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Preface
This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
is conducted under the main supervision of Professor Leiv-J Gelius, Associate
Professor Einar Iversen, and co-supervision of Professor Anne H. Schistad Sol-
berg, Doctor Walter Söllner and Doctor Endrias Asgedom. This work is a part
of a joint project, improved seismic imaging based on resolution enhancement
and pattern recognition, which is cooperated between the Department of Geo-
sciences and the Department of Informatics at the University of Oslo. The
project is funded by the Norwegian Research Council under the Large pro-
gram for petroleum research (PETROMAKS2) with the project number 234019.

The thesis is a collection of three papers, presented in chronological order.
The common theme to them is in the methods to improve seismic imaging and
migration-velocity model building. The papers are preceded by an introductory
chapter that relates them together and provides background information and
motivation for the work. One of the papers, I am the second author for the joint
work. For the remaining papers, I am the first author.
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Chapter 1

Introduction

In reflection seismology, reflected seismic waves are used to image, and estimate
the elastic properties of, the subsurface. This method is widely used in the
petroleum industry for hydrocarbon exploration and reservoir monitoring. The
principle of reflection seismology is based on the reflection of acoustic waves
generated from a seismic source, and the measurement of the propagation of those
waves through the medium of the earth. In reflection experiments, the emitted
seismic waves propagate down into the earth, and are reflected and refracted at
each litho stratigraphic boundary. Those reflected waves are recorded by sensors
near the surface within a defined time period, and are subsequently processed in
order to image the subsurface structures, predict the types of rocks encountered
and determine the presence of hydrocarbons (oil and gas).

Seismic migration – the major technique used for imaging Earth’s interior
– extrapolates and maps seismic events recorded at the surface to their true
subsurface locations, thereby creating an accurate image of the subsurface.
Migration algorithms are classified by time and depth based on the domain of
the application. Both of these can be performed either after (poststack migration)
or before (prestack migration) stacking. The time-migration method generates
the migrated image in the time domain, which is known to be a fast and robust
process that has enabled its wide use in the seismic industry for several decades.
In comparison, depth migration produces the image in the depth domain, which
can be directly used in hydrocarbon characterisation. The significant difference
between time and depth migration is that time migration assumes mild, lateral
velocity variations, while depth migration accommodates large velocity variations,
both in vertical and lateral directions, thus deriving more accurate images under
variable circumstances .

Depth-migration algorithms can be further classified into ray-based and
wavefield-extrapolation-based methods. The ray-based depth migration meth-
ods, which solve the wave equation under the assumption of high-frequency
approximation, have an advantage in being computationally efficient, but their
weakness being in their limited accuracy in imaging complex structures. The
wavefield-extrapolation-based depth migration methods directly solve the wave
equation, and are able to handle more complex cases of seismic imaging. Based
on differences in the way the dispersion relationship of the wave equation is
solved, wavefield-extrapolation-based depth migration is divided into one-way
and two-way wave equation migration (OWEM, TWEM). TWEM is represented
by reverse-time migration (RTM), which utilises full wave fields in the imaging
process, making it theoretically capable of handling the most complex cases
of depth imaging. However, due to its high demand for computer memory
and the computational costs, RTM use is still limited in large-scale industrial
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1. Introduction

situations. OWEM, with appropriately-developed algorithms, is able to achieve
migrations comparable to those from RTM in moderate to complex geological
scenarios, but works more efficiently in large-scale situations. Moreover, due
to its superior performance when compared to Kirchhoff-type depth-migration
methods, OWEM still plays an import role in the industry for seismic depth
imaging in complex subsurface areas.

The accuracy of depth imaging relies on the quality and details of the
velocity model. Iterative depth-velocity model building, based on Kirchhoff-
based depth-migration and ray-theory reflection tomography, is the most widely
used approach in constructing detailed depth-velocity models. Two limitations
of this approach are the heavy costs associated with the iterations, and it also
usually requires an appropriate initial-velocity model generated by time-domain
processing. Moreover, the process of velocity model building becomes more
challenging if the subsurface contains complex geological structures, such as
salt domes. Time-consuming manual interpretation of the geological bodies
and the iterations are always needed in such circumstances. Reflection-based
tomography methods rely on the quality of the seismic data, and deliver velocity
models with limited resolution. In the case of data with a low signal-to-noise
ratio (SNR), or associated with strong attenuation, these methods fail to provide
satisfactory tomographic results. Full-waveform inversion (FWI) attempts to
invert the high-resolution velocity model, using TWEM-based modelling and
an inversion scheme for velocity optimisation. FWI calculates the difference
between the modelled synthetic data and the seismic record, generating the
gradient of the cost function for iterative velocity optimisation. Although FWI
has been regarded as one of the best tools for velocity estimation and imaging in
complex geological settings, its application requires preserved low frequencies, as
well as considerably larger offsets, to record the direct/diving/refracted waves in
seismic acquisition, which limits its application in conventional seismic reflection
situations.

1.1 Motivations

With the progress of exploration and production, the petroleum industry has
moved into exploring fields that have ever more complex geological structures.
Examples include salt deposits in the Nordkapp Basin in the Norwegian Barents
Sea, carbonate reservoirs in the Middle East and pre-salt discoveries in the
Santos Basin in Brazil. Conventional seismic processing and imaging methods
face challenges with resolution, SNR or accuracy of the image in such geological
scenarios. Thus, there is a strong need to further develop the techniques employed
in seismic processing and imaging to better handle these challenges.

