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A B S T R A C T

Ascertaining the cause of variations in the frequency of geomagnetic polarity reversals through the Phanerozoic
has remained a primary research question straddling paleomagnetism and geodynamics for decades. Numerical
models suggest the primary control on geomagnetic reversal rates on 10 to 100Ma timescales is the changing
heat flux across the core-mantle boundary and that this is itself expected to be strongly influenced by variations
in the flux of lithosphere subducted into the mantle. A positive relationship between the time-dependent global
subduction flux and magnetic reversal rate is expected, with a time delay to transmit the thermal imprint into the
lowermost mantle. We perform the first test of this hypothesis using subduction flux estimates and geomagnetic
reversal rate data back to the early Paleozoic. Subduction area flux estimates are derived from global, full-plate
tectonic models, and are evaluated against independent subduction flux proxies based on the global age dis-
tribution of detrital zircons and strontium isotopes. A continuous Phanerozoic reversal rate model is built from
pre-existing compilations back to ~320Ma plus a new reversal rate model in the data-sparse mid-to-early
Paleozoic. Cross-correlation of the time-dependent subduction flux and geomagnetic reversal rate series reveals a
significant correlation with a time delay of ~120Ma (with reversals trailing the subduction flux). This time
delay represents a value intermediate between the seismologically constrained time expected for a subducted
slab to transit from the surface to the core-mantle boundary (~150–300Ma), and the much shorter lag time
predicted by some numerical models of mantle flow (~30–60Ma). While the reason for this large discrepancy
remains unclear, it is encouraging that our novel estimate of lag time represents a compromise between them.
Although important uncertainties in our proposed relationship remain, these results cast new light on the dy-
namic connections between the surface and deep Earth, and will help to constrain new models linking mantle
convection, the thermal evolution of the lowermost mantle and the geodynamo.

1. Introduction

Earth contains two great heat engines that meet at the core-mantle
boundary (CMB) and interact thermally across it. Vigorous convection
occurs in both the core and mantle, but operates on vastly different
timescales, with flows in the core seven orders of magnitude faster than
those in the lower mantle (Biggin et al., 2012). Together with the much
higher thermal diffusivity of the metallic core, that vigorous convection
ensures that lateral temperature variations in the uppermost core are
much lower (< 1 K) than those in the overlying lowermost mantle
(several hundreds of Kelvin or more).

This implies that the mantle enforces heat flux constraints on the
core, dictating how fast the core cools, and controlling its vigor and
style of convection. Core convection is necessary to sustain the geo-
dynamo against Ohmic losses (energy dissipated by electrical re-
sistance) and therefore it seems entirely plausible that changes in the

thermal structure of the mantle, resulting from its slow convection, will
influence the behaviour of the geomagnetic field on timescales of tens
to hundreds of millions of years (Buffett, 2015). Variations in CMB heat
flow of tens of percent of the total are predicted for the last few hundred
million years (Biggin et al., 2012; Buffett, 2015). The fact that the
geomagnetic field also exhibits its strongest variations on such time-
scales (Constable and Johnson, 2005) re-enforces the idea that mantle-
induced changes in CMB heat flow should be detectable in paleomag-
netic records.

The best-defined paleomagnetic record for documenting such long-
time variations is geomagnetic polarity, which shows that the average
duration of single polarity chrons varies from ca. 30 ka to> 10Ma
(Ogg, 2012). Although individual chron length exhibits a stochastic
pattern, there is a strong nonstationary in the average reversal fre-
quency measured over a few million years or longer (McFadden and
Merrill, 1997; Constable, 2000). The precise nature of this long
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timescale variation in the reversal record has been the subject of much
debate (Gallet and Hulot, 1997; McFadden and Merrill, 1997; Lowrie
and Kent, 2004; Shcherbakov and Fabian, 2012) but the basic pattern in
the Phanerozoic of near evenly-spaced superchrons interspersed with
intervals of reversals is clear (Gallet and Pavlov, 2016).

Previous studies have speculated upon causal links between varia-
tions in reversal frequency and expressions of mantle processes at the
surface (e.g. Larson and Olson, 1991; Eide and Torsvik, 1996; Courtillot
and Olson, 2007). Most of these have relied on thermal forcing of the
geodynamo by mantle convection as the key mechanism. Recently,
greater clarity from numerical geodynamo simulations has suggested
how this relationship may operate (e.g. Olson and Christensen, 2006;
Olson, 2007; Aubert et al., 2009; Driscoll and Olson, 2009; Wicht et al.,
2010). Olson and Amit (2014) summarise this as a tendency for the
magnetic field to have higher reversal rates when the mantle acts to
make CMB heat flow higher or more heterogeneous, particularly when
it cools the CMB (and hence increases heat flow) in equatorial or polar
regions.

The principal source of buoyancy in the mantle—and hence the
primary driver of its convection—is the sinking of cold lithospheric
slabs subducted at destructive plate margins (Wada and King, 2015).
These slabs may stagnate temporarily in the upper or mid-mantle but
ultimately sink through the lower mantle, as evident by the continua-
tion of fast seismic wavespeed anomalies down to the CMB (van der
Meer et al., 2010, 2018; Shephard et al., 2017). In numerical models of
mantle flow (e.g. Steinberger and Torsvik, 2012), sinking slabs thin the
thermal boundary layer at the base of the mantle, increasing CMB heat
flow directly below them. The time-dependent, global volumetric flux
of lithosphere being subducted at trenches could therefore be related to
both the magnitude and heterogeneity of CMB heat flow at some later
time.

Geodynamic studies specifically aimed at constraining the lag time
between variations in surface heat flow (and hence the subduction flux)
and CMB heat flow are rare, but suggest a delay of 30–60Ma (Biggin
et al., 2012; Olson et al., 2013; Zhang and Zhong, 2011), although this
is highly dependent on the choice of viscosity and temperature profiles
in the models. Seismic tomographic models, by contrast, have been
used to argue that it takes sinking lithospheric slabs > 100Ma to pe-
netrate the mid-lower mantle (~1800 km depth) (van der Meer et al.,
2010, 2018; Domeier et al., 2016). Whatever the transit time for a slab
(and the thermal anomaly associated with it) to arrive in the lowermost
mantle, the response of the geodynamo may be subject to a further lag
of several tens of Ma, as stratified layers in the uppermost core change
thickness in response to the changing conditions of heat flow across the
CMB (Buffett, 2015). Notwithstanding whether the core is (or was)
stably stratified, we would expect variations in subduction flux at the
surface to modulate the reversal frequency with a lag time of at least
several tens of millions of years and probably> 100Ma. New insights
into the sensitivity and temporality of this expected relationship can
therefore be attained through comparison of global subduction flux and
geomagnetic reversal rate records, but this comparison needs to be
performed over a time scale of several hundred million years.

At the outset, it is important to note that there are potentially
confounding issues with the hypothesis that geomagnetic behaviour can
be linked to preceding changes in the subduction flux. Firstly, geody-
namo models that predict sensitivity to global heat flow also predict
strong dependence on its geographical distribution (Glatzmaier et al.,
1999; Olson et al., 2010). Secondly, the dynamics and material prop-
erties of the lowermost mantle are poorly understood and sinking slabs
may interact with extant materials in variable and unexpected ways
(Hunt et al., 2012; Steinberger and Torsvik, 2012). Third, before the
thermal effects of descending slabs even reach the CMB, the shift in
mass that they present may well modify Earth's moment of inertia
tensor, causing true polar wander to occur (Gold, 1955; Steinberger and
Torsvik, 2010). This could rotate the entire CMB heat flux pattern in the
reference frame of the geodynamo, potentially also causing changes in

geomagnetic reversal rate but with a much shorter time lag (Biggin
et al., 2012). Finally, the dynamics of the lowermost mantle, namely the
generation of mantle plumes, may play an active role in shaping en-
suing plate tectonics at the surface (Dziewonski et al., 2010). Because
the departure of mantle plumes can also modify the CMB heat flux, and
thus the geodynamo (Biggin et al., 2012); changes to the geomagnetic
field could also predate surface tectonic developments, as well as follow
from them. However, before any of these possible complexities can be
addressed, it must first be determined if any correlation between sur-
face tectonics and geomagnetic field behaviour can be discerned. To
this end, we here provide the first statistical comparison of global
subduction flux and geomagnetic reversal rates extending back to the
early Paleozoic.

