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Abstract

We prove that the integral Hodge conjecture holds for 1-cycles on irreducible
holomorphic symplectic varieties of K3[n]-type and of generalized Kummer type.
As an application, we give a new proof of the integral Hodge conjecture for cubic
fourfolds.

Let X be a smooth complex projective variety of dimension n. We write Hp,p(X,Z) =

H2p(X,Z)∩Hp,p(X,C) for the group of integral degree 2p Hodge classes, and say that
the integral Hodge Conjecture holds for k-cycles on X if Hn−k,n−k(X,Z) is generated by
classes of k-dimensional algebraic subvarieties on X. While the usual Hodge conjecture
predicts that this statement should be true with Q-coefficients, it is known that the
integral Hodge conjecture can fail in general, even for 1-cycles [BO,BCC,Tot13,Voi07].
For 1-cycles, the validity of the conjecture depends very much on the birational
properties of X (in particular the group of degree 2n−2 Hodge classes modulo algebraic
classes is a birational invariant). For instance, Voisin showed that the conjecture holds
for threefolds that are either uniruled; or satisfy KX = 0 and H2(X,OX) = 0 [Voi].
For varieties with KX = 0 of higher dimension (in particular, abelian fourfolds), not
much is known.
In this paper we prove that the integral Hodge conjecture holds for 1-cycles on

certain irreducible holomorphic symplectic varieties. We consider varieties of K3[n]-type
(deformation equivalent to Hilbert schemes of n points on K3 surfaces) and generalized
Kummer type (see Section 1). Our main theorem is the following:

Theorem 0.1. Let X be a projective holomorphic symplectic variety of K3[n]-type or
of generalized Kummer type. Then the integral Hodge conjecture holds for 1-cycles on
X.

In fact, the group H2n−1,2n−1(X,Z) is generated by classes of rational curves. This
can be extended as follows:

Theorem 0.2. Let X be a projective holomorphic symplectic variety of K3[n]-type or
of generalized Kummer type. Then the semigroup of effective curve classes is generated
(over Z) by classes of rational curves.

The above theorems apply in particular to the variety of lines on a cubic fourfold.
In this setting, Shen [Sh] proved that the integral Hodge conjecture is related to the
algebraicity of the Beauville–Bogomolov form (see Section 5). Using the incidence
correspondence, we also give a new proof of the following result of Voisin:



Corollary 0.3. The integral Hodge conjecture holds for 2-cycles on cubic fourfolds.

The proofs in this paper rely on several results and constructions that were already
in the literature. In particular, Theorems 0.1 and 0.2 involve a deformation argument
similar to that in [AV] and [CMP]. We first consider the Hilbert scheme of a K3 or a
generalized Kummer variety, where we exhibit special families of rational curves that
represent primitive classes in H2n−2(X,Z), and which also deform in their Hodge loci.
This then in turn implies that any integral degree 2n− 2 Hodge class on a deformation
is represented by a rational curve.
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discussions. GM was supported by the project “2013/10/E/ST1/00688” and “National
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1 Preliminaries

We work over the complex numbers. An irreducible holomorphic symplectic variety (IHS)
X is a simply connected Calabi–Yau manifold carrying a non-degenerate holomorphic
2-form ω generating H2,0(X). Such a variety X admits a Beauville–Bogomolov form q,
which is a non-degenerate quadratic form on H2(X,Z).

1.1 Varieties of K3[n]-type

Let S be a complex K3 surface and let S[n] denote its Hilbert scheme (or Douady
space in the non-projective setting) of length n subschemes of S. This is a smooth IHS
variety of dimension 2n. In general, we say that an IHS variety is of K3[n]-type if it is
deformation equivalent to S[n]. For these varieties, the Beauville–Bogomolov form q

has signature (3, 20).
The (co)homology groups of X = S[n] of degree 2 and 4n− 2 are easy to describe.

We have the Hilbert–Chow morphism HC : S[n] → S(n) which induces an injection
H2(S(n),Z)→ H2(X,Z) and an injective map i : H2(S,Z)→ H2(X,Z) obtained by
symmetrizing a line bundle on S. From these we obtain decompositions

H2(X,Z) = H2(S,Z)⊕ ZB (1)

and
H2(X,Z) = H2(S,Z)⊕ Zτ (2)

where B = 1
2 [E] is one half of the class of the exceptional divisor E of HC and τ is

the class of a rational curve in a fiber of HC|E . In particular, we see that the integral
Hodge conjecture holds automatically for 1-cycles on X, since it holds on S.
Viewing H2(X,Z) as Hom(H2(X,Z),Z), we see that q defines an embedding of

lattices
φ : H2(X,Z)→ H2(X,Z) = H4n−2(X,Z). (3)

