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...denn ganz oben werden deine Sonnen
voll und glühend umgedreht.

Doch in dir ist schon begonnen,
was die Sonnen übersteht.1

R. M. Rilke

1...a billion stars go spinning through the night,
blazing high above your head.
But in you is the presence that
will be, when all the stars are dead.

Translation by Stephen Mitchell
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1 Abstract
Background: Modelling stochastic processes in infinite dimensions has proven
itself to be a useful in the theory of interest rate and fixed income markets. This
theory was extended to include power forward prices by Audet, Heiskanen, Keppo
& Vehviläinen [3], and has since been extended by (among others) Benth & Krüh-
ner [12, 11].
Purpose: This thesis aims to extend the work done by (among others) Fred Espen
Benth and Paul Krühner and others that has contributed to the various projects on
electricity markets at the University of Oslo. We state and prove several results
on option pricing in both finite and infinite spaces, and provide theory on model
uncertainty.
Methods: Mostly results from classical stochastic analysis and functional analy-
sis.
Results: Several results on the theory of pricing spread options in finite dimen-
sions, a result on calendar spread options in infinite dimensions, results on put
options and results on the put-call parity in infinite dimensions. We have also in-
troduced the notion of convex risk measures to the Filipović space Hw and a new
class of function spaces named the Filipović spaces, denoted F p. Also, we have
extended some results on the estimation of the eigenelements of the covariance
operator in Hilbert spaces. Also, we have corrected a result made by Fred Espen
Benth and Paul Krühner, which had an erroneous proof.
Conclusions: By a lot of elbow grease, tender loving care and a great collection
of results from a vast array of papers, we have made a quite readable introduction
to the theory of exchange options and model risk in financial markets.
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3 Introduction
In financial markets, an exchange option is an option written on the difference
of two underlying risky assets, whose values at time t may be denoted by Si.t/,
for i D 1; 2.2 The holder of such an option will then have the right to be paid
the difference S1.�/ � S2.�/ at maturity time � � 03, provided S1.�/ > S2.�/.
Otherwise the option is worthless. The payoff of an exchange option is therefore
max.0; S1.t/�S2.t//. Exchange options are a special case of the class of options
known as spread options, which are basically the same as exchange options, but
treat the spread as a call (or put) option written on the spread with a strike price
K. Spread options have payoff function max.0; S1.t/�S2.t/�K/ when we look
at them as a call option. The natural question to ask is then: what is the fair price
of such options? In the case of exchange options where the underlying follows
a geometric Brownian motion, this question was answered by Margrabe [53] in
1978. We will in this thesis give a brief review with a different proof before we
prove similar results where the underlying is modelled differently. The results in
the first chapter rely heavily on the seminal works by Black & Scholes [14] (in-
cluding the extensions by Merton [57, 58, 59]), Black [13] and Margrabe [53].

Hilbert space valued diffusion processes (for which the Hilbert space valued Wiener
processes are a special case of) were introduced to study the Dirichlet problem and
to study parabolic equations for functions of infinitely many variables. The spe-
cial case of infinite dimensional Ornstein-Uhlenbeck processes was introduced by
Malliavin4, but we refer to Da Prato & Zabczyk [65] and Applebaum [1] for in-
troductions. Hilbert space-valued Wiener processes are quite similar to its finite
dimensional cousins, they are more complex in the form that they rely on covari-
ance operators rather than matrices.

It has been shown empirically, that it would be favorable to model the time dynam-
ics of the forward curves in power markets as Hilbert space-valued processes, see
e.g Benth & Krühner [11] and the references therein. This is partly due to a high
degree of idiosyncratic risk in the power markets. It has been found a clear corre-
lation structure between contracts with different delivery times. The Hilbert space
chosen to do the modelling of the forward curve is the so-called Filipović space,

2one usually uses S.�/ when the underlying is a stock, and f .�/ when the underlying is a
forward contract.

3The results in this thesis only considers European options, that is options which can only be
exercised at the time of maturity. American options, options that can be continuously exercised
until maturity will only be commented on briefly.

4The original article is allegedly called "stochastic calculus of variations and hypoelliptic op-
erators", but I am unable to find it.
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introduced by Filipović [34], which is essentially a separable Hilbert space of ab-
solutely continuous functions. Let us now denote the forward price by f .t; T /,
and assume that it has the following dynamics

df .t; T / D ˛.t; T / dt C˙.t; T / dW.t/;

following the framework of Heath Jarrow and Morton. If we then introduce the
Musiela parametrization T D t C x, we can derive the Musiela stochastic differ-
ential equation

df .t; T / D
�
˛.t; T /C

@f .t; x/

@x

�
dt C˙.t; T / dW.t/:

In order to make sense of equations like this, we must work in an appropriate
space containing the entire forward curve ff .t; x/jx; t � 0g. The Filipović space
does exactly this.

In recent years the notion of model uncertainty has proven itself to be of utmost
importance. It has been noted by Cont [25], that the New-York based derivatives
unit of the Bank of Tokyo/Mitsubishi suffered a $83 million loss in 1997 because
their internal pricing model overvalued a single portfolio of swaps and options
on U.S interest rates. And a short time after NatWest Capital Markets lost £50
million due to a mispriced portfolio of U.K and German interest rate options, and
that many of the reasons for these losses could be attributed to model risk. Model
risk, and model uncertainty is especially relevant for spread options, since most of
the options of this kind is not traded liquidly on an exchange, but is traded over-
the-counter, which means that they need to priced (and hopefully priced correctly
to avoid arbitrage) each time, and are not affected in the same way as more liquid
instruments by supply and demand. We will review several approaches to measure
model uncertainty, the most prominent being the notion of convex risk measures,
for which a vast array of literature exist. We also review an extension of this idea
to so-called risk capturing functionals, proposed by Bannör & Scherer [5].

3.1 About the proofs and my contributions
All proofs written in this thesis is my own. All results proven by someone else is
referenced. To be completely clear, I have made a table of all the proven results
in this thesis. The table contains a list of the results that are completely my own,
both in statement and proofs, the results where the statement is made by someone
else, but not proven5, and the results where the statement and proof is made by

5Typically results like "...it then follows that" or "...which allows us to see that".
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someone else, but I have edited and/or clarified and/or added missing results. The
result where both the statement and proof are made by me is marked with .�/. The
table of results can be found in Appendix 14.4. In addition, section 12.2.1 is in its
entirety my own. The same goes for the application of the results earlier results in
section 12.2.2.

3.2 About references to other works and crossreferences
To avoid confusion, all references to results in other texts are written with bold
letters, and cross-references will be written with normal letters. For example,

1. "We have from Theorem 5.1.1 in Filipović [34] that the Filipović spaceHw

is a separable Hilbert space."

2. "We have for example seen in Theorem 9.13 how to price calendar spread
options when the underlying takes values in a separable Hilbert space."

3.3 How this thesis is organized
We start with some preliminary results. I have included results that it seems like
most other master’s students in stochastic analysis did not know by heart (or at
all). I have therefore, in an attempt to keep it as short as possible not included the
definition of the stochastic integral, Itô’s formula and related results. For these
definitions and results we refer to Øksendal [62], Protter [66] and Benth [9].

After the preliminaries, we start with the problem of pricing spread options in
R and Rn. We start with the famous Margrabe formula, and then expand the
idea of spread options to other situations. Some of these results are to the best
of my knowledge new results. The theory on spread options in R is included
as some form of motivating examples, motivating the pricing of spread options
where the underlying follows an infinite dimensional representation. Since I was
able to prove some new results, they are interesting as results on their own as well.

We then move on to some basic theory on Ornstein-Uhlenbeck processes (some-
times called the Vasicek model), and explain why such processes are the ones
preferred when modelling spot prices in electricity (and related) markets. We do
also include a brief section about infinite dimensional Ornstein-Uhlenbeck pro-
cesses. Since infinite dimensional representations of Wiener processes is properly
introduced later, I decided to keep this section brief, and use this section as a
motivating example of an infinite dimensional stochastic process, since most of
the master’s students whose specialized in stochastic analysis know the class of
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Ornstein-Uhlenbeck processes quite well.

The following section is on stochastic modelling of power markets. We introduce
some of the most used models, and explain how we price contracts with a fixed
delivery time, and contracts with a delivery period. The especially useful Musiela
parametrization is also given a brief introduction is this section. The section on
the Musiela parametrization, although brief, will also serve as a bridge between
the earlier introduced theory on Ornstein-Uhlenbeck processes and the framework
of Heath, Jarrow & Morton to the more generalized theory on forward curves in-
troduced later.

Following this, we start with the infinite dimensional representations. We start
by introducing the Filipović space, a separable Hilbert space introduced by Fil-
ipović in his PhD thesis, where he called it the forward curve space. This space
will the Hilbert space most suitable for our purposes. We then, using the theory
of (among others) Zabczyk, Da Prato, Peszat, Carmona and Tehranchi, introduce
the theory of Hilbert space valued Wiener processes, and their associated covari-
ance operators. We give a self contained introduction, where I have included
some "easy-to-read" examples showing off these definitions. After showing off
how stochastic equations in infinite dimensions may have several types of solu-
tions depending on the initial conditions and Lipschitzness of the variables, we
conclude this section with a brief discussion on how we can use the Hilbert space
valued Wiener processes to price infinite dimensional representations of power
forwards.

Then the main section of the thesis follows. In this section we expand on the end
of the previous section, demonstrating and proving how one can price forward
contracts with delivery over a time period, and the pricing of derivatives on these.
Many of the results in this section are new, and one is a corrected result where the
proof of the published version was wrong. We state and and prove results for both
arithmetic and geometric models, and include a very brief discussions on how one
would go about pricing such derivatives where the the noise of the underlying fol-
lows a Lévy process. This section follows closely a paper by Benth & Krühner6

[11]. We show that in the same way as with the Black-Scholes formula (and re-
lated formulas), the price depends on the variance of some sort, and in this case
the covariance operator.

Having shown that the price of the derivatives depends on the covariance operator,

6It is to be noted that Paul Krühner has since his joint works with Fred Espen Benth changed
his name to Paul Eisenberg.
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the following section is devoted to results on how one can specify and estimate
the covariance operator, since the true covariance operator is not known in real-
world situations. We start with a motivating discussion on parameter estimation
on R, where we discuss how to construct estimators for the quantities needed in
Margrabe’s formula. We also discuss their distributions. We then move on to the
discussion on how to estimate the covariance operator. We include several results
on this topic, including some new results on the estimation of the eigenelements
of the covariance operator. This section follows Bosq’s monograph Linear Pro-
cesses in Function Spaces [15] closely.

In the following sections, we abandon the problem of pricing derivatives, and in-
stead take a look on the uncertainty of the prices. The main tools of these sections
are the so-called risk measures, mainly convex risk measures. In this section we
include a discussion where we compare the models of several authors, including
Cont’s worst case-approach [25], and Bannör & Scherer’s risk capturing function-
als. We also include a brief discussion on how the notion of convex risk measures
may be extended to other spaces, notably the Lebesgue spaces Lp consisting of
p-integrable functions. We then extend the notions of convex risk measures to
the Filipović space, which to the best of my knowledge has not been done before.
Also, we construct an entire class of separable Banach spaces, which I have called
the Filipović spaces, denoted F p.

We end the thesis with a discussion and summary on how the prices of financial
derivatives depend on the variance, covariance and/or correlation, and how model
uncertainty impacts these prices.

Then a series of appendices follows. First an index of frequently used notation,
then some basic results from mathematical finance we have referenced earlier,
and sometimes could not find proofs for (like in the main part of the thesis, if a
result is proven, it is proven by me). We then have some background materials
on topological and normed spaces, and finally a list of the proofs and a list of the
figures.

3.4 Why this thesis may be relevant for actuarial sciences
Being in possession of an adequate reserve is one of the main concerns for an
insurance company. They must be able to meet their financial obligations, for
example when paying for damages or other schemes where the insured has been
guaranteed a certain amount of money now or in the future. One way to do this
is just to offer an interest rate guarantee which is lower than the current interest
rate in the market. This scheme is fine in times when the interest rates in the
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market are high. However, when interest rates fall beyond a certain threshold,
this scheme becomes impossible, and the insurer has to speculate in the market
in order to make enough money to pay the insurees. For example, on August 22,
2019, Finansavisen7 wrote that the central bank of Denmark would lower the pol-
icy rate to -0.75, from the already negative current (on August 22) rate which was
-0.65. Also, there are banks in other countries, for example Switzerland 8, that
have negative interest rates on large deposits, making the aforementioned scheme
even worse. This is where the theory on the financial markets may be of value,
as we have proven several results on both regular call and put options (albeit in
an infinite dimensional perspective) and results on spread and exchange options
(both in finite dimensional and infinite dimensional settings), which may be used
as an effective hedging tool in order to control future losses.

Delbaen, nne of the authors of the first paper defining risk measures in a financial-
mathematical context, wrote in his (year) 2000 paper [27] the risk measure is
denoted by � and a financial position by X , then �.X/ is the premium that needs
to be charged in order to make position X insurable. This in turns means that if X
is a position exhibiting extreme risk, i.e �.A/ D1, then the position is unaccept-
able no matter how high the premium. In other words, "These measures of risk
can be used as (extra) capital requirements to regulate the risk assumed by market
participants, traders, and insurance underwriters, as well as to allocate existing
capital." - Artzner, Delbaen, Eber & Heath [2]. It is to be noted that if �.X/ is to
interpreted as the margin requirement, we need that � is normalized in the sense
that �.0/ D 0.

Two commonly used risk measures are known as Value-at-Risk, abbreviated VaR,
and Average-Value-at-Risk, abbreviated AVaR, although VaR does not satisfy the
mathematical axioms in order to make it convex or coherent risk measure On the
other hand, AVaR satisfy these. In this dissertation we will briefly introduce these
two, but we refer to other works, for example Hull [44], for a more thorough
introduction.

3.5 The work on this thesis
As a part of the master’s curriculum, I took a course on stochastic modelling
of electricity and related markets and one course on interest rates modelled as
stochastic partial differential equations9 taught by Professor Fred Espen Benth.

7Norwegian financial newspaper. The actual article can be found on page 18.
8Also found in Finansavisen, August 22, 2019, page 18.
9MAT4770 and STK4530, at UiO, department of mathematics.
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Finding the content of these courses highly interesting (especially the first one),
I asked Professor Benth about the supervising a master’s thesis related to these
courses. He replied with an idea where many of the ideas would be modelled in
an infinite dimensional setting, and where I then could apply the ideas from the
literature on model uncertainty. He then gave me the book "Stochastic equations
in infinite dimensions" by Da Prato & Zabczyk [65], the papers by Benth & Krüh-
ner [12, 11], and told me to read it and to read up on the works by Rama Cont on
model uncertainty. From there on, all the other literature has been found by me.
This thesis is written independently, but has benefited greatly from Benth’s help-
ful comments, especially when stuck. As with many others, I was shocked by the
knowledge gap one has after completing the courses and starting reading research
papers. However, it was good fun and the learning outcome has been huge on my
own part.

All of the work on this thesis has been done between January 2019 and November
2019.

I am solely responsible for any errors.

Blindern, Oslo, the 14th of November 2019,
Kenneth Ravn.
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4 Mathematical preliminaries
In his book Spaces, Lindstrøm [52] states "Chapters with the word ’preliminaries’
in the title are never much fun, but they are useful". This chapter is not an excep-
tion. I have tried to list all definitions and results that I feel should not be obvious
for mathematicians (and in particular stochasticians) at my own level. This chap-
ter is made up by two parts. One with results and definitions from real analysis
and functional analysis, and one with results from stochastic analysis.

4.1 Results from real and functional analysis
Definition 4.1 (Banach Space). A Banach space is a vector space X over a scalar
field, which is equipped with a norm k � kX and which is complete with respect to
the metric induced by the norm. IfX contains a countable dense subset it is called
a separable Banach space.

Definition 4.2 (Hilbert Space). An inner product space H is a called a Hilbert
space ifH is complete with respect to jj�jjH . IfH admits a countable orthonormal
basis it is called a separable Hilbert space.

Definition 4.3 (Lp-spaces). Let .˝;A; �/ be a measure space, and let 1 � p <
1. The space Lp.˝;A; �/ (often abbreviate Lp.�/ or simply Lp) consists of
equivalence classes of measurable functions f such thatZ

˝

jf jp d� <1;

equipped with the norm

kf kp D

�Z
˝

jf jp d�
�1=p

:

Theorem 4.4 (The Fubini-Tonelli theorem). Assume that S and T are � -finite
measure spaces and that f is a measurable function. ThenZ

S

Z
T

jf .s; t/j dt ds D
Z
T

Z
S

jf .s; t/j ds dt D
Z
S�T

jf .s; t/j d.s; t/:

Moreover, if any one of the three integrals above is finite, thenZ
S

Z
T

f .s; t/ dt ds D
Z
T

Z
S

f .s; t/ ds dt D
Z
S�T

f .s; t/ d.s; t/:

Definition 4.5 (Isometry). Let X; Y be metric spaces equipped with metrics dX
and dY respectively. A map f W X ! Y is said to an isometry if dY .f .x/; f .y// D
dX.x; y/. If f is bijective, it is called an isometric isomorphism.
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Definition 4.6 (Closed linear operator). Let X; Y be Banach spaces. A linear
operator A W D.A/ � X ! Y is closed if for every sequence fxngn in D.A/
converging to x 2 X such that Axn ! y 2 Y we get x 2 D.A/ and Ax D y.

Definition 4.7 (Hilbert-Schmidt operator). A Hilbert Schmidt operator is a bounded
operator A on a Hilbert space H with finite Hilbert-Schmidt norm:

jjAjj2HS D Tr .A�A/ D
X
i2J

jjAei jj
2;

where J is some (possibly uncountable) index set, jj � jj is the norm of H and
feigi2I is an orthonormal basis of H .

Definition 4.8 (Semigroup). Let X be a Banach space. A family .T .t/; t � 0/ of
bounded linear operators on X is a called a strongly continuous semigroup if

1. T .0/ D I , where I denotes the identity operator on X

2. T .t C s/ D T .t/T .s/, 8 t; s � 0

3. For all x0 2 X , jjT .t/x0 � x0jj ! 0 whenever t # 0.

Definition 4.9 (Generator of semigroup). LetX be a Banach space. The generator
A W D.A/ � X ! X of a strongly continuous semigroup on X is the operator

Ax D lim
h#0

1

h
.T .h/x � x/ : (1)

(1) is defined for all x in the domain of A:

D.A/ D

�
x 2 X W lim

h#0

1

h
.T .h/x � x/ exists

�
: (2)

Definition 4.10 (Covariance operator). Assume X is a square integrable random
variable defined on H . Then Q 2 L.H/ is called the covariance operator of X if

E ŒhX; uihX; vi� D hQu; vi:

Theorem 4.11 (Cauchy-Schwarz’ inequality/Cauchy-Schwarz-Bunyakovsky’s in-
equality). For any vectors u and v in an inner product space, it holds true that

jhu; vij2 � hu; ui � hv; vi: (3)

Theorem 4.12 (Jordan decomposition). Let .˝;A/ be a measurable space and �
a signed measure on A. Then � can be expressed uniquely as � D �C���, where
�C and �� are two mutually singular measures on A. Two measures are mutually
singular if there exists some E 2 A such that �C.Ec/ D 0 and ��.E/ D 0.
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Definition 4.13 (Absolutely continuous measure). Two measures on a measurable
space .˝;A/ are absolutely continuous denoted � � � if �.A/ D 0 whenever
�.A/ D 0.

Theorem 4.14 (Radon-Nikodym theorem). Let .˝;A; �/ be a � -finite measure
space and � a � -finite measure on A. If � � � then there is a non-negative
extended real valued function f on ˝ such that

�.A/ D

Z
A

f d�; A 2 A:

Moreover, f is unique in the sense that if g has the same properties as f and
�.A/ D

R
A
g d�, then f D g �-almost everywhere. The quantity d�

d� D f is
called the Radon-Nikodym derivative.

Theorem 4.15 (Urysohn’s Metrization Theorem). A topological space is separa-
ble and metrizable if and only if it is regular, Hausdorff and second-countable.

Definition 4.16 (Bochner integral). Let .˝;A; �/ be a measure space, and B a
Banach space. A measurable function f W ˝ ! B is Bochner integrable if there
exists a sequence of integrable simple functions fsngn�0 such that

lim
n!1

Z
˝

kf � snkB d� D 0;

where the integral on the left hand side is an ordinary Lebesgue integral (see e.g
McDonald & Weiss [55]).

Then, the Bochner integral is defined byZ
˝

f d� D lim
n!1

Z
˝

sn d�:

We note that when it comes to Bochner integrals, the Radon-Nikodym theorem
does not in general hold. However, due to the Dunford-Pettis theorem (Dellacherie
& Meyer [28]) it holds in separable dual spaces, and also in Hilbert spaces (in
fact all reflexive spaces, that is, all locally convex topological vector spaces that
coincides with the continuous dual of its continuous dual space).
The next result is an extension of the theorem above of conditional expectations,
and is due to Da Prato & Zabczyk [65].

Definition 4.17 (Measures of weak and strong order). Let X be a Banach space
and 0 < p < 1. A measure � on OC.X/, where OC.X/ denotes the cylindrical
� -algebra on X , is said to be of weak order p if

R
jhx; x�ijp�. dx/ < 1 and of

strong order p if
R
kxkp�. dx/ <1.
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Theorem 4.18 (Spectral theorem for self-adjoint compact operators). For every
compact self-adjoint operator T on a real or complex Hilbert space H , there ex-
ists an orthonormal basis of H consisting of eigenvectors of T: More specifically,
the orthogonal complement of the kernel of T admits, either a finite orthonor-
mal basis of eigenvectors of T , or a countably infinite orthonormal basis feng of
eigenvectors of T; with corresponding eigenvalues f�ng � R, such that �n ! 0.

Moreover, when H is separable and infinite dimensional we have that for every
compact self-adjoint operator T on a real or complex separable infinite- dimen-
sional Hilbert space H , there exists a countably infinite orthonormal basis fvng
of H consisting of eigenvectors of T , with corresponding eigenvalues f�ng � R,
such that �n ! 0.

Theorem 4.19 (Riesz-Fréchet representation theorem). Let H be a Hilbert space
and f 2 H �. Then there exists a g 2 H such that f .x/ D hg; xi for each x 2 H .
Moreover, kgkH D kf kH� .

4.2 Results from stochastic analysis
Definition 4.20 (Adaptedness). Let .˝;F ;P / be a probability space and let .Ft/t2I
be a filtration of the � -algebra F , where I is some index set, typically Œ0; T � in
our case. Furthermore, let .S;˙/ be a measurable space. A stochastic process
X W I � ˝ ! S is said to be adapted to the filtration Ft/t2I if the random
variable Xt W ˝ ! S is .Ft; /-measurable for each t 2 I .

Definition 4.21 (Levy Processes). Let .˝;F ; fF gt�0; P / be a filtered probability
space, and let H be a separable Hilbert space. An adapted H -valued process
.L.t/; t � 0// is called a Levy process if

1. L.0/ D 0 P -a.s,

2. L is stochastically continuous,

3. L has càdlàg paths, that is right continuous with left limits

4. L has stationary increments, i.e for t � s L.t/ � L.s/ D L.t � s/ in
distribution,

5. L has independent increments, i.e for t � s L.t/ � L.s/ is independent of
Fs.

The next result is a stochastic version of Fubini’s theorem. We refer to Filipović
[33] for a more general statement and proof.

11



Theorem 4.22 (stochastic Fubini). Consider the Rd -valued stochastic process
� D �.!; t; s/ with two indexes 0;� t and s � T satisfying the following prop-
erties

(a) � is FT ˝BŒ0; T �-measurable

(b) supt;s k�.t; s/k <1:

Then Z T

0

Z T

0

�.t; s/ dW.t/ ds D
Z T

0

Z T

0

�.t; s/ ds dW.t/: (4)

Definition 4.23 (Predictable processes). Given a filtered probability space�
˝;F ; .Ft/t�0 ;P

�
, a stochastic process .X.t//t�0 is predictable if X , consid-

ered as a mapping from ˝ � RC is measurable with respect to the � -algebra
generated by all left-continuous adapted processes.

The next theorem is one of the more famous theorems from stochastic analysis:
Girsanov’s theorem. We use a slightly modified version of the statement from
Øksendal [62], and is therefore stated here.

Theorem 4.24 (Girsanov’s Theorem). Let Y.t/ be an Itô process of the form

dY.t/ D �a.t; !/ dt C dB.t/; t � T; Y0 D 0;

where T � 1 is a given constant and B.t/ is a n-dimensional Brownian motion.
Define

M.t/ D exp .a.t; !/B.t// ;

and the measure Q on FT by

dQ.!/
dP.!/

DM.T /:

Then Q is a probability measure on FT and Y.t/ is an n-dimensional Brownian
motion with respect to Q.

Definition 4.25 (Expected value). Let X be a random variable whose cumulative
distribution function admits a density f .x/. The expected value of X , denoted
EŒX� is then defined as Z

˝

xf .x/ dx:

In general, if X is defined on a probability space .˝;F ; P /, then

EŒX� D

Z
˝

X.!/ dP.!/:

12



Theorem 4.26 (Conditional expectations). Let .˝;A; P / be a probability space,
Y 2 L1.˝;A; P / and F a � -algebra such that F � A. Then there exists a
P -almost everywhere unique F -measurable function called the conditional ex-
pectation of Y given F EŒY jF � such thatZ

F

Y dP D
Z
F

EŒY jF � dP;

for all F 2 F .

Moreover, if EŒjY j� <1, then with probability one

1. EŒaX C bY jF � D a EŒX jF �C b EŒY jF �

2. EŒEŒY jF �� D EŒY �

3. EŒY jF � D Y if Y is F -measurable

4. EŒX � Y jF � D X EŒY jF � if X is F -measurable, where � denotes the usual
inner product on Rn

5. EŒY jF � D EŒY � if Y is independent of F .

We refer to McDonald & Weiss [55] and Øksendal [62] for more on conditional
expectations.

Theorem 4.27 (Conditional expectations on Banach spaces). Assume E is a sep-
arable Banach space. Let X be a Bochner integrable E-valued random variable
defined on .˝;F ; P / and let G � F be a sub � -algebra. Then there exists a
unique, up to a set of P -probability zero, integrable E-valued random variable
Z, measurable with respect to G such that for all G 2 GZ

G

X dP D
Z
G

Z dP:

The random variable Z will be denoted as EŒX jG � and is called the conditional
expectation of X given G .

Definition 4.28 (Bayes’ formula for conditional expectations). Let s and t satis-
fying 0 � s � t � T be given, and let Y be an Ft -measurable random variable.
Further, define the Radon-Nikodym derivative

dQ
dP

ˇ̌̌̌
Ft

DM.t/:

Then
EQŒY jFs� EŒM.t/jFs� D EŒYM.t/jFs�: (5)
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5 Pricing spread options on the real line
Spread trading is a well known trading strategy. This strategy involves the pur-
chase of one security while simultaneously selling another. The trades are exe-
cuted in a certain manner to yield an overall net position on the trade, where the
profit (or loss) comes from the widening or narrowing of the spread. In order
to hedge oneself against future risks on spread trades, buying (or selling) options
written on the spreads may be a feasible strategy. In this section we will derive and
prove results on the pricing of such options. We will consider exchange options,
whose valuation was proven by Margrabe in his seminal 1978 paper [53], both
in the context of Margrabe’s paper (but with another derivation) and in the case
where we assume that the dynamics of the spread follows an arithmetic Brownian
motion. The latter is called Bachelier’s model, and its price was found by Car-
mona & Durrleman [17]. In this thesis we have extended their proof. We will then
move on to calendar spread options, which are options written on the spread of
two forward contracts on the same commodity, but with different delivering times.
This is done in the setting of Heath, Jarrow & Morton [42] and in a setting where
the underlying assets follows an n-dimensional arithmetic Brownian motion. We
end this section with a brief review of an approximation formula for spread op-
tions, proved by Carmona & Durrleman [17].

We begin by defining the stochastic exponential, also known as the Doléans-Dade
exponential. We use the definition from Protter [66].

Definition 5.1 (Doléans-Dade exponential). For a semimartingaleX withX.0/ D
0, the stochastic exponential ofX , denoted by E.X/, is the unique semimartingale
Z that is a solution of Z.t/ D 1C

R t
0
Z.s/ dX.s/.

Proposition 5.2. If X is a continuous semimartingale, then

E.X/.t/ D exp
�
X.t/ �

1

2
ŒX;X�.t/

�
:

Proof: See Protter [66], page 85. �

Lemma 5.3. Let fW.t; t � 0/g be a Brownian motion, and let � 2 R. Then

1. EŒE.�W /.t/� D 1

2. VarŒE.�W /.t/� D e�2t � 1.
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Proof: Using the fact that a Brownian motion is a Gaussian process, whose expo-
nential moments are finite, we get

EŒE.�W /.t/� D exp
�

EŒW.t/ �
1

2
�2t �C

1

2
VarŒ�W.t/�

�
D exp.�

1

2
�2t C

1

2
�2t /

D 1:

In a similar fashion we find that

VarŒE.�W /.t/� D Var
h
e�W.t/�

1
2
�2t
i

D EŒ.E.W /.t//2� � EŒE.W /.t/�2

D E
h
e2�W.t/��

2t
i
� 12

D e�
2t
� 1:

�

5.1 The option to exchange one asset for another - Margrabe’s
formula and some variations

In this section we will state and prove Margrabe’s formula [53] for spread options
where the strike price is zero. We provide a proof different to the one in Mar-
grabe’s paper.