The motivation behind this project was to develop improved techniques for
high-resolution seismic imaging, in combination with the iterative, 3D depth-
velocity model-building approach, in order to address velocity modelling and
depth imaging in complex geological scenarios. Based on this motivation, we
have developed three new methods for enhancing seismic images in complex
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environments. First, in order to improve the SNR in images of complex sub-
surface geological environments, we have proposed a fast parameter estimation
approach for a common reflection surface (CRS) technique. Second, to improve
the accuracy of seismic depth-domain imaging in vertical transversely-isotropic
(VTI) media with large lateral contrasts and complex structures, we have devel-
oped a 3D prestack Fourier mixed-domain (FMD) depth-migration technique.
Finally, to develop an accurate time-migration velocity model for time-domain
migration, and an accurate initial model for depth imaging, we have developed
a numerical algorithm for time-migration velocity estimation using nonlinear
mapping processes based on kinematic time migration and demigration.

1.2 Scope of the thesis

This study constitutes part of the joint project Improved seismic imaging based
on resolution enhancement and pattern recognition, which is a collaboration
between the Department of Geosciences and the Department of Informatics at
the University of Oslo. An outline of the entire project’s workflow is shown in
Fig.1.1.

As a first step, we employed the CRS method (e.g. Mann et al., 1999; Jäger
et al., 2001) to estimate the kinematic wavefield attributes; that is, the CRS
stack parameters. The CRS method is known to be an effective approach for
improving the SNR and the continuity of the reflections in the stack, but is
computationally expensive in terms of parameter estimation. For this project,
we proposed a fast and robust approach for CRS parameter estimation that
can effectively speed up the process. The conventional poststack CRS approach
only derives a zero offset (ZO) stack. Zhang et al. (2001) generalised the CRS
approach to produce a finite offset stack, thus extending the CRS approach to
prestack application. In this project, a fast parameter searching approach was
also provided in order to estimate the prestack CRS attributes (Waldeland et al.,
2019). Based on the derived prestack CRS parameters, the SNR of the prestack
data can be significantly enhanced, and used for subsequent seismic processing
and imaging.

Next, in order to derive an accurate depth-velocity model for depth-domain
seismic imaging, we started with an estimation of the time-migration velocity
using kinematic wavefield parameters. Unlike formalising the tomography to
obtain the depth-velocity model directly (Duveneck, 2004), we simplified the
process using a more stable approach, including the estimation of time-migration
velocity using first-order kinematic attributes, and mapped the derived time-
migration velocity to the depth domain by image-ray tomography (Cameron
et al., 2007; Dell et al., 2014; Gelius et al., 2015). The mapped depth velocity
was then used as the initial velocity model for the following iterative process of
depth-velocity model-building.

Finally, the conventional iterative depth-velocity modelling approach consists
of prestack Kirchhoff depth migration (Claerbout, 1985; Biondi et al., 1996)
and reflection tomography (Trier, 1990; Stork, 1992; Boehm et al., 1996). The
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1. Introduction

Figure 1.1: Iterative depth-velocity model-building and depth-imaging workflow.
Those steps marked with yellow represent the content of this thesis.
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prestack Kirchhoff method is widely used in the industry due to the attractiveness
of its efficiency of computation. However, as a ray-based migration approach, it
has limited accuracy in imaging complex structures with strong velocity variations
and steep dips. We thus proposed an OWEM-based FMD depth-migration
approach to handle such scenarios. The proposed FMD prestack depth-migration
(PSDM) method, which provides greater accuracy than the Kirchhoff method
in imaging complex geological areas, and is more computationally efficienct
than RTM, was more suitable to be used for the iterative velocity estimation in
complex geology. The FMD migration made use of shot gathers, and derived
migrated shot profiles in the depth and summed depth images.

In order to fine-tune the depth-velocity model, a shot-profile-based depth-
velocity update can be applied to derive the updated velocity model (Al-Yahya,
1989; Shen et al., 2008). In cases where the studied area also contains strong
velocity anomalies related to salt or volcanic rocks, manual intervention is
always needed to monitor the conventional velocity model-building process. Also,
iterations of the manual interpretation of anomalous geological bodies are needed
in the velocity modelling. On this join project, We therefore proposed a deep-
learning-based (convolutional neural network), semi-automatic interpretation
approach to assist in this process (Waldeland et al., 2018). As proved through
testing, this automated method derived high-quality salt interpretation, and
effectively reduced the cost of manual picking as part of the velocity modelling
iterations. In the last step of velocity updating, the derived anomalies, delineated
using interpreted contours and a predefined velocity, can be concatenated into
the original velocity model. The FMD depth migration and velocity updating can
then be applied iteratively in order to derive the optimal depth-velocity model
and depth image. In this study, I focused on three topics from the workflow
mentioned above (steps marked in yellow):

1. The CRS method is effective in improving the SNR and the continuity of
the reflections on the stack. However, the conventional semblance-based
CRS parameter search is computationally expensive. In order to speed
up the parameter estimation process, we proposed a method based on
gradient and quadratic structure tensors (GSTs, QSTs) to extract the CRS
parameters (slope and curvature). This topic is described in Paper I.