Over Q this defines an isomorphism φ : H2(X,Q) → H2(X,Q), and we extend q to
a Q-valued quadratic form on H2(X,Q) and H2(X,Z). In this setting both of the
decompositions above are orthogonal with respect to the form q.
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Lemma 1.1. Let X be an IHS manifold of dimension 2n and let D ∈ H2(X,Z)

with q(D) 6= 0. Let D2n−1 ∈ H4n−2(X,Z). Then the classes φ(D) and D2n−1 are
proportional (where φ is as in (3)). In particular, their Hodge loci inside Def(X)

coincide.

Proof. For a divisor D, Fujiki’s relation states that D2n = cq(D)n for a rational
constant c > 0. If q(D) 6= 0, this implies that the two integral degree 4n − 2 classes
D2n−1 and φ([D]) are proportional in H4n−2(X,Z). Therefore, if one stays of Hodge
type so does the other, and our claim follows.

1.2 Generalized Kummer varieties

Let now S denote an abelian surface and let n be a positive integer. We define the
generalized Kummer variety X = Kn(S) ⊂ S[n+1] associated to S as the fiber over 0 of
the summation map S[n+1] → S. Smooth deformations of these varieties are said to be
of generalized Kummer type.
As in the previous case, we have a decomposition

H2(X,Z) = H2(S,Z)⊕ Ze

where e = 1
2E where E is the restriction of the Hilbert–Chow divisor on S[n+1], and

H2(X,Z) = H2(S,Z)⊕ Zη

where η is the class of a minimal curve in the fibres of HC|E (thus η is represented by a
rational curve). Both of these are orthogonal with respect to the Beauville–Bogomolov
form.

1.3 Deforming rational curves

Let X be an IHS variety of dimension 2n and let f : P1 → X be a non-constant
map. Let R denote the image of f and let Def(X, [R]) be the sublocus of the local
deformation space Def(X) where the class [R] is of Hodge type (n − 1, n − 1). The
deformation theory of the curve R ⊂ X and the map f is well-understood, by results
of Ran [Ran] and later, in this particular case, by Amerik and Verbitsky [AV] and
by Charles, Mongardi and Pacienza [CMP]. We can formulate the result we need
using the Kontsevich moduli spaceM0(X,β) parameterizing stable maps f : P1 → X

with image of class f∗[P1] = β. If f : P1 → X is a finite map, then every component
M⊆M0(X, [R]) containing the corresponding point [f ] has dimension at least 2n− 2

(cf. [Ran, Corollary 5.1]). Ran’s results can then be summarized as follows:

Proposition 1.2. [Ran, Corollaries 3.2, 3.3 and 5.1] Let X,R, f be as above. Suppose
there is a component ofM0(P1, [R]) of dimension 2n−2 containing [f ]. Then the curve
R deforms in the Hodge locus Def(X, [R]).

In other words, given a family π : X → T of IHS varieties with a special fiber X = X0;
a rational curve f : P1 → X with image R ⊂ X; and a global section of R4n−2π∗Z of
Hodge type (2n− 1, 2n− 1), specializing to [R] on X. Then if there is a component of
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the moduli spaceM0(X, [R]) containing [f ] of dimension exactly 2n− 2, then the map
f : P1 → X deforms (after taking some finite cover of T ), and in particular R deforms
in the fibers of π. (See also [CMP, Section 3] and [AV] for similar statements).

2 Special rational curves

To prove Theorems 0.1 and 0.2, we will need to construct certain special rational curves
on S[n] and Kn(S) that satisfy the conditions of Proposition 1.2. To explain the basic
idea, consider the case where n = 2, and S is a K3 surface of degree 2. Letting H
be the polarization on S, each smooth curve C ∈ |H| is a genus 2 curve admitting a
unique g1

2. This defines a rational curve RC on C [2], and hence on S[2]. We can write
the class [RC ] ∈ H2(S[2],Z) in terms of the decomposition (2); intersecting RC with H
shows that it has the form H − tB for some t ∈ Z. In particular, the class is primitive.
From the double cover S → P2, we also obtain a plane P2 ⊂ S[2], which contains all
the curves RC , and the plane can be contracted by a birational map (see [OG, Section
1.3] for more details). In particular RC deforms in a family of dimension 2 and thus
satisfies Proposition 1.2.
The example above is special in the sense that the curves RC are smooth. To construct

other classes on S[n], we need to consider singular curves on S and linear series on
their normalizations. For this, we apply results on Brill–Noether theory on nodal
curves on surfaces due to Ciliberto and Knutsen [CK] for K3 surfaces, and by Knutsen,
Lelli-Chiesa and the first author [KLM] for abelian surfaces.
Let us start with Hilbert schemes of K3 surfaces. Let (S,H) be a primitively polarized