We start with a technical result.

Lemma 5.4 (�). Let Q be a probability measure from Girsanov with associated
Brownian motion fW.t/gt , generated from the P -Brownian motion B.t/. More-
over, let Y.t/ be a P -Brownian motion independent of B.t/. Then Y.t/ remains a
Brownian motion under Q.

Proof: This result follows from Lévy’s Characterization of Brownian motion. We
find that for an integrable stochastic variable X that EQŒX� D EŒXM.t/�, where
M.�/ is the Radon-Nikodym derivative that defines the measure Q in Girsanov’s
theorem. Then, using Bayes’ formula for conditional expectations (5) and the fact
that in Girsanov’s theorem t 7!M.t/ is a P -martingale, we get that

EQŒY.t/jFs� D
EŒY.t/M.t/jFs�

EŒM.t/jFs�
(6)
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We then know thatM.t/ is a stochastic exponential on the formM.t/ D E.�B.t//,
for some �. And since we have that Y was independent of B by hypothesis, get
that

EŒY.t/M.t/jFs�

EŒM.t/jFs�
D

EŒY.t/jFs� EŒM.t/jFs�

EŒM.t/jFs�
D Y.s/ (7)

The first equality follows from the fact that we assumed that Y was independent
of B , and the second equality follows from the fact that a Brownian motion is a
martingale. From this we get that t 7! Y.t/ is a martingale under the measure Q.
Moreover, by the same argument, Y.t/2 � t is a martingale under Q as well, and
therefore we get that Y.t/ is a Brownian motion under Q by Lévy’s characteriza-
tion of Brownian motion. �

We can now state and prove Margrabe’s formula. This seminal result was proved
by William Margrabe in 1978. We will give a different proof.

Proposition 5.5. Consider two commodities, S .1/.t/ and S .2/.t/, with price dy-
namics given by a geometric Brownian motion. We will for simplicity assume that
the drift term is constantly zero, and that the interest rate is zero as well. The price
of a spread option as time t D 0 is then

V.0/ D S .1/.0/˚.d1/ � S
.2/.0/˚.d2/; (8)

where

d1 D
log

�
S .1/.0/=S .2/.0/

�
C

1
2
t
�
�21 C �

2
2 � �1�2�

�q
t
�
�21 C �

2
2 � �1�

2�
�

d2 D d1 �

q
t
�
�21 C �

2
2 � �1�

2�
�
:

The quantities �1; �2 � 0, � 2 Œ�1; 1� and ˚ is the standard normal cumulative
distribution function.

Proof: We then get:

dS .i/.t/ D �iS .i/.t/ dB.i/.t/; (9)

hence
S .i/.t/ D S .i/.0/E

�
�iB

.i/.t/
�
: (10)

Here,
�
B.i/.t/; t � 0; i D 1; 2

�
are two Brownian motions with correlation �.
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We are interested in the value of an option to exchange one asset for another, that
is we want to compute

V.0/ D E

��
S .1/.t/ � S .2/.t/

�C�
: (11)

Using S .2/ as numeraire, we get that

V.0/ D E

�
S .2/.t/

�
S .1/.t/

S .2/.t/
� 1

��
(12)

D E
h
S .2/.t/ .X.t/ � 1/C

i
; (13)

where X.t/ WD S .1/.t/=S .2/.t/.

Clearly, S
.2/.t/

S.2/.0/
is a martingale, so we may define the Radon-Nikodym derivative

dQ
dP

ˇ̌̌̌
Ft

D
S .2/.t/

S .2/.0/
(14)

from Girsanov’s theorem we find thatQ is an equivalent martingale measure, and
that W .2/.t/ D B.2/.t/ � �2t is a Brownian motion under Q.

For B.1/, we introduce a new P -Brownian motion B.3/, which is independent of
B.1/ and define

B.1/.t/ D �B.2/.t/C
p
1 � �2B.3/.t/: (15)

From the measure change above we get that W 1.t/ D B.1/.t/ � ��2t is a Q-
Brownian motion.

Under Q, we find the dynamics of X is

X.t/ D X.0/ exp
�
�1W

.1/.t/ � �2W .2/.t/ �
t

2

�
�21 C �

2
2 � �1�2�

��
(16)

From (14) we find

V.0/ D S .2/.0/ EQ
�
.X.t/ � 1/C

�
: (17)

This combined with (16) shows that we have a call option on X.t/ with strike
price 1 scaled by S .2/.0/. Applying the Black-Scholes formula [14] then yields

V.0/ D S .1/.0/˚.d1/ � S
.2/.0/˚.d2/; (18)
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where

d1 D
log

�
S .1/.0/=S .2/.0/

�
C

1
2
t
�
�21 C �

2
2 � �1�2�

�q
t
�
�21 C �

2
2 � �1�

2�
�

d2 D d1 �

q
t
�
�21 C �

2
2 � �1�

2�
�
;

which is what we wanted to prove. The quantities d1; d2 are found in the same
way as they are found in the Black-Scholes formula. �

5.2 Bachelier’s model
In the Black-Scholes framework, the usual way of modelling the dynamics of an
underlying asset is to model it as a geometric Brownian motion. The main reason
for the choice of this model, is that it does not allow for negative prices, like an
arithmetic Brownian motion may do. In this section, we will remove the positivity
requirement on the spread, since the spread on two assets may be negative. We
will therefore assume in this section that the dynamics of the spread on two assets
S1.t/ and S2.t/, denoted S.t/ at time t � 0 is as follows:

dS.t/ D �S.t/ dt C � dW.t/:

However, the dynamics of the assets is modelled as geometric Brownian motions
to avoid having a positive probability of negative prices. Hence,

dSi.t/ D �Si.t/ dt C �iSi.t/ dWi.t/:

We then easily get from Itô’s formula that

Si.t/ D Si.0/ exp
�
.� �

1

2
�2i /t C �iWi.t/

�
:

We then have the following result which is Proposition 2 in Carmona & Durrle-
man [17]. However, their proof is rather short, so we will here provide a complete
proof.

Proposition 5.6. If the value of the spread at maturity is assumed to have the
Gaussian distribution, the price p of the call spread option with maturity T and
strike K is given by

p D
�
m.T / �Ke�rT

�
˚

�
m.T / �Ke�rT

s.T /

�
C s.T /'

�
m.T / �Ke�rT

s.T /

�
;

(19)
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where

m.T / D .x2 � x1/e
.��r/T

s2.T / D e2.��r/T
�
x21

�
e�

2
1T � 1

�
� 2x1x2

�
e��1�2T � 1

�
C x22

�
e�

2
2T � 1

��
:

Proof: The idea of the proof is to approximate the distribution of S.t/ by the
Gaussian distribution of the moments of S2.t/�S1.t/. This means that we should
have

S.t/ � N . EŒS2.t/ � S1.t/�;VarŒS2.t/ � S1.t/�/ :

We can compute these quantities explicitly by moment matching.

EŒS.t/� D EŒS2.t/ � S1.t/�

D

2X
iD1

.�1/i�1 E

�
xi exp

�
.� �

1

2
�2i /t C �iWi.t/

��
D

2X
iD1

xie
.�� 1

2
�2
i
/te�i EŒWi .t/�C

1
2
�2
i
VarŒWi .t/�

D .x2 � x1/e
�t

We can then multiply with the discount factor e�rt and obtain m.t/.

In order to find s2.�/, we will first have to find the covariance of S2 and S1.

Cov.S2.t/; S1.t// D EŒS2.t/S1.t/� � EŒS2.t/� EŒS1.t/�

D E

"
x1x2 exp

 
2X
iD1

.� �
1

2
�2i /t C �iWi.t/

!#
� x1x2e

2�t

D x1x2e
2�t

�
E
h
e�2W2.t/�

1
2
�22 tC�1W1.t/�

1
2
�21 t
i
� 1

�
D x1x2e

2�t

�
exp

�
�
1

2
�22 t �

1

2
�21 t C

1

2
�22 t C

1

2
�21 t C �1�2t�

��
D x1x2e

2�t
�
e�1�2t� � 1

�
:

Using this and the lemma above, we find that

VarŒS.t/� D
2X
iD1

x2i e
2�t

�
e�

2
i
t
� 1

�
� 2x1x2e

2�t
�
e�1�2t� � 1

�
;

and we may again multiply with the discount factor e�rt to obtain the desired ex-
pression for s2.t/.
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We therefore find that in distribution we can write

e�rtS.t/
d
D m.t/C s.t/Z;

where Z � N.0; 1/. They payoff then becomes

max
�
0;m.t/C s.t/Z �Ke�rt

�
;

which implies that

Z >
Ke�rt �m.t/

s.t/
DW �d:

The price then becomes

p D

Z 1
�d

�
m.t/C s.t/x �Ke�rt

�
�.x/ dx

D
�
m.t/ �Ke�rt

�
˚.d/C

Z 1
�d

s.t/�.x/ dx

D
�
m.t/ �Ke�rt

�
˚.d/C s.t/�.d/;

from which the result follows by substituting back for d . �

Remark 5.7. When I first read the result above, it was a version from Rene Car-
mona’s website [19], which I in error believed was the published version. In that
version of the paper, the proof of the result above is wrong. Therefore, I corrected
the proof and typed it here. Later, I found the printed article in SIAM Review, and
found that the proof had been corrected. If the proof of the initial article had been
correct, I would only have referenced the proof, but since my proof was already
typed, I have decided to include the full proof including the intermediate steps that
Carmona and Durrleman did not include in their paper.

5.3 Spread options on forward contracts under the framework
of Heath, Jarrow and Morton

In the Heath, Jarrow & Morton framework we model directly on the spot. The
arbitrage free forward dynamics is therefore

df .t; �/
f .t; �/

D �.t; �/ dB.t/; (20)

where �.�; �/ W Œ0; t �! R satisfies
R t
0
j�2.s; �/j2 ds <1.
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We can solve (20) by Itô’s formula:

d log f .t; �/ D f �1.t; �/ df .t; �/ �
1

2
f �2.t; �/. df .t; �//2

D �.t; �/ dB.t/ �
1

2
�2.t; �/ dt:

We want to price an option, so from here on and out this subsection we have that
t � T � � , where � is the delivery time of the contract, T is the exercise time and
t is the time the option is priced.

By continuing the calculation above, we find that

f .T; �/ D f .t; �/ exp

 Z T

t

�.s; �/ dB.s/ �
1

2

Z T

t

�2.s; �/ ds

!
;

for T � t .

Theorem 5.8 (.�/). The price p.t/ of a spread option at time t written on two
forwards f1 and f2 is given by

p.t/ D e�r.T�t/ .f1.t; �/˚.d1/ � f2.t; �/˚.d2// ;

where

d2 D
log.X.t// � 1

2

R T
t
˙2.s; �/ dsqR T

t
˙2.s; �/ ds

and

d1 D d2 C

sZ T

t

˙2.s; �/ ds;

and
˙.t; �/ D

�
�21 .t; �/C �

2
2 .t; �/ � 2�1.t; �/�2.t; �/�

�
:

Proof:
We want to price a spread option on the spread of the two forward f1.t; T / and
f2.t; T / with dynamics dfi.t; T / D fi.t; T /�i.t; T / dBi.t/, so we get by Itô’s
formula that for i D 1; 2

fi.T; �/ D fi.t; �/ exp

 Z T

t

�i.s; �/ dBi.s/ �
1

2

Z T

t

�2i .s; �/ ds

!
; (21)

where B1.t/ and B2.t/ are two Brownian motions with (constant) correlation �.
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We recall that the price of a call option written on a forward under the same
circumstances with strike price K is given by the Black-76 formula [13], which
states that

C.t; T; r;K/ D e�r.T�t/ .f .0; T /˚.d1/ �K˚.d2// ; (22)

where

d1 D d2 C

sZ T

t

�2.s; �/ ds

and

d2 D
log.f .t; �/=K/ � 1

2

R T
t
�2.s; �/ dsqR T

t
�2.s; �/ ds

:

From equation (21) we see that the processes T 7! fi.T; �/ are stochastic expo-
nentials of the Doléans-Dade type, and are therefore martingales.10

From here on, we let p.t/ denote the price of a spread option written on two
futures. It is defined as

p D E
�
.f1.T; �/ � f2.T; �//

C
ˇ̌
Ft
�
;

where .�/ D max.0; �/ and Ft is a filtration. Further, we see that we may write

p D E

"
f2.T; �/

�
f1.T; �/

f2.T; �/
� 1

�C ˇ̌̌̌
Ft

#
:

Since T 7! f2.T; �/ is a martingale, so is f2.T;�/

f2.t;�/
, so we may define the following

Radon-Nikodym derivative

dQ
dP
D
f2.T; �/

f2.t; �/
D E .�.T; �/ � B2.T // : (23)

Then, by Girsanov’s theorem

dW2.t/ D dB2.t/ � �.t; �/ dt

is a Brownian motion under the measure Q. We will now define a new Brownian
motion B3.t/, independent of B2.t/ such that

dB1.t/ D � dB2.t/C
p
1 � �2 dB3.t/:

10We point out that these stochastic exponentials usually are local martingales. However, since
we assume that � is deterministic (and therefore both adapted and independent of the Brownian
motion), the aforementioned process is indeed a true martingale.
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Further, under the measure change defined in (23), we find that under Q we get

dW1.t/ D � dW2.t/C
p
1 � �2 dB3.t/

D � . dB2.t/ � �2.t; �/ dt /C
p
1 � �2 dB3.t/

D dB1.t/ � ��2.t; �/:

To ease notation, we define

X.u/ D
f1.u; �/

f2.u; �/
:

We can now find the dynamics of X under Q. Under P , we have

X.T / D
f1.t; �/

f2.t; �/
exp

�Z T

t

�1.s; �/ dB1.s/ �
1

2

Z T

t

�21 .s; �/ ds

�

Z T

t

�2.s; �/ dB2.s/C
1

2

Z T

t

�22 .s; �/ ds
�

D X.t/ exp
�Z T

t

�1.s; �/ dB1.s/ �
1

2

Z T

t

�21 .s; �/ ds

�

Z T

t

�2.s; �/ dB2.s/C
1

2

Z T

t

�22 .s; �/ ds
�

D X.t/eY.t;T /;

where

Y.t; T / D

Z T

t

�1.s; �/ dB1.s/ �
1

2

Z T

t

�21 .s; �/ ds

�

Z T

t

�2.s; �/ dB2.s/C
1

2

Z T

t

�22 .s; �/ ds:

Define Y.t/ D Y.0; t/. From Itô’s formula, we find that

dX.t/ D X.t/ dY.t/C
1

2
X.t/ . dY.t//2

D X.t/

�
�1.t; �/ dB1.t/ �

1

2
�21 .t; �/ dt � �2.t; �/ dB2.t/C

1

2
�22 .t; �/ dt

�
C
1

2
X.t/

�
�21 .t; �/ dt C �22 .t; �/ dt � 2��1.t; �/�2.t; �/ dt

�
D X.t/

�
�1.t; �/ dB1.t/ � �2.t; �/ dB2.t/C �22 .t; �/ dt � ��1.t; �/�2.t; �/ dt

�
:
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We can now find the dynamics under the measure Q.

dX.t/ D X.t/ .�1.t; �/ . dW1.t/C ��2.t; �/ dt //
�
�
�1.t; �/ . dW2.t/ � �2.t; �/ dt /C �22 .t; �/ dt � ��1.t; �/�2.t; �/ dt

�
D X.t/ .�1.t; �/ dW1.t/ � �2.t; �/ dW2.t// :

Hence
dX.t/
X.t/

D �1.t; �/ dW1.t/ � �2.t; �/ dW2.t/ (24)

under the measure Q.

The bivariate SDE given in (24) is explicitly solvable using the two dimensional
version of Itô’s formula. We find that

d logX.t/ D
1

X.t/
dX.t/ �

1

2

1

X.t/2
. dX.t//2

D �1.t; �/ dW1.t/ � �2.t; �/ dW2.t/

�
1

2

�
�21 .t; �/ dt C �22 .t; �/ dt � 2�1.t; �/�2.t; �/� dt

�„ ƒ‚ …
WD˙.t;�/ dt

:

We can then integrate and exponentiate both sides, and find that

X.T / D X.t/ exp

 Z T

t

�1.s; �/ dW1.s/ �
Z T

t

�2.s; �/ dW2.s/ �
1

2

Z T

t

˙.s; �/ ds

!
:

Now, define a new Brownian motion under Q denoted QW .t/. And we see that in
distribution

X.T / D X.t/ exp

 Z T

t

˙.s; �/ d QW .s/ �
1

2

Z T

t

˙2.s; �/ ds

!
; (25)

which we recognize as a geometric Brownian motion of the same type as f .T; �/
defined in (20). And therefore we find, using the Ft -measurability of f .t; �/ and
the independent increment property of Brownian motion that

p.t/ D e�r.T�t/ E

"
f2.T; �/

�
f1.T; �/

f2.T; �/
� 1

�C ˇ̌
Ft

#
D e�r.T�t/ EQ

�
f2.T; �/

f2.t; �/

f2.T; �/

�
X.t/e

R T
t ˙.s;�/ d QW .s/�

1
2

R T
t ˙

2.s;�/ ds
� 1

�C�
D e�r.T�t/f2.t; �/ EQ

�
.X.T / � 1/C

�
;
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which we recognize as a scaled version of the Black-76 formula with strike price
K D 1. We therefore get

p.t/
B76
D e�r.T�t/f2.t; �/

�
f1.t; �/

f2.t; �/
˚.d1/ � ˚.d2/

�
D e�r.T�t/ .f1.t; �/˚.d1/ � f2.t; �/˚.d2// ;

which is what we wanted to show.
The quantities d1 and d2 are found the same way as in the Black-76 formula. �

5.4 Pricing calendar spread options on forward contracts un-
der the framework of Heath, Jarrow & Morton

In this section we will derive a result similar to the result in the previous section
but for a calendar spread which is a spread on the same underlying asset with two
different delivery times instead of a spread on two different underlyings.

Theorem 5.9 (�). The price of a calendar spread option, CS.t/ written on a
forward contract with fixed delivery times T and S is given by

CS D e�rt .f .0; S/˚.d1/ � f .0; T /˚.d2// ; (26)

where d1 and d2 are given as

d1 D d2 C

vuut nX
kD1

Z t

0

.�k.u; S/ � �k.u; T //
2 du

d2 D
log f .0;S/

f .0;T /
�
1
2

Pn
kD1

R t
0
.�k.u; S/ � �k.u; T //

2 duqPn
kD1

R t
0
.�k.u; S/ � �k.u; T //

2 du
:

It is assumed that
R t
0
j�2
k
.u; �/j du <1 for all k D 1; 2; :::; n.

Proof: We are in this case working with forward dynamics with an n-dimensional
noise. We therefore have that

df .t; T /
f .t; T /

D

nX
kD1

�k.t; T / dBk.t/:

Using the multidimensional Itô formula, see for example Chung [23] or Øksendal
[62], we can state the explicit solution of the stochastic differential equation above

f .t; T / D f .0; T / exp

 
nX
kD1

Z t

0

�k.u; T / dBk.t/ �
1

2

nX
kD1

Z t

0

�2k .u; T / dt

!
;
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and we note that the result for f .t; S/ is similar.

Being Doléans Dade exponentials (where the integrands are deterministic), we see
that both t 7! f .t; T / and t 7! f .t; S/ are martingales. we find as in the previous
subsection

E
�
.f .t; S/ � f .t; T //C

�
D E

"
f .t; T /

�
f .t; S/

f .t; T /
� 1

�C#
:

We define
dQ
dP
D
f .t; T /

f .0; T /
D E

 
nX
kD1

�k.t; T / � Bk.t/

!
;

and by Girsanov’s theorem

dWk.t/ D dBk.t/ � �k.t; T /

is a Brownian motion under the measure Q.
Under P we find that f .t;S/

f .t;T /
is given by

f .t; S/

f .t; T /
D
f .0; S/

f .0; T /
exp

� nX
kD1

Z t

0

.�.u; S/ � �.u; T // dB.u/

�
1

2

nX
kD1

�Z t

0

�2.u; S/ � �2.u; T /

�
du
�
;

We defineX.t/ WD f .t;S/

f .t;T /
, and by Itô’s formula, we find that the dynamics ofX.t/

are

dX.t/ D X.t/

 
nX
kD1

.�k.t; S/ � �k.t; T // dBk.t/ �
1

2

nX
kD1

.�2k .t; S/ � �
2
k .t; T // dt

!

C
1

2

 
nX
kD1

.�2k .t; S/C �
2
k .t; T / � 2�k.t; S/�k.t; T // dt

!

D X.t/

 
nX
kD1

.�k.t; S/ � �k.t; T // dBk.t/C �2k .t; T / dt � �k.t; S/�k.t; T / dt

!
;
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which under the measure Q becomes

dX.t/ D X.t/
nX
kD1

�
.�k.t; S/ � �k.t; T //. dWk.t/C �k.t; T / dt /

C �2k .t; T / dt � �k.t; S/�k.t; T / dt
�

D X.t/

nX
kD1

..�k.t; S/ � �k.t; T // dWk.t// ;

which we recognize as a geometric Brownian motion, which by Itô’s formula has
solution

X.t/ D X.0/ exp
� nX
kD1

Z t

0

.�k.u; S/ � �k.u; T // dWk.u/

�
1

2

nX
kD1

Z t

0

.�k.u; S/ � �k.u; T //
2 du

�
:

Hence the price of the calendar spread is given as

CS D e�rt E
�
f .t; T /.X.t/ � 1/C

�
D e�rtf .0; T /

�
f .0; S/

f .0; T /
˚.d1/ � ˚.d2/

�
and finally

CS D e�rt .f .0; S/˚.d1/ � f .0; T /˚.d2// ; (27)

which is what we wanted to show. For the last part we used the same results as in
the earlier proofs.

The quantities d1 and d2 are found as in the Black-76 formula, see for example
Black [13] or Benth, Benth & Koekebakker [10]. �

This theorem may also be proved using the approximation result presented in
section 5.6.

5.5 Spread options when the underlying asset follows an Arith-
metic Brownian motion

We will in this section derive similar results when the dynamics of the underlying
follows an arithmetic Brownian motion. That is,

dX.t/ D � dt C � dB.t/:
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Due to the model’s simple nature, we will in this section consider the case where
both the mean � and volatility � are time dependent. We will prove pricing results
for both spread options of the Margrabe type and calendar spread options.

Theorem 5.10 (�). The price of a Margrabe style spread option where the under-
lying assets follow an arithmetic Brownian motion, is given as

p D e�rt
�
m.t/˚.d/C

p
Q�.t/�.d/

�
;

where

d D

R t
0
�1.u/ � �2.u/ dup
Q�.u/ du

;

and m.t/ D
R t
0
�1.s/��2.s/ ds, Q�.t/ D �21 .t/C �

2
2 .t/� 2�1.t/�2.t/�, �.x/ D

e�x
2=2

p
2�

and ˚ denotes the standard normal cumulative distribution function.

Proof: The dynamics for the two assets is given as

dSi.t/ D �i.t/ dt C �i.t/ dBi.t/; (28)

Where B1.t/ and B2.t/ are two Brownian motions with correlation �.
The SDE given in (28) has the obvious solution

Si.t/ D

Z t

0

�i.u/ duC
Z t

0

�i.u/ dBi.u/:

We can then as above compute the price

p D E
�
.S1.t/ � S2.t//

C
�

D E

"�Z t

0

�1.u/ � �2.u/ duC
Z t

0

�1.u/ dB1.u/ �
Z t

0

�2.u/ dB2.u/
�C#

D E

"�
m.t/C

Z t

0

�1.u/ dB1.u/ �
Z t

0

�2.u/ dB2.u/
�C#

:

In distribution we have that

m.t/C

Z t

0

�1.u/ dB1.u/ �
Z t

0

�2.u/ dB2.u/

dist
D m.t/C

�Z t

0

�21 .u/C �
2
2 .u/ � 2�1.u/�2.u/� du

�1=2
Y

D m.t/C

sZ t

0

Q�.u/ duY;
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where Y � N.0; 1/.
Hence, if we require that

Y > �
m.t/qR t
0
Q�.u/ du

DW �d;

we then get that

p D
1
p
2�

Z 1
�d

�
m.t/C

p
Q�.t/y

�
e�y

2=2 dy

D m.t/˚.d/C
p
Q�.t/�.d/:

Applying the discount factor yields the desired result.
�

We can now turn our attention to a calendar spread option where the underlying
forward contract follows an arithmetic model.

Theorem 5.11 (�). The price of a calendar spread option when the underlying
has delivery times S and T and follows an arithmetic Brownian motion is given
as

p D e�rt
�Z t

0

m.u; S; T / du˚.d/C Q�.t/�.d/
�
;

where

d D

R t
0
m.u; S; T / du
Q�.t; S; T /

:

In d ,m.t; T; S/ D �.t; S/��.t; T / and Q�.t; S; T / D
qR t

0
.�.u; S/ � �.u; T //2 du.

Proof: The SDE governing the forward contract is now given as

df .t; T / D �.t; T / dt C �.t; T / dB.t/:

Hence

p D e�rt E
�
.f .t; S/ � f .t; T //C

�
D e�rt E

"�Z t

0

�.u; S/ � �.u; T / duC
Z t

0

�.u; S/ � �.u; T / dB.u/
�C#

DW e�rt E

"�Z t

0

m.u; T; S/ duC
Z t

0

˙.u; T; S/ dB.u/
�C#

:
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In distribution we have thatZ t

0

m.u; S; T /duC
Z t

0

˙.u; S; T /dB.u/ D
Z t

0

m.u; S; T /duC

sZ t

0

˙2.u; S; T / duY;

where Y � N.0; 1/. Hence if we define
qR t

0
˙2.u; S; T / du D Q�.t; S; T / and

require that Y > �
R t
0 m.u;S;T /

Q�.t;S;T /
DW �d , then

p D e�rt
�Z t

0

m.u/ du˚.d/C Q�.t/�.d/
�
;

which is what we wanted to prove.
�

5.6 An approximation for options on the spread of geometric
Brownian motions

In this section we assume that the risk neutral price dynamics of the assets are
given by the following stochastic differential equations

dS1.t/ D S1.t/Œ.r � q1/ dt C �1 dW1.t/�
dS2.t/ D S2.t/Œ.r � q2/ dt C �2 dW2.t/�;

where q1 and q2 are the instantaneous dividend yields, the volatilities �1; �2 2 RC

and W1 and W2 are Brownian motions with correlation �.

By appealing to earlier arguments (or to Carmona & Durrleman [17]), we see that
a call option on the spread of S1 and S2 with strike price K can be written as

p D e�rTE
h
max

�
0; x2e

.r�q2��
2
2 =2/TC�2W2.T / � x1e

.r�q1��
2
1 =2/TC�1W1.t/ �K

�i
:

(29)
Carmona & Durrleman introduce the following notation for the expectation that
need to be calculated in order to price the option:

˘ D ˘.˛; ˇ; 
; ı; �; �/ D E

��
˛eˇX1�ˇ

2=2
� 
eıX2�ı

2=2
� �

�C�
; (30)

where ˛; ˇ; 
; ı and � are real valued constants, X1 and X2 are jointly standard
normal random variables with correlation �. We see for example that (29) and
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(30) coincide in distribution whenever ˛ D x2e
�q2T , ˇ D �2

p
T , 
 D x1e

�q1T ,
ı D �1

p
T , � D K and multiply with the discount factor e�rT .

We can now state the main result from Carmona & Durrleman [17]. The follow-
ing theorem is a mashup of Proposition 6.1 and Proposition 6.2 in Carmona &
Durrleman [17].

Theorem 5.12. Define

d� D
1

� cos.�� �  /
p
T

log
�
x2e
�q2T �2 sin.�� C �/
x1e�q1T �1 sin ��

�
�
1

2
.�2 cos.�� C �/C �1 cos ��/

p
T ;

where the angles � and  are chosen such that cos� D � and cos D �1���2
�

and �� is the solution to equation (37) in Carmona & Durrleman [17]. Then

Op D x2e
�q2T˚

�
d� C �2 cos.�� C �/

p
T
�

� x1e
�q1T˚

�
d� C �1 sin ��

p
T
�
�Ke�rT˚ .d�/ : (31)

Moreover, the approximation Op is equal to the true price p when K D 0, or
x1 D 0, or x2 D 0, or � D �1. In particular, we retrieve Margrabe’s formula
whenever K D 0 and the classical Black-Scholes formula whenever x1 D 0 or
x2 D 0.

