputs of this section are four different types
of figures, which show: (1) the distribution of DMRs and DhMRs, (2)
the density of significantly modified sites in MRs, (3) the distribution
of 5mC/5hmC levels in MRs of TSS, gene body, and TES, and (4) the
distribution of 5mC/5hmC levels in enhancer MRs. All results generated
in this task are also exported to text files, which allows users to investigate
the results further, such as using other Python scripts, MATLAB scripts, or
any other tools to reproduce the figures.

51

Table 6.7: Input arguments for the Plotting task.

Default Option Description

None

-reg/--listCountMRs list file from the Plot Preparation
task containing MR counts

-sit/--listCountSites
list file from the Data Preprocess-
ing task containing 5mC/5hmC
site counts

-cmc/--DMRmC count file from the DMR Search
task containing DMR counts

-chmc/--DMRhmC count file from the DMR search
task containing DhMR counts

-aMR/--allMRs
list file from the Plot Preparation
task containing MRs of TSS, gene
body, TES and enhancers

-oMR/--overlappingMRs
list file from the Preparation
for DMR Search task containing
overlapping MRs

yes --plotTGT yes if TSS, gene body, and TES
should be plotted, no otherwise

1000 -gX the number of upstream bp to the
transcription start/end site

1000 -gY
the number of downstream bp
from the transcription start/end
site

4000 -G the size of the span gene body
will be mapped to

yes --plotENH yes if enhancer should be plotted,
no otherwise

5000 -enhX the number of upstream bp to the
center of enhancer regions

5000 -enhY
the number of downstream bp
from the center of enhancer re-
gions

all -t/--tissue enhancers: what tissue to plot

100 -w
step size when interpolating TSS,
gene body, TES, and enhancer
MRs

500 -ws window size for centered moving
average smoothing

50 -s/--sigma
standard deviation for Gaussian
kernel, for smoothing TSS, gene
body, TES, enhancers

out -F/--folderOut the name of the output folder

52

Part III

Results and Conclusion

53

Chapter 7

Results and Discussion

In this chapter, we will demonstrate how to set up an Abel environment to
run the pipeline, show the test runs of the pipeline where user interaction
is demonstrated, present results, and show the result figures. Additionally,
we will look into the execution times and memory consumption for a few
computationally heavy tasks in the pipeline, and compare the results of
the three statistical test methods for differential methylation analysis. In
the end, results of HMST-Seq-Analyzer is compared to that of the popular
methylation analysis package - methylKit by using WGBS data.

7.1 Setting Up Pipeline Environment

A Python 2.7 running environment is installed by the conda package
manager through the Miniconda installer, where the new pipeline will be
tested. Many additional Python-packages are included when installing
conda. However, some of the packages (e.g., SciPy and BEDTools) have
to be installed by conda as following:

$ conda install scipy
...
$ conda install -c bioconda bedtools
...

When installing BEDTools through conda, the "-c bioconda" means that we
want to install BEDTools through the channel named Bioconda. Bioconda
is a channel for the conda package manager specializing in bioinformatics
software [42].

UiO has a site license for MATLAB, which means it is already installed
in Abel. However, Python’s MATLAB engine has to be installed in the
local directory. First, the user has to load the MATLAB module file with
the following command:

$ module load matlab

To install the MATLAB engine, we have to go to the directory "mat-
labroot/extern/engines/python", where matlabroot is the MATLAB root
directory, which in our case is "/cluster/software/VERSIONS/mat-
lab/R2017a/", and enter the following command:

$ python setup.py build --build -base="$HOME" install

55

Since users do not have the write permission in the MATLAB folder, the
engine has to be installed in the users’ home directory ($HOME). R is
a free software under the GNU General Public License of Free Software
Foundation and is already available in Abel. The various packages,
modules, and software that is needed by HMST-Seq-Analyzer, and their
versions are shown in Table 7.1.

Table 7.1: Software versions used for pipeline environment in Abel.

Software Version
conda 4.6.14
Python 2.7.15
argparse 1.1
multiprocessing 0.70a1
pandas 0.23.4
NumPy 1.15.4
Matplotlib 2.2.3
seaborn 0.9.0
SciPy 1.2.1
MATLAB R2017a
BEDTools 2.27.1
R 3.5.1

After all software and packages were installed, we navigated to the
pipeline package folder and installed the pipeline, as described in section
4.1.

7.2 Test Data

The first test run of the new pipeline is based on our in-house mouse
HMST-Seq data. In this thesis, we have masked the real sample names
and conditions, and we only show results from chromosome 1, because it
is confidential. In section 7.10, a full run on public human ENCODE data
will be illustrated.

The mouse dataset consist of one KO condition sample and one WT
condition sample, where both samples have already been normalized
across the three tag count-libraries by the GRSN algorithm [14], as
described in section 2.2.1. The file names are KO.chr1.txt and WT.chr1.txt
for the KO condition sample and WT condition sample, respectively. The
directory tree for the files of this test run is shown in Figure 7.1. In the
mouse folder, the file mm10.enhancers.bed is the BED-formatted tissue-
specific enhancers file, mm10.sizes_numerical is the sorted mm10 mouse
assembly chromosome sizes file, while mm10.refFlat.txt is the cleaned
mm10 reference genome file.

56

Figure 7.1: The input data directory tree for the mouse dataset.

7.3 Test Run

To demonstrate the analysis pipeline run in Abel, a batch script for
analyzing the aforementioned mouse dataset is shown here:

#!/bin/csh

#Job name:
#SBATCH --job-name=HMST-mouse-chr1
#
Project:
#SBATCH --account=UIO
#
Wall clock limit:
#SBATCH --time=10:00:00
#
Max memory usage:
#SBATCH --mem-per-cpu=4G
#
Number of cores:
#SBATCH --cpus-per-task=4
#
Number of nodes:
#SBATCH --nodes=1

Do the work
/usr/bin/time -p hmst_seq_analyzer gene_annotation\
-F mouse_chr1 -hu no -n yes\
-r in_data/mouse/mm10.refFlat.txt\
-g in_data/mouse/mm10.sizes_numerical
echo gene_annotation-DONE

/usr/bin/time -p hmst_seq_analyzer data_preprocessing\
-F mouse_chr1 -z no -m no -hu no -n yes\
-fko in_data/mouse/chr1/KO.chr1.txt\
-fwt in_data/mouse/chr1/WT.chr1.txt\
-g in_data/mouse/mm10.sizes_numerical
echo data_preprocessing-DONE

/usr/bin/time -p hmst_seq_analyzer find_MRs\
-F mouse_chr1 -p 4\
-fko mouse_chr1/list_mC_hmC_files_KO.txt\
-fwt mouse_chr1/list_mC_hmC_files_WT.txt\
-ref mouse_chr1/data/mm10.refFlat_clean_sorted.bed\
-reg mouse_chr1/list_region_files.txt\
-e in_data/mouse/mm10.enhancers.bed
echo find_MRs-DONE