K3 surface of degree H2 = 2p− 2 and let C ∈ |H| be a curve with δ nodes as its only
singular points. Given a linear series g1

n on the normalization C̃ of C, we obtain a
natural rational curve RC in S[n] via the incidence correspondence

I = {(P, [Z]) ∈ S × S[n]|P ∈ Supp(Z)} → S[n]. (4)

We say that the nodes are ‘non-neutral’ with respect to the linear series if the linear series
is base point free, and the corresponding morphism C̃ → P1 has simple ramification
and does not ramify over the nodes of C. If this genericity condition is satisfied, we
have that the homology class of RC is given in terms of the decomposition (2) as

H − (p− δ + n− 1)τ, (5)

where H ∈ Pic(S) (see [KLM2][Lemma 3.3]). Note that this class is primitive, since H
is. Moreover, the following divisor is proportial to RC via (3):

(2n− 2)H − (p− δ + n− 1)B.

The main properties of these curves are summarized in the following theorem. In
the theorem, V n

|H|,δ ⊆ |H| denotes the Severi variety of curves C with δ nodes, whose
normalizations admit a g1

n.

Theorem 2.1. [CK, Thm 0.1] Let (S,H) be a very general primitively polarized K3

of genus p := pa(H) ≥ 2. Let δ and n be integers satisfying 0 ≤ δ ≤ p and n ≥ 2. Then
the following statements hold:
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(i) V n
|H|,δ is non-empty if and only if

δ ≥ α
(
p− δ − (n− 1)(α+ 1)

)
, where α =

⌊ p− δ
2n− 2

⌋
. (6)

(ii) Whenever non-empty, V n
|H|,δ is equidimensional of the expected dimension min{2n−

2, p− δ}, and a general point on each component corresponds to an irreducible
curve with normalization C̃ of genus g = p− δ, such that the set of g1

n’s on C̃ is
of dimension max{0, 2n− 2− g}.

(iii) There is a component V ⊆ V n
|H|,δ, so that for C and C̃ as in (ii), a general g1

n on

C̃ is base point free and all nodes of C are non-neutral with respect to it.

So if p − δ ≥ 2n − 2, V n
|H|,δ has dimension 2n − 2 and the set of g1

n on a general
curve is 0-dimensional. When p− δ ≤ 2n− 2, V n

|H|,δ has dimension p− δ and the set of
rational curves RC on S[2] has dimension (p − δ) + (2n − 2 − g) = 2n − 2. Hence in
either case we have, if the above inequality is satisfied, a family of rational curves on
S[n] of dimension 2n− 2.
There is a very similar statement in the generalized Kummer case. We consider a

primitively polarized abelian surface (S,H) of degree H2 = 2p−2. Let C be an element
of {H}, the continuous system of curves with cohomology class H (that is, |H| up to
translations on S). As before, given a linear series g1

n+1 on the normalization of C, we
obtain a natural rational curve RC in Kn(S). If the nodes are non-neutral with respect
to this series, the class of RC is given by

H − (p− δ + n)η.

This is again primitive, if H is.

Theorem 2.2. [KLM, Theorem 1.6] Let (S,H) be a very general abelian surface of
genus p := pa(H) ≥ 2. Let δ and n be integers satisfying 0 ≤ δ ≤ p − 2 and n ≥ 2.
Then the following hold:

(i) There exists a nodal curve in {H} whose normalization has a linear series of
type g1

n+1 if and only if

δ ≥ α
(
p− δ − 1− (n+ 1)(α+ 1)

)
, where α =

⌊p− δ − 1

2n+ 2

⌋
; (7)

(ii) When non-empty, the set of g1
n+1’s on curves in {H} with δ nodes is equidimen-

sional of dimension min{p− δ, 2n} and a general element in each component is
an irreducible curve C with normalization C̃ of genus g := p− δ such that it has
a max{0, ρ(g, 1, n+ 1)} = 2n− g dimensional set of g1

n+1’s;

(iii) There is at least one component of the above locus where, for C and C̃ as in (ii),
a general g1

n+1 on C̃ is base point free and all nodes of C are non-neutral with
respect to it.
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Let us illustrate how to use this theorem to construct rational curves in a few
interesting cases on Hilbert schemes of n points on K3 surfaces.