Proof: See Carmona & Durrleman [17] and the references therein. �

Carmona & Durrleman states in the same paper a way to find the price of a calen-
dar spread option, but without proof. We will therefore prove it here.

Corollary 5.13. Let f .t; T / and f .t; S/ denote a forward contract with delivery
times T and S . The coefficients from (30) are then given by

˛ D f .t; T /

ˇ D

sZ t

0

�2.u; T / du


 D f .t; S/

ı D

sZ t

0

�2.u; S/ du

� D
1

ˇı

Z t

0

�.u; T /�.u; S/ du:
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The price is then given by

CS D e�rt .f .0; S/˚.d1/ � f .0; T /˚.d2// : (32)

Proof: The formulas for ˛; ˇ; 
 and ı follows from the representation of (30).
The correlation coefficient � is computed in the following manner:

We know that xy D 1
4

�
.x C y/2 � .x � y/2

�
. So we get thatZ t

0

�.u; S/ dW.u/
Z t

0

�.u; T / dW.u/ D
1

4

��Z t

0

.�.u; S/C �.u; T // dW.u/
�2

�

�Z t

0

.�.u; S/ � �.u; T // dW.u/
�2 �

:

By applying the Itô isometry, we can calculate the covariance

Cov
�Z t

0

�.u; S/ dW.u/;
Z t

0

�.u; T / dW.u/
�

D E

�Z t

0

�.u; S/ dW.u/
Z t

0

�.u; T / dW.u/
�

D E

"
1

4

 �Z t

0

.�.u; S/C �.u; T // dW.u/
�2
�

�Z t

0

.�.u; S/ � �.u; T // dW.u/
�2!#

D
1

4

�Z t

0

�2.u; S/C �2.u; T /C 2�.u; S/�.u; T / du

�

Z t

0

�2.u; S/C �2.u; T / � 2�.u; S/�.u; T / du
�

D

Z t

0

�.u; T /�.u; S/ du;

from which the correlation coefficient � follows. �

Remark 5.14. Using this result we can find the price of the spread option de-
scribed in Theorem 5.9. The price of the option follows from the fact that the
strike priceK is zero, hence by the above theorem above equation (30) reduces to
Margrabe’s formula, and we refer to Theorem 5.9 for that calculation.

Remark 5.15. In addition to the approximation given by Carmona & Durrleman
and Bachelier’s model, there is at least one more approximation result for spread
options worth mentioning, and that is Kirk’s formula proposed by Kirk in [48].
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However, it is shown in Carmona & Durrleman [17] that their method performs
just as well as Kirk’s approximation, and in some cases better. Moreover, com-
puting the greeks is easier as well, leading to more sensible hedging portfolios, in
contrast to Kirk’s approximation where one ends up with two delta hedges. We
refer to Carmona & Durrleman [17] for further discussion on this topic.

33



6 Ornstein-Uhlenbeck process
We will now discuss an example where we do not have the stochastic processX.t/
in all terms. This example is often called the Ornstein-Uhlenbeck process or the
Vasicek model. The Ornstein-Uhlenbeck process is a particulary interesting case
for finance, since it is used as a basic tool for modelling interest rates and asset
prices, see e.g Benth [9, p.43]. It is also, due to its natural way of reversion to the
mean, used to model the spot price in electricity and related markets. Moreover,
this equation also approximately describes a one dimensional Brownian motion
of a free particle in fluid.

When modelling spot prices for electricity markets, one must allow for jumps.
This condition is easily enforced in the class of Ornstein-Uhlenbeck processes
and is done by allowing the stochastic driver to allow for jumps, usually letting
the stochastic driver be a compound Poisson process. However, the derivation of
the solution of an Ornstein-Uhlenbeck process are the same as in the Gaussian
case, so in this chapter, we confine ourselves to only work within the framework
of Brownian motion-driven Ornstein-Uhlenbeck processes.

6.1 The finite dimensional case
The Ornstein-Uhlenbeck stochastic differential equation is defined on R to be

dXt D �˛X.t/ dt C � dB.t/; (33)

where ˛; � 2 RC are given constants, X.0/ 2 R. We find that the integrating
factor is e˛t , and we define g.t; x/ D xe˛t . The following result is well known,
and is included for completion.

Proposition 6.1. The solution of (33) is

X.t/ D X.0/e�˛t C

Z t

0

�e�˛.t�s/ dB.s/: (34)

Proof: By Itô’s formula we get

dg.t; X.t// D dxe˛t D ˛X.t/e˛t dt C e˛t dX.t/:

Consequently,

e˛ dX.t/ D dX.t/e˛t � ˛X.t/e˛t : (35)
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We then multiply (33) with the integrating factor, we have

e˛t dX.t/ D �˛X.t/e˛t dt C �e˛t dB.t/: (36)

Comparing (35) and (36) yields

e˛t dX.t/ D �˛X.t/e˛t dt C �e˛t dB.t/
D de˛tX.t/ � ˛X.t/e˛t :

This implies that

e˛t dX.t/ D �e˛t dB.t/ D de˛tX.t/:

Integrating from 0 to t , we obtain

e˛tX.t/ D X.0/C �

Z t

0

e˛s dB.s/

Rearranging terms shows us that

X.t/ D X.0/e�˛t C �e�˛t
Z t

0

e˛s dB.s/;

which is what we wanted to show. �

From this we can easily derive its mean and variance. The mean is clearly given
as EX.t/ D X.0/e�˛t , since the stochastic integral has expectation zero. The
variance is given by the Itô isometry and we find that it is

VarŒX.t/� D
Z t

0

�2e�2˛.t�s/ ds

D �2e�2˛t
e2˛t � 1

2˛
D
�2

2˛
.1 � e�2˛t/

. We therefore see that for the Ornstein-Uhlenbeck process there exists a limiting
distribution. We therefore find

Corollary 6.2. As t ! 1, the Ornstein-Uhlenbeck process is normally dis-
tributed with mean 0 and variance �2=2˛.

Remark 6.3. By slightly modifying Lemma 10.1 in Benth, Benth & Koekebakker
[10], we find that if X.t/ is an Rn-valued process, its solution is given as

X.t/ D X.0/etA C
Z t

0

eA.t�u/ep� dB.u/;

where A is an n� n matrix whose eigenvalues have negative real part (See Benth,
Benth & Koekebakker chapter 10 for details). We know from Lemma 2.10 in
Meiss [56] that if A has eigenvalues with negative real part, then etA ! 0 as
t ! 1. We therefore see that the same mean reverting properties hold as in the
1-dimensional case.
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6.2 The infinite dimensional case
Like in the finite dimensional case, we define the stochastic differential equation
bearing the name of Ornstein-Uhlenbeck:

dX.t/ D .AX.t/C f .t// dt C B dW.t/; X.0/ D x; (37)

where A W D.A/ � H ! H , B W U ! H , f 2 H and W is an H -valued
Wiener process and D.A/ denotes the domain of A. U and H are separable
Hilbert spaces.

According to chapter 5 in Da Prato & Zabczyk, we define the following three
hypotheses

(H1) A generates a C0 semigroup S.�/ in H , and B 2 L.U;H/

(H2) f is predictable with Bochner integrable trajectories on an arbitrary finite
interval Œ0; T �, and x is F0-measurable

(H3)
R T
0
kS.r/Bk2

L02
dr D

R T
0

Tr.S.r/BQB�S�.r// dr <1.

Define the stochastic convolution as

WA.t/ D

Z t

0

S.t � s/B dW.s/: (38)

We refer to Theorem 5.10 in Da Prato & Zabczyk for other representations of
(38).

It is then proven in Theorem 5.4 and Theorem 5.11 in Da Prato & Zabczyk [65]
that if the three aforementioned hyotheses (H1), (H2) and (H3) hold, then there
exists a unique weak solution X.t/ to (37). If there exists 0 < ˛ < 1

2
such thatZ T

0

t�2˛kS.r/Bk2
L02

dr <1;

then X.t/ admits a continuous version. X.t/ is given as

X.t/ D S.t/x C

Z t

0

S.t � s/f .s/ ds C
Z t

0

S.t � s/B dW.s/: (39)

Remark 6.4. The solution X.t/ given in (39), is completely analogous to the
solutions we may find in the finite dimensional case. If one for example wants
to model continuous time autoregressive processes, then the stochastic differen-
tial equation takes on the same form as in (37), but where A is an n � n matrix
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whose eigenvalues have negative real part11, given by (10.12) in Benth, Benth &
Koekebakker [10], B D en�.t/ and X.t/ is a process in Rn. We therefore have

dX.t/ D .AX.t/C f .t// dt C en�.t/ dW.t/; X.0/ D x:

Using variation of constants and Itô’s formula, we find the solution to (6.4)

X.t/ D etAx C

Z t

0

e.t�s/Af .s/ ds C
Z t

0

e.t�s/Aen�.s/ dW.s/:

We therefore see that the semigroup S.t/ in this case is of the form

S.t/ D etA WD

1X
nD0

tnAn

nŠ
:

If H D R, then A D �˛, where ˛ 2 RC � f0g, hence S.t/ D e�˛t . We refer
to the previous subsection or any book on mathematical finance for a discussion
about the distributional properties of Ornstein-Uhlenbeck processes in finite di-
mensional spaces.

In the infinite dimensional case, we see that

EŒX.t/� D S.t/x C

Z t

0

S.t � s/f .s/ ds

since EŒW.t/� D 0, and that

VarŒX.t/� D
Z t

0

.S.t � s/B/2 ds;

by the Itô isometry.

It is possible to extend the Ornstein-Uhlenbeck processes to be driven by general
Lévy processes. Using 
 as characteristic exponent, one can show that

E
h
eihu;Y.t/i

i
D exp

�

.S�.t/.u//C

Z t

0


.S�.r/.u// dr
�
;

see for example Applebaum [1] and the references therein.

11The fact that the eigenvalues have negative real part ensures the existence of a limiting dis-
tribution, since etA ! 0 as t ! 1 if and only if the eigenvalues have negative real part. See for
example Lemma 2.10 in Meiss [56].
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7 Stochastic modelling of electricity markets
In this section we will give some results on the stochastic modelling of electricity
prices.

We basically have two models for the spot price: arithmetic models and geometric
models. If we let S.t/ denote the spot price at time t , then a arithmetic model is
defined as:

S.t/ D �.t/C

mX
iD1

Xi.t/C

nX
jD1

Yj .t/:

Similarly, a geometric spot price model is defined as

S.t/ D exp

0@�.t/C mX
iD1

Xi.t/C

nX
jD1

Yi.t/

1A :
In both cases, � is some seasonality function, which we in subsequent chap-
ters will assume is constantly zero. The functions X.t/ and Y.t/ are Ornstein-
Uhlenbeck processes of the form

dX.t/ D �˛X.t/ dt C � dB.t/

and
dY.t/ D �ˇY.t/ dt C � dI.t/;

where B.t/ is a Brownian motion and I.t/ is a compound Poisson process. By
following the previous chapter, it can be shows that the solutions are given as

X.t/ D e�˛tX.0/C

Z t

0

�e�˛.t�s/ dB.s/

and

Y.t/ D e�ˇtY.0/C

Z t

0

�e�ˇ.t�s/ dI.s/:

We will now provide an example of a geometric model, where �.t/ D 0 and
Y.t/ D 0 for all t . This model is known as a simple case of the Schwartz model,
and was introduced by Schwartz [72] in 1997. This model is, according to Benth,
Benth & Koekebakker [10] the classical model for commodity markets, as it is an
extension of the geometric Brownian motion allowing for mean reversion.

Example 7.1 (Pricing a forward contract using the Schwartz model). Let S be a
commodity modelled by a simple Schwartz model. That is

S.t/ D S.0/eX.t/;
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where
dX.t/ D �˛X.t/ dt C � dB.t/:

As will be shown in the coming subsection, the price at time t of a forward con-
tract, denoted f .t; T /, is given as

f .t; T / D E ŒS.T /jFt � :

We want to compute f .t; T / and find a stochastic differential equation for f .

Using that we have found the solution of X.�/, we find

EŒS.T /jFt � D S.0/ exp
�
e�˛.T�t/X.t/

�
E

"
exp

 Z T

t

�e�˛.T�s/ dB.s/

!
jFt

#
D S.0/ exp

 
e�˛.T�t/X.t/C

1

2

Z T

t

�2e�2˛.T�s/ ds

!
D S.0/ exp

�
e�˛.T�t/X.t/C

�2

4˛

�
1 � e�2˛.T�t/

��
:

A simple application of Itô’s formula reveals that

df .t; T / D f .t; T /�e�˛.T�t/ dB.t/;

which shows that f .t; T / is a driftless geometric Brownian motion. Hence we
may rewrite the expression as

f .t; T / D f .0; T / exp
�Z t

0

�e�˛.T�t/ dB.s/ �
1

2

Z t

0

�2e�2˛.T�s/ ds
�
:

�

7.1 Forward pricing
Assume we want to buy a contract delivering some commodity at a fixed time,
we then need to ask ourselves, what is the fair price of such a contract? Imagine
that we sell the commodity on the spot and buy the contract. We therefore get that
the payoff is S.�/ � f .t; �/. By a standard no-arbitrage argument we get that the
value of the contract is

C.t; �/ D EQ
h
e�r.��t/ .S.�/ � f .t; �// jFt

i
;

for some pricing probability Q � P .
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However, it does not cost anything to enter such a contract, and since f .t; �/ is
Ft -measurable, we get that

f .t; �/ D EQ ŒS.�/jFt � : (40)

The above argument holds for all fixed delivery contracts. However, some com-
modities, like power, is delivered over a period Œ�1; �2�. The pricing of such con-
tracts is a little more involved. We know that the payoff from such a position will
is Z �2

�1

e�r.u�t/ .S.u/ � F.t; �1; �2// du:

The entrance cost is still zero, so we get by a similar argument that

F.t; �1; �2/

Z �2

�1

e�ru du D EQ

�Z �2

�1

e�ruS.u/ dujFt
�
:

We therefore get that the price is

F .t; �1; �2/ D

Z �2

�1

e�ruR �2
�1
e�rv dv

f .t; u/ du:

We know that the exponential function if defined as

ex D

1X
kD0

xk

kŠ
;

which shows that

e�ru D 1 � ruC
.ru/2

2
�
.ru/3

3Š
C :::

And therefore, whenever r and u are adequately small, we get that e�ru � 1.
Then we find that

F .t; �1; �2/ D
1

�2 � �1

Z �2

�1

f .t; u/ du:

When we are close to delivery, we can show that the forward price f .t; T / for
a fixed delivery contract tends towards the spot price. This is shown easily by
f .T; T / D EŒS.T /jFT � D S.T /. However, we see that

lim
t!�1

F .t; �1; �2/ ¤ S.�1/ (41)

with probability 1. But, if we shrink the delivery period Œ�1; �2�, meaning that
�2 ! �1, it is shown in Proposition 4.3 in Benth, Benth & Koekebakker [10] that
the price of the forward contract tends to the forward price with delivery at �1.
Meaning that

lim
�2!�1

F.t; �1; �2/ D f .t; �1/:

(41) follows from Proposition 4.2 in Benth, Benth & Koekebakker.
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7.2 The Musiela parametrization
In this section we will introduce a very convenient form of notation introduced by
Musiela [61] in 1993, where given a forward contract f .t; T / with delivery time
T , we reparametrize f .t; T / to a form where we express the contract as a function
of the time to delivery. This is done by defining x D T � t , and we get a forward
contract on the form f .t; T � t / which we will denote by g.t; x/. By doing this
we will also motivate the forward dynamics (59) in chapter 8.4 and onwards. We
will explain this by doing two examples.
Let us now consider a very general form of the forward price. We define

df .t; T / D �.t; T / dt C �.t; T / dB.t/; (42)

for some suitably nice functions � and � . We can then reparameterize the forward
curve by the time to maturity. That is, x D T �t and define g.t; x/ WD f .t; tCx/.
Then the domain of g becomes the (possibly unbounded) interval Œ0; x�.This very
convenient notation was introduced by Musiela [61] in 1993. We start with an
example where the spot price at time t , S.t/, follows an Ornstein-Uhlenbeck pro-
cess denoted X.t/ at time t .

Example 7.2. Consider an Ornstein-Uhlenbeck process t 7! X.t/ given by

dX.t/ D ˛ .� �X.t// dt C � dW.t/;

with initial condition X.0/ D x0, ˛; � 2 RC, � 2 R and t 7! W.t/ is a Brow-
nian motion under some equivalent martingale measure Q. By Itô’s formula and
variation of constants (see for example chapter 6.1), we obtain the solution

X.T / D e�˛.T�t/X.t/C �
�
1 � e�˛.T�t/

�
C

Z T

t

e�˛.T�s/� dW.s/:

By appealing to no arbitrage arguments, we find that the price on a forward con-
tract whose underlying follows X (that is, S.t/ D X.t/ for all t � 0) at time t
with delivery at time T � t is

f .t; T / D EQŒS.T /jFt �

D e˛.T�t/S.t/C �
�
1 � e�˛.T�t/

�
;

since S.t/ is Ft -measurable and the stochastic integral
R T
t
e�˛.T�s/� dW.s/ is,

due to the independent increment property ofW , independent of Ft and therefore
has expectation zero.
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We will now introduce the Musiela parametrization, and defien x D T � t . Then

g.t; x/ WD f .t; t C x/ D e�˛xS.t/C � .1 � e�˛x/ :

Itô’s formula yields the differential dynamics of g as

dg.t; x/ D e�˛x˛ .� � S.t// dt C e�˛x� dW.t/:

Moreover, the derivative of g with respect to x is found as

@

@x
g.t; x/ D �˛e�˛xS.t/C ˛�e�˛x;

from which we deduce that

dg.t; x/ D
@

@x
g.t; x/ dt C e�˛x� dW.t/: (43)

We can then define Q�.x/ D e�˛x� , and find

dg.t; x/ D
@

@x
g.t; x/ dt C Q�.x/ dW.t/; (44)

which is known as the Musiela stochastic partial differential equation. As we will
see, (44) is quite similar to the equations governing the forward dynamics of the
elements g in the forward curve space Hw , which will be defined later. �

In the next example, we will consider a geometric model. This example is from
the theory on interest rates.

Example 7.3. Suppose that the short rate t 7! r.t/ follows an Ornstein-Uhlenbeck
process (Vasicek model). That is

dr.t/ D .b C ˇr.t// dt C � dW.t/;

where b 2 R, ˇ 2 R�12, � 2 RC and t 7! W.t/ is Brownian motion under
an equivalent martingale measure Q. It is known that the price of a zero coupon
bond, P.t; T /, is given as

P.t; T / D EQ

"
exp

 
�

Z T

t

r.s/ ds

!#
;

see for example Filipović [33]. Moreover, we also know that the long rates, de-
noted f .t; T / D � @

@T
log.P.t; T //. Using this, we may do similar calculations as

12This is a somewhat unusual way to define an Ornstein-Uhlenbeck process, but it is done this
way in order to make the notation consistent with Filipović ’s book [33].
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above13 and find that under the Musiela parametrization g.t; x/ D f .t; t C x/ we
get that

dg.t; x/ D
�
@

@x
g.t; x/C

�2

ˇ
22ˇx �

�2

ˇ
eˇx

�
dt C �eˇx dW.t/:

However, if do as in the previous example and define Q�.x/ D �eˇx we find that

dg.t; x/ D
�
@

@x
g.t; x/C Q�.x/

Z x

0

Q�.u/ du
�

dt C Q�.x/ dW.t/: (45)

Moreover, in (45) we see that the part that differs from (43) is Q�.x/
R x
0
Q�.u/ du,

which we recognize as the no-arbitrage drift condition in the Heath, Jarrow &
Morton framework! See for example Theorem 6.1 in Filipović [33]. We may
therefore re-express (45) in the same manner as in (44) and get

dg.t/ D
�
@

@x
g.t; x/C Q�.x/

�
dt C Q�.x/ dW.t/:

(7.3) then becomes the bridge to the differential equation governing the dynamics
of the forward curves inHw in the geometric case, in the sense that (7.3) motivates
(88). �

13This calculation is somewhat involved, although not very difficult. It is therefore omitted.

43



8 Infinite dimensional stochastic analysis
In this section, we will cover some of the basics on infinite dimensional stochas-
tic analysis, including Hilbert space-valued Wiener processes and its associated
covariance operators. We will give a thorough introduction, which is mostly self
contained, and prove some results that is otherwise (to my knowledge) just stated
in the literature. We begin with a thorough definition of the Filipović space, which
is a separable Hilbert space and the space for which the underlying processes on
which we want to price derivatives takes values in.

8.1 The Filipović space
As stated in the introduction, the Filipović space will be the Hilbert space most
suitable for our applications. This is due to the fact that we need a Hilbert space
for which the evaluation functional ıx is a continuous linear functional from RC
into R. We also needed that the differentiation operator @

@x
must be a C0 semi-

group generating operator such that the shift semigroup S.�/ is C0. In a more
financial context, the Filipović space also makes all its elements "flatten out" in
the long run. The financial interpretation is that if we for example want to buy
one power contract with delivery in 100 years, and another with delivery in 105
years, the price should be (more or less) the same. Formally, this means that each
function h in this space converges to a limit h.1/ as x ! 1. This is a con-
sequence of Hölder’s inequality, and is shown in the proof of Theorem 5.1.1 in
Filipović [34].

We start by defining the Filipović space, which we denote by Hw .

Definition 8.1 (Filipović Space). Let w W RC ! Œ1;1� be a continuous and
increasing weight function such that w.0/ D 1. The Filipović space Hw is the
space of all absolutely continous functions g W RC ! R such thatZ

RC

w.x/g0.x/2 dx <1: (46)

The inner product on Hw is

hf; gi D f .0/g.0/C

Z 1
0

w.x/g0.x/f 0.x/ dx; (47)

where f; g 2 Hw .

It is shown in the proof of Theorem 5.1.1 in Filipović [34] that Hw is isometri-
cally isomorphic to the separable Hilbert spaceR � L2.RC/, which implies that
Hw is a separable Hilbert space as well. We will now define the norm on Hw .
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Definition 8.2. The norm of Hw is

kgk2w D hg; gi: (48)

We will now prove that the inner product and norm given above in (47) and (8.2)
actually are an inner product and a norm. We start with the inner product. We use
the definition of norm and inner product as defined in Lindstrøm [52].

Lemma 8.3 (.�/). The function h�; �i given by (47) is an inner product on Hw .

Proof: Let f; g; h 2 Hw . The functions f and g are real valued, hence hf; gi D
hg; f i trivially.

hf C g; hi D .f .0/C g.0// h.0/C

Z 1
0

w.x/
�
f 0.x/C g0.x/

�
h0.x/ dx

D f .0/h.0/C g.0/h.0/C

Z 1
0

w.x/f 0.x/h0.x/ dx C
Z 1
0

g0.x/h0.x/ dx

D hf; hi C hg; hi:

h f̌; gi D f̌ .0/g.0/C ˇ

Z 1
0

w.x/f 0.x/g0.x/ dx

D ˇ

�
f .0/g.0/C

Z 1
0

w.x/f 0.x/g0.x/ dx
�

D ˇhf; gi:

hf; f i D f .0/2 C

Z 1
0

w.x/f 0.x/2 dx

� f .0/2 C

Z 1
0

f 0.x/2 dx

� 0;

where we see it is clear that we get zero if and only if f .x/ D 0 for all x 2
RC. �

We can now do the same for the norm.
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Proposition 8.4. The function k � k given by (8.2) is a norm on Hw .

Proof: 1. Nonnegativity: Since kgkw D hg; gi the nonnegativity property follows
from Lemma 8.3.
2. We have that

kˇgk2w D hˇg; ˇgi

D jˇj2hg; gi

D jˇj2kgk2w :

Taking the square root on both sides yields the desired result.

3.

kf C gk2w D hf C g; f C gi

D hf; f i C 2hf; gi C hg; gi

� kf k2w C 2kf kwkgkw C kgk
2
w

D .kf kw C kgkw/
2
;

hence kf C gkw � kf kw C kgkw , and we have proved that k � k is a norm on
Hw . �
We have thus proven that the Filipović space is a normed space.

We will now prove that the Filipović space is a locally convex topological vector
space. It is stated in McDonald & Weiss [55] that any normed space is a locally
convex topological vector space. However, they simply state it without proof, and
I have been unable to locate a proof in the literature. We will therefore prove that
any normed space (and therefore the Filipović space) is a locally convex topolog-
ical space. This is done so that we may later define a convex risk measure on the
Filipović space.

We begin by defining a topological vector space and proving that any normed
space is a topological vector space.

Definition 8.5 (Topological vector space). A topological vector space is a vector
space X over a field K (usually R or C) endowed with a topology such that the
maps .x; y/ 7! x C y and .˛; x/ 7! ˛x are continuous from X � X and K � X
to X .

We can now prove a simple result proving that any normed space is a topological
vector space.
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Lemma 8.6. Any normed space is a topological vector space.

Proof: Let X be a normed space, and let fxngn2N ; fyngn2N � X be such that
xn ! x and yn ! y and let ˛ be a scalar in X . Then

k˛.x C y/ � ˛.xn C yn/k � j˛j .kx � xnk C ky � ynk/! 0;

This shows that both addition and scalar multiplication are continuous maps inX ,
and therefore X is a topological vector space. �

We can now define a locally convex topological vector space.

Definition 8.7 (Locally convex topological vector space). A locally convex topo-
logical vector space is a topological vector space that has a base for the topology
consisting of convex sets.

From these definitions, it is easy to prove that every norm induces a metric given
by d.x; y/ D kx � yk see for example Jameson [45], result 2.8 p. 21.

From Munkres [60], we also have the following

Definition 8.8 (Topology induced by metric). Let d be a metric on ˝, then the
collection of �-balls Bd .x; �/ D fy W d.x; y/ < �g, for x 2 ˝ and � > 0, is a
basis for a topology on ˝, called the metric topology induced by d .

We can now prove that any normed space is a locally convex topological vector
space.

Theorem 8.9. Any normed space is a locally convex topological vector space.

Proof: Let us define d.x; y/ D kx � yk. Then d is a metric on X . We have from
above that the set Bd .x; �/ D fy W d.x; y/ < �g, for x 2 ˝ and � > 0 forms a
basis for the metric topology onX . It then follows from Theorem 5.14 in Folland
[39] (along with the fact that any norm is a seminorm) that any normed space is a
locally convex topological space. �

From this it follows that the Filipović space is a locally convex topological vector
space. We end this section about the topological properties of the Filipović space,
which, even though they are not used in this thesis later, they are interesting in
their own right.

Proposition 8.10. The Filipović space is regular, second countable and Haus-
dorff.
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Proof: The Filipović space is both metrizable (as is any metric space) and separa-
ble (see Theorem 5.1.1 in Filipović [34] for a proof), so it follows from Urysohn’s
metrization theorem that the Filipović space is regular, second countable and Haus-
dorff. �
And the following corollary

Corollary 8.11. The Filipović space is normal.

Proof: This is a known result from topology, and follows the fact that the Fil-
ipović space is second-countable and regular. See for example Theorem 32.1 in
Munkres [60]. �

We could also have proven the corollary above by simply appealing to the fact
that the Filipović space is metrizable, and therefore by Theorem 32.2 in Munkres
[60] normal, as is any normed space.

8.2 Hilbert space valued Wiener processes and covariance op-
erators

This subsection will for the most part follow Da Prato & Zabczyk [65].

Definition 8.12 (Wiener Process). A real valued stochastic process fW.t/ W t � 0g
is called a Wiener process if

1. W has continuous trajectories and W.0/ D 0 with probability 1

2. W has independent increments

3. L.W.t/ �W.s// D L.W.t � s//, t � s � 0

4. L.W.t// D L.�W.t//, t � 0

where L.X/ denotes the law of X .

They also state an equivalent definition

Definition 8.13. A real valued stochastic process fW.t/; t � 0g with continuous
trajectories is called a Wiener process if it is Gaussian and there exists � � 0 such
that EŒW.t/� D 0 and EŒW.t/W.s/� D � min.s; t/.

If E is a linear topological space, for example a Hilbert space of functions, then if
W.t/ is an E-valued stochastic process satisfying either of the definitions above,
then we say that W.t/ is an E-valued stochastic process.
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Definition 8.14 (Gaussian measure on Rn). Let n 2 N and B.Rn/ denote the
Borel � -algebra on Rn. Let � W B.Rn/ ! Œ0;1� be the standard n-dimensional
Lebesgue measure. Then the Gaussian measure 
n with mean � 2 Rn and vari-
ance �2 is defined by


n.A/ D
�
2��2

��n=2 Z
A

exp
�
�
1

2�2
kx � �k2Rn

�
d�.x/: (49)

If � D 0, then 
n is called a centered Gaussian measure.

We can now define Gaussian measures on any separable Banach space.

Definition 8.15 (Gaussian measure on separable Banach space). Let E be a sep-
arable Banach space. A probability measure � on .E;B.E// is said to be a
Gaussian measure on .E;B.E// if the law of any arbitrary linear functional
h 2 E� considered as a random variable on .E;B.E// is a Gaussian measure
on .R;B.R//. If the law on each h 2 E� is zero mean, � is called a centered
Gaussian measure.

