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ABSTRACT 

 

A review of the Lagrangian approach to wave-induced drift in a rotating fluid layer of finite 

depth is presented. The Lagrangian description of fluid motion is (usually) more 

mathematically demanding than the traditional Eulerian approach. However, it yields directly 

the mean particle drift velocity in periodic motion. The solution to the wave-drift problem in a 

Lagrangian description depends crucially on the viscosity 𝜈 being non-zero, however small. It 

illustrates the singular nature of this problem, in which the limit of solutions as 𝜈 → 0 is 

different from solutions obtained with 𝜈 = 0. Obviously, for most oceanographic 

applications, the effect of an (eddy) viscosity cannot be neglected. In this survey we consider 

solutions for the Lagrangian mean drift in various types of surface waves influenced by 

viscosity. From a purely Lagrangian starting point, we demonstrate novel ways of deriving 

conservation equations for the mean wave momentum and the mean wave energy in a weakly 

viscous fluid layer of finite depth. Among several examples of mean drift in surface waves, 

we consider deep water gravity waves acted upon by an oscillating wind stress, short 

capillary-gravity waves affected by a thin elastic surface film, and friction-induced roll 
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motion in short-crested gravity waves. Furthermore, the drift in high-frequency shallow-water 

gravity waves is revisited, and a new equation for the Lagrangian mean drift in 

temporally/spatially modulated waves is presented. Finally, we discuss the use of the Coriolis-

Stokes force to implement Lagrangian properties into Eulerian numerical ocean circulation 

models. 

 

1. Introduction 

 

       The idea of attempting to determine the history of every particle in a fluid was originally 

due to Euler (1757). He introduced the form of the hydrokinetic equations that later should 

become known as the Lagrangian form (as well as the alternative and more used Eulerian 

notation). The fact that the Lagrangian approach has been considered more cumbersome than 

the Eulerian formulation, may explain why relatively few studies of ocean flows based on the 

Lagrangian formalism are found in the early literature. Among these few studies the exact 

solution by Gerstner (1809) for rotational surface waves in an infinitely deep ocean stands 

out. Later Stokes (1847) considered flow between material surfaces in irrotational surface 

waves to obtain the wave-induced mean drift (the Stokes drift), but he did not apply a direct 

Lagrangian formulation. Much later Miche (1944) used the Lagrangian form in his study of 

irrotational and rotational surface waves in a fluid layer of finite depth.  

       Post-war studies are more numerous, as will be shown below. In particular we mention 

that recent progress in Lagrangian tracking of balloons in the atmosphere and floats in the 

ocean has spurred the theoretical development of Lagrangian dispersion theory; see the 

comprehensive account by Bennet (2006). A very recent review of Lagrangian analysis used 

to study the output of ocean circulation models and ocean velocity data from altimetry is 
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found in Sebille et al. (2018).  

       The present survey is devoted to a Lagrangian description of ocean dynamics, and in 

particular how periodic waves induce mean flows within a purely Lagrangian framework. In 

this connection it is worth mentioning that the theory of nonlinear waves on a Lagrangian-

mean flow (GLM theory) by Andrews and McIntyre (1978) is a hybrid Lagrangian 

formulation. The averaging operator used to arrive at the Lagrangian-mean variables in the 

GLM theory is not a full particle-following Lagrangian mean, but an Eulerian mean of the 

variables evaluated at their displaced locations. Although useful and elegant, the GLM theory 

will not be discussed further in this survey. Again, those who are mainly interested in 

turbulent dispersion are referred to Bennet’s book.  

       In this review we focus on the Lagrangian drift in high-frequency ocean waves, i.e. waves 

with frequency much higher than the inertial frequency. That means that drift in low-

frequency shallow-water waves of the tidal type (Poincaré waves); see e.g. Høydalsvik and 

Weber (2003), will not be discusses here. 

 

1.1. Inviscid flow 

 

       In addition to the already mentioned papers by Gerstner (1809) and Miche (1944), a 

considerable amount of studies on surface waves in Lagrangian form have been published 

under the assumption that the fluid is inviscid; see e.g. Kravtchenko and Daubert (1957),  

Abrashkin (1996), Constantin (2001, 2012, 2014, 2015), Clamond (2007), Chen et al. (2010), 

Weber (2012), Henry (2013, 2016), Ionescu-Kruse (2015), and Abrashkin and Pelinovsky 

(2017). The basic diversion in this case is between waves with vorticity of the Gerstner-type, 

and irrotational waves of the Stokes-type. In the first case the particle orbits are closed, i.e. no 

mean drift, while in the second case there is a Stokes drift in the wave propagation direction. 
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However, in a rotating ocean the action of the Coriolis force makes the particles associated 

with the mean motion in the Stokes wave to move in closed inertial circles. Hence, when 

averaged over the inertial period, there is no net forward drift in such waves (Ursell, 1950; 

Hasselmann, 1970). This is also the fact for inviscid surface waves with vorticity (Pollard, 

1970; Constantin and Monismith, 2017). 

 

1.2. The effect of viscosity 

 

       The presence of viscosity has a profound effect on the wave-induced drift. In a pioneering 

paper (Longuet-Higgins, 1953) it was demonstrated that the inclusion of a small viscosity not 

only modified the motion in thin boundary layers near the surface and at the bottom, but also 

produced significant changes from Stokes’ solution in the interior. Most notably, the mass 

transport velocity gradient just below the surface boundary layer is found to be twice the 

value obtained from Stokes’ irrotational solution. Furthermore, above the viscous bottom 

boundary layer the mean drift velocity turns out to be 5/2 times the inviscid Stokes drift.     

       It was Pierson (1962) that really opened up for the use of a Lagrangian description in 

viscous ocean flows, introducing a perturbation expansion of the Lagrangian equations. 

Although he just discussed some first order solutions, nonlinear Lagrangian analyses, 

particularly of surface waves, soon followed (Chang, 1969; Ünlüata and Mei, 1970; Madsen, 

1978; Weber, 1983a,b; Jenkins, 1986, 1987). For Lagrangian approaches to two horizontal 

fluid layers of different densities, the effect of viscosity on the drift in interfacial waves has 

been considered by Weber and Førland (1990) for short temporally and spatially attenuated 

waves in an air-water system. Later Piedra-Cueva (1995) studied the steady two-layer 

problem in the Lagrangian formulation with emphasis on transport in a very viscous (mud) 

bottom layer induced by spatially damped surface water waves. A similar problem for the 
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steady drift in partial standing surface waves in a two-layer viscous system was investigated 

by Ng (2004a). Moreover, Ng and Zhang (2007) used a direct Lagrangian approach for 

studying the mass transport in progressive water waves over a layer of viscoelastic mud.  

       In the upper ocean the currents are predominantly driven by the wind. But some of the 

atmospheric momentum is transferred to surface waves. We will not go into the various 

theories of how surface waves are generated by the wind. The pioneering studies here are 

Miles (1957) and Phillips (1957). In this survey we consider fully developed surface waves, 

and take that the waves are monochromatic. However, it is fairly simple to generalize, and 

express the wave-forcing in a real sea state by its spectral form (Jenkins, 1989; McWilliams 

and Restrepo, 1999; Weber et al., 2006).  

      For monochromatic waves it can be shown that if the wind stress contains an undulating 

part that performs work on the waves, the loss of wave energy due to viscous dissipation may 

be exactly compensated (Lamb, 1932). In this case the waves propagate with constant 

amplitude, i.e. they are so-called permanent waves. On the other hand, the wind may also 

promote wave growth, which finally leads to breaking, or it may cause enhanced damping. 

The damping is particularly pronounced for adverse winds. The wave-induced drift in such 

cases has been investigated by Weber and Melsom (1993). In the case of breaking, the 

transition of accumulated mean wave momentum to ocean currents has been studied among 

others by Melsom (1996) and Melsom and Saetra (2004). 

      The mean wind stress at the ocean surface causes mean momentum to diffuse into the 

ocean to a certain depth till it finally is balanced by the Coriolis force due to the earth’s 

rotation, as first shown by Ekman (1905). This balance occurs within the so-called Ekman 

layer. But the presence of wind inevitably leads to surface waves. When wind-generated 

surface waves propagate out of the storm area and into regions not influenced by wind, they 

will attenuate in time or space due to friction. Hence, some of the initial mean wave 
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momentum in irrotational surface waves (the Stokes flux) will reappear as Eulerian mean 

currents. This occurs through the action of the virtual wave stress, first defined by Longuet-

Higgins (1969). Therefore, in a viscous ocean, the Lagrangian mean mass transport due to 

waves must be written as a sum of the Stokes drift and a frictionally-induced Eulerian mean 

current (Longuet-Higgins, 1953). 

       For surface waves in a viscous ocean, the viscosity is small, and the effect is confined to a 

thin viscous boundary layer (millimeters to centimeters) just beneath the wavy surface. A 

Cartesian Eulerian approach in this case would actually require that the wave amplitude is 

smaller than the boundary-layer thicknesses, which limits the wave amplitude quite severely; 

see e.g. Craik (1982). To remedy this one could use curvilinear coordinates, following the 

wavy interface, but this is problematic since the wave amplitude in our problem 

grows/attenuates in space and time, depending on the atmospheric conditions. A better option 

is to use our particle-following Lagrangian coordinates. Then the surface wave amplitude can 

be much larger than the boundary layer thickness, but small enough for a series expansion in 

the wave steepness to be valid. It should also be mentioned that hybrid methods, with a 

Lagrangian coordinate system in the vertical and an Eulerian coordinate system in the 

horizontal has been introduced to present a simpler formulation than the three dimensional 

Lagrangian mean equations (see e.g. Mellor, 2003, 2005; Broström et al., 2008; Aiki and 

Greatbatch , 2012). 

 

2. Mathematical formulation 

 

       We consider motion in an incompressible viscous fluid layer of constant depth 𝐻. The 

motion is described by using a Lagrangian formulation. Let a fluid particle (𝑎, 𝑏, 𝑐) initially 

have coordinates (𝑋0, 𝑌0, 𝑍0). Its position (𝑋, 𝑌, 𝑍) at later times will then be a function of 
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𝑎, 𝑏, 𝑐  and time 𝑡. Here the axes of 𝑋 and 𝑌 are horizontal, and situated at the undisturbed 

surface, while the vertical 𝑍-axis is positive upwards. Velocity components and accelerations 

are given by (𝑋𝑡, 𝑌𝑡, 𝑍𝑡) and (𝑋𝑡𝑡, 𝑌𝑡𝑡 , 𝑍𝑡𝑡), respectively, where subscripts denote partial 

differentiation. The initial density of a particle is 𝜌0, and the density at subsequent times is 𝜌. 

We follow the traditional approach by representing the rotation of the ocean by its vertical 

angular velocity 𝑓/2, where 𝑓 is the Coriolis parameter; see Gerkema et al. (2008) for a 

thorough discussion of the implementation of the Coriolis force in a rotating ocean. 

Furthermore, in this survey we take that 𝑓 is constant, so problems that requires the 𝛽-plane 

approximation, are not considered here.  

 

2.1. Conservation of mass 

 

       The conservation of mass in Lagrangian form becomes; see e.g. Lamb (1932): 

𝜌 𝜕(𝑋, 𝑌, 𝑍) 𝜕(𝑎, 𝑏, 𝑐) = 𝜌0 𝜕(𝑋0, 𝑌0, 𝑍0) 𝜕(𝑎, 𝑏, 𝑐)⁄⁄ ,                                                             (1)                                                  

where 𝜕( )/𝜕(𝑎, 𝑏, 𝑐) is the Jacobian operator. For an incompressible fluid, the density is 

conserved for a particle, i.e. 𝜌 = 𝜌0 for all times, and hence 

 𝜕(𝑋, 𝑌, 𝑍) 𝜕(𝑎, 𝑏, 𝑐) = 𝜕(𝑋0, 𝑌0, 𝑍0) 𝜕(𝑎, 𝑏, 𝑐)⁄⁄ .                                                                   (2) 

This expresses the conservation of volume for a fluid particle, and is often referred to as the 

continuity equation. In this survey we take that the fluid is incompressible and homogenous, 

so the density is constant. By defining 

𝐷0 ≡ 𝜕(𝑋0, 𝑌0, 𝑍0) 𝜕(𝑎, 𝑏, 𝑐)⁄ ,                                                                                                  (3)                           
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we note that further simplifications can be introduced by assuming 𝐷0 = 1. Lagrangian 

variables that fulfill this condition are sometimes called Miche’s coordinates (Clamond, 

2007). However, this simplification should be done with care. For example, in the famous 

exact Gerstner solution for rotational waves (Gerstner, 1809), we have 𝐷0 ≠ 1. 