2. In the iterative process of depth-velocity modelling, 3D prestack Kirchhoff
depth migration is the most widely used algorithm; however, its loss of
accuracy in imaging complex media with large lateral contrasts is well
known. OWEM techniques are therefore more suitable, due to their better
performance in complex media and their computational attractiveness
compared to RTM. Although there are many different methods that can
accomplish one-way wave propagation in VTI media, most of them struggle
either with stability, anisotropic noise or computational cost. In Paper
II, we presented a new method based on a mixed space and wavenumber
propagator that overcomes these issues effectively.

5



1. Introduction

3. The initial velocity used for PSDM always originates from a time-to-
depth converted time-migration velocity. In conventional time-domain
seismic processing, the time-migration velocity is derived from stacking
velocity picking and Dix conversion. As an alternative, we proposed a
time-migration velocity estimation method that directly uses the kinematic
wavefield parameters, deriving the optimal time-migration velocity through
an iterative linear inversion approach. This topic is described in Paper III.

1.3 Thesis outline

This thesis is organised as follows. In Chapter 2, we describe the basic concepts
of the CRS method and introduce the GST and QST techniques, which were used
in kinematic wavefield parameter extraction in Papers I and III. In Chapter 3, we
firstly discuss the major (ray- and wavefield-based) categories of depth-migration
imaging algorithms, going on to discuss wavefield extrapolation methods and
migration imaging conditions in some detail, then explaining the advantages and
disadvantages of major OWEM methods in the Fourier domain and pointing
out the importance of improving those methods by using the proposed FMD
migration (Paper II). In Chapter 4, we focus on the background underpinning
Paper III, providing an overview of the approaches used in migration-velocity
estimation. We then introduce the specific definition of the kinematic wavefield
attribute, and the kinematic migration and demigration approach for nonlinear
kinematic attribute mapping and time-migration velocity estimation. Finally, we
summarise the three papers included in this thesis, present the main contributions
made, and give suggestions for possible future work.
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Chapter 2

Structure tensor methods for a
common reflection-surface stack

The Common-Reflection-Surface (CRS) method is an effective approach in
enhancing the SNR of a stack. The bottle-neck of CRS is the time-consuming
semblance search to obtain CRS parameters. In order to speed up this parameter
estimation process, we introduced a fast method in paper I for extracting the
CRS parameters using local kinematic parameters: the slope and the curvature.
To further demonstrate the application of local kinematic parameters, in paper
III, we developed a time-migration velocity estimation method by employing the
first-order local kinematic parameters (slopes). In this chapter, we first present
an overview of the common-midpoint (CMP) method and the CRS method, and
introduce the conventional CRS parameter estimation based on semblance search.
Then, we give an introduction to the structure tensor method and demonstrate
how this method is used to extract the local slope and curvature sought in the
CRS parameter estimation.

2.1 Common reflection surface stack

The CRS stack (Mann et al., 1999; Jäger et al., 2001) was developed to enhance
the SNR of seismic data. Compared to the conventional normal moveout (NMO)
stack, the CRS stack provides a strong increase in redundancy and SNR, leading
to clearer sections and more continuous events. The well-known problem with
CRS is its expensive computation of the semblance-based parameter searches. In
order to solve this problem, based on the gradient structure tensor (GST) method,
we have introduced an efficient and robust method for the CRS parameter search.
In this section, we provide an overview of the CMP method, then we extend this
concept to the CRS method and introduce the conventional-semblance-search-
based CRS parameter estimation.

2.1.1 Common-mid-point method

The CMP stacking method was introduced by Mayne (1962). It is an efficient
and widely used method for improving the SNR in seismic imaging. As shown in
Fig.2.1, the CMP is the central point between the source and receiver pairs at the
surface. The set of traces recorded from different source/receiver pairs that have
the same CMP is called a CMP gather. Under the assumption of a horizontally-
layered model for the earth and a small offset spread, the travel time of the
rays associated with the different source/receiver pairs can be approximated
by a hyperbolic two-way travel-time equation (Eq.2.1),where t0 is the two-way

7



2. Structure tensor methods for a common reflection-surface stack

travel time at ZO, and h and vNMO denote the half offset and NMO velocity,
respectively.

Figure 2.1: Schematics of CMP geometry

t2 = t2
0 +

4h2

v2
NMO

(2.1)

Following acquisition, the recorded dataset is sorted into CMP gathers based
on the coordinates of the sources and receivers. Traces in each of the CMP
gathers are NMO corrected to remove the moveout effect on the travel times.
The NMO-corrected traces are then summed to form a stacked trace. The
summation of the NMO-corrected CMP traces leads to the enhancement of
the SNR through the addition of coherent reflections and the stacking out of
incoherent noise. Fig.2.2 shows a schematic of the recorded and sorted traces in
a CMP gather, the NMO-corrected CMP traces, and the final stacked trace.

