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Abstract

We present a computationally effective toy model of the visual system of a
biological brain, that can easily be extended to add more realism. The model
takes images as input – representing visual stimuli from the eye – and outputs an
estimation of the cortical LFP (local field potential) that is generated as cortex
processes the input. We run a large number of simulations, each stimulated by a
randomized sequence of 10 images, and use the output data to train deep learning
algorithms (CNN and LSTM) to classify pieces of the LFP by input image.

The classifiers reach accuracies of 66 and 65%, averaged across all 10 inputs,
suggesting that the LFP indeed contain information about the stimulus that a
brain is processing. They are also more likely to confuse the LFPs of images that
qualitatively seem visually similar. We observe that a trained CNN transfers
better to test data that deviates slightly from the training set, but that the
LSTM seems marginally better at handling noise.





Sammendrag

Vi presenterer en beregningseffektiv, forenklet modell av synssystemet i en
biologisk hjerne, som enkelt kan utvides til å inkludere mer realisme. Modellen
simulerer visuell stimuli fra øyet ved å ta bilder som input, og beregner s̊a det
lokale elektriske signalet (LFP) som oppst̊ar i hjernen n̊ar synssenteret prosesserer
informasjonen. Vi kjører et stort antall simuleringer, hvor hver tar en sekvens
med 10 bilder i tilfeldig rekkefølge som input, og bruker den produserte dataen
til å trene opp kunstig intelligens (AI) til å klassifisere LFP-signalene etter input-
bilde.

Til dette bruker vi to populære maskinlæringsalgoritmer, kjent som CNN
og LSTM. Algoritmene oppn̊ar presisjonsverdier p̊a henholdsvis 66 og 65%,
gjennomsnittlig over alle de 10 bildene, noe som tyder p̊a at det elektriske feltet
absolutt inneholder informasjon om stimulien som en hjerne prosesserer. De er
ogs̊a mer tilbøyelig til å blande LFP-er fra bilder som kvalitativt ligner visuelt.
Vi observerer at et trent CNN gjør det bedre p̊a data som skiller seg litt fra
treningsdataen, men at et LSTM ser ut til å h̊andtere støy noe bedre.
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Chapter 1

Introduction

In this master thesis we study the brain – the tool with which the universe
observes itself. Even though it might be the most complex thing that we know
of, we are gradually understanding more and more about how it works. Ever
since Luigi Galvani experimented on frogs in the 1700s we have known about its
electrical nature [30], and from Alan Hodkin and Andrew Huxley’s Nobel Price
winning work in the 1950s [19] we have begun to grasp the mathematics behind
it.

The field of brain research, known as neuroscience, is a junction where
many different fields of science meet and cooperate. Physics, biology, chemistry,
psychology and many others are all applied in various ways to do research in the
field. The past decades’ advances in computational technology have spawned the
subfield computational neuroscience, a field that promises further theoretical
understanding of the brain by letting neuroscientists incorporate simulations and
mathematical modelling in their work.

Findings in neuroscience have given rise to the field of deep learning, an
area of artificial intelligence (AI) that attempts to mimic the brain’s way of
processing information in computer programs. This is another field that has
benefited greatly from increased access to computing power, and AI algorithms
such as artificial neural networks (ANNs) have now surpassed human level skill
in many areas, like reading facial cues [24] and playing Chess [35].

The topic of this thesis involves both AI and computational neuroscience.
Here we build a simulation of an experiment that scientists have performed using
biological brains [13]. More specifically, we simulate a very simplified model of
the part of the brain involved with vision, known as the visual system. The
model represents an eye that forwards optical information into the visual cortex,
via the lateral geniculate nucleus (LGN).

The simulation then calculates the electric field, known as the the LFP
(local field potential), that results from the electrical activity in cortex as the
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2 Introduction Chapter 1

information is processed. Finally we will feed this signal into an AI to see if it
can predict the visual stimulus using only the information found in the LFP. An
illustration of the whole experiment is seen in figure 1.1.

Prediction:
Pyramid 91% certain
Tree 4% certain
Temple 1% certain

...

Visual cortex

Eye

Light

LGN

Retinal neurons
(rods, cones and
ganglion cells)

Electrode

AI

LFP

Figure 1.1: An illustration of the experiment. We simulate the visual
system of a brain that is looking at an image. The optical information
is filtered through a part of the brain called the LGN (Lateral Geniculate
Nucleus) before it is sent to the visual cortex. An artificial intelligence then
reads the recording of the LFP in cortex, and tries to predict what the image
was. The clusters of circles represent distinct populations of neurons, and
the arrows represent the direction of propagation of the information.
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1.1 Motivation

The use of mathematical modeling in combination with experiments is one of
humanity’s most powerful inventions. It is what allowed the field of physics
to become the powerhouse of science that it became during the 19th and 20th
century, which directly lead to the existence of most of the amazing technology
around us today. Mathematical modeling in biology have for a long time been an
almost impossible endeavour due to the sheer size and complexity of biological
systems, but with modern computing powers those days have come to an end.
To paraphrase the distinguished physicist Geoffrey West, author of Scale [41,40]:

Mathematized physics was the science of the 19th and 20th
century. Mathematized biology will be the science of the 21st century.

Any scientific theory is built on a set of assumptions and ideas about
mechanisms, and by defining those in mathematical terms they become more
explicit and more accessible for validation. If you can simulate a mathematical
model that represents the phenomenon you are trying to understand, and
compare data from it with data from experiments, then you can often know
precisely where your theory diverges from reality and thus which assumptions
were false. Or vice versa, if the simulation closely agrees with experiments,
then that is a major indication that you have understood the mechanisms of
the phenomenon correctly. This is the general motivation behind computational
methods in neuroscience and any other scientific field.

The motivation behind this thesis specifically is to explore the capacity of the
LFP to provide information about what a brain is doing. As we will discuss later,
the LFP is a very compact representation of the activity of a brain region, and
it is interesting to study how much information one can extract from this signal
only.

Another interesting question to ask – after having trained the AI to predict
external stimuli from the LFPs generated by simulations – is if we can then
use the same AI to predict similar stimuli from LFPs generated by biological
brains. If this would turn out to be the case, it would strongly imply that the
simulation was a very good representation of the real thing, and hence that we
had understood the system well. This is far beyond the scope of this thesis, but
is an extension of this project that could possibly be done in a foreseeable future.

1.2 Goal and objectives

The goal of this project – in more technical terms – is to train AIs to predict
the external stimuli to a simulated network of biological neurons, by looking at
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the LFP that this network generates. We use a set of novel ways to simplify the
calculations of the LFP signals, and the goal is partly to see how well we can
reach our objective using these simplifications.

We begin by carefully verifying that that the model behaves as expected,
using very simple external stimuli, and gradually make it more complex until we
finally go on to stimulate it with a series of 10 images. We then test and compare
how different types of algorithms are able to classify the data.

1.3 Additional notes

1.3.1 Notation and abbreviations

The tables below contains an overview of the notation and abbreviations we will
use throughout this text.

Notation
a Column vector
aij Element j of vector i
A Matrix operator

Abbreviations
LFP Local field potential
LGN Lateral geniculate nucleus
LIF Leaky integrate and fire (a neuron model)
AI Artificial intelligence
ANN Artificial neural network
DNN Dense neural network
CNN Convolutional neural network
LSTM Long short-term memory
PCA Principal component analysis
PSD Power spectrum density
DOG Difference-of-Gaussian
Presynaptic The neuron whose axon the synapse is a terminal of
Postsynaptic The neuron that the synapse in question connects to
L2 distance Eucledian difference between two points or vectors
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1.3.2 Note about the term ”neural network”

An important thing to keep in mind is that throughout this text we will talk
about two very different forms of networks of neurons that it is necessary to
distinguish between. The whole text is divided along this distinction, in the way
that the background and method sections are split into part I and II, one for
each of the two network types.

1. When use the term neuron network simulation, we are talking about
simulating the dynamics of a biological network of neurons with all (or at
least some) of their physical features. This is in other words a simulation
of a physical system which happens to consist of biological neurons.

2. When use the term artificial neural networks, we are referring to a
certain set of algorithms used for optimization, i.e. artificial intelligence.
These algorithms are inspired by how biological neuron networks work, but
their goal is solely to solve a problem and in no way to capture the physics
of real neurons.

The first of these algorithms is used to generate LFP signals, and the second
one is used to classify them.





Chapter 2

Background I - Biological neural
networks

In this chapter we go briefly through the physiology and physics of biological
brains.

2.1 The neuron

Brains are made up of neurons – microscopic cells that communicate with each
other using electrical signals. An average human brain consists of about 100
billion [2] of these units, and the number of connections is even more astronomical.
A diagram of a neuron is shown in figure 2.1.

The neuron is covered by a membrane (figure 2.2 A) whose permeability
varies for the different types of ions that are dissolved in the liquid medium
inside the brain. Across the membrane we find ionic pumps – protein structures
that force specific types of ions in or out of the cell [37]. This creates an ion
concentration difference between the inside and the outside of the cell, which sets
up an electric potential across the membrane. This is known as the membrane
potential and is the basis for the electrical mechanics of the neuron [37].

If the membrane potential reaches a certain voltage level, it will trigger the
membrane machinery to generate a sudden voltage increase, followed by a rapid
decrease – i.e. a spike – which will propagate itself along the membrane. This is
known as an action potential (figure 2.2 B) and is the signal that the neurons
use to communicate with each other [37]. Neurons receive signals from other
neurons on their dendrites, thin pipelines (covered by the same membrane)
which can be thought of as their antennas. If a dendrite receives sufficiently
many incomming spikes in a short period of time, it will itself generate a spike
that will propagate inwards to the soma – the cell body of the neuron – where

7
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Soma

Axon

Nucleus

Synaptic terminals

Dendrites

Figure 2.1: Illustration of a neuron. The cell body can range in size from
4 to 100 µm in diameter. Figure credit: www.brainfacts.org.

it will temporarily add to its membrane potential. If enough incomming signals
push the voltage in the soma past the threshold, a spike will be generated and
travel down the neuron’s axon – a pipeline that ends in several terminals which
connect it to the dendrites of other neurons. These terminals are called synapses,
and when a spike reaches one it will activate the synapse and cause it to release
neurotransmitters – chemicals that react with the membrane of other neurons
by causing an in- or outflux of ions. As this affects the membrane voltage of
other cells, this is how neurons are able to communicate.

Synapses that cause an increase in the postsynaptic potential are known
as excitatory synapses, and the ones that lower it are known as inhibitory
synapses. Individual neurons are commonly covered by synapses from thousands
of other neurons, and if enough of these activate at around the same time they
will cause the neuron to produce an action potential, following the mechanisms
explained here.

There are many different types of neurons that differ in their mechanics and
their function in the body. Some are triggered by external factors, for example
tiny changes in air pressure, light of certain wavelengths or exposure to particular
molecules. These are the ones responsible for our sensory perceptions [2] and can
be found all over the body. Other neurons are connected to muscles and govern
locomotion, reflexes and similar. But most neurons are simply one of many in
large networks and work simply to react to others and get others to react to
them. This is the topic of the next section.
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Figure 2.2: A) Illustration of the neuronal membrane. The lipid layer
isolates the intracellular space from the extracellular space. Ion channels
let specific types of ions diffuse through, and the pumps spend energy to
pump ions in or out against the concentration gradient. B) The membrane
potential of a neuron as it reaches the threshold value. This spike shape is
what is known as the action potential. Figure adapted from [37].

2.2 Networks of neurons

When thousands and thousands of neurons are connected to each other, they
form a system that can process information. The way this works is actually
somewhat possible to understand:

If a specific subset of the neurons start firing for any reason, say for example
that they recieve signals from touch sensors on the arm, they will trigger some
other set of neurons to fire. This will then trigger certain others, which will
trigger others again, and so on. It should seem reasonable that varying the
connections and synapse strenghts will produce different such patterns of firing.
In other words, by tuning the connections in a certain way, this domino of neural
firings can be tuned such that it eventually reaches and triggers the specific set
of neurons that control the muscles in the arm, such that it prompts them to
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Figure 2.3: Network of biological neurons in vivo. These specific ones
are of a type called principal neurons from the basolateral amygdala. The
neurons are stained with the Golgi-method and then photographed through
a microscope. Image credit: The Bergstrom Lab.

remove the arm from whatever it touched.

The more neurons there are, the more different ways there are to tune the
network and thus the more complex the information processing can become. The
brain with its billions of neurons works as a centralized system where different
types of information about the external and internal environment are processed
and combined in order to create extremely complex actions and reactions. The
process needs to be highly complex, because the exact same input from the touch
sensors on the arm might require very different responses in various contexts. For
example, if the arm mentioned above was already intentionally reaching towards
whatever it was that activated its touch sensors, then the desired output might
be to pick up the object instead of just quickly removing the arm from it upon
touch, which on the other hand might have been warranted if the simulus came
as a surprise. Thus the information about that prior intention need to somehow
be combined with the sense of touch in order to create a different outcome, and
this is some of what the brain is doing.

The above mechanism is undoubtedly a very simplified explanation of how
the brain works, but this simple, straightforward principle is what has been used
to create artificial intelligence algorithms that are now superhuman in several
fields. That does clearly indicate that this understanding is onto something,
even though it might not be the only principle in working. There is for example
evidence of other types of information processing going on [34].
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Na+ K+

Extracellular space

Intracellular space

ENa EK

RNa RK

Vm Isyn

Figure 2.4: Illustration of how a patch of membrane is modeled as an
electrical circuit. V is the membrane potential, ENa and ENa are the
electromotive force for the Na and K ion channels and RNa and RK are
the channel resistances. I(t) is the synaptic input current to this patch of
membrane. Figure adapted from [37].