 

2.2. Conservation of momentum 

 

       The viscous version of the Lagrangian equations in a non-rotating system is found in 

Pierson (1962). Here the fluid viscosity is assumed to be constant. Introducing the Coriolis 

force in Pierson (1962), and also assuming that generally 𝐷0 ≠ 1 in (3), the equation for the 

conservation of momentum can be written:   

𝑋𝑡𝑡 − 𝑓𝑌𝑡 = −𝐷0
−1 𝜕(𝑃 𝜌⁄ , 𝑌, 𝑍) 𝜕(𝑎, 𝑏, 𝑐) +⁄ 𝜈∇2𝑋𝑡,                                                             (4) 

 𝑌𝑡𝑡 + 𝑓𝑋𝑡 = −𝐷0
−1 𝜕(𝑋, 𝑃 𝜌⁄ , 𝑍) 𝜕(𝑎, 𝑏, 𝑐) +⁄ 𝜈∇2𝑌𝑡,                                                            (5) 

𝑍𝑡𝑡 + 𝑔 = −𝐷0
−1 𝜕(𝑋, 𝑌, 𝑃 𝜌⁄ ) 𝜕(𝑎, 𝑏, 𝑐) +⁄ 𝜈∇2𝑍𝑡,                                                                (6) 

where 𝑃 is the pressure, 𝑔 is the acceleration due to gravity, and 𝜈 is the constant kinematic 

eddy viscosity. The explicit Lagrangian form of the Laplacian operator  ∇2 in (4)-(6) can be 

found in Pierson (1962).                

       For oceanic applications, the concept of a constant eddy viscosity is somewhat 

problematic since diffusion of momentum is related to turbulent mixing (apart from very thin 

molecular sub-layers). In the surface layer and near the ocean bottom this mixing varies 

considerably in space, particularly in the vertical direction. This problem is not specific for 

the Lagrangian description. It is exactly the same for the more common Eulerian way of 

modelling oceanic (and atmospheric) flows. However, since the spatial variations in the 
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Lagrangian description are nonlinear, the mathematical difficulties related to higher order 

solutions with a variable turbulent (eddy) viscosity soon becomes rather severe. There are a 

few attempts to apply a variable eddy viscosity to wave-induced drift problems; see e.g. 

Jenkins (1987, 1989), Weber and Melsom (1993),  Melsom (1993). The general effect is to 

produce surface drift currents that are somewhat less deflected from the wind and wave 

direction than those obtained for a constant eddy viscosity. We shall, in specific examples, 

modify (4)-(6) to encompass a vertically-varying eddy viscosity. 

 

2.3. Method of solution 

 

       Due to the strong nonlinear character of the governing equation in Lagrangian form, exact 

analytical solutions are generally not obtainable. In such cases one can try to write the 

solutions as series expansions after a small parameter 𝜀 (Pierson, 1962). Without the need to 

specify 𝜀, we may formally write 

  

𝑋 = 𝑎 + 𝜀𝑥(1) + 𝜀2𝑥(2) + 𝜀3𝑥(3) +⋯               
𝑌 = 𝑏 + 𝜀𝑦(1) + 𝜀2𝑦(2) + 𝜀3𝑦(3) +⋯               

𝑍 = 𝑐 + 𝜀𝑧(1) + 𝜀2𝑧(2) + 𝜀3𝑧(3) +⋯                
𝑃 = 𝑃0 − 𝜌𝑔𝑐 + 𝜀𝑝

(1) + 𝜀2𝑝(2) + 𝜀3𝑝(3) +⋯}
 
 

 
 

                                                                  (7) 

where 𝑃0 is a constant. In wave problems the small parameter will usually be proportional to 

the wave steepness, and accordingly, the solutions obtained from (7) will apply to small-

amplitude waves. However, surface waves in the open ocean are not very steep. As far as 

wind waves are concerned, the amplitudes are kept small due to repeated breaking. In that 

case 𝑂(𝜀2) theory yields results for the drift currents in (basically) irrotational waves that 

compares in magnitude with the purely wind-driven Ekman current (Weber, 1983b; Weber 

and Melsom, 1993; Ardhuin et al., 2009; Röhrs et al., 2012). 
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       We generally consider plane waves that propagate along the 𝑋-axis. However, in Section 

8 we extend the discussion to a pair of obliquely propagating waves, yielding a short-crested 

surface wave pattern. Then the solution will display a dependence of both horizontal 

coordinates 𝑎 and 𝑏. For the remaining part of the paper, we consider waves with infinitely 

long crests in the 𝑌-direction. In that case it is convenient to introduce the notation        

𝑋 = 𝑎 + 𝑥(𝑎, 𝑐, 𝑡),               
 𝑌 = 𝑏 + 𝑦(𝑎, 𝑐, 𝑡),                

 𝑍 = 𝑐 + 𝑧(𝑎, 𝑐, 𝑡),                 
𝑃 = 𝑃0 − 𝜌𝑔𝑐 + 𝑝(𝑎, 𝑐, 𝑡), }

 

 
                                                                                                  (8) 

where the deviations 𝑥, 𝑦, 𝑧, 𝑝, representing the series expansion parts of (7), do not depend on 

the coordinate 𝑏.  

       The conservation of volume (2) now reduces to:  

𝑥𝑎 + 𝑧𝑐 + 𝐽(𝑥, 𝑧) = 𝑥0𝑎 + 𝑧0𝑐 + 𝐽(𝑥0, 𝑧0),                                                                              (9) 

where  𝐽 is the two-dimensional Jacobian given by 𝐽(𝐴, 𝐵) ≡ 𝐴𝑎𝐵𝑐 − 𝐴𝑐𝐵𝑎. Subscript zero 

here denotes initial deviations. To 𝑂(𝜀) we have from (9) that  𝑥𝑡𝑎 + 𝑧𝑡𝑐 = 0, and hence  

𝑥𝑎 + 𝑧𝑐 = 0 for a linear progressive wave. It then follows that  𝑥0𝑎 + 𝑧0𝑐 = 0 to this order. 

Accordingly, in (3): 

𝐷0 = 1 + 𝑂(𝜀2).                                                                                                                     (10) 

       The momentum equations (4)-(6), correct to 𝑂(𝜀2), then become 

𝑥𝑡𝑡 − 𝑓𝑦𝑡 = −(𝑝 𝜌⁄ + 𝑔𝑧)𝑎 − 𝐽(𝑝 𝜌⁄ , 𝑧) + 𝜈∇𝐿
2𝑥𝑡                                                                                 

                       −𝜈(2𝑥𝑎𝑥𝑡𝑎𝑎 + 2𝑧𝑐𝑥𝑡𝑐𝑐 + 2(𝑧𝑎 + 𝑥𝑐)𝑥𝑡𝑎𝑐                                                         (11) 

                       +𝑥𝑡𝑎∇𝐿
2𝑥 + 𝑥𝑡𝑐∇𝐿

2𝑧),                         

                                                                                                              

𝑦𝑡𝑡 + 𝑓𝑥𝑡 = 𝜈∇𝐿
2𝑦𝑡,                                                                                                                 (12) 
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𝑧𝑡𝑡 = −(𝑝 𝜌⁄ + 𝑔𝑧)𝑐 − 𝐽(𝑥, 𝑝 𝜌⁄ ) − 𝑔𝐽(𝑥, 𝑧) + 𝜈∇𝐿
2𝑧𝑡  

           −𝜈(2𝑥𝑎𝑧𝑡𝑎𝑎 + 2𝑧𝑐𝑧𝑡𝑐𝑐 + 2(𝑧𝑎 + 𝑥𝑐)𝑧𝑡𝑎𝑐+𝑧𝑡𝑎∇𝐿
2𝑥 + 𝑧𝑡𝑐∇𝐿

2𝑧).                                    (13)                                                           

 

Here ∇𝐿
2= 𝜕2 𝜕𝑎2 + 𝜕2 𝜕𝑐2⁄⁄   is the linear part of the Laplacian operator in Lagrangian form.  

       The periodic wave solutions of (11)-(13) to 𝑂(𝜀) will be denoted by a tilde, while second 

order mean quantities, where the mean is defined by the average over the wave cycle, will be 

denoted by an overbar.  

 

2.4. Boundary conditions 

 

       In the absence of waves, it is often convenient to label the ocean surface in Lagrangian 

notation by 𝑐 = 0. But this is a material surface, i.e. it always consists of the same particles 

unless it is disrupted by mixing processes. Therefore, in the presence of non-breaking waves, 

whatever amplitude, the free surface is still given by 𝑐 = 0. This is a considerable advantage 

compared to the nonlinear kinematic boundary condition at the free surface in an Eulerian 

description, relating the vertical velocity to the material rate of change of the Eulerian surface 

position.  

       The tangential and normal atmospheric stresses at the surface 𝑐 = 0 are given by 

(𝜏1, 𝜏2, 𝜎), respectively. We assume that our primary wave has a real frequency 𝜔 that is 

much larger than the inertial frequency 𝑓. Then we can disregard the effect of the earth’s 

rotation on the primary wave field, which means that we have no velocity along the 𝑌-axis to 

this order. Using that 𝑦̃ = 0, and 𝜕 𝜕𝑏 = 0⁄  for waves along the 𝑋-axis, the dynamic surface 

boundary conditions for the periodic motion to 𝑂(𝜀)  become (neglecting the effect of surface 

films for the moment): 
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𝜏̃1 = 𝜌𝜈(𝑥̃𝑡𝑐 + 𝑧̃𝑡𝑎)
𝜏̃2 = 0                       
𝜎̃ = −𝑝 + 2𝜌𝜈𝑧̃𝑡𝑐   

} , 𝑐 = 0.                                                                                                (14)  

The dynamic boundary conditions for the mean motion to 𝑂(𝜀2), allowing for a drift in the 𝑌- 

direction due to the Coriolis force, can be written      

 
𝜏1̅ = 𝜌𝜈(𝑥̅𝑡𝑐 + 𝑧𝑡̅𝑎 + 𝑥̃𝑡𝑐𝑥̃𝑎̅̅ ̅̅ ̅̅ ̅ − 𝑥̃𝑡𝑎𝑥̃𝑐̅̅ ̅̅ ̅̅ ̅ + 𝑧̃𝑡𝑎𝑧̃𝑐̅̅ ̅̅ ̅̅ ̅ − 3𝑥̃𝑡𝑎𝑧̃𝑎̅̅ ̅̅ ̅̅ ̅)
𝜏2̅ = 𝜌𝜈𝑦̅𝑡𝑐                                                                                

𝜎 = −𝑝̅ + 2𝜌𝜈(𝑧𝑡̅𝑐 + 𝑧̃𝑡𝑐𝑥̃𝑎̅̅ ̅̅ ̅̅ ̅ − 𝑧̃𝑡𝑎𝑥̃𝑐̅̅ ̅̅ ̅̅ ̅ − 𝑥̃𝑡𝑐 𝑧̃𝑎̅̅ ̅̅ ̅̅ ̅ − 𝑧̃𝑡𝑎𝑧̃𝑎̅̅ ̅̅ ̅̅ ̅)   

} ,   𝑐 = 0.                                     (15) 

Here we have used that 𝑥̃𝑎 = −𝑧̃𝑐. At the bottom, given by by 𝑐 = −𝐻, we apply a no-slip 

condition for both the periodic and the mean motion: 

𝑥̃𝑡 = 𝑧̃𝑡 = 0          
𝑥̅𝑡 = 𝑦̅𝑡 = 𝑧𝑡̅ = 0

} ,   𝑐 = −𝐻.                                                                                                (16)                 

       Large parts of the ocean surface may at times be covered by thin elastic films of biogenic 

or anthropogenic origin. Such films will strongly affect short capillary-gravity waves. 

Mathematically, the effects are manifested through additional terms in the surface boundary 

conditions. We return to this problem in Section 7.  