Example 2.3. Consider a polarized K3 surface (S,H) with H2 = 2d, and the curve
class γ = H − (n− 1)B on X = S[n]. Then γ would be represented by a rational curve
R ⊂ X corresponding to a linear series of type g1

n on the normalization of a rational
curve in |H|. It is clear that such linear series exist on P1, so for any n > 0, we obtain
rational curves on S[n], which move in a (2n− 2)-dimensional family.
In this example, the dual divisor of γ is given by D = 2H − B. We will see below

(Lemma 2.9) that it is possible to deform any pair (X,D′) of K3[n]-type X with a
divisor D′ of square 8d− (2n− 2) and divisibility 2 to a pair (S[n], D).1

Example 2.4. A similar situation arises for the class H − (2n − 1)τ on S[n]. This
corresponds to linear series of type g1

n on normalizations of curves on S of geometric
genus n inside |H|. If q(H − (2n − 1)τ) > 0, the square of H is strictly bigger than
2n− 2, so there does indeed exist curves of genus n inside |H| (here the integer α in
(6) is zero, and the conditions of Theorem 2.1 are satisfied). Since any smooth curve of
genus n contains a g1

n, we obtain the desired rational curves on S[n].

Example 2.5. Let F denote the Fano variety of lines of a cubic fourfold Y ⊂ P5. It is
well-known that F is deformation equivalent to a Hilbert scheme S[2] of a K3 surface
(S,H) with H2 = 14. In terms of H and B, the Plücker polarization OF (1) from the
ambient Grassmannian Gr(2, 6) is given by O(1) = 2H−5B (see [BD]). The dual curve
class is given by H − 5τ . We can produce rational curves on S[2] with this class using
Theorem 2.1 by taking p = 8, δ = 4. Then α = 2 and the inequality (6) is satisfied.
In this example, we obtain a 2-dimensional family of rational curves, since V n

|H|,δ has

dimension 2, and each normalization C̃ has at most one g1
2.

These rational curves have degree (2H−5B)·(H−5τ) = 2·14−25 = 3. Geometrically
the curves arise as follows: For each line ` of ‘type II’ (that is, the normal bundle splits
as O(1)2⊕O(−1)), there is a tangent P3 which intersects Y in a cubic surface singular
along `; the residual lines are parameterized by a degree 3 curve in F .

More generally, we have the following result for K3 surfaces, with a straightforward
generalization to the generalized Kummer case (with 2n+ 3 ≤ µ ≤ 3n+ 3):

Lemma 2.6. Let S be a K3 surface of degree 2d and let 2n− 1 ≤ µ ≤ 3n− 3 be an
integer. Let R be the curve class H − µτ in S[n]. Suppose q(R) ≥ 0. Then there exists
a rational curve of class R and a componentM⊆M0(X, [R]) of dimension 2n− 2.

Proof. We want to construct R as in the previous examples. That is, we are trying to
construct linear series of type g1

n on curves in |H| of geometric genus µ− n+ 1. By the
bound on µ, we have α = 0 unless n = 2 or µ = 3n− 3, where α is as in Theorem 2.1.
Therefore, if we are not in these cases, the bound of Theorem 2.1 is satisfied and the
linear series exists if and only if there are curves in |H| of genus µ− (n− 1). Since H

1Divisibility 2 means that {q(D′, x) |x ∈ H2(X,Z)} = 2Z. An easy computation shows that the
square of any divisor of divisibility 2 is congruent to (2− 2n) modulo 8, so the above statement in fact
applies to any divisor of divisibility 2.
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has genus d+1, this happens if and only if d+1 ≥ µ− (n−1). However, by assumption,
q(R) = 2d− µ2

2n−2 is positive, and this implies d+ 1 ≥ µ− (n− 1). The remaining cases
when n = 2 or µ = 3n− 3 have α = 1, but the condition of Theorem 2.1 is trivially
satisfied, so the above applies also to this case. By item (ii) of Theorem 2.1, the curve
R deforms in a family of dimension 2n− 2. Moreover, the incidence correspondence
(4) can be used to prove that all deformations of these rational curves on the Hilbert
scheme of points on a general K3 (or a generalized Kummer) are actually induced by
linear series of type g1

n on curves in the closure of V n
|H|,d−µ+n (see [KLM, Proposition

5.3] or [KLM2, Proposition 3.6] for a proof of this).

In particular, this implies that all curves constructed using the above theorems satisfy
the hypothesis of Proposition 1.2. This fact will be important in the proof of Theorem
0.1 and Lemma 3.2 below. Moreover, we will construct similar curves to prove Lemma
4.2 and then finally Theorem 0.2.