2.3 Mathematical modeling of neurons

When making mathematical models we must decide upon some level of
abstraction. There are many possible such levels when modeling neurons, and
which one to pick will depend on several things – what the goal of the model
is; how much computer power we have access to; how much time we have; how
realistic the model needs to be, et cetera. We can think of it as a spectrum of
abstraction where as we move upwards, we give up detail and realism for easier
implementation and faster computation, and vice versa.

The simulation that we build in this project combines three different levels
of abstraction. For simulating the early visual system we use a very simple
rate-based model (see section 2.3.3 and 4.2). Then we use a slightly more
detailed but still very simple model – a spiking neural network (section 2.3.1)
– for simulating the activity of LGN and cortex. Lastly we use a more detailed
one – a multicompartment model (section 2.3.2) – in order to calculate the LFP
signals. More details on how and why we do it this way is found in chapter 4.
The three models mentioned here are described in the next few subsections.

A general feature across most neuron models is to use the observation that the
membrane potential is physically analogous to the voltage across a capacitor.
One can then use appropriate equations from electromagnetism to describe its
dynamics. The rate of change of the membrane potential V (t) at time t can then
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be expressed in terms of the ionic current I(t) flowing in or out of the membrane,
i.e.

Cm
dV (t)

dt
= I(t), (2.1)

where Cm is the membrane capacitance. This property is used for two of the
neuron models used in this project.

2.3.1 Neuron model I – The LIF point neuron

The first model to mention is the leaky integrate-and-fire (LIF) point neuron
model, which is the type we will use for the simulation of the cortical spiking
activity. LIF models are one of the simplest ways to describe a neuron
mathematically, and are often referred to as point neurons as their equations
have no spatial dimension in them. The LIF neuron is modeled as a single RC
circuit [37] through the equation

τm
dV (t)

dt
= −V (t) + V0 +RmI(t)(t), (2.2)

where Rm is the membrane resistance, τm the membrane time constant, I(t) the
synaptic input current at time t and V0 is the membrane resting potential –
meaning its equilibrium potential when the synaptic input current is zero. Since
we can choose reference points arbitrarily, we will for practical purposes set V0 = 0
for the whole of this project.

Synapses are here included implicitly through the postsynaptic membranial
currents that they generate when activated. The synapses of the LIF network
will follow a delta function, in accordance with [1], expressed through

RmI(t)(t) = τmJ
∑
k

δ(t− tks − τdelay), (2.3)

where tks are the spike times of the particular neuron and τdelay a variable that
represents the time it takes for the action potential to propagate down the axon.
In other words, if a neuron fires at time t, its synapses are activated at time
t + τdelay. The parameter J defines the strength of the synapse, which is
the amount of voltage change that a single spike induces in the postsynaptic
membrane potential. This means that J > 0 for excitatory synapses and J < 0
for inhibitory ones.
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Implementing spikes

In order to include spiking activity into a network of LIF models, a threshold
potential Vthr is chosen. Whenever V (t) reaches this value for a given neuron,
the cell will generate a spike and activate all its synapses. After spiking it will
reset to a lower value Vreset, and will be insensitive to new synaptic input for a
time period of τref, known as the refractory period. This means that any input
current I(t) that is large enough to satisfy the criteria

RmI(t) > Vthr, (2.4)

will eventually make the neuron spike if it goes on for a sufficiently long time.
If the input current also lasts after the refractory period is ended, the neuron
will start building up potential again and generate another spike. This will keep
going on as long as the input current lasts, and the larger I(t) is, the quicker
V (t) will keep reaching Vthr and hence the higher the neuron’s firing rate will be.

If we let a neuron receive excitatory input from a total of C synapses, in the
form of spikes at constant rate ν, then we can state the synaptic input current
as

RmI(t) = CJντm. (2.5)

By substituting this into equation 2.4, we can solve for ν in order to get the
threshold rate

νthr = Vthr/(JCτm) , (2.6)

as defined in [1].

A neuron that receives incomming spikes from at a higher rate than νthr will
itself produce spikes. This parameter is therefore useful as a reference point for
describing the amount of external input that the network receives, which we come
back to in chapter 4.

2.3.2 Neuron model II – The multicompartment model

The second neuron model that we use in this project is the passive
multicompartment model [37], which is a model that includes much of the physics
that we need in order to calculate the LFP. The idea behind it is to model the
neuron as a set of cylindric compartments where each cylinder has assigned to
it a differential equation that describes the membrane potential of that specific
part. As illustrated in figure 2.5, each compartment is modeled as an individual
RC circuit, and the membrane potential Vj(t) of compartment j at time t is
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Figure 2.5: Illustration of the multicompartment model. Figure adapted
from [37].

then found through the discretized cable equation [37]

Cm
dVj
dt

= gj(Ej − Vj) +
dj

4Rja

(Vj+1 − Vj
∆s2

j

+
Vj−1 − Vj

∆s2
j

)
+

Ij
πdj∆sj

. (2.7)

The parameters dj, ∆sj and Rja are the diameter, length and axial resistance,
respectively, of the given compartment. The middle term on the right side of
the equation describes the axial currents flowing into the compartment from
its neighbouring compartments, and Ij is the total synaptic input current to
compartment j (see equation 2.10). Ej and gj are the equivalent electromotive
force and conductivity for all the ion channels and pumps in compartment j
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combined, found through Thévenin’s theorem [37] as

Ej =

∑
x gxjExj∑
x gxj

(2.8)

and

gj =
∑
x

gxj (2.9)

Exj and gxj are the electromotive force and conductivity for the individual ion
type x. As Ej and gj are independent of Vj, this is where the model makes the
assumption that the ion channels are passive, meaning that their permeability
do not change in response to changes in the membrane potential – as opposed to
active channels which do. The ionic pumps are modeled implicicly by assuming
that they maintain the ion concentrations constantly through time [37]. Most
channels in real neurons are active, so this is a major simplification [37], but it
will suffice for our purpose.

Here too the Synapses are included implicitly through the postsynaptic
membranial currents that they induce when activated. However, in contrast
to the delta synapses that were used for the LIF neurons, the multicompartment
model makes use of alpha synapses that follow the function

Ij(t) = Jte1−t/τsyn , t > 0. (2.10)

The equation describes the current induced in compartment j from a synapse
activated at time t. The alpha synapse is used because it is more realistic, as the
current transmition is distributed over time, more similar to how it is in biological
neurons. The parameter τsyn is the synaptic time constant that regulates the
speed at which the synapse inputs the current. In the limit τsyn → ∞ this
approaches the delta function. J , I and V represents the same thing as for point
neuron model, however we need to scale the J of the alpha synapse so that it
inputs the same amount of current as the delta synapse. This is detailed out in
section 4.4.2.

The passive multicompartment model will not produce spikes (unless we
implement it explicitly as for the point neurons), but this is fine for our purpose,
as we will only use it to generate the LFP from already produced spiking patterns.
More on why and how we do this is found in chapter 4.

2.3.3 Modeling the early visual system

Sensory stimulus of different kinds are processed in their own separate systems
in the brain [2]. In this thesis we look at the system that processes visual
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information. As implied in figure 1.1, we can for our purpose think of it as
consisting of three stages, namely the eye, the LGN and the visual cortex.

LGN, which is an abbreviation for lateral geniculate nucleus, is a population
of neurons that function as a relay station for information sent from the eye to
the visual cortex. We will here outline a mathematical account of what happens
between the first and second stage in this system. The model is very simplified
in two significant ways: It is stripped of all the electrical dynamics, and it is
rate-based, which means that it treats the firing rate of the neurons as the unit
of information, as opposed to the individual spikes. It works as follows:

In the back of the eye – the retina – we find two types of photoreceptive
neurons known as rods and cones [2]. When these are hit by rays of light of
certain wavelengths, they react by firing action potentials. These signals are then
sent to another set of retinal neurons known as the retinal ganglion cells. The
ganglion neurons react to patterns of activity in the photoreceptive layer in a very
specific way that has been found empirically to follow a difference-of-Gaussian
(DOG) impulse-response function [31,9]. What this means is that if we think of
the incomming pattern of light as a 2-dimensional plane, which we for simplicity
will assume is unicolored and stationary in time, then we can define a function
S(r) that describes the light intensity at point r in this plane, see figure 2.6. We
define high values of S(r) to correspond to points with high light intensity and
low values to points with low light intensity. The response λ, i.e. the firing rate,
of a specific ganglion cell to this pattern of light then follows the equation

λ =

∫∫
r′
W (r − r′)S(r′) d2r′, (2.11)

where the impulse-response function W (r) is, as its name implies, the difference
of two 2-dimensional Gaussian functions

W (r) =
A

πa2
e−r

2/a2 − B

πb2
e−r

2/b2 . (2.12)

The DOG can be visualized as the two concentric circles in figure 2.6 A with
radius r1 and r2, centered at point r in the plane. Figure 2.6 B is a 1-dimensional
version to show how the radii, which are functions of the parameters A,B, a and
b, are defined to be where the values of W (r) are practically zero. The DOG is
how evolution has ”designed” us to detect edges in the visual field, i.e. contours,
and the following is an explanation of how that works.

First note that a contour is simply a sharp difference in contrast between
two contigous regions. What the DOG does is to output high values of λ if the
contrast in light intensity between the inner and the outer circle is great. If
A > B, then λ is maximized if the inner circle is light and the outer circle is
dark. And vice versa if B > A.
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Figure 2.6: A) The difference-of-Gaussian (DOG) impulse-response
function W (r) shown as the two concentric circles. The darker parts
represents points with low light intensity. B) A 1-dimensional DOG showing
how the inner and outer circles corresponds to negative and positive values
of W .

These two cases define, respectively, what are referred to as OFF-centre and
ON-centre type cells in the literature [9]. The cell with the DOG in figure 2.6
would thus be an OFF-centre type.

To see how the DOG function achieves this behaviour, first note that all
points outside of the biggest circle have zero contribution to the value of λ, as
the value of W (r) is zero for all these points. Looking next at the inner circle, we
see that almost all points are dark, meaning that the values of S(r) here are low.
This is precicely what maximizes the integral in equation 2.11 over this region,
since all the values of W (r) here are negative. The opposite is true for the outer
circle, as the values of W (r) here are positive, so what maximizes the integral
over bigger circle is that the points in S here have a high value, i.e. have a high
light intensity. The example in 2.6A should in other words output a relatively
high value of λ.

In this description of the early visual system we have only considered the
spatial dimension. In reality the response of the synapses are not stationary in
time, so we need to consider the temporal dimension when calculating λ as well.
We will come back to this in section 4.2 when we talk about how we implement
this model in the simulation.

To summarize this subsection: what the retinal ganglion cells are doing is
to work as a high pass filter that detects contours in the visual field. This
information is then sent to the LGN population, which forwards it to the visual
cortex. Further filtering is happening in the LGN, but we will refer to [28,8] for
more on this.
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2.4 The local field potential

When we want to analyse the activity of large networks with neurons that number
in the hundreds of thousands and more, we cannot simply measure the activity
of every single neuron. This motivates a more compact measure of brain activity,
and luckily the electrical nature of neurons provide electromagnetic fields which
can be used for this.

There are multiple ways to do this, a well known approach is the EEG, but for
this project we will use what is known as the LFP – the Local Field Potential.
This is defined as the low frequency part (. 500 Hz [16]) of the electric field
measured in the near vicinity of the neurons [7]. It is in other words what you
will measure if you stick a tiny electrode into the brain, connect it to a voltmeter
and apply a low pass filter to the signal you measure.

With volume conducting theory, we find that the electrical potential φij(r, t)
from an individual transmembranial current Iij(t) of compartment j at position
r′ in neuron i, measured at time t by an electrode at point r, is given as [25,20,16]

φij(r, t) =
Iij(t)

4πσe|r − r′|
(2.13)

where σe is the conductivity of the extracellular medium. This is illutrated in
figure 2.7. The full LFP, denoted as Φ(r, t), is then found as the sum of φij over
all individual neurons and their compartments.

We assume that the current sources are uniformly distributed in space along
each cylindrical compartment, so the total electric potential from comparment
j of neuron i is found by integrating 2.13 along the cylindrical axis. The soma
is modeled as a sphere, and its contribution is therefore proportional to the
contribution from a point source at its center of mass. To find the extracellular
potential for the full network, measured at point r, we simply sum up the
contributions from all axonal and dendritcal compartments of all neurons, plus
the contribution for each soma [16], i.e.

Φ(r, t) =
N∑
i=1

1

4πσe

[
Ii,soma(t)

|r − ri,soma|
+

ncomp∑
j=2

∫
dr′ij

Iij(t)

|r − r′ij|

]

=
N∑
i=1

1

4πσe

[
Ii,soma(t)

|r − ri,soma|
+

ncomp∑
j=2

Iij(t)

∆sij
ln

∣∣∣∣∣
√
h2
ij + r2

⊥ij − hij√
l2ij + r2

⊥ij − lij

∣∣∣∣∣
]
.

(2.14)

N is the total number of neurons and ncomp is the number of compartments in
each cell. The soma counts as compartment 1, which is why j starts the iteration
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at 2. Here r⊥ij is the norm of the component of (r−r′ij) that is orthogonal to the
compartment’s cylindrical axis, and hij and lij are the norms of the component
that is parallel to the cylindrical axis at the very beginning and very end of the
integral, meaning lij = ∆sij + hij.

This equation is based on the following assumptions [7]: First, that the electric
field can be described by the quasistatic approximations of Maxwell’s equations,
which is appropriate for the frequencies seen in neural activity, and secondly that
the extracellular conductivity σe is ohmic, frequency independent, homogeneous
and isotropic (i.e. equal in all directions).

φij(r, t)

Iij(t)

|r −
r
′ |

Figure 2.7: Illustration of how we calculate the LFP from the individual
electric potentials from the transmembranial currents. Figure adapted
from [7].





Chapter 3

Background II - Artificial neural
networks

In this chapter we go through the theory behind a category of AI algorithms
known as Artificial Neural Networks (ANNs) that we use for the classification
part of this project. We outline three commonly used ones - the Dense Neural
Network (DNN), the Convolutional Neural Network (CNN) and the Long Short-
Term Memory (LSTM).