57

/usr/bin/time -p hmst_seq_analyzer prepare_for_DMR_finding\
-F mouse_chr1 -p 4\
-ko mouse_chr1/list_all_filtered_formatted_MRs_KO.txt\
-wt mouse_chr1/list_all_filtered_formatted_MRs_WT.txt
echo prepare_for_DMR_finding-DONE

/usr/bin/time -p hmst_seq_analyzer DMR_search\
-F mouse_chr1 -p 4\
-f mouse_chr1/list_prepared_for_DMR_finding_imputed.txt
echo DMR_search-DONE

/usr/bin/time -p hmst_seq_analyzer prep4plot\
-F mouse_chr1\
-ko mouse_chr1/list_all_filtered_formatted_MRs_KO.txt\
-wt mouse_chr1/list_all_filtered_formatted_MRs_WT.txt
echo prep4plot-DONE

/usr/bin/time -p hmst_seq_analyzer plot_all\
-F mouse_chr1\
-reg mouse_chr1/list_count_allMRs_regions_files.txt\
-sit mouse_chr1/list_count_sites_files.txt\
-cmc mouse_chr1/counts_DMR_hypo_hyper_imputed_Pranksum_5mC.csv\
-chmc mouse_chr1/counts_DMR_hypo_hyper_imputed_Pranksum_5hmC.csv\
-aMR mouse_chr1/list_TSS_genebody_TES_enhancer_allMRs.txt\
-oMR mouse_chr1/list_overlapping_MRs.txt
echo plot_all-DONE

Here, we allocated four CPUs on one node with 4GB memory per
CPU. The three tasks: Find MRs, Preparation for DMR Search, and DMR
Search are run with four processes each. The name of the output folder
is mouse_chr1, as specified by the -F argument in the tasks. We added
/usr/bin/time -p at each task so that the execution times are included in
the standard output which is directed to a "slurm-%j.out" file, where "%j"
is replaced with the job allocation number. By adding "echo %t-DONE",
where "%t" is the task name, it allows users to track the progress of the
pipeline run. Here, the default values are used, as described in Chapter 6,
except for arguments such as output file name and the number of processes.
The text files having names starting with "list_," are the list files containing
file names of the respective datasets.

7.4 Result Figures

After running the full pipeline based on the above-mentioned description,
eight figures were created in the folder mouse_chr1/plots/. Here, we
present each of the figures and evaluate the significance of the results. In
the next sections of this chapter, several input arguments of the pipeline
will be changed in order to compare the difference in the results.

7.4.1 DMR and DhMR Distribution

Figure 7.2 shows the distribution of DMRs and DhMRs in different genomic
regions, where hypo and hyper DMRs/DhMRs are separated. This figure

58

suggests that TSS regions have the highest percentages of hyper DMRs,
where ~4.6% of the MRs are differentially methylated. The percentage of
hypo DhMRs is also high in the TSS regions: ~3%.

Figure 7.2: The distribution of hypo and hyper DMRs and DhMRs within
different genomic regions. 5dist on the x-axes is the same as 5’-UTR.

7.4.2 Relative Density for MRs

Figure 7.3 is the second figure, which shows the distribution of significantly
modified 5mC and 5hmC MRs among different genomic regions, as
described in section 5.5.2. Approximately 50% of the raw 5mC and 5hmC
sites are significantly modified for both samples, as can be seen in the bars
named "genome". The bars of 5’-UTR, TSS, gene body, TES, intergenic, and
enhancer are for 5mC and 5hmC sites located in MRs.

From the figure we see that the number of significantly modified 5mC
and 5hmC sites is distributed equally in genome, 5’-UTR, gene body, TES,
intergenic, and enhancer regions between WT and KO sample conditions.
However, in the TSS regions, the dynamical changes of 5mC or 5hmC
often occur. Especially, there is anti-correlation between the 5mC and
5hmC levels in TSS regions. If 5mC is higher in KO sample condition
than that in WT sample condition, then you will expect 5hmC to be lower
in KO than in the WT condition. This result is expected because TSS
regions usually control the downstream gene regulation. Especially, for
DNA methylation in mammals, it is well known that 5mC and 5hmC are
important in controlling gene regulation [43].

59

Figure 7.3: The relative density of significantly modified sites in MRs within
genomic regions. The bars named "genome" are for all methylated sites, not just
sites that are in MRs.

7.4.3 Distribution of 5mC and 5hmC in TSS, Gene Body, and TES
regions

These figures come in pairs, one for 5mC and one for 5hmC, as described
in section 5.5.3. The distribution of 5mC and 5hmC are shown in Figure
7.4 and Figure 7.5, respectively. In both figures, there is a relatively high
correlation between KO and WT samples, except for in the TSS regions. In
the TSS regions, there is a higher 5mC level in the KO condition sample
than that in the WT condition sample. It indicates that there is an increase
in 5mC but a decrease of 5hmC in TSS regions after the gene knockout.
These results match with the distribution of significantly modified 5mC
and 5hmC in TSS regions in Figure 7.3. Here, figures generated by only
considering overlapping MRs are not shown because they are almost the
same as the figures based on all MRs.

7.4.4 Distribution of 5mC and 5hmC MRs in enhancer regions

The average 5mC and 5hmC levels in enhancer regions are the last two
figures created by the analysis pipeline, which are shown in Figure 7.6 and
Figure 7.7, respectively. Often, there is a low 5mC/5hmC in the center of
enhancer regions, but since we only use chromosome 1 data, this might not
show here. In both figures, there is a high correlation between the samples.

7.5 Performance Comparison

Even though the HMST-Seq method sequences cytosines, methylated
cytosines, and hydroxymethylated cytosines at CG sites only, the data size
can still be large when doing whole genome-wide sequencing. In order
to reduce the heavy computation, parallel computation can be applied on
three of the pipeline tasks (Find MRs, Preparation for DMR Search, and
DMR Search) by adjusting input argument -p, as described in Chapter
6. By using output results from the tasks Gene Annotation and Data

60

Figure 7.4: The average 5mC levels of MRs in the combined TSS, gene body, and
TES regions.

Figure 7.5: The average 5hmC levels of MRs in the combined TSS, gene body, and
TES regions.

61

Figure 7.6: The average 5mC levels of MRs in enhancer regions.

Figure 7.7: The average 5hmC levels of MRs in enhancer regions.