2. Subduction flux

At a global scale, subduction flux is the time-dependent volume of
lithosphere that is subducted along convergent margins. The calcula-
tion of the subduction flux therefore requires knowing both con-
vergence rates and the thickness of oceanic lithosphere, globally, for the
duration of the interval of interest. Unfortunately, owing to the loss of
oceanic lithosphere to subduction, paleogeographic models that at-
tempt to reconstruct the tectonic plates and their kinematics become
progressively uncertain backwards in time (Torsvik et al., 2010). The
geographical distribution of oceanic lithospheric thickness is particu-
larly poorly known in the past, and there are no publically-released
global reconstructions of oceanic lithospheric thickness or age (from
which lithospheric thickness can be estimated) prior to the Mesozoic.
However, recently developed full-plate tectonic models allow compu-
tation of global convergence rates back into the Paleozoic. These
models include globally-networked plate boundaries, a full-accounting
of crustal and oceanic lithospheres, and a time-continuous kinematic
evolution (Domeier and Torsvik, 2018). We therefore opt to use the
subduction area flux (SAF; the global surface area of lithosphere sub-
ducted over an arbitrary unit time), which can be calculated from
global convergence rates alone, as a proxy for the true (volumetric)
subduction flux.

Estimates of the SAF can be derived from a full-plate tectonic model
by either direct computation of the total subducted area per unit time,
or by determination of the seafloor production (spreading) rate (SPR)
that must offset the SAF because the surface area of the Earth is con-
stant (and assuming plate deformation to be negligible at the global
scale). Although there are a number of Mesozoic-Cenozoic plate models
available, at present there exists only two alternative full-plate models
that extend continuously from present day back into the Paleozoic: a
0–600Ma model developed at the University of Lausanne (Stampfli and
Borel, 2002; Stampfli et al., 2013; Vérard et al., 2015; hereafter “V15”)
and the 0–410Ma model of Matthews et al. (2016) (hereafter “M16”),
which is based on the 0–230Ma model of Müller et al. (2016) and the
250–410Ma model of Domeier and Torsvik (2014). The model of
Müller et al. (2016), in turn, is based on the earlier 0–200Ma full-plate
model of Seton et al. (2012). While the latter models are all publically-
distributed, the Lausanne model is now industry-owned, and is there-
fore difficult to scrutinize.

Fig. 1a shows a comparison of both SAF curves derived from the
V15 and M16 plate models, generated by direct computation of the
subducted area through time. The V15 SAF curve was calculated and
presented by Vérard et al. (2015), whereas the M16 SAF curve was
computed in this study (extracted from the M16 plate model) by
methods described in the Supplementary information. Alternative ap-
proaches to computing the SAF to exclude contributions from model
artefacts and non-subducting convergent boundaries (i.e. transpressive
boundaries) are also discussed in the Supplementary information
(Supplementary Fig. S1). Also shown in Fig. 1a is a Mesozoic-Cenozoic
SPR curve (Coltice et al., 2013) based on the plate model of Seton et al.
(2012). Because M16 is partly an update of Seton et al. (2012), the SPR
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curve of Coltice et al. (2013) and the 0–250Ma segment of the M16 SAF
curve are not entirely independent, but their similarity underscores the
expected equivalence of the time-dependent SAF and SPR.

2.1. Subduction flux since the Jurassic

The M16 SAF (and the SPR of Coltice et al., 2013) is characterized
by relatively low, modern-day-like rates (~2–4 km2 yr−1) in the
Triassic to mid-Late Jurassic (250–150Ma), high rates (> 4 km2 yr−1)
in the latest Jurassic and Early Cretaceous (150–100Ma), and a general
decline from high rates to modern-day rates through the Late Cretac-
eous and Cenozoic (100–0Ma) (Fig. 1a). The V15 SAF curve exhibits a
similar trend between 180 and 0Ma, showing a moderate SAF in the
Early-Middle Jurassic (180–160Ma) and Late Cretaceous to Cenozoic
(80–0Ma) separated by high rates in the Late Jurassic and Cretaceous
(160–80Ma). However, the numeric values of the SAF estimated by
V15 are significantly higher than those of M16 for most of the last
180Ma, most notably during the Late Jurassic to mid-Cretaceous
(160–90Ma) (Fig. 1b).

Alternatively, Rowley (2002) and Cogné and Humler (2004) have
suggested that the SPR (and thus the SAF) of the last 180Ma has been
effectively constant. However, neither of those analyses is based on full-
plate tectonic reconstructions. The argument of Rowley (2002) is based
on the modern-day area versus age relationship of preserved oceanic
crust and the assumption that the oceanic crust consumed at subduction
zones has a uniform age distribution. This assumption has not been
validated, and the modern-day area versus age relationship of oceanic

crust can be equally well explained by a temporally variable SPR
(Coltice et al., 2013). With a different approach, Cogné and Humler
(2004) tried to directly calculate the time-dependent SPR for the last
180Ma from the surface area between preserved isochrons. They cal-
culated global rates by extrapolating across vast regions of lost (sub-
ducted) oceanic lithosphere, without reference to a detailed paleogeo-
graphic model. For these reasons we dismiss the relatively flat SPR
estimates of Rowley (2002) and Cogné and Humler (2004).

van der Meer et al. (2014) also presented an estimate for the SAF
from 0 to 250Ma, based on a proposed paleogeographic proxy: the
time-dependent global length of subduction zones (GLSZ). Using both
plate reconstructions and seismic tomography (to identify subducted
lithosphere in the mantle), their time-dependent estimate of the GLSZ
(and by their argumentation, the SAF) is approximately unimodal with
a peak in the Late Jurassic-Early Cretaceous (~150Ma), consistent to
first-order with the trend of the V15 and M16 SAF curves (Supple-
mentary Fig. S3). However, we contend that GLSZ estimates provide a
poor proxy for the SAF because globally averaged convergence rates are
not constant through time. This means that the GLSZ will under- or
over-represent the SAF for times when the globally averaged con-
vergence rate is not identical to that of the present-day, or whatever
constant rate is assumed (Supplementary Figs. S2 and S3).

2.2. Subduction flux in pre-Jurassic time

For pre-Jurassic time, when full-plate reconstructions (from which
the SAF estimates are derived) are built with entirely synthetic oceanic
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Fig. 1. a) Subduction area flux (SAF) and seafloor
production (SPR) rates from previous studies and
this work. The V15 SAF was calculated by Vérard
et al. (2015), based on the University of Lausanne
geodynamic model (now industry owned) that ex-
tends back to 600Ma. The M16 SAF is calculated in
this paper, based on the model of Matthews et al.
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materials). The SPR of Coltice et al. (2013) is de-
rived from the plate model of Seton et al. (2012),
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strontium flux calculated by van der Meer et al.
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time-dependent differences in estimated flux ac-
cording to the V15 and M16 models; blue (red) bars
highlight those intervals where V15 (M16) report
higher rates. c) Normalized detrital zircon age fre-
quency based on the database of Voice et al. (2011);
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SAF for comparison, after a 15Ma shift applied ac-
cording to the ‘crystallization delay’ detailed in the
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lithosphere, the V15 and M16 SAF estimates are very different (Fig. 1a).
Starting at 410Ma, the M16 curve shows relatively high rates in the
Devonian to Early Carboniferous (410–325Ma), moderate rates
(~4 km2 yr−1) in the Late Carboniferous and Permian (325–250Ma),
and a sharp decrease at ~250Ma following a brief increase in the latest
Permian. 250Ma coincides with the end of the 410–250Ma plate model
of Domeier and Torsvik (2014) that underlies M16, so the sharp change
in the SAF at this time may partly be an artefact of this model-chan-
geover; a correspondingly sharp change at this time is observed in the
GLSZ extracted from M16 (Supplementary Fig. S2). However, as will be
shown later, an independent SAF proxy otherwise provides support for
this Permo-Triassic inflection (green curve in Fig. 1a). Throughout the
late Paleozoic, the numeric estimation of the M16 SAF remains between
~3.5 and 7 km2 yr−1, slightly higher than the Mesozoic-Cenozoic
average, but generally within the same range. In contrast to the M16
estimates, the V15 SAF curve exhibits oscillations of much higher fre-
quency and greater amplitude between 410 and 250Ma, spanning rates
of ~3 to 11.5 km2 yr−1. A similarly-timed relative high is observed in
both V15 and M16 in the Late Devonian (380–360Ma), but their trends
are otherwise dissimilar for the remainder of the late Paleozoic and V15
exhibits a sharp increase in rate at ~250Ma when M16 shows a rapid
decrease. The V15 SAF estimate also remains very high during the
Triassic (250–200Ma) when M16 exhibits exclusively low rates. The
V15 SAF curve extends backward from 410Ma to the beginning of the
Paleozoic, showing an Early Ordovician peak in flux (~475Ma), but no
comparison can be made with M16 as the model of Domeier and
Torsvik (2014) extends only to 410Ma.