 

3. The primary field for high frequency waves 

 

       We here consider ocean surface waves with frequencies that are much higher than the 

inertial frequency. Hence the linear wave field is not influenced by the earth’s rotation.  In 

general, for a viscous fluid, we may write the linear horizontal and vertical wave velocity as a 

sum of a potential part 𝜑̃ and a vorticity part 𝜓̃ (Lamb, 1932):    

 𝑥̃𝑡 = −𝜑̃𝑎 − 𝜓̃𝑐, 𝑧̃𝑡 = −𝜑̃𝑐 + 𝜓̃𝑎.                                                                                         (17)                                                   



 

13 

 

Substituting from (17) into the linearized versions of (11) and (13) we obtain  

 

∇𝐿
2𝜑̃ = 0,             

𝜓̃𝑡 − 𝜈∇𝐿
2𝜓̃ = 0,

𝑝 𝜌⁄ = 𝜑̃𝑡 − 𝑔𝑧.̃

}                                                                                                                  (18) 

 Here we can write for the normalized solutions:                                              

𝜑̃ =
𝜀

2 cosh𝑘𝐻
[exp{𝜅(𝑐 + 𝐻)}  

      +𝐴1exp{−𝜅(𝑐 + 𝐻)}] exp(𝑖𝜅𝑎 + 𝑛𝑡),                                                                            (19) 

𝜓̃ =
𝜀

cosh𝑘𝐻
[𝐵1 exp𝑚𝑐  

       +𝐵2exp {−𝑚(𝑐 + 𝐻)}] exp(𝑖𝜅𝑎 + 𝑛𝑡).                                                                           (20) 

Here 𝜀 is given by 

𝜀 = 𝜔𝜂0/(𝑘 tanh𝑘𝐻),                                                                                                           (21) 

where  𝜂0 is the initial wave amplitude. In (19)-(20) we have defined the complex quantities 

 

𝜅 = 𝑘 + 𝑖𝛼,         
𝑛 = −𝛽 − 𝑖𝜔,     

𝑚2 = 𝜅2 + 𝑛/𝜈,
}                                                                                                                 (22)           

where 𝑘, 𝜔 are the real and positive wave number and wave frequency, respectively, and 𝛼, 𝛽 

are real growth/attenuation rates in space and time. Jenkins (1986) was the first to include the 

combined spatial and temporal modulation of the wave amplitude in Lagrangian wave drift 

calculations for the deep water case. Assuming that |𝜅2| ≪ |𝑛/𝜈|, we obtain 

𝑚 = (1 − 𝑖)𝛾,    𝛾 ≡ [𝜔/(2𝜈)]1/2.                                                                                         (23) 

Here 1/𝛾 is the thickness of the thin viscous boundary layers (the vorticity layers) at the top 

and the bottom of our model. We take that 𝐻 ≫ 1/𝛾, which will always be well fulfilled in 

any practical application. 
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       From the bottom boundary condition (16) we obtain 

𝑖𝜅(1 + 𝐴1) + 2𝑚𝐵1 exp(−𝑚𝐻) − 2𝑚𝐵2 = 0,                                                                     (24) 

𝜅(1 − 𝐴1) − 2𝑖𝜅𝐵1 exp(−𝑚𝐻) − 2𝑖𝜅𝐵2 = 0.                                                                      (25) 

We assume that the fluctuating tangential wind stress is negligible compared to the fluctuating 

normal component (Phillips, 1977). Hence, we take  𝜏̃1 = 0 in (14). We then find 

𝑖𝜅2[exp(𝜅𝐻) − 𝐴1exp(−𝜅𝐻)] + (𝑚
2 − 𝜅2)[𝐵1 + 𝐵2 exp(−𝑚𝐻)] = 0.                             (26) 

In this analysis we assume that the growth/decay rates are small, i.e.  

|𝛼| 𝑘⁄ ≪ 1, |𝛽| 𝜔⁄ ≪ 1               
cosh 𝛼𝐻 ≈ 1,   sinh 𝛼𝐻 ≈ 𝛼𝐻   

}                                                                                          (27) 

and that the order of the small quantities are such that 𝑂(|𝛼| ⁄ 𝑘)~𝑂(|𝛽| ⁄ 𝜔). We then easily 

determine 𝐴1, 𝐵1, 𝐵2 from (24)-(26). The results for the potential and the vorticity-part of the 

wave field become:       

  𝜑̃ =
𝜀

cosh𝑘𝐻
[cosh{𝜅(𝑐 + 𝐻)} 

          +
𝜅

𝑚
exp{−𝜅(𝑐 + 𝐻)}] exp(𝑖𝜅𝑎 + 𝑛𝑡),                                                                          (28) 

  𝜓̃ =
𝑖𝜅𝜀

𝑚 cosh𝑘𝐻
[−

2𝜅

𝑚
sinh 𝜅𝐻 exp𝑚𝑐 

          + (1 +
𝜅

𝑚
) exp {−𝑚(𝑐 + 𝐻)}] exp(𝑖𝜅𝑎 + 𝑛𝑡).                                                              (29) 

       We allow the waves in our problem to be supported by a suitably arranged small normal 

wind stress 𝜎̃ at the surface. Introducing the potential and vorticity parts 𝜑̃ and 𝜓̃, 

respectively, we find from (14) that   

−𝑛𝜎̃ 𝜌⁄ = 𝑛2𝜑̃ + 𝑔𝜑̃𝑐 + 2𝜈𝑛𝜑̃𝑐𝑐 − 𝑔𝜓̃𝑎 − 2𝜈𝑛𝜓̃𝑎𝑐,     𝑐 = 0.                                             (30)                        
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This yields the dispersion relation in complex form for our problem. We here define the 

normal wind stress as: 

𝜎̃ 𝜌⁄ = −𝜀𝛿 exp(𝑖𝜅𝑎 + 𝑛𝑡).                                                                                                   (31) 

By inserting from (28), (29) and (31) into (30), applying (26) and (27), we find from the real 

and imaginary parts of (30) that to lowest order 

𝜔 = [𝑔𝑘 tanh𝑘𝐻]1/2,                                                                                                            (32) 

and   

 𝛿 =
(𝜔2+𝑔𝑘)exp(−𝑘𝐻)

2𝜔 cosh𝑘𝐻
(𝑘 𝛾) + 2𝜔(𝑘2 𝛾2)⁄⁄     

        −2𝛽 + [(𝜔2𝐻−g)tanh𝑘𝐻 − 𝑔𝑘𝐻](𝛼 𝜔).⁄                                                                    (33)                                                         

By applying (32), we note that (33) can be written as 

𝛿 =
𝜔

sinh2𝑘𝐻
(𝑘 𝛾) + 2𝜔(𝑘2 𝛾2) − 2𝛽 − 2𝐶𝑔𝛼.⁄⁄                                                                   (34) 

Here 𝐶𝑔 = 𝑑𝜔 𝑑𝑘⁄  is the group velocity. It is related to the phase speed 𝐶 = 𝜔 𝑘⁄  by the 

formula (Lamb, 1932) 

𝐶𝑔 =
1

2
𝐶 (1 +

2𝑘𝐻

sinh2𝑘𝐻
).                                                                                                          (35)                                

From (34) we note that the normal wind stress along the undulating surface may sustain the 

wave against dissipation. When 𝑘𝐻 → ∞, the first term on the right-hand side of (34) 

vanishes, and the relation becomes equal to the one obtained by Jenkins (1986) for deep-water 

waves. Negative values of 𝛼, 𝛽 mean wave growth by our definition, and that is possible if the 

normal wind stress amplitude in phase with the wave slope satisfies  

𝛿 >
𝜔

sinh2𝑘𝐻
(𝑘 𝛾) + 2𝜔(𝑘2 𝛾2).⁄⁄                                                                                          (36)      
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In shallow water the first term on the right-hand side of (34) dominates. Without any 

influence from the wind, and purely spatial decay (𝛿 = 𝛽 = 0), we obtain for the spatial 

damping rate that 𝛼 = 𝑘 (4𝛾𝐻)⁄ . For purely temporal decay (𝛿 = 𝛼 = 0), we find 𝛽 =

𝜔 (4𝛾𝐻)⁄ , or 𝛽 = 𝐶𝑔𝛼, since here 𝐶𝑔 = 𝜔 𝑘⁄ . As first pointed out by Gaster (1962), this 

result is generally valid for problems involving weak spatial or temporal amplitude variations.  

 

4. Conservation of mean wave momentum and mean wave energy 

 

       The relation (34) leads to an interesting nonlinear result for the conservation of wave 

momentum. We define the form stress 𝜏𝐷 (often referred to as the form drag) at the surface as      

𝜏𝐷 = −𝜎̃𝑧̃𝑎̅̅ ̅̅ ̅,    𝑐 = 0,                                                                                                               (37)                                                      

where we insert real parts of the normal stress and the surface slope. The over-bar denotes 

averaging over one wave cycle. Utilizing (31), we then find 

𝜏𝐷 𝜌 =
𝜔𝛿

2 tanh𝑘𝐻
𝜂0
2 exp(−2𝛼𝑎 − 2𝛽𝑡⁄ ).                                                                                 (38) 

The Stokes drift 𝑢(𝑆) for this problem can be written (Longuet-Higgins, 1953): 

𝑢(𝑆) =
𝜔𝑘 cosh2𝑘(𝑐+𝐻)

2sinh2𝑘𝐻 
𝜂0
2 exp(−2𝛼𝑎 − 2𝛽𝑡).                                                                         (39) 

The total wave momentum 𝑈(𝑆) per unit density thus becomes  

𝑈(𝑆) = ∫ 𝑢(𝑆)𝑑𝑐 =
𝜔

2 tanh𝑘𝐻

0

−𝐻
𝜂0
2exp(−2𝛼𝑎 − 2𝛽𝑡) = 𝐸 (𝜌𝐶)⁄ ,                                       (40)                                                        

where 𝐸 is the total wave energy (Starr, 1959; Phillips, 1977). From (38) and (40) we find for 

the form stress that    
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𝜏𝐷 = 𝛿𝜌𝑈(𝑆).                                                                                                                          (41)   

      Another fundamental quantity, called the virtual wave stress 𝜏𝑤, appears from the two first 

terms on the right-hand side of (34). Multiplying by 𝜌𝑈(𝑆), we can write the virtual wave 

stress as 

𝜏𝑤 = [
𝜔

sinh2𝑘𝐻
(𝑘 𝛾)⁄ + 2𝜔(𝑘2 𝛾2)⁄ ] 𝜌𝑈(𝑆).                                                                          (42) 

The role of 𝜏𝑤 is to redistribute mean momentum from waves to Eulerian currents when wave 

energy is lost in the dissipation process. This can be seen as follows: For temporally damped 

waves, and no wind, i.e. 𝛼 = 𝛿 = 0, we realize from (34) and (42) that 𝜏𝑤 = 2𝛽𝜌𝑈(𝑆). 

Hence: 

∫ 𝜏𝑤𝑑𝑡
∞

0
= 𝜌𝑈(𝑆)(𝑡 = 0).                                                                                                      (43) 

The right-hand side is the total initial wave momentum, and accordingly, all the mean wave 

momentum is transferred to ocean currents by the action of the virtual wave stress. This was 

first shown by Longuet-Higgins (1969) for deep water waves (𝑘𝐻 ≫ 1). We have here 

demonstrated that this also applies to water of finite depth. 

       Multiplying (34) by 𝑈(𝑆) from (40), and utilizing the results (41) and (42), we obtain: 

𝜕𝑀 𝜕𝑡⁄ + 𝜕(𝐶𝑔𝑀) 𝜕𝑎⁄ = 𝜏𝐷 − 𝜏𝑤,                                                                                        (44) 

where 𝑀 = 𝜌𝑈(𝑆) is the total wave momentum. The relation (44) constitutes a conservation 

equation for the mean wave momentum in a single wave, where 𝐶𝑔𝑀 is the advection of mean 

wave momentum by the group velocity, the form stress 𝜏𝐷 is the momentum flux from the 

atmosphere into the wave field, and the virtual wave stress  𝜏𝑤 is the momentum flux from the 

waves into Eulerian ocean currents.  We note that (44) is a variant of the well-known wave 
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action equation. The spatially two-dimensional (Eulerian) form of (44) is routinely solved by 

numerical wave prediction models; see e.g. Komen et al. (1994). In general, (44) should also 

contain a non-linear wave-wave interaction term that distributes energy between different 

wave components. It vanishes here since we only look at one component, represented by the 

dominant peak of the wave spectrum. However, the wave-wave interaction term is small for a 

saturated sea state, and vanishes when integrated over all wave components; see e.g. Röhrs et 

al. (2012). 

       Utilizing that 𝐸 = 𝐶𝑀, we can write (44) as a wave energy balance: 

𝜕𝐸 𝜕𝑡⁄ + 𝜕(𝐶𝑔𝐸) 𝜕𝑎⁄ = 𝐶𝜏𝐷 − 𝐶𝜏𝑤.                                                                                     (45) 

Here 𝐶𝑔𝐸 is the advection of mean wave energy by the group velocity,  𝐶𝜏𝐷 represents the 

work by the wind on the waves, and  𝐶𝜏𝑤 is the dissipation due to friction in the fluid.  

       The equations (44) and (45) for the conservation of mean wave momentum and mean 

wave energy in a layer of finite depth have been derived by Weber et al. (2008) in the case of 

linear (Rayleigh) friction. The derivation here in Lagrangian form for a Newtonian viscosity 

appears to be novel. 

 

5. The Lagrangian horizontal mean flow and the divergence effect 

 

       The horizontal mean drift velocities are obtained from (11) and (12). To simplify, we 

introduce the complex horizontal mean velocity as 

𝑊 ≡ 𝑥̅𝑡 + 𝑖𝑦̅𝑡.                                                                                                                         (46) 

We then obtain 
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𝑊𝑡 + 𝑖𝑓𝑊 − 𝜈∇𝐿
2𝑊 = −(𝑝̅ 𝜌 + 𝑔𝑧̅)⁄

𝑎
− 𝐽(𝑝̃ 𝜌, 𝑧̃)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅    

                                      −𝜈(2𝑥̃𝑎𝑥̃𝑡𝑎𝑎̅̅ ̅̅ ̅̅ ̅̅ ̅ + 2𝑧̃𝑐𝑥̃𝑡𝑐𝑐̅̅ ̅̅ ̅̅ ̅̅ + 2(𝑧̃𝑎 + 𝑥̃𝑐)𝑥̃𝑡𝑎𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                            (47) 

                                     +𝑥̃𝑡𝑎∇𝐿
2𝑥̃̅̅ ̅̅ ̅̅ ̅̅ ̅ + 𝑥̃𝑡𝑐∇𝐿

2𝑧̃̅̅ ̅̅ ̅̅ ̅̅ ̅),  

where we insert the real parts of  𝑥̃, 𝑧̃, 𝑝 for the primary wave motion on the right-hand side of 

this equation.  