In most cases, CMP stacking is a robust process that will enhance the SNR
of the stacked section. However, CMP stacking has limitations in its application.
Because it assumes a straightforward stratigraphic earth model and a short
spread in the acquisition, where complex geological structures or structures
associated with strong lateral velocity variations exist, CMP stacking is less
accurate and thus degrades the quality of the stack. The CRS stack can be
regarded as an extension of the CMP stack. To obtain a stacked trace from a
given midpoint, unlike stacking traces only in a CMP gather, CRS sums the
traces along a common reflection surface that covers the traces from nearby
midpoints. This leads to a significantly higher SNR in the final stack.

2.1.2 2D common reflection surface method

The CRS method (Mann et al., 1999; Jäger et al., 2001) was originally developed
as an alternative to conventional stacking approaches, such as the NMO/DMO
stack, as a way of enhancing the SNR. The CRS operator can be derived by
paraxial ray theory (Schleicher et al., 1993) or by the geometrical approach of
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Common reflection surface stack

Figure 2.2: Illustration of the CMP stack. (a) CMP-sorted traces, (b) NMO-
corrected CMP traces, and (c) the stacked trace.

Höcht et al. (1999). It resembles the polystack (Bazelaire, 1988) and multifocusing
(Berkovitch et al.,1998) operators. The CRS method was initially developed for
ZO CRS, and was then further generalised to handle the common offset (CO)
case by Zhang et al. (2001). In this thesis, we focus on the ZO CRS and its
related parameter estimation. Fig.2.3 shows a schematic comparison of the CMP
and ZO CRS operators in the midpoint and half-offset domain .

Figure 2.3: Comparison of the CMP and ZO CRS operators. (a) CMP operator
in the midpoint and half-offset domain . (b) ZO CRS operator in the midpoint
and half-offset domain . The aperture is centred around the midpoint, and is
defined by the green line where the half-offset is used and the red line where the
midpoint is used.

In the general case, the CO CRS in 2D can be formulated as a second-order
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Taylor expansion of the travel-time surface around a central point with the
coordinates x0,h0 (Faccipieri et al., 2016):

t2
CRS(x, h) = (t0 + AΔx + DΔh)2 + BΔx2 + CΔh2 + εΔxΔh, (2.2)

where x and h denote the coordinates of the midpoint and half-offset of a selected
point in the reflection surface. Δx = x − x0 and Δh = h − h0. A, B, C, D and E
are the CRS model parameters defined in Eq.2.3, which represent the first- and
second-order derivatives with respect to the reflection surface at the reference
point.

A =
∂t

∂x
, B = t0

∂2t

∂x2 , C = t0
∂2t

∂h2 , D =
∂t

∂h
, ε = 2t0

∂2t

∂x∂h
|x=x0,h=h0 . (2.3)

According to paraxial ray theory, and because the approximation of the CRS
operator is truncated to the second order in the Taylor expansion, Eq.2.3 is only
accurate in the vicinity of the reference midpoint (x0,h0). With respect to the
ZO CRS case (h0 = 0), the general 2D CRS operator simplifies to:

t2
CRS(x, h) = (t0 + AΔx)2 + BΔx2 + Ch2, (2.4)

where A, B and C are the CRS model parameters describing the ZO case. In
the case of the 3D ZO CRS, these parameters are generalised to vectors and
matrices, as given in Eqs. 2.5-2.7:

A =

[
∂t
∂x

∂t
∂y

]∣∣∣∣∣
x=x0, h=0

, (2.5)

B = t0

⎡⎣ ∂2t
∂x2

∂2t
∂x∂y

∂2t
∂x∂y

∂2t
∂y2

⎤⎦∣∣∣∣∣∣
x=x0, h=0

, (2.6)

C = t0

⎡⎣ ∂2t
∂h2

x

∂2t
∂hx∂hy

∂2t
∂hx∂hy

∂2t
∂h2

y

⎤⎦∣∣∣∣∣∣
x=x0, h=0

. (2.7)

We can see from Eq. 2.4 that three model parameters must be determined
for the 2D (ZO) CRS, and eight for the 3D (ZO) CRS because B and C are
symmetric matrices. Once we have derived the CRS parameters, the stack can
be applied by summing all traces within a selected aperture. Bear in mind that
a larger stacking aperture will increase the SNR, but may also lead to too much
smoothing of details in the stack. Thus, the CRS operator in the offset and
midpoint has to be selected carefully to retain both the high resolution and high
SNR in the stack image (Faccipieri et al.,2016).
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2.1.3 Common reflection surface parameter estimation

As indicated above, CRS parameter estimation is a challenging and expensive
computational process. With respect to the number of parameters in the CRS
calculation (Tab. 2.1), in the case of ZO CRS, there are three parameters in
2D and eight in 3D. The number of parameters increases to five for 2D and 13
for 3D in the case of CO CRS. Thus, the balance between accurate parameter
estimation and feasible computational cost is always the issue with CRS.

2D 3D
ZO CRS 3 parameters 8 parameters
CO CRS 5 parameters 13 parameters

Table 2.1: Number of parameters in CRS

A semblance-based parameter search (Neidell et al., 1971) is the most com-
monly used approach in CRS. As defined in Eq.2.8, semblance measures the
ratio between the coherent energy and the total energy in a defined time window.
As shown in Fig.2.4, the window used in the semblance calculation is given as a
time gate along the CRS operator. Based on the criteria of the semblance, we
can evaluate all possible CRS parameter combinations at any given point in the
stack, and so derive the optimal CRS parameters.