3.1 On artificial neural networks in general

Artificial neural networks (ANNs), also known as deep learning, is one of the
most common type of artificial intelligence (AI) [27]. In short, it is simply a type
of function that transforms an input vector xi to an output vector ŷi, i.e.

F(xi) = ŷi, (3.1)

where the index i is just to separate individual datapoints.

F can also be defined to create outputs for a whole dataset at one time,
written as

F(X) = Ŷ , (3.2)

where X = [x1 . . .xN ]T and Ŷ = [ŷ1 . . . ŷN ]T .

AI can be used for many purposes, but what we will use it for throughout this
paper is classification. This means that we take an input xi and assort it to
a class index ci. More specifically, we input an LFP signal to F , and it outputs
a set of predictions that represents how much it thinks the signal results from
each of the 10 images – from here on referred to as classes. In other words, ŷij

21
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represents F ’s confidence that xi belongs to class j. The index of the highest
element in ŷi is the AI’s ultimate prediction, i.e.

ĉi = argmax
j

ŷi

= argmax
j
F(xi).

(3.3)

There are many types of ANNs, but the common theme of them all is that they
are in some way inspired by how the brain works, hence the name. The analogy
between F and a brain should become more clear in the next section.

3.2 Dense neural networks

The Dense Neural Network (DNN) [27], also known as a Fully Connected Neural
Network, is one of the simplest types of ANN. Moreover, it is a good basis from
which to understand the more complex types of artificial neural nets. In its most
consise mathematical formulation, a DNN can be written as

F(xi) = gL(W L gL−1(W L−1 . . . g1(W 1xi) . . . )). (3.4)

Each W k is a matrix, and each gk is a function g : Rl → Rl, known as an
activation function, that can take many forms but ultimately has the purpose
of adding non-linearities to the transformation.

The two types of activation functions we will mainly see throughout this text
are the ReLu function

gReLu(z) =


max(0, z1)

max(0, z2)

...

max(0, zl)

 (3.5)

and the Softmax function

gSoftmax(z) =
1∑l

j exp(zj)


exp(z1)

exp(z2)

...

exp(zl)

 . (3.6)

The analogy to the brain comes from thinking about F as successive layers of



Section 3.2 Dense neural networks 23

xi1

xi2

a1
1

a1
2

a1
3
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Figure 3.1: Illustration of a 4 layered DNN with input dimension d. The
number of nodes are l1, l2 and c in layer 1, layer 2 and output layer,
respectively. For simplicity, the superscript i is dropped from the hidden
layers.

neurons which can be in active or inactive mode. The first layer would then be

a1 = g1(W 1xi), (3.7)

the second layer would be

a2 = g2(W 2a1), (3.8)

and so on until the last layer

aL = gL(W LaL−1) = ŷi (3.9)

Each element in a vector ak represents a neuron in the k’th layer, and the
value of the element can be thought of as that neuron’s firing rate. The value
0 would of course then be analogous to an inactive neuron. As the input vector
counts as the zeroth layer, this makes up a DNN of L+ 1 layers.

From the dot products in equations 3.7 through 3.9, we can see that each
element in ak affects each element in ak+1. This captures the idea that all the
neurons in a layer is connected to all the neurons in the next layer, as illustrated
in figure 3.1. The W k factors go under the name of weight matrices, and
their elements represent the strengths of the individual connections between layer
k − 1 and layer k. Each matrix element thus corresponds to a single line in the
figure above. Negative values in W k are then analogous to inhibitory synapses.
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A current popular convention is that the last layer uses gSoftmax as activation
function while all the other ones uses gReLu, but other types can also be used.

3.3 Training a neural network

In order to get the function F to behave the way we want – meaning to correctly
classify our datapoints – we need to tune its parameters right. A very common
approach is to define a loss function L(xi,yi|θ) that measures how well F is
behaving, and then optimize that function. More specifically, L returns a scalar
where a high value means F is tuned badly, while a low number means it is tuned
well. So to optimize F ’s behaviour, we minimize L. The term θ represents all
the tuneable parameters, meaning all the elements in the weight matrices {W k}.

We can minimize L by taking its gradient with respect to θ, and then move
in the opposite direction in parameter space. (In other words we maximize −L.)
This is famously known as backpropagation [27], formulated as

θt+1 = θt − η∇θtL (3.10)

where η is a parameter that can be tuned to regulate the size of each step in
parameter space and t denotes the current cycle of training. We can equivalently
state this in terms of each individual weight matrix

W k
t+1 = W k

t − η∇W k
t
L, (3.11)

or we can write it in terms of each individual matrix element

wkmn,t+1 = wkmn,t − η
∂L

∂wkmn,t
. (3.12)

The term yi (not to be confused with ŷi) in L is the target output for xi. It
is vector that has a single 1-value placed at the index that represents the correct
class for input xi, and the rest of the elements are zero. This is known as one-hot
encoding. In other words, since we want F to make a correct classification, yi is
what we want ŷi to be. L should therefore somehow measure how close the two
vectors are. There are several different forms of losses to choose from, but we
will throughout this project stick to the commonly used Cross Entropy Loss
function [27], defined as

L(xi,yi|θ) = −
c∑
j=1

yij log ŷij, (3.13)
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where c is the number of possible classes. As we want the ANN to correctly
classify every datapoint in our dataset X = [x1 . . .xN ]T , we want to minimize

L(X,Y |θ) =− 1

N

N∑
i=1

L(xi,yi|θ)

=− 1

N

N∑
i=1

c∑
j=1

yij log ŷij,

(3.14)

where N is the number of datapoints in the dataset and Y = [y1 . . .yN ]T are the
one-hot encoded labels for all the data.

During training, L is calculated over a mini-batch of data for each forward
pass. This is a small, stochastically sampled subset of the training set. The
gradient descent is then performed using the update rule in equation 3.10 through
3.12, which for the mini-match case is just the average of all the individual
gradients of all the individual data points in the mini batch. I.e.

∇θ L(X,Y |θ) =
1

N

N∑
i=1

∇θ L(xi,yi|θ). (3.15)

Understanding this should be sufficient to fully comprehend how a neural network
can be trained to correctly classify data, and the full expression of the gradient
can be derived using the chain rule and some appropriate algebra. However,
most modern machine learning libraries (see section 5.2) will already have an
automatic gradient computation built in, so the fine grained details of this are
rarely needed in practice.

Intuition

To get an intuition for why optimizing equation 3.13 will make F better at
classifying the data, we note that yi is one-hot encoded and therefore the factor
yij has the binary values

yij =

{
1 for the correct class for xi, meaning for j = ci

0 otherwise.
(3.16)

In other words, for a given i, the only term in the sum that will be non-zero, is
for the single case j = ci. Moreover, since ŷij ∈ [0, 1], that means log ŷij will be a
number between −∞ and 0. Since there is an additional minus sign in equation
3.13, L will be a number between 0 and∞. Thus, for a given i, tuning the weight
parameters such that L gets smaller, means tuning F such that it gives a higher
prediction for the correct class.
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ŷ3

Figure 3.2: Illustration of a one dimensional CNN with two convolutional
layers followed by two fully connected layers. The nodes in the
convolutional layers are colored after which kernel (set of weights) they
use. The first convolutional layers have two filters of size 3, the second
has three kernels of size 2. It is easy to see how a CNN is a special case
of DNN when illustrated this way. Note that the input layer has only one
channel. With multiple channels in the input layer, the kernels in the first
layer will connect to every input channel, just like the kernels in conv. layer
2 is connected to every channel in conv. layer 1.

3.4 Convolutional neural networks

A Convolutional Neural Network is a type of ANN that is inspired by the
mechanisms of the visual system in biological brains (see section 2.3.3). Its main
architectural purpose is to be invariant to the displacement of features in the
input [27]. For example, if the inputs are images, we would want the network to
respond virtually the same to an image with a cat in the top left corner as to an
image with the same cat in the bottom right of the image. In our case the input
data are one dimensional LFP timeseries, but similarly we want the network to
have the ability to react to patterns independently of placement.

A CNN works much in the same way as a DNN, but contains something called
convolutional layers. These are layers of nodes like in a DNN, but each node
is here only connected to a small subset of the nodes in the previous layer. The
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nodes in a convolutional layer are also grouped into channels such that every
node in any one channel have the same weights. This ensures that any two
nodes in the same channel that receives the same local input, responds exactly
the same. The convolutional layers are usually followed by one or two dense
layers. Figure 3.2 illustrates a CNN. Each column of nodes is one layer and the
channels are differentiated by color.

A CNN can be viewed as a special case of DNN, in the sense that you can take
a DNN, set most of its weights to zero and have groups of nodes share weights,
and it will function as a CNN. In this sense we could have formulated it using
a series of dot products as in equation 3.4. But as this would require extremely
sparse weight matrices which would be highly computationaly inefficient, this is
not how it is actually implemented in practice. It is therefore common to think
of it as a series of convolutions with various kernels W (also called filters),
which are matrices containing the sets of weights that the neurons in a channel
share. Each channel in a convolutional layer therefore corresponds to its own
such kernel.

Condensing all the equations down to a simple analytic expression, like
equation 3.4, is a bit more tricky for a CNN. The mechanics of a convolutional
layer k with Nk number of kernels can be written as

Ak =


W k,1 ∗Ak−1

W k,2 ∗Ak−1

...

W k,Nk ∗Ak−1

 , (3.17)

where Ak is a matrix containing the activations of layer k, and each row in Ak

is a separate channel. The convolutional operator ∗ would here be defined as

W k,q ∗Ak−1 =



Nk−1∑
n=1

Fk∑
m=1

wk,qn,ma
k−1
n,m

Nk−1∑
n=1

Fk∑
m=1

wk,qn,ma
k−1
n,m+1Sk

Nk−1∑
n=1

Fk∑
m=1

wk,qn,ma
k−1
n,m+2Sk

...

Nk−1∑
n=1

Fk∑
m=1

wk,qn,ma
k−1
n,m+Dk−Fk



T

. (3.18)
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The kernels W k,q are matrices of dimension Nk−1 × Fk. The term Sk is called
the stride of layer k, and Dk is layer k’s feature dimension size, meaning the
number of points in the time dimension.

After performing this operation on all the convolutional layers in succession,
the activation matrix A is flattened to a 1D vector and the rest of the layers
work exactly as for a DNN. The CNN is similarly trained by optimizing the
loss function in equation 3.14, altough the algrebra becomes a little more tricky.
Again, we do not have to think about this, as Keras does it for us (section 5.2).

3.4.1 Receptive field of convolutional layers

The receptive field, also called the field of view, is an important concept when
working with CNNs. In the literature, one separates between the theoretical
receptive field (TRF) and the effective receptive field (ERF) [26].

The theoretical receptive field for a given node is the set of all input nodes
that affect the value of that node to any degree. The size Rk of the theoretical
receptive field in convolutional layer k can be calculated by the formula

Rk = Rk−1 + (F k − 1)
k−1∏
i=1

Si, (3.19)

where R0 = 1, and F k and Sk are the kernel size and stride of layer k, respectively.
The stride is an integer that specifies the size of the jump that the kernel does
each step in the convolution, and is often simply 1.

The ERF is defined as the set of input nodes that affect the given node to a
significant degree, which will be a subset of the TRF. The fact that there is a
difference between the TRF and ERF in a CNN stems from the fact that some of
the input nodes will have many more pathways to reach any given node deeper
down in the network than others. This means that some input nodes will factor
into many more terms in the calculation of the given node’s activation than other
input nodes, thus having a much larger effect on the node’s activation. This will
usually follow a Gaussian distribution.

3.5 The Long short-term memory network

3.5.1 Recurrent neural networks

The Long short-term memory-algorithm (LSTM) is from a class of AI called
Recurrent neural networks (RNNs), which we give a brief, general outline of here.
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Figure 3.3: Illustration of the forward pass of an RNN, for example an
LSTM, with two recurrent layers, used on input with n number of timesteps
where one timestep is fed as input at a time.

RNNs are ANNs that contain layers of neurons that affect themselves over a
time-like dimension – not only the next layer in succession. It is an extension of
the simple feedforward principle behind networks like DNNs and CNNs, and tries
to capture how populations of neurons in biological brains are interconnected. It
is motivated by wanting models that can also take into account the context of
an input, not simply the input itself. For example, if you want to make an AI
that can read text, using individual words as input, then we want the network to
take into account the other words in the sentence,not just the word that is the
current input.

The feedforward algorithm of an RNN is divided into discrete steps, which
we will for simplicity call timesteps. The activation of a recurrent layer alt at
timestep t, is affected by its activation alt−1 at the previous timestep. It is in
addition affected by to layer al−1

t , which is the layer one ”spatial” step lower
down in the network. This can be expressed by the general formula

alt = G(al−1
t ,alt−1) (3.20)

for some arbitrary function G. If l = 1, meaning the first hidden layer, then the
vector al−1

t is simply the input xt. As this notation indicates, the input can be
different each timestep.

After calculating the output vector y, the loss is calculated exactly as for the
other ANNs. Training is, as before, performed by differentiating the loss function
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and backpropagating.

The simplest form of recurrent neural net is the so-called vanilla RNN, [33]
which uses a simple linear mapping of the two input vectors with some activation
function g. A layer of a vanilla RNN is thus given as

alt = g(W l
1a

l−1
t +W l

2a
l
t−1). (3.21)

3.5.2 The LSTM

The problem with the vanilla RNN is apparent when we calculate its gradient
after many timesteps. We then have to perform the chain rule backwards in the
time-like dimension, and this forces us to have to multiply the gradient many
times with the same weight matrices. This has a tendency to cause the gradient
to either vanish or blow up, which of course is very troublesome for training.