Remark 2.7. These proofs of the two theorems above rely on the assumption that
the Picard number of S is 1. If S has higher Picard number, these curves can move in
larger families, as was exploited in [FKP] to construct rational surfaces.

Finally, let us conclude with a lattice theoretic result which highlights the importance
of Lemma 2.6. An analogous result was proven in [CMP, Theorem 2.5 and Corollary
2.8], with different values of µ. We include a proof for completeness. Let L be an
even lattice and let AL := L∨/L be its discriminant group, which is a finite group.
For the properties of the discriminant group and its links to lattice theory, we refer
to [N]. Given a primitive element l ∈ L, we define the divisibility div(l) as the positive
generator of the ideal (l, L) in Z. The element l/div(l) is then a well defined element
of L∨ and we denote by [l/div(l)] its class in AL. We will use the following, known as
Eichler’s criterion:

Lemma 2.8. [GHS, Lemma 3.5] Let L′ be an even lattice and let L = U2 ⊕ L′. Let
v, w ∈ L be two primitive elements such that the following holds:

• v2 = w2.

• [v/div(v)] = [w/div(w)] in AL.

Then there exists an isometry g ∈ Õ+(L) with determinant one and such that g(v) = w.

Here, U denotes the rank 2 hyperbolic lattice, O+(L) denotes the group of isometries
preserving the orientation on L and Õ+(L) denotes the subgroup of isometries whose
induced action on AL is trivial. Note that, if L is primitively embedded into another
lattice M , an isometry of Õ(L) can be extended to an isometry of M acting trivially
on L⊥.

Lemma 2.9. Let (X,D) be a pair consisting of a manifold X of K3[n]-type and a
divisor D of square 2d and divisibility t. Then there exists a polarized K3 surface (S,H)

of degree 2s, an integer 2n−1 ≤ µ ≤ 3n−3 such that (X,D) is deformation equivalent2

to (S[n], tH − µ/eB), where e = gcd(2n − 2, µ) and the dual curve to tH − µ/eB is
H − µτ .

2See Section 3 for the notion of deformation equivalence.
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Proof. First of all, the pair (X,D) can be deformed to a pair (S[n], D′) for some S and
some D′, as the locus of Hilbert schemes is an hyperplane divisor in the marked moduli
space of manifolds of K3[n]-type, hence it intersects the image of the moduli space of
pairs (X,D) in the period domain, which is path connected, and by [Ma, Proposition
7.1] this path lifts to a deformation of (X,D) to (S[n], D′). We can further deform
S so that it is very general and has Picard rank one, with generator H, therefore
D′ = aH + bB, where t divides a and D′2 = D2. By [Ma, Corollary 9.5], there is an
embedding of Λn := H2(S[n],Z) in the Mukai lattice Λ := U4 ⊕E8(−1)2, which is well
defined up to isometry and coincides with the usual embedding obtained by seeing S[n]

as a moduli space of ideal sheaves on S. Notice that, if n− 1 is a prime power, there is
only one isometry class of these embeddings. Moreover, the orthogonal complement of
Λn under this embedding has rank one, and let v be a generator of it.
Let us denote by T (D′) and T (tH −µ/eB) the rank two primitive lattices containing

D′ and v or tH − µ/eB and v respectively. By [Ap, Proposition 1.6], the two pairs are
deformation equivalent if and only if there exists an isometry of T (D′) and T (tH−µ/eB)

sending D′ to tH − µ/eB. That is, the isometry must send v into ±v and therefore
descends to an isometry of Λn. Let us consider the discriminant group AΛn := Λ∨n/Λn,
which is a cyclic group of order 2n − 2 generated by [B/(2n − 2)]. By elementary
lattice theory, the isometry above has to act as ±1 on the discriminant group AΛn , see
e.g. [Ma, Corollary 9.5]. Notice that D′/t and (tH − µ/eB)/t = (H − µ/(2n − 2)B)

are well defined elements of Λ∨n by the definition of divisibility.
Notice that [(tH − µ/eB)/t] is equal to µ[B/(2n − 2)] inside AΛn . From Eichler’s

criterion in Lemma 2.8, if [D′/t] = [(tH−µ/eB)/t] there exists an isometry of Λn which
acts trivially on AΛn (and therefore can be extended to Λ) sending D′ to tH − µ/eB.
Therefore our claim holds true with 2n− 1 ≤ µ ≤ 4n− 4, so that µ takes all possible
values modulo 2n − 2. To obtain the desired bound, it suffices to compose with the
isometry given by reflection along B, which acts as −1 on AΛn , so that only half of the
values of µ are needed.