Remark 8.16. We note that the definition above also holds for any separable
Hilbert space, since all Hilbert spaces are Banach spaces.

Moreover, if � is a Gaussian measure on a Hilbert space H , then there exists an
element m 2 H and a linear operator Q such that for all h; h1; h2 2 H we getZ

H

hh; xi�. dx/ D hm; hi;

and Z
H

hh1; x �mihh2; x �mi�. dx/ D hQh1; h2i;

where Z
H

hh1; x �mihh2; x �mi�. dx/ D Cov.h1; h2/: (50)

We will now prove that this representation is equal to the more familiar represen-
tation of the covariance, i.e

Cov.X; Y / D EŒ.X � EŒX�/.Y � EŒY �/�: (51)

Proposition 8.17. Equations (50) and (51) are equivalent.

Proof: Let H be a Hilbert space, and denote its dual by H �. Let h 2 H and
let f 2 H �. By the definition of H �, f is a continuous linear functional on H ,
making the expectation well defined. As written in the preliminaries section, we

49



define EŒf � D
R
H
f .x/P.dx/. Using our known representation of the covariance

(51), we find that

Cov.f; g/ D

Z
H

.f .x/ � EŒf �/ .g.x/ � EŒg�/ P. dx/: (52)

Moreover, the underlying field is R, so we get from Riesz representation theorem
that H and H � are isometrically isomorphic, and every functional f 2 H � can
be uniquely expressed as f .y/ D hy; xi for all y 2 H . We can represent the
expected values as a single element x0 2 H . This is called the Pettis integral
representation of the measure P . Moreover, EŒf � D f .x0/ D hx0; xi by Riesz
representation theorem. We substitute this into (52) and find

Cov.f; g/ D

Z
H

.f .x/ � EŒf �/ .g.x/ � EŒg�/ P. dx/

D

Z
H

.hh; xi � hh;mi/
�
hh0; xi � hh0; mi

�
P. dx/

D

Z
H

hh; x �mihh0; x �miP. dx/;

which is what we wanted to prove.
In the last equality we used the linearity of the inner product. �

Using the notation above, the vector m is called the mean of � and its covariance
operator is Q. By the nonnegativity of the inner product we see that Q is a
nonnegative operator. We also have from Da Prato & Zabczyk [65] that � has the
characteristic functional

CF.�/.�/ D

Z
H

exp.ih�; xi/�. dx/ D exp.ih�;mi �
1

2
hQ�; �i/;

where i D
p
�1. It therefore follows that � is completely characterized bym and

Q, and is therefore denoted N.m;Q/.
We will now show some further properties of the covariance operator.

Lemma 8.18. The covariance operator Q is symmetric.

Proof: Since the covariance is a bilinear form from H �H into R, we find that

hQx; yi D

Z
H

hx; zihy; zi dP.z/

D

Z
H

hz; xihz; yi dP.z/

D hx;Qyi:
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�
We also have the following result, due to Vakhania & Tarieladze [73], which is
stated here for convenience.

Lemma 8.19. Let H be an arbitrary Hilbert space, � a strong second order
measure on H . Then the covariance operator Q W H ! H of � is a nuclear
operator.

Hence we have shown that the covariance operator is positive, symmetric and
nuclear. The next result, due to Bosq [15] proves that the converse is true as well.

Theorem 8.20. Let H be a Hilbert space. An operator Q W H ! H is a covari-
ance operator if and only if it is symmetric, positive and nuclear.

Proof: See Theorem 1.7 in Bosq [15]. �

Moreover, it is true that the covariance operator of any strong second-order mea-
sure is always compact. See e.g Chobanjan & Tarieladze [22] or Baker & McK-
eague [4] for a set of necessary and sufficient conditions for the covariance oper-
ator to be compact. Q is also of trace class, i.e TrQ < 1 (see e.g Da Prato &
Zabczyk Proposition 2.16 [65]). Also, it follows from the Principle of uniform
boundedness (see e.g McDonald & Weiss [55] Theorem 12.2) that Q is continu-
ous. In fact, for a Banach space B any symmetric operator T W B ! B� is con-
tinuous. Using Cauchy-Schwarz we find that the norm of Q (and of any positive
symmetric operator mapping B into B�) is given by kQk D supx2B jhx;Qxij.
We note that if B is a Hilbert space, then the positivity criterion can be dropped
to find the norm. The last two results and their proofs can be found in Vakhania,
Tarieladze & Chobanyan [74]14.

Now, let H and U be to real separable Hilbert spaces, and let Q 2 L.U / be a
nonnegative, symmetric operator of trace class. Then, since hW.t/; ui is a real
valued Wiener process for each u 2 U , we find that L.W.t// is a mean zero
Gaussian measure. Da Prato & Zabczyk state (without proof) that

EŒhW.t/; uihW.s/; ui� D t ^ s EŒhW.1/; ui2� D t ^ shQu; ui;

or more generally

EŒhW.t/; uihW.s/; vi� D t ^ s EŒhW.1; u/ihW.1/; vi� D t ^ shQu; vi: (53)

This is not that hard to prove, so we will prove the general statement.
14Vakhania et. al also show in Corollary 2 (p. 173) that if we are in a separable Hilbert space

H , then the identity operator I W H ! H is the covariance operator of any probability measure
of weak order two. This is, however a digression and is included only since it seems interesting to
know.
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Proposition 8.21. If U is a separable Hilbert space and u; v 2 U and W is an
U -valued Wiener process with covariance operator Q, then

EŒhW.t/; uihW.s/; vi� D t ^ s EŒhW.1; u/ihW.1/; vi� D t ^ shQu; vi:

Proof: By Proposition 4.3 in Da Prato & Zabczyk [65], we know that for a
Hilbert valued Wiener process W.t/, we may write

W.t/ D
X
n�1

p
�nˇn.t/en;

where f�ng is a sequence of eigenvalues of Q, and ˇn.t/ is a standard Brownian
motion ˇ � N.0; t/. We find that

EŒhW.t/; uihW.s/; vi� D E

24*X
n�1

p
�nˇn.t/en; u

+ *X
k�1

p
�kˇk.s/ek; v

+35
D

X
n;k�1

p
�n�khen; uihek; vi EŒˇn.t/ˇk.s/�

D

X
n�1

�nhen; uihen; vimin.t; s/

D min.t; s/
X
n�1

hen; uih�nen; vi

D min.t; s/
X
n�1

hen; uihQen; vi

D min.t; s/
X
n�1

hQhen; ui; vi

D min.t; s/

*
Q
X
n�1

hu; enien; v

+
D min.t; s/hQu; vi;

from which (53) follows. In the calculations above we have used that EŒB.t/B.s/� D
min.t; s/ (see appendix), we have used Parseval’s theorem meaning that u DP
n�1hu; enien (see for example Lindstrøm [52]), and that Qen D �en, since we

know from the spectral theorem for self-adjoint compact operators that there ex-
ists an orthonormal basis for H consisting of eigenvectors of Q, see for example
Lax [49]. We may therefore choose en to be an eigenvector of Q. �

Remark 8.22. If H is separable, then we have from Corollary 7.36 in Rynne
& Youngson [71] that the orthonormal basis described in the proof above has the
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form fengnD1 [ fzngnD1, where feng is an orthonormal basis of NImT and fzng is
an orthonormal basis of Ker T .

We can now define a Q-Wiener process.

Definition 8.23. LetU be a Hilbert space. AU -valued stochastic process fW.t/; t �
0g is called a Q-Wiener process if

1. W.0/ D 0 a.s

2. W has independent increments

3. W has continuous trajectories

4. L.W.t/ �W.s// D N.0; .t � s/Q/ for all t � s � 0.

We will now illustrate these definitions and results with an example on the sep-
arable Hilbert space l2 of square summable functions. We find the covariance
operator and characterize the Wiener process on l2.

Example 8.24. Let l2 denote the Hilbert space of square summable functions.

We define a linear operator Q W l2 ! l2 by

Qen D
1

n2
en; n 2 N;

where feng form an orthonormal basis for l2.

We know from Theorem 5.3.11 in Lindstrøm [52]) that for any x in some com-
plete vector space V with orthonormal basis fengn we have x D

P1
nD1 xnen. In

this example V D l2, meaning that the completeness is trivially satisfied. More-
over, the inner product h�; �i on l2 is given by hxn; yni D

P1
nD1 xnyn. Therefore,

for each x 2 l2

Qx D Q

1X
nD1

xnen

D

X
n�1

xnQen

D

X
n�1

xnen

n2

D

nxn
n2
; n D 1; 2; :::

o
:
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From the calculations above we find that TrQ D
P
n�1hQen; eni D

P
n�1Qen DP

n�1
1
n2
D

�2

6
proving that Q is of trace class.

We can now characterize a Wiener process on l2. We have by Proposition 4.3 in
Da Prato & Zabczyk [65] that a Wiener process W.t/ has the expansion

W.t/ D
X
n�1

p
�nˇn.t/en;

where ˇn.t/ D hW.t/;enip
�n

is a standard Wiener process (i.e ˇn.t/ � N.0; t/) and
f�ng is a sequence of nonnegative real numbers such that Qen D �nen. We see
from the way we defined Q that �n D 1

n2
.

We find that the expectation of the increment W.t/ �W.s/ is

EŒW.t/ �W.s/� D E

"X
n�1

1

n
.ˇn.t/ � ˇn.s//en

#
D 0;

since ˇn.�/ is a standard Wiener process.

Also, the variance of the norm of the increment is

VarŒkW.t/ �W.s/k2� D
X
n�1

1

n2
Var Œˇn.t/ � ˇn.s/�

D

X
n�1

1

n2
.t � s/

D .t � s/
�2

6

D .t � s/TrQ;

where we have used that
P
n�1 1=n

2 D �2=6, and we find that L.W.t/�W.s// D

N.0; .t � s/Q/. We see that Q is symmetric by earlier arguments, and since it is
everywhere defined it is a closed operator which then implies that Q is bounded.
This in turn implies that Q is self-adjoint. Since .l2/� D l2, we get that Q is is
symmetric and positive for all elements in .l2/�, meaning that Q is a covariance
operator by Baker & McKeague [4]. Thus, fW.t/; t � 0g is a Q-Wiener process
with covariance operator Q. �

8.3 Infinite dimensional stochastic equations
In this section we will introduce stochastic equations in infinite dimensions. We
will introduce results on existence and uniqueness for stochastic evolution equa-

54



tions driven by both general Lévy processes, and the special case when the Lévy
process is a Wiener process.

8.3.1 The general case: Equations driven by square integrable martingales

The following section follows chapter 9 in Peszat & Zabczyk [64] closely, and
may therefore be skipped entirely by readers familiar with these concepts.

Consider the equation

dX.t/ D .AX.t/C F.X// dt C � .t; X.t// dM.t/; (54)

where � W Œ0; t � �H ! H , � W Œ0; t � �H ! L2.U;H/, and A W D.A/! H is
some operator generating a strongly continuous semigroup .S.t/; t � 0/. H and
U are separable Hilbert spaces.

If we compare (54) with the theory from chapter 6, we see that (54) is a stochastic
differential equation of the Ornstein-Uhlenbeck type. However, as infinite dimen-
sional spaces have quite a lot more structure than finite dimensional spaces, we
need to state some conditions on (54) in order to ensure that it is well defined.
Equations of this kind usually have three types of solutions,

1. Mild solutions

2. Weak solutions

3. Strong solutions

We will define what these solutions are, and state the conditions on (54) needed
to ensure we have solutions of a given kind.

We begin with defining mild solutions.

Definition 8.25. Let X.0/ be a square integrable Ft0-measurable random variable
on H . A predictable process X W Œt0;1/ � ˝ ! H is called a mild solution of
(54) starting at time t0 from X.0/ if for all T � t0

sup
t2Œt0;T �

E
�
jX.t/j2

�
<1 (55)

and

X.t/ D S.t/X.0/C

Z t

0

S.t�u/�.u;X.u//duC
Z t

0

S.t�u/�.u;X.u//dM.u/;

(56)
where S is the shift semigroup, L is a Lévy process and �; � are some well-
behaving functions. The solution (56) holds P -almost surely.
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Under the same conditions, we can state the definition of a strong solution.

Definition 8.26 (Strong solution). A solution of (54) is called a strong solution if

P

 Z T

t0

kX.s/kH C kAX.s/kH C kF.s;X.s//kH ds <1

!
D 1

and

P

 Z T

t0

kG.s;X.s//k2LHS .U;H/ ds <1

!
D 1

and

X.t/ D X.0/C

Z t

0

AX.s/C F.s;X.s// ds C
Z t

0

G.s;X.s// dM.s/

with probability 1.

Remark 8.27. The integrals in (56) are all well-defined. We refer to Remark 9.6
in Peszat & Zabczyk [64] for a discussion on this.

Remark 8.28. There are cases where mild solutions exist, but strong solutions do
not.

In order to define weak solutions and state results on the uniqueness of the so-
lutions, we need to state some conditions. We see that these conditions are to
some degree analogous the the linear growth- and Lipschitz conditions for finite
dimensional stochastic differential equations (see for example Theorem 5.2.1 in
Øksendal [62]).

(E1) D.F / is dense inH and there is an integrable function a W .0;1/! .0;1/

such that
R T
0
a.t/dt <1 for all T <1 and for all t > 0 and x; y 2 D.F /

we have
jS.t/F.x/jH � a.t/.1C jxjH /

and
jS.t/ .F.y/ � F.x// jH � a.t/jy � xjH :

(E2) D.G/ is dense inH and there is an integrable function b W .0;1/! .0;1/

such that
R T
0
b.t/dt <1 for all T <1 and for all t > 0 and x; y 2 D.G/

we have
kS.t/F.x/kLHS .H ;H/ � b.t/.1C jxjH /

and
kS.t/ .F.y/ � F.x// kLHS .H ;H/ � b.t/jy � xjH :
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We can now define weak solutions.

Definition 8.29. Let t0 � 0 and assume that (E1) and (E2) hold and X.0/ is a
square integrable Ft0-measurable random variable on H . Then, a predictable H -
valued process .X.t/; t � t0/ is a weak solution of (54) if it satisfies (55) and for
all f 2 D.A�/ and t � t0

hf;X.t/iH D hf;X.0/iH C

Z t

t0

hA�f;X.u/iH duC
Z t

t0

hf; F.X.u//iH du

C

Z t

t0

hG�.X.u//f; dM.u/iH : (57)

We do now have sufficient information to state a result on the uniqueness of the
solutions.

Theorem 8.30. Assume that (E1) and (E2) hold. Then the following are true

(i) For all t0 � 0 and Ft0-measurable random variablesX.0/ 2 H there exists
a unique (up to modification) solution X.�; t0; X.0// of (54).

(ii) For all 0 � t0 � T < 1 there exists a number K < 1 such that for all
x; y 2 H

sup
t2Œt0;T �

E
�
jX.t; t0; x1/ �X.t; t0; x2/j

2
H

�
� Kjx1 � x2j

2
h:

(iii) For all 0 � t0 � t and x 2 H , L.X.t; t0; x// is independent of the choice
of probability space.

Moreover, if we replace condition (E2) with

(E3) D.G/ is dense in H and there is an integrable function b W .0;1/ !
.0;1/ such that

R T
0
b.t/ dt < 1 for all T < 1 and for all t > 0 and

x; y 2 D.G/ we have

kF.x/kLHS .H ;H/ � b.t/.1C jxjH /

and
k .F.y/ � F.x// kLHS .H ;H/ � b.t/jy � xjH :

then

(iv) X.t; t0; X.0// has a càdlàg version.
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Proof: This is proven in Theorem 9.29 in Peszat & Zabczyk [64]. �

Finally, to end this section we state the following monumental result, which is
Theorem 9.15 in Peszat & Zabczyk.

Theorem 8.31. Assume that (E1) and (E2) hold. Then X is a mild solution if and
only if X is a weak solution.

Remark 8.32. If we let M be a Lévy process, we may remove the condition on
square integrability. We refer to section 9.7 in Peszat & Zabczyk for a discus-
sion. In that case they also state in Theorem 9.35 that the solution X of (54) is a
Markov process. In order to remove the square integrability condition, we have to
introduce a sequence f�ngn�1 of stopping times, which stops the process when it
explodes. This is, however beyond the scope of this thesis.

8.3.2 Equations driven by Wiener processes

As in the general case, we consider the same evolution equation

dX.t/ D .AX.t/C F.t; X.t/// dt CG.t; X.t// dB.t/: (58)

As in the section above, A W D.A/ ! H is an operator generating a strongly
continuous semigroup, F W RC � H ! H , G W RC � H ! LHS.U;H/ and
t 7! B.t/ is a mean zero H -valued Q-Wiener process. The conditions on the
parameters ensuring the existence and uniqueness of a solution of equation (58)
are similar to the general case, but somewhat relaxed.

Theorem 8.33. Let x; y 2 H and let K 2 R be finite. If F and G satisfy the
Lipschitz bound

kF.t; x/ � F.t; y/kH C kG.t; x/ �G.t; y/kLHS .U;H/ � Kkx � ykH

then there exists a unique (up to indistinguishability) H -valued mild solution
.X.t/; t � 0/ to (58) such that for all T � 0 and p > 2 we have

E

"
sup
t2Œ0;T �

kX.t/kp

#
< Cp .1C kX.0/k

p/ :

Proof: This is Theorem 4.3 in Carmona & Tehranchi [17], and we refer to them
for a proof. �
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8.4 Applications to infinite dimensional modelling of financial
derivatives

In this section we will focus on a special case of (54), where F D 0, A D @
@x

and
t 7! L is an H -valued Lévy process.

dg.t/ D
@

@x
g.t/ dt C � .t; g.t// dL.t/: (59)

Since the differential operator generates a strongly continuous semigroup (this is
proven in Theorem 5.1.1 in Filipović [34], and clarified later in this chapter in
Theorems 8.36 and 8.37), we see from (56) that the solution of (59) is

g.t/ D S.t/g.0/C

Z t

0

S .t � u/ � .u; g.u// dL.u/; (60)

where .S.t/; t � T / is the shift semigroup, defined as S.t/g.x/ D g.x C t /.

We will from now on assume that (59) is the dynamics governing the forward
price, denoted as f , or more explicitly f .t; T /where T denotes the delivery time.
This equation will play a more vital role in subsequent chapters. In the remainder
of this chapter we will introduce the model for a forward contract delivering some
commodity over a time period Œ�1; �2�, which is defined as an integral where the
integrand is a scaled version of the forward price f . We will then prove some
technical results on the shift semigroup, and other needed results to begin the pro-
cess of actually pricing such contracts, which will be done in the next chapter.

We know from Benth, Benth & Koekebakker [10] that the price of a forward con-
tract, F , delivering some commodity over a time period ŒT1; T2�may be expressed
as

F.t; T1; T2/ D

Z T2

T1

Qw.u; T1; T2/f .t; u/ du; (61)

where f .t; T / is the forward price at time t , and Qw is some weight function. We
then introduce the Musiela parametrization (as done in chapter 7.2) of (61), and
define x D T1 � t , l D T2 � T1, and set g.t; y/ D f .t; t C y/. We then define
(using the notation from Benth & Krühner [11])

Gwl .t; x/ D F.t I t C x; t C x C l/ (62)

D

Z xCl

x

wl.t; x; y/g.t; y/ dy; (63)

for wl.t; x; y/ D Qw.t C yI t C x; t C x C l/; x � y � x C l; x � 0; t � 0.
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For simplicity, we assume that wl is independent of t . Then

Gwl .t; x/ D

Z xCl

x

wl.y � x/g.t; y/ dy (64)

DW Dw
l .g.t; y// ; (65)

where
Dw

l .g/ D Wl.l/Id.g/C Iwl .g/; (66)

for some arbitrary g 2 Hw .

In (66), we have that the function u 7! Wl.u/ is given as

Wl.u/ D

Z u

0

wl.x/ dx; (67)

and that Id is the identity on Hw and that Iw
l
.g/ is a bounded linear integral

operator on Hw , given by

Iwl .g/ D

Z 1
0

qwl .�; y/g
0.y/ dy: (68)

In (68) qw
l

is the kernel qw
l
.x; y/ D

�
Wl.l/ �Wl.y � x/1Œ0;l�.y � x/

�
.

Since Dw
l

is a sum of a scaled identity operator and a bounded linear operator, it
follows that Dw

l
is a bounded linear operator on Hw as well.

We will now introduce the concept of a weak derivative, since the derivatives in
the definition of the Filipović space is defined for weak derivatives.

Lemma 8.34. If h has a weak derivative h0, then there exists an absolutely con-
tinuous representation of h, still denoted by h such that

h.x/ � h.y/ D

Z x

y

h0.s/ ds: (69)

Proof: This is from equation (5.1) in Filipović [34]. �

In order to prove that the shift semigroup is strongly continuous, we need the
following technical result. Its statement (without proof) can be found in Fil-
ipović [34], but for completion we will prove it.

Lemma 8.35. For all h 2 Hw it holds true that

h.x C t / � h.x/ D t

Z 1

0

h0.x C st/ ds: (70)
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Proof: We have from the preceeding lemma that h.xCt /�h.x/ D
R xCt
x

h0.u/du.
Then use substitution: s D u�x

t
. Then we get that du D tds, and get

R xCt
x

h0.u/du D
t
R 1
0
h0.x C st/ ds, which is what we wanted to prove. �

We can now prove that the shift operator generates a strongly continuous semi-
group on the Filipović space Hw . This statement is from Filipović , but the proof
is rather short, so we have included a more detailed proof.

Theorem 8.36. The shift operator fS.t/ W t � 0g given by S.t/g.x/ D g.t C x/
is a strongly continuous semigroup on Hw .

Proof: This proof is based on Theorem 5.1.1 in [34], but details have been added
by me.
First, we have to prove that S.0/ equals the identity on Hw . We find that

S.0/g.x/ D g.x/

D Id.g.x//;

from which it follows that S.0/ D I .

Second, we have to check that S.t C s/ D S.t/S.s/ for all t; s � 0. By definition
we find that

S.t C s/g.x/ D g.t C s C x/

D S.t/g.s C x/

D S.t/S.s/g.x/;

from which the result follows.

The last condition we need to prove, is that for any g 2 Hw , it holds true that
kS.t/g � gk ! 0 as t # 0. Using Lemma 8.35 and the Cauchy-Schwarz15

inequality, we find that

15Cauchy-Schwarz-Bunyakovsky.
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kS.t/g � gk2w D jg.t/ � g.0/j
2
C

Z
RC

jg0.x C t / � g.x/j2w.x/ dx

(70)
D jg.t/ � g.0/j2 C

Z
RC

jt

Z 1

0

g".x C st/ dsj2w.x/ dx

(3)
� jg.t/ � g.0/j2 C t2

Z
RC

Z 1

0

12 ds
Z 1

0

jg".x C st/j2 dsw.x/ dx

D jg.t/ � g.0/j2 C t2
Z

RC

Z 1

0

jg".x C st/j2 dsw.x/ dx:

We introduced the second derivative of g. This second derivative exists and is well
defined since the set of all twice continuously differentiable whose first derivative
has compact support is dense in Hw . Moreover, the absolute continuity of the
Filipović space implies that any g Hw is measurable. We may therefore apply the
Fubini-Tonelli theorem and find that

jg.t/ � g.0/j2 C t2
Z

RC

Z 1

0

jg".x C st/j2 dsw.x/ dx

D jg.t/ � g.0/j2 C t2
Z 1

0

Z
RC

jg".x C st/j2w.x/ dx ds

D jg.t/ � g.0/j2 C t2
Z 1

0

Z
RC

jS.st/g".x/j2w.x/ dx ds

� jg.t/ � g.0/j2 C t2jg0.st/j2

C t2
Z 1

0

Z
RC

jS.st/g".x/j2w.x/ dx ds

D jg.t/ � g.0/j2 C t2
Z 1

0

kS.st/g0k2w ds

D jg.t/ � g.0/j2 C t2kS.st/g0k2w ! 0 as t ! 0;

and it follows that kS.t/g � gk ! 0 as t # 0, which concludes the proof. �

We end this section with a result that proves that A D @
@x

is the generator of the
shift semigroup. This result is from Filipović [34] as well, but with added details
by me.

Theorem 8.37 (Clearer version of Corollary 5.1.1 in Filipović [34]). The afore-
mentioned semigroup has generator A D @

@x
and D.A/ D fg 2 Hw W g

0 2 Hwg.
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Proof: We want to show that kS.t/g�g
t
� g0k ! 0 as t ! 0. We note that the

construction of D.A/ implies the existence of g". We find, using Lemma 8.35,
the Cauchy-Schwarz-Bunyakovsky inequality and Fubini-Tonelli’s theorem that

k
S.t/g � g

t
� g0k2w D j

g.t/ � g.0/

t
� g0.0/j2

C

Z
RC

j
g0.t C x/ � g0.x/

t
� g".x/j2w.x/ dx

(70)
D

Z
RC

j

Z 1

0

g".x C st/ � g".x/ dsj2w.x/ dx

(3)
� j

g.t/ � g.0/

t
� g0.0/j2

C

Z
RC

Z 1

0

12 ds
Z 1

0

jg".x C st/ � g".x/j2 dsw.x/ dx

(4)
D j

g.t/ � g.0/

t
� g0.0/j2

C

Z 1

0

Z
RC

jg".x C st/ � g".x/j2w.x/ dx ds

� j
g.t/ � g.0/

t
� g0.0/j2 C

Z 1

0

kS.st/g0.x/ � g0.x/k2w ds:

Moreover, we see that

lim
t!0
j
g.t/ � g.0/

t
� g0.0/j2 D 0

and we find by the dominated convergence theorem and the semigroup property
of S that limt!0

R 1
0
kS.st/g0.x/ � g0.x/k2ww.x/ ds ! 0: �
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9 Pricing of infinite dimensional derivatives
This section will deal with the pricing of infinite dimensional representations of
financial derivatives. We will begin with some technical results.

The first result is stated in Benth & Krühner [11], but without proof. The proof is
done by me.

Lemma 9.1. Let g 2 Hw . Then the following bound hold:

kDw
l .g/kw �

0@Wl.l/C

vuutW 2
l
.l/

 
2C

Z l

0

w�1.y/ dy

!
C 2c2l2

1A kgkw ;
(71)

where Dw
l

is defined as in (66).

Proof: We recall that we have defined

Dw
l .g/ D Wl.l/Id.g/C Il

w.g/;

where Wl.u/ D
R u
0
wl.y/ dy and Il

w.g/ is some operator. From Proposition
2.1 in Benth and Krühner [12], we find that Il

w is a bounded linear operator
on Hw . Following the notation of said proof, we define �.x/ WD Iw

l
.g/.x/ DR1

0
qw

l
.x; y/g0.y/dy, hence �.x/ D

R xCl

x
.Wl.l/�Wl.y�x//g

0.y/dy. Further,
Benth & Krühner show that the Filipović -norm of � is given as

k�kw � kgkw

s
2c2l2 C 2W 2

l
.l/CW 2

l
.l/

Z l

0

w�1.y/ dy:

And therefore:

kDw
l .g/kw D kWl.l/Id.g/C �kw

� Wl.l/kgkw C k�kw

� Wl.l/kgkw C kgkw

s
2c2l2 C 2W 2

l
.l/CW 2

l
.l/

Z l

0

w�1.y/ dy

�

0@Wl.l/C

vuutW 2
l
.l/

 
2C

Z l

0

w�1.y/ dy

!
C 2c2l2

1A kgkw ;
which is what we wanted to prove. We used the triangle inequality in the first
inequality, and used the bound on the Filipović -norm of � in the second. �
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The next result is a mixture of Lemma 4.2.1 Filipović [34], and Lemma 3.1 in
Benth & Krühner [12].

Lemma 9.2. For all u 2 RC there exists a number k.u/ such that kıxkH � k.u/
for all 0 � x � u. Moreover, if we let hx W RC ! R be defined by hx.y/ D
1C

R min.y;x/
0

w.u/�1 du, then kıxk2op D hx.x/.

Proof: See Filipović [34], pp 58-59 and Benth & Krühner [12] and the references
therein. �

The next lemma is a simplified version of Lemma 3.2 in Benth and Krühner [12],
and stated here for convenience.

Lemma 9.3. If
R1
0
w�1.x/ dx < 1 then kgk1 WD supx2RC jg.x/j � ckgkw ,

where c WD
q
1C

R1
0
w�1.x/ dx.

The next theorem is Proposition 3.1 in Benth & Krühner [11], and provides a link
to the infinite dimensional swap prices. However, it seems that the proof has some
inconsistencies, hence a new proof was needed.

Theorem 9.4. Let p W R! R be a function of at most linear growth. Then

p .F .t; T1; T2// D Pw
T2�T1

.T1 � t; g.t// ; (72)

where Pw
l
W RC �Hw ! R is a nonlinear functional defined as

Pw
l .x; g/ D p ı ıx ıDw

l .g/ : (73)

Moreover,
kPw

l .x; g/k1 � cl .1C kgkw/ ; (74)

for some l-dependent constant cl > 0.