The Long Short-Term Memory (LSTM) network architecture [33] is designed
to be a solution for this and is the current gold standard of RNNs. Instead of
performing a single ”linear-mapping-with-activation”-operation on the input, it
employs a manifold of mappings in parallel and then applies additional operations
on those again. This is done in order to combine them into the new state of the
layer. These different transformation functions are often referred to as gates,
and serve each their own specific function in deciding what information the layer
should forget, what it should enhance, and so on.

The full mathematics of the LSTM is too comprehensive to fully include here,
and figure 3.3 should provide a sufficient overall picture of how a general RNN
works, so we will refer to [10,33] for the full details. The inputs xt will in our case
each be the set of LFP values at time t, one for each channel, and the output ŷ
is of course, as before, the vector with the predictions for each of the 10 classes.



Chapter 4

Methods I - Simulating the LFP
of a biological neural network

In this chapter we describe how we build a program that simulates a very
simplified model of the visual system in the brain. The input to the model
will be images and the output will be LFP signals.

4.1 Overview of the simulation

The full simulation consists of three separate parts, each using its own Python
module. We describe this process very briefly here in this first section. The full
details are found in the rest of this chapter.

Part 1. First we transform an input image to a rate profile. This represents
the average firing rate of the neurons in the LGN population as a
function of time, as they respond to the input. To do this we use
a package called pyLGN [28].

Part 2. We then use the LGN rate profile as input to an inhomogeneous
poisson generator. This creates spike trains with an average rate
that corresponds to the rate profile. These spikes are then used as
excitatory stimuli for a point neuron network that represents our
very simplified cortex model. The point neuron network is built using
the NEST module [15].

Part 3. Lastly the spiking activity from the point neuron network is used as
input to a third module, which estimates the LFP based on the
spiking pattern. This module is called hybridLFPy [16].

A schematic illustration of the simulation is shown in figure 4.1.

31
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Figure 4.1: Schematic illustration of how the full simulation is built up to
transform images to LFP signals.

The idea behind this approach is to combine the best of two worlds – the
speed and simplicity of a point neuron network, and the physical properties of a
multicomparmental model.

Point neuron networks alone do not include enough physics to allow for
LFP computation. By that we mean that, since a LIF neurons with all its
transmembranial currents is collapsed into a single point in space, the current
sources and sinks that are the origins of the LFP [16, 7] cancel each other out.
Consequently, calculating the LFP from a neuron network simulation would
usually require us to run the full network simulation using multicomparment. We
would need detailed morphologies and have to include models of active channels
in order to get spiking activity. This is extremely computationally demanding,
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and the way we do it here is designed to be a shortcut through that problem.

An important assumption behind this approximation is that the physics of
the neurons has a small effect on the spiking activity. In other words, that the
the spatial topology of the network, the shape of the action potentials, the LFP,
et cetera, do not influence the spiking pattern very much. These are obviously
not totally valid assumptions, but the degree to which they are is interesting to
explore. There is for example evidence that the LFP can depolarize membrane
potentials and in the extremes even cause spiking (e.g. in nerves damaged by
multiple sclerosis) [20], but under normal circumstanses this is likely a very rare
phenomenon.

4.2 Part 1 – Image-to-firing-rate with pyLGN

pyLGN

Input:
Image

Output:
LGN rate profile

Time

F
ir
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g
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te

Figure 4.2: Illustration of part 1 of the simulation.

The Python module pyLGN is a deterministic, firing rate based model of the
early stages of the visual system. It models an eye that receives optical stimuli on
the retina, and sends this information to a part of the brain known as the LGN
– the Lateral Geniculate Nucleus. LGN is a population of neurons that works as
a relay station for visual information on the way to the visual cortex [28]. The
module is developed primarily to study feedback effects, but for our purpose we
will only use it as a feedforward tool to map an image to a rate profile. As said
earlier, this will represent the average rate of neural firings in LGN as a function
of time. For a description of the full module, see [28].

The feedforward part of pyLGN is on the empirical observation that retinal
ganglion cells respond to visual stimuli in a very particular way. In more technical
terms, they follow a difference-of-Gaussian impulse-response function [31, 9, 28],
which from here on will be referred to as a DOG. The following is a description
of how this works, and how it can be described mathematically.

1. We define a layer of neurons in a gridRG(r, t), where each point r represents
a retinal ganglion cell, and the value at that point represents that cell’s
firing rate at time t. We define r = 0 to be the center of the grid.
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2. In a similar way, we can think of the input image as a grid of photoreceptive
neurons on the retina, stimulated by light after a pattern that corresponds
to the image. We denote this grid by S(r, t). The pixel at point r in S(r, t)
then represents a single photoreceptive cell, and the scalar value at that
point represents that neuron’s firing rate at time t, as the neuron reacts to
the photons hitting it. (We operate with grayscale images so the pixel only
has a single value.)

3. We can now calculate responses of each neuron in the grid of ganglion cells
RG to the grid of photoreceptive cells S, by convoluting the image using
the defined input-response function W (r, t). This is written as

RG(r, t) =

∫
τ

∫∫
r′
W (r − r′, τ)S(r′, t− τ) d2r′dτ (4.1)

or more compactly as

RG(r, t) = W (r, t) ∗ S(r, t) (4.2)

with ∗ as the convolution operator.

4. We assume that the impulse-response function W can be separated into
a spatial and a time dependent part. The spatial part is modeled as a
DOG, meaning literally the difference of two Gaussian functions, and its
time dependence is factored in as a biphasic temporal function. In other
words

W (r, t) = F (r)H(t) (4.3)

where the spatial part is

F (r) =
A

πa2
e−r

2/a2 − B

πb2
e−r

2/b2 (4.4)

and the time dependent part is

H(t) =


sin(πt/τG), 0 ≤ t ≤ τG

C sin(πt/τG), τG ≤ t ≤ 2τG

0, otherwise.

(4.5)

A, a,B, b are parameters describing the width and strength of the DOG, τG

is the duration of each phase, with C as the weight for the second phase [28].

5. The last step is to compute the response of the LGN population in response
to the activity of the ganglion population. Similarly as before, we define a
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layer of cells RLGN(r, t), where each point r represents a single LGN relay
cell and the value at that point is the cell’s firing rate at time t. We then
need to define a coupling kernel K(r, t) that describes how the relay
cells respond to the activity of the layer of ganglions, analogous to the
impulse-response function W (r, t) from earlier.

Again we assume spatial and temporal independence. The spatial part
of K is defined as a Gaussian, reflecting the fact that neurons close to
each other are more likely to be connected, and the time dependent part
is modeled as a (delayed) exponential decay. This is in accordance with
previous modeling studies [28,29,6]. In other words,

K(r, t) = wf(r)h(t) (4.6)

where

f(r; d) =
1

πd2
e−r

2/d2 (4.7)

and

h(t; ∆, τLGN) =
1

τLGN

e−(t−∆)/τLGNθ(t−∆), (4.8)

where w is the connection weight of the kernel, d is the width parameter,
τLGN is the time constant and H the Heaviside function. The scalar ∆
corresponds to a combined axonal and synaptic time delay [28].

RLGN is now found as

RLGN(r, t) =

∫
τ

∫∫
r′
K(r − r′, τ)RG(r′, t− τ) d2r′ dτ (4.9)

= K ∗RG (4.10)

= K ∗ (W ∗ S). (4.11)

The way this is implemented in pyLGN is by using the fact that these
operations can be done more easily in Fourier space, but there is no need
to include that here. Again, we refer to [28] for more details on this.

Summary: We have here described how pyLGN maps an image to a set of firing
rates that represents LGN cells that responds to visual input. An interesting
thing to note is that this feedforward algorithm is very analogous to how a
convolutional neural net (CNN) works from section 3.4.

For this project we will only use the rate profile of a single point in RLGN,
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Figure 4.3: The feedforward algorithm of pyLGN. The model is very
analogous to a 2 dimensional convolutional neural network. Figure adapted
from [28] with courtesy of Milad H. Mobarhan.

Input image Receptive field

Figure 4.4: With the default parameters the receptive field of the center
neuron in pyLGN that we use as rate profile for the LGN population is
shown in the right image. Darker areas means less responsivity.
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namely the one at the center. We can write this as

λLGN(t) = RLGN(0, t) . (4.12)

λLGN(t) is in other words the rate profile that we will use. This will function as
the average firing rate for the whole LGN in the point neuron network simulation.
The part of the input image that has an actuall effect on the center neuron is
visualized in figure 4.4. We will referred to as the receptive field of the LGN
population.

4.3 Part 2 – Point neuron network with NEST
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Figure 4.5: Illustration of part 2 of the simulation.

For the point neuron simulation, we use the Python module NEST [15]. It is
an open-source tool designed for simulating large networks of point neurons in an
easy and computationally cost effective way. It provides many different options
of neuron models, synapse types and such. For our purpose we use a network
consisting of LIF neurons, as described in section 2.3.1.

The network simulation consists of three populations. One representing LGN,
and the two others representing cortex, as visualized in figure 1.1 and 4.6. The
LGN population consists of NLGN excitatory neurons, and cortex consists of NEX

excitatory and NIN inhibitory neurons in their own respective populations. As
in [1], we let the ratio of excitatory to inhibitory neurons conform to anatomical
estimates from neocortex, so that 80% of the cortical neurons are excitatory, i.e.
NEX/NIN = 4.

Each cortical neuron receives excitatory input from a number CLGN of
synapses from the LGN population. This comes in the form of Poissonian spike
trains with an average rate that varies in time according to the rate profile λLGN(t)
from equation 4.12. The number of synapses from LGN is defined as

CLGN = εNLGN, (4.13)

where ε = 0.1 throughout this project. The cortical neurons in both populations
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Figure 4.6: The point neuron network model.

also receieve spikes from other cortical neurons. We define CEX and CIN as the
number of excitatory and inhibitory synapses, respectively, on each neuron in
cortex. Similarly as before, we define these as

CEX = εNEX (4.14)

and

CIN = εNIN (4.15)

This way of defining connections is implemented with the ’fixed indegree’-
rule in NEST’s Connect() function. Eq. 4.13, 4.14 and 4.15 are then used as
the indegree values. In addition, every cortical neuron receive Poissonian spike
trains from CBG synapses at constant rate νBG , representing static background
noise from the activity of the rest of the brain. Note, however, that in a point
neuron network, receiving signals from CBG synapses at a rate νBG is equivalent
to receiving signals from a single synapse at a rate νBGCBG, as the locations
of the synapses are all at the same point. We have therefore implemented the
background noise in this way, as it is more computationally efficient.

4.3.1 Neuron and synapse models in NEST

The LIF neurons are implemented using NEST’s iaf psc delta model.
Incomming action potentials change its postsynaptic membrane potential as a
discrete jump – a delta function – and its subthreshold membrane dynamics
follow equation 2.2.
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The synapse strength is denoted as JEX for all the excitatory neurons, and
JIN for the inhibitory ones. This parameter is defined as the amount that a
single spike changes the postsynaptic membrane potential, and should thus be
interprated to come in units of mV. As in [1] we define a parameter g to be the
ratio of excitatory and inhibitory synapse strength, and define JIN in terms of
this. I.e.

JIN = −gJEX, (4.16)

where g is a value somewhere around the ratio NEX/NIN. This means that the
total charge output from both populations are close to being on balance, despite
the excitatory population being much larger.

As described in chapter 2, the neuronal firing mechanism is implemented in
a LIF network through a threshold value Vthr. If the membrane potential of
a neuron reaches this value, its synapses will be activated and its membrane
potential will be reset to a value Vreset, after a refractory period τref where all
arriving spikes are simply discarded.

The axonal delay – the time that the action potentials use to travel down
the axon – is modeled through a simple delay parameter τdelay. If a neuron fires
a signal at time t, its synapses will be activated at time t+ τdelay.

4.3.2 From firing-rate to spikes

When biological neurons fire action potentials at a certain rate, the signals are
not uniformly distributed in time but express some degree of stochasticity [3,17].
This should be included in the model. To do this we will use an inhomogeneous
Poisson generator to create stochastic spike trains that correspond to the λLGN(t)
rate profile. An explanation of the Poissonian process and the algorithm that we
will use follows here.

The Poisson Process

A stochastic process that produces independent spikes at an average rate λ, can
be viewed as there being a probability p every time interval ∆t = 1

n
that a spike

is created, found as

p =
λ

n
, (4.17)

where n is time resolution, i.e. the number of intervals per unit of time.

If the process starts at time t0 = 0, then the probability that the first spike
is created after a time t = N∆t is equal to the probability that it is not created
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Figure 4.7: The upper chart shows an ihhomogeneous Poissonian spike
train with a rate profile corresponding to the curve in the lower chart.

in the N first time intervals. The probability that a spike is not created in any
given interval is of course (1− p), so the probability that it does not occur after
N intervals is therefore (1− p)N , giving us the expression

P (spike after t) = (1− p)N . (4.18)

Substituting N =
t

∆t
= nt and p =

λ

n
gives us

P (spike after t) =
(

1− λ

n

)nt
, (4.19)

and in the limit of perfect time resolution n→∞ we get

P (spike after t) = lim
n→∞

(
1− λ

n

)nt
(4.20)

which we see is the definition of the exponential function, i.e.

P (spike after t) = e−λt. (4.21)

The probability that a spike occurs after a time t is in other words
exponentially decreasing as t gets larger. To put it another way, equation 4.21
describes the probability distribution of time intervals in a Poisson process, and
this is the basis of the spike generator algorithm.



Section 4.3 Part 2 – Point neuron network with NEST 41

The homogeneous spike generator

When the average rate λ is constant in time, we call it a homogeneous, or
stationary, Poisson process. We begin with this case here as the algorithm
for the inhomogeneous case is an extension of this. The whole idea is to solve
equation 4.21 for t and use this to sample time intervals from the distribution
using the principle of inverse transform sampling [5]. It works in the following
way.