       By averaging over the wave cycle, we realize that for temporally/spatially modulated 

waves, (9) can be fulfilled only when both sides are identically zero. Accordingly, for the 

continuity to second order 

𝑥̅𝑎 + 𝑧𝑐̅ + 𝐽(𝑥̃, 𝑧̃)̅̅ ̅̅ ̅̅ ̅̅ = 0.                                                                                                            (48) 

By integrating in the vertical, utilizing that 𝑧̅(𝑐 = −𝐻) = 0, we obtain from (48) that 

 ℎ(𝐿) ≡ 𝑧̅(𝑐 = 0) = −∫ 𝑥̅𝑎𝑑𝑐
0

−𝐻
− ∫ 𝐽(𝑥̃, 𝑧̃)̅̅ ̅̅ ̅̅ ̅̅0

−𝐻
𝑑𝑐,                                                                 (49) 

where ℎ(𝐿) is the Lagrangian mean displacement of the surface level due to waves. 

       From an order of magnitude estimate, the acceleration and the viscous force can be 

neglected in (13) to second order; see also Weber et al. (2008).  Hence for the mean vertical 

balance to 𝑂(𝜀2): 

(𝑝̅ 𝜌⁄ + 𝑔𝑧̅)𝑐 = −𝐽(𝑥,̃ 𝑝 𝜌)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝑔𝐽(𝑥,̃ 𝑧̃)̅̅ ̅̅ ̅̅ ̅̅ .                                                                                 (50) 

Integrating (50) in the vertical, and using that 𝑝̅(𝑐 = 0) = 0 at the free surface, together with 

(49), we find that 

(𝑝̅ 𝜌⁄ + 𝑔𝑧̅)𝑎 = 𝑔ℎ𝑎
(𝐿) + ∫ {𝐽(𝑥̃, 𝑝 𝜌⁄ )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

𝑎
0

𝑐
+ 𝑔𝐽(𝑥̃, 𝑧̃)̅̅ ̅̅ ̅̅ ̅̅

𝑎}𝑑𝑐′.                                                     (51)  

Applying the potential part (28) of the linear solution, we find for the horizontal mean 

pressure forcing in (47); see also Weber et al. (2008): 
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(𝑝̅ 𝜌⁄ + 𝑔𝑧̅)𝑎 + 𝐽(𝑝̃ 𝜌, 𝑧̃)⁄̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
 
= −𝑔∫ 𝑥̅𝑎𝑎𝑑𝑐

0

−𝐻
  

                                                     +
1

𝐻
(𝐶𝑔 𝐶 − 1 2)𝐶𝑈𝑎

(𝑆)
− 𝑢𝑡

(𝑆).⁄⁄                                               (52) 

Since the total wave energy 𝐸 is given by 𝐸 = 𝐶𝜌𝑈(𝑆) (Starr, 1959; Phillips, 1977), we realize 

that the second term on the right-hand side is equal to the radiation stress component 𝑆22 per 

unit depth for waves along the 1-axis of Longuet-Higgins and Stewart (1960). We note that 

the term proportional to 𝑆22 does not vary in the vertical. Hence a vertically-varying radiation 

stress does not occur as forcing in a pure Lagrangian formulation of the drift problem. This is 

contrary to the results of Mellor (2003, 2005), who applies a coordinate transformation for the 

vertical coordinate and finds vertically-varying radiation stress terms in the equations for the 

mean flow. It should be noted that in deep water, where 𝐶𝑔 = 𝐶 2⁄ , the radiation stress term in 

(52) vanishes identically. 

       Finally, by inserting for the divergence term in (49), we obtain for the Lagrangian mean 

surface elevation that 

ℎ(𝐿) = −∫ 𝑥̅𝑎𝑑𝑐
0

−𝐻
+ 𝑈(𝑆) 𝐶⁄ .                                                                                               (53) 

The nonlinear displacement of the Lagrangian mean water level (53) is different from the 

nonlinear Eulerian mean water level (Longuet-Higgins, 1986, 1988). Denoting the latter 

by ℎ(𝐸), we obtain by integrating the Eulerian continuity equation 𝑢𝑥
(𝐸)
+ 𝑤𝑧

(𝐸)
= 0 in the 

vertical from the bottom to the surface  𝑧 = 𝜂, that 

ℎ𝑡
(𝐸)

= −(∫ 𝑢(𝐸)𝑑𝑧
𝜂

−𝐻

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)
𝑥
≈ −∫ 𝑥̅𝑡𝑎𝑑𝑐

0

−𝐻
,                                                                               (54) 

correct to second order. Hence, by integrating in time, and inserting into (53), we find that 

ℎ(𝐿) = ℎ(𝐸) + 𝑈(𝑆) 𝐶⁄ .                                                                                                            (55) 
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We can compare this result with Longuet-Higgins (1988), who basically used the Bernoulli 

equation to obtain the difference between the Lagrangian and the Eulerian mean surface 

elevation in irrotational inviscid surface waves in water of finite depth. In our notation 

(Longuet-Higgins’ eqn. (3.10)), the difference can be expressed as 

ℎ(𝐿) − ℎ(𝐸) =
1

2𝑔
[𝐶𝑢(𝑆)(𝑐 = 0) + 𝑢̃2̅̅ ̅(𝑐 = −𝐻)].                                                                  (56) 

The Stokes drift is given generally by (39). Accordingly, in (56) we insert for non-damped 

waves at the surface 

𝑢(𝑆)(𝑐 = 0) =
𝜔𝑘 cosh2𝑘𝐻

2sinh2𝑘𝐻 
𝜂0
2.                                                                                                 (57) 

Furthermore, from elementary wave theory (LeBlond and Mysak, 1978): 

𝑢̃2̅̅ ̅(𝑐 = −𝐻) =
𝜔2

2 sinh2𝑘𝐻 
𝜂0
2,                                                                                                  (58) 

where 𝜔 is given by (32). By inserting from (57) and (58) into (56), we find that the right-

hand side becomes 𝑈(𝑆) 𝐶⁄ , and thus we recover our result (55) for finite depth obtained from 

a Lagrangian analysis. The fact that the Lagrangian mean surface level is higher than the 

Eulerian mean level is often referred to as the divergence effect after McIntyre (1988), who 

related this effect in deep water waves to the fact that the continuity equation for the mean 

variables in Lagrangian form is divergent; see (48). For finite depth, the difference between 

the Lagrangian and the Eulerian mean level has been calculated by Ng (2004b) for partially 

standing waves. For progressive waves in an inviscid fluid the Lagrangian mean surface 

elevation has been calculated to third order by Clamond (2007) and Chen et al. (2010). 

       In all our problems with a weakly-damped mean flow, we can safely assume that 

|𝑊𝑐𝑐| ≫ |𝑊𝑎𝑎|. Utilizing (52) and (53), (47) can then be written as 

𝜈𝑊𝑐𝑐 −𝑊𝑡 − 𝑖𝑓𝑊 = 𝑔ℎ𝑎
(𝐿) −

1

𝐻
[𝐶0

2 𝐶⁄ + 𝐶 2 − 𝐶𝑔⁄ ]𝑈𝑎
(𝑆)        

                                       −𝑢𝑡
(𝑆) + 𝜈(𝐹𝑝 + 𝐹𝑏𝑙).                                                                            (59)                                        
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Here 𝐹𝑝 denotes the nonlinear wave interaction terms from the potential part of the wave 

solution, and 𝐹𝑏𝑙 the viscous boundary-layer terms. These terms will be specified in the 

various examples that follow. Furthermore, 𝐶0 = (𝑔𝐻)
1/2 is the shallow-water wave speed in 

a non-rotating ocean. 

 

6. Surface waves in deep water 

 

       When  𝑘𝐻 ≫ 1, we have surface waves in deep water, and the drift problem is 

considerably simplified. In this case the Stokes drift (39) becomes 

𝑢(𝑆) = 𝑢0 exp(2𝑘𝑐 − 2𝛼𝑎 − 2𝛽𝑡),                                                                                        (60) 

where 

𝑢0 = 𝜂0
2𝜔𝑘.                                                                                                                             (61) 

 

6.1. Permanent waves 

 

       We here consider waves that propagate with constant amplitude, i.e. 𝛼 = 𝛽 = 0 in (34), 

and hence 𝛿 = 2𝜔 𝑘2 𝛾2⁄ . In this case we assume that the waves are so long that we safely 

can neglect the effect of surface films. Taking that  𝜂 = 𝜂0 sin(𝑘𝑎 − 𝜔𝑡) for the permanent 

wave, we obtain from (31) for the fluctuating normal stress (Weber, 1983b): 

𝜎̃ = −4𝜌𝜈𝜂0𝜔𝑘 cos(𝑘𝑎 − 𝜔𝑡),    𝑐 = 0,                                                                                (62) 

i.e. maximum negative wind stress where the wave slope has its largest positive value (at the 

rear of the crest). Here the vertical wave velocity is negative, so the external force and the 

displacement is in the same direction, which yields a positive energy input to the waves (it is 
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the same in the front, where both contributions are positive). The form stress (38) in this case 

is positive, and given by 𝜏𝐷 = 2𝜌𝜈𝜂0
2𝜔𝑘2. 

       Equation (59) for the steady mean flow now reduces to (Weber, 1983b): 

𝜈𝑊𝑐𝑐 − 𝑖𝑓𝑊 = 𝜈𝑘2𝑢0 [4exp (2𝑘𝑐) − 4
𝛾

𝑘
exp (𝛾𝑐)(cos 𝛾𝑐 − sin 𝛾𝑐)].                                  (63) 

Here 𝛾 is the large parameter defined by (23). We take that the wind is directed along the 

waves (𝜏̃2 = 𝜏2̅ = 0). By assuming a constant mean wind stress 𝜏1̅ = 𝜏 in the 𝑋-direction, the 

boundary conditions become from (15): 

𝑊𝑐 = −2𝑘𝑢0 + 𝑇,   𝑐 = 0,                                                                                                      (64) 

where 𝑇 = 𝜏 (𝜌⁄ 𝜈). In the deep ocean we require  

𝑊 → 0,    𝑐 → −∞.                                                                                                                 (65)                              

       If we neglect the effect of the earth’s rotation, we note that the first term on the right-hand 

side of (63) yields the classic Stokes drift (60) for deep water. We also recall that in the 

absence of wind-forcing, we must have 𝑊𝑐 = 0 at the free surface (Longuet-Higgins, 1953). 

The first term on the right-hand side of (64) is due to the presence of the undulating normal 

stress (62) at the moving surface (Weber, 1983b). We note that the second term in (64), 

together with the homogeneous part of (63), yields the classic Ekman solution 𝑊(𝑇) for an 

infinitely deep ocean, where the surface current is directed 45 degrees to the right of the wind 

in the northern hemisphere. We can write the solution of (63): 

𝑊 = 𝑊(𝑇) +𝑊(𝑤),                                                                                                                (66) 

where the wave-induced part of the solution is denoted by 𝑊(𝑤). Introducing the Ekman 

depth  𝐷 = (2𝜈 𝑓)⁄ 1/2
, the Stokes depth 𝐿 = 1 (2𝑘)⁄ , and the friction velocity in the water 

𝑢∗ = (𝜏 𝜌⁄ )1/2, the well-known Ekman solution becomes 

𝑊(𝑇) =
2

(1+𝑖)𝑓𝐷
𝑢∗
2exp ((1 + 𝑖)𝑐 𝐷),⁄                                                                                       (67) 

while the wave-induced part of the drift solution can be written 
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𝑊(𝑤) = 𝑢0[𝑞exp (𝑐 𝐿)⁄ +
𝐷

(1+𝑖)𝐿
(1 − 𝑞)exp ((1 + 𝑖)𝑐 𝐷)⁄   

              −2𝑘𝛾−1 exp(𝛾𝑐) (cos 𝛾𝑐 + sin 𝛾𝑐)].                                                                       (68)    

Here 𝑞 = 1 (1 − 2𝑖 𝐿2 𝐷2)⁄⁄ . Taking  𝜈 = 5 × 10−2 m2 s−1 , which is a reasonable bulk 

value for the turbulent surface layer, and 𝑓 = 1.2 × 10−4 s−1, we have in Fig. 1 plotted the 

dimensionless wave drift current 𝑊(𝑤) 𝑢0⁄  from (68) as function of dimensionless depth 𝑐 𝐿⁄ , 

when 𝜆 = 2𝜋 𝑘⁄ = 100 m. In this problem 𝐿 𝐷⁄ = 0.28. 

(Figure 1) 

We note from the figure that the effect of the Coriolis force reduces the wave drift at the 

surface, and causes a veering to the right. The deflection angle to the right of the wave 

propagation direction in this example is about 13 degrees, and the magnitude of surface 

current is 0.72 𝑢0. The non-dimensional vertical gradient (𝐿 𝑢0)⁄ 𝜕𝑢(𝑤) 𝜕𝑐⁄  at the surface is 

given by −1 from (64), but this is not well resolved in the plot. 