Proof: We know that F.t; T1; T2/ D Dw
T2�T1

.g.t// .T1 � t /. Moreover,

p ı ıx ıDw
l .g/ D p

�
Dw

l .g/.x/
�
;

and thus
p .F .t; T1; T2// D p

�
Dw
T2�T1

.g.t// .T1 � t /
�
;

proving (72).
We can now prove the bound:
Using Lemma 9.3 and the linear growth of p, we get:
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kPl
w.x; g/k1 D sup

x2RC

jPl
w.x; g/j

� ckPl
w.x; g/kw

D

�
1C

Z 1
0

w�1.x/ dx
�1=2
kPl

w.x; g/kw

� �kPl
w.x; g/kw ;

where � D
�
1C

R1
0
w�1.x/ dx

�1=2
. Next, using the definition of Pl

w , the linear
growth of p and Lemma 9.2, we find that

� �kPl
w.x; g/kw D �kp ı ıx ıDw

l .g/kw

� �K
�
1C kıxDw

l .g/kw
�

� �K
�
1C hx.x/kD

w
l .g/kw

�
:

In Lemma 9.1, we found that

kDw
l .g/kw �

0@Wl.l/C

vuutW 2
l
.l/

 
2C

Z l

0

w�1.y/ dy

!
C 2c2l2

1A kgkw :
We then define for brevity

f .l/ WD

0@Wl.l/C

vuutW 2
l
.l/

 
2C

Z l

0

w�1.y/ dy

!
C 2c2l2

1A
and find that

�K
�
1C hx.x/kD

w
l .g/kw

�
� �K .1C hx.x/f .l/kgkw/

� cl .1C kgkw/ ;

where cl is some positive l-dependent constant. We therefore have that

kPl
w.x; g/k1 � cl .1C kgkw/ ;

which is what we wanted to prove. �
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9.1 The forward model
We can now start with the actual pricing. Starting with the forward dynamics as
introduced in the previous chapter. However, we start with arithmetic dynamics
driven by an H -valued Q-Wiener process B.

Our forward price model is now given as

dg.t/ D
@

@x
g.t/C �.t; g.t// dB.t/ (75)

By forcing that � is Lipschitz as seen in chapter 8, (75) has a unique mild solution
as given in Theorem 4.3 in Carmona & Tehranchi [20].

We see that in (75) we have A equal the differential operator and ˛.t; x/ D 0.
Therefore, by the results on stochastic differential equations in chapter 8.3, if the
differential operator generates a strongly continuous semigroup, and � satisfies the
Lipschitz bound, then there exists a unique, mild solution g to (75). We have al-
ready shown in Theorem 8.36 and Theorem 8.37 that A D @

@x
generates a strongly

continuous semigroup, which implies that we have a unique, mild solution of the
equation.We note that the dynamics of the forward model is modelled without
drift. This is done to ensure that the process t 7! g.t/ is a martingale, which it is
if and only if the drift term is zero. We refer to Proposition 2.5 in Barth & Benth
[7] for a proof of this result.

The next two results are Lemma 3.3 in Benth & Krühner [12], where I have
written new proofs.

Lemma 9.5. For any x � 0, it holds true that

SxDw
l D Dw

l Sx: (76)

Proof:Let g be a function in Hw . Then

Dw
l S.t/g.x/ D Dw

l g.x C t /

D

Z l

0

wl.v/ dvId .g.x C t //C
Z 1
0

qwl .x C t; y/g
0.y/ dy

D

Z l

0

wl.v/ dvId .S.t/g.x//C
Z 1
0

S.t/qwl .x; y/g
0.y/ dy

D S.t/

Z l

0

wl.v/ dvId .g.x//C S.t/
Z 1
0

qwl .x; y/g
0.y/ dy

D S.t/Dw
l .g/ .x/:
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�

Using these results, we can prove the following representation of a forward con-
tract. This result is from Benth & Krühner as well, but with a new proof.

Lemma 9.6. The forward contract may be expressed as

F .�; T1; T2/ D ıT1�tD
w
T2�T1

g.t/C

Z �

t

ıT1�uD
w
T2�T1

� .u; g.u// dB.u/: (77)

Proof: We know from earlier that F.�; T1; T2/ D ıT1��D
w
T2�T1

g.�/. Applying
the solution of (75) given by (56) and the preceding lemma we get:

F.�; T1; T2/ D Dw
T2�T1

.g.�// .T1 � �/

D ıT1��D
w
T2�T1

.g.�//

D ıT1��D
w
T2�T1

.S��tg.t//C ıT1��D
w
T2�T1

Z �

t

S��u� .u; g.u// dB.u/

D ıT1��D
w
T2�T1

.S��tg.t//C

Z �

t

ıT1��S��uD
w
T2�T1

� .u; g.u// dB.u/

D ıT1�tD
w
T2�T1

g.t/C

Z �

t

ıT1�uD
w
T2�T1

�.u; g.u// dB.u/;

where we after the third equality have inserted the solution g.�/ of (75) and used
the commutation property (76) in the last equality.

�

The next result is Theorem 2.1 in Benth & Krühner [12], and is stated here for
convenience. The aim of this theorem is to provide a method of "pulling down" a
process from an infinite dimensional space down to a finite dimensional space.

Lemma 9.7. Let n 2 N and H;U be separable Hilbert spaces. Let W be a
square integrable and mean zero U -valued Wiener process with covariance Q,
which is a positive operator with finite trace. Assume that dim ran.Q/ > n and
Q is positive definite. Let 	 2 L2

W .H/ WD
T
fL2

W;T .H/ W T > 0g where
LW;T .H/ is the set of predictable linear operators between U and H such thatR T
0

Tr.	.s/Q	.s/�/ ds < 1, let T 2 L.H;Rn/, the space of linear operators
between H and Rn, and define

X.t/ D T

�Z t

0

	.s/ dW.s/
�
:
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Then there is an 1-dimensional standard Brownian motion B such that

X.t/ D

Z t

0

�.s/ dB.s/;

where �.s/ D .T 	.s/Q	.s/�T �/1=2 2 L2
B.R

n/.

Using Lemma 9.7, we can prove the next result, which is equation (3.15) in Benth
& Krühner, but is stated without proof. We have therefore proven it here.

Lemma 9.8. The price of a forward contract delivering some commodity over a
time period ŒT1; T2� is given as

F .�; T1; T2/ D ıT1�tD
w
l g.t/C

Z �

t

Q�.s/ dB.s/; (78)

where t 7! B.t/ is a 1-dimensional standard Brownian motion and Q�2.s/ D
.ıT1�sD

w
T2�T1�.s/Q�

�.s/.ıT1�sD
w
T2�T1/

�/.1/.

Proof: According to Lemma 9.6, we have that

F .�; T1; T2/ D ıT1�tD
w
T2�T1

g.t/C

Z �

t

ıT1�uD
w
T2�T1

� .u; g.u// dB.u/:

Then define T to be the identity, and 	.u/ D ıT1�uD
w
T2�T1

� .u; g.u//, then we
find that

Q�2.s/ D .ıT1�sD
w
T2�T1�.s/Q�

�.s/.ıT1�sD
w
T2�T1/

�/.1/;

and the result follows. �

We will now confine ourselves to Gaussian noise processes and nonrandom volatil-
ities. We define the notation V.t; g.t// D e�r.��t/ EŒp.F.�; T1; T2//�. The next
result is Proposition 3.7 in Benth & Krühner [11]. The proof is a slightly altered
version of the proof in the article, where some more details has been added.

Theorem 9.9. The price of a claim on F is given by:

V .t; g.t// D e�r.��t/ E Œp .m.g/C �X/� ; (79)

where X � N.0; 1/, m.g/ D ıT1�tD
w
T2�T

g.t/, t � � � T1

and �2 D
R �
t
Q�2.s/ ds.
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Proof: We found in Lemma 9.8 that

F .�; T1; T2/ D ıT1�tD
w
l g.t/C

Z �

t

Q�.s/ dB.s/:

Then define m.g.t// WD ıT1�tD
w
l
g.t/. Since we have defined � to be nonram-

dom, we find from Wiersema [75] that the stochastic Itô integral
R �
t
Q�.s/ dB.s/

is normally distributed with mean zero. Moreover, from the Itô isometry we find
that the variance is �2 D VarŒ

R �
t
Q�.s/ dB.s/� D

R �
t
Q�2.s/ ds. Therefore, we find

that

E ŒF .�; T1; T2/� D ıT1�tD
w
l g.t/ D m.g.t//

and

Var ŒF .�; T1; T2/� D
Z �

t

Q�2.s/ ds;

where Q� is defined as in Lemma 9.7.
We therefore find that

F .�; T1; T2/ D ıT1�tD
w
l g.t/C

Z �

t

Q�.s/dB.s/ D m.g.t//C
Z �

t

Q�2.s/ds: (80)

in distribution.
The payoff function of the claim is defined to be p, hence we may apply p to
equation (80), and find the price by applying the discount factor and taking the
expectation. �

As a corollary, we can state an explicit Black-Scholes type formula for call options
in our framework.

Corollary 9.10 (.�/). A call option written on F with strike price K and exercise
time � , is

V .t; g.t// D e�r.��t/
�
��

�
m.g.t// �K

�

�
C .m.g.t/ �K//˚

�
m.g.t// �K

�

��
:

(81)
Here,˚ denotes the standard normal cumulative density function, and � its deriva-
tive.

Proof: Since we are dealing with a call option, p.�/ D max .0; �/. And therefore

V .t; g.t// D e�r.��t/ E Œmax .0;m.g.t//C �X �K/� :
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We have that V.t; g.t// D 0 whenever X < .K �m.g.t//=�. Hence

V .t; g.t// D e�r.��t/

 
1
p
2�

Z 1
K�m.g.t//

�

.m.g.t// �K C �x/ e�x
2=2 dx

!
D e�r.��t/

�
��

�
m.g.t// �K

�

�
C .m.g.t/ �K//˚

�
m.g.t// �K

�

��
:

�

Likewise, we can find a similar result for put options.

Corollary 9.11 (.�/). A put option written on F with strike price K and exercise
time � is

e�r.��t/
�
.K �m.g.t///˚

�
1 �

m.g.t// �K

�

�
� ��

�
1 �

m.g.t// �K

�

��
:

(82)

Proof: The price is

P.t; g.t// D e�r.��t/ E
�
.K � .m.g.t//C �X//C

�
:

So using the notation from the proof of the call option case, we find that

P.t; g.t// D
e�r.��t/
p
2�

Z 1
d

.K �m.g.t// � �x/e�x
2=2 dx

D e�r.��t/
�
.K �m.g.t//˚

�
1 �

m.g.t// �K

�

��
� ��

�
1 �

m.g.t// �K

�

�
;

which is what we wanted to prove. �

We can also prove a result stating the relationship between call options and put
options, a put-call parity of the Black-Scholes type.

Proposition 9.12 (.�/ Put-call parity). We have that

C.t; g.t// � P.t; g.t// D e�r.��t/ .F.t; T1; T2/ �K/ : (83)

Proof: We know that max.0; x�K/ D .x�K/Cmax.0;K � x/. Therefore we
find that since P.t; g.t// D e�r.��t/ EŒ.K � F.�; T1; T2//jFt �:

C.t; g.t// D e�r.��t/ EŒ.F .�; T1; T2/ �K/
C
jFt �

D e�r.��t/ EŒF .�; T1; T2/ �KjFt �

C e�r.��t/ EŒ.K � F.�; T1; T2//
C
jFt �

D P.t; g.t// �Ke�r.��t/ C e�r.��t/ EŒF .�; T1; T2/jFt �;
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and therefore

C.t; g.t// � P.t; g.t// D e�r.��t/ .F.t; T1; T2/ �K/ ;

which is what we wanted to prove. �

In the next result, we will consider a calendar spread option written on two con-
tracts with different delivery periods on the same underlying. That is, the delivery
periods are ŒT1; T2� and ŒS1; S2�, and the option pays

p .F.�; T1; T2/; F .�; T1; T2//

at the exercise time � � min.T1; S1/. We assume that the volatility � is continu-
ous, deterministic and square-integrable.

Theorem 9.13 (.�/ Pricing calendar spread options on power forwards). LetF.�; T1; T2/
and F.�; S1; S2/ be two forward contracts delivering the same commodity over
two different time periods ŒT1; T2� and ŒS1; S2� respectively. Denote by CS.�; g/
the price of a calendar spread option written on F . The price is then

CS.t; g/ D e�r.��t/ .˚.d/ .F.t; T1; T2/ � F.t; S1; S2//C �'.d// ; (84)

where d D 1
�
.F.t; T1; T2/ � F.t; S1; S2// and

�2 D

Z �

0

�
.	.u; T /Q	�.u; T //

1=2
� .	.u; S/Q	�.u; S//

1=2
�2

du;

where 	.u; T / D ıT1�tD
w
T2�T1

�.u/.

Proof: Define 	.u; T / WD ıT1�tD
w
T2�T1

�.u/. Then, using Lemma 9.6 we get the
following representation for F :

F.�; T1; T1/ D ıT1�tD
w
T2�T1

g.t/C

Z �

t

	.u; T / dB.u/ (85)

F.�; S1; S1/ D ıS1�tD
w
S2�S1

g.t/C

Z �

t

	.u; S/ dB.u/: (86)

Using Lemma 9.7 we find that we may represent (85) and (86) as

F.�; T1; T2/ D ıT1�tD
w
T2�T1

g.t/C

Z �

t

Q�.u; T / dB.u/

F.�; S1; S2/ D ıS1�tD
w
S2�S1

g.t/C

Z �

t

Q�.u; S/ dB.u/;
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where B is a 1-dimensional Brownian motion and Q�2.u; �/ D 	.u; �/Q	.u; �/�.

Since the option is written on the spread of F.�; T1; T2/ and F.�; S1; S2/, the price
is

CS.t; g/ D e�r.��t/ E
�
.F.�; T1; T2/ � F.�; S1; S2//

C
jFt
�

D e�r.��t/ E
�
.F.�; T1; T2/ � F.�; S1; S2//

C
�
;

where we in the last equation used thatF.t; �; �/ is Ft -measurable and that
R �
t
Q�.u/dB.u/

is independent of Ft .

From above, it is clear thatF.�; T1; T2/�F.�; S1; S2/ D F.t; T1; T2/�F.t; S1; S2/CR �
t
Q�.u; T /� Q�.u; S/ dB.u/. Using the standard Itô isometry, we find that in dis-

tribution

F.�; T1; T2/ � F.�; S1; S2/
d
D F.t; T1; T2/ � F.t; S1; S2/

C

�Z �

t

. Q�.u; T / � Q�.u; S//2 du
�1=2

Z;

whereZ � N.0; 1/. If we for convenience definem.t/ D F.t; T1; T2/�F.t; S1; S2/
and �2 D

R �
t
. Q�.u; T / � Q�.u; S//2 du, we find that

F.�; T1; T2/ � F.�; S1; S2/
d
D m.t/C �Z:

In order to get the expectation above to be non-negative, we must have that

Z � �m.t/=� DW �d:

Then we find that

CS.t; g/ D e�r.��t/ EŒ.m.t/C �Z/C�

D e�r.��t/
1
p
2�

Z 1
�d

.m.t/C �z/ e�z
2=2 dz

D e�r.��t/ .m.t/˚.d/C '.d/�/ ;

which is exactly (84).
�

Remark 9.14. The proof of Theorem 9.13 may also be done without using Lemma
9.7. Define 	.u; T / as above, and note that since we have assumed that � is con-
tinuous, 	 2 H �w . We find that

F.�; T1; T2/ � F.�; S1; S2/ D m.t/C

Z �

t

	.u; T / � 	.u; S/ dB.s/:
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In order to get an expression for F.�; T1; T2/ � F.�; S1; S2/ in distribution, we
must compute the standard deviation of F.�; T1; T2/ � F.�; S1; S2/. We find that

�2 WD Var ŒF .�; T1; T2/ � F.�; S1; S2/�

D E

��Z �

t

	.u; T / dB.u/

�2
C

�Z �

t

	.u; S/ dB.u/

�2
� 2

Z �

t

	.u; T / dB.u/

Z �

t

	.u; S/ dB.u/

�
:

Define XT WD
R �
t
	.u; T / dB.u/ and XS WD

R �
t
	.u; S/ dB.u/. Then

EŒXTXS � D E

24 lim
jui j;juj j!0

X
i;j

	.ui ; T / .B.uiC1/ � B.ui// 	.uj ; S/
�
B.ujC1/ � B.uj /

�35
DCT
D lim
jui j;jui j

E

24X
i;j

	.ui ; T /B.�ui/	.uj ; S/B.�uj /

35
.�/
D lim
jui j;jui j

E

"X
i

	.ui ; T /B.�ui/	.ui/B.�ui/

#
.��/
D lim
jui j!0

E

"X
i

hf .ui ; T /;B.�ui/ihf .ui ; S/;B.�ui/i

#
.���/
D lim

jui j!0
E

"X
i

hf .ui ; T /;B.1/ihf .ui ; S/;B.1/i�ui

#
.���/
D lim

jui j!0

X
i

hQf.ui ; T /; f .ui ; S/i�ui

D

Z �

t

hQf.u; T /; f .u; S/i du

.����/
D

Z �

t

f .u; T /�Qf.u; S/.1/ du:

In the calculations above, we applied the Dominated convergence theorem since
	 2 H �w (i.e it is continuous and therefore bounded), and we also used the sta-
tionarity property of the Wiener process to get that B.uiC1/�B.ui/ D B.uiC1 �
ui/ DW B.�ui/. In equality .�/ we used that the expectation is zero whenever
i ¤ j due to the independent increment property of the Wiener process. In equal-
ity .��/ we applied the Riesz-Fréchet representation theorem, which we may do
since 	 2 H �w and B 2 Hw . In equalities .� � �/ we applied Proposition 8.21.
Finally, in equality .� � ��/ we used the fact that the covariance operator Q is
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self-adjoint. From this it is clear that EŒX2
T � D

R �
t
f .u; T /�Qf.u; T /.1/ du and

that EŒXS � D
R �
t
f .u; S/�Qf.u; S/.1/ du. We have therefore found � in the

distributional representation F.�; T1; T2/ � F.�; S1; S2/ D m.t/ C �Z, and we
may proceed with the calculations as above. (end of remark).

The results up to this point in this chapter are done for arithmetic equations where
the noise is driven by a Hw-valued Q-Wiener process. We will now comment
slightly on geoemetric equations. We know from Benth & Krühner [11] that the
Filipović space is closed under exponentiation, meaning that if f 2 Hw , then
exp.f / WD

P1
kD0

f k

kŠ
2 Hw . We may therefore define the following model for

the forward prices:
g.t/ D exp. Qg.t//; (87)

where

d Qg.t/ D
�
@ Qg.t/

@x
C �.t/

�
dt C �.t/ dB.t/; (88)

where � is a predictable Bochner integrable stochastic process, added to ensure
that the dynamics are arbitrage-free. Benth & Krühner prove that the dynamics
are arbitrage-free if �.t; x/ D �1

2
ıx�.t/Q�

�.t/ı�x.1/. Using this drift condition,
they prove in Lemma 3.14 that

g.T / D S.T � t /g.t/C

Z T

t

S.T � s/ O�.s; f .s// dB.s/;

where Og.s; x/h.x/ D g.x/�.s/h.x/ for g; h 2 Hw and x.s/ � 0. They also state
without proof that

F.T; T1; T2/ D ıT1�tD
w
l g.t/C

Z T

t

ıT1�sD
w
l O�.s; f .s// dB.s/:

We will therefore do a proof.

Lemma 9.15. In the geometric case, the forward price may be expressed as

F.T; T1; T2/ D ıT1�tD
w
l g.t/C

Z T

t

ıT1�sD
w
l O�.s; f .s// dB.s/:

Proof: We know from earlier that F.�; T1; T2/ D ıT1��D
w
T2�T1g.�/ in general.
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This leads to

F.�; T1; T2/ D ıT1��D
w
T2�T1g.�/

D ıT1��D
w
T2�T1S.� � t /g.t/

C ıT1��D
w
T2�T1

Z �

t

S.� � u/ O�.u/ dB.u/

D ıT1�tD
w
T2�T1g.t/C

Z �

t

ıT1��D
w
T2�T1 O�.u/ dB.u/;

which is what we wanted to prove. In the last equality we have used the commu-
tation property from (76). �

We may then apply Lemma 9.8 and write

F.�; T1; T2/ D ıT1�tD
w
T2�T1g.t/C

Z �

t

Q�.s/ dB.s/;

where Q� is defined in the same way as in Lemma 9.8.

This leads to the following results on option pricing (both results are stated in
Benth & Krühner [11], but neither result is proved), which hold for non-random
volatilities. These results hold for assets with fixed delivery time. Note that the
statement in Benth & Krühner is wrong.16 Their statement about the drift term has
wrong sign at is multiplied with 1

2
meaning that their statement about Om should be

Om.g/ D Qg.T � t /C

Z �

t

�.s/.T � s/ ds:

Likewise, the term � is stated as if the contract has a delivery period and not fixed
delivery. We will prove the statement in a similar, but somewhat different form.
In the process, we also manage to prove the drift condition for our case, in a very
different manner than what is proven in Lemma 3.13 in Benth & Krühner [11].

Theorem 9.16. Let f .t; T / be a forward contract delivering some commodity at
time T . Then we have the following representation

f .t; T / D f .0; T / exp
�
�
1

2

Z t

0

ıT�s�.s/Q.ıT�s�.s//
� ds

C

Z t

0

.ıT�s�.s/Q.ıT�s�.s//
�/

1
2 dB.s/

�
: (89)

16It would probably be more fair to call this an oversight instead of an error.
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Moreover, a European option on f .t; T / then has price

V.t; g/ D e�rT E
�
p
�
f .0; T / exp

�
��2 C �Z

���
;

where Z � N.0; 1/ and �2 D
R t
0
ıT�s�.s/Q.ıT�s�.s//

� ds.

Proof: We know that the solution of (88) is given as the predictable mild solution

Qg.t/ D S.t/g0 C

Z t

0

S.t � s/�.s/ ds C
Z t

0

S.t � s/�.s/ dB.s/:

Let us now consider a forward contract f .t; T / with delivery time T . Since we
are dealing with a geometric model, we have that

f .t; T / D exp .ıT�t Qg.t// :

And therefore

f .t; T / D exp
�
ıT�tS.t/g.0/C

Z t

0

ıT�tS.t � s/�.s/ ds

C

Z t

0

ıT�tS.t � s/�.s/ dB.s/

�
D f .0; T / exp

�Z t

0

ıT�s�.s/ ds C
Z t

0

ıT�s�.s/ dB.s/

�
: (90)

We can now apply Theorem 2.1 in Benth & Krühner [12] to (90), and find that

f .t; T / D f .0; T / exp
�Z t

0

ıT�s�.s/dsC
Z t

0

.ıT�s�.s/Q.ıT�s�.s//
�/

1
2 dB.s/;

where B is a 1-dimensional Brownian motion.

In order to have well defined option prices, the mapping t 7! f .t; T / must be
a martingale. To get this condition, we must force the drift � to such that the
exponential part of f .t; T / has expectation 1. Since the exponent is Gaussian, we
see that we need to haveZ t

0

ıT�s�.s/ ds C
1

2

Z t

0

ıT�s�.s/Q.ıT�s�.s//
� ds;

which in turn shows that the drift term must be

�
1

2

Z t

0

ıT�s�.s/Q.ıT�s�.s//
� ds; (91)
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proving Lemma 3.13 in Benth & Krühner [11].
The forward price has therefore explicit representation

f .t; T / D f .0; T / exp
�
�
1

2

Z t

0

ıT�s�.s/Q.ıT�s�.s//
� ds

C

Z t

0

.ıT�s�.s/Q.ıT�s�.s//
�/

1
2 dB.s/

�
: (92)

In distribution, we may represent (92) as

f .t; T / D f .0; T / exp
�
�
1

2
�2 C �Z

�
;

where Z � N.0; 1/ and

�2 D

Z t

0

ıT�s�.s/Q.ıT�s�.s//
� ds;

proving the first assertion.

We may now apply standard option prices techniques, and a payoff function p to
get the desired result, which is that the price of an option on the forward price
with payoff p at time zero is represented as

V.0; g/ D e�rT E

�
p

�
f .0; T / exp

�
�
1

2
�2 C �Z

���
;

which is what we wanted to prove.
�

We can then prove the following corollary on the case when the payoff function p
is the payoff function of call option. This is also a result from Benth & Krühner
stated without proof.

Corollary 9.17. If p D max.0; x � k/, then we recover the Black-76 formula.

Proof: Define f0 WD f .0; T /. Since the payoff function p.x/ D .x�K/C, where
K is the strike price, the quantity we need to compute is

C WD E
�
.f .t; T / �K/C

�
:

Using the distribution representation of f as found in the proof of Theorem 9.16,
we see that we must have

f0 exp
�
�
1

2
�2 C �Z

�
�K > 0;
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in order to have a nonzero expectation.
Consequently, we find that

Z >
log

�
K
f0

�
C

1
2
�2

�
DW �d:

Using standard option pricing arguments, we find that the price is

C D

Z 1
�d

�
f0e

�2=2C�z
�K

�
'.z/ dz

D �K˚.d/C
f0
p
2�

Z 1
�d

e�
1
2
.z2�2�zC�2/ dz

D �K˚.d/C
f0
p
2�

Z 1
�d

e�
1
2
.z��/2 dz

D �K˚.d/C
f0
p
2�

Z 1
�.dC�/

e�u
2=2 du

D f0˚.d C �/ �K˚.d/:

We may then multiply with the discount factor and conclude that the price of a
call option of f .t; T / at time 0 with strike price K is

e�rT .f0˚.d C �/ �K˚.d// ;

which we recognize as the Black-76 formula. �

Like in the arithmetic case, we may derive a put call parity relationship:

Proposition 9.18 (�). We have that

C.t; g/ � P.t; g/ D e�r.��t/ .f .t; T / �K/ ;

at time t , where C and P denotes the price of a call and put option respectively.

Proof: The proof is similar to the arithmetic case. We get

C.t; g/ D e�r.��t/ EŒ.f .�; T / �K/CjFt �

D e�r.��t/
�
f .t; T / �K C EŒ.K � f .�; T //CjFt �

�
D e�r.��t/.f .t; T / �K/C P.t; g/;

from which the result follows. We have used that t 7! f .t; T / is a martingale and
the relation .x �K/C D x �K C .K � x/C. �

Hence, the price of a put option is:
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Corollary 9.19 (�). The time t D 0 price of a put option on an underlying asset
that follows a geometric model with fixed delivery is given as

e�rT .K˚.�d/ � f .0; T /˚.�.d C �/// ;

where d and � is as in Corollary 9.17.

Proof: Using the put call parity, we can easily rearrange and find that

P.0/ D C.0/ � e�rT .f .0; T / �K/

D e�rT .f .0; T /˚.d C �/ �K˚.d/ � f .0; T /CK/

D e�rT .K.1 � ˚.d// � f .0; T /.1 � ˚.d C �///

D e�rT .K˚.�d/ � f .0; T /˚.�.d C �/// ;

which was to be obtained. One could also do the same derivation as in Corollary
9.17. �

We end this section with remark on the pricing of options of contracts with de-
livery periods. It is, to best of my knowledge, not possible to derive analytic
expressions for options where the underlying commodity is delivered over a pe-
riod, when modelling the driver as a geometric equation. This follows since the
integral of the exponent of a general function

R
exp.f / is not generally known.

However, the payoff functions and the general setup will be much the same as in
the arithmetic case. That is

p .ıT1�tD
w
T2�T1g.�// D p .F.�; T1; T2// :

We can then take the discounted expectation of the representation above, but this
has (at least to my knowledge) to be done numerically.

9.2 Lévy Models
We may also study the case where the forward dynamics are driven by a Lévy
process instead of Wiener processes. Equation (75) then becomes

dg.t/ D
@

@x
g.t/ dt C �.t/ dL.t/: (93)

In (93), L is a zero mean and square integrable H -valued Lévy process, and � is
square integrable. In the same way as with the models driven by a Wiener process,
we can find (using the results on stochastic differential equations in Hilbert spaces)
show that

f .�/ D S.� � t /g.t/C

Z �

t

S.� � u/�.u/ dL.u/:
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However, in order to compute the price of a forward contract F.�; T1; T2/, we need
to compute ıT1��D

w
T2�T1f .�/. One can show in a similar fashion as earlier that

this is

ıT1��D
w
T2�T1f .�/ D ıT1�tD

w
T2�T1g.t/C

Z �

t

ıT1�uD
w
T2�T1�.u/ dL.u/:

However, in order to obtain more explicit representations, as with the earlier mod-
els, we need to introduce a class of functions known as subordinated Wiener pro-
cesses. One can then show thatZ �

t

ıT1�uD
w
T2�T1�.u/ dL.u/ D

Z �

t

Q�.u/ dL.u/;

where Q� is defined in exactly the same manner as previously. However, subordi-
nated Wiener processes are beyond the scope of this thesis. We will therefore refer
to Benth & Krühner [12, 11] for a more detailed discussion on such representa-
tions. When it comes to the issue of forward pricing, it is known that it is difficult
to obtain closed form formulas when working with Lévy driven processes. One
is therefore forced to use numerical methods, for example via Fourier techniques.
As numerical methods are beyond the scope of this thesis as well, we refer to
Benth, Benth & Koekebakker [10] and the references therein for a discussion on
how to use Fourier techniques to price options in energy and related markets.
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10 Estimating parameters and operators
In this section we will provide a discussion on the estimation of the parameters
needed to model financial derivatives. We start by establishing ways to estimate
the more simple parameters, like the mean, variance and correlation in a finite
dimensional setting, before we establish some results on covariance operator esti-
mation in Hilbert spaces.