1. We begin by solving equation 4.21 for t as

t = − lnU

λ
, (4.22)

where we have rewritten U = P (spike after t) for simplicity.

2. By drawing a random value U1 from a uniform distribution between 0 and
1 and inserting this into equation 4.22, we are sampling a time interval ∆1

from the exponential distribution in equation 4.21. In other words

U1 ∼ Unif
(
0, 1
)

(4.23)

and

∆1 = − lnU1

λ
, (4.24)

which is a positive number since U1 < 1. We now have the interval between
t0 and the first spike, and can find the spike time as

t1 = t0 + ∆1 (4.25)

3. The next spike time t2 can then be found using the exact same method.
We draw a random number U2

U2 ∼ Unif
(
0, 1
)

(4.26)

to sample the second interval

∆2 = − lnU2

λ
. (4.27)

and get the next spike time

t2 = t1 + ∆2. (4.28)
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4. We repeat this process until we reach tm+1 > T , where T is the period we
want the spike train to last. We now have a set of Poisson distributed spike
times {t1, t2, .., tm}.

The inhomogeneous spike generator

We will now explain the algorithm for generating Poissonian spike trains with a
rate that varies in time – i.e. the inhomogeneous case. We assume that we
know the full rate profile λ(t) beforehand.

The idea is to first generate a stationary Poissonian spike train {t1, t2, .., tm},
as explained in the previous subsection, at a rate λmax = maxt λ(t), and then
stochastically eliminate subsets of this set at periods when the firing rate should
be lower than λmax. This elimination process is called thinning. In practice we
do not actually have to generate the full stationary spike train before we do the
elimination part, but we can instead do both simultaneously. The algorithm goes
as follows.

1. Starting at i = 1 we first calculate

λmax = max
t
λ(t). (4.29)

2. We then as before sample a number Ui

Ui ∼ Unif
(
0, 1
)
. (4.30)

3. We use this to sample a time interval from the interval distribution at rate
λmax, that is

∆i = − lnUi
λmax

. (4.31)

4. We generate a new random number Vi

Vi ∼ Unif
(
0, 1
)

(4.32)

5. If now the following condition is fulfilled

Vi ≤
λ(ti−1 + ∆i)

λmax

(4.33)

we set

ti = ti−1 + ∆i (4.34)
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and update

i→ i+ 1 (4.35)

6. Then we go back to step 2. and repeat this until ti+1 > T . (If the condition
in step 5 is not fulfilled, we still go back to step 2 but without updating i
and ti.)

This concludes the algorithm for generating inhomogeneous Poissonian spike
trains.

4.3.3 Strength of LGN and background signal

As the rate profile that is output from pyLGN is zero-centered and therefore
contains negative values, which we do not want (as negative firing rates do not
make much sense), we have to make a decision on how to shift and rescale it.
We could shift it so that the minimum possible value is 0, but the problem is
that the order of the image sequence affect the minimum and maximum value of
the signal. Since there are 10! ≈ 3.6 million potential permutations, we cannot
simply try all combination to find the minimum possible value. What we did was
to simply run a large number of pyLGN simulations, where each used a randomized
permutation, and then we calculated the minimum value of the output signal for
all the simulations. This value was then used to shift the output signal for all
new simulations. If any negative values ever occur, they are simply clamped up
to zero. The rate profile is also heavily affected by the chosen spatial resolution
parameters used in pyLGN. We can therefore not simply interprate this directly
as the actual firing rate, and only the shape of the signal is viewed as important.

The strength of external input is another set of variables that we need to
make a choice with respect to. A loose constraint that we will apply, is that we
want the neurons to have an average firing rate on the same scale as observed
experimentally in rats, which is around 7 Hz [22]. As the cortical firing rates are
to a large degree dependent on the external input, we can calibrate the strength
of the stimuli so that the average firing rates corresponds to this. As in [1], we
want to use the ratio of Poissonian rate to the threshold rate as reference point
for the input strength, as described in section 2.3.1. However, since we have two
different external inputs – from both the LGN and the background – we define
one such ratio for each of the two, and their sum will represent the total external
stimuli. In other words we define

ηtot = ηLGN + ηBG (4.36)

=
νLGN

νLGN,thr

+
νBG

νBG,thr

(4.37)
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where νLGN = 1
T

∫ T
0
λLGN(t) dt is the average LGN firing rate, and νBG is the

constant background rate. The denominators are the corresponding threshold
rates as found from equation 2.6.

With some test simulations using sinusoidal LGN signals (see section 6.1), we
found that ηtot = 1.1 gave a satisfactory average cortical firing rate at around 9
Hz (see figure 6.3). The ratio of LGN rate to background rate is then another
parameter that we can vary, which will very obviously affect how easily the AI
will be able to classify the LFPs.

In Brunel’s article, the parameter values of a point neuron network defines a
unique state, classified into four distinct domains (see figure 2A in [1]). When
we want to vary the amplitude of the LGN signal but want to keep the network
in the same state, we can do this by using a background rate with the value

νBG = ηBGνBG,thr

=
(
1.1− ηLGN

)
νBG,thr.

(4.38)

If we increase the LGN rate, we can use equation 4.38 to decrease the background
rate in order to keep ηtot constant. This will then maintain the network in the
chosen state on average. For ηtot = 1.1 will be in the asynchronus irregular
domain, slightly above the border to the synchronus irregular state, as our choice
of g value is 5.2.

For the main simulations in this project (section 6.4), the background signal
was about 17 times stronger than the LGN signal, a value which was chosen
rather arbitrarily.

4.3.4 Poissonian spikes in NEST

NEST comes with a built-in inhomogeneous Poisson generator which is easily
implemented using "inhomogeneous poisson generator" as the argument to
the nest.Create() function. With the GetStatus() function we can then send
the time steps and values of the rate profile that we get from pyLGN into the
Poisson generator. It will now send Poissonian spikes according to λLGN(t) to
every neuron it connects to.

Since we want all the synapses of each individual LGN neuron to fire the exact
same spike trains, we cannot simply connect the spike generator directly to the
cortical populations. This is because that would generate a unique set of spike
times for each synapse. We will instead have to generate a population consisting
of NEST’s parrot neuron models. These neurons work by simply outputting a
copy of all incomming spike trains at their synapses. By setting up NLGN parrot
neurons and connecting the Poisson generator to these, we can then connect these
to the cortical neurons. This will then make sure that every single synapse from
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a given LGN (parrot) neuron, outputs the exact same spike trains.

4.4 Part 3 – Spikes to LFP with hybridLFPy
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Figure 4.8: Part 3 of the module. The LFP signals are illustrated as being
measured at 6 different channels.

The final module we use is the Python package hybridLFPy [16], which is
an extension of the LFPy [25] module. LFPy [25] is designed for calculating
extracellular potentials from multicompartment neuron models that are built
in the NEURON simulation environment [18]. LFP calculation requires detailed
neuron models and is therefore very computationally expensive to do for large
networks. The idea behind hybridLFPy is to speed up the calculation by using
a pre-simulated spiking pattern from a point neuron network, which can be
simulated much, much quicker.

More specifically, by assuming that a network of multicompartment neurons
will express the exact same spiking pattern as a point neuron network with
the same architecture, we can calculate the spiking pattern beforehand and
then ”insert” it into a multicomparment network. In other words, we let each
multicompartment neuron receive incomming spikes on their dendrites according
to the point neuron spiking activity. But whatever happens in the neuron after
receiving the spikes, has no effect on the spikes that it itself outputs to other
neurons – as the spikes are already calculated. Each multicompartment neuron
is therefore only used for generating the LFP, but not for actually generating
action potentials. The consequence of this is that we can calculate the LFPs
from each of the neurons completely independent of each other – it becomes
what one refers to as ”embarrassingly parallel”.

4.4.1 Further LFP simplification using population rates

Even though hybridLFPy drastically speeds up the computation of the LFP,
this part is still very much the bottleneck of the simulation. Running part 1 and
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2 with a network of of 12,500 point neurons for 1000 ms takes about a minute,
but part 3 alone takes around 10 hours. The computation time is in other words
almost solely spent on estimating the LFP and not on actually simulating the
spiking activity. This motivates a further simplification of the LFP computation,
which we describe here.

The objective is to approximate the LFP based on the average population
level firing rate. This means that instead of basing the LFP calculation on
each individual spike from each individual synapse, we instead choose some time
interval where we count the firing rates of each population and then estimate the
LFP from this.

As described in [16], the LFP fom population u, measured at channel c, is
approximated through a temporal convolution

Φcu(r, t) = (Kcu ∗ Uu)(r, t), (4.39)

where Kcu is a kernel and Uu is a vector with the instantaneous firing rates
for population u throughout the simulation. The kernels, shown in figure
4.9 for all populations for all 6 channels, are computed as the total average
LFP contribution from a single time interval where every single neuron in the
population fires exactly once, measured at the given channel.

This approximation scheme reduces the LFP calculation time down from 15
hours to the order of about a second.

Adding induced LFP into the kernel

Since both cortical populations will induce neural activity in each other, we
need to consider this when calculating the kernels. In other words, since both
populations are connected to each other, when the one population fires, it
will force neural activity in the other cortical population which will have some
contribution to the LFP. This small contribution must be added into the kernel
for each population.

4.4.2 Note about synapse models

In the point neuron network we used delta synapses for efficiency reasons (see
section 2.3.1). But since we use alpha synapses in the the hybridLFPy part of
the simulation (see section 2.3.2) for more realism, we need to make sure that
the synapse strengths are calibrated so that the synapses transfer the same total
amount of current for each activation. The transmembranial current for the two
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Figure 4.9: The kernels Kcu for all 6 channels for all three populations.
This particular kernel is created from a network with parameters NLGN =
1000, NEX = 10, 000 and NIN = 2500, g = 4.5 and JEX = 0.1.

models for a synapse that activates at time t = 0 is written as

Idelta(t) = Jdeltaδ(t) (4.40)

and

Ialpha(t) = Jalphate
1−t/τsyn , (4.41)

respectively.

To make sure that the delta and alpha synapses induces the same amount
of current per spike, we scale the value of Jalpha. In other words, the following
relation must be fulfilled

Jalpha

∫ ∞
0

te1−t/τsyn dt = Jdelta

∫ ∞
0

δ(t) dt (4.42)

where the right integral is of course equal to 1 and the left integral is equal to
eτ 2

syn, giving the relation

Jalpha =
Jdelta

eτ 2
syn

. (4.43)
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4.5 Running the simulation

Each simulation is run with a unique number – a simulation index – which will be
used to generate unique seeds for its random number generators. The output for
each simulation is an array that contain the LFP signals for each of the channels,
of which we will have 6 in this project. The LFPs are then stored in files, where
the filenames contain the simulation index in addition to the order of the image
sequence used as input. The last part is crucial, as we need this to keep track of
the labels for the classes.

• All the scripts that compose this simulation are found at the following
Github repository: https://github.com/Kodemannen/

Brunel-with-optical-input/tree/master/simulation

• The PyLGN script that we used for part 1: LGNsimulation.py

• The NEST script used for part 2: nest simulation.py

• The hybridLFPy script and other files used to create the LFP
approximation kernel described in part 3 is found in the subfolder
/kernel creation. The subfolder /morphologies contain .hoc files give
hybridLFPy the morphologies for the neurons. These were chosen simply
because some were needed, and no real consideration were given to the
choice of these.

• Simulations were run on the Abel computer cluster https://www.uio.

no/english/services/it/research/hpc/abel/more/index.html using
SLURM Workload Manager. Running 100k simulations distributed over
200 jobs with a network of 12,500 neurons for 3000 ms with a time resolution
of 0.1 ms took approximately 15 hours.

The parameter values used in the simulations are shown in table 4.1 below.

https://github.com/Kodemannen/Brunel-with-optical-input/tree/master/simulation
https://github.com/Kodemannen/Brunel-with-optical-input/tree/master/simulation
https://github.com/Kodemannen/Brunel-with-optical-input/blob/master/simulation/LGNsimulation.py
https://github.com/Kodemannen/Brunel-with-optical-input/blob/master/simulation/nest_simulation.py
https://github.com/Kodemannen/Brunel-with-optical-input/tree/master/simulation/kernel_creation
https://www.uio.no/english/services/it/research/hpc/abel/more/index.html
https://www.uio.no/english/services/it/research/hpc/abel/more/index.html
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Parameter Value Parameter description

NEX 10,000 Excitatory cortical population size
NIN 2500 Inhibitory cortical population size
NLGN 1000 LGN population size (parrot neurons)
JEX 0.1 mV Excitatory delta synapse strenght
JIN −gJEX Inhibitory delta synapse strenght
g 5.2 Ratio of inhibitory to excitatory synapse strength
ε 0.1 Connection probability
Cm 1 pF Membrane capacitance
V0 0 mV Resting potential
Vthr 20 mV Threshold potential
Vreset 10 mV Reset potential
τm 20 ms Membrane time constant
τsyn 5 ms Synaptic time constant (for alpha synapses only)
τref 2 ms Refractory period
τdelay 1.5 ms Axonal delay
nchannels 6 Number of electrode recording channels
ηtot 1.1 Representing the size of the total

external input (see section 4.3.3)

Table 4.1: Parameters used in the simulation. Note that JEX were also
used as synapse strength for the LGN population and the background noise,
in addition to the excitatory cortical population.





Chapter 5

Methods II – Classifying the LFP
using artificial neural networks

In this section we go through how we preprocess the LFP data, and how we
employ the deep learning framework Keras to build the artificial neural networks
(ANNs) that we use for classification.

5.1 Data preprocessing

Much of the work involved with deep learning goes into preparing the data for
training. Different preprocessing methods suit different problems, so making
good decisions here is important.

The raw LFP data are matrices of dimension 6 × 3000, being, respectively,
the number of channels and time steps. We begin by cutting off the parts
corresponding to where the grey image was shown, meaning the first and last
250 ms. After this, each datapoint is an array of dimension 6 × 2500. For each
datapoint we also create a vector of integers that represents the image sequence
that was used as input for that particular simulation. These will of course be
used to keep track of the labels for the data.