       Relating the wind speed 𝑈10 at 10 m height to the wave field, using that the phase speed 

𝐶 of the dominant component in the surface wave spectrum approximately satisfies 𝐶~𝑈10 

(Phillips, 1977), and applying a realistic model for the bulk eddy viscosity in the surface layer 

caused by wind, it is found that the magnitudes of surface Ekman current (67) and the wave-

induced drift current (68) are of the same order of magnitude (Weber, 1983b). 

 

6.2. Temporally attenuated waves 

  

      As mentioned in Section 1, we can write the Lagrangian mean drift 𝑢 = 𝑥̅𝑡 in periodic 

wave motion with weak viscosity as the sum of the Stokes drift 𝑢(𝑆), and an Eulerian mean 

current caused by the effect of friction (Longuet-Higgins, 1953). It is convenient to separate 

the Eulerian mean current into two parts; one part 𝑢(𝑣) which is confined to a very thin 
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vorticity boundary layer near the surface, and one quasi-Eulerian part 𝑢(𝐸) which diffuses 

downward from the surface and modifies the drift current in the interior (Jenkins, 1986). For 

the complex drift velocity in a rotating ocean we can write: 

𝑊 = 𝑊(𝑆) +𝑊(𝐸) +𝑊(𝑣).                                                                                                    (69) 

       For temporally damped gravity waves and constant eddy viscosity, (59) reduces to 

(Weber, 1983a): 

𝜈𝑊𝑐𝑐 −𝑊𝑡 − 𝑖𝑓𝑊 = 𝜈𝑢0𝑘
2[8 exp(2𝑘𝑐))  

                               −4𝛾𝑘−1exp (𝛾𝑐)(cos 𝛾𝑐 − sin 𝛾𝑐)]exp (−2𝛽𝑡).                                     (70)                   

Here, from (34) with 𝛿 = 𝛼 = 0, we have 𝛽 = 2𝜈𝑘2 = 𝜔𝑘2 𝛾2⁄  (Lamb,1932). The boundary 

conditions are:  

𝑊𝑐 = 0, 𝑐 = 0     
𝑊 = 0, 𝑐 → −∞

}                                                                                                                  (71) 

The initial condition of the mean drift problem is not so obvious, since the motion is not 

started from rest. Stokes’ classic solution for the wave drift is derived from the irrotational 

wave field. When the wave field is established, a Stokes drift instantaneously results. The 

effects on the mean mass transport induced by viscosity and the earth’s rotation manifest 

themselves on a much longer time scale. Therefore, we take that the mass transport velocity 

initially coincides with the Stokes drift, i.e. 

𝑊(𝑡 = 0) = 𝑢0exp (2𝑘𝑐) .                                                                                                     (72) 

By definition we take that in (69) 

𝑊(𝑆) = 𝑢0exp (2𝑘𝑐 − 2𝛽𝑡).                                                                                                   (73) 

Then from (70): 

𝑊(𝑣) = −𝑢0[2𝑘𝛾
−1exp (𝛾𝑐)(cos 𝛾𝑐 + sin 𝛾𝑐)]exp (−2𝛽𝑡) .                                               (74) 

Finally,  𝑊(𝐸) is the solution of  
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𝜈𝑊𝑐𝑐
(𝐸)
−𝑊𝑡

(𝐸) − 𝑖𝑓𝑊(𝐸) = 𝑖𝑓𝑊(𝑆) = 𝑖𝑓𝑢0 exp(2𝑘𝑐 − 2𝛽𝑡).                                             (75) 

From (71) the surface boundary condition for 𝑊(𝐸) becomes 

 𝑊𝑐
(𝐸)

= 2𝑘𝑢0exp (−2𝛽𝑡), 𝑐 = 0.                                                                                         (76) 

       As explained earlier, Longuet-Higgins (1969) introduced the concept of virtual wave 

stress in a non-rotating infinitely deep fluid in order to explain the transfer of mean 

momentum from decaying waves to Eulerian drift currents. In a rotating deep ocean we can 

write for the virtual wave stress (Weber and Førland, 1990): 

𝜏𝑤 = 𝜌𝜈𝑊𝑐
(𝐸)(𝑐 = 0).                                                                                                            (77) 

From (77) we find that 𝜏𝑤 = 2𝜌𝜈𝑘𝑢0exp (−2𝛽𝑡) , which conforms to the result (42) in the 

short wave limit 𝑘𝐻 ≫ 1. We note from (77) that 𝜏𝑤 acts as a boundary forcing for the quasi-

Eulerian flow, quite like a time-decaying wind stress in the Ekman case, but now related to 

the wave field. The virtual wave stress in this case gives rise to a forward drift accompanied 

by damped inertial oscillation in the fluid (Weber, 1983a), as will be demonstrated below. 

       Neglecting the small vorticity-layer solution in the initial condition (72), we obtain for the 

quasi-Eulerian flow: 

𝑊(𝐸)(𝑡 = 0) = 0.                                                                                                                   (78) 

From (75), (76) and (78), utilizing that 𝑊(𝐸) must vanish for 𝑐 → −∞, we obtain by Laplace 

transforms that 

𝑊(𝐸) 𝑢0⁄ = −(1 − 𝑞̂) exp(2𝑘𝑐 − 2𝛽𝑡)      

                      +2𝑘𝜈1 2⁄ (2 − 𝑞̂)exp (−2𝛽𝑡) ∫
exp{(2𝛽−𝑖𝑓)𝜉−𝑐2 (4𝜈𝜉)}⁄

(𝜋𝜉)1 2⁄

𝑡

0
𝑑𝜉                                   (79) 

                       +2𝑘𝜈1 2⁄ (1 − 𝑞̂) exp(−𝑖𝑓𝑡) ∫
exp(−𝜉𝑡) cos(𝑐𝜉1 2⁄ 𝜈1 2⁄ )⁄

𝜋𝜉1 2⁄ (𝜉+4𝑘2𝜈)

∞

0
𝑑𝜉.      
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Here 𝑞̂ = 1 (1 − 𝑖𝐿2 𝐷2)⁄⁄  (Weber, 1998).  In Fig. 2 we have displayed the surface hodograph 

of the non-dimensional Lagrangian mean drift current  𝑊 = 𝑊(𝑆) +𝑊(𝐸), scaled by 𝑢0. The 

vorticity-layer part (74) is here negligibly small. The waves propagate along the 𝑥-axis with 

𝜆 = 100 m, and we have taken that 𝑓 = 10−4s−1.    

(Figure 2) 

We infer from Fig. 2 that we have a net wave-induced displacement of particles to the right of 

the of the wave propagation direction for a viscous fluid, accompanied by damped inertial 

oscillations; see also Weber (1983a). The inertial period in this example is  𝑇𝑖 = 2𝜋 𝑓⁄ =

17.5 h. We note from the figure that after about 5 inertial periods, only inertial oscillations 

prevail. At that time a single particle has travelled about 4.2 inertial radii (= 𝑢0 𝑓⁄ ) from the 

origin, and the smoothed trajectory is deflected a little less than 40 degrees to the right of the 

wave propagation direction. It is worth remarking the fundamental difference between 

solutions obtained with 𝜈 = 0 (blue circle) and with 𝜈 ≠ 0 (red curve). 

 

6.3. Effect of a vertically-varying eddy viscosity 

 

       In the oceanic upper layer the turbulent mixing varies in the vertical direction; basically 

increasing downwards from the surface. In Weber and Melsom (1993) the linear wave field 

was subject to a small constant eddy viscosity 𝜈0, while the eddy viscosity that redistributes 

the mean momentum was, by analogy with the classic result for turbulent flow over a flat 

plate, taken to vary linearly with depth (Madsen, 1977). The eddy diffusivity for the mean 

flow can then be written 

𝜈 = 𝜈0 − 𝜅𝐾𝑢∗𝑐,                                                                                                                     (80) 
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where  𝜅𝐾 is Von Kármán’s constant )4.0(  and 𝑢∗ = (𝜏 𝜌⁄ )1/2 is the friction velocity in the 

water. This is a reasonable assumption when the Stokes depth 𝐿 = 1 (2𝑘)⁄  is smaller than the 

mixed-layer thickness at the surface, which is usually the case for wind-generated surface 

waves. The equation for the quasi-Eulerian part of the solution then becomes (Weber and 

Melsom, 1993): 

𝜈𝑊𝑐𝑐
(𝐸) − 𝜅𝐾𝑢∗𝑊𝑐

(𝐸) −𝑊𝑡
(𝐸) − 𝑖𝑓𝑊(𝐸) = 𝑢0[2𝑘𝜅𝐾𝑢∗(2𝑘𝑐 + 1)  

                                                                  +𝑖𝑓]exp (2𝑘𝑐 − 2𝛽𝑡).                                          (81)  

The surface boundary condition becomes 

𝑊𝑐
(𝐸)

= 2𝑘𝑢0exp (−2𝛽𝑡),   𝑐 = 0,                                                                                         (82) 

while 

𝑊(𝐸) → 0, 𝑐 → −∞.                                                                                                               (83) 

       The importance of turbulent wind stress on wave growth is pointed out among others by 

Chalikov and Makin (1990). For turbulent air flow above the waves, the temporal wave 

growth rate can be obtained from the asymptotic analyses by Knight (1977) and Jacobs 

(1987). In our notation Knight’s result can be written: 

𝛽 𝜔⁄ = 𝜅𝐾𝑢∗𝑠
1 2⁄ (𝐶 − 𝑈𝑤𝑖𝑛𝑑) 𝐶

2 + 𝑘2 𝛾2⁄⁄ ,                                                                        (84) 

where 𝑠 = 𝜌𝑎𝑖𝑟 𝜌⁄  is the density of air 𝜌𝑎𝑖𝑟 relative to that of water, and  𝑈𝑤𝑖𝑛𝑑  is the wind 

speed at height 1 𝑘⁄  above the water. We note that the last term on the right-hand side of (84) 

is the previous result for deep water waves (swell) propagating in calm conditions. We notice 

that for adverse winds (𝑈𝑤𝑖𝑛𝑑 < 0), the damping rate can increase considerably. 

       As an example we take that the waves are traveling against the wind. For a wavelength 
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𝜆 = 100 m, and a friction velocity  𝑢∗ = 0.016 m s
−1 (adverse wind speed 𝑈10 of about 

12 m s−1), we find   𝛽 = 3 × 10−5 s−1 (Weber and Melsom, 1993). From Bye (1988) the 

small “background” eddy viscosity is estimated as 𝜈0 = 1.4 𝜅𝐾𝑢∗
3 (𝑠𝑔)⁄ . Taking the initial 

wave amplitude 𝜂0 = 1 m, (81) was solved numerically, subject to (82), (83), and the initial 

condition (78). In Fig. 3 we have displayed the wave-induced current  𝑊(𝑤) = 𝑊(𝑆) +𝑊(𝐸), 

where 𝑊(𝑆) is given by (73). The result is non-dimensionalized by the friction velocity. 

(Figure 3) 

We note from the figure that a depth-dependent eddy viscosity promotes a more rapid 

decrease of the surface current with time (solid line), as well as leading to a stronger 

suppression of the inertial part of the mean motion. Also, we find that that the surface current 

is more aligned along the wave propagation direction (upward in the plot) than for constant 

eddy viscosity. In the same way, an eddy viscosity that increases with depth causes the wind-

driven Ekman surface current to be aligned closer to the wind direction (Madsen, 1977; 

Jenkins, 1987; Weber and Melsom, 1993). 

 

6.4. Spatially attenuated waves 

 

       We note from (77) that the virtual wave stress is decaying in time for temporally damped 

waves. Hence the quasi-Eulerian current will finally vanish, as seen in Figs. 2 and 3. This 

alters when we have spatially damped waves. Such waves may for example occur when we 

operate a wave maker at the end of a laboratory tank, generating frequency-forced waves. 

Now, at every position down the tank, the virtual wave stress is independent of time, 

promoting a drift current that increases in time. Using the sub-division (69) of the Lagrangian 

mean velocity, and neglecting the Coriolis force as well as the effect of air above the water, 



 

30 

 

the virtual wave stress relevant for wave tank experiments can be written (Weber, 2001): 

𝜏𝑤 = 𝜌𝜈𝑢𝑐
(𝐸)(𝑐 = 0) = 2𝜌𝜈𝑘𝑢0exp (−2𝛼𝑎),                                                                        (85) 

where 𝛼 = 4𝑘3𝜈 𝜔⁄  (Jenkins, 1986).  In this case the Lagrangian mean drift solution at the 

surface becomes 

𝑢(𝑐 = 0) = 𝑢0 [1 + 4(𝜈𝑘
2𝑡 𝜋)⁄

1/2
] exp (−2𝛼𝑎).                                                                 (86) 

We thus notice that for 𝑡 > 0, the Lagrangian surface drift always will be larger than the 

Stokes drift at the surface.  With 𝜏𝐷 = 𝛽 = 0, we find from (42) for spatially-decaying short 

gravity waves that 

𝜏𝑤 = −(𝐶𝑔𝑀)𝑎
,                                                                                                                     (87) 

where 𝐶𝑔 is the group velocity, and 𝑀 =
1

2
𝜌𝜔𝜂0

2exp (−2𝛼𝑎) is the mean wave momentum for 

this problem. Here the term (𝐶𝑔𝑀)𝑎
 is recognized as the nonzero component of the 

divergence of the radiation stress tensor of Longuet-Higgins and Stewart (1960) in deep 

water, now in Lagrangian coordinates. 