Because the V15 plate model is now proprietary, it cannot be in-
terrogated and the reason for the pronounced differences between the
V15 and M16 SAF curves cannot be determined here. A qualitative
examination of the Triassic reconstructions presented by Stampfli et al.
(2013) suggests that some of the differences likely relate to more
complex intra-Panthalassa subduction in the V15 plate model, although
there are undoubtedly other factors involved. Nevertheless, the rapid
and large amplitude swings in the V15 SAF present a good opportunity
for evaluation against alternative, observation-based subduction flux
proxies, as presented below. Those subduction flux proxies also present
the opportunity to assess the early Paleozoic segment of the V15 SAF
curve, for which M16 can offer no comparison.

2.3. Independent subduction flux proxies

To evaluate the V15 and M16 SAF estimates, we consider potential
subduction flux proxies that are independent of the plate models. The
global subduction flux is the summation of changes occurring locally
along subduction zones, so a reasonable place to begin looking for a
proxy of the subduction flux is along active margins. Active margins are
associated with a variety of geological processes related to crustal
growth and destruction, notably growth includes the construction of
accretionary complexes, the emplacement of ophiolites and the gen-
eration of magmatic arcs. The time and geographical distribution of
these different assemblages, could then be expected to reflect changes
in the subduction flux. However, a closer look reveals the use of
ophiolites and accretionary complexes to be unsuitable.

Ophiolite emplacement, although now recognized to occur in a
variety of geodynamic settings, is a highly-discontinuous process that is
generally associated with subduction initiation or major plate re-
organization (Agard et al., 2007; Dilek and Furnes, 2011), and so is not
suitable as a proxy of progressive (continuous) changes to global sub-
duction. The construction of accretionary complexes is likewise com-
plicated by the competing effects of subduction erosion, and the fact
that the exhumation of high-pressure/low-temperature blueschists (as a
marker of accretionary prism construction) is also a discontinuous
phenomenon (Agard et al., 2009). It is nevertheless interesting to note
that the temporal distribution of both ophiolite and blueschist occur-
rences appear to share a peak in the Late Jurassic to Cretaceous

(Supplementary Fig. S4), similar to that observed in the SAF curves of
Fig. 1a, suggesting that even with their discontinuous formation/low
preservation potential, the occurrence of ophiolites and blueschists may
crudely reflect trends in global subduction.

2.3.1. The detrital zircon proxy
In contrast to ophiolite emplacement and blueschist exhumation,

the generation and evolution of magmatic arcs can more continuously
(on geologic timescales) mimic the temporal and spatial changes of
subduction zones, and continental magmatic arcs are comparatively
less susceptible to being destroyed by later subduction-erosion pro-
cesses. Furthermore, because larger subducted areas may generate
greater volumes of magma (Hughes and Mahood, 2008), global fluc-
tuations in arc magmatism may accurately track variations in the global
subduction flux. Subduction zone models suggest that faster con-
vergence rates may capture proportionally more of the down-going
crustal materials (Roda et al., 2010), which may enhance arc-magma
production rates (Hughes and Mahood, 2008). Fluctuations in global
arc magmatism, in turn, can be tracked through dating and isotopic
studies of detrital zircons (Voice et al., 2011; Barth et al., 2013; Roberts
and Spencer, 2015). Age-frequency distributions of detrital zircons from
arc-related terranes therefore potentially provide an independent proxy
for temporal fluctuations in the global subduction flux (Condie et al.,
2017). The dominant age populations of detrital zircons in arc terranes
are generally close to the age of host sediment formation (Cawood
et al., 2012), indicating little age-bias from long-term ‘storage’ in upper
crustal level intrusions. However, a time-lag or ‘crystallization delay’ is
expected between the time-dependent subduction flux (as measured at
the trench in tectonic models) and the crystallization of arc-magmas (as
reflected by zircon ages) that are derived from processes initiated by
partial melting of the mantle wedge above the subducting lithosphere.

There are, however, caveats with this relation of detrital zircon age
distributions to global arc magmatic activity and ultimately the sub-
duction flux, namely the assumptions that: (1) the detrital zircon record
provides a globally uniform temporal and spatial sampling of the true
arc magmatic record, (2) that zircon ages have not been widely reset by
high-grade metamorphism or crustal re-melting, (3) that zircons gen-
erated by other igneous processes (e.g. rifting, intracontinental mag-
matism) are nominal, and (4) that arc magmatic volumes are relatable
to the rate of subduction, rather than being dominated by other para-
meters (like slab dip or lithosphere age).

To explore the use of detrital zircon age distributions as a proxy for
the subduction flux, we used the extensive detrital zircon database of
Voice et al. (2011). Pre-processing of the dataset included: (1) extrac-
tion of all detrital zircon age data from units with depositional
ages < 550Ma from arc-related settings (forearc, retroarc and
backarc), (2) exclusion of zircon ages younger than the host's deposi-
tional age minus 5Ma (i.e. allowing for a 5Ma uncertainty on the de-
positional age), (3) exclusion of imprecise zircon ages with 1σ age er-
rors> 50Ma, and/or> 20% of the best-estimate of the zircon age. Due
to an excessive abundance of zircon dates from North and Central
America, we applied a weighting factor of 0.25 to these data (equiva-
lent to summed zircon frequencies of around 3000 in Supplementary
Fig. S5), compared to unit weight (1.0) for all other data, to try and
minimize regional biases in the age-frequency data. This scaling pri-
marily lessened the magnitude of the zircon age peak at ~150Ma, since
this is principally derived from the North and Central American zircon
data (Supplementary Fig. S5); there is still some bias after this correc-
tion in the study site age distribution. There is also a paucity of detrital
zircon ages older than 350Ma from units in arc settings, but it is not yet
clear if this is a true reflection of low rates of arc magma production, or
an artefact of preservation.

The resulting detrital zircon age distribution (Fig. 1c) shows broad
peaks in the Cambro-Ordovician (475–540Ma), the Early Carboni-
ferous (330–360Ma), the mid-Permian to mid-Triassic (230–270Ma),
the Late Jurassic (140–170Ma), and the late Early Cretaceous
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(~110Ma). The latter four peaks align well with the intervals of ele-
vated flux observed in the M16 SAF, assuming a slight time delay
(~15Ma), as demonstrated by lagged cross-correlation analysis
(Figs. 1c, 2a). The ~15Ma delay (zircon ages trailing the SAF) is in-
terpreted as the ‘crystallization delay’, representing the time interval
between a slab entering the trench and zircons crystallizing from arc
magmas near the surface. Notably, despite the good fit between these
time-series, their comparison at specific times does not always coincide
with the ‘time-averaged’ trend (Fig. 2b). In contrast to the good
agreement between the M16 SAF and the detrital zircon proxy, the
latter does not resemble the V15 SAF prior to ~150Ma, and the higher-
frequency changes observed in V15 are not apparent in the detrital
zircon age distribution. This qualitative assessment is confirmed by
lagged cross-correlation analysis of these series, wherein no significant
positively lagged correlation is detected. These results tentatively sug-
gest that the M16 SAF is more reliable than the V15 SAF over the late
Paleozoic-Mesozoic interval.