After this we stochastically distribute the data and label arrays into three
separate sets – a training set, a validation set and a test set. As is commonly
done, 60% of the data is put into the first one, while the remaining two will get
20% each.

Next we calculate the per channel mean and standard deviation of the training
set. These values are then used to zero-mean and normalize all three datasets.
In other words, for each channel in each datapoint in each set, we subtract the
training set mean and divide by the training set std. This ensures that the mean
and std of each input data is around 0 and 1, which is conventional to use together
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Figure 5.1: Toy data used to illustrate zero-centering and normalizing.

with Batch Normalization [21] for optimizing the forward and backward flow of
information in deep neural networks. These operations are illustrated on some
2-dimensional toy data in figure 5.1.

The reason we draw these values from the training set only, is because this
is a better test for generalization. For example, if we would want to predict the
vision of a biological brain in real time (a concievable extension of this project),
we would not have prior access to the mean and std of the data, and the input
signal would therefore have to be preprocessed in real time using averages and
stds from the training set only.

Moving on, we cut each datapoint and corresponding label sequence into 10
pieces. Each datapoint is now a 6 × 250 matrix and each label a single integer
between 0 and 9. This of course mean that we have 10 times the datapoints that
are 1/10th the original size. We then shuffle all the datasets. The data and labels
are of course shuffled in the exact same way so that datapoint at index j has the
label at index j.

Finally the data is smoothed with an order 8 Chebyshev type I lowpass filter
and downsampled with a factor of 5, using the function signal.decimate found
in the SciPy library [12]. This reduces the dimension of the data which will
drastically cut down the number of parameters needed in the artificial neural
networks. After this the datapoints are matrices of dimension 6 × 50 and are
ready for training Figure 5.2 shows an example of a datapoint before and after
downsampling.
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Figure 5.2: A datapoint before and after downsampling.

5.2 Building and training ANNs with Keras

Building computationally effective artificial neural networks have never been
easier, with an abundance of different open-source libraries to choose from. A
very popular choice is the Python package Keras [4] with a TensorFlow [11]
backend, which is what we use here. All that is needed is to import the datasets
to memory, specify the architecture and hyperparameters of the ANN, choose
some optimizing scheme and initiate the training.

The types of networks we use here are a DNN, a CNN and an LSTM. All of
these are simple to set up and run in Keras, and as the data is quite lightweight
after downsampling, the training can be run on a regular home computer in only
a few hours or less.

During training, we stochastically sample a small subset – a mini-batch –
of data from the training set (without replacement), perform the forward pass,
calculate the gradient and update the weights. Then we sample a new mini-
batch and repeat this process over and over until we have gone through the
whole training set. An epoch is defined one full cycle through all the training
data, and after each epoch we evaluate the network on the validation set (see
section 5.2.3)

Here we briefly go through most of the techniques we use for the training
(except for two, which which will just refer to, which are Dropout [36] and
MaxPooling [32]). Roughly the same training scheme is used for all the three
networks, but we vary the hyperparameters somewhat.
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5.2.1 The Adam optimizer

After some some trial and error on data from some test simulations, we decided
upon the Adaptive Moment Estimation (Adam) algorithm [23] for our choice
of optimizer. It is a stochastic, gradient-based optimization technique that has
become very popular because of its effectiveness and memory efficiency. The
algorithm makes use of the momentum – which is the accumulation of gradients
over time, analogous to the build up of physical momentum of an accelerated
body – to effectively adjust the learning rate over time (i.e. training cycles).

In the end, Adam is just one of many methods to find a vector to move in
parameter space in order to optimize the loss function L(X,Y |θ), and we refer
to [23] for more details on precicely what separates it from other gradient based
optimizers. After the gradient is found, the update of the parameters is done
exactly as in equation 3.10, 3.11 and 3.12.

The Adam optimizer is found in the Keras.optimizers module.

5.2.2 Batch normalization

An operation that has become standard in deep learning is Batch normalization
[21]. It is a method designed to increase the information flow forward and
backward in the network. Before its invention, one would struggle with vanishing
activations in very deep neural nets, meaning that it would often happen that the
deepest layers would receive only zero vectors as input. What batch normalization
does is to shift and normalize the activations al (see equations 3.7 through 3.9)
of every layer for each forward pass, according to the equation

âlj =
alj − E(alj)√
var[alj] + ξ

γl + βl. (5.1)

The expectation value and variance are computed over the mini batch of data,
and ξ is a tiny constant to guard against zero-denominators. In other words, when
we do a forward pass and calculate the activations of a layer al, we calculate the
elements in vector âl according to equation 5.1, and replace the original activation
vector with this. The parameters γl and βl are trainable, and will be updated
with gradient descent according to the equations in section 3 in [21]. At test
time, the expectation values and variances that we insert into equation 5.1 will
be taken from the full training set. The values for γl and βl will be whichever
values they reached during training.

An interesting side effect of this operation is that, during training, since the
activations are shifted and normalized over the mini batches, the output for a
given datapoint is non-deterministic. The reason is that the values used for
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shifting and normalization is dependent on the specific batch of data, which is
randomly selected. This turns out to have an additional regularizing effect that
actually helps against overfitting (see next section) [21].

A class for implementing Batch Normalization is found in the keras.layers

library. Note that it is not used with the LSTM.

5.2.3 Preventing overfitting

When performing function fitting, which is what machine learning essentially
boils down to, problems arise when the function is tuned too well to the training
data. This is known as overfitting and is something that will make the network
perform worse on new data. Combating this is an important area of machine
learning research, and many techniques have been developed and have become
standard practice. We have here applied two common procedures.

L2 regularization

The first procedure is known as L2 regularization. This involves adding a penalty
for weight matrices with a high L2 norm (defined as the sum of the square of
the matrix elements) into the loss function. In the case of our cross entropy loss
(equation 3.14), this is written as

L(X,Y |θ) = − 1

N

N∑
i=1

c∑
j=1

yij log ŷij +
1

2
ρ

L∑
l=1

|W l|2, (5.2)

where ρ is a hyperparameter that decides the strength of the regularization, and
L the number of layers in the network (excluding the input layer). When we now
calculate the gradient of L, we will of course have to include the gradient of the
L2 term as well. This easily found as

∂

∂wkmn

(
1

2
ρ

L∑
l=1

|W l|2
)

= ρwkmn. (5.3)

We see now that the factor 1
2

in equation 5.2 is only there to make the gradient
look cleaner.

Earlystopping

This last procedure is the very reason that we create a validation set in addition
to the training and test sets. The idea is simple: After each epoch, we check how
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well the network performs on data that it have not been trained on – i.e. the
validation set. The accuracy of the predictions on this set will indicate how well
the network generalizes to new unseen data. If the loss and/or accuracy on the
validation set suddenly start increasing at some point after some epochs, then
that is an indication that the network has begun to overfit and we can terminate
the training.

However, since the loss during training often increases and decreases locally
many times during the full training period, we must decide on some parameter
that defines how patient we are in deciding when it looks like overfitting. In other
words we keep track of the best loss and/or accuracy on the validation set, and
if the loss has not improved after some number npatience of epochs, then we say
that the network has started overfitting and can terminate the training. We then
revert back to the configuration that gave the best score, which we have stored.

Earlystopping is found in the keras.callbacks module.



Chapter 6

Results

In this chapter we go through the results of the experiments that we performed.
We executed two phases of test simulations in order to calibrate and benchmark
the simulation, and we include the analysis from these.

Spiking pattern of
LGN and cortex

Spiking pattern of
LGN and cortex

Inhomogeneous
poisson generator

Part 2

Part 3

HybridLFPy

Sinusoidal LGN
rate profile

LGN spike
trains

LFP signals

Point neuron
network model
of cortex

Part 1 skipped

Testing scheme I

Figure 6.1: Scheme for the first phase of testing with sinusoidal stimuli.
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6.1 Test phase I – Sinusoidal input

We begin by skipping part 1 of the simulation and instead create an artificially
simple LGN rate profile. This is done so that we can carefully analyze how
the cortical model reacts to very simple stimuli. By letting the LGN firing rate
oscillate sinusoidally with a given frequency fλ, we began by seeing if we could
re-extract the frequency from the measured LFP. In other words, the LGN firing
rate profile used here is

λLGN(t) = Aλ sin(2πfλt) + bλ, 0 ≤ t ≤ T, (6.1)

where the simulation time T was chosen to be 1001 ms. Since we do not want
negative rates, we choose bλ = Aλ so that λLGN oscillates between 0 and 2Aλ with
a mean of Aλ. We use this to inspect how the cortical network reacts to various
simple signals by varying fλ and Aλ between simulations. Figure 6.1 shows an
illustration of the test scheme.

Note that both λLGN and fλ are in units of Hz. In other words, we have two
rates: the rate λLGN at which the LGN population fires, and then we have the
rate fλ at which λLGN itself oscillates.

Varying the input frequency

We start by only varying the frequency fλ of the sinusoidal input. The amplitude
is fixed to Aλ = 3 Hz, which gives us an ηtot that oscillates between 1.07 and 1.13
with a 1.1 average. As mentioned in section 4.3.3, this value of ηtot was rather
arbitrarily chosen, with the simple constraint that we want the average cortical
firing rate to be in the same order of magnitude as observed in biological brains.
In figure 6.3 we have plotted the firing rates averaged across multiple simulations.
The rate oscillates around 9.3 Hz for both cortical populations, which we deemed
sufficiently close to experimental observations.

The lower limit of fλ will be bound by T , as it makes no sense to use a signal
without at least one or more periods within the simulation, and the upper limit
will be somewhat bound by the time resolution as well as the maximum rate that
the network in practice will be sensitive to (assuming there is one, which seems
likely). We therefore began by choosing 6 different input frequencies fλ = 4, 10,
25, 45, 70, and 110 Hz for a simulation time T = 1001 ms.

Figure 6.2 shows measures of network activity for fλ = 4 Hz and fλ = 45 Hz.
From subplots G and H, is clearly not immediately obvious which of the LFPs
that belong to which input, just from looking at it. One thing to mention is that
since the scale of the y-axis in subplot C and D is over ten times larger than the
scale of the time-axis, the rasters are squeezed vertically and the spiking activity
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is truncated.
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Figure 6.3: Neural firing rate over time for each of the three populations,
averaged over multiple simulations, with input frequency fλ = 10 Hz.

look more synchronous than it really is.

PSD analysis of LFP and population rates

To make sure that the information about the input signal is actually to be found
in the LFP, we did a power-spectral-density (PSD) analysis [39] of the channel
1 LFP and averaged it across 500 simulations per value of fλ. The result is
shown above in figure 6.4. The colors mark frequency spectra for simulations
with different input signals. As we see, there are clear peaks at fλ = 4, 10, 25,
45, 70, and 110 Hz, which were the input frequencies. This is precisely what we
would hope for.

However, since some of the LFP is a direct contribution of the LGN synapses,
which would very obviously contain the input frequencies, we want to ensure that
we can find the same peaks in the cortical contribution to the LFP as well. This
was easily done by doing a similar analysis as explained above, but removing the
direct LFP contribution from the LGN synapses (equivalent to setting the LGN
part of the kernel [fig. 4.9] to zero). The result of this are the dashed, black lines
in the figure. Here we did not color encode distinct frequencies.

Figure 6.4 shows that the information about the input signal is clearly to be
found in the LFP, but that it decreases with higher frequency. The amount that
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1 for each value of fλ, averaged across 500 simulations. The black, dashed
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Figure 6.6: Each point is showing the average value of the peak of the
PSD for the given input frequency fλ with the given amplitude Aλ.

was just the direct conribution from the LGN synapses was around 20 % (i.e. the
difference between the coloured and dashed black line at a given peak, divided by
the amplitude of the coloured peak), but went up a little with higher frequencies.

We also did a PSD analysis of the time series of the population rates, shown
in figure 6.5, and compared it to fig 8B in Hagen et al [16]. We see that this is
consistent.

Varying the input amplitude

Next we examined how the input information is dependent on the strenght of
the input. For four of the frequencies from the previous subsection, namely
fλ = 4, 10, 25 and 70 Hz, we let the amplitude Aλ vary from 1 to 30 Hz. Since
we vary the amplitude and thus the mean of the LGN signal, that means we had
to lower the background signal accordinly using equation 4.38, in order to have
the network be in the same state (again, see [1]).

NB! Note the background rate was set with the mean of the LGN signal in
mind. In other words, νBF was held constant throughout each simulation.

For each combination of fλ and Aλ, we ran 500 simulations and computed
the average PSD. We then calculated the amplitude of the peaks in the PSD for
each value of fλ. The amplitudes of these peaks are plotted as a function of Aλ
in figure 6.6 for each of the four input frequencies. We see from the figure the
higher the input amplitude, the more the lower frequencies will dominate.
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Result: The frequencies in the input signals can definitely be extracted out
again from the LFP. Moreover we see that the effect of the input on the network
seem to disappear somewhere after around 100 Hz. It must also be mentioned
that even though we see clear peaks for the input frequencies in figure 6.4, this is
the average PSD across many simulations, and it is not necessarily the case that
the information about the input can be as easily extracted from a single example.

We can infer from figure 6.6 that if an LGN signal contain components with
both high and low frequencies, as the input amplitude goes up, the more lowpass
filtered the signal will be. This could mean that it is not necessarily the case that
increasing the amplitude of the input signal will always make it easier to pick
up. If much of the information in the signal is in the high frequency domain, it
might potentially make it harder.
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Figure 6.7: Simulation scheme for the second phase of testing where we
used sawtoothed LGN stimuli.