 

7. Effect of surface films on drift in water waves 

  

       It is well known that surface films of biogenic origin may cover large areas of the ocean 

surface (Gade et al., 2006). In addition to these natural films, we find pollutant organic slicks 

from petroleum spills or municipal effluents. Such films resist the formation of wind-

generated capillary waves, and also strongly enhance the attenuation of short gravity waves 

(Dorrestein, 1951). In the presence of surface films, the virtual wave stress is greatly 

enhanced, leading to Eulerian mean currents that become stronger than the Stokes drift in a 

relatively short time interval; see e.g. Weber and Førland (1989), Weber and Saetra (1995), 

Christensen and Weber (2005a). The large increase in surface drift in the presence of an 
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inextensible film was originally demonstrated by Craik (1982) from vorticity considerations. 

       Floating layers of finite thickness may also appear at the ocean surface. The wave 

damping in such cases has been studied among others by Jenkins and Jacobs (1997), Jenkins 

and Dysthe (1997) and De Carolis et al. (2005). 

        We here consider the effect of a thin (monomolecular) elastic film. The surface tension     

𝑆 depends on the concentration of surfactant 𝛤 in the film, which is assumed to vary slightly 

around an equilibrium value 𝛤0. For the linear motion we may write 𝑆 = 𝑆0 + 𝑆̃  , where 

𝑆0 = 𝑆(𝛤0). The boundary condition for the linear problem, including the effect of surface 

tension, can be written (Weber and Saetra, 1995): 

𝜏̃1 = 𝜌𝜈(𝑥̃𝑡𝑐 + 𝑧̃𝑡𝑎) − 𝑆̃𝑎       
𝜎̃ = −𝑝 + 2𝜌𝜈𝑧̃𝑡𝑐 − 𝑆0𝑧̃𝑎𝑎    

𝑆̃ = 𝜌𝐸∗𝑥̃𝑎                                 

} ,   𝑐 = 0.                                                                                 (88) 

Here 𝐸∗ is the surface dilational modulus per unit density; see Lucassen (1968).  

       For waves in the absence of wind (𝜏̃1 = 𝜎̃ = 0) in (88), the extreme case 𝐸∗ → ∞ 

corresponds to the inextensible film limit (Lamb, 1932). In that case the dynamic boundary 

condition in the horizontal direction reduces to 𝑥̃ = 0 at the film-covered surface. 

Accordingly, to first order, the film only moves vertically in the inextensible limit. However, 

for a freely floating film, the wave-induced horizontal second-order Lagrangian velocity at the 

surface (and the horizontal motion of the film) will be different from zero. Again, writing the 

Lagrangian mean flow as  𝑢 = 𝑥̅𝑡 , the governing equation in the inextensible limit becomes 

(Christensen and Weber, 2005a): 

𝜈𝑢𝑐𝑐 − 𝑢𝑡 = 𝜈𝑘
2𝑢0[4exp (2𝑘𝑐) + 𝛾

2𝑘−2{3 exp(2𝛾𝑐)  

                    +4exp(𝛾𝑐) sin 𝛾𝑐}]exp (−2𝛼𝑎),                                                                       (89)   

where now 𝛼 = 𝑘2 (2𝛾)⁄ . This equation (including the effect of the earth’s rotation) was 

actually first derived by Weber (1987) for wave-induced flow under grease ice in the marginal 
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ice zone, but it also applies to cases where the surface is covered by a thin inextensible film. 

       If the film (with negligible mass) can move freely along the surface, it can be shown that 

(Weber and Førland, 1989): 

𝑢𝑐 = 0, 𝑐 = 0.                                                                                                                        (90) 

Again, we subdivide the solution as in (69), where the Stokes drift is given by (60) with 

𝛽 = 0. The vorticity-layer solution becomes 

𝑢(𝑣) = 𝑢0 [
3

4
exp (2𝛾𝑐) − 2exp (𝛾𝑐) cos 𝛾𝑐] exp (−2𝛼𝑎).                                                      (91) 

Hence we find for the virtual wave stress in this case 

𝜏𝑤 = 𝜌𝜈𝑢𝑐
(𝐸)(𝑐 = 0) =

1

2
𝜌𝜈𝛾𝑢0exp (−2𝛼𝑎).                                                                        (92) 

By comparing with the free surface case, e.g. (85), we note that 𝜏𝑤 in (92) is 𝛾 𝑘⁄  times larger 

than for a free surface. Since 𝛾 𝑘⁄ ≫ 1,  and 𝜏𝑤 is independent of time, the increase of the 

quasi-Eulerian drift current 𝑢(𝐸) with time will be quite rapid. In consequence, the Lagrangian 

drift velocity very soon becomes (much) larger than the Stokes drift. This theory has been 

applied to calculate the transient wave-induced drift of floating plastic sheets (Christensen and 

Weber, 2005a), and the fit with laboratory wave tank measurements (Law, 1999) is very 

good. The same theory can be used for determining the drift of large, flexible floating objects 

(Christensen and Weber, 2005b). In this paper results are obtained for constant as well as  

vertically-varying eddy viscosity. 

       One would intuitively think that the presence of an inextensible surface film should 

maximize the damping rate of capillary-gravity waves. However, this is not the case. When 

we have a film with a finite value of 𝐸∗, we can have nearly-critically damped longitudinal 

dilational waves in the film. They will act as a sink of energy, enhancing the damping of the 
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capillary-gravity wave (Dorrestein, 1951). 

       We consider the effect of elastic films for temporally damped waves. With 𝜏̃1 = 𝜎̃ = 0, 

i.e. disregarding the viscous effect of air, the frequency in this problem is 

𝜔2 = 𝑔𝑘 + 𝑆∗𝑘
3,                                                                                                                    (93) 

where 𝑆∗ = 𝑆(𝛤0) 𝜌⁄ . For an inextensible film we find for the temporal damping rate 𝛽𝑖 =

𝜔𝑘 (4𝛾)⁄  (Lamb, 1932). Defining the non-dimensional parameter  

𝐴∗ = 𝛾𝑘2𝐸∗ 𝜔
2⁄ ,                                                                                                                     (94) 

we can write for the damping rate for an elastic film (Dorrestein, 1951): 

𝛽 𝛽𝑖 = 2𝐴∗
2 (1 − 2𝐴∗ + 2𝐴∗

2)⁄⁄ .                                                                                             (95) 

We note that (𝛽 𝛽𝑖)⁄
𝑚𝑎𝑥

= 2 for 𝐴∗ = 1, i.e. the damping is twice that of an inextensible film. 

This often referred to as the Marangoni effect, because the physics behind it is related to the 

existence of longitudinal elastic waves in the film (dilational waves), often referred to as 

Marangoni waves (Lucassen, 1968). When  𝐴∗ = 1, the frequency of temporally damped 

Marangoni waves 𝜔𝑀 is 𝜔𝑀 = 1.09𝜔, so maximum damping occurs when the frequency of 

free Marangoni waves nearly coincide with the frequency of transverse capillary-gravity 

waves (Dysthe and Rabin, 1986). This is often referred to as “negative resonance” as the 

nearly critically-damped Marangoni waves here act as a sink of energy for the capillary-

gravity wave. Christensen (2005) demonstrates that in this case (𝐴∗ = 1), the film and the 

viscous boundary layer oscillates as an elastic membrane with the frequency Ω =

(𝐸∗
2𝑘4 (2𝜈))⁄

1/3
, which is  the frequency of forced non-damped dilational waves (Weber and 

Christensen, 2003). 

        The nonlinear wave drift in the elastic case is governed by (Weber and Saetra, 1995): 
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𝜈𝑢𝑐𝑐 − 𝑢𝑡 = 𝜈𝑘
2𝑢0[4(1 + 𝛽𝛾

2 (𝜔𝑘2)⁄ ) exp(2𝑘𝑐))  

                      −4𝛾3𝑘−3{(𝐵𝑟 + 𝐵𝑖) cos 𝛾𝑐 − (𝐵𝑟 − 𝐵𝑖) sin 𝛾𝑐} exp(𝛾𝑐))                               (96) 

                    +6𝛾4𝑘−4(𝐵𝑟
2 + 𝐵𝑖

2)exp (2𝛾𝑐)]exp (−2𝛽𝑡).                          

Here 𝐵𝑟 and 𝐵𝑖 are the real and imaginary parts of the complex coefficient 

𝐵∗ =
𝑘

𝛾
(
𝑘 𝛾⁄ +𝑖𝐴∗

1−(1−𝑖)𝐴∗
).                                                                                                                  (97) 

The boundary conditions become 

𝑢𝑐 = 3𝑘𝑢0[1 − 𝛾𝑘
−1(𝐵𝑟 − 𝐵𝑖) − 𝛾

2𝑘−2𝐵𝑟  

         +𝛾3𝑘−3(𝐵𝑟
2 + 𝐵𝑖

2)]exp (−2𝛽𝑡),   𝑐 = 0,                                                                       (98)         

𝑢 → 0, 𝑐 → −∞.                                                                                                                    (99) 

Again, we subdivide the solution 𝑢 = 𝑢(𝑆) + 𝑢(𝑣) + 𝑢(𝐸), where, as before, 𝑢(𝑆) =

𝑢0 exp(2𝑘𝑐 − 2𝛽𝑡). The vorticity-layer solution  𝑢(𝑣) is easily obtained from (96), leading to 

a diffusion problem for the quasi-Eulerian current: 

𝜈𝑢𝑐𝑐
(𝐸)
− 𝑢𝑡

(𝐸) = 0,                                                                                                                 (100) 

subject to 

𝑢𝑐
(𝐸)

= 𝑘𝑢0(1 − 3𝛾𝑘
−1(𝐵𝑟 − 𝐵𝑖) + 𝛾

2𝑘−2𝐵𝑟)exp (−2𝛽𝑡), 𝑐 = 0,                                    (101) 

and  

 𝑢(𝐸) → 0, 𝑐 → −∞.                                                                                                             (102) 
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In essence, the quasi-Eulerian momentum is induced to compensate for the loss of momentum 

in the decaying Stokes drift. Again, this is achieved by the action of the virtual wave stress, 

defined by (77). In this case we find from (101): 

𝜏𝑤 𝜌 = 𝜈𝑢𝑐
(𝐸)

=
𝜔

2𝛾
𝑢0 (

𝐴∗
2

1−2𝐴∗+2𝐴∗
2) exp (−2𝛽𝑡), 𝑐 = 0.⁄                                                      (103) 

We note that 𝜏𝑤 has a maximum for 𝐴∗ = 1, i.e. when negative resonance occurs. This means 

that for small times the growth of 𝑢(𝐸) is quite rapid, while for larger times the effect of 

maximum damping for this value of 𝐴∗ becomes increasingly important. Accordingly, for the 

time dependence, there will be a tendency toward a more pronounced peak for 𝑢(𝐸) when 𝐴∗ 

is near 1 than for values of 𝐴∗ that are different from this resonance value. This is obvious 

from Fig. 4, where we have plotted the surface value of 𝑈 = 𝑢(𝐸) 𝑢0⁄  for various values of  

𝐴∗. The solution is obtained from Laplace transforms of (100)-(102), using the approximate 

initial condition 𝑢(𝐸)(𝑡 = 0) = 0. 

(Figure 4) 

       Another interesting effect of the elasticity is related to the variation of the mean drift 

current with depth. By inspecting the right-hand side of (96), we can show, without solving 

the equation, that the drift velocity has a maximum below the surface when  𝐴∗ > 2 3⁄  

(Weber and Saetra, 1995). From the definition (94) this happens when 

𝐸∗ > 2𝐶2 (3𝛾)⁄ .                                                                                                               (104) 

       In the problem discussed here, longitudinal dilational waves extracts energy from short 

transverse capillary-gravity waves. For a purely horizontal elastic film, only dilational waves 

prevail. By using a Lagrangian formalism, the nonlinear drift in such waves has been 

investigated by Weber and Christensen (2003) when the film is situated at the interface 

between two viscous fluids. The linear problem yields a new dispersion relation for dilational 
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(Marangoni) waves. When an oscillating stress in the upper fluids acts to prevent wave 

damping in a fixed (non-moving) film, the mean drift in the lower fluid caused by non-

damped dilational waves is purely negative, i.e. in the opposite direction of the wave 

propagation direction. 

        

8. Roll motion in short-crested surface waves 

 

       Craik and Leibovich (1976) developed a theory to explain the existence of Langmuir 

circulations (horizontal rolls in the ocean surface layer; Langmuir, 1938) based on the 

nonlinear interaction between a horizontally undulating Stokes drift and a unidirectional shear 

current (the CL1 mechanism; Faller and Caponi, 1978). Since the Stokes drift (second order 

in wave steepness) and the shear current are assumed to be of the same order of magnitude, 

this is actually a fourth order theory. It is not the intention here to discuss the various theories 

of Langmuir circulations. We only point out that by taking the effect of viscosity into account, 

the bimodal wave spectrum needed to sustain the CL1 mechanism does by itself produce 

second order horizontal mean vorticity through wave-wave interactions. This vorticity induces 

roll motion in the wave propagation direction; see e.g. Weber (1985).        