62

Preprocessing, we ran the aforementioned three tasks in parallel with
default input arguments, but where the number of processes was modified
from 1 to 10. We created 10 batch scripts for each of the three tasks, where
we used the commands SBATCH –mem-per-cpu=3G, SBATCH –nodes=1,
and SBATCH –cpus-per-task=%j, where we changed %j depending on the
number of processes. We also changed the input argument -p to be the same
as %j. This run was done using Pranksum. However, later, we will compare
time and memory consumption between the three test methods: Pranksum,
Mranksum, and Rranksum. The execution time of the different number of
processes is seen in Figure 7.8, where execution time is the wall clock time
from start to end of the specific pipeline task in seconds. From this figure,
we see that, for all three tasks, the most significant performance increase, in
terms of execution time, is when going from using one process to using two
parallel processes. There is also a significant increase in performance, going
from two to three parallel processes. However, for Preparation for DMR
Search and DMR Search the performance does not increase when having
more than three processes. For Find MRs, five or six processes seems to
be a sufficient number. In Figure 7.9, we see the memory consumption for
the same three tasks across the various number of processes. The memory
consumption is fairly stable in all three tasks, where increasing the number
of processes will linearly increase the memory consumption.

Figure 7.8: Time consumption for the three pipeline tasks Find MRs, Preparation
for DMR Search, and DMR Search with various number of processes.

7.6 Comparison of Execution Time for Different Data
Sizes

The results from the previous section suggest that it is the most computa-
tional efficient when running the pipeline on HMST-Seq data for two sam-

63

Figure 7.9: Memory consumption for the three pipeline tasks Find MRs,
Preparation for DMR Search, and DMR Search with various number of
processes.

ples with five, three, and three processes in the tasks Find MRs, Prepara-
tion for DMR Search, and DMR Search, respectively. To check the CPU
times required for a large dataset, the full pipeline was tested twice: one for
chromosome 1 only, and the other for all 25 chromosomes. For both batch
scripts, we used the following instructions for the queue system:

Max memory usage:
SBATCH --mem-per-cpu=4G
#
Number of cores:
SBATCH --cpus-per-task=5
#
Number of nodes:
SBATCH --nodes=1

The resulting execution times of all tasks, as well as the total execution
time of the two runs, are shown in Table 7.2. Here, the dataset only
containing chromosome 1 tag counts from mouse genome, have sizes
4.4 MB and 4.5 MB for the KO and WT samples, respectively. For the
dataset containing tag counts of all chromosomes, the KO and the WT
condition sample sizes are 65 MB and 66 MB, respectively. This is shown
in parentheses in the second column of the table. Above the parentheses,
there are two numbers for each of the datasets. These are the number of raw
genome sites. In the last column of the table, we show the execution times,
which are also represented as a bar plot in Figure 7.10. The full pipeline
took 170 minutes and 6 seconds to run for the dataset containing tag counts
of all chromosomes, while it, for the dataset containing only chromosome
1 tag counts, took 10 minutes and 37 seconds. As these numbers show,
the time consumption is substantially higher for the full dataset. If we
run the full pipeline with more than one KO sample, it will take much

64

more time to complete it. Thus, the current pipeline is not so efficient for
analyzing very large datasets. The reason for the plotting taking such a long
time is because we create all possible figures showing the distribution of
5mC/5hmC in TSS, gene body, and TES MRs for both dataset: all MRs and
overlapping MRs. If a user is only interested in creating figures from only
one of the sets such as all MRs, the time consumption of plotting would
almost be halved. For the Gene Annotation task, it is just a coincidence
that the execution times differ for the two datasets. This task does the exact
same in both runs, and could be run only once if no input arguments are
changed.

Table 7.2: Time consumption of pipeline run for two different input data sizes.

Chr # Sites Task Execution Time

Chr 1
KO:70201
WT:71646
(4.4MB/4.5MB)

Gene Annotation 2m23s
Data Processing 0m6s
Find MRs 1m13s
Prep for DMR Search 1m31s
DMR Search 3m2s
Plot Preparation 0m22s
Plotting 1m57s
Whole Pipeline 10m37s

All
KO:1037346
WT:1054613
(65MB/66MB)

Gene Annotation 2m50s
Data Processing 0m55s
Find MRs 26m19s
Prep for DMR Search 37m0s
DMR Search 53m46s
Plot Preparation 7m23s
Plotting 41m52s
Whole Pipeline 170m6s

7.7 Method Comparisons for Finding DMRs and
DhMRs

As described in section 6.5, the pipeline has an option for choosing between
three test methods to use for finding DMRs. In Table 7.3 we show the
number of hyper and hypo DMRs and DhMRs found by the three methods
for the chromosome 1 mouse dataset. The second column shows the
number of overlapping MRs found in the Preparation for DMR Search
task. The number of hyper and hypo DMRs and DhMRs are somewhat
similar across the three methods. However, for some of the genomic
regions there is a difference even though all test methods are using a
Wilcoxon rank-sum test. Looking at the output DMRs/DhMRs of DMR
Search for the three methods Pranksum, Mranksum, and Rranksum, we
can tell that the Mranksum method and Pranksum method find all the
same DMRs and DhMRs. However, 30 of the DMRs/DhMRs found by

65

Figure 7.10: The execution times from Table 7.2, represented as a bar plot.

Mranksum and Pranksum was not in the output when using the Rranksum
method. The total number of DMRs and DhMRs found by both Pranksum
and Mranksum is 364 and 231, respectively, while Rranksum found 339
DMRs and 226 DhMRs. All 565 DMRs and DhMRs found by Rranksum are
included in the 595 DMRs and DhMRs found by Mranksum and Pranksum.
Since there is a difference in three test methods, as shown in section 6.5,
the results of Rranksum often differ from that of Mranksum/Pranksum.
Rranksum computes the exact p-value if the size of the samples is less
than 50, and there are no ties, and uses a normal approximation otherwise.
Mranksum and Pranksum compute the exact p-value if the size of the
samples is less than 10, and uses a normal approximation otherwise.
Because of these differences, the p-values might not be the same across
the three methods for all MR comparisons. For example, if we have
an overlapping MR where the sample size is six, but there is a tie, the
Rranksum method will use a normal approximation for computing the p-
value while the Mranksum and Pranksum methods will calculate the exact
p-value.

When choosing a test method to be used in the pipeline, we should
consider the time and memory consumptions as well. In Table 7.4, we
have compared the execution times of running the DMR Search task using
the dataset containing only chromosome 1 with the three test methods:
Mranksum, Pranksum, and Rranksum. The instructions given to the queue
system was: –mem-per-cpu=4G, and –nodes=1, but using only one cpu per
task: –cpus-per-task=1. In the table, we see that the Rranksum method uses
a lot more time than Pranksum and Mranksum. In addition, we ran the
DMR Search task with various number of processes, using the same slurm

66

Table 7.3: The number of hyper and hypo DMRs and DhMRs found using the
different test methods: Mranksum, Pranksum, and Rranksum, in the chromosome
1 mouse dataset.