S(tCRS , x0, h0, t0) =

tCRS+Tw∑
t=tCRS−Tw

( ∑
x, h∈X0

I(x, h, t)

)2

N
tCRS+Tw∑

t=tCRS−Tw

∑
x, h∈X0

I(x, h, t)2
, (2.8)

where I(x, h, t) is the 2D prestack data in the midpoint and offset domain , and
N is the total number of traces. tCRS is the CRS travel-time surface, defined at
the reference point (x0, h0, t0). The aperture of the surface is given by X0, and
the time-window used in the semblance calculation is defined along the CRS
travel-time surface within the time gate: [tCRS − Tw, tCRS + Tw], where Tw is
half of the window size.
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Figure 2.4: CRS semblance calculation window. The grey surface (tCRS) repre-
sents the CRS travel-time surface calculated at the reference point (x0, h0, t0),
and the two light blue surfaces resemble the time gate used for semblance
calculation.

The semblance-based global search is computationally expensive. It has to
search all predefined parameter combinations to obtain the optimal parameters.
The computational cost increases significantly from a ZO CRS to CO CRS,
and from a 2D (ZO/CO) to 3D (ZO/CO) CRS. To overcome this limitation,
alternative approaches have been proposed. The pragmatic searches proposed
by Mann et al. (1999) and Jager et al. (2001) suggested finding the three
parameters sequentially. In 2D, this begins with searching for the correlation
parameter in the CMP domain, and subsequently by constructing the CMP stack
and search for the remaining parameters – emergency angle and curvature. In
the last step, based on the initial searched parameters, a global parameter opti-
misation is applied to further refine the parameters. A further pragmatic search
approach was proposed by Garabito et al. (2001). Their hybrid method started
with a simultaneous search for the emergence angle and velocity on prestack
data, followed by a one-parametric semblance search to obtain the curvature,
and a global optimisation employed to refine the parameters. In addition to
these pragmatic CRS parameter approaches, other search strategies have been
proposed. Most of them are based on optimisation algorithms that reduce the
number of searches in the semblance approach. The most popular approach in
this category is the CRS parameter search based on simulated annealing (Müller,
2003; Garabito et al., 2001; Minato et al., 2012).

One of the main challenges in CRS parameter estimation is to handle the
case of conflicting dips, since conventional parameter estimation approaches lead
to only one set of CRS parameters. This may lead to a problem of conflict in the
dips. To solve this problem, Mann (2001) and Müller (2009) proposed deriving
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multiple CRS parameter sets for conflicting-dip regions that are identified by
a threshold of multiple-semblance maxima on the emergence angle. The final
stack is then constructed by merging the multiple sections generated by these
individual parameter datasets.

2.2 Structure tensor methods

Structure tensor methods use the gradient information from an image to de-
termine the orientation information of local structures in that image. This
technique has been widely used in image processing and computer vision for pat-
tern recognition and feature detection. In the following, we give an introduction
to the structure tensor concept, and a demonstration of its application to local
slope and curvature extraction from seismic data.

2.2.1 Gradient structure tensor

The structure tensor describes the local structures in an image by calculating the
predominant directions of the gradient in a specified neighbourhood of a point.
There are several implementations and applications of the structure tensor in
the literature. Bigun et al. (1987) introduced the GST method to detect the
orientation of a local neighbourhood, in both the frequency and space domains.
Kass et al. (1988) used the structure tensor derived from first-order derivatives to
calculate the local orientation of 2D images. Knutsson (1989) successfully used
the structure tensor to estimate the orientation of 3D surfaces. The GST (Bigun
et al., 1987), being an efficient and simplified implementation of the structure
tensor, was used in the present study for the estimation of slopes and curvatures
from the seismic data.

According to Bakker (2002), for a 3D seismic cube, represented by a vector
x (x = [x, y, t]T ), the generalised form of GST can be defined as:

T ≡
(

ggT

‖g‖n

)
, (2.9)

where g is the gradient vector field g = [gx(x), gy(x), gt(x)]T , gT is the trans-
posed vector, || g ||n is the normalisation factor, and () represents the local
smooth operation of the tensor.

The gradient vector field g can be derived from the finite difference scheme
or the convolution of a gradient filter. The latter scheme is easy to implement
and is less sensitive to noise, as shown in Eq.2.10, which derives the gradient
fields (gx, gy, gt) by convolving the input seismic image I(x) with the derivative
of a Gaussian function G(x, σg).

gi = I(x) ∗ ∂

∂xi
G(x, σg), i = (x, y, t). (2.10)
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where ∂
∂xi

is the differentiation operator applied to the Gaussian function, and
the parameter σg is the variance that represents the scale of the defined Gaussian
function.

Once the gradient vector fields are derived, the GST is constructed as Eq.2.11,
which corresponds to the co-variance matrix of the gradient vector fields.

T =

⎡⎣ g2
x gygx gtgx

gxgy g2
y gtgy

gxgt gygt g2
t

⎤⎦ , (2.11)

where the elements gx, gy and gz are the gradient vector fields obtained from
Eq.2.10. The symbol ¯ represents the additional smoothing operation on the
gradients. The purpose of the additional smoothing is to further remove the
noise in order to stabilise the GST in the subsequent matrix decomposition. The
smoothing operation can be implemented through a normal spatial smoothing
filter on the derived gradient volumes.