2.3.2. Mantle Sr isotope proxy
As an alternative to seeking a proxy for the volume of lithosphere

subducted along trenches, a proxy for the seafloor production rate can
also be used to evaluate the V15 and M16 SAF curves. Because the
dominant driver of global sea-level on million year timescales is the
changing volume of mid-ocean ridges (Conrad, 2013), existing Pha-
nerozoic eustatic curves (Miller et al., 2005; Haq and Schutter, 2008)
could conceivably be inverted to estimate the time-dependent SPR
(Gaffin, 1987; Mills et al., 2017). However, because many other factors
contribute to sea-level fluctuations, particularly on local to regional
scales (Conrad, 2013), it is not generally straightforward to isolate true

‘eustatic’ changes (Moucha et al., 2008; Spasojevic and Gurnis, 2012),
and so the estimation of ancient SPR is unlikely to be reliable by this
approach. Alternatively, Jones et al. (1994) and van der Meer et al.
(2017) have proposed that strontium isotope data can be used to infer
past SPR, because the 87Sr/86Sr ratio of seawater is sensitive to the flux
of strontium from the mantle, which is partly governed by the SPR. The
87Sr/86Sr ratio of seawater results from the balance of ‘continental’
input (with high 87Sr/86Sr ratios) via rivers carrying continental det-
ritus, and ‘mantle’ input (with low 87Sr/86Sr ratios) via hydrothermal
circulation at mid-ocean ridges and the weathering of island arc and
ocean island basalts (Goddéris and François, 1995; Allègre et al., 2010).
By quantifying and removing the ‘continental’ contribution, van der
Meer et al. (2017) produced a Sr ‘mantle component’ flux back to the
early Neoproterozoic which they contend tracks the global time-de-
pendent SPR. A notable caveat of this result is that it also reflects the
‘mantle’ Sr flux from plume-related volcanism (Allègre et al., 2010;
Mills et al., 2014).

In Fig. 1a the Sr ‘mantle component’ curve of van der Meer et al.
(2017) (hereafter called the ‘Sr proxy’) is compared with the V15 and
M16 SAF curves. Although the vertical scaling is relative, the trends of
the Sr proxy back to 400Ma show a close correspondence to the M16
SAF curve. In particular, a pronounced low in the Triassic
(250–210Ma) is seen in both series, following an abrupt decline from
moderate to high rates in the early to mid Permian (290–260Ma). This
assessment is confirmed by a strong, positive cross-correlation of the
two series at a lag time of 0Ma (Fig. 2c). Outliers among instantaneous
comparisons of the series (Fig. 2d), for example in the mid-Cretaceous
(115–85Ma) and Late Jurassic (165–155Ma), could be related to per-
iods of elevated island arc or plume-related basalt production (Mills
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et al., 2014). A second positive cross-correlation of the M16 SAF and Sr
proxy is observed at a lag time of 240–220Ma (Fig. 2c), and reflects a
long-term cyclicity common to both series (see also Section 4.2); this
long-term cyclicity of the Sr proxy was also recognized by van der Meer
et al. (2017).

Unlike the M16 SAF, the V15 SAF curve does not clearly resemble
the Sr proxy prior to the Jurassic. In particular, the V15 SAF curve
shows a pronounced but brief low in the late Permian followed by high
to moderate rates through the remainder of the Triassic, in contrast to
the low rates showed by the M16 SAF and Sr proxy (Fig. 1a). In the
earlier Paleozoic, before 400Ma, the Sr proxy suggests that the SPR
generally declined back to 500Ma in the Cambrian, whereas the V15
SAF shows consistently high rates. According to cross-correlation ana-
lysis, the V15 SAF curve is not significantly correlated to the Sr proxy
for any time lag up to 300Ma. From these results we again conclude
that the SAF curve of M16 is likely more reliable for the late Paleozoic
to Mesozoic interval.

3. Geomagnetic reversal rates

The calculation of geomagnetic reversal rates through time requires
first knowing the time-dependent geomagnetic polarity history across
the time interval of interest, but the geomagnetic polarity timescale is
not yet established for the entire Phanerozoic. To determine reversal
rates back into the early Paleozoic, we therefore first constructed a new
geomagnetic polarity timescale for the last 500Ma, using a variety of
sources described in Table 1.

3.1. Geomagnetic polarity through time

The existing geomagnetic polarity timescale (GPTS) is well vali-
dated back to the Late Jurassic, largely from sea floor anomaly data,
and the astronomical calibration of the Cenozoic magnetochrons (Ogg,

2012). The mid-Jurassic (M29 to M42) polarity record is taken from
Ogg (2012) based on magnetic anomalies in the Japanese western Pa-
cific, which are corroborated by Hawaiian magnetic lineations, that
extend back to chron M42 (Tominaga et al., 2015), corresponding to
the late Bajocian (~169Ma). However from around seafloor anomaly
M26 back to M42, the relationship to Jurassic stages and polarity data
from land-based sections is not currently clear, although land-based
records are similar in some parts to the deep tow seafloor anomalies
(Gipe, 2013). We follow Ogg (2012) and join the magnetic anomaly and
land-based data in the Aalenian (early Middle Jurassic, ~170.7Ma,
chron M45r), in order to allow the polarity timescale to be continued
further backward in time.

The magnetic polarity record from the latest latest Carboniferous to
Early Jurassic (~300–180Ma) is largely complete except for two brief
gaps in the mid-Sinemurian (early Jurassic, ~195Ma; Ogg, 2012) and
mid-Carnian (late Triassic, ~230Ma; Table 1); these are gaps of ap-
proximately 3Ma and 1.4Ma, respectively. However, polarity data
between the earliest Middle Triassic and early Carnian (247–235Ma),
proposed by Hounslow and Muttoni (2010), has not been calibrated
against constraining radiometric dates, so we construct an age model
for this time interval using the methods applied by Hounslow (2016)
and Hounslow and Balabanov (2016). The methods and data used are
described in the Supplementary data, along with the details of how this
new segment has been joined with the Early Triassic polarity data of Li
et al. (2016). The Kiaman reverse superchron starts at around 318.8Ma
in the mid Carboniferous and continues into the mid-Permian (Opdyke
et al., 2014; Hounslow, 2016). Modern magnetostratigraphic data from
the late Carboniferous (180–300Ma) are sparse, but existing compila-
tions (Molostovsky et al., 2007; Idnurum et al., 1996) suggest reversal
frequencies that may have been similar to those of the early Permian.

Prior to the onset of the Kiaman superchron at around 318.8Ma, the
geomagnetic polarity is generally poorly known. Between the mid
Carboniferous and the Late Ordovician (320–450Ma), only two

Table 1
Source data and methods used to construct the geomagnetic polarity timescale through the Phanerozoic (see also SI Tables S1 to S4).

1. Polarity timescale
age range

2. Polarity timescale data
source

3. Data type 4. Age model construction methods

Brunhes to mid Jurassic
(Aalenian)

Ogg (2012), For late Aalenian-
Oxfordian using deep tow sea-
floor data displayed in his
Fig. 26.9 in Gradstein et al.
(2012).

Sea floor
anomaly
composite.

Based on spreading rates with Neogene and younger parts adjusted by cyclostratigraphy

Mid Jurassic (Aalenian)
to early Jurassic
(mid Sinemurian)

Timescale Creator v7. Based on
data in Gradstein et al. (2012).

Land-based
sections

Chrons anchored to biostratigraphy. Age model is a spline, adjusted by cyclostratigraphy and
Pacific spreading-rate model tied to land-based sections in the late Jurassic (Ogg, 2012).