Geno-
mic R-
egion

MRs State
D(h)MRs

Mranksum Pranksum Rranksum
Hyper Hypo Hyper Hypo Hyper Hypo

TSS 687
5mC 32 0 32 0 32 0
5hmC 1 21 1 21 1 21

TES 179
5mC 0 0 0 0 0 0
5hmC 0 2 0 2 0 2

Gene
Body 1862

5mC 13 11 13 11 13 11
5hmC 6 3 6 3 5 3

Interg-
enic 1519

5mC 16 12 16 12 14 12
5hmC 6 6 6 6 6 5

5’-UTR 16536
5mC 168 112 168 112 145 112
5hmC 73 113 73 113 73 110

Total 20783 - 595 595 565

instructions as in section 7.5, and created two plots showing the time and
memory consumption for the three methods. The time consumption is
shown in Figure 7.11, and the memory consumption is shown in Figure
7.12. As seen in both Table 7.4 and Figure 7.11, the Rranksum method
uses a lot more time than the other two methods. This may be caused by
the method difference, where Rranksum uses an exact p-value calculation
when the sample size smaller than 50 and there are no ties in the data,
but the other two methods only use exact computation when sample size
smaller than 10. As discussed in section 2.3.3, when the sample size is
big, this can be very computationally heavy. The time consumption of the
Mranksum method and the Pranksum method is quite similar across the
various number of processes, although, from Table 7.4, Pranksum uses less
time in every genomic region except 5’-UTR.

As discussed in section 6.3, we sort the input data by size, largest to
smallest, such that the most computationally heavy jobs start before the less
computationally heavy. Looking at the time it took finding all DhMRs of
5’-UTR regions using Rranksum, as shown in Table 7.4, and the lowest part
of the Rranksum graph in Figure 7.11 as an example, we see that sorting
the input data by size has worked as intended. The full DMR Search task
took approximately 4000 seconds with three processes, which is the same as
66 minutes and 40 seconds. This is approximately the same as the biggest
execution time in Table 7.4, which is 71m22s when finding DhMRs in 5’-
UTR regions. This means that the whole pipeline uses approximately the
same amount of time for running the biggest job, and running the whole
task. If we did not sort the data files by size before distributing the jobs
between the processes, we could not have been certain that the biggest jobs
would start first. By parallelizing this task, we have had a 2.6x speed up,
going from one process to three.

67

When looking at the memory consumption in Figure 7.12, we see
that for Pranksum and Rranksum the memory consumption is fairly
stable, where increasing the number of processes will linearly increase the
memory consumption. The same is for Mranksum when the number of
processes is smaller than 8. However, the memory consumption increase
significantly more in Mranksum. That is because each process starts a new
MATLAB engine, which will increase the memory consumption by a factor
equal to the size of the memory allocation of one MATLAB engine.

Table 7.4: Time consumption of DMR Search for the three test methods:
Pranksum, Mranksum, and Rranksum.

Genomic Region State
Execution Time

Pranksum Mranksum Rranksum

TSS
5mC 0m2s 0m14s 2m48s
5hmC 0m2s 0m14s 2m50s

TES
5mC 0m0.4s 0m10s 0m44s
5hmC 0m0.4s 0m10s 0m44s

Gene Body
5mC 0m20s 0m27s 8m3s
5hmC 0m21s 0m27s 7m52s

5’-UTR
5mC 3m33s 2m45s 68m40s
5hmC 3m42s 3m5s 71m22s

Intergenic
5mC 0m19s 0m25s 6m44s
5hmC 0m19s 0m25s 6m30s

Total - 8m43s 8m26s 2h56m25s

Figure 7.11: Time consumption of the DMR Search task with various number of
processes.

68

Figure 7.12: Memory consumption of the DMR Search task with various number
of processes.

7.8 Applying Benjamini and Hochberg’s FDR-Controlling
Procedure When Detecting DMRs and DhMRs

In the current pipeline, we have only tested for DMRs/DhMRs using
overlapping MRs where missing values were imputed by zeros, without
a statistical correction for multiple comparisons. In this section, we run
the DMR Search task, and apply the Benjamini-Hochberg procedure to
the p-values that is obtained from Pranksum method, where overlapping
MRs are considered and missing values were imputed by zero. When
we applied a false discovery rate of α = 0.2, none of the p-values was
considered significant. In Figure 7.13, we illustrate why there were no
significant results. This figure shows all p-values of 5mC-TSS overlapping
MRs, calculated using the Pranksum method, as well as the threshold line,
at each rank (i), with α = 0.2. The Benjamini-Hochberg Procedure, as
described in section 2.3.4, is the procedure of defining a threshold that can
be used to declare tests as significant or not at level α. The threshold line,

or Benjamini-Hochberg critical values, is calculated as Hi =
i
m

α, where
m is the total number of tests, shown as the orange line in the figure, for
i = 1, 2, ..., 687. If there were any significant results, we should have seen
one or more p-values below the threshold line. This does not mean we can
conclude that there is no significant difference between the KO condition
sample and the WT condition sample, because an inevitable byproduct of
multiple comparisons corrections is that the number of false negatives is
increased.

69

Figure 7.13: The sorted p-values (blue) found using the Pranksum method on
overlapping MRs in 5mC TSS regions, and the threshold line (orange) at level
α = 0.2.

7.9 Experimental Analysis

Based on the exported results from the pipeline, users can perform their
own analysis. Further exploring the pipeline results may reveal more
hidden information in the datasets such as looking at the distribution of
the number of 5mC/5hmC sites in overlapping MRs and DMRs/DhMRs.
To provide an example of such analysis, we created two small Python
scripts to investigate the distribution of the number of 5mC/5hmC sites
in the overlapping MRs and DMRs/DhMRs found by the various test
methods (Pranksum, Mranksum, and Rranksum). These results are shown
in Figures 7.14, 7.15, and 7.16. Here, we do not differ between the different
genomic regions, but add the numbers from each genomic region up. For
example, from these figures, we can see that due to the minimum number
of consecutive 5mC/5hmC sites in each MR is set to three in TSS and TES
MRs, while it, in gene body, intergenic, and 5’-UTR regions is set to five,
there are few overlapping MRs, DMRs, and DhMRs with less than five
5mC/5hmC sites.

7.10 Pipeline Run On Public HMST-Seq Data

As previously mentioned, the mouse dataset used above is confidential.
We have, therefore, conducted a test run of the analysis pipeline using a
public dataset generated by the HMST-Seq method as well. This data is ob-
tained from the paper by F. Gao et al. [10], and consist of two HCC cell lines
(97L and LM6 cells), and a non-HCC sample. Because the pipeline-input
data must be in a certain format, we first had to remove some columns and
change the order of the remaining columns after downloading the data. We

70

Figure 7.14: Distribution of overlapping MRs across various lengths.