10.1 Parameter estimation for finite dimensional derivatives
In finite dimensional spaces there are many methods of point estimation available
to us. For example, the mean and variance may be estimated using maximum
likelihood estimators. So if fXigniD1 are i.i.d normal random variables, then

O� D
1

n

nX
iD1

Xi :

It is known that O� is an unbiased estimator. That is, EŒ O�� D � (see e.g Devore &
Berk [30]). As O� is a sum of Gaussian random variables, O� is itself Gaussian. We
find easily that VarŒ O�� D �2=n.17. Hence O� � N.�; �

2

n
/.

The volatility � , used in the various variations of the Black-Scholes formula,
may also be estimated using maximum likelihood estimation, using an appropri-
ate amount of historical data.18 We find from any statistics textbook (e.g Devore
& Berk [30]) that the maximum likelihood estimator for the variance is given as

O�2 D
1

n

nX
iD1

.Xi � O�/
2
:

It can be shown that EŒ O�2� D n�1
n
�2, hence O�2 is biased. It is however consis-

tent.19 In order for O�2 to be unbiased, we need to replace the factor 1
n

with 1
n�1

,
meaning that the unbiased then becomes

O�2 D
1

n � 1

nX
iD1

.Xi � O�/
2
:

17On a sidenote, actually doing this computation has been shown to be quite difficult when the
data is correlated. However, calculating the error of O� is beyond the scope of this thesis, but is
arguably best calculated by the automated blocking method, proposed by Flyvebjerg & Petersen
[38], and proven by Jonsson [46]

18A much used alternative is by using the implied volatility instead of the historical volatility.
See e.g Beckers [8] and Mayhew [54].

19An estimator in consistent if it converges in probability to the true value of the parameter.
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Using the fact that if the sample is taking from a normal distribution, then .n�1/ O�2

�2

is chi squared distributed with n � 1 degrees of freedom, we get that

Var
�
.n � 1/ O�2

�2

�
D VarŒ�2n�1� D 2.n � 1/:

A simple rearrangement reveals VarŒ O�2� D 2�4

n�1
. We know that all maximum like-

lihood estimators are asymptotically normal. However, assuming that the market
data is normally distributed, is at best a gross oversimplification, so the distribu-
tional properties may not always hold. It was noted by Cizeau et al. [24] that the
volatility is best described being log-normal.

Staying in the same framework, another parameter of interest is the correlation.
This is especially import when dealing with spread options, see for example the
earlier discussion of Margrabe’s formula and its variations. The correlation � of
two stochastic variables X and Y is defined by

� D
Cov.X; Y /p

VarŒX�
p

VarŒY �
:

Since we are dealing with a sample of commodity prices, the sample correlation
coefficient rxy20 is defined by

rxy WD

Pn
iD1.xi � Nx/.yi � Ny/

.n � 1/sxsy

D

Pn
iD1.xi � Nx/.yi � Ny/qPn

iD1.xi � Nx/
2
Pn
iD1.yi � Ny/

2

D
n
Pn
iD1 xiyi �

�Pn
iD1 xi

� �Pn
iD1 yi

�q
n
Pn
iD1 x

2
i �

�Pn
iD1 xi

�2q
n
Pn
iD1 y

2
i �

�Pn
iD1 yi

�2 ; (94)

which is called the Pearson’s sample correlation coefficient.

Above, Nx; Ny denotes the sample means of X and Y respectively, and sx and sy are
the corrected sample standard deviations, i.e the same as (the corrected) O� above.

The expectation of rxy must be approximated, and it can be shown that this expec-
tation is given as EŒrxy� D � � �

1��2

2n
C :::. For a more comprehensive treatment

20The sample correlation coefficient is denoted rxy to avoid confusing it with the interest rate
which is denoted r .
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we refer to Fisher [36] and Zimmerman, Zumbo & Williams [76]. Following
Bowley [16] and Hotelling [43] we find that VarŒrxy� D

.1�r2xy/
2

n
.21

We can also find the density of rxy . Following Olkin & Pratt [63], the density is
given by

p.rxy/ D
2n�2

�� .n � 1/
.1 � �2/n=2.1 � r2/.n�3/=2

1X
kD0

� 2

�
nC k

2

�
.2�r/k

kŠ
:

We refer to Olkin & Pratt for the derivation. They also propose an unbiased es-
timator for rxy when the data follows a bivariate normal distribution. If we de-
note this estimator O�, they show that the asymptotic distribution of

p
n. O� � �/ is

N.0; .1 � �2/2/.

As a last trick in this short discussion on how to estimate the correlation coef-
ficient, we introduce the Fisher transform, introduced by Fisher [36, 37]. The
Fisher transformation states that if we define

z D atanh.rxy/ D
1

2
log.

1C rxy

1 � rxy
/;

then z is approximately normal with mean 1
2

log
�
1C�

1��

�
and variance 1

n�3
, for

n ¤ 3. Here n is the sample size and � is the true correlation coefficient. Fol-
lowing Bannör & Scherer [5] we find that the distribution of rxy is approximately
N.atanh.�0/; 1

n�3
/, where �0 denotes the the true correlation coefficient.

10.2 Estimating the covariance operator
As we have seen in the previous subsection, the prices of most contingent claims
in our framework depends on the covariance operatorQ. However, in most cases,
the covariance operator is not readily available to us, and must therefore be esti-
mated. We will therefore focus on the covariance operator in this section. The co-
variance operator in this chapter is the covariance operator for a class of processes
known as autoregressive Hilbertian processes of order 1. This section follows
chapters 3 and 4 in Bosq [15] closely. Some results are from those chapters, while
some are my own generalizations. We start by defining such processes.

21We note that there is some debate on this quantity. Several online resources state that
VarŒrxy � D .1��2/

n�2
. I have however not managed to find any printed sources making this statement.

See for example http://www.sjsu.edu/faculty/gerstman/StatPrimer/correlation.
pdf or http://strata.uga.edu/8370/lecturenotes/correlation.html.
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Definition 10.1 (Hilbert space valued white noise). A sequence � D f�n; n 2 Zg
of H -valued random variables is said to an H -valued white noise if

(i) 0 < EŒk�nk2� D �2 <1, EŒ�n� D 0, C� WD C�n do not depend on n

(ii) The sequence f�ngn2Z is pairwise orthogonal.

If condition (ii) is replaced with

(iii) f�ngn2Z is a sequence of i.i.d H -valued random variables,

then � is said to be a strong white noise.

We can now define autoregressive Hilbertian processes of order 1, which from
here on will be denotes ARH.1/-processes.

Definition 10.2 (ARH.1/-processes). A sequence X D fXn; n 2 Zg of H -
valued random variables is called an ARH.1/-process associated with .�; �; �/
if it is stationary and for n 2 Z

Xn � � D �.Xn�1 � �/C �n;

where � is an H -valued white noise, � 2 H and � is a continuous linear operator
from H to H .

Remark 10.3. We note that the ARH.1/-processes are a generalization of the
AR.1/-processes (autoregressive processes of order 1) used in (among others)
Benth, Benth & Koekebakker [10] to model temperature derivatives.

From here on, let H be a separable Hilbert space, and x 2 H . Also, we assume
that the following hold

Condition 10.4. LetX D fXn; n 2 Zg be a standardARH.1/-process associated
with .�; �/ where � is a strong white noise, and

E
�
kX0k

4
�
<1:

This condition will be referred to as condition A1 from here on.

Then, we may define the covariance operator Q as in Bosq [15] by

Q.x/ D EŒhX0; xiX0�: (95)

Now, if fXigniD1 are observed, then a natural estimator of Q is

OQn.x/ D
1

n

nX
iD1

hXi ; xiXi ; x 2 H: (96)

OQn is called an empirical covariance operator. It is unbiased in the sense that
EŒ OQn� D Q, where the expectation is taken in LHS.H/ which is the space of
Hilbert-Schmidt operators on H .
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Proposition 10.5. The operator OQn is a nuclear operator of finite range, meaning
that OQn is a Hilbert-Schmidt operator.

Proof: See Bosq [15], chapter 4 and the references therein. �

Moreover, if condition A1 holds and kX0k <1, then we have from Theorem 4.2
in Bosq that

P
�
kC � CnkLHS .H/ > �

�
� 4 exp

�
�

n�2

˛1 C ˇ1�

�
;

and consequently, by choosing � D A
� logn
n

�1=2
and A such that A2 > ˛Š C ˇ1A

we may apply the Borel-Cantelli lemma and conclude that

kCn � CkLHS .H/ D O

 s�
log n
n

�!
with probability 1.This result and some more basic results on the upper bounds of
kCn � CkLHS .H/ given various conditions on kX0k can be found in chapter 4 in
Bosq [15].

We will now turn our attention to estimation of the eigenelements of Q. If one is
interested in data analysis of an observed process, then estimation of eigenvalues
and eigenvectors is of great interest. These estimates may also be used to con-
struct consistent estimators for � and other means of statistical predictions. We
will from here on (in this subsection) use the notation from Bosq [15], however,
all new notations will be explained. The results are also from Bosq, unless stated
otherwise, and we will therefore refer to chapter 4.2 in the aforementioned mono-
graph for proofs.

Being a compact self-adjoint operator, we may express Q using the following
spectral decomposition [15][p. 102]

Q D

1X
jD1

�jvj ˝ vj ; (97)

where fvj g is a complete orthonormal system in H and f�j g is a sequence of real
numbers such that

P
j �j <1. We know from the spectral theorem that if these

are eigenvalues, then �j ! 0. We have

Qvj D �jvj :
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Bosq then introduces the natural estimators of these parameters, called the empir-
ical eigenelements defined by

Qnvjn D �jnvjn;

where f�jngj is a monotone decreasing sequence, and fvjng constitutes a complete
orthonormal system in H .

If the eigenvectors fvj g are known, the natural estimators of the eigenvalues are
defined as

O�jn D
1

n

nX
iD1

hXi ; vj i
2; (98)

where j; n � 1. These estimators are unbiased. We have

EŒ O�jn� D EŒhX0; vj i
2� D hQvj ; vj i D �j :

We note that the results regarding the asymptotics of the eigenvalues remain valid
also when using the estimator in (98). This is proven in Corollary 4.5 in Bosq
[15], but essentially is because

sup
j�1

j O�jn � �j j � kCn � CkLHS .H/:

The following results are from Bosq [15], and we need to introduce some notation.
Bosq uses an alternative definition of the Signum function, and therefore we have
that

sgn.x/ D

(
1; if x � 0
�1; otherwise

(99)

He also defines the following vectors vjn D sgnhvjn; vj ivj for j � 1. He intro-
duces this notation since vj and �vj are both eigenvectors corresponding to the
eigenvalue �j , it follows that vj is not well defined as a statistical parameter, not
even if the eigensubspace denoted Vj is one dimensional. Using this, we may
state some consistency results for the empirical eigenvalues. The following result
is Theorem 4.4 in Bosq, which gives us some bounds on the eigenvalues of the
covariance operator and its estimator. The proof in Bosq is very short, so I have
written a new one.

Theorem 10.6. Assume that condition A1 holds true. Then

lim sup
n!1

n E

"
sup
j�1

j�jn � �j j
2

#
�

X
h2Z

EŒhZ0; ZhiLHS .H/�; (100)
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and for all ˇ > 1
2

we have

4
p
n.log n/�ˇ sup

j�1

j�jn � �j j ! 0 (101)

with probability 1.

Additionally, if kX0k <1, then

sup
j�1

j�jn � �j j D O

 r
log n
n

!
(102)

with probability 1.

If one in addition assumes that EŒexp.
kX0k/2� < 1 and equations (4.30) and
(4.31) in Bosq [15], then it holds true that

sup
j�1

j�jn � �j j D O

�
.log n/5=2
p
n

�
(103)

with probability 1.

Proof: We have from Lemma 4.2 in Bosq that if l0 and l1 are compact linear
operators with spectral decomposition

lk D

1X
jD1

aj;kej;k ˝ fj;k; k D 0; 1;

then jaj;1 � aj;0j � kl1 � l0kL.H/. Using this result compared with the spectral
decomposition of Q given in (97) yields that

sup
j

j�jn � �j j � kCn � CkL.H/ � kCn � CkLHS .H/: (104)

It therefore follows that

lim sup
n!1

E

"
sup
j

j�jn � �j j
2

#
� lim sup

n!1
nE

�
kCn � Ck

2
LHS .H/

�
!

X
h2Z

EŒhZ0; ZhiLHS .H/�;

by Theorem 4.1. By the same argument it also holds that

4
p
n.log n/�ˇ sup

j

j�jn � �j j �
4
p
n.log n/�ˇkCn � CkLHS .H/ ! 0;
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hence 4
p
n.log n/�ˇ supj j�jn � �j j ! 0 as n!1. The last assertion follows in

a similar way. �

We may now focus on the estimation of the eigenvectors. In Lemma 4.3, Bosq
proves that for some aj defined as equations (4.45) and (4.46), we get that

kvjn � vjk � ajkCn � CkL.H/: (105)

This bound allows us to use the asymptotic results concerning kCn � CkL.H/, so
the following asymptotic result follows for the eigenvalues. The proof is again
mine.

Theorem 10.7. Assume that A1 holds true. If dimVj D 1, then we have

lim sup
n!1

EŒvjn � vj �
2
� a2j

X
h2Z

EŒhZ0; Zhi�LHS .H/; (106)

and for all ˇ > 1
2
,

4
p
n.log n/�ˇkvjn � vjk ! 0 (107)

with probability 1.

Additionally, if kX0k <1, then

kvjn � vjk D O

 r
log n
n

!
(108)

with probability 1.

Finally, if EŒexp.
kX0k/2� < 1 for some 
 > 0 and X satisfies the same
conditions as in the previous theorem, then

kvjn � vjk D O

�
.log n/5=2
p
n

�
(109)

with probability 1.

Proof: Applying equation (105), we find that

lim sup
n!1

EŒvjn � vj �
2
� lim sup

n!1
na2j E

�
kCn � Ck

2
�
;

hence
lim sup
n!1

EŒvjn � vj �
2
� a2j

X
h2Z

EŒhZ0; ZhiLHS .H/�:
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Similarly,

4
p
n.log n/�ˇ � 4

p
n.log n/�ˇkCn � CkLHS .H/ ! 0;

hence
4
p
n.log n/�ˇ ! 0:

The last assertion, follows (again) from a similar argument. �

With respect to j is it possible to ensure uniform convergence the eigenvectors?
This is possible for the eigenvalues, but clearly, eigenvectors are parameters who
are much more sensitive to variation of operators than what the eigenvalues are.
Bosq has the following result:

Corollary 10.8. Assume that �j ! 0, and define for k � 1,�k WD sup1�j�k.�j�
�jC1/

�1. Then, if fkng is a sequence of integers such that �kn D o.
p
n/ we get

E

"
sup

1�j�kn

kvjn � v
0
jn
k
2

#
! 0: (110)

Note that if there exists a convex function ' such that '.j / D �j for j � 1, then
�k D .�k � �kC1/

�1.

Moreover, if kX0k <1 and �kn D o
�q

n
logn

�
, then

sup
1�j�kn

kvjn � v
0
jn
k ! 0 (111)

with probability 1.

Proof: This is Corollary 4.3 in Bosq’s monograph. �

Given that Vj is not one dimensional, we may construct a result on the upper
bound for the eigenvector in the same manner as with the eigenvalues. If we let
˘b
a denote the orthogonal projector of the eigensubspace Vb

a , which is generated
by fva; :::; vbg, for va; :::; vb associated with the eigenvalue �a.D �b/, then for
some cj defined in Lemma 4.4 and j 2 fa; :::; bg we have that

kvjn �˘
b
a .vjn/k � cjkCn � CkL.H/: (112)

From this it is possible to construct results like the two previous results but where
dimVj > 1.
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Theorem 10.9 (�). Assume condition A1 holds. Then

lim sup
n!1

E
h
kvjn �˘

b
a .vjn/k

2
i
� c2j

X
h!Z

EŒhZ0; ZhiLHS .H/�;

and for all ˇ > 1
2
, it holds true that

4
p
n.log n/�ˇkvjn �˘

b
a .vjn/k ! 0

with probability 1.

Finally, ifX satisfies ˛k � ark for 0 � r � 1, ˛ > 0 and k � 1, and ifX satisfies
�Zj � ar

j for j � 1 and EŒexp.
kX0k2/� <1 for some 
 > 0, then

kvjn �˘
b
a .vjn/k D O

�
.log n/5=2
p
n

�
with probability 1.

Proof: Using equation (112) and (104) we find that kvjn � ˘
b
a .vjn/k � kCn �

CkLHS .H/. Hence

lim sup
n!1

kvjn �˘
b
a .vjn/k

2
� c2j lim sup

n!1
nkCn � Ck

2
LHS .H/

;

and therefore

lim sup
n!1

E
h
kvjn �˘

b
a .vjn/k

2
i
!

X
h2Z

EŒhZ0; ZhiLHS .H/�:

In the same manner we find that

4
p
n.log n/�ˇkvjn �˘

b
a .vjn/k � c

2
j
4
p
n.log n/�ˇkCn � CkLHS .H/;

which proves that

4
p
n.log n/�ˇkvjn �˘

b
a .vjn/k ! 0:

The last assertion follows from (104), and the results concerning the bound on
kCn � CkLHS .H/. �

We conclude this section with some results on the distributions of the estimators
described.
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Theorem 10.10. In LHS.H/ we have that

p
n.Cn � C/

D
! N1 � N.0; �1/; (113)

where �1 satisfies equation (4.88) in Bosq.

Proof: This is Corollary 4.6 in Bosq. �

Theorem 10.11. If A1 holds true and Vj is one dimensional, then

p
n.�jn � �j /

D
! N2 � N.0; �

2
j /; (114)

where �2j is given by (4.90) in Bosq. This result also holds true if we replace �jn
with O�jn .

Moreover,
p
n.vjn � v

0
jn
/

D
! N3 � N.0; �2/; (115)

where

�2 D

0@X
k¤j

.�j � �k/
�1vk ˝ vk

1A ŒN1.vj /�:
Proof: This is Theorem 4.10, Corollary 4.7 and Corollary 4.8 in Bosq. �

92



11 Model uncertainty
As mentioned in the introduction, there are several examples where market par-
ticipants has taken huge losses due to model uncertainty. In this chapter we will
define what model uncertainty is, some of the sources of model uncertainty and
some methods to measure and quantify this uncertainty.

11.1 Background on model uncertainty
We start by defining what model uncertainty is. This definition is from the frame-
work of Cont [25] and Bannör & Scherer [5].

Definition 11.1 (Model uncertainty). Let .˝;F ; P / be a probability space and
let Q be a family of equivalent martingale measures on .˝;F /, such that every
discounted asses price is aQ-martingale for allQ 2 Q. If jQj > 1we have model
uncertainty, where jQj denotes the cardinality of Q. Furthermore, denote by P

the set of all objective probability measures on ˝.

Definition 11.2 (Parameter uncertainty). Let fP�g�2� be a family of pairwise
different probability measures on .˝;F / such that the models .˝;F ;Ft ; P�/ are
arbitrage free for all � 2 �. The model faces parameter uncertainty if j�j > 1,
where j�j denotes the cardinality of �.

What are the sources of model uncertainty? One of the earliest papers on model
uncertainty was published by Derman [29], and in this paper he identifies several
sources contributing to model uncertainty in a financial context. These sources
were further generalized by Gupta, Reisinger & Whitley [67], and we summarize
them here:

1. Incorrect model: Mathematical models may fail to project the movements of
a stock (or some other commodity). Some factors may have been forgotten
or incorrectly modelled - for example modelling the volatility of the interest
rate as deterministic (or even constant) when they should have been stochas-
tic, or vice versa. Moreover, even though a model may perform well in a
calm market, in may become inappropriate when the markets face severe
instability, for example in connection with a financial crisis. Also, some
models assume no transaction costs (Black-Scholes-Merton for example),
and these models may break down in a market with transaction costs and
low liquidity.

2. Incorrect solution: Having the correct model does not help if the solution
is wrong. For example, Li’s copula formula [50] has a missing closing
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bracket22. Other similar sources may be faulty programming, either a actual
error in the software, as for example the R2009b release of Matlab, or that
the market participant forgot to declare a float point number the correct way.

3. Incorrect calibration: If the underlying process is not stationary, it may
cause the earlier parameter calibrations to become erroneous. The same
may happen if the solutions are unstable - which may lead to the choice
of wrong model. Furthermore, there may be a lack of robustness of the
solutions with respect to the modelling assumptions.

Example 11.3. If there is uncertainty on the value of the volatility of a stock,
we may get a dramatic increase of the price of a call option in the Black-Scholes
framework, since the option price is monotone with respect to its volatility. Using
that the spot price is S.t/ D 30, with strike price K D 25 and maturity time
T D 1, we find that the price may become six times greater than for an asset
whose volatility is zero!. It also has a dramatic effect on the delta hedge. We no-
tice that when � !1 the price of the call option tends to S.t/ and when � ! 0

the price tends to S.t/ �K. These properties will be proven later.
See figure 1 for a graphical explanation.

22The source of this statement is Gupta et al [67]. They also claim that billions of dollars have
been invested following this formula and its error.
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Figure 1: This figure shows how an increase in volatility dramatically alters the
price (figure (a)) and delta hedge (figure (b)) of a call option in the Black-Scholes
framework. The figures shows the price and the delta hedge as functions of the
underlying assets volatility.

Based on the example above, we see that we may prove the following model-free
elementary bounds on the price of call and put options.

Proposition 11.4. Let C.t/ and P.t/ denote the price of a call option and put
option respectively. Then C.t/ � S.t/ and P.t/ � Ke�rt , where the notation is
the same as in the Black-Scholes formula. Both prices are bounded below by 0.

Proof: Knowing the Black-Scholes formula is monotonic as function of its volatil-
ity (see appendix for proof), we must have that it reaches its maximum when the
volatility tends to infinity. We know from Black & Scholes [14] that

C.t/ D S.t/˚.d1/ �Ke
�rt˚.d2/

and
P.t/ D Ke�rt˚.�d2/ � S.t/˚.�d1/;

where all parameters are as they always are.
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We find that
lim
�!1

d1 D1; lim
�!1

d2 D �1;

which implies that ˚.d1/ tends to 1 and ˚.d2/ tends to 0. This shows that
C.t/ � S.t/. Reversing the signs proves the statement for the put options.
The payoff function for calls and puts are defined as pc.x/ D max.0; x �K/ and
pp.x/ D max.0;K � x/ respectively, from which the lower bound follows. �

Remark 11.5. We note that it can be found in Chance [21] that ifC.t/A andP.t/A

denotes the prices of American options, then the upper bounds are C.t/A � S.t/
and P.t/A � K. From this it is easy to prove that C.t/ � C.t/A and P.t/ �
P.t/A since e�rt � 1. Chance also shows that the price of an American call option
is always higher than its intrinsic value. That is, C.t/A � max.0; S.t/�K/. This
may be proved by simple no-arbitrage arguments. They also show that the lower
bound for a European call option and therefore also for an American call option
is max.0; S.t/ � Ke�rt/ rather than just zero. A reversal of the signs yields the
lower bounds for put options. We refer to Chance for a further discussion on such
elementary model-free bounds on vanilla options.23

11.2 Risk measures
In this subsection we will define the notion of risk measures. Measuring risk is
vital to the financial industry. As we will see, depending on the uncertainty on cer-
tain parameters, the price of illiquid derivatives may vary greatly, and thus leading
to mispriced derivatives, which in some extreme cases may lead to bankruptcies
and collapses. Risk measures are used to quantify the risk faced by an asset or
more generally a portfolio. Since they are expressed in monetary units, we will
also argue that they may be used to calculate the reserve needed to make a finan-
cial position acceptable. We will define both coherent and convex risk measures,
in the frameworks of several authors. Some commonly used measures of risk are
called Average value-at-risk and Expected shortfall24, which quantifies potential
extreme losses in the tail of of the distribution of the possible returns.
We give the definition of a coherent risk measure as defined by Artzner et al. [2].

23The findings in Chance’s paper, is completely consistent with the results in part three of Mar-
grabe’s [53] seminal 1978 paper, where he finds that a European type exchange option (spread
option) is "...worth more alive than dead" - implying that a trader should wait to the very last
minute to exercise the option, proving that the formula is also valid for American options. More-
over, the minimum value S.t/ �Ke�rt is greater than the value if exercised, which is S.t/ �K.
Which then implies that the option is worth more by simply selling it in the market!

24Also known as Conditional value-at-risk.
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Definition 11.6 (Coherent risk measure). Define the payoff of a claim as a bounded
and measurable function X W ˝ ! R defined on the set ˝ of market scenarios
and let E denote the set of payoffs. Then, a coherent risk measure is a map
� W E ! R such that:

1. Monotonicity: If a portfolio X dominates another portfolio Y in terms of
payoffs then it should be less risky. I.e, X � Y H) �.X/ � �.Y /.

2. Risk is measured in monetary units. Adding to a portfolio X a sum a in
numéraire reduces risk by a. That is, �.X C a/ D �.X/ � a.

3. Subadditivity, diversification reduces risk: �.X C Y / � �.X/C �.Y /.

4. Positive homogeneity, the risk of a position is proportional to its size: �.�X/ D
��.X/, for all � � 0.

The notion of coherent risk measures has been generalized by Föllmer & Schied
[40] into convex risk measures.

Definition 11.7 (Convex risk measure). Replace condition 3 and 4 with a convex-
ity condition. That is,

�.�X C .1 � �/Y / � ��.X/C .1 � �/�.Y /;

for all 0 � � � 1.

Remark 11.8. To gain some intuition, it is common to interpret � as follows: It
is stated in Cont [25] that a risk measure is defined in monetary units. In other
words, �.X/ is the amount of money that should be added to a portfolio in a
risk free way to make a financial position acceptable for a given risk tolerance
for a trader. The convexity condition is roughly speaking just a reflection of the
notion that diversification reduces risk. The second condition in the definition,
�.X C a/ D �.X/ � a, can be interpreted as follows. If one adds an amount a
to a portfolio in a risk free way, the capital requirement to make the portfolio’s
risk lie in the risk tolerance of the trader should be reduced by the same amount.
It is stated in the introduction of Artzner et al. [2] that "...these measures of risk
can be used as (extra) capital requirements to regulate the risk assumed by market
participants, traders, and insurance underwriters, as well as to allocate existing
capital".

Remark 11.9. It should be noted that there exists several different definitions of
a risk measure. The monotonicity definition used in this dissertation is actually
anti-monotone, meaning that X � Y H) �.Y / � �.X/, in order to be con-
sistent with notion of using risk measures to calculate the reserve needed to make

97



a financial position acceptable. There are some other authors, for example Rock-
afellar [68], that uses monotonicity in its more known form, i.e X � Y H)

�.X/ � �.Y /.

From remark 11.8, it is clear that since �.X/ represents the amount of money
needed to make a position acceptable, one must wish that �.X/ � 0. This leads to
the notion of the acceptance set of �. The acceptance set is the set of all positions
X such that this condition is satisfied. In mathematical notation this is:

Definition 11.10. Let .˝;F / be a measurable space. Let V denote the space of
all measures on .˝;F / and let X denote a linear space of functions X W ˝ ! R,
in which the constant functions are contained.

Definition 11.11 (Acceptance set of a risk measure). Any risk measure � W X !
R induces an acceptance set denoted A�, defined as

A� D fX 2 X W �.X/ � 0g : (116)

The above definition shows that given a risk measure, we can define an acceptance
set. The next definition shows that given an acceptance set, we can define a risk
measure on it.

Definition 11.12. Let A 2 X be a set of acceptable random variables, that is,
X 2 A H) �.X/ � 0. Then the set A has an associated risk measure �A

defined as follows:

�A.X/ D inffm 2 R W mCX 2 Ag: (117)

Then, it is possible to prove the following set of useful properties of the aforemen-
tioned risk measures. We note that the following theorem is a generalization of
Proposition 2 in Föllmer & Schied [40]. The generalization is done in Theorem
2.17 in Dahl [26].