Remark 2.10. In the case of a pair (X,D) consisting of a manifold X of generalized
Kummer type and a divisor D of square 2d and divisibility t, an analogous argument
to [MP, Theorem 4.2] and the above lemma allows to prove that there exists a polarized
abelian surface (S,H) of degree 2s, an integer 2n+ 3 ≤ µ ≤ 3n+ 3 such that (X,D) is
deformation equivalent to (Kn(S), tH − µ/ce), where c = gcd(2n− 2, µ) and the dual
curve to tH − µ/ce is H − µη.

3 Proof of Theorem 0.1

Let X,X ′ be two IHS varieties and let h, h′ be primitive polarizations on X and
X ′ respectively. We will for simplicity say that (X,h) and (X ′, h′) are deformation
equivalent if there is a smooth projective family π : X → T over an irreducible curve
T ; a line bundle H on X ; and two points 0, 1 ∈ T so that (X,h) = (X0, c1(H )|X0)

and (X ′, h′) = (X1, c1(H )|X1).
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Lemma 3.1. Let (X,h) and (X ′, h′) be two deformation equivalent primitively polarized
IHS varieties of dimension 2n, connected by a family π : X → T , and let R ⊂ X be a
rational curve which deforms in a family of dimension 2n− 2 in X. Suppose further
that [R] is proportional to h (via the embedding (3)). Then R deforms in the fibres of
π. In particular, also X ′ has an effective 1-cycle (with class proportional to h′) with
components being rational curves.

Proof. Let f : P1 → X denote the stable map corresponding to R, so that [R] = f∗[P1].
Since the deformation space has an irreducible component of dimension 2n − 2 =

dimX − 2, we have, by Proposition 1.2, that the curve deforms in its Hodge locus. By
assumption, our class [R] is Hodge on all the fibers of π, since it is proportional to the
restriction of the (1,1)-class c1(H ) on X . Since T is irreducible, this means that R
deforms to a chain of rational curves on X ′.

Theorem 3.2. Let X be a IHS variety of K3[n]-type or generalized Kummer type
of dimension 2n, and let γ ∈ H4n−2(X,Z) be a primitive integral Hodge class with
q(γ) > 0. Then γ is cohomologous to a sum of rational curves.

Proof. Let γ be such a class and let D the primitive divisor proportional to it (under
the embedding of (3)). Since q(D) > 0, there is a deformation π : X → T of X
over an irreducible curve T ; points 0, 1 ∈ T ; and a divisor class D on X , so that
(X0,D0) = (X,D) and (X1,D1) is either the Hilbert scheme of a K3 surface S or a
generalized Kummer variety of an abelian surface S and we can suppose such a surface
has Picard rank one.
The divisor D1 can be chosen to be of the form tH−µτ for H ∈ Pic(S) primitive and

integers t, µ satisfying 2n− 1 ≤ µ ≤ 3n− 3 in the K3[n] case and 2n+ 3 ≤ µ ≤ 3n+ 3

in the Kummer case by Lemma 2.9 and Remark 2.10.
Therefore, we can use the curves constructed in Lemma 2.6 so that all possible

monodromy orbits are covered. Let us call this rational curve R′ on X1 so that [R′]

is primitive and proportional to D1 (via the embedding (3) and by Lemma 1.1). By
construction, there is a corresponding component ofM0(X, [R′]) has dimension exactly
2n− 2. Since D1 is the restriction of [D] on X , the class [R] is Hodge in the fibers of π,
and so Lemma 3.1 shows that the map f : P1 → X deforms in a family dominating T .
In particular, this means that R deforms to a 1-cycle R′ on X, all of whose components
are rational. By construction, the class of R this is a multiple of γ, and so by primitivity
[R] = γ. This completes the proof of the theorem.

With this, we can prove our main theorem:

Proof of Theorem 0.1. The group of integral degree 4n− 2 Hodge classes is generated
by primitive classes with positive Beauville–Bogomolov square, and these have algebraic
representatives by the previous theorem.

The proof of the above theorem can likely be applied to other situations. Indeed, the
key ingredient of the proof is a statement similar to a conjecture of Voisin [Voi14b, Conj.
3.1 and Remark 3.2], namely the following:
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Conjecture 1. Let X be a projective IHS variety of dimension 2n. Then there is a
primitive rational curve on X which moves in a (2n− 2)-dimensional family.

This conjecture has been proved for varieties of K3[n]-type and Kummer type
in [MP2, Theorem 5.1] following ideas contained in [CMP] and [MP].