Figure 7.15: Distribution of DMRs found by Mranksum, Pranksum, and
Rranksum across various lengths.

Figure 7.16: Distribution of DhMRs found by Mranksum, Pranksum, and
Rranksum across various lengths.

71

did this using a simple awk script:
awk ’{print $1 "\t" $2 "\t" $8 "\t" $4 "\t" $3}’ %j > %i

where %j and %i is the input file name and output file name, respectively.
This was done for all three samples.

Since the main purpose of the thesis is to illustrate the functions and
features of the newly developed HMST-Seq-Analyzer package, we only
applied the pipeline on chromosome 1 of this data as well. We used the
following grep command to obtain just the chromosome 1 data:
grep -P "^chr1\t" %j > %i

where %j and %i are input and output file names, respectively.
For reference genome, we used the hg19 human assembly, because

the tag counts of the dataset have been aligned to the hg19 reference
genome. To remove the unwanted chromosomes from the refFlat.txt.gz
file, downloaded from the UCSC Genome Browser, we used the zgrep
command as following:
zgrep -P "\tchr(\d+|M|X|Y)\t" refFlat.txt.gz > hg19.refFlat.txt

We ran the following grep command on the chromosome sizes file to
remove the unwanted chromosomes:
grep -P "chr(\d+|M|X|Y)\t" hg19.chrom.sizes > hg19.chrom.sizes.clear

followed by a sort command to sort the rows based on the chromosome
name:
sort -k 1,1 -V hg19.chrom.sizes.clear > hg19.chrom.sizes.clear.sorted

where the argument -V means natural sort, such that chr1 comes before
chr2, and chrX comes before chrY, etc. However, because chrM comes
before chrX when sorting, we had to change this manually.

By running the full pipeline with all default input arguments and this
data as input, we obtained the figures shown in Figure 7.17, 7.18, 7.19,
and 7.20. These results show a generally high amount of hypo DhMRs,
especially in TSS regions, when comparing the HCC cell lines with the
non-HCC sample. 5mC levels around TSS seem to be slightly higher in the
HCC samples than in the non-HCC sample. In the paper by Y. Zhu et al.
[44], they found an uneven distribution of 5mC and 5hmC in TSS regions of
tumor tissues when compared with normal tissues. They also observed that
5mC levels of tumor tissues were generally higher than in normal tissues,
and the opposite for 5hmC levels. Our results suggest the same, where
approximately 35% of MRs in TSS regions are DhMRs, while only about
5% are DMRs. In Figure 7.18, the number of significantly modified 5mC
sites is lower for the non-HCC sample in all genomic regions than that of
the HCC ones. Thus, our new pipeline reproduce the results of the original
publication.

7.11 Testing on WGBS Data and Comparing Results
with methylKit

In this section, we test the pipeline on public WGBS data from the ENCODE
project, and compare the results with that from another differential

72

Figure 7.17: The distribution of hypo and hyper DMRs and DhMRs of the two
HCC cell lines, 97L and LM6, versus a non-HCC sample, within different genomic
regions.

Figure 7.18: The realtive density of significantly modified sites in MRs of the
two HCC cell lines, 97L and LM6, and one non-HCC sample, within the various
genomic regions.

methylation analysis tool - methylKit [45]. methylKit is an R package for
DNA methylation analysis and annotation from high-throughput bisulfite
sequencing. It can carry out operations such as differential methylation
analysis, sample clustering and annotation, and visualization of DNA
methylation events.

We used a human dataset with one test sample (GM12878: human
lymphoblastoid cell line) and one control sample (H1: human embryonic
stem cell line), which was directly downloaded from the Encyclopedia of
DNA Elements (ENCODE) [46]. When downloading these datasets, we

73

Figure 7.19: The distribution of 5mC levels of MRs of the two HCC cell lines, 97L
and LM6, and one non-HCC sample, in the combined TSS, gene body, and TES
regions.

Figure 7.20: The distribution of 5hmC levels of MRs of the two HCC cell lines,
97L and LM6, and one non-HCC sample, in the combined TSS, gene body, and
TES regions.

chose the BED-formatted CpG methylation state files. ENCODE provide
human data aligned to hg38, so we downloaded the hg38 reference genome
and chromosome sizes files and prepared them as described in the previous
section. Since WGBS data is huge, we split it into subsets based on
chromosome names and ran the pipeline in parallel. Here, to save the
CPU time in computation, we set 5’-UTR regions from 10000 bp to 50000
bp of TSS in the pipeline. We ran the pipeline by creating batch scripts
for every chromosome and submitting all jobs, such that they could run in
parallel. After all jobs finished, we collected the sites of every DMR for all
the genomic regions: TSS, gene body, TES, intergenic, and 5’-UTR and kept
all unique sites for each chromosome. When collecting the DMR sites, we

74

created two sets: one set where missing sites were removed, and the other
set where we kept all DMR sites.

For methylKit, the analysis was also done parallel across all chromo-
somes. Here, only CG sites that are common in both samples are consid-
ered. All unique differentially methylated sites from methylKit are col-
lected and compared to that from the HMST-Seq-Analyzer. This compari-
son is shown in the two Venn diagrams of Figure11 423 519 7.21 and 7.22.
Both figures show that approximately 97% of the differentially methylated
sites found by methylKit overlap with the DMR sites found by our pipeline.
This result indicates that the HMST-Seq-Analyzer is not affected by the
missing values and that the results are robust in differential methylation
analysis.

Figure 7.21: Venn diagram comparing common sites of DMRs obtained by the
HMST-Seq-Analyzer with differentially methylated sites obtained by methylKit.

Since our HMST-Seq-Analyzer’s main analysis consists of finding
DMRs, we also compared our DMRs with DMRs of methylKit. methylKit
has the option of summarizing the methylation information over tiling
windows rather than doing base-pair resolution analysis. We, therefore,
tiled the samples with window size equal to 1000 bp (default) but changed
the step-size to 50 bp to save computing time. The methylation information
in each tile was summarized accordingly. We then did differential
methylation analysis on the tiled windows and merged all overlapping
regions using the merge feature of BEDTools. The DMRs found by our
pipeline were first combined over all the genomic regions and then merged
using BEDTools, such that overlapping DMRs were combined. The number
of unique, merged DMRs and differentially methylated tiled windows is
11101 for HMST-Seq-Analyzer, and 230167 for methylKit, respectively. We
will, for the rest of this section, refer to the differentially methylated tiled
windows of methylKit as DMRs as well.