Early Jurassic (mid
Sinemurian) to late
Triassic (late
Carnian)

Kent et al. (2017) Newark Basin
sections and
cores, USA

Cyclostratigraphic, anchored to 201.520 ± 0.034Ma for the Palisade Sill.

Late Triassic (late
Carnian) to base of
mid Triassic (early
Anisian)

Constructed here using data in
Hounslow and Muttoni (2010)

Land-based
sections

Pseudo-height manual section-composites (Figs. 3, 5, 6 in Hounslow and Muttoni, 2010) scaled
using BChron (SI Fig. s6)

Early Triassic (Induan
to late Olenekian)

Li et al. (2016) Chinese and
German land-
based sections

Cyclostratigraphic, anchored to Permian age model (SI Fig. s8) and LT1n from Hounslow and
Balabanov (2016)

Permian Hounslow and Balabanov
(2016)

Land-based
sections

Statistical composite scaled using BChron

Carboniferous (late
Visean- early
Serpukovian)

Sources and details in
Hounslow (2016)

Canadian land-
based sections

Statistical composite scaled using BChron

Late Devonian (mid
Frasnian- mid
Fammenian)

Constructed here using
Supplementary data of Hansma
et al. (2015) and Windjana
Valley section (SI Fig. S5)

Canning Basin
sections,
Australia

Statistical composite scaled using BChron (SI Figs. s7, s9, s10)

Mid Cambrian to late
Ordovician (Series
3 to early
Sandbian)

Sources and details from
Hounslow (2016)

Various Land-
based sections

Statistical composite scaled using BChron
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segments of reasonably well validated polarity data are established: for
the late Visean-early Serpukovian (333 to 327Ma; Opdyke et al., 2014),
and the mid-Frasnian to late Famennian (376–365Ma; Hansma et al.,
2015). The geomagnetic polarity data through the late Visean-early
Serpukovian have been calibrated against radiometric dates by
Hounslow (2016), whereas the Devonian data of Hansma et al. (2015)
remain uncalibrated. We therefore generate a new polarity timescale
for the mid-Frasnian to late Famennian interval, following the same
approach used for the Middle Triassic (detailed in the Supplementary
data). The Frasnian ages differs substantially from the 2012 stage
timescale (Becker et al., 2012), due to the new radiometric data from
Lanik et al. (2016), which replaces the older date of Tucker et al.
(1998).

Between 493 and 454Ma (late Cambrian-Late Ordovician), data
from several sections allows a composite polarity timescale to be con-
structed (Hounslow, 2016), spanning a few million years on either side
of the Moyero superchron, which has its older and younger boundaries
generally well defined (Pavlov and Gallet, 2005). Early and mid-Cam-
brian magnetostratigraphic data is available from Siberia but the
somewhat poor consistency between studies makes it difficult to con-
struct a polarity timescale (Gallet et al., 2003; Rodionov, 2016). Simi-
larly, magnetostratigraphic data is available for the late Ediacaran but a
composite polarity timescale is not currently viable (Schmidt and
Williams, 2010; Bazhenov et al., 2016). The new geomagnetic polarity
model derived here (list of Phanerozoic chrons) resulting from this
analysis is described in the Supplementary data.

3.2. Calculation of reversal rates from the GPTS

Various methods for converting the age of magnetochrons into po-
larity reversal rates have been proposed (Table 2), which yield alter-
native estimates, due to differing assumptions. The most widely used
approaches have been the determination of reversal frequency and
mean reversal rate (Naidu, 1971; McFadden and Merrill, 1984; Gallet
and Hulot, 1997). These approaches require a decision on the width of
the time or ordinal window to smooth the stochastic variations in chron
durations, to calculate the reversal rate. The wide use of mean reversal
rate is clearly motivated by the early recognition that chron durations
are similar to Poisson (exponential) or gamma distributions, in which
the mean rate is the key distribution parameter (Cox, 1968; Naidu,
1971; McFadden and Merrill, 1984; Lowrie and Kent, 2004). Geometric
mean reversal rates have some advantageous statistical properties
(Table 2), but have only rarely been used (Didenko, 2011). These
methods all rely on the implicit assumption that the reversal rate is
stationary over the width of the age or ordinal-range window
(Constable, 2000), and all require an arbitrary decision on what
window width to use (Gallet and Hulot, 1997), which may vary from a
few chrons to many tens of Ma (Naidu, 1971; McFadden and Merrill,
1997; Lowrie and Kent, 2004). The choice of window width strongly
controls the amount of smoothing of the reversal rates. Constable
(2000) has overcome the stationarity assumption by using Gaussian
kernel density estimates with locally adaptive bandwidths to define
highly smoothed reversal rates. Similar methods using local likelihood
kernel density estimation are implemented in the LOCFIT routines in R
(Loader, 1997; R Development Core Team, 2005), and can be used to
estimate reversal rates via a Poisson process (Loader, 1999; Supple-
mentary Fig. S13).

We instead utilise the inherently smooth chron ordinal versus age
relationships (Supplementary Figs. S11 and S12) to derive smoothed
chron durations from the least squares gradients in these datasets, as
exemplified by principles set out in Reyment (1976) and Gallet and
Courtillot (1995). Fitting least squares functions in this way makes no
assumptions about stationarity in reversal rates (Table 2). Least squares
(LS) reversal rates are then determined from the gradient of the
smoothed chron ordinal versus age relationship (at each chron). We
make an objective decision on the best smoothing bandwidth by use of Ta
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generalized cross-validation, Akaikes information criteria and Mallows
Cp, as implemented in the local regression and likelihood methods in
the LOCFIT routines in R (Loader, 1997, 1999; James et al., 2013; see
Supplementary Table S3). Cross-validation balances the degree of
smoothing with the prediction error and model complexity. Local
quadratic polynomials were used in local regression procedures. 95%
confidence intervals (Loader, 1999) were also estimated for the gra-
dients (chron durations), and converted to confidence intervals on the
reversal rates (Fig. 3). A comparison of the various methods to estimate
reversal rates for 0–170Ma is shown in Supplementary Fig. S13.

To convert the LS reversal rates into rates averaged over equal
million year increments like the SAF data (at 10Ma for the M16 model
and 5Ma for V15), we first use the LS reversal rate data at each chron
and interpolate into 1Ma intervals using the local regression function
LOESS in R, with a bandwidth of 7.4Ma (Fig. 4a; Supplementary Table
S3). The LOESS extrapolates through the small data gaps in the mid-
Sinemurian and mid-Carnian. The final reversal rate estimates at 5 and
10Ma intervals to match the SAF rates are means of the 1Ma estimates
in each of the 5Ma or 10Ma windows, starting from 0 or 5Ma, re-
spectively. The 1σ uncertainty on the 10Ma spaced reversal rates is
estimated from the standard deviation of the 1Ma rate values. Large 1σ

largely relate to crossing of superchron boundaries in the age window.

3.3. Paleozoic reversal rate model

To estimate likely reversal rates in the Paleozoic, where robust
geomagnetic polarity data is missing for much of the interval between
300 and 450Ma (Fig. 4a), we define a simple model to fill the gaps. Like
many authors, we adopt the assumption that the reversal process differs
between single-polarity superchrons and the normal reversing state
(Hulot and Gallet, 2003; Lowrie and Kent, 2004), so we estimate the
reversal rates in these intervals differently. Specifically, our simple
Paleozoic model is defined by the following superchron and super-
chron-like intervals:

a) Kiaman superchron reversal rates are extended to 318.8Ma (start of
the Kiaman Superchron, Hounslow, 2016), using the low rates
(0.2Ma−1) from the Permian-Carboniferous boundary interval.

b) The Moyero superchron (466.8–485.6Ma) is known to have at least
one normal chron in the Tremadocian (Yang et al., 2002; Hounslow,
2016), so we use a reversal frequency of 0.16Ma−1 (three reversals
over 18.8 Ma).
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Fig. 3. The LS reversal rate data, derived from the LOCFIT estimating procedure, and the 95% confidence intervals on the LS reversal rates (data reported in
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Fig. 4. a) The reversal rates at 1Ma intervals interpolated
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modelled values of reversal rates in the Paleozoic, where
data is absent. b) Time offsets from the geomagnetic po-
larity time scale (i.e. age of stage bases), as used here, to
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c) A low reversal rate (‘superchron-like’) interval is added in the mid
Silurian (‘Wenlock chron’, 427.4–433.4Ma), as suggested by the
polarity bias reported by Trench et al. (1993). This ‘Wenlock chron’
is assumed to have reversal rates intermediate to the rates of the
Kiaman and Moyero superchrons (i.e. at 0.18Ma−1), following that
there may be some time dependency in the reversal structure
(Hounslow, 2016). The remainder of the Silurian (both preceding
and postdating this ‘Wenlock chron’) are in a usual reversing state of
unknown reversal rate (Trench et al., 1993).