Theorem 11.13. Let � be a convex risk measure with induced acceptance set A�.
Then

(i) �A� D �

(ii) A� is a nonempty convex set

(iii) If X 2 A� and there exists Y such that Y dominates X , then Y 2 A�

(iv) � is a coherent risk measure only if A� is a convex cone
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Conversely, let A be a nonempty convex subset of X. Let A be such that if X 2 A

and Y 2 X such that Y dominates X implying Y 2 A, then the following holds
true

(v) �A is a convex risk measure

(vi) A is a convex cone only if �A is a coherent risk measure

(vii) A � A�A
.

Proof: As (i), (ii) and (v)-(vii) is proven by Dahl [26], but she left the proofs
of properties (iii) and (iv) to the reader. We will therefore only prove these two
properties.

(iii) We have to prove that �.Y / � 0. We know that from the definition of a risk
measure that X � Y only if �.X/ � �.Y /. Hence, �.Y / � �.X/ � 0,
which implies that Y 2 A�.

(iv) Assume X; Y 2 A� and that ˛; ˇ � 0. Then, since � coherent, we have by
positive homogeneity and subadditivity that �.˛X/ D ˛�.X/ and �.X C
Y / � �.X/C �.Y /. And therefore, if �.X/ � 0 and �.Y / � 0, then

�.˛X C ˇY / � ˛�.X/C ˇ�.Y / � 0;

proving that if X; Y 2 A�, then ˛X C ˇY 2 A� for any ˛; ˇ � 0, which
proves that A� is a convex cone.

�

Convex risk measures have several representations. We will state two of them.

Theorem 11.14. Let � W X! R be a convex risk measure and V 2 V . Assume in
addition that � is lower semicontinuous. Then � D ���. Hence for each X 2 X

�.X/ D sup fhX; vi � ��.v/ W v 2 V g
D sup fhX; vi � ��.v/ W v 2 dom.��/g ;

where h�; �i is a pairing between X and V .

Proof: See Dahl Theorem 2.2.1 in [26] and the references therein. �

With this knowledge, we have from Theorem 5 Föllmer & Schied [40] that we
have the following representation of � by restricting ˝ to be finite dimensional.
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Theorem 11.15. Assume that X is the space of all real-valued functions on a finite
state space ˝, and denote by P the set of all probability measures on ˝. Then
� W X ! R is a convex risk measure if and only if there exists a penalty function
˛ W P ! R [ f1g such that

�.X/ D sup
Q2P

˚
EQ Œ�X� � ˛.Q/

	
; (118)

where EQŒ�� denotes the expectation with respect toQ 2 P . The function ˛ satis-
fies ˛.Q/ � ��.0/ for anyQ 2 P , and is both convex and lower semicontinuous
on P .

Proof: See Föllmer & Schied [40], Theorem 5. �

Remark 11.16. It is stated in Cont [25] and proven in Lüthi & Doege [31] that if
� is a coherent risk measure, then ˛ in (118) only takes the values 0 and infinity.
Zero if Q 2 P and infinity otherwise.

Remark 11.17. We can find in the proof of Föllmer & Schied’s Theorem 5 that
˛ can be expressed as

˛.Q/ D sup
X2A�

˚
EQŒ�X�

	
:

Dahl [26] has a different proof of the same result, and shows that ˛.Q/ D ��.�Q/
for all Q 2 P , where �� denotes the convex conjugate of �. The same result is
also found in Lüthi & Doege [31].

In the subsequent chapter, we will show that (118) holds in infinite dimensions
as well. The representations above, provide us with good understanding of risk
measures on the real line (extendable to the n-dimensional plane), in the sense
that any convex risk measure has the representation

�.X/ D sup
Q2P

(
EQŒ�X� � sup

X2A�

EŒ�X�

)
:

In [25], Cont defines an axiomatic setting for model uncertainty. Consider a mea-
surable space .˝;F / of market scenarios, without a reference probability. The
underlying assets is denoted as a measurable mapping S W ˝ ! D.Œ0; T �/, where
D.Œ0; T �/ denotes the space of càdlàg functions, and S.!/ denotes the trajectory
of the price in the market scenario ! 2 ˝. Any claim on S will be represented by
a random variableH . All assets and payoffs are assumed to be discounted values.

100



Definition 11.18 (Benchmark instruments). Options written on an instrument S
whose prices are observed on the market are called benchmark instruments or
benchmark options. Their prices are denoted by .C �i /i2I and the payoffs by
.Hi/i2I , where I denotes some index set. Since the markets are not complete,
a unique price is most often not available - instead we have a range25 of prices.
Hence C �i 2 ŒC

bid
i ; C ask

i � to accommodate for the bid-ask spread.

Moreover, it is also assumed that there exists a set of arbitrage-free pricing models
Q replicating the market observed prices of the benchmark, S.t/ is a martingale
under Q for each Q 2 Q and 0 � t � T , EQŒjHi j� < 1 and EQŒHi � D C �i .
The last condition may be relaxed in the way that EQŒHi � 2 ŒC

bid
i ; C ask

i �.

We can now state Cont’s axioms of what a measure on model uncertainty should
verify26

1. There is no model uncertainty on the value of a liquid option.

2. If an option can be (partially) hedged in a model free way, this should reduce
the model uncertainty. If the option can be totally hedged in a model free
way, then there is no model uncertainty on its value.

3. Liquid options may be used to hedge more complex instruments.

4. The model uncertainty on the value of a portfolio should be expressed in
monetary units and be normalized to make it comparable to the value of the
portfolio.

5. Diversification should lead to a decrease in the model uncertainty on the
value of a portfolio.

These requirements are then formalized mathematically. Let X be a contingent
claim, and consider a mapping � W C 7! Œ0;1�, where C denotes the set of
contingent claims with well-defined prices in all models. That is,

C D

(
H 2 FT ; sup

Q2Q

EQŒjH j� <1

)
:

We can now state the requirements above:

25known as the bid-ask spread, which is the amount of money by which the ask price exceeds
the bid price.

26This is only a short summary, we refer to Cont [25] chapter 3.3 for a more comprehensive
list.
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1. For all liquid benchmark instruments, model uncertainty reduces to the un-
certainty on the market value. Hence

�.Hi/ � jC
ask
i � C

bid
i j;

where i 2 I .

2. If we hedge on the underlying, then we get the following effect

�

 
X C

Z T

0

�.t/ dS.t/

!
D �.X/:

In particular, the value of an instrument that can be hedged in a model free
way, has no model uncertainty, meaning that ifQ.X D xC

R T
0
�.t/dS.t// D

1, then�.X/ D 0. Here, for a simple predictable process f�.t/; 0 � t � T g
representing a self-financing hedging strategy

R x
0
�.t/dt (whose discounted

value is a martingale under the measureQ) represents the gain from trading
from 0 to x.27

3. From the convexity of the map �, it follows that model uncertainty de-
creases though diversification. Let t 2 Œ0; 1�, then

�.tX1 C .1 � t /X2/ � t�.X1/C .1 � t /�.X2/:

4. Hedging with liquidly traded options:

�

 
X C

kX
iD1

uiHi

!
� �.X/ D

kX
iD1

jui.C
bid
i � C

ask
i /j;

and in particular, if X can be statically replicated by liquid options, then
the model uncertainty reduces to the uncertainty of the replications costs.
Meaning

�.X/ �

kX
iD1

jui jjC
bid
i ; C ask

i j:

27The integral
R T
0
�.t/ dS.t/ is defined to be the following: We can construct a stochastic

integral with respect to Q such that for each Q 2 Q there exists a process Gt .�/ such that
Gt .�/ D

R T
0
�.t/dS.t/ Q-almost surely. According to Cont, this is done in the framework of the

article Intégrales stochastiques par rapport à une famille de probabilités by Doléans-Dade.
We refer the interested reader to that article for more information.
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With these ingredients, Cont then constructs two measures of model uncertainty.
First a coherent measure, then a convex measure. These are both based on the
"worst case approach", which is an approach where assumes the largest difference
among the set of prices, hence the name.

For a payoff X 2 C , the upper and lower price bounds are defined by

N�.X/ WD sup
Q2Q

EQŒX� and �.X/ WD inf
Q2Q

EQŒX�: (119)

It is noted by Gupta et al [67] that the lower bound �.X/ is the conservative bid
price.

The mapping X 7! N�.�X/ then defines a coherent risk measure, and any of
the pricing models Q 2 Q will ensure that the value of X falls in the interval
Œ�.X�; N�.X/. Clearly, if there is no model uncertainty on the value of X , then
N�.X/ D �.X/. In Proposition 4.1, Cont [25] proves that for any benchmark
derivative, we have

C bid
i � �.Hi/ � N�.Hi/ � C

ask
i (120)

and �Q W C ! RC defined by

�Q.X/ WD N�.X/ � �.X/ (121)

constitutes a measure on model uncertainty verifying the properties outlined above.

We will now present some clarifying examples.

Example 11.19. Using the bounds in Proposition 11.4 and the subsequent re-
mark, we find that for a European call option, N�.X/ D S.t/ and �.X/ D
max.0; S.t/ � Ke�rt/. Hence S.t/ � max.0; S.t/ � Ke�rt/ is a measure for
the model uncertainty on a portfolio consisting of a single call option. �
Another intuitive example to gain some intuition, can be constructed as follows:

Example 11.20. Consider the price approximation on spread options where the
underlying follows a geometric Brownian motion, as done by Carmona & Dur-
rleman [17] or in section 5.6 in this thesis. In another article [18], Carmona &
Durrleman derive upper and lower bounds for this approximation. For example,
they prove in Proposition 11 that we have the following upper bound

˘ �min
�

min. N̆ .0/;˘ ı s.0//C ˛	.ˇ�0/;min. N̆ .��/;˘ ı t .0//C 
	.ı�0/;

min.˘ ı s.� /;˘ ı t . � �//C j�j	
�
ˇı�0

�

��
;

(122)
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and a lower bound Ŏ � ˘ given as

Ŏ D sup
�2R

�
sup
d2R

Œa˚.d C ˇ cos.� C �// � 
˚.d C ı cos.�// � �˚.d/�
�
:

(123)
If we denote the upper bound by N� and the lower bound by � , then by construction
the price˘ (or in many cases the approximation of the price) will lie in the interval
Œ�; N��. We refer to Carmona & Durrleman [18] for the notation. �

To illustrate even further, we give two more examples. The first one being on the
Black-Scholes formula for put options, and second on Margrabe’s formula.

Example 11.21. Consider a put option on a commodity S.t/, whose dynamics is
given as a geometric Brownian motion with non-constant, time-dependent volatil-
ity:

dS.t/ D rS.t/ dt C �i.t/S.t/ dW.t/: (124)

In (124), fW.t/; t � 0g is a Brownian motion and �i is a model dependent volatil-
ity, meaning that for each Qi 2 Q there exists a corresponding volatility �i.�/.

We know from [14] that the price of a call option option is

V.t; T;K; S.t/;˙/ D S.t/˚.d1/ �Ke
�r.T�t/˚.d2/; (125)

where ˙ is the implied volatility and

d1 D
log .S.t/=K/C

�
r C˙2=2

�
.T � t /

˙
p
T � t

d2 D d1 �˙ .T � t / :

From the put-call parity we can easily deduce that the fair arbitrage free price of
a put option is

P.t; T;K; S.t/;˙/ D �S.t/˚.�d1/CKe
�rt˚.�d2/; (126)

where all the quantities are the same as in the call option case.

A simple application of Itô’s formula reveals that the solution of (124) is

S.t/ D S.0/ exp
�
rt �

1

2

Z t

0

�2i .s/ ds C
Z t

0

�i.s/ dW.s/
�
: (127)

Define O�2 D 1
t

R t
0
�2i .s/ ds, and insert this into (127), and we get:

S.t/ D S.0/e.r�
1
2
O�2
i
.t//tC

R t
0 �i .s/ dW.s/: (128)
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We know that the solution of a geometric Brownian motion that generates the
Black & Scholes formula is

S.t/ D S.0/e.r�
1
2
˙2/tC˙W.t/; (129)

so by comparing (128) and (129) we see that the calibration condition is simply

1

t

Z t

0

�2i .s/ ds D ˙2: (130)

(130) has many solutions, one proposed by Cont is

�i.t/ D ai1Œ0;T1� C

s
T˙2 � T1a

2
i

T � T1
1.T1;T �; (131)

with ˙ < ai < ˙
p
T=T1 for i D 2; :::n: Set a1 D ˙ and let a D maxfaig and

a D minfaig.
We now consider a the problem of a put optionX with maturity T1 < T . Then, for
each i .˝;F ; fF gt ;Qi/ defines a complete market model. However, the delta of
the Black & Scholes formula depends on the volatility structure, and is therefore
not model free. Meaning that the delta-hedged position is almost surely zero with
respect to Qi , but not with respect to Qj for j ¤ i .

However, the Black & Scholes formula is monotonically increasing as a function
of its volatility (see Proposition 14.4 in the appendix), hence �.X/ D PBS.t; a/

and �.X/ D PBS.t; a/. �

Cont gives a similar, albeit shorter example in his paper regarding call options.

Numerically, we get that for call and put options with spot price S.t/ D 30, strike
price K D 25, interest rate r D 0 and maturity time T D 1 year, we find the
prices in figure 2.
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(b) Call option

Figure 2: This figure shows plots of a call option and put option as functions of
the volatility, with the worst case bid and ask prices in red and blue.

In the next example, we look at model uncertainty on Margrabe’s formula

Example 11.22. Let CM .t; �/ denote the price of a Margrabe style spread op-
tion at time t . In the same way as in the Black & Scholes formula, we find that
log.�.d1/=�.d2// D log.S2.0/=S1.0//, and therefore we can in a similar man-
ner to Proposition 14.4 show that Margrabe’s formula is monotone and increasing
as a function of � , where � WD

p
�21 C �

2
2 � 2�1�2�. We may therefore re-

peat the argument in the example above, and find that �.X/ D CM .t; a/ and
�.X/ D CM .t; a/. �

We can also redo Example 11.22 numerically, and also include the worst case
prices.

Example 11.23. If we consider the example above as a price where all parameters
are given, except the correlation, the parameter that in this case faces uncertainty,
we may construct the following numerical example: Let the stock prices be given
as S1.t/ D 80, S2.t/ D 90, �1 D 0:2, �2 D 0:4, interest rate r D 0 and time
to maturity T D 1 year, we find the evolution of the price as a function of the
correlation as described in figure 3 below.
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Figure 3: This figure shows the price of a spread option as a function of the
correlation. The worst case scenario prices are plotted in as well. This figure
shows clearly how big an impact uncertainty on the correlation parameter may
have on the price of the option.

�

We refer to Cont [25] for more examples.

Why is this interesting? We have that the quantities N�.X/, �.X/ and �Q.X/ can
be used to compute a margin (for an over-the-counter instrument), or to provision
for model uncertainty on the trade. Cont then shows that if the market price of a
derivative X is computed using one of the pricing models Q 2 Q, for example
Q1, then the margin for the model uncertainty is

N�.X/ � EQ1ŒX� � �Q.X/;

and in that way �Q constitutes an upper bound on the margin for model risk.
Furthermore, if �m.X/ is the value of an option, then the model risk ratio (Cont
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equation (4.14)) defined as

MR.X/ WD
�Q.X/

�m.X/

can be used to indicate how large the component of the model risk is of the risk
of a portfolio, and in that regard we can use the quantity �Q for validating mod-
els. He summarizes the discussion of the usefulness by stating that the approach
where we construct an interval Œ�.X/; N�.X/� is much more compatible with the
bid-ask spread, and therefore a much better measure of risk than other known risk
measures, for example superhedging and maximal arbitrage bounds.

There are, however, problems with these kinds of measures for model risk, in the
way that they require calibration with respect to some benchmark instruments,
which may prove to be difficult when dealing with complex payoff structures. By
relaxing the axioms of subadditivity and positive homogeneity and replacing them
with convexity, we may introduce convex risk measures. As we will see, the cali-
bration difficulties can be overcome by this change.

As noted earlier, any convex risk measure � has the representation

�.x/ D sup
P2P

f EŒX� � ˛.P /g ; (132)

where ˛ W P ! R is some penalty function, for which it is unclear what its finan-
cial interpretation should be. Moreover, equation (132) is not normalized, making
it difficult to compare it to market valued portfolios.

The main idea in the section on convex measures of model risk in Cont’s paper, is
that the penalty function ˛ is replaced by a penalty function, a function that penal-
izes each model by its pricing error kC ��EQŒH �k on the benchmark instruments.
Also, we do not require the models to be calibrated to replicate the option prices
on the benchmark instruments (or within a bid-ask spread). We define

��.X/ WD sup
Q2Q

f EQŒX� � kC
�
� kC � � EQŒX�kg (133)

and
��.X/ WD inf

Q2Q
f EQŒX�C kC

�
� EQŒX�kg: (134)

In the same way as with the coherent measure of model risk defined in (121),
we may treat (133) and (134) in a similar way. That is, we define a mapping
�� W C ! R by

��.X/ WD �
�.X/ � ��.X/ (135)
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for all X 2 C .

We note that different choice of norm in (133) and (134) leads to different meaures
in (135). For example, for any p > 0 we have

kC � � EQŒH �k
p
p D

X
i2I

jC �i � EQŒHi �j
p;

and
kC � � EQŒH �k1 D sup

i2I

jC �i � EQŒHi �j:

Then, we are able to state the main result in chapter 5 in Cont’s paper.

Proposition 11.24. Assume that the pricing error satisfies kC � � EQŒH �k �
jC �i � EQŒHi �j for all i 2 I and Q 2 Q, then

1. �� assigns to any benchmark option a value lower than its market price. I.e

��.Hi/ � C
�
i

for all i 2 I . Furthermore, the converse is true for ��.

2. If Q contains at least one model such that EQŒHi � D C
�
i for all i 2 I , then

there is no uncertainty, meaning that

��.Hi/ D �
�.Hi/ D C

�
i

for all i 2 I , and that for any payoff X 2 C

��.X/ � ��.X/:

3. If Q contains at least one model such that EQŒHi � D C �i for all i 2 I ,
then �� is a measure of model uncertainty that satisfies all the properties
outlined before.

4. If Q contains at least one model such that EQŒHi � D C �i for all i 2 I ,
then diversifying a position using long positions in benchmark derivatives
reduces model uncertainty

��

 
�0X C

nX
iD1

�iHi

!
� ��.X/;

provided that �k > 0 for all k and
P
i �i D 1.

In particular, any position that can be replicated by a convex combination
of available derivatives has no model uncertainty, i.e if X D

P
k �kHk,

then ��.X/ � 0.
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Proof: We refer to the Appendix in Cont [25]. �

Remark 11.25. The theorem above, is stated for markets where the bid price and
market price coincide. As this usually is not the case, Cont proposes a new risk
measure to accommodate for this. We get

��.X/ D sup
Q2Q

˚
EQŒX� � ˛0.Q/

	
� inf
Q2Q

˚
EQŒX� � a0.Q/

	
;

where the convex penalty function a0 is defined by

a0.Q/ D sup
i2I

˚
kmax

�
0; EQŒHi � � C

bid
i ; C ask

i � EQŒHi �
�

g:

Remark 11.26. How can one use this in practice? One may, given a set of bench-
mark options choose a pricing model denoted Q1 2 Q replicating the prices,
which can be calibrated to the prices of the options. Cont suggests using one-
dimensional diffusion models and the SABR model28 used for equity and index
derivatives and European options on interest rates respectively, which are (accord-
ing to Cont) easy to calibrate, but may suffer from being unrealistic when it comes
to future scenarios. One may then add the calibrated model Q1 to a sequence of
other pricing models fQkg

n
kD2

whose features are more realistic, but may be dif-
ficult to calibrate. With the approach outlined above, for k � 2, we do not need
to calibrate Qk, but instead penalize the pricing error. Then Q1 anchors �� in the
set of market prices, and one may then incorporate the Qk without heavy numer-
ical procedures. Moreover, The constraint of including one pricing model such
that EQŒHi � D C �i ensures that the market is arbitrage-free, which is the same s
requiring that �.0/ D 0.

11.3 Risk capturing functionals
The notion of using convex risk measures as defined above by Cont and many
others, has been further generalized by Bannör & Scherer [5], to what they call risk
capturing functionals. They introduce it mainly as a tool to quantify parameter
risk, but also in the more general setting of model risk. They state a list of three
properties that such a functional denoted � should satisfy:

28The SABR model describes a single forward F and its associated volatility � , whose dynam-
ics are given by

dF.t/ D �t .F.t//ˇ dW.t/
d�t D ˛�t dZ.t/;

where ˇ 2 Œ0; 1�, ˛ � 0 and W and Z are two correlated Wiener processes.
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Scherer.1 Order preservation: If there exists a model-free order, it should be preserved
when incorporating model uncertainty. That is, for contingent claims X; Y :

X.!/ � Y.!/ for all ! 2 ˝ H) � .X/ � � .Y /:

Scherer.2 Diversification: Diversification of model uncertainty should not be penal-
ized, meaning that a convex combination of two positions facing model
uncertainty should not have a higher price than a convex combination of the
individual prices. Hence

� .�X C .1 � �/Y / � �� .X/C .1 � �/� .Y /

must hold for any contingent claim X and for all 0 � � � 1.

Scherer.3 Model independence consistency: If a contingent claim X is consistently
priced under all models Q 2 Q, then no model uncertainty is present and
the model risk-captured price agrees with the risk-neutral price. Hence no
charge for model risk is added to the risk-neutral price. Meaning that

Q 7! EQŒX� is constant on Q H) � .X/ D EQŒX�:

We can now define the model risk capturing functionals as proposed by Bannör &
Scherer. The idea is basically that the model risk of a derivative X can by mea-
sured by applying a convex risk measure to the evaluation mapping.

Definition 11.27 (Model risk capturing functional). Let Q be a family of models
and let R be a probability measure on Q. Let A � L0.R/ be a vector space of
measurable functions containing the constants. Then denote

CA
WD

8<:X 2 \
Q2Q

L1.Q/ W �X W Q 7! EQŒX� 2 A

9=;
as the vector space of all A-regular claims being available for all models in the
model family Q. Furthermore, let � W A ! R be a normalized, law invariant
convex risk measure. Then the mapping � W CA ! R defined by

� .A/ WD �.�X/ D �.Q 7! EQŒX�/ (136)

is called a model risk capturing functional on the set of claims CA w.r.t. the
distributionR. � is called the generator of � and � .A/ is called the risk captured
ask price of X given the functional � .
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They state that canonical choices for A are the Lp.R/ spaces for p 2 Œ1;1�.

The idea behind using these tools, are according to Bannör & Sherer, that a trader
facing model risk should choose high enough ask prices and low enough bid prices
that the trader has some kind of buffer to prevent losses due to model risk. Also,
when buying derivatives, to account for model risk, one should set the bid prices
low enough to prevent losses when choosing a model.

One of the more popular convex risk measures, is the Average-Value-at-Risk, or
AVar for short. Value-at-Risk (VaR) is, according to Hull [44], "an attempt to
provide a single number summarizing the total risk in a portfolio of financial
assets", and we refer to his book for a precise definition. However, it is known
that VaR is not a coherent or convex risk measure (see e.g Dahl [26]). AVaR, on
the other hand, is a coherent law-invariant risk measure (see e.g Föllmer & Schied
[40]). AVar is defined as

AVaR˛.X/ WD
1

˛

Z ˛

0

VaRˇ .X/ dˇ; (137)

where X is integrable and 0 < ˛ � 1.

Using this, Bannör & Scherer introduce the Average-Value-at-Risk-induced risk
capturing functional.

Definition 11.28. Let Q be a family of martingale measures inducing model risk,
and let R be a distribution on Q. Consider the L1.R/-regular claims then de-
fine the Average-Value-at-Risk-induced risk capturing functional R � AVaR˛ W
CL1.R/ ! R defined as

R � AVaR˛.X/ WD AVaR˛.Q 7! EQŒX�/: (138)

R � AVaR˛ is then the risk capturing functional generated by the coherent risk
measure AVaR˛ for a given confidence level ˛ as defined above.

The functional R � AVaR˛ captures the model risk quantified by the distribution
R, and deals with the risk from the upper ˛-tail of the price distribution with
respect to different parameters by averaging over the tail prices. This is in contrast
to the regular Average-Value-at-Risk, which captures the risk within a specific
model. The Average-Value-at-Risk-induced risk capturing functionals generalizes
the framework of Cont (see his 2006 paper [25] or earlier chapters in this thesis)
in the following way. If we choose a distribution R on Q, the essential supremum
becomes the regular supremum, and therefore

R � AVaR0.X/ D sup
Q2Q

EQŒX� D N�.X/:
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holds, implying that if we have uncertainty on at most countably many models,
Cont’s worst case framework agrees with Bannör & Scherer’s Average-Value-at-
Risk-induced risk capturing functional in the sense that Cont uses the extreme
points of R�AVaR, and the method does then allow us to interpolate between
these methods, and they therefore state that R�AVaR provides prices with extra
charge for model uncertainty, but being more conservative than expected values
and less conservative than a supremum. Furthermore, Bannör & Scherer then in-
troduce the notion of entropic-induced risk-capturing functionals, which are valid
for claims X 2 L1.P /. This is an alternative generalization of Cont’s frame-
work, which may be used to account for risk associated with large trades which
may bear risk due to liquidity effects or other factors. This is due to the fact that
the entropic risk measure is not positive homogeneous. We refer to Bannör &
Scherer [5] for details. They also provide several results on the convergence and
asymptotics of the risk-captured prices.

We end this section with a brief review of a case-study, done on a European Mar-
grabe type exchange option, which is found in chapter 5.1 in Bannör & Scherer
[5]. The set-up is for the most part the same as in chapter 5.1 in this thesis, but
with the addition of a non-zero interest rate and drift term in the dynamics of
the stocks. None of these things matter, the end result becomes the same any-
way.29 Then, they assume all parameters are known, except for the correlation
�, which they estimate via Pearson’s correlation coefficient, defined in equation
(94)30. Then they apply the Fisher transform [36, 37] as we did in section 10.1,
and they find that for n� 3

arctanh.�/ � N
�

arctanh.�0/;
1

n � 3

�
;

in order to numerically calculate the prices. Above, �0 denotes the true correla-
tion.They then apply the risk-capturing functionals and find the following

29This is of course only true for situations of the Margrabe kind, and not when we are dealing
with forward contracts and tap into the realm of Black-76.

30Note that is missing two
p
n in the denominator in the estimator for �. The estimator in (94)

is the correct.
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Figure 4: This figure shows AVaR-induced bid-ask spreads and entropic-induced
bid-ask spreads together with the real price, expected price and the worst case
bid-ask spreads for different significance levels. This figure is Fig. 3 in Bannör &
Scherers’s article Capturing parameter risk with convex risk measures, European
Actuarial Journal, 2013, pp 97-132, Springer Nature. Used with permission from
Springer.

We see in figure 4, that on the left, they have plotted the AVaR-induced bid-ask
spreads for different significance levels. We see that a higher significance level
indicates a larger bid-ask spread. On the right they have done the same but with
entropic-induced bid-ask prices. And again, a higher risk aversion parameter �,
leads to a bigger bid-ask spread. We also see that our findings about Cont’s worst
case approach to the bid-ask spread is much wider than other approaches.

11.4 Extension to other spaces
The notion of coherent and convex risk measures, as defined by Artzner et al.
[2] and Föllmer & Schied [40] among others, is usually only defined for random
variables X 2 L1. That is, the space of essentially bounded random variables.
However, there is an increasing number of articles being written about the exten-
sions to other spaces, most notably Lp, the space of random variables with finite
p-moment. Notable examples of authors are Filipović & Svindland [35], Kaina
& Rüschendorf [47] and Ruszczyński & Shapiro [70, 69]. Filipović & Svindland
show by example how to construct the risk measures Average-Value-at-Risk and
entropic risk measures and Lp, as well as an Lp-extension of the worst case risk
measure and several other examples.

In a similar fashion, we will define the theory of risk measures on the Filipović
space Hw .
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12 Risk measures on infinite dimensional spaces
We will now have a look at how we can expand the idea of risk measures to infinite
dimensional spaces. We start by some background materials on risk measures
where the random variables takes values in R.

12.1 Background materials and a representation result
We start by introducing some notation and some definitions.

Definition 12.1 (Notation). In this chapter, .˝;F / denotes a measurable space,
V denotes the set of all measures on .˝;F / and X denotes a linear space of
random variables X W ˝ ! R in which the constant functions are contained.

Then, in the same way as in the finite dimensional case, we may define acceptable
random variables and the acceptance set in terms of the function �.

Definition 12.2 (Acceptable random variable). A random variable X is said to be
acceptable if �.X/ � 0. X is said to unacceptable if �.X/ > 0. We may therefore
define the acceptance set A� as

A� D fX 2 X W �.X/ � 0g : (139)

We then introduce some topological conditions, which needs to be fulfilled in
order to get the representations from theorems 11.14 and 11.15. They are, paired
spaces, compatible topologies and pairings as a bilinear form between two spaces.