6.2 Test phase II – Classifying sawtooth input

As a further sanity check, we begin by making sure that we can classify LFPs
generated from simple LGN signals. To do this, we use sawtooth shaped and
reverse sawtooth shaped LGN signals using 5 different frequencies. We again
choose the values fλ = 4, 10, 25, 45 and 70 Hz. This makes a total of 10 different
inputs that vary in both shape and frequency (see figure 6.8). In other words,
we generate

λLGN(t) = Aλ sawtooth(2πfλt) + bλ, 0 ≤ t ≤ T, (6.2)

where again bλ = Aλ, and Aλ = 3 Hz.

For each signal we ran 10,000 simulations for a time T = 1001 ms, making a
total of 100,000 LFP datapoints after cutting them into pieces (see section 5.1).
The algorithms used for classification in this section are PCA, DNN and CNN.
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Figure 6.8: 10 different simple sawtooth shaped LGN signals. The s
stands for ”sawtooth” and the r for ”reverse sawtooth”.

We present the results in that order, but the figures of the results are shown
together at the end of the section.

Each of the 10 signals defines its own class, and the abbreviations used to
name the classes in this section contain an ”s” or ”r”, standing for ”sawtooth” and
”reverse sawtooth”, as well as a number that gives frequency of that particular
signal. The signals with their corresponding names are shown in figure 6.8.

6.2.1 Classification with PCA

As a benchmark we begin by doing a principal component analysis (PCA) on the
dataset. It is linear way to reduce the dimensionality of data, which for sufficiently
simple data can be used for classification. For a derivation of the algorithm, see
appendix 8.1. If we can classify the sawtooth data to a satistfactory degree with
PCA, then there is no point in using slower, more complex algorithms like ANNs.

Result: PCA was not sufficient to classify the data, except for the lowest
frequencies. Figure 6.9 shows the data visualized in PC space for the four
most dominant axes. Only the three most principal components show any
clear separation of classes at all. Unsurprisingly, more complex, non-linear
classification algorithms seem to be required.



66 Results Chapter 6

6.2.2 Classification with DNN

The natural next step is to see how well a dense neural net (see section 3.2) can
classify the sawtooth LFP data. It can model non-linearities, but is at the same
time very easy to implement and quick to train.

Result: The best DNN configuration reached an average accuracy of 97.9 %
on the test set. Its training scheme is found in table 6.1. Like we saw with PCA,
the higher frequencies were harder to classify, as seen in the confusion matrix
in figure 6.11, which shows the rate at which image i is mistaken for image j.
The diagonal shows the true positives, and the mean of this gives the average
accuracy. The training development is seen in figure 6.10.

We did not perform any systematic search in hyperparameter space, so better
configurations are likely possible to find with e.g. a grid search. The training
time for the DNN was in the order of a minute.

Classification scheme Value

Algorithm Dense neural net (DNN)
# hidden layers 2
# nodes per layer 966, 128, 64, 10
Activation ReLu
Output activation Softmax
Optimizer Adam

- Learning rate 0.01
- Decay 0.03

L2 regularization 0.0005
Batch size 512
Earlystopping patience 8

Table 6.1: Network and training scheme for the best DNN on the sawtooth
stimulated LFP data. The Adam optimizer worked slightly better than SGD
with Nesterov momentum. NB! Note that the listing of nodes per layer
includes the input and output nodes.

6.2.3 Classification with CNN

Even though we reached a very good accuracy using a simple DNN , it is still
interesting to see if a convolutional neural net (see section 3.4) can improve the
results even further. It is slower to train, but has the property that it can easier
take into account smaller, more local patterns in the signal. Our prior expectation
is therefore that it should exceed the performance of the DNN.
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Result: The CNN managed to reach an accuracy of 100 % for every single
class. We did not have to try many different architectures to do this, so
the sawtooth data seems to be a rather easy classification task for a CNN.
The training scheme used is shown in table 6.2, and training development and
confusion matrix in figure 6.12 and 6.13. The training time was about an order
of magnitude higher than for the DNN, meaning it took somewhere around 10
minutes.

As this dataset was such an easy task for both the DNN and CNN, there is not
much interesting to report on the performances of different network architectures.
The configuration we used is shown in table 6.2 below, but many others would
give the same results.

Classification scheme Value

Algorithm Convolutional neural net (CNN)
# conv. layers 3
Kernel sizes 5, 5, 5
# kernels per layer 32, 64, 128
Strides 1, 2, 2
Maxpool Yes
Pool size 2
# dense layers 1
# nodes per dense layer 128
Activation ReLu
Output activation Softmax
Batch normalization Yes
Optimizer Adam

- Learning rate 0.01
- Decay 0.03

L2 regularization 0.0005
Dropout conv. layers 0.75
Dropout dense layers 0.5
Batch size 512
Early stopping patience 4

Table 6.2: Network and training scheme for the best CNN on the sawtooth
stimulated LFP data. The network is built with a classical architecture of
convolutional blocks followed by dense layers. Each convolutional block
consists of a convolutional layer, activation, batch normalization, maxpool
and dropout, in that consecutive order.
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adequately separated. The black Xs are the centers of mass for each of
the clusters. Lower 4 boxes: Showing the distribution of the data along
the 4 largest PCs. The black curves are fitted Gaussians for each class.
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Figure 6.10: Loss/accuracy development during training for the DNN on
the sawtooth LFP dataset.
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Figure 6.11: Confusion matrix for the DNN on the sawtooth LFP test
set. The network struggles slightly with the higher frequency signals. It
seems to struggle about equally in differentiating shape as frequency.



70 Results Chapter 6

0 2 4 6 8 10 12 14 16
Epoch

0.00

0.25

0.50

0.75

1.00
Training development - CNN

Training loss
Training accuracy
Validation loss
Validation accuracy

Figure 6.12: Loss/accuracy development during training for the CNN on
the sawtooth LFP dataset. The reason the network seem to do better
on the validation data is that training is done with dropout, while the
validation is not.
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Figure 6.13: Confusion matrix for the CNN on the sawtooth LFP test set.
Every single test data was correctly classified.
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Figure 6.14: PCA on 100,000 raw pyLGN signals. The absolute most
significant cause of variance in the pyLGN signal for a given image, is the
image shown before. But by zooming in, we see that each point is actually
a dense cluster of points, separated by tiny variances caused by the images
shown as the 2nd previous, and so on. These 2nd and higher order variances
are so tiny as to be negligible, meaning that there are in practice only 10
different signals per image.

6.3 Classifying raw pyLGN signals

Before we go on to classify pyLGN stimulated LFPs, we must see how well we can
classify the raw output from the module. The pyLGN signal for a specific image
is deterministic, but it is dependent on the state of the sheets of neurons in the
module at the initial moment that it receives the image. In other words, the
signal for a specific image is dependent on the previous image that was shown.
Since response to the previously shown image is dependent on the image before
that again, and so on, this makes it in theory a number of

∑9
i=1 i! ≈ 400k different

signals per image.

For this reason we investigated how much error, if any, we could expect from
just the pyLGN mappings of the images. We ran 10,000 pyLGN simulations, each
with a randomized sequence of the images, and then cut out the part of the signal
that corresponded to each image. The pieces were then ordered into 10 classes,
just as we will do later with the LFPs. This made up a dataset of 10,000×10 =
100,000 signals which we then ran a PCA on. The set of images that we use as
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fodder are shown in figure 6.15.

Result: None of the eventual classification error should stem from the pyLGN

part. It turns out that in practice the 2nd and higher order effects of the image
sequence are negligible. As seen in figure 6.14, the pyLGN signals data can be
perfectly separated using only the two most dominant axes.

In figure 8.1 in the appendix, we have plotted 500 randomly chosen pyLGN

signal samples for each class. The curves look pixelated because of very tiny
variances, but in practice we see that there are only 10 different signals per
image.

Class 0 Class 1 Class 2

Class 3 Class 4 Class 5

Class 6 Class 7 Class 8

Class 9 Grey image

Figure 6.15: The images that were fed into PyLGN as optical stimuli
for the simulation with the receptive field (RF) of the center neuron
superimposed. The RF was calculated empirically by convoluting a 50×50
px black square over an all white image, and calculating the change (in L2
distance) of its pyLGN output signal.
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Figure 6.16: The LGN rate profiles for three of the input images and the
resulting LFPs. The examples are from a simulation where all 10 images
were shown for 250 ms each in the order 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The
LFPs shown are after downsampling.
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6.4 The full simulation

Now that we have shown that it is absolutely possible to classify the different
LFPs, as well as the raw signals from pyLGN, we move on to the full simulation
as illustrated in figure 4.1 and 1.1. We will now be using equation 4.12 as the
LGN rate profile as intended, i.e.

λLGN(t) = RLGN(0, t). (6.3)

We use the same set of input images as in the previous section, shown in figure
6.15. Figure 6.16 shows three examples of LGN signal and resulting LFP for
three different images.

For each simulation, all 10 images are input for a duration of 250 ms each in a
randomized order. For the first and last 250 ms of the simulation, the grey image
is shown so that the network will stabilize before receiving the input, making a
total simulation time T = 12× 250 = 3000 ms. The resolution parameters used
in pyLGN were nt = 12, nr = 5, dt = 1, dr = 0.1, and the default DOG kernel
parameter values were used.

We wanted the value of ηtot to have the same average as in the test phases
in section 6.1 and 6.2, and oscillating with roughly same variance (which for
a sinusoid is half the amplitude). By first shifting the pyLGN signals with the
imperical mean, calculated to be about 6.5 Hz (see section 4.3.3), scaling it to
have a variance of 1, and then rescaling it by

√
Aλ/2, we ensured that the pyLGN

signals on average have a variance of Aλ/2. Again we set Aλ = 3 Hz.

The background rate was set according to equation 4.38. To avoid any
confusion: this was done once, meaning that νBG was equal for all simulations.

We then ran 100k simulations. After this, the LFPs were cut, preprocessed
and sorted into classes as described in section 5.1, making a total dataset of 1M
datapoints of size 6× 50, divided into a training, validation and test set.

6.4.1 Classification with CNN

As the CNN worked best on the sawtooth dataset, we continue with that in this
section.

Result: The best of the CNN architectures we tried, managed to reach an
accuracy of 66% on the test set, averaged across all classes. Although not as high
as for the sawtooth data, this is quite significant as there are 10 different inputs,
meaning that random guessing would give 10% accuracy. Plots with the training
development and confusion matrix are shown in figure 6.17 and 6.18.

The architecture and training scheme that was used is given in table 6.3.
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Again we did not perform any systematic search in parameter space, but tested
the different architectures by hand. We found that there was nothing to gain
by making the networks deeper and simply train them for longer, as one might
expect. Smaller networks worked just as well and were of course much faster.

In addition, increasing the receptive field of the nodes in the convolutional
layers (see section 3.4.1) had, surprisingly, no effect on the accuracy. This might
indicate that most of the learning happens in the dense layers of the network.
We confirmed this by training an additional DNN on the data, which came up
close at a 60% average accuracy (we do not see it as important to report on the
architecture for this). However, adding additional dense layers to the CNN gave
no additional gain in accuracy.

The accuracy for the individual images varied quite a bit, as shown in the
confusion matrix in figure 6.18. We can see that there are some images that
the CNN struggles to separate from each other more than others. For example,
whenever the CNN sees an LFP generated from image 9, it is almost as likely to
say that it is image 5 or 8. We discuss this further in the last chapter.

No issues were had with overfitting, so the regularization was kept low and
dropout was not used.

Classification scheme Value

Algorithm Convolutional Neural Net (CNN)
# conv. layers 2
Kernel sizes 11, 11
# kernels per layers 32, 32
Strides 1, 1
Maxpool Yes

- Pool size 2
Dropout None
# dense layers 1
# nodes per dense layer 128
Activation ReLu
Output activation Softmax
Optimizer Adam

- Learning rate 0.001
- Decay 0.002

L2 regularization 0.01
Batch size 500
Earlystopping patience 5

Table 6.3: Network and training scheme for the best CNN on the LFP
data from the full simulation.
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6.4.2 Classification with LSTM

After seeing the results of the CNN, we decided to try an LSTM as well. The
two algorithms are very different in the way they perceive the input, which can
potentially make them differently suited for various sorts of data. The LSTM is
slower to train and use than the CNN, but it is interesting to see if there are any
different results in performance of the two algorithms.

Result: The performance of the LSTM was virtually the exact same as the
CNN, reaching a 65% average accuracy on the test set. The confusion matrix
(figure 6.20) is also nearly identical to that of the CNN, meaning that exact
same images were confused to the same degrees. The main difference was that
the LSTM was over a magnitude slower to train. Here too we saw that using a
larger network had no positive effect on the accuracy.

Classification scheme Value

Algorithm Long Short-Term Memory (LSTM)
# LSTM layers 1

- Hidden layer size 128
- Activation tanh
- Recurrent activation Hard sigmoid

Output activation Softmax
Dropout None
Optimizer Adam

- Learning rate 0.001
- Decay 0.003

L2 regularization 0.01
Batch size 500
Earlystopping patience 5

Table 6.4: Network and training scheme for the best LSTM on the LFP
data from the full simulation.
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Figure 6.17: Training development of the CNN on the pyLGN stimulated
LFP dataset. The reason it looks like it converges faster than in the test
sections, is because the dataset is 10x bigger here, meaning more training
is done per epoch.
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Figure 6.18: Confusion matrix of the CNN on the pyLGN stimulated LFP
dataset.
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Figure 6.19: Training development of the LSTM on the pyLGN stimulated
LFP dataset.
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Figure 6.20: Confusion matrix of the LSTM on the pyLGN stimulated LFP
dataset.
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Figure 6.21: The mean L2 distance between the classes, mapped through
an exponential function to correspond to values between 0 and 1. Higher
values means lower L2 distance.