       A short outline of this problem is as follows: The 𝑋-axis is still the main propagation 

direction, but now we have two monochromatic waves propagating at oblique angles to each 

other. The wave number is 𝑘 in the 𝑋-direction and  𝑙, −𝑙, respectively,  in the 𝑌-direction. 

The frequency for gravity waves in deep water now becomes 

𝜔 = (𝑔𝐾)1/2,                                                                                                                       (105) 

where 𝐾 = (𝑘2 + 𝑙2)1/2 is the overall wave number. The wave trains here propagate with 

constant (and equal) amplitude 𝜂0, and the expansion parameter in this case is 

𝜀 = 𝜔𝜂0 𝐾⁄ .                                                                                                           (106) 
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The results for permanent waves in sub-section 6.1, with an external oscillating vertical stress 

at the surface, are readily generalized (with a little more algebra) to the horizontally two-

dimensional case. The sea surface now exhibits a three-dimensional pattern of short-crested 

waves. Averaging in the 𝑋-direction, and defining the Lagrangian mean drift velocity 

components 𝑢 = 𝑥̅𝑡,  𝑣 = 𝑦̅𝑡, 𝑤 = 𝑧𝑡̅, we obtain for the mean drift problem (Weber, 1985): 

𝜈∇𝐿
2𝑢 + 𝑓𝑣 − 𝑢𝑡 = 8𝜈𝜂0

2𝜔𝑘𝐾−2[(𝐾4 + 𝑘4cos2𝑙𝑏) exp(2𝐾𝑐))  

                              −𝐾𝛾(𝐾2 + 𝑘2cos2𝑙𝑏)exp (𝛾𝑐)(cos𝛾𝑐 − sin𝛾𝑐)],                                 (107)                                                                                                                                                               

𝜈∇𝐿
2𝑣 − 𝑓𝑢 − 𝑣𝑡 − 𝛱𝑏 = 2𝜂0

2𝜔2𝑙𝐾−2[𝑘2 exp(2𝐾𝑐))  

                                        −𝐾3𝛾−1exp (𝛾𝑐)(sin𝛾𝑐 + cos𝛾𝑐)]sin2𝑙𝑏,                                   (108)                                                                                               

𝜈∇𝐿
2𝑤 −𝑤𝑡 −𝛱𝑐 = −2𝜂0

2𝜔2𝐾−1[(𝐾2 + 𝑘2cos2𝑙𝑏) exp(2𝐾𝑐))  

                                 −(𝐾2 + (𝑘2 − 𝑙2)cos2𝑙𝑏)exp (𝛾𝑐)cos𝛾𝑐],                                         (109) 

𝑣𝑏 + 𝑤𝑐 = 0.                                                                                                                         (110) 

Here 𝛱 = 𝑝̅ 𝜌 + 𝑔𝑧̅⁄ , and now ∇𝐿
2= 𝜕2 𝜕𝑏2 + 𝜕2 𝜕𝑐2⁄⁄ . We have here disregarded any mean 

pressure gradients in the 𝑋-direction. By utilizing (110), we can introduce a stream function 𝜓 

such that 𝑣 = −𝜓𝑐, 𝑤 = 𝜓𝑏. Neglecting the effect of the Coriolis force, the steady solution 

which describes roll motion in a plane perpendicular to the main wave propagation, can be 

written 

𝜓 = 𝜂0
2𝜔𝐾𝛾−1[4𝑙3𝐾−2𝛾−1{(1 − 𝑙𝑐) exp(2𝑙𝑐)  

       −exp(𝛾𝑐) cos𝛾𝑐} − 𝐾𝑐exp (2𝑙𝑐)]sin2𝑙𝑏.                                                                     (111)                         

A conceptual sketch of the primary wave field and the mean circulation in the cross-wave 

plane is depicted in Fig. 5. 
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(Figure 5) 

In Fig. 6 we have plotted the streamlines from the dimensionless stream function 

 𝜓∗ = 𝜓𝛾 (𝜂0
2𝜔𝐾)⁄  as function of the dimensionless coordinates 𝑦∗ = 2𝑙𝑏 and 𝑧∗ = 2𝑙𝑐. For 

the physical parameters we have taken 𝜂0 = 2 m, 𝜈 = 10−2 m2s−1 , 𝜆 = 2𝜋 𝐾⁄ = 30 m, and 

𝑘 𝑙 = 31/2⁄ . 

(Figure 6) 

The maximum upwelling/downwelling velocities occur at the boundaries between the rolls in 

this problem. For the present choice of parameters we have maximum velocities 

|𝑤|~1 cm s−1 at a depth of about 1 3⁄  of the cell width. 

      The horizontal mean drift velocity can be written as 

𝑢 = 2𝜂0
2𝜔𝑘[exp (2𝐾𝑐) + {𝑘2𝐾−2 exp(2𝐾𝑐)  

       −𝑙𝐾−1 exp(2𝑙𝑐)} cos2𝑙𝑏                                                                                               (112) 

       −2𝐾𝛾−1exp (𝛾𝑐)(cos𝛾𝑐 + sin𝛾𝑐)(1 + 𝑘2𝐾−2cos2𝑙𝑏)]  

       +𝑂(𝐾2𝛾−2).                                                                                                                                                                                 

At the surface, neglecting small terms, we find from (112) that 

𝑢(𝑐 = 0) = 2𝜂0
2𝜔𝑘[1 + (cos2𝜃 − sin𝜃)cos𝑦∗],                                                                 (113) 

where cos𝜃 = 𝑘 𝐾⁄ , sin𝜃 = 𝑙 𝐾⁄  and 𝑦∗ = 2𝑙𝑏. We note that at small 𝜃 we have a minimum 

horizontal drift at the nodes of the primary wave system (e.g. 𝑦∗ = 𝜋 in Fig. 6), while for 

sin 𝜃 > cos2𝜃   (𝜃 > 38.2o) we have maximum horizontal surface velocity at the nodes. 

       An extension of this problem was made by Førland (1989), who introduced a vertically-

varying eddy viscosity, and also an alteration of the oscillatory surface wind stress which 

strengthened the circulation.  
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       Obviously, the surface boundary conditions have a strong impact on the strength of the 

roll motion in short-crested waves. This was demonstrated by Melsom (1992) who considered 

obliquely propagating waves under an ice cover, modelling the ice as a thin elastic plate. In 

this case there are no-slip conditions for the horizontal velocity components at the ice-water 

interface. This results in a much stronger horizontal vorticity production than for a free 

surface; see e.g. Weber (1987) for the marginal ice zone, or Weber and Førland (1989) for an 

inextensible film. In fact, the velocity in the rolls increases by a factor 𝛾 𝐾⁄  when compared to 

the free surface case. But now the waves are sheltered from wind influence, and they attenuate 

in space from the ice edge and inwards. The attenuation rate is one order of magnitude larger 

than for a free surface without wind, so the wave energy under ice dissipates much faster than 

in the open ocean.  

 

9. Lagrangian mean drift in high-frequency shallow water waves 

 

       We now return to consider monochromatic waves along the 𝑋-axis. In this section we 

deal with surface waves in shallow ocean, and we neglect viscous effects at the free surface 

on the wave field (the no-slip bottom dominates). Assuming 𝑘𝐻 ≪ 1, we have that 𝐶 = 𝐶𝑔 =

𝐶0 = (𝑔𝐻)
1/2. Then the mean drift equation (59) becomes:     

𝜈𝑊𝑐𝑐 −𝑊𝑡 − 𝑖𝑓𝑊 = 𝑔ℎ𝑎
(𝐿) −

1

2𝐻
𝐶0𝑈𝑎

(𝑆) − 𝑢𝑡
(𝑆) + 𝜈𝑢𝑐𝑐

(𝑆)
  

                                    + 
2𝜈

𝐻
𝑈(𝑆)[−4𝛾2 exp{−𝛾(𝑐 + 𝐻)} sin 𝛾(𝑐 + 𝐻)                                   (114)                 

                                    +3𝛾2 exp{−2𝛾(𝑐 + 𝐻)}], 

where the Stokes drift (39) and the Stokes flux in the shallow-water approximation become 
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 𝑢(𝑆) =
𝜔cosh2𝑘(𝑐+𝐻)

2𝑘𝐻2 
𝜂0
2exp(−2𝛼𝑎 − 2𝛽𝑡),                                                                        (115) 

𝑈(𝑆) =
𝜔

2𝑘𝐻
𝜂0
2exp(−2𝛼𝑎 − 2𝛽𝑡).                                                                                        (116) 

The mean drift equation (114) has apparently not been published before. Utilizing the linear 

wave solutions, we can calculate the dynamic boundary condition at the surface from (15). 

The contributions from the nonlinear wave terms cancel to lowest order, and we find, 

assuming negligible vertical mean velocity at the surface, that 

𝑇̅ = 𝜌𝜈𝑊𝑐,    𝑐 = 0,                                                                                                               (117) 

where 𝑇̅ is the complex mean surface wind stress given by  𝑇̅ ≡ 𝜏1̅ + 𝑖𝜏2̅. 

       The total mean horizontal displacements are defined as 

𝑄1 = ∫ 𝑥̅𝑑𝑐
0

−𝐻
,    𝑄2 = ∫ 𝑦̅

0

−𝐻
𝑑𝑐.                                                                                          (118) 

By integrating (114) and assuming zero mean tangential wind stress, i.e. 𝑊𝑐(𝑐 = 0) = 0 from 

(117), we then obtain to 𝑂(𝑘 𝛾⁄ ): 

𝑄1𝑡𝑡 − 𝑓𝑄2𝑡 = −𝐶0
2ℎ𝑎

(𝐿)
+
1

2
𝐶0𝑈𝑎

(𝑆)
+ 𝑈𝑡

(𝑆)
+

1

𝐻
𝜈𝛾𝑈(𝑆) − 𝜏1𝐵 𝜌,⁄                                        (119) 

𝑄2𝑡𝑡 + 𝑓𝑄1𝑡 = −𝜏2𝐵 𝜌⁄ .                                                                                                       (120)                                             

We have here defined the bottom stresses 

𝜏1𝐵 = 𝜌𝜈𝑥̅𝑡𝑐(𝑐 = −𝐻),    𝜏2𝐵 = 𝜌𝜈𝑦̅𝑡𝑐(𝑐 = −𝐻).                                                                (121) 

Utilizing the general relation (44), and noticing that 𝜏𝑤 𝜌 = 𝜈𝛾𝑈(𝑆) 𝐻⁄⁄  in the shallow-water 

approximation, (119) becomes: 

𝑄1𝑡𝑡 − 𝑓𝑄2𝑡 = −𝐶0
2ℎ𝑎

(𝐿)
−
1

2
𝐶0𝑈𝑎

(𝑆)
+ 𝜏𝐷 𝜌⁄ − 𝜏1𝐵 𝜌⁄ .                                                        (122) 
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       It is interesting to compare our results with the Eulerian calculations in Phillips (1977). In 

that case we must insert for the Eulerian mean sea level from (55). We then obtain from 

(122): 

𝑄1𝑡𝑡 − 𝑓𝑄2𝑡 = −𝐶0
2ℎ𝑎

(𝐸)
−
3

2
𝐶0𝑈𝑎

(𝑆)
+ 𝜏𝐷 𝜌⁄ − 𝜏1𝐵 𝜌⁄ .                                                        (123) 

We observe that the second term on the right-hand side of (123) is equal to the divergence of 

the radiation stress component per unit density  𝑆11 = 3𝐸 (2𝜌) = 3𝐶0𝑈
(𝑆) 2⁄⁄  in shallow-

water waves along the 1-axis by Longuet-Higgins and Stewart (1960). If we take 𝜏𝐷 = 𝜏1𝐵 =

0, we find for steady, non-rotating motion that 

ℎ𝑎
(𝐸)

= −𝑆11𝑎 𝐶0
2,⁄                                                                                                                 (124) 

which is Phillips’ equation (3.7.5) (here  𝜕 𝜕𝑎⁄ ≈ 𝜕 𝜕𝑥⁄ ). Accordingly, ℎ(𝐸) = −𝑆11 𝐶0
2,⁄  

which means that the Eulerian mean water level is depressed in this case (a surface set-down). 

 

 

9.1. The non-rotating case 

 

       We do not consider the initial value problem here, but discuss the drift solution for a 

steady state. The wave amplitude is taken not to vary with time, i.e.  𝛽 = 0, and we consider 

the non-rotating case first. Then (105) reduces to 

  𝜈𝑢𝑐𝑐 = 𝑔ℎ𝑎
(𝐿) −

1

2𝐻
𝐶0𝑈𝑎

(𝑆) + 𝜈𝑢𝑐𝑐
(𝑆)   

                +
2

𝐻
𝜈𝑈(𝑆)[−4𝛾2 exp{−𝛾(𝑐 + 𝐻)} sin 𝛾(𝑐 + 𝐻)                      (125) 

                 +3𝛾2 exp{−2𝛾(𝑐 + 𝐻)}].  
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We note that the second term on the right-hand side is the gradient per unit depth of the 

radiation stress component per unit density  𝑆22 = 𝐸 (2𝜌) = 𝐶0𝑈
(𝑆) 2⁄⁄   in shallow-water 

waves (Longuet-Higgins and Stewart, 1960). 