Since we only consider tiled windows of methylKit of length 1000bp,

75

Figure 7.22: Venn diagram comparing intersecting sites of DMRs obtained by the
HMST-Seq-Analyzer with differentially methylated sites obtained by methylKit.

the DMRs of methylKit are generally shorter than DMRs from HMST-Seq-
Analyzer. However, since we merge overlapping DMRs, we have made
a comparison of the DMR length distribution, such that we will know
whether we should check for overlaps based on the HMST-Seq-Analyzer
DMRs or the methylKit DMRs. By doing this, we will get an idea of
which of the DMR sets are generally smaller than the other. We created
two histograms to illustrate the DMR length distribution, which can be
seen in Figure 7.23 and 7.24. From these figures, we see that the DMR
lengths of HMST-Seq-Analyzer are generally longer than that of methylKit,
where the median for HMST-Seq-Analyzer is approximately 100000, while
it for methylKit is between 1000 and 10000. This supports our initial claim:
that the HMST-Seq-Analyser’s DMRs are longer than that of methylKit.
Because of this, we can check overlaps based on methylKit’s DMRs.

Using BEDTools intersect, when the fraction of overlap is defined from
10% to 100%, the number of DMRs overlapping between the two tests is
between 10768 and 9643, as can be seen in Figure 7.26 and 7.25. Comparing
this to the total number of merged DMRs, which is 11101 and 230167 for
HMST-Seq-Analyzer and methylKit, respectively, this means that around
80% of our predicted DMRs have methylKit DMRs overlapping 100%
with it, and that over 90% of our predicted DMRs have methylKit DMRs
overlapping at least 10% with it. When using methylkit tiled windows,
genome-wide data is used. In HMST-Seq-Analyzer, only data from the
five predefined genomic regions (TSS, TES, gene body, intergenic, and 5’-
UTR) is used. Knowing this, and the fact that we used relatively small
5’-UTR regions in the current comparison (10000 bp to 50000 bp upstream
of TSS), we can say that if HMST-Seq-Analyzer were to consider genome-
wide data also, then a much higher overlapping between the two results is
to be expected.

76

Figure 7.23: Histogram showing the distribution of unique, merged DMR lengths
found by HMST-Seq-Analyzer.

Figure 7.24: Histogram showing the distribution of unique, merged DMR lengths
found by methylKit.

77

Figure 7.25: Venn diagram showing the number of overlaps where at least
10% of the merged DMRs from methylKit overlap with HMST-Seq-Analyzer
merged DMRs (yellow), the number of merged DMRs from HMST-Seq-Analyzer
not overlapping (red), and the number of merged DMRs from methylKit not
overlapping (green).

Figure 7.26: Venn diagram showing the number of overlaps where 100% of the
merged DMRs from methylKit overlaps with HMST-Seq-Analyzer merged DMRs
(yellow), the number of merged DMRs from HMST-Seq-Analyzer not overlapping
(red), and the number of merged DMRs from methylKit not overlapping (green).

78

Chapter 8

Conclusion and Future Work

8.1 Conclusion

There are several tools available for differential methylation analysis [47].
Most of them are created for data generated from BS-Seq, and can,
therefore, not differentiate 5mC and 5hmC. Some tools have been made
that are able to analyze 5mC and 5hmC separately, but they are difficult
to use for analyzing both datasets simultaneously. We have, therefore,
developed a new computational analysis pipeline by considering a proper
statistical method to analyze DNA methylation data generated by the
HMST-Seq technique. In addition, the pipeline can also handle methylation
data produced by bisulfite sequencing. A part of the analysis is to
find differentially methylated and hydroxymethylated regions in genomic
regions, such as TSS, TES, gene body, intergenic, 5’-UTR, and enhancer. The
analysis pipeline produces figures showing the distribution of DMRs and
DhMRs, the distribution of 5mC and 5hmC MRs in TSS, gene body, TES,
and enhancers as well as the distribution of significantly modified 5mC
and 5hmC sites.

The analysis pipeline was developed as a Python package consisting
of eight main tasks, that works for datasets generated from both mouse
and human samples. Users can set various input arguments as preferred,
making the pipeline open for various experimental conditions. To find
DMRs and DhMRs, there are three types of methods in the pipeline.
Though all three methods are related to the Wilcoxon rank-sum test, it is
implemented by different computational algorithms. We compared the test
methods, showing that our Pranksum method predicts the same DMRs and
DhMRs as MATLAB’s ranksum function, but having significantly lower
memory consumption.

We have tested the new pipeline on two datasets produced by HMST-
seq experiments. It successfully identified DMRs and DhMRs between
the two conditions. Our predictions are consistent with the literature
information that CG methylation in TSS regions is an important feature
of gene regulation in mammals. It also supports the previous evidence
in differential methylation analysis of cancer cell lines. The result of the
current pipeline was also compared to that of methylKit. This comparison

79

shows that our pipeline recovered approximately 90% of the differentially
methylated CG sites predicted by methylKit. Additionally, around 90% of
our DMRs have differentially methylated tiled windows from methylKit.
A much higher overlapping between HMST-Seq-Analyzer and methylKit
will be expected if our pipeline considers the same genome-wide data as
methylKit does.

8.2 Limitations and Future Work

The three most computationally heavy tasks of the pipeline are the tasks
that find MRs, overlaps MRs between two conditions and predict DMRs
and DhMRs. Even though there is an option for parallelizing these
tasks, they require a large amount of computational time when very large
datasets are input. Some improvements to reduce the time consumption
should be done in the future. In this section, we present some suggestions
for improvements and possible future additions.

8.2.1 Possible Future Improvement in HMST-Seq-Analyzer

The two tasks Find MRs and Preparation for DMR Search finds genomic
regions with clusters of 5mC and 5hmC sites, and discovers overlaps
between two conditions based on the genome sites, respectively. Both
the 5mC and the 5hmC levels are calculated from the same genome
sites. Therefore, the two sets contain the exact same genome sites, but
have different methylation levels. Because the methylation levels is not
important to the aforementioned tasks, and both datasets contain the exact
same genome sites, the two tasks (Find MRs and Preparation for DMR
Search) could be done only once, instead of once for each of the 5mC and
5hmC dataset. This could potentially half the execution time of the two
tasks when using HMST-Seq datasets.

Currently, the HMST-Seq-pipeline only supports pair-wise comparison
between two samples. However, in biology, it is very interesting to study
differential methylation between two groups of samples, or even multiple
groups. This would be a very useful new feature in the future version of
HMST-Seq-Analyzer.

Though our results show a good overlap of differentially methylated
CG (DMCG) sites between methylKit and HMST-Seq-Analyzer, the DMCG
sites of HMST-Seq-Analyzer were taken from predicted DMRs. In the
future, a direct comparison of individual CG sites may be added in HMST-
Seq-Analyzer. Especially, a graphical user interface should be implemented
in the pipeline, which will make it easier for users to apply the pipeline on
various datasets.

80

Bibliography

[1] T. A. Brown, Genomes 2nd edition, English. BIOS Scientific Publishers,
2002.