Theorem 3.3. Let X be a IHS variety such that Conjecture 1 holds for generic
projective deformations of X. Then the integral Hodge conjecture holds for 1-cycles on
X.

Indeed, starting with X and an integral class γ ∈ H2n−1,2n−1(X,Z) so that γ is
proportional to a primitive ample divisor class H ∈ Pic(X), we can take a very general
projective deformation (X ′, H ′) of (X,H) so that Pic(X ′) = ZH ′. By the above
conjecture, there exists a primitive curve on X ′ proportional to H ′ (via the embedding
(3)). Moreover, this curve moves in a family of dimension exactly 2n− 2. Therefore, by
Proposition 1.2 such a curve deforms to a 1-cycle on (X,H) representing γ.

Remark 3.4. If C is a rational curve which is the ruling of a uniruled divisor D ⊂ X,
then C moves in a family of exactly dimension 2n− 2 as proven in [CMP][Corollary
3.5]. However, some of the primitive curves constructed above cannot cover divisors,
as was shown in [OSY, Appendix A.3]. In loc. cit, there are necessary condition to
ensure that a primitive rational curve covers a divisor, and some examples where this
conditions are not met are provided. Nevertheless, the curves we construct in Lemma
2.6 are sufficient to prove our claim.

Remark 3.5. For a non-projective IHS manifold, it is of course not true that the
integral degree 4n − 2 Hodge classes are generated by classes of curves. This fails
already in dimension two; there exists Kähler K3 surfaces with H1,1(X,Z) = Zσ for a
class with self-intersection σ2 = −4 (which couldn’t possibly be algebraic).

4 Proof of Theorem 0.2

To prove Theorem 0.2, we need to analyze curves of non-positive Beauville–Bogomolov
square. Let us consider first those of negative square.

Lemma 4.1. Let Y be a smooth non-projective IHS manifold of dimension 2n, with
Pic(X) = ZD and q(D) < 0. Let γ be the class of a curve on Y . Then γ is a multiple
of a rational curve which moves in a 2n− 2 dimensional family.

Proof. As γ is effective and of negative square in a Picard rank one manifold, the
divisor class D is a wall divisor (or MBM class as in [AV]) in the sense of [Mo, Definition
1.2]. Being a wall divisor is preserved by deformations in the Hodge locus of γ by [Mo,
Theorem 1.3], so we can take a projective small deformation Y ′ of Y such that γ is
contracted by a map Y ′ → X ′ by [KLM2, Theorem 2.5]. Now, this implies that there
exists a map φ : Y → X to a singular symplectic manifold X which contracts γ without
taking any deformation (see [BL, Theorem 1.1]).
Let F be a general fibre of the exceptional locus of φ. By [Wi2, Theorem 1.3 (iii)],

the normalization of any component of F is a projective space Pe. Let K be such a

10



component and let η : Pe → K be the normalization map. Let l ∈ H2(Pe,Z) be the
class of a line. By hypothesis, we have γ = aη∗(l) as a class in H2(Y,Q) for some a ∈ Q.
Here a is actually an integer: η∗(γ) · l = aη∗η∗(l) · l = a. Hence γ is an integral multiple
of a rational curve.
Finally, if f : P1 → X is the map corresponding to l, we have by [CMSB, Lemma 9.4]

that Nf = OP1(−2)⊕OP1(−1)e−1⊕O2n−2e
P1 ⊕OP1(1)e−1. In particular, f deforms in a

family of dimension h0(Nf )−h1(Nf )+1 = 2n−2, as desired. (See also [BHT, Proposition
3]).

Lemma 4.2. Let Y be a smooth non-projective hyperkähler manifold of K3[n] or
Kummer type, with Pic(X) = ZD with D2 = 0. Let γ be the class of a curve on Y .
Then γ is a multiple of a rational curve which moves in a (2n− 2)-dimensional family.

Proof. We can assume that the divisor D is effective, so that it defines a lagrangian
fibration structure on X (see [Ma2, Theorem 1.3] and [Mat, Corollary 1.1]).
We will for simplicity consider only the case when X has K3[n] type. The rest of the

proof goes through almost verbatim for generalized Kummer varieties.
First, we want to deform Y to a general Hilbert scheme S[n] where S is a K3 surface.

Let C = γ/r, r > 0 be the primitive cohomology class. It suffices to produce a pair
(S[n], H − gτ), where H − gτ is the class of a rational curve, for every component
of the moduli space of pairs (Y,C). In this class of square zero curves (actually,
divisors) these components have been determined by Markman [Ma2, Lemma 2.5] and
Wieneck [Wi1, Lemma 5.12]. All monodromy orbits contain an element of the form
(S[n], H − bτ). In particular, it suffices to take 2(n− 1) < b ≤ 3(n− 1). Therefore, we
can again use Lemma 2.6 to produce a rational curve of class H − bτ which moves in a
2n− 2 dimensional family. By Proposition 1.2, this curve deforms to the desired curve
on Y .