       In the case where the form stress from the wind acts to sustain the waves against decay, 

i.e. 𝛼 = 𝛽 = 0, and 𝛿 = 𝜔 (2𝐻𝛾)⁄  from (34), we regain Longuet-Higgins’ (1953) steady drift 

solution for permanent waves. Disregarding any mean wind stress, the boundary condition are 

𝑢(𝑐 = −𝐻) = 0, and 𝑢𝑐(𝑐 = 0) = 0. We then find, correct to 𝑂(𝜀2):  

𝑢 =
1

2𝐻
𝑈(𝑆)[5 − 8 exp{−𝛾(𝑐 + 𝐻)} cos 𝛾(𝑐 + 𝐻)  

        +3 exp{−2𝛾(𝑐 + 𝐻)}].                                                                                                 (126) 

As pointed out by Longuet-Higgins, the solution for the drift in permanent waves outside the 

viscous bottom layer is independent of the value of the viscosity coefficient, as long as it is 

non-zero. 

       Without any fluctuating wind (𝛿 = 0), and no temporal decay, the spatial attenuation 

coefficient in shallow water becomes 𝛼 = 𝑘 (4𝛾𝐻)⁄ , as mentioned before. In that case the 

radiation stress term in (125) becomes one order of magnitude larger than the Stokes drift 

term. Hence, to obtain a steady state solution in (125), we must assume that the radiation 

stress term is balanced by the pressure gradient associated with the wave-induced change in 

mean sea level. This means that a steady-state solution requires 

ℎ(𝐿) = 𝑈(𝑆) (2𝐶0).⁄                                                                                                                (127) 

Hence the Lagrangian mean surface position is elevated (a water level set-up).  

 

9.2. The drift in a rotating ocean 
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       In a rotating ocean the balance between the Lagrangian mean surface slope and the 

gradient of the radiation stress  𝑆22, i.e. (127), still must hold for a steady state solution. For a 

wave amplitude that does not attenuate in time, (114) yields for the steady drift: 

𝜈𝑊𝑐𝑐 − 𝑖𝑓𝑊 = 𝜈𝑢𝑐𝑐
(𝑆) +

2

𝐻
𝜈𝑈(𝑆)[−4𝛾2 exp{−𝛾(𝑐 + 𝐻)} sin 𝛾(𝑐 + 𝐻)  

                           +3𝛾2 exp{−2𝛾(𝑐 + 𝐻)}].                                                                                   (128)                                                                              

Introducing the Ekman depth 𝐷 = (2𝜈 𝑓)⁄ 1/2
, applying the no-slip condition 𝑊(𝑐 = −𝐻) =

0 at the bottom, and assuming vanishing mean tangential wind stress at the surface, i.e., 𝑇 = 0 

in (117), we readily find from (128): 

𝑊 =
1

𝐻
𝑈(𝑆)[𝐹 exp𝑅𝑐 + 𝐺 exp(−𝑅𝑐) + 𝑁 cosh 2𝑘(𝑐 + 𝐻)]  

         +
1

2𝐻
𝑈(𝑆)[−8 exp{−𝛾(𝑐 + 𝐻)} cos 𝛾(𝑐 + 𝐻)                                                               (129)                                                                

          +3 exp{−2𝛾(𝑐 + 𝐻)}].    

Here we have defined the complex coefficients 

𝑅 = (1 + 𝑖) 𝐷, 𝑁 = 2𝑘2𝐷2 (2𝑘2𝐷2 − 𝑖)⁄⁄ ,   

 𝐹 = 𝐺 −
2𝑘𝑁

𝑅
sinh 𝑘𝐻,                                                                                                          (130) 

𝐺 =
1

2cosh𝑅𝐻  
[
2𝑘𝑁

𝑅
sinh 𝑘𝐻 exp(−𝑅𝐻) − 𝑁 +

5

2
].                         

The effect of rotation introduces the Ekman length scale 𝐷 into the problem, and we realize 

that the form of the solution now depends crucially on the value of the non-dimensional 

parameter 𝐻 𝐷⁄ . When 𝐻 𝐷⁄  is much smaller than unity, the effect of rotation is negligible. 

On the other hand, when 𝐻 𝐷⁄ ≫ 1, the mean drift current will be strongly affected by the 

earth’s rotation. We then have a well-developed Ekman spiral near the bottom, where the 
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mean current is deflected somewhat to the right (in the northern hemisphere) of the wave 

propagation direction, while it practically vanishes in the upper part of the layer. For a wave 

field where the wave amplitude does not change in space or time, an expression for the mean 

wave-driven Eulerian current in shallow water has been derived by Xu and Bowen (1994). 

Their Eulerian current satisfies a no-slip condition at the bottom. In the non-rotating case, the 

solution by Xu and Bowen is equal to that given by Phillips (1977), his eqn. (3.4.33). The 

mean Lagrangian current in Xu and Bowen’s (and Phillips’) analyses is obtained by adding 

the inviscid Stokes drift. Hence, the Lagrangian mean drift current does not satisfy a no-slip 

condition at the bottom, as it physically should. In Fig. 7 we have plotted the Lagrangian 

mean drift current from (129), non-dimensionalized by 𝑈(𝑆) 𝐻⁄ , as function of the non-

dimensional depth 𝑐 𝐻⁄ . We have taken 𝑘𝐻 = 2𝜋 50⁄ , and 𝐻 𝐷⁄ = 2.8.  The non-dimensional 

viscous boundary layer thickness in this case is 1 (𝛾𝐻)⁄ = 0.014. 

(Figure 7) 

We notice a well-developed Ekman spiral in the lower half of the water column. It is also 

worth pointing out that drift in the non-rotating case is quite different in the case when 𝜈 → 0 

(solid black line) and when 𝜈 = 0 (black dashed line).    

       In the present section we have looked for non-frictional forcing terms for the Lagrangian 

mean velocity that are depth-varying, and not directly proportional to the Stokes drift. This 

has been motivated by the results of Mellor (2003, 2005), among others, where he applies a 

coordinate transformation for the vertical coordinate, and finds vertically-varying radiations 

stress terms in the Eulerian equations for the mean flow. We find no such terms in the 

equations for the Lagrangian mean flow. In our approach, the radiation stress term in the 

equation for the mean drift is depth-independent. As suggested by Weber et al. (2006), we 
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find that the radiation stress in shallow water plays a much more important part than in the 

deep ocean.  

 

10. The Coriolis-Stokes force in ocean modelling 

 

       Numerical ocean circulation models are generally based on the Eulerian description of 

motion, and do not resolve the wave-induced drift, which is basically a Lagrangian 

phenomenon. To compensate for that, the inclusion of the Coriolis-Stokes (CS) force in the 

equations for the Eulerian mean motion in a rotating ocean has become everyday practice, and 

goes back for a long time; see e.g. Hasselmann (1970), Huang (1979), Jenkins (1989), 

McWilliams et al. (1997), McWilliams and Restrepo (1999), Polton et al. (2005), Saetra et al. 

(2007). Denoting the Eulerian mean velocities by 𝑢𝐸  and 𝑣𝐸 , and assuming spatially 

homogeneous flow, one finds to 𝑂(𝜀2) for the horizontal Eulerian mean flow (Huang, 1979): 

𝜈𝜕2𝑢𝐸 𝜕𝑧2 − 𝜕𝑢𝐸 𝜕𝑡⁄ + 𝑓𝑣𝐸 = 0,⁄                                                                                       (131) 

𝜈𝜕2𝑣𝐸 𝜕𝑧2 − 𝜕𝑣𝐸 𝜕𝑡⁄ − 𝑓𝑢𝐸 = 𝑓𝑢
(𝑆).  ⁄                                                                              (132) 

The term on the right-hand side of (132) is the CS force, and here the Stokes drift in deep 

water is expressed in the Eulerian coordinates, i.e. 𝑢(𝑆) = 𝜂0
2𝜔𝑘 exp 2𝑘𝑧, where 𝑧 ≤ 0. 

Directed at right angles to the direction of wave propagation (in the northern hemisphere), the 

CS force leads to an additional deflection of the mean current, similar to the direct effect of 

the Coriolis force leading to the Ekman spiral. It should be noted that (131)-(132) has the 

same structure as the quasi- Eulerian mean current (75) in a Lagrangian description. In the 

original study (Hasselmann, 1970), the friction terms in (131)-(132) were absent. By keeping 

the acceleration terms, Hasselmann (1970) showed that the Lagrangian mean flow (Eulerian + 

Stokes) was purely inertial, i.e. the net drift over the inertial period was zero. By using 
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prognostic wave models for the surface wave spectrum like WAM (Komen et al. 1994), or 

SWAN (Booij et al. 1999), the CS force in (132) can be obtained in spectral form. The overall 

effect of the CS force on the upper ocean current profiles is substantial, as illustrated by e.g. 

Polton et al. (2005; their Fig. 3). Estimates from field data collected in northern Norway, with 

significant wave heights between 1-2 m, demonstrate that the CS force can be of similar 

magnitude as the ordinary Coriolis force in the Eulerian part of the mean flow (Röhrs et al., 

2012).  

       For pure wave-induced Eulerian mean flow, the appropriate boundary condition at the 

mean surface level 𝑧 = 0, pertaining to (131)-(132), is not at all obvious. By comparing with 

results from a purely Lagrangian analysis of the drift in permanent waves, it is demonstrated 

that the relevant boundary condition for wave-driven Eulerian mean flow is that of vanishing 

shear at  the mean surface level (Weber et al. 2015). 

 

11. Summary and concluding remarks 

     

       In this survey of wave-induced mean drift in a Lagrangian formulation we have stressed 

the profound difference between surface waves in inviscid fluids, and in fluids with a small 

viscosity. Although the effect of a weak viscosity only introduces small deviations from linear 

inviscid, irrotational wave motion (except in cases with surface films), the wave-induced 

mean motion to second order in wave steepness is substantially affected. In particular, mean 

momentum is transferred from the classic Stokes drift to Eulerian mean currents via the action 

of the virtual wave stress (Longuet-Higgins, 1969). The latter depends on the viscosity of the 

fluid. 

       Due to the fact that neighboring particles do separate in time, the Lagrangian equations in 

its primitive form are not well adapted for numerical modelling of large scale ocean flows. 
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However, for wave-driven ocean flows to second order; see e.g. (11)-(13), it is possible to 

compute numerically the nonlinear forcing terms, and then solve the equations for the 

Lagrangian mean drift velocities numerically in a bounded domain. This constitutes an 

interesting future research. 
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Figure captions 

Fig. 1. Dimensionless wave drift components 𝑢(𝑤) 𝑢0⁄  (solid line) and 𝑣(𝑤) 𝑢0⁄  (dashed line) 

as function of dimensionless depth 𝑐 𝐿⁄ .  

 

Fig. 2. Hodographs of the non-dimensional Lagrangian surface drift current when 𝜈 =

10−3 m2s−1 (solid line) and 𝜈 = 0 (dashed circle). Black dots on the graph denote time in 

hours after the onset of mean motion. 

 

Fig. 3. Hodograph of the dimensionless wave-induced surface current 𝑊(𝑤) 𝑢∗⁄  for 

temporally damped waves caused by adverse winds (solid line). The dashed line represents 

the equivalent surface current when the eddy viscosity is constant (see also Fig. 2). Numbered 

black dots denote the time in pendulum hours after the onset of motion (after Weber and 

Melsom (1993), ©American Meteorological Society, used with permission). 

 

Fig. 4. Non-dimensional quasi-Eulerian surface drift  𝑈 as function of time for 𝐴∗ = 1 (solid 

line), 𝐴∗ = 0.5 (dashed line),  𝐴∗ = 5 (dash-dotted line),  𝐴∗ → ∞ (dotted line). The last value 

corresponds to the inextensible film case. 

 

Fig. 5. Sketch of induced roll motion with the primary wave field (advancing in the direction 

of the arrow) (after Weber (1985), ©American Meteorological Society, used with 

permission). 

 

Fig. 6. Streamlines for dimensionless stream function 𝜓∗ = 𝜓𝛾 (𝜂0
2𝜔𝐾)⁄ ; see text for details 

(after Weber (1985), ©American Meteorological Society, used with permission). 
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Fig. 7. Non-dimensional drift velocity 𝑢 (solid line) and 𝑣 (dashed line) vs. non-dimensional 

depth 𝑐 𝐻⁄  when 𝐷 𝐻 = 0.36⁄ , and 𝑘𝐻 = 2𝜋 50⁄ . The dotted line is the non-rotating result 

(126), and the dash-dotted line depicts the inviscid Stokes drift. 

 

 