[2] D. R. Morris and A. P. Geballe, “Upstream open reading frames as
regulators of mrna translation”, Molecular and Cellular Biology, vol. 20,
no. 23, pp. 8635–8642, 2000. DOI: 10.1128/MCB.20.23.8635-8642.2000.

[3] Y. Shen, F. Yue, D. F. McCleary, Z. Ye, L. Edsall, S. Kuan, U. Wagner,
J. Dixon, L. Lee, V. V. Lobanenkov and B. Ren, “A map of the cis-
regulatory sequences in the mouse genome”, Nature, vol. 488, no. 2,
p. 116, 7409 Aug. 2012. DOI: 10.1038/nature11243.

[4] L. A. Pennacchio, W. Bickmore, A. Dean, M. A. Nobrega and
G. Bejerano, “Enhancers: Five essential questions”, Nature reviews.
Genetics, vol. 14, no. 4, pp. 288–295, Apr. 2013. DOI: 10.1038/nrg3458.

[5] J. Tost, “Dna methylation: An introduction to the biology and the
disease-associated changes of a promising biomarker”, in DNA
Methylation: Methods and Protocols. Totowa, NJ: Humana Press, 2009,
pp. 3–20. DOI: 10.1007/978-1-59745-522-0_1.

[6] H. Xu, “Differential methylation analysis with next-generation se-
quencing”, in Next Generation Sequencing in Cancer Research, Volume
2: From Basepairs to Bedsides, W. Wu and H. Choudhry, Eds. Cham:
Springer International Publishing, 2015, pp. 229–238. DOI: 10.1007/
978-3-319-15811-2_14.

[7] L. A. Vivanco, Phenotype, Jan. 2018. [Online]. Available: http://www.
oxfordreference .com/view/10.1093/acref/9780191836688.001 .0001/
acref-9780191836688-e-270 (visited on 11/04/2019).

[8] Y. Xia, J. Wang, H. Luo, G. Zhaowei, X. Han, J. Zhang, X.-J. Huang,
Y. Yao, H. Lu, N. Yi, B. Zhou, Z. Lin, B. Wen, H. Yang, X. Zhang, J.
Wang and F. Gao, “Integrated detection of both 5-mc and 5-hmc by
high-throughput tag sequencing technology highlights methylation
reprogramming of bivalent genes during cellular differentiation”,
Epigenetics : official journal of the DNA Methylation Society, vol. 8, Mar.
2013. DOI: 10.4161/epi.24280.

[9] Y. Chen, B. Pal, J. E. Visvader and G. K. Smyth, “Differential
methylation analysis of reduced representation bisulfite sequencing
experiments using edger [version 1; referees: 2 approved, 1 approved

81

with reservations]”, F1000Research, vol. 6, no. 2055, 2017. DOI: 10 .
12688/f1000research.13196.1.

[10] F. Gao, Y. Xia, J. Wang, Z. Lin, Y. Ou, X. Liu, W. Liu, B. Zhou, H.
Luo, B. Zhou, B. Wen, X. Zhang and J. Huang, “Integrated analyses of
dna methylation and hydroxymethylation reveal tumor suppressive
roles of ecm1, atf5, and eomes in human hepatocellular carcinoma”,
Genome biology, vol. 15, p. 533, Dec. 2014. DOI: 10.1186/s13059-014-
0533-9.

[11] F. Wang, N. Zhang, J. Wang, H. Wu and X. Zheng, “Tumor purity
and differential methylation in cancer epigenomics”, Briefings in
Functional Genomics, vol. 15, no. 6, pp. 408–419, 2016. DOI: 10.1093/
bfgp/elw016.

[12] D. N. Ayyala, D. E. Frankhouser, J.-O. Ganbat, G. Marcucci, R.
Bundschuh, P. Yan and S. Lin, “Statistical methods for detecting
differentially methylated regions based on methylcap-seq data”,
Briefings in bioinformatics, vol. 17, no. 6, pp. 926–937, Nov. 2016. DOI:
10.1093/bib/bbv089.

[13] S. Kriaucionis and N. Heintz, “The nuclear dna base 5-hydroxymethy
lcytosine is present in purkinje neurons and the brain”, Science,
vol. 324, no. 5929, pp. 929–930, May 2009. DOI: 10 . 1126 / science .
1169786.

[14] C. R. Pelz, M. Kulesz-Martin, G. Bagby and R. C. Sears, “Global rank-
invariant set normalization (grsn) to reduce systematic distortions in
microarray data”, BMC Bioinformatics, vol. 9, no. 1, p. 520, Dec. 2008.
DOI: 10.1186/1471-2105-9-520.

[15] B. Bolstad, R. Irizarry, M. Åstrand and T. Speed, “A comparison of
normalization methods for high density oligonucleotide array data
based on variance and bias”, Bioinformatics, vol. 19, no. 2, pp. 185–
193, 2003. DOI: 10.1093/bioinformatics/19.2.185.

[16] J. L. Devore and K. N. Berk, “Tests of hypotheses based on a single
sample”, in Modern Mathematical Statistics with Applications. New
York, NY: Springer New York, 2012, pp. 425–483. DOI: 10.1007/978-
1-4614-0391-3_9.

[17] R. Chin and B. Y. Lee, “Chapter 15 - analysis of data”, pp. 325 –359,
2008. DOI: https://doi.org/10.1016/B978-0-12-373695-6.00015-6.

[18] C. Wild and G. A. F. Seber, Chance Encounters: A First Course in Data
Analysis and Inference. John Wiley & Sons, New York, 1999.

[19] C. Wild, The wilcoxon rank-sum test, 1997. [Online]. Available: https:
//www.stat.auckland.ac.nz/\%7Ewild/ChanceEnc/Ch10.wilcoxon.pdf
(visited on 17/10/2019).

[20] C.-C. Günther, Ø. Bakke, H. Rue and M. Langaas, Statistical hypothesis
testing for categorical data using enumeration in the presence of nuisance
parameters, Trondheim, 2009.

82

[21] S.-Y. Chen, Z. Feng and X. Yi, “A general introduction to adjustment
for multiple comparisons”, Journal of thoracic disease, vol. 9, no. 6,
pp. 1725–1729, Jun. 2017. [Online]. Available: https://www.ncbi.nlm.
nih.gov/pubmed/28740688 (visited on 29/10/2019).

[22] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate
- a practical and powerful approach to multiple testing”, J. Royal
Statist. Soc., Series B, vol. 57, pp. 289 –300, Nov. 1995. DOI: 10.2307/
2346101.

[23] J. H. McDonald, Handbook of Biological Statistics. Sparky House
Publishing Baltimore, MD, 2009, vol. 2.

[24] R. Fisher, S. Perkins, A. Walker and E. Wolfart., Gaussian smoothing,
2003. [Online]. Available: https://homepages.inf.ed.ac.uk/rbf/HIPR2/
gsmooth.htm (visited on 27/07/2019).