At the beginning and end of these superchrons, we estimate rates
extrapolated from those observed to flank other superchrons. For the
start of the Kiaman Superchron and ‘Wenlock chron’, we assign rates
corresponding to the average starting rates for the adjacent Cretaceous
Normal and Moyero superchrons, respectively (i.e. at 2.98 and
3.61Ma−1 respectively; Hounslow, 2016). For the end rate estimate for
the ‘Wenlock chron’, we assign the mean of the Kiaman and Moyero end
rates (at 1.83Ma−1) from Hounslow (2016). This assumption seems
justified by the fact that Paleozoic reversal rates leading into and out of
superchrons show some systematic changes (Hounslow, 2016).

The remaining data gaps in the Paleozoic 1Ma-interval rate model
are filled by linear interpolation between the reversal rates that bound
them. This linear interpolation is done in an age versus Log(LS reversal
rate) space to reflect the normal-like distribution of the log (reversal
rate). The complete Phanerozoic reversal rate model (including both
modelled and observation-based rates) is shown in Fig. 4a and un-
certainties in Fig. 3.

The timescale of the Paleozoic part of the M16 model is rooted in
the global paleomagnetic dataset of Torsvik et al. (2012), which uses
the timescale of Gradstein et al. (2004) for age assignments. Although
that differs from the new GPTS constructed here, the differences be-
tween these timescales are non-systematic and near-invariably below
the 10Ma resolution of the M16 SAF (Fig. 4b), and so they should not
significantly impact age-comparisons made between these series. The
biggest divergences may be in the Permian and Triassic. Unfortunately,
it is not clear what timescale is used in the V15 model, so the potential
for artefacts in age-comparisons between the GPTS and V15 SAF

(introduced by timescale differences) cannot be entirely excluded.
Prior to the late Cambrian, reversal frequencies can only be esti-

mated, and may be of the order of 6–8Ma−1 (Gallet et al., 2003) during
the mid-Cambrian (Series 3) at around 505Ma (Peng et al., 2012) and
decline to ca. 3Ma−1 across the Terrenuvian-Series 2 boundary in the
Cambrian at ca. 521Ma (Kirschvink et al., 1991; Peng et al., 2012).
During the late Ediacaran at around 550Ma, reversal frequency may be
as high as 20Ma−1 (Bazhenov et al., 2016). (See Supplementary In-
formation.)

4. Correlations between subduction flux and reversal rates

The statistical relationship between the reversal rates and the sub-
duction flux were examined using conventional time series analysis in R
(Cowpertwait and Metcalfe, 2009). We use the Log of the LS reversal
rates in this analysis because it is closer to a normal distribution of
rates, as seen in the SAF (a similar analysis using linear LS reversal rates
is shown in the Supplementary Figs. s14 and S16). We explored the use
of the raw SAF data, but also de-trended SAF data, since the average
speed of plates appears to generally increase backward in time
(Domeier and Torsvik, 2014; Matthews et al., 2016; Vérard et al.,
2015). From a statistical perspective, only the M16 SAF has a significant
trend in the time series (KPSS trend test, with M16, p=0.04 and V15,
p=0.1; Kwiatkowski et al., 1992). The rationale for using the de-
trended SAF data is two-fold: 1) the apparent increase in plate speeds
backward in time may be an artefact of the growing uncertainty of plate
reconstructions rather than a real trend, and 2) it is more appropriate to
de-trend the SAF data to compare it against the log LS reversal rates
because the latter have no trend in the time series (KPSS trend test,
p= 0.1; Kwiatkowski et al., 1992).

Cross-correlation of the M16 SAF and reversal rates reveals sig-
nificant positive correlations at a 80Ma lag (subduction flux trailing the
reversal rate) and a 120Ma lead (subduction flux leading the reversal
rate) (Fig. 5a). Use of the de-trended SAF tends to enhance the im-
portance of the 120Ma lead of the subduction flux (Fig. 5c). This
consistency affirms that the observed correlations are not significantly
influenced by or dependent on the long-term, monotonous trend of the
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SAF. Similar results are also obtained with cross-correlation of the M16
SAF against linear LS reversal rates (Supplementary Fig. S16). Reversal
rates within superchrons are rather poorly defined (in terms of data
density) compared to non-superchron intervals, which have many
magnetochrons defining the rates, so the uncertainty in superchron
reversal rates is generally much larger. With this in mind, we unravel
the cause of the cross-correlation at a lead at 120Ma, using superchron
and non-superchron divisions of data. The correlation is in part con-
trolled by low LS reversal rates in the Cretaceous Normal Superchron
(Fig. 7a), but a positive relationship is also observed outside the tem-
poral frame of the superchrons (Fig. 5b, d), which explains some 25% of
the variance. With respect to the 120Ma leading M16 SAF, the Late
Jurassic LS reversal rates (155–165Ma) seem anomalous, notably cor-
responding to times that were also observed to be anomalous in the
comparisons of the detrital zircon and Sr proxies against the M16 SAF.

For cross-correlations between the V15 SAF and reversal rates,
significant positive correlations occur at a 130Ma lead and a 40–45Ma
lag, for both the raw and de-trended SAF (Fig. 6a, c). The cross-corre-
lation at a lead of 130Ma is strongly controlled by the LS rate fluc-
tuations in the 140–430Ma interval and particularly the low rates
around the Kiaman superchron, but it results in the SAF and LS reversal
rates being out of phase during the Cretaceous Normal Superchron
(Fig. 7b). Notably, without the high in the V15 SAF during the mid and
late Triassic (240–200Ma), these datasets would show a higher degree
of in-phase change. As aforementioned, other subduction flux estimates
and proxies are invariably low in the mid- and Late Triassic (Fig. 1),
strongly suggesting the high SAF estimated by V15 then to be dubious.
The correlations (with an SAF lead) divided into superchron and non-
superchron comparisons reveals that the non-superchron LS reversal
rates have a consistent relationship with the V15 SAF (explaining some
29–32% of the variance), using either its raw or de-trended form
(Fig. 6b, d). If these non-superchron data are considered alone, the best
match to the V15 SAF is found with an SAF lead of 120–125Ma, similar
to that determined for the M16 SAF. Therefore, both SAF models sug-
gest that the relationship of the subduction flux to reversal rates may
differ in form between superchron and non-superchron intervals. This
might be expected based on the threshold-like character of controls

driving the modelled geodynamo into and out of superchrons (Olson
and Amit, 2015; Hounslow, 2016).

4.1. Subduction flux proxies

If the subduction flux proxies indeed adequately track the true
subduction flux, then their cross-correlation against LS reversal rates
could provide additional insight. Lagged cross-correlations between the
detrital zircon age frequency and the LS reversal rate reveals a statis-
tically significant correlation with the zircon age frequency leading the
reversal rate by 95–105Ma (Fig. 8a). This is ~15–25Ma less than the
delay observed between the reversal rates and the SAF, which can be
ascribed to the additional ‘crystallization delay’ described above. Un-
ravelling these correlations at a 100Ma lead reveals that this re-
lationship is largely driven by the superchron to non-superchron tran-
sitions in the LS reversal rates, and is perturbed by outlier points in the
LS reversal rates in the latest Devonian-Early Carboniferous
(365–325Ma) and Late Jurassic (170–160Ma; Fig. 8b).