2.2.2 Local slope estimation by gradient structure tensor

Because the orientation information of local structures is associated with the
eigenvalues and eigenvectors of the above-constructed GST T, the eigen de-
composition of the tensor (T) is applied to derive the eigenvalues (λ1, λ2, λ3)
and eigenvectors (v1, v2, v3), which are illustrated in Fig.2.5, where those three
vectors point in the direction of the eigenvectors, and the length of each vector
on each axis resembles the corresponding magnitude of the eigenvalues.

Figure 2.5: Schematic representation of the 3D structure tensor. Vectors
(v1, v2, v3) are derived from the GST of a local point on a planar surface. The
length of each vector represents the magnitude of the eigenvalues (λ1, λ2, λ3).
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By analysing the decomposed eigenvalues and eigenvectors, we can obtain
orientation information about the local structure in the image. The eigenvector
associated with the largest eigenvalue corresponds to the dominant orientation of
the gradient vector field. In the case of the derived eigenvalues (λ1 ≥ λ2 ≥ λ3),
the corresponding eigenvector v1 is then the dominant direction of the gradient
vector field.

With respect to a seismic planar reflector, the GST-derived eigenvector v1
represents the normal vector to the reflector plane. Thus, by considering the
components of v1 = [v1x, v1y, v1t], the corresponding slopes along the dominant
direction can then be derived using Eqs. 2.12 and 2.13:

qx =
∂̂t

∂x
=

v1x

v1t
, (2.12)

qy =
∂̂t

∂y
=

v1y

v1t
. (2.13)

When the GST method is applied to 3D seismic data, we can obtain the
slope and azimuth attributes of the local reflector surfaces, which are directly
related to the CRS parameters defined by their kinematic wavefront attributes.

2.2.3 Local curvature estimation using the quadratic gradient
structure tensor

The GST method can be extended from the estimation of first-order derivatives
(slope) to second-order derivatives (curvature). This extended method – the
QST – was proposed by Weijer et al. (2001) and Bakker (2002).

This method assumes that an arbitrary surface S(x) = 0 can be described
by a second-order polynomial approximation:

S(x) ≈ xT Ax + bx + c = 0, (2.14)

where A is a symmetric 3 × 3 matrix, with at least two non-zero eigenvalues,
and b is a unit normal vector to this surface.

Assuming that this quadratic surface is described by two principal curvatures,
the approximated second-order polynomial (Eq.2.14) can be expressed as Eq.2.15
in the reflector-oriented coordinate system:

S(x) ≈ 1
2

κ1v +
1
2

κ2w + u, (2.15)

where κ1 and κ2 are the two principal curvatures of the surface, and (u, v, w) are
the vectors describing the local reflector-oriented coordinate system (Fig.2.6).
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Figure 2.6: Schematic view of the local reflector-oriented coordinate system. The
vector u is normal to the reflector, while vectors v and w are orthogonal to u,
and correspond to the two principal curvatures (κ1, κ2).

As shown in Bakker (2002), this quadratic surface is described by two
curvatures (κ1, κ2) and a local frame, which is oriented along the normal
vector and the two vectors that correspond to the principal curvatures. By
employing a coordinate transform scheme (Bakker, 2002), the quadratic surface
can be deformed to a plane, and those curvatures can be estimated in the
deformed surface system based on the traditional GST method. The two
principle curvatures obtained from the reflector-oriented coordinate system
can be expressed as:

κ1 =
vgugv

v2g2
u

, (2.16)

κ2 =
wgugw

w2g2
u

, (2.17)

where v and w are vectors derived from the traditional GST method, while gu,
gv and gw are the gradients along the axes in the reflector-oriented coordinate
system.

Since the gradients (gu, gv, gw) used in Eqs. 2.16 and 2.17 are computed
in the local reflector-oriented coordinate system, this means that the gradient
calculation is spatially variant with respect to different locations in the stack,
which leads to a heavy computational cost. To avoid such a problem, Bakker
(2002) introduced an approach based on a linear combination of the convolutions,
which can be invariantly applied to the full stack, thus increasing the computa-
tional efficiency.

16



Structure tensor methods

Finally, in order to obtain the derivatives with respect to x and y, the v and
w must be set to be oriented along the x and y axes, in order to obtain the
curvatures along axes x and y. Furthermore, to get the final curvatures in the
3D Cartesian coordinate system (x, y, t), the following coordinate rotations must
be applied:

κx =
∂̂t2

∂2x
= κ1

(
1 +

(
∂t

∂x

)2
) 3

2

, (2.18)

κy =
∂̂t2

∂2y
= κ2

(
1 +

(
∂t

∂y

)2
) 3

2

. (2.19)
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Chapter 3

Depth imaging with wavefield
extrapolation migration

In Paper II, we proposed an OWEM depth-migration technique, Fourier Mixed-
Domain (FMD) prestack depth migration. This can be regarded as a stable
and explicit wavefield extrapolation-based migration algorithm. The FMD is a
phase-screen type of migration, implemented both in the space and wavenumber
domains, and valid for a 3D VTI medium with large lateral contrasts in vertical
velocity and anisotropic parameters. In this chapter, we give an overview of
the most important depth-migration methods and the necessary background for
deriving the FMD migration algorithm.