[25] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M.
Zahler and D. Haussler, The human genome browser at ucsc, Jun. 2002.
[Online]. Available: http://genome.ucsc.edu/ (visited on 15/10/2019).

[26] National Center for Biotechnology Information (NCBI), “Bethesda
(md): National library of medicine (us)”, 1988. [Online]. Available:
https://www.ncbi.nlm.nih.gov/ (visited on 15/10/2019).

[27] F. Madeira, Y. m. Park, J. Lee, N. Buso, T. Gur, N. Madhusoodanan,
P. Basutkar, A. R. N. Tivey, S. C. Potter, R. D. Finn and R. Lopez,
“The EMBL-EBI search and sequence analysis tools APIs in 2019”,
Nucleic Acids Research, vol. 47, no. W1, W636–W641, Apr. 2019. DOI:
10.1093/nar/gkz268.

[28] G. Van Rossum and F. L. Drake Jr, Python reference manual, Virginia,
USA, 2001. [Online]. Available: http ://www.python .org (visited on
27/07/2019).

[29] W. McKinney, “Data structures for statistical computing in python”,
Proceedings of the 9th Python in Science Conference, vol. 445, pp. 51–56,
Jan. 2010.

[30] T. E. Oliphant, Guide to NumPy. Trelgol Publishing USA, 2006, vol. 1.

[31] J. D. Hunter, “Matplotlib: A 2d graphics environment”, Computing in
science & engineering, vol. 9, no. 3, pp. 90–95, 2007.

[32] M. Waskom, O. Botvinnik, P. Hobson, J. B. Cole, Y. Halchenko, S.
Hoyer, A. Miles, T. Augspurger, T. Yarkoni, T. Megies, L. P. Coelho,
D. Wehner, cynddl, E. Ziegler, diego0020, Y. V. Zaytsev, T. Hoppe, S.
Seabold, P. Cloud, M. Koskinen, K. Meyer, A. Qalieh and D. Allan,
“Seaborn: V0.5.0 (november 2014)”, Nov. 2014. DOI: 10.5281/zenodo.
12710.

[33] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific tools
for Python, 2001–. [Online]. Available: http://www.scipy.org/ (visited
on 26/07/2019).

83

[34] Anaconda Software Distribution, Computer software. vers. 2-2.4.0.
anaconda, Nov. 2016. [Online]. Available: https : / / anaconda . com
(visited on 27/07/2019).

[35] A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities for
comparing genomic features”, Bioinformatics, vol. 26, no. 6, pp. 841–
842, Jan. 2010. DOI: 10.1093/bioinformatics/btq033.

[36] MATLAB, Statistics and Machine Learning Toolbox, Version 9.2.0.556
344 (r2017a), Natick, Massachusetts, 2017.

[37] R Core Team, R: A language and environment for statistical computing,
Vienna, Austria: R Foundation for Statistical Computing, 2017.
[Online]. Available: https : / / www . R - project . org/ (visited on
26/07/2019).

[38] L. He and G. J. Hannon, “Micrornas: Small rnas with a big role in
gene regulation”, Nature Reviews Genetics, vol. 5, no. 7, pp. 522–531,
2004. DOI: 10.1038/nrg1379.

[39] J. Wang, X. Lan, P.-Y. Hsu, H.-K. Hsu, K. Huang, J. Parvin, T. H.-
M. Huang and V. X. Jin, “Genome-wide analysis uncovers high
frequency, strong differential chromosomal interactions and their
associated epigenetic patterns in e2-mediated gene regulation”, BMC
genomics, vol. 14, pp. 70–70, Jan. 2013. DOI: 10.1186/1471-2164-14-70.

[40] B. Tang, Y. Zhou, C.-M. Wang, T. H. M. Huang and V. X. Jin, “Integ-
ration of dna methylation and gene transcription across nineteen cell
types reveals cell type-specific and genomic region-dependent reg-
ulatory patterns”, Scientific Reports, vol. 7, no. 1, p. 3626, 2017. DOI:
10.1038/s41598-017-03837-z.

[41] R. Bergmann, J. Ludbrook and W. P.J. M. Spooren, “Different
outcomes of the wilcoxon-mann-whitney test from different statistics
packages”, The American Statistician, vol. 54, no. 1, pp. 72–77, 2000.
DOI: 10.1080/00031305.2000.10474513.

[42] B. Grüning, R. Dale, A. Sjödin, B. A. Chapman, J. Rowe, C. H.
Tomkins-Tinch, R. Valieris, J. Köster and T. B. Team, “Bioconda:
Sustainable and comprehensive software distribution for the life
sciences”, Nature Methods, vol. 15, no. 7, pp. 475–476, 2018. DOI: 10.
1038/s41592-018-0046-7.

[43] P. A. Jones, “Functions of dna methylation: Islands, start sites, gene
bodies and beyond”, Nature Reviews Genetics, vol. 13, no. 7, pp. 484–
492, 2012. DOI: 10.1038/nrg3230.

[44] Y. Zhu, H. Lu, D. Zhang, M. Li, X. Sun, L. Wan, D. Yu, Y. Tian, H. Jin,
A. Lin, F. Gao and M. Lai, “Integrated analyses of multi-omics reveal
global patterns of methylation and hydroxymethylation and screen
the tumor suppressive roles of hadhb in colorectal cancer”, Clinical
epigenetics, vol. 10, pp. 30–30, 2018. DOI: 10.1186/s13148-018-0458-3.

84

[45] A. Akalin, M. Kormaksson, S. Li, F. E. Garrett Bakelman, M. E.
Figueroa, A. Melnick and C. E. Mason, “Methylkit: A comprehensive
r package for the analysis of genome-wide dna methylation profiles”,
Genome Biology, vol. 13, no. 10, R87, Oct. 2012. DOI: 10.1186/gb-2012-
13-10-r87.

[46] C. A. Davis, B. C. Hitz, C. A. Sloan, E. T. Chan, J. M. Davidson, I.
Gabdank, J. A. Hilton, K. Jain, U. K. Baymuradov, A. K. Narayanan,
K. C. Onate, K. Graham, S. R. Miyasato, T. R. Dreszer, J. S. Strattan,
O. Jolanki, F. Y. Tanaka and J. M. Cherry, “The encyclopedia of dna
elements (encode): Data portal update”, Nucleic acids research, vol. 46,
no. D1, pp. D794–D801, Jan. 2018. DOI: 10.1093/nar/gkx1081.

[47] A. E. Teschendorff and C. L. Relton, “Statistical and integrative
system-level analysis of dna methylation data”, Nature Reviews
Genetics, vol. 19, 129 EP –, Nov. 2017, Review Article. [Online].
Available: https : / / doi . org / 10 . 1038 / nrg . 2017 . 86 (visited on
15/11/2019).

85