Definition 12.3 (Pairing). Let Y and V be two linear spaces. A pairing of Y and
V is a bilinear form h�; �i on Y � V , where for all y 2 Y � f0g there exists some
v 2 V such that hy; vi ¤ 0.

Definition 12.4 (Compatible topology). A topology on Y is compatible with the
pairing if it is a locally convex topology such that the linear function h�; vi is con-
tinuous for all v 2 V . Moreover, any continuous linear function on Y can be
written on this form for some v 2 V .

A compatible topology on V is defined in a similar fashion.

Definition 12.5 (Paired spaces). Two linear spaces Y and V are said to be paired
spaces if there exists a pairing between Y and V and the two spaces have compat-
ible topologies with respect to the pairing.

We illustrate the point of paired spaces with an example on Lp spaces, where we
show that Lp and Lq are paired spaces proved that 1=p C 1=q D 1.
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Example 12.6. Any vector space V together with its dual space V � and the bilin-
ear map hx; f i WD f .x/, where x 2 V and f 2 V � form a dual pair. Consider
for example the Lp spaces, and define p and q such that 1

p
C

1
q
D 1. Let f 2 Lp

then we know from Riesz Representation Theorem (see e.g McDonald & Weiss
[55] Theorem 13.12) that there exists a unique g 2 Lq such that

l.f / D hf; gi D

Z
A

fg d�

and klkp� D kgkq. Therefore, whenever 1
p
C
1
q
D 1,Lp andLq are paired spaces.

We end this section with three definitions that we need to impose on the function
� in order to get the representation in theorems 11.14 and 11.15. Then a final
definition on the convex conjugate of a function.

Definition 12.7 (Convex function). Let C � Y be a convex set, and let x; y 2 C
and � 2 Œ0; 1�. A function f W C ! R is a convex function if

f .�x C .1 � �/y/ � �f .x/C .1 � �/f .y/: (140)

Definition 12.8 (Proper function). Let A be a subset of a linear space X , and
let f W A ! R� be a function. f is a proper function if dom.f / ¤ ; and
f .x/ > �1 for all x 2 A.

Definition 12.9 (Lower semicontinuous function). Let A � Y be a set, and let
f W A! R� be a function. f is lower semicontinuous (often abbreviated as lsc)
if for each r 2 R such that r < f .x0/ there exists a neighborhood U of x0 such
that f .u/ > r for all u 2 U . Equivalently, f is lower semicontinuous if

lim inf
x!x0

f .x/ � f .x0/:

Definition 12.10 (Convex conjugate). Let Y and V be paired spaces, and let f W
Y ! R� be a function. Then the convex conjugate f � W V ! R� is defined by

f �.v/ D sup fhy; vi � f .y/ W y 2 Y g :

The biconjugate f �� W Y ! R� is defined as

f ��.y/ D sup fhy; vi � f �.y/ W v 2 V g :

Theorem 12.11 (Infinite representation of risk measures). Let X be a vector space
paired with the linear space V as defined above. Let � W X! R be a proper, lower
semicontinuous and convex function. We have from Theorem 1.7.9 in Dahl [26]
that

�.X/ D sup fhX; vi � ��.v/ W v 2 dom.��/g :

Then
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1. � is monotone if and only if every v 2 dom.��/ are such that v � 0.

2. � is translation invariant if and only if v.˝/ D �1 for all v 2 dom.��/.

Hence if � is a convex risk measure (i.e monotonicity and translation invariance
holds), then v 2 dom.��/ implies that Q WD �v 2 P and

�.X/ D sup
Q2P

fhX;�Qi � ��.�Q/g

D sup
Q2P

fh�X;Qi � ��.�Q/g

D sup
Q2P

˚
EQŒ�X� � ˛.Q/

	
;

where ˛.Q/ D ��.�Q/ is a penalty function, and the pairing h�; �i is viewed as
an expectation.

We end this example with an example, where X is an Lp space, and allows us to
revisit the previous example and illustrate Theorem 12.11. The extension X D
Lp.˝;A; P / is briefly discussed in the next chapter. This example is loosely
based on Dahl [26] and Filipović & Svindland [35].

Example 12.12. Let X D Lp.˝;F ; P /, and let V be the vector space of all
signed measures on Lp.P /, and let V � V be the set of signed measures v such
that for all X 2 Lp.P / Z

˝

jX j djvj <1:

By the Jordan decomposition theorem, we can find a decomposition of v such that
v D vp � v

0, where vp � P .

We want to construct a pairing ofLp.P / and .Lp.P //�. We claim that this pairing
is given by .X;Z/ 7! EŒXZ�, for X 2 Lp.P / and Z 2 .Lp.P //�. We know
from Theorem 11, p. 79 in Lax [49] that .Lp.P //� D Lq.P /, where q D p

p�1
, or

equivalently 1=pC 1=q D 1. See the footnote31 for a proof. Clearly this quantity
is bilinear, so it suffices to check that it is well defined. Since vp � P , we have
by the Radon-Nikodym theorem that

vp.A/ D

Z
A

f dP;

for all A 2 F . We then need to check that f 2 Lq.P /. We get that
R
A
jf jq dP DR

A
jf jq�1 djvpj < 1, so we get that any element in Lq.P / may be represented

311=p C 1=q D 1 implies that 1=q D .p � 1/=p. A simple rearranging yields the desired
result.
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by the Radon-Nikodym derivative with respect to P . Therefore, for X 2 Lp.˝/
and Z 2 Lq.˝/ we find that

hX;Zi D

Z
A

XZ dP D
Z
A

Xf dP;

where we in the last equality expressed Z 2 Lq.˝/ by the Radon-Nikodym
derivative as described earlier. By substituting dP D dvp

f
, we find thatZ

A

Xf dP D
Z
A

X dvp �
Z
A

jX j djvpj <1;

by the assumptions on the space NV . We therefore find that EŒXZ� is a well-
defined pairing of Lp.P / and V D Lq.˝/. And therefore, a convex risk measure
on Lp.P / has the representation

sup
P2P

�Z
˝

�X dvp � ��.P /
�
:

12.2 Risk measures on the Filipović spaces F p

In this section, our aim is to define risk measures on the Filipović space, as de-
scribed in Filipović [34] and Benth & Krühner [11, 12]. As we have seen in the
section about infinite dimensional pricing of financial derivatives, we evaluate a
function g 2 Hw at a point, and the pricing algorithms gives us a number in
R. It will therefore make sense to define risk measures on this space. In or-
der to pursue generality, we expand the theory about Hw to a more general class
of function spaces, which I have decided to call the Filipović spaces, denoted as
F p.˝;A; �/, where Hw is a special case.

12.2.1 .�/ The construction the Filipović spaces F p

In this section, we will expand the Filipović space and define risk measures on
this expansion.

Definition 12.13. Let p 2 .0;1/. The set ofHw;p-integrable functions is defined
to be

Hw;p.R;A; �/ D
n
f W RC ! RC W f is absolutely continuous andZ

RC

jf 0jpw d� <1
o
:

We define the norm as

kf kpw;p D jf .0/j
p
C

�Z
RC

jf 0jpw d�
�
:
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We note that the w;p-integrable functions are exactly those functions for which
kf kw;p <1.

Definition 12.14. Two functions f; g 2 Hw;p are equivalent if f D g �-almost
everywhere. This then becomes

f � g () f D g � � almost everywhere:

We can easily prove that � above is an equivalence relation.

Lemma 12.15. It is clear that � is reflexive and symmetric. The transitivity then
follows since

kf � hkw;p D kf � g C g � hkw;p � kf � gkw;h C kg � hkw;p D 0;

which concludes the proof.

We denote the equivalence class of a function f 2 Hw;p.RC;A; �/ by Œf �, sim-
ilarly as the way the Lp-spaces are defined.

We can now defined the Filipović spaces, denoted F p.˝;A; �/.

Definition 12.16 (The Filipović spaces F p). Let 1 � p < 1, and let � be the
equivalence relation defined as above. We define F p.˝;A; �/ to be the quotient
space Hw;p= �. Meaning that

F p.˝;A; �/ D fŒf � W f 2 Hw;p.˝;A; �/g

We see that the Filipović spaces are linear spaces. We can now prove that F p is a
separable Banach space for all 1 � p <1.

Theorem 12.17 (�). F p is a separable Banach space for all 1 � p <1.

Proof: It is known that a product of Banach spaces is again a Banach space, and a
product of separable spaces is again separable. Therefore, the space RC�Lp.RC/

equipped with the norm
�
j � jp C k � k

p

Lp.RC/

�1=p
is a separable Banach space. We

will show that F p is isometrically isomorphic to RC � Lp.RC/. Similarly to the
proof of Theorem 5.1.1 in Filipović [34], define the linear operator T W F p !
RC � Lp by

Tf D
�
f .0/; f 0w1=p

�
:

We claim that T is an isometrical isomorphism. We start by proving that T is an
isometry. From the Filipović -norm we find that

kf � gkpw;p D jf .0/ � g.0/j
p
C

Z
RC

jf 0.x/C g0.x/jpw.x/ dx:
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In a similar fashion, we find that

kTf � TgkR�Lp.RC/ D kT .f � g/kRC�Lp.RC/

D jf .0/ � g.0/jp C

Z
RC

jf 0.x/C g0.x/jpw.x/ dx

D kf � gkpw;p;

which proves that T is an isometry. We note that kx � yk is the metric induced
by the norms of the respective spaces.

In order for the linear operator T to become an isometric isomorphism, we have
to prove that it is a continuous bijection. The continuity criterion can be proven
in two ways. The easiest method is just by observing that each component of
T is continuous by definition. The other follows by knowing that all isome-
tries S W X ! Y are continuous. The proof is seen by simply choosing ı D
� and then dX.x; y/ D dY .f .x/; f .y// we have that if dX.x; y/ < ı, then
dY .f .x/; f .y// < �.

We will now prove that T is a bijection. We do this by proving the existence of its
inverse operator T �1. We claim that the operator T �1 W RC � L2.RC/ given by

T �1.x; f /.u/ D x C

Z u

0

f 0.�/w�1=p.�/ d�

is the inverse operator of T . We see that

T �1Tf .x/ D T �1
��
f .0/; f 0w1=p

��
D f .0/C

Z x

0

f 0.�/w1=p.�/w�1=p.�/ d�

D f .0/C

Z x

0

f 0.�/ d�

D f .x/;

where the least equality follows from Lemma 8.34, since it is exactly the defini-
tion of the weak derivative. We therefore find that T �1T D Id, which proves that
T is a bijection, and therefore an isometric isomorphism. It therefore follows that
for all 1 � p < 1 F p.RC/ is isometrically isomorphic to RC � Lp.RC/, from
which it follows that they are separable Banach spaces. �

From this it follows as a corollary that F 2.RC/ is a separable Hilbert space. This
follows immediately from Theorem 12.17, or it can be proven directly, as done by
Filipović in Theorem 5.1.1 in Filipović [34].
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12.2.2 Risk measures on F p

As we have seen in earlier sections, the infinite representations of the contingent
claims have all taken in a function g from the Filipović space Hw , and then after
evaluating at a point x, we get a real number. We therefore claim that all these
representations live in the space F 2.RC/. We therefore define as in the previous
section X D F p.RC/. That is, X is the set of functions X W F p.RC/ ! R.
We will therefore define the convex risk measures on the Filipović spaces in the
following manner:

Definition 12.18. A function � W F p.RC/ ! R [ f1g is a convex risk measure
on F p.RC/ if

(i) �.0/ <1

(ii) The measure � is convex, meaning that for all 0 � � � 1 and X; Y 2
F p.RC/

�.�X C .1 � �/Y / � ��.X/C .1 � �/�.Y /

(iii) The measure � is cash-invariant], meaning that form 2 R and 1 2 F p.RC/,
where 1 is the function that is constantly 1

�.X Cm1/ D �.X/ �m

(iv) The measure � is monotone in the sense that ifX; Y 2 F p.RC/ andX � Y ,
then �.X/ � �.Y /.

Remark 12.19. We note that in the same way as earlier, that if � is positive ho-
mogeneous in the sense that �.tX/ D t�.X/ for all t � 0, then � is a coherent
risk measure on F p.RC/.

We may also define the acceptance set associated with �:

Definition 12.20. The set of acceptable risky positions is denoted A�, and is de-
fined as

A� D fX 2 F
p.RC/ W �.X/ � 0g:

We therefore see that this definition is more or less the same as the acceptance
set defined in (116). And likewise, if A � F p.RC/ is a set of acceptable ran-
dom variables (that is, the members of A�) then the set A has an associated risk
measure �A W F

p.RC/! R [ f1g defined as

�A D inf
˚
m 2 R W mCX 2 A�

	
:

Theorem 11.13 about the properties of � as in the earlier case does not assume
anything about the space on which the measures operate, and therefore
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Theorem 12.21. Let � be a convex risk measure with induced acceptance set A�.
Then

(i) �A� D �

(ii) A� is a nonempty convex set

(iii) If X 2 A� and there exists Y 2 F p.RC/ such that Y dominates X , then
Y 2 A�

(iv) � is a coherent risk measure only if A� is a convex cone

Conversely, let A be a nonempty convex subset of Hw . Let A be such that if
X 2 A and Y 2 F p.RC/ such that Y dominates X implying Y 2 A, then the
following holds true

(v) �A is a convex risk measure

(vi) A is a convex cone only if �A is a coherent risk measure

(vii) A � A�A
.

Moreover, if we let V denote the linear space of all finite signed measures on
F p.RC/, and let V � V be defined to set of v 2 V such that

R
RC
jX j djvj <1.

If we let F p.RC/ and V have topologies such that they become paired spaces. We
have shown that all normed spaces carry a locally convex topology, so we assume
that this topology makes the pairing h�; vi continuous. We therefore get from The-
orem 1.7.9 in Dahl [26] that �.X/ D supfhX; vi � ��.v/ W v 2 dom.��/g. Then,
assuming that � is convex, lower semicontinuous and proper, we can represent �
as

�.X/ D sup
Q2P

fhX;�Qi � ��.�Q/g

D sup
Q2P

f EQŒ�X� � ˛.Q/g;

where ˛.Q/ D ��.�Q/ as in Theorem 12.11 and the pairing h�; �i is viewed as an
expectation.
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13 Discussion

13.1 How option prices depend on the correlation/covariance
In the classical Black & Scholes model where one wants to price an option on
a single asset, the biggest concern is the volatility - being the only quantity not
given directly by the market. However, there exists many methods to estimate
the historical volatility, for example by annualizing the standard deviation of daily
log-returns, or by reverse engineering by using option prices from the market and
then using that information to find the volatility. The latter approach is somewhat
useless for more exotic options, since they often are sold "over the counter" and
are in general not available (or liquid enough) to be seen directly in the market.
It has been shown by Lindström [51] that if we were able to observe the mar-
ket filtration Ft , then we would be able to estimate the volatility without errors,
which in turn shows that the Black-Scholes model does not have any internal in-
consistencies using given Ft . The market filtration is, however, not available to
the market participants, and using the observable filtration, some internal incon-
sistencies can be found.

We will in the next example show the first method of volatility estimation, on
market data from the S&P500 index.

Example 13.1. The market has by convention 252 trading days, so using this
going back one year from today’s date (August 16, 2019) we go back to August
17, 2018. The logreturns are defined as x.t/ D log.S.i C 1//� log.S.i//, where
S.i/ denotes the share price on the i’th day. We then find that � D 16:18%
annually. And since the closing price was $2,847.60, we may appeal to the Black
& Scholes formula [14] to find the price for plain vanilla options on this index for
any strike price. �

With this in mind, we will now have a look at the easiest (at least in a market
sense) spread option, whose prices are given by Margrabe’s formula [53]. It is
known that the Black & Scholes formula is monotonically increasing as a function
of its volatility (see Appendix 2 for a quick proof). We have seen earlier that if we
define � D

p
�21 C �

2
2 � 2�1�2�, then Margrabe’s formula possesses the same

property.

Example 13.2. Let s1 D 10 and s2 D 12 in your favorite currency. Let the volatil-
ities be constant and be set to �1 D 10% and �2 D 20%, and let the spread option
have a strike time of half a year. Then, if we want to price the option as a function
of the correlation, we find that
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Figure 5: Plot showing the price of a simple spread option as a function of the
correlation �.
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13.2 Conclusion and further studies
We have in this thesis shown that in the same way as in the n-dimensional case, the
option prices depend on the volatility structure, or to be more precise, the covari-
ance structure of the underlying. And as mentioned earlier, since the true convari-
ance operator is not given to us, we have provided results allowing market practi-
tioners to estimate this operator. We have also given a thorough discussion on the
notion of model risk, with emphasis on convex risk measures and risk capturing
functionals. Since the Filipović space has proven itself to be quite useful in the
stochastic modelling of electricity futures (and related), one object of further study
would be to properly and rigorously define and prove more results on risk mea-
sures on the Filipović space, much in the same way as Filipović & Svindland [35].
It would also be interesting to further develop the notion of risk capturing func-
tionals, and extending the work already done on this topic to the Filipović space,
or more generally separable Hilbert spaces (or even Banach spaces). Another ex-
ample of an interesting result, would be to prove, like in the n-dimensional case,
results on the monotonicity of the option prices in Hilbert spaces with respect to
the covariance structure. I have been working on this, but to my knowledge it
requires the Gateaux derivative, which is beyond the scope of this thesis (which is
already long enough).

However, some other projects springs to mind.

13.3 Stochastic and rough volatility for infinite dimensional rep-
resentations of commodity pricing

One thing I saw during the literature hunt for my thesis, was that all of the litera-
ture I found on the subject of infinite dimensional pricing and hedging, assumed
that the volatility of the driving noise should be modelled as a deterministic func-
tion. There is already some literature on this when it comes to interest rates and
the theory of fixed income markets, but to my knowledge none when it comes to
commodity markets. One interesting area of research, would be to find conditions
under which we can state and prove "nice" closed form formulas for infinite di-
mensional contingent claims, like in the case where the volatility is deterministic.
Or, if that is not possible, prove (or at least substantiate) that numerical modelling
has to be used32. Another interesting area would the study models with rough

32It has to be said that for all closed form expressions in finance, numerical results must be used,
since it is impossible to derive an analytical expression for the cumulative distribution function for
the normal distribution.

125



volatility. We may consider a simple case. We define

Y.t/ D y0 C

Z t

0

.t � s/˛�1Y.s/dW.s/; (141)

where the solution t 7! Y.t/ 2 C ˛, where C ˛ is a Hölder space, in the sense that
x 2 C ˛ if and only if

kxk˛ D sup
s;t2Œ0;T �

jx.t/ � x.s/j

jt � sj˛
<1;

where k � k˛ is a semi-norm.

We may then define the volatility v as

v.t/ D Y.t/˝ Y.t/:

We note that we have to use methods from Rough path theory to solve equation
(141), see Friz & Hairer [41] for an introduction. The idea is the same as with
the stochastic volatility. That is, proving pricing theorems for contingent claims
in infinite dimensional spaces.

13.4 Infinite dimensional risk measures and backward stochas-
tic differential equations

It is known that it is possible to obtain a large set of risk measures by using an
operator given by the solution of a backward stochastic differential equation (ab-
breviated as BSDE), known as the g-expectation, where g is the driver of the
BSDE. BSDEs are an important class of equations in mathematical finance, most
often used to price derivatives. It can be explained by considering a plain Euro-
pean option. In the Black-Scholes-Merton framework, in order to price such an
option, we need to find a self-financing strategy that replicates the payoff of the
option. Then, we know the dynamics of the strategy and its final condition. And
we see that this corresponds to a BSDE. We refer to Karoui, Peng & Quenez [32]
for a further discussion on this topic.

Under some given assumptions, mainly that g is Lipschitz and in L2 and starts in
0, the BSDE

�dY.t/ D g .t; Y.t/; Z.t// dt �Z.t/dW.t/

Y.T / D �; (142)

126



has a unique square integrable adapted solution for each � 2 L2.Ft/. By a so-
lution, we mean a pair .Y.t/; Z.t// that solved (142) for 0 � t � T . Moreover,
if the driver g is convex and Y.X/ D �X , then it is possible to show that the
solution Y.t/ of (142) is a convex risk measure, see for example Theorem 3.2 in
Barrieu & El Karoui [6] and the references therein.

This theory could be extended to infinite dimensional spaces, and in particular (if
possible) to the Filipović space. One could also introduce topics from stochastic
optimal control, since it is shown in Karoui, Peng & Quenez [32] that the duality
between the hedging problem and the pricing problem corresponds to a general
duality between BSDEs and control problems.
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14 Appendices

14.1 Appendix 1 - Frequently used notation
N;Z;Q;R;C sets of natural numbers, integers, rational numbers, real numbers
and complex numbers

RC the set of all non-negative real numbers

R � f0g the set of all real numbers sans zero

Œa; b�; .a; c/ closed and open intervalsT
A;
S
A intersection and union

A � B Cartesian product of A and B

B.˝/ Borel � -algebra of Borel sets of ˝

�.A/, � -algebra generated by A

.˝;A; �/ measure space

.˝;F ; P / probability space

EŒX�;VarŒX� expectation and variance of X

i.i.d independent and identically distributed

Cov.X; Y /;Corr.X; Y / covariance and correlation

N.�; �2/ normal distribution with mean � and variance �2

fFtg filtration

1.A/ indicator function over some set A

Tr trace

h�; �i inner product
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� end of proof

� end of example

a.s, a.e almost surely, almost everywhere

log x natural logarithm of x

.x �K/C maximum function. Equivalent to max.0; x �K/

CS Cauchy-Schwarz

BS, B76 Black-Scholes, Black-76

EŒX jFt � conditional expectation of X given FtPn
kD1˙k sum over ˙k . Notice the difference! ˙ will be used frequently as both

a sum and variable, the only difference will be the slanting.

OC.X;X�/ D OC.X/ the smallest � -algebra on X with respect to which all the
functionals x� 2 X� are measurable. Sometimes called the cylindrical � -algebra
of X .
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14.2 Appendix 2 - Basic results on mathematical finance
The next two results are two basic results from mathematical finance. We refer to
Black & Scholes [14] or Benth [9] for proofs of the unproven results.

Lemma 14.1. The put call parity for European call and put options is

P put.t/ D P call.t/ � S.t/CKe�r.T�t/: (143)

Lemma 14.2 (Black & Scholes formula for put options). The price of a European
put option is

P put.t/ D �S.t/˚.�d1/CKe
�rt˚.�d2/: (144)

Lemma 14.3.
�.d1/S.t/ D �.d2/Ke

�r.T�t/ (145)

Proof:

log.�.d1// � log.�.d2// D log
�

�.d1/

�.d1 � �
p
T � t /

�
D log

�
e�

1
2
d21 e

1
2
.d1��

p
T�t/2

�
D �

1

2
d 21 C

1

2

�
d 21 C �

2.T � t / � 2�
p
T � td1

�
D
�2

2
.T � t / � �d1

p
T � t

D � log
�
S.t/

K

�
� r.T � t /

Hence
�.d1/

�.d2/
D e�r.T�t/

K

S.t/
;

which in turn implies that

S.t/�.d1/ D Ke
�r.T�t/�.d2/;

which is what we wanted to prove. �

Proposition 14.4. The Black-Scholes formula is monotone as a function of the
volatility.

Proof: Without loss of generality, we do the proof for the formula for put options,
which is here denoted as P.t/. We need to prove that the derivative of P with
respect to � is strictly positive.
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@

@�
P.t/ D

@

@�

�
�S.t/˚.�d1/CKe

�r.T�t/˚.�d2/
�

D
@

@�

�
�S.t/.1 � ˚.d1//CKe

�r.T�t/.1 � ˚.d2//
�

D S.t/�.d1/
@d1

@�
�Ke�r.T�t/�.d2/

@d2

@�

D S.t/�.d1/
@d1

@�
�Ke. � r.T � t //�.d2/.

@d1

@�
�
p
T � t /

D
@d1

@�

0@S.t/�.d1/ �Ke�r.T�t/�.d2/„ ƒ‚ …
D0 by (145)

1ACKe�r.T�t/�.d2/pT � t
D Ke�r.T�t/�.d2/

p
T � t > 0:;

which proves the claim.
�

Proposition 14.5. Let B.t/ be a Brownian motion. It then holds true that

EŒB.t/B.s/� D min.t; s/;

from which it follows that Cov.B.t/; B.s// D min.t; s/.

Proof: Without loss of generality, we assume that t � s.

EŒBtBs� D EŒ.Bt � Bs C Bs/Bs�

D EŒ.Bt � Bs/Bs C B
2
s �

D s;

since .Bt � Bs/ is independent of Bs by the independent increment property of
Wiener processes.

The same is true if we assume s � t , from which the result follows. The result
about covariance follows directly from the definition of the covariance

Cov.Bt ; Bs/ D EŒBtBs� � EŒBt � EŒBs�:

�
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14.3 Appendix 3 - Background on normed spaces and topolog-
ical spaces

Definition 14.6 (Topology). Let ˝ be a set. A topology � on ˝ is a collection of
subsets such that

1. ; and ˝ are in � .

2. Countable unions of any subcollection of � is in � .

3. Finite intersections of elements in � is in � .

The pair .˝; �/ is called a topological space.

Definition 14.7 (Basis for a topology). Let ˝ be a set. A basis for a topology on
˝ is a collection B of subsets of ˝ such that

1. For each x 2 ˝, there exists at least one basis element B 2 B containing
x.

2. If x 2 B1\B2, then there exists a basis element B3 2 B containing x such
that B3 � B1 \ B2.

Definition 14.8 (Metric). Let ˝ be a set. A metric on ˝ is a function d W ˝ �
˝ ! Œ0;1/ such that for x; y; z 2 ˝

1. d.x; y/ � 0.

2. d.x; y/ D d.y; x/.

3. d.x; y/ � d.x; z/C d.z; y/.

4. d.x; y/ D 0 if and only if x D y.

Definition 14.9 (Norm). Let X be a linear space over C or R. A norm on X is a
function k � k W X ! Œ0;1/ such that

1. kx C yk � kxk C kyk.

2. k�xk D j�jkxk.

3. kxk D 0 if and only if x D 0.

All these definitions (and many more) can be found in [45] and [60].

The next definition is from McDonald and Weiss [55], and gives an alternative
definition of a locally convex topological vector space.
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Definition 14.10 (Locally Convex Topological Linear Space). A topological lin-
ear space ˝ is said to be locally convex if there exists a collection W of convex
open subsets, each containing 0 such that

1. W1; W2 2 W H) W3 � W1 \W2 for some W3 2 W .

2. W 2 W and x 2 W H) there exists a W1 2 W such that x CW1 � W .

3. W 2 W H) there exists a W1 2 W such that W1 CW1 � W .

4. W 2 W H) there exists a W1 2 W and an � > 0 such that ˛W1 � W

whenever j˛j < �.

5. fx CW W x 2 ˝;W 2 Wg is a basis for the open sets of ˝.
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14.4 Appendix 4 - Table of proofs
This appendix is a list of my contributions.

My result, statement and proof Others result, but my proof Modified versions of
others proofs

Lemma 5.4 Corollary 5.13 Proposition 5.5
Theorem 5.8 Proposition 8.4 Proposition 5.6
Theorem 5.9 Lemma 8.6 Theorem 8.36
Theorem5.10 Theorem 8.9 Theorem 8.37
Theorem5.11 Proposition 8.17 Lemma 14.333

Lemma 8.3 Lemma 8.18 Proposition 14.434

Proposition 8.10 Proposition 8.21
Corollary 8.11 Lemma 8.35
Corollary 9.10 Lemma 9.1
Corollary 9.11 Theorem 9.435

Proposition 9.12 Lemma 9.5
Theorem 9.13 Lemma 9.6
Proposition 9.18 Lemma 9.8
Corollary 9.19 Theorem 9.9
Theorem 10.9 Lemma 9.15
Proposition 11.4 Theorem 9.1636

Theorem 12.17 Corollary 9.17
Theorem 10.6
Theorem 10.7
Theorem 11.13

36Given as an exercise at UiO. Result assumed to be folklore.
36Given as an exercise at UiO. Assumed to be folklore as well.
36The proof in the cited article had some inconsistencies, I have therefore made a new proof.
36Somewhate modified statement.
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14.5 Appendix 5 - List of figures
1. Figure 1a: the price of a call option as a function of its volatility. Black

Scholes model.

2. Figure 1b: the delta-hedge of a call option as a function of its volatility.

3. Figure 2a: price of a call option when there is uncertainty on the volatility.
Plot with worst-case prices.

4. Figure 2b: price of a put option when there is uncertainty on the volatility.
Plot with worst-case prices.

5. Figure 3: price of a spread option when there is uncertainty on the correla-
tion.

6. Figure 4: figure showing AVaR-induced bid-ask spreads and entropic-induced
bid-ask spreads together with the real price, expected price and the worst
case bid-ask spreads for different significance levels. This figure is Fig. 3
in Bannör & Scherers’s article Capturing parameter risk with convex risk
measures, European Actuarial Journal, 2013, pp 97-132, Springer Nature.
Permission of use is kindly given by Springer.

7. Figure 5 Price of a spread option as a function of the correlation.
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