6.4.3 Investigating what the AIs look for in the LFP

A much discussed issue with deep learning is that it is often hard to know what
exactly it is that the classifiers are looking for in the input. Scientists have for
example been surprised to find that AIs trained to recognize objects in images
are surprisingly concerned with texture, compared to shapes [14]. Knowing what
features it is that AIs use to make their decisions can be crucial for improving
the algorithms further, or for avoiding exploitation [38], and is in general an
obviously important field of study.

As an approach to investigate what the ANNs look for in the LFP data, we
experimented with various measures of distance between the different classes. We
found that the L2 distances between the LFPs somewhat resembled the pattern
of the confusion matrices in figure 6.18 and 6.20.
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Figure 6.22: 121 of the kernels/filters of the first layer in the trained
CNN.

This was done in the following way: For a given class i, the mean L2 distance
to class j was calculated and mapped to a value between 0 and 1 through the
equation

〈L2〉ij = exp
[
− 1

N2

N∑
k=1

N∑
l=1

(
xki − xlj

)2
]
. (6.4)

The vector xki contains the k’th LFP data of class i (for simplicity, only data
from channel 1 was used). This calculation was then done for all combinations
of ij and put into a matrix. In order to compare this to the confusion matrices,
each row in the matrix was then normalized to sum to 1. The matrix with the
mapped L2 distances is plotted in figure 6.21, where a high number represents
a small average distance. Because of the exponential mapping, the plot only
indicates differences in the very small distances. All longer distances are simply
clamped to 0.

For the CNN, another common thing to do in order to investigate what it
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looks for, is to inspect the filters of the first convolutional layer. The shape
of the filter is the shape of the LFP that would maximize the output of that
particular layer, which means that this is the pattern that the layer ”looks for”
in the LFP.

In figure 6.22, 121 of the first layer filters of the trained CNN are visualized.
As expected, there is a manifold of patterns that the network look for, and many
seem rather flat, which could potentially mean that they are redundant and that
we could get away with fewer kernels. Unfortunately we cannot do this analysis
with the LSTM.

6.5 Additional Experiments

6.5.1 Fixed Connectome

In the point network simulations that were used in all previous sections, the
connections in the network – the connectome – were randomized each time.
We generated a new dataset where we used an identical connectome for all the
simulations and trained new ANNs on this.

Result: The results were indistinguishable. This should be expected,
especially considering that we generate the LFP based on the population firing
rates. As the network gets larger this should be less and less dependent on the
specific connectome.

6.5.2 Extra noisy test set

To compare the robustness of the now trained CNN and LSTM against noise, we
tested their accuracies on the test set while we gradually added more and more
Gaussian noise to it. Starting at 0.01, the std was increased step-by-step up to
0.5, where the data became completely unclassifiable. (The noise was added to
the fully preprocessed and downsampled data.)

Result: As seen in figure 6.23, the LSTM seem to be slightly better at
handling the noise than the CNN.

6.5.3 Double LGN amplitude

We generated a full dataset where the strength of the LGN signal was twice
that of in the previous section, i.e. Aλ = 6 Hz. The value of ηtot was held at
1.1 by setting the background rate according to equation 4.38. We trained new
classifiers on this and tested them on the new test set.
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Result: As expected this gave a higher average classification accuracy, which
was now at 70%.

6.5.4 Test Set with Other g Values

If the goal is to train ANNs on simulated data in order to classify experimental
data, it is interesting to ask ourselves what happens if we are mistaken about one
or more of the parameter values in the biological brain that we simulate. The
question is then, how does the classifiers transfer to data that from a brain with
slight deviations in parameters?

To begin to investigate this, we generated two new test sets where we changed
the parameter g by ±10%. We then let the ANNs attempt to classify these sets.
In other words, we took the CNN and LSTM that were trained on the original
data, and ran predictions on test sets from simulations where g = 4.68 and
g = 5.72.

The new test datasets were preprocessed using the mean and stds from the
original training set, which meant that they did not have a mean of zero or
unitary standard deviation, as seen in figure 6.24.

Result: The CNN transfered much better to the new data than the LSTM
for both new values of g, as seen in figure 6.25 and 6.26. In fact, on average the
CNN did almost as well when g was 10% higher as for the original value, with
a 62% accuracy. Both classifiers also transfered better when g was raised than
lowered.
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Figure 6.23: The accuracy of the CNN and LSTM as we gradually
increased the standard deviation of the added noise.
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Figure 6.24: Mean LFP per class for channel 1 for the three different
values of g. As all the test set were shifted and scaled using the mean
and variance from the original training set, the two new test sets were
not initially zero centered. However, for this specific plot they were zero
centered to show how the shape is changed with new g values, and the
dashed black lines show the mean the signals were zentered around at test
time.
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Figure 6.25: Confusion matrices for the CNN and LSTM on the test
dataset where the value of g was lowered by 10%.
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Figure 6.26: Confusion matrices for the CNN and LSTM on the test
dataset where the value of g was raised by 10%.
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Conclusion

7.1 Discussion

The results of the experiments that we have performed here suggest that we can
indeed use the LFP to extract knowledge about the information that a brain is
processing. How much of this information we can get also seems, unsurprisingly,
dependent on the strength of the communication between the relevant neuron
populations, here referring to the size of the LGN firing rate compared to the
background rate. We could likely get an much higher classification accuracy
by simply turning up the amplitude of the LGN signal, but this would in itself
not be very interesting. Systematically analyzing the relationship between the
amplitude and the accuracy could on the other hand be something worthy of
investigation.

CNN vs LSTM

We have compared the performance of two very different artificial neural network
algorithms, namely a CNN and an LSTM. The two are different in the way they
perceive the input. The mechanisms of a CNN is analogous to vision, where
everything in the input is perceived at the same time in parallel. On the other
hand, the way we use the LSTM here is somewhat more analogous to hearing,
where the values in the input data are read one at a time in series – a little like
how an ear reads sound from a train of different air pressure values. This could
make us expect that the two algorithms would pick up different sorts of patterns
and therefore respond differently to various features in the data. One might for
example expect the LSTM to be better at picking up causal effects, but their
performances were strikingly similar.

An important difference was that the CNN transfered better to data from
different networks, i.e. simulations with different g values. The LSTM seems to
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become much more biased to a small subset of the classes, compared to the CNN.
We see for example that in figure 6.25, the LSTM becomes very keen on placing
data into class 4, while in figure 6.26 it favours class 1 and 8. It is not obvious
why this is the case, but one possible explanation could be that the CNN is more
affected by the mean values of the input, which by looking at figure 6.24 we see
are scaled when g is changed. This explanation would also fit with the result that
the LSTM handles Gaussian noise better, as the mean is then held constant.

With both networks, increasing their sizes by adding more layers and nodes
gave very diminishing returns. A very small CNN could get up to 65% average
accuracy, and adding layers, magnifying the convolutional filters etc. would
improve it by 1% but no more.

The LSTM was, in addition to being slower to train and worse at transferring,
more dependent on finding a good tuning of its hyperparameters. By that
we mean that whereas many different CNN architectures that we tested would
perform about equally well, the LSTM seemed to have fewer hyperparameter
configurations that would give a good result. As already said, the LSTM weighed
up for some of this by being better at noisy data.

Transfer learning

It is not obvious why raising g by 10% would make the data easier to classify,
compared to lowering it by the same amount. Looking at figure 2A in [1], it
could possibly have something to do with the fact that the border between the
AI and SI domain, falls downwards in the area of 4 ≥ g ≥ 5. As our network
is oscillating up and down slightly above this border, it is possible that for the
higher value of g, it would occasionally cross over into the SI domain. If data
from this state is easier to classify, this could be a possible explanation. We did
not test this, however.

Visual similarities in the confused classes

By comparing figure 6.18 and 6.15, we can see that the classes that the network
confuse are images that in many ways look visually similar. Taking again the
examples of image 5, 8 and 9, we see that these three images all have very similar
textures inside the field of view. Additionally, none of them have any larger
objects to speak of.

Two other classes that the ANNs confuse are image 6 and 2. We see that
both of these have a large vertically elongated object placed right in the receptive
field.

Another pair that creates some confusion consists of image 3 and 7, on which
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Class i

Class j

x

Figure 7.1: Illustrating two overlapping distributions. Any datapoint x
from the overlapping area could stem from both classes and would not be
classifiable.

we can see somewhat similar triangular shapes.

The odd pair out is probably class 0 and 1, which the networks confuse to
some degree but which at first glance seem less visually similar than the sets
mentioned above. This does therefore remind us to not to be too confident in
pointing out the visual similarities, as it is easy to be prone to confirmation bias
here. At the same time, we do see that they both are somewhat contain some
larger horizontal shape that looks nothing like the other images, and this could
perhaps be what causes the networks to confuse them.

In terms of accuracy, class 4 clearly stands out at 97 and 95%. Looking at
the images again, we can see that it is also probably the one that sticks out the
most visually. It has a multiple of of semi-large, oval objects which look nothing
like anything in the other images, and it does not have any of the fine grained
texture that most of the others have.

The rate at which the classifiers confuse the classes seems to be partly
explained by the L2 distance between them, as indicated by similarities of the
pattern in figure 6.21 and the confusion matrices in figure 6.18 and 6.20. We see,
for example, that LFPs from class 6 and 2, which are the two classes the ANNs
confuse the most, have on average a relatively small L2 distance between them.
At the same time, so does 7 and 2, and the network does not have much problems
separating those. We therefore do not make any clear conclusions on this.

Overlapping LFP distributions

Both classifiers were about equally successful at 65 and 66% on the initial dataset.
They could also reach this accuracy in very few epochs and with many different
hyperparameter settings. This maye therefore indicate that the LFP data is
an easy classification task for ANNs, but that the distribution of LFPs for the
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various classes are overlapping.

By that we mean that it could be the case that some of the data from class i
could be indistinguishable, even in principle, from certain datapoints from class
j. In other words, for a given LFP signal created when image i was shown, it
could be that, because of the large degree of stochasticity in the simulation, that
the very same signal could also be created when image j was shown, making those
specific datapoints literally unclassifiable. The concept is illustrated in figure 7.1
above.

It is plausible that this is the reason that the ANNs were not able to correctly
classify much of the data. It would otherwise seem unlikely that 65% of the data
should be extremely easy, while the remaining 35% extremely hard.

7.2 Future prospects

A natural extension of this project would be to run simulations using bigger
networks and more realistic parameter configurations. Multiple LGN rate profiles
could for example be used, with a manifold of LGN sub-pupulations to stimulate
cortex.

By tuning the ratio of LGN signals to background noise to conform with
some equivalent measure from experiments, the realism of the simulation could
be enhanced even further. The ANNs trained on data from this would be much
more likely to transfer well to experimental LFP data.

Additional work could be done to make the trained ANNs more robust, for
example by generating training data where the simulation parameters are drawn
from distributions, rather than being fixed.



Chapter 8

Appendix

8.1 PCA

The core of Principal Component Analysis (PCA) is about finding the axes in
our dataspace that explains the most of the data’s variance. This can be very
useful for reducing the dimensionality of the data. The proof of the algorithm
goes as the following:

We have our data stored in a matrix X ∈ RDxN , consisting of N datapoints
that are columns vectors of length D. We assume that the data is zero-centered.

Let us now assume that there exists an orthonormal rotation matrix P =
[p1 p2 . . . pD] that can transform our data matrix into Y ∈ RDxN where Y has
the property that its covariance matrix is diagonal. In other words,

Y = P TX (8.1)

where

Cov(Y ) =

λ1 0
. . .

0 λD

 . (8.2)

Since the data is zero-centered, we have Cov(X) = 1
N
XXT and similarly

Cov(Y ) = 1
N
Y Y T . Inserting equation 8.1 into the latter, we get

Cov(Y ) =
1

N
(P TX)(P TX)T

=
1

N
P TXXTP

= P T Cov(X)P .

(8.3)
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Multiplying both sides of equation 8.3 with P and using the fact that PP T = I
because of its orthonormality, we get

P Cov(Y ) = Cov(X)P . (8.4)

Substituting the left P with [p1 p2 . . . pD] and Cov(Y ) with the right side of
expression 8.2, we see that can rewrite the above equation as

[λ1p1 λ2p2 . . . λDpD] = Cov(X)P . (8.5)

We then for simplicity rename Cov(X) = Z = [z1 . . . zD] so we can write

[λ1p1 λ2p2 . . . λDpD] = ZP

= [Zp1 Zp2 . . . ZpD]
(8.6)

From this we see that we get the relation

λipi = Zpi for each pi. (8.7)

In other words, each pi is an eigenvector of Z with corresponding eigenvalue λi.

To sum up: The rotation matrix P that rotatesX into a matrix Y which has
a diagonal covariance matrix, can be found by simply calculating the eigenvectors
of Z = Cov(X).

The vector pi is the i’th principal component of our data. The
corresponding eigenvalue λi is the variance in dimension i in Cov(Y ), meaning
is the amount of variance along axis pi. This means that if λa is the largest
eigenvalue, then pa is the direction in data space which explains the most of the
variance. If λb is the second largest eigenvalue, then pb is the direction in data
space which explains the second most of the variance, and so forth.

Most importantly, since the P is an orthonormal matrix, the principal
components are orthogonal and are thus uncorrelated. That means there is
no overlap between the variance that is explained by two different principal
components.

You can now reduce the D dimensional data down to K dimensions by
checking which are the K largest eigenvalues, and then put their corresponding
eigenvectors into a new matrix P reduced = [pa pb . . . ]. This can now be used to
project the data matrix X onto the K biggest principal components by

Y reduced = P T
reducedX. (8.8)

Y reduced will now contain a lower dimensional representation of the data.
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8.2 pyLGN Signals
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Figure 8.1: 500 examples of pyLGN signals for each class. Each signal
is taken from a pyLGN simulation using a randomized sequence of the 10
images. For each simulation the ouput signal was then into pieces of 250
ms corresponding to each image. The only significant variation in the
signals stem from which image was shown as the previous image. There
are thus in practice exactly 10 signals for each image. The black curve is
the mean over the 500 signals.
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