Proof of Theorem 0.2. Let X be a IHS manifold of K3[n] or Kummer type and let C be
a curve on X. If q(C) > 0, then C is an integral sum of rational curves by Theorem 3.2.
If q(C) = 0, the same holds by Lemma 4.2 after going to a generic deformation as in
Lemma 3.1. We are left with the case q(C) < 0. If C is extremal, we can apply Lemma
4.1 to conclude that C is a multiple of a rational curve with the deformation argument
of Lemma 3.1. Otherwise, we can apply the Cone theorem of [HT, Proposition 11], so
that C can be written as a rational sum of extremal curves C =

∑
aiRi, where all Ri

are primitive rational curves by Lemma 4.1.
We show that the coefficients ai are in fact integers. Fix an integer i and let us take

a divisor Di ∈ Pic(X) which is effective and such that Di · Ri > 0, Di · Rj < 0 if
i 6= j. Such a divisor can be found inside the big cone intersected with the open subsets
{D ∈ N1(X) |D ·Rj < 0} and {D ∈ N1(X) |D ·Ri > 0}.
As a small enough multiple of Di is klt by [HT, Remark 12], we can run the MMP

to the pair (X,Di) contracting negative curves in any order, as every MMP terminates
by [LP, Theorem 4.1]. Thus, there exists a variety Y and a map X → Y which
contracts all curves whose classes are multiples of the Rj j 6= i. Therefore, the class of
the pushforward of C to Y is aiRi, where we keep denoting by Ri its pushforward to
Y . As Ri is primitive, ai ∈ Z, and hence the desired conclusion holds.
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5 Application to cubic fourfolds

As an application of Theorem 0.1, we give a quick proof of the following result, which
was proved by Voisin [Voi07], using an argument using Lefschetz pencils.

Theorem 5.1. Let X ⊂ P5 be a cubic fourfold. Then the integral Hodge conjecture
holds for H4(X,Z). In fact, H2,2(X,Z) is generated by classes of rational surfaces.

Proof. Let F = F (X) denote the variety of lines on X and let P ⊂ F ×X denote the
incidence correspondence, with projections p : P → F and q : P → X. We will consider
the (transpose of the) Abel–Jacobi map induced by P , namely

α = q∗p
∗ : H6(F,Z)→ H4(X,Z).

By Beauville–Donagi [BD, Proposition 4], this map is an isomorphism. Hence any inte-
gral Hodge class Γ ∈ H2,2(X,Z) is the image of a class in H3,3(F,Z), and consequently
it is algebraic, by Theorem 0.1. The last statement also follows, since the incidence
correspondence sends rational curves on F to rational surfaces on X.

Remark 5.2. By Bloch–Srinivas [BS, Theorem 1] the cycle class map on codimension
2 cycles is injective, so in fact the Chow group CH2(X) is isomorphic to H2,2(X,Z),
and it is generated by cycle classes of rational surfaces. See also the work of Mboro [M]
for similar statements for CH2(X) for higher dimensional cubic hypersurfaces.

Remark 5.3. Using results by Shen [Sh] we obtain the following result about the
algebraicity of the Beauville–Bogomolov form. Let X and F be as above. The Beauville–
Bogomolov form q on H2(F,Z) defines a class in H12(F × F,Z) which we will denote
by [q]. This class is Hodge of type (6, 6). Given the validity of the integral Hodge
conjecture on F , we can rephrase [Sh, Proposition 5.5] as

Proposition 5.4 (Shen). The class [q] is algebraic if and only if X is CH0-trivial.

Here the group CH0(X) is universally trivial if and only if X admits a Chow-
theoretical decomposition of the diagonal (see [Voi17]). See [Sh] for more details.

Remark 5.5. Mingmin Shen explained to us that one can conversely deduce the integral
Hodge conjecture on F from that on X (which holds by Voisin’s result [Voi]). Indeed, in
this case P∗ : CH1(F )→ CH2(X) is surjective ( [M, Theorem 3.1] and [Sh14, Theorem
1.1] show that P∗ is surjective modulo multiples of h2 and a separate argument shows
that h2 is also in the image). From this we deduce that the image α(γ) of a class
γ ∈ H3,3(F,Z) is homologous to a cycle of the form P∗(Γ), where [Γ] = γ. In particular
γ is algebraic.
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