3.1 Overview of seismic migration imaging methods

Seismic migration is a process that builds an image from recorded data by
repositioning the recorded data to its true geological position in the subsurface.
Fig.3.1 illustrates the concept of migration in the case of a dipping reflector.
As shown in the figure, assuming a ZO seismic experiment was conducted in a
constant-velocity medium (Fig.3.1(a)), the recorded traces are plotted vertically
in time, causing a distorted image in the time domain (Fig.3.1(b)). In order to
obtain the correct spatial position of the dipping reflector, migration needs to be
applied to reposition the misplaced recorded data to its true geological position
(Fig.3.1(c)).

Figure 3.1: Illustration of the migration concept in relation to a dipping reflector.
(a) Schematics of a ZO seismic acquisition for a dipping reflector. (b) The
recorded seismic section. (c) The migrated (true) section.
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Migration algorithms can be classified by time and depth, both of which
can be performed either after stacking (poststack migration) or before stacking
(prestack migration). Prestack migration applies to prestack data (shot, CMP
or CO gather), while poststack migration operates on stacked data. In the
following, we give a brief description of the major migration methods and discuss
the strengths and weaknesses of these methods in different scenarios.

• Poststack migration versus prestack migration

Poststack migration is a cost-effective process. It assumes that the stacking
process simulates a ZO section, and the migration performs in the ZO domain.
However, with the growth of structural complexity, poststack migration becomes
inaccurate because the stack is not able to approximate the ZO section; prestack
migration must be applied in such scenarios.

• Time migration versus depth migration

Time migration builds a migrated image in two-way travel time, while the
depth migration method directly outputs vertical-depth images. Apart from
the cost efficiency of time migration over depth migration, the major difference
between them is how they cope with lateral velocity variations. Time migration
assumes that lateral velocities are invariant/homogeneous along a cable length
and are generally gentle. Conversely, depth migration accommodates lateral
velocity changes and is capable of correctly imaging complex structures associated
with strong velocity variations. However, in order to get an accurate image
from depth migration, accurate depth-velocity parameters (vertical velocity,
anisotropic parameters) are required, which are always challenging to obtain.

• Ray-based versus wavefield-extrapolation-based migration

With respect to the implementation of migration algorithms, migration can be
categorised into ray-based and wavefield-extrapolation-based methods. These are
also known as integral migration algorithms and differential migration algorithms,
respectively. Unlike the wavefield-extrapolation-based methods that solve the
wave equation directly, ray-based migration methods are based on high-frequency
approximations. Thus, seismic waves approximate rays and ray-paths, with the
assumption that the scale of the structure is greater than the seismic wavelength.
The Kirchhoff integral migration is the classic ray-based migration method, and
it has been widely used in industry for both time and depth migrations. However,
ray-based migration methods rely on a gently varying smooth velocity field for
calculating travel times, which makes these less accurate than the wavefield-
extrapolation-based methods in cases where the subsurface is complex and has
strong velocity variations. An extension of the Kirchhoff migration method is the
ray-based Gaussian beam migration (GBM). Compared to traditional Kirchhoof
methods that migrate one trace at a time, the GBM processes a group of traces

20



Overview of seismic migration imaging methods

(a supergather) and maps the supergather collectively into the migration domain.
The advantage of the GBM is that it can handle multi-path arrivals, as opposed
to the single-path Kirchhoff method, and it can achieve comparable results to
wavefield-extrapolation-based migration methods, but with less computational
cost in imaging structures with moderate complexity.

• One-way versus two-way wave equation migration

Wavefield-extrapolation-based migration (also known as wave-equation migration
(WEM)) models the full wavefield in a propagation so that it can image all the
energy from the surface to the subsurface point in order to generate an accu-
rate image in areas where the subsurface is complex. wave-equation migration
can be classified into one-way wave-equation migration (OWEM) and two-way
(full-wave) wave-equation migration (TWEM). Reverse time migration (RTM) is
the best known algorithm based on TWEM, which utilises both down-going and
up-coming wavefields. As an advanced WEM method, RTM is able to handle
most of the challenges associated with seismic imaging, including large velocity
variations, steep dips, multiple paths and caustics. However, RTM requires full
wavefield modelling in each migration step, which leads to a heavy computational
cost and large memory requirement. In comparison, OWEM is more cost-effective
and requires less memory for computation. Moreover, OWEM is superior to
ray-based migration methods, and is able to achieve comparable results to RTM
in imaging complex structures, as well as strong velocity variations. Compared
with RTM, the disadvantages of OWEM are that it has less accuracy in imag-
ing very steep dips, and it does not treat turning waves and prismatic waves
intrinsically. We give a detailed discussion of OWEM methods in the next section.

The above is summarised in Fig.3.2. This demonstrates the appropriate
migration method needed, with respect to the complexity of the subsurface
structures and of the lateral velocity. As can be seen, with an increase in the
complexity of geological structures and lateral velocity, more advanced seismic
migration methods, such as Kirchhoff PSDM, beam migration, one-way wavefield-
extrapolation-based migration or RTM, must be applied. In this chapter, we
focus our discussion on PSDM.
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Figure 3.2: Comparison of migration methods.