Cross-correlation of the Sr proxy and the LS reversal rate yields a
marginally non-significant correlation with the Sr proxy leading the
reversal rate by 105–125Ma (Fig. 8c). The unravelling of this re-
lationship (using a lead of 120Ma) shows that it too is largely driven by
the difference between superchron and non-superchon states in the age
interval 0–265Ma; the age interval with the most complete data. Much
of the data in the interval 330–375Ma are outliers with respect to this
relationship (Fig. 8d). Considered alone, the LS reversal rate data from
the non-superchron intervals is best correlated to the Sr proxy with a
lead (of the latter) of 150Ma, but again the estimated data points for
the latest Devonian-Early Carboniferous (365–325Ma) remain outliers
to this relationship.

4.2. Cyclicity in fluxes and reversal rates

An alternative way to assess similarity among time series is to look
for comparable cyclical behaviour via autocorrelation. Cyclical varia-
tions in the LS reversal rates are strong at around a 190Ma period
(Fig. 9a), which clearly corresponds to the repeat interval of the
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superchrons and the reversal rate recovery following them for some
30–50Ma duration (Fig. 7a). The M16 SAF shows a period at ~230Ma
that is primarily driven by the similar intervals of decreasing flux be-
tween 370–240Ma and 130–0Ma (Figs. 1, 9b). For the V15 SAF, the
strongest positive period is at 250–255Ma, which relates to the lows in
the flux at around 170Ma and 420Ma and the adjacent highs at around
130Ma and 380Ma (Figs. 1, 9c). Although these cyclicities (190, 230
and 250Ma) do not exactly correspond, they are all broadly similar to a
dominant timescale observed in geodynamic models (Coltice et al.,
2013). It is also important to note that autocorrelation will only detect
self-harmonic trends (that may or may not be linked between a pair of
processes), and therefore cannot identify non-harmonic correlations
between processes that may otherwise be significant.

4.3. Predictive capacity of the subduction flux estimates

Unravelling of the correlation relationships has suggested that there
is some merit in considering the differences in LS reversal rates between
superchrons and the reversing state (as largely expressed in the cross-
correlations; Figs. 5, 6, 8), but also in considering the non-superchron
reversal rate data independently from the superchron state data. This is
also justified by the fact that reversing state data has a greater data
density, whereas that from the superchrons is rather sparse. With this
and the time‑leads discussed in Section 3.1, we used multiple linear
regression to explore the capacity to model the LS reversal rates using
the subduction flux estimates (M16 and V15 SAF) and proxies (detrital
zircon and Sr proxies) (Table 3). This is informed by assessment of
statistical relative importance (Grömping, 2006). This analysis suggests
that the SAF (from either M16 or V15) is most powerfully expressed in
the non-superchron dataset, and like the previous qualitative assess-
ments, it demonstrates that the M16 SAF is more strongly related to the
LS reversal rate than the V15 SAF. The detrital zircon and Sr proxies are

a stronger influence on the predictions when all the data is considered
together, indicating these principally express variance in the super-
chron to reversing state cycles.

5. Discussion

Our analysis has uncovered a statistically significant, positive cor-
relation between the M16 SAF and a new time series of log LS reversal
rates, with a delay time of 120Ma (SAF leading). A positive correlation
is also found between the V15 SAF and the log of LS reversal rates with
a delay time of 130Ma, but independent subduction flux proxies (det-
rital zircon age frequency or the ‘mantle’ Sr flux) question the veracity
of the V15 SAF prior to ~180Ma. Cross-correlations between the sub-
duction proxies and the time series of reversal rates further corroborate
the temporal relationships suggested by the M16 SAF-reversal rate
cross-correlations. Unravelling these relationships at the time leads
suggested by the cross-correlation reveals that much of the unexplained
variance is related to time intervals with ‘outliers’ and an apparently
differing response between superchron and non-superchon states.
Autocorrelation of the SAF and reversal rates recovers strong periodi-
cities close to the characteristic timescale of mantle convection derived
from geodynamic models (~200Ma; Coltice et al., 2013), but not
otherwise identical.

What do these correlations and delay times mean? Before con-
sidering this important question, we acknowledge that we should
probably expect no more than a weak relationship between reported
changes in the global subduction flux at the surface and geomagnetic
field behaviour generated by processes in the core, for a variety of
reasons.
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5.1. Assessment of deficiencies

Firstly, there are some large uncertainties and significant defi-
ciencies in both the plate models from which the SAF estimates are
derived, and in parts of the geomagnetic polarity timescale from which
the reversal rates are calculated. The V15 and M16 SAF curves and the
subduction flux proxies are all in reasonable agreement back to the
Early Jurassic (~180Ma), but prior to that time the V15 and M16 SAF
curves are largely dissimilar. Perhaps unsurprisingly, the Early Jurassic
marks the time when plate models become entirely reliant on synthetic
oceanic lithosphere, such that deviations between models (and from
reality) are prone to magnify from this point. The detrital zircon age
frequency and ‘mantle’ Sr flux ratio suggest that the M16 SAF curve is
more reliable than the V15 SAF estimates for pre-Early Jurassic time,
but the M16 SAF extends only back to 410Ma and prior to that the
subduction flux proxies themselves exhibit dissimilar trends. Likewise,
the geomagnetic polarity timescale constructed here becomes sig-
nificantly more uncertain prior to ~320Ma, before which time most of
the timescale must be modelled. The mid-Jurassic reversal rates may
also be biased toward higher rates, due to the inclusion of deep-tow sea
floor anomaly data (Fig. 3); a possibility which needs a more detailed
assessment using the land-based datasets (Gipe, 2013). Nevertheless,
the positive cross-correlation of the M16 SAF and reversal rate at a lag
of 120Ma falls within the time frame for which both the plate model
and geomagnetic timescale are reasonably well known.

Secondly, the SAF curves do not represent volume or thermal mass,
which would be the ideal indices for comparison. The subduction of old
(thicker and colder) oceanic lithosphere is likely to have a greater in-
fluence on CMB heat flow than the subduction of young (thinner,
warmer) oceanic lithosphere. Variable sinking speeds related to dif-
fering slab properties, slab stagnation at the transition zone, and the
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regional prehistory of the lower mantle will also complicate the asso-
ciation between the true (volumetric) subduction flux and time-de-
pendent changes to the CMB heat flow. Nevertheless, we note that the
concept of a first-order, globally-averaged, mean sinking rate appears
defensible from the outcome of subduction-tomography relationships
(van der Meer et al., 2010, 2018; Domeier et al., 2016).

Thirdly, the complex and poorly understood dynamics of both the
lowermost mantle (Torsvik et al., 2016) and the geodynamo process
may confound attempts to produce a one-to-one relationship between
any single paleomagnetic dataset and any single surface process that
can affect the deep mantle. One expression of this is that although
numerical dynamo simulations have indicated that the relationship
between reversal frequency and CMB heat flow should be positive; re-
gardless of whether the heat flow is homogeneous around the CMB or
has a heterogeneous pattern (Olson and Amit, 2014), the nature of the
scaling relationships between the two are unknown because of limita-
tions in the models and in our knowledge of how to constrain them.
These scaling relationships likely influence the dramatic reversal rate
change into and out of superchrons, so the necessarily continuous
subduction process is unlikely to follow the geodynamo reversal process
in a linear way. Our analysis tries to express some of this in the way we
separate superchron and non-superchron datasets. Another expression
of this complexity is that geodynamo models suggest polarity reversal
rates likely respond to lower mantle heat flow and its spatial inequality
(Olson and Amit, 2014), whereas our one dimensional analysis has
averaged out any spatial inequality. This is further complicated by the
occurrence of true polar wander, which will rotate any such subduc-
tion-imposed, lower mantle heat-flux pattern in the reference frame of
the geodynamo. Still, even if the relationship is non-linear and com-
plicated by spatial variations, changes to the subduction flux will
generally induce changes to the CMB heat flux, and so the geodynamo.

Finally, deep mantle-lithosphere feedbacks may confound correla-
tions between surface tectonics and geomagnetic field behaviour, be-
cause subduction dynamics at the surface may not necessarily lead
changes occurring in the deep Earth (Torsvik et al., 2016). In this paper
we explicitly explore the question of whether the time-dependent
subduction flux modulates the geodynamo, but deep mantle dynamics
could potentially also independently alter the CMB heat flux. For ex-
ample, reversal rate variations in the Jurassic-Cretaceous have been
linked with plumes and ‘superplumes’ (Biggin et al., 2012; Amit and
Olson, 2015; Li et al., 2018), as well as episodes of true polar wander
(Biggin et al., 2012). Yet mantle plumes, when they ultimately arrive at
the surface, can also trigger significant changes to plate kinematics
(Buiter and Torsvik, 2014) and thus alter the subduction flux. Because
the departure of a mantle plume can modify the CMB heat flux before
the plume arrives at the surface, changes in the geomagnetic field may
thus predate global tectonic changes, in addition to being driven by
them. Thus, both the subduction flux and ‘plume flux’ are expected to
modulate the CMB heat flux, but also one another, blurring the dis-
tinction between ‘forcing’ and ‘response’ and potentially producing
periodic behaviour (Li et al., 2018). Thus, with respect to the geody-
namo's forcing, the subduction flux is only one of several components of

a complex system containing important feedbacks. However, because
sinking slabs (as the principal source of buoyancy in the mantle) are the
primary driver of mantle convection, we expect that the subduction flux
has played a dominating role in modulating the CMB heat flux, and thus
that the positive correlation between the SAF and reversal rate time
series is foremost driven by a subduction flux lead.

5.2. Subduction-related timing delays in the mantle

With the aforementioned caveats in mind, we return to the question:
what could the delay times between the SAF and reversal rate mean?
According to the contention that the subduction flux lead is the most
likely to be physically meaningful, we here focus on the ~120Ma time
delay with the reversal rates following the subduction flux (Fig. 10). So
what could the 120Ma lag between subduction flux and geomagnetic
field response mean in terms of physical processes? One simple inter-
pretation would be that the 120Ma delay effectively represents the
average transit time for a subducting slab to sink through the mantle. In
this case, the heat flux at the CMB would be modified by the physical
arrival of relatively cold lithospheric slabs that would enhance the
thermal gradient across the CMB at specific locations. Locally, the
thermal diffusivity of slabs could also be strongly augmented by the
post-perovskite phase change that can occur in the lowermost mantle
(Lay et al., 2008; Hunt et al., 2012). However, comparisons between
paleogeographic models and seismic tomographic models reveal that
slabs take at least 150Ma to transit through the mantle, and probably
more often between 200 and 300Ma (van der Meer et al., 2010, 2018;
Domeier et al., 2016). Given that a further delay of some millions to
tens of millions of years may be required following a change to the CMB
heat flux before the geodynamo responds (due to stratification in the
outermost core; Buffett, 2015), it seems unlikely that the 120Ma delay
time reflects the whole mantle transit time of slabs.

On the other hand, a sinking slab and the thermal anomaly asso-
ciated with it may not necessarily need to physically encounter the CMB
in order for it to exert a change to the CMB heat flux. The sinking of a
slab could potentially setup a convective cell that thins the thermal
boundary layer (just above the CMB) before it physically arrives (Biggin
et al., 2012). In this context, geodynamic studies attempting to link
surface dynamics with consequent changes to CMB heat flow have
predicted that the delay time between such phenomena should be
30–60Ma (Bunge et al., 2003; Buffett, 2015; Biggin et al., 2012; Zhang
and Zhong, 2011). This is considerably shorter than both seismologi-
cally-constrained whole-mantle slab transit times (~150–300Ma) and
also our observed lag time (~120Ma).

van der Meer et al. (2018) found that slabs sinking through the
lower mantle appear to progressively decelerate down to a depth of
~1500 km, whereupon their sinking rates increase again as they transit
the lowermost mantle below. They interpret this deceleration zone to
be a consequence of increasing mantle viscosity (possibly related to the
increasing strength of ferropericlase; Marquardt and Miyagi, 2015),
which they infer to decrease again below 1500 km. With use of a
globally-averaged, whole mantle slab sinking rate of ~1.2 cm/yr (van

Table 3
Capacity to predict the LS reversal rate using subduction area flux estimates and the Zr and Sr subduction flux proxies. Data based on multiple linear regression,
performed in R. pVar is the percentage of variance explained by the regression model, n=number of data. Relative importance to the regression model is based on
the lmg statistic (Grömping, 2006), after Lindeman, Merenda, and Gold. Age interval is the age start and end of the overlapping datasets, when the leads are applied,
in terms of the age steps for the SAF models. Q= quadratic, rather than linear used in regression, based on a visual assessment of best fit to the LS reversal rate. M16,
V15 data used are the detrended flux model estimates, Zr]Zr proxy, Sr]Sr mantle proxy. ‘−’ on relative importance indicates, the sign on the coefficient is negative
(i.e. negative contribution to LS reversal flux).

Model. Data Age interval Lead on proxy [Ma] pVar, n Relative importance [%]

SAF-M16. All 405–125Ma M16[+120], Zr[+100], Sr[+120] 57.6, 29 M16[31]Q, Zr[25], Sr[44]
SAF-M16. Non-superchron 385–125Ma M16[+120], Zr[+100], Sr[+120] 30.4, 22 M16[87]Q, −Zr[6], −Sr[7]
SAF-V15. All 560–120Ma V15[+120], Zr[+100], Sr[+120] 13.3, 89 V15[27], Zr[56], Sr[17]
SAF-V15. Non-superchron 560–120Ma V15[+120], Zr[+100], Sr[+120] 32.9, 70 V15[92], −Zr[4], −Sr[4]
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der Meer et al., 2010, 2018), a slab should reach ~1500 km by 125Ma.
The coincidence of this transit time with the observed lag time between
the SAF and reversal rates could suggest that convective ‘sweeping’ of
the lowermost mantle thermal boundary layer can only be induced by
sinking slabs once they penetrate this lower mantle ‘deceleration zone’,
and enter the zone of relatively lower viscosity below.

Recent attempts to couple numerical mantle models to inputs of
core models either directly (Olson et al., 2013) or indirectly (Choblet
et al., 2016) have yielded less than clear results. This is in large part due
to our poor understanding of various parameters of both the mantle and
core, as well as the timescales involved with their forcings and feed-
backs. Our results here present new insight into these timescales, and
provide new constraints for linked numerical mantle-core models and
numerical investigations of the connections between surface and deep
Earth heat fluxes. Our findings also suggest that the lower mantle ‘de-
celeration zone’ of van der Meer et al. (2018) may be of particular
importance to lower mantle dynamics, and deserves further attention.

6. Conclusions

Based on numerical dynamo simulations and first-order mantle
dynamical arguments, it is expected that some time-lagged, positive
correlation exists between the global flux of subducting lithosphere and
temporal variations in the geomagnetic reversal rate. New model-de-
rived and observational data to test this hypothesis have been evaluated
and found to show that such a relationship can be demonstrated
through the Phanerozoic, with a time lag of ~120Ma (subduction flux

leading reversal rate). This lag of 120Ma is thus interpreted to re-
present the average effective relay time to transmit thermal information
from the surface to the core-mantle boundary, which is faster than to-
mographically determined whole-mantle slab sinking rates but also
slower than previous estimates of this relay time derived from geody-
namic models. However, a range of likely confounding factors have also
been identified, which may complicate this relationship. Future work
will be required to cement the conclusions formulated here, and in
particular to further probe the nature of the ~120Ma lag, but these
results nevertheless present important new constraints for the next
generation of geodynamical models.
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