3.2 Depth-migration methods

Depth migration handles complex subsurface structures with both vertical and
lateral velocity variations, and generates an image directly in the depth domain.
The quality of depth migration relies on an accurate depth-velocity model and
an appropriate algorithm. Depth-migration methods can be categorised into
ray-based and wavefield-extrapolation-based methods as already mentioned. We
introduce these methods in more detail in the following sections.

3.2.1 Ray-based depth-migration methods

Ray-based migration methods, such as Kirchhoff and Gaussian beam migration,
are based on solutions of the wave equation, assuming a high-frequency approxi-
mation. This assumption is acceptable if the seismic wavelength is much smaller
than the scale of the structure(s) (Etgen et al., 2009; Jones, 2010). The classic
method is Kirchhoff migration, as introduced by Schneider (1978) and developed
further by Bleistein (1987), Bancroft et al. (1994) and Etgen et al., (1997).
The basic formulation of Kirchhoff migration is given by Eq.3.1 (common-shot
migration):

I(X; Xs) =
∫

dXr

∫
W

∂Pu(Xr, Xs, t)
∂t

δ[t − (ts + tr)]dt, (3.1)

where X is the image point location, Xs and Xr are, respectively, the locations
of the source and receiver, ts and tr are travel times from the source and receiver
locations to the image point, W is a weight function, Pu is the recorded wavefield,
and δ is the Dirac function, representing the time shift in the integration.
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This equation shows that the image point can be constructed by the integra-
tion of the combined rays from the source and receiver locations via the image
point (as indicated in Fig.3.3). In practice, the Kirchhoff migration process
is separated into two steps – the travel time table calculation, using dynamic
ray tracing, and collection of the associated data samples for the summation.
Due to the efficiency in its implementation and computation, Kirchhoff PSDM
has been widely used in industry for depth imaging. However, as most of the
commonly used Kirchhoff migration algorithms assume a single ray path between
the source and receiver (although a multi-path Kirchhoff migration has recently
been developed ), these methods have limited accuracy in imaging complex struc-
tures. To solve this challenge, another type of ray-based migration – Gaussian
beam migration (GBM) (Hill, 1990, 2001) – has been developed. GBM, being a
directional Kirchhoff migration approach, is performed by applying the imaging
to decomposed local-slant stacked traces and summing the contributions to form
the migration image. Because this approach adds the contribution of different
rays to the imaging, it naturally overcomes the single-path limitation of Kirchhoff
migration, and thus derives improved image results for complex subsurface struc-
tures. However, as ray-based migration approaches, both GBM and Kirchhoff
migration solve the wave equation under high-frequency approximation, which
relies on a smooth velocity field for the ray path calculations.

Figure 3.3: Kirchhoff prestack depth migration.
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3.2.2 Wavefield-extrapolation-based depth migration

Wavefield-extrapolation-based depth migration is the most effective way to han-
dle complex structures and strong velocity variations. Unlike the ray-based depth
migration method, which uses ray tracing to construct the ray paths, wavefield-
extrapolation-based depth migration uses the wave equation to model complete
wavefronts. It can be classified into OWEM and TWEM, both of which use so-
lutions of the (acoustic) scalar wave equation for the wavefield extrapolation. In
general, all wavefield-extrapolation-based depth migration methods are based on
two key steps: (1) extrapolation of the source wavefield and the receiver (record)
wavefield; and (2) construction of the image by applying the imaging condition.
Wavefield extrapolation can be implemented either in the time or depth domains.
RTM (a TWEM method) employs both the down-going and up-coming wavefields.
On the other hand, OWEM methods, such as shot-profile and survey-sinking
migration, only utilise the one-way wavefield in the depth domain extrapola-
tion. As mentioned above, RTM is able to solve most seismic-image challenges,
but is characterised by expensive computational costs and significant memory
demands. Thus, OWEM, as a cost-efficient WEM method, is still attractive
in industrial application. We focus on discussing OWEM in the following sections.

Figure 3.4: Wavefield extrapolation migration. The reflector image (A–B) is
constructed by correlating the down-going (red curves) and up-coming (blue
curves) wavefields.

Fig.3.4 illustrates the concept of wavefield extrapolation migration proposed
by Claerbout (1971), who generalised it into two steps – computation of the
down-going and up-going wavefield and application of an imaging condition to
obtain an image of the reflectors. As illustrated in the figure, the down-going
wavefield is derived from the forward propagation of the source field, and the
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up-coming wavefield is derived from the backward propagation of the recorded
receiver field. The reflectors are then imaged when the down-going wavefield
and up-going wavefield coincide in time (imaging condition).

3.3 Wavefield extrapolation and imaging condition

In wavefield-extrapolation-based migration, the wavefield extrapolation can be
achieved by either directly solving the two-way wave equation through employing
finite difference schemes, or by implementing the wavefield downward continua-
tion, based on the one-way wave equation. We focus our discussion on the latter
approach in this section.

Based on the 3D acoustic wave equation (Eqs. 3.2), we can split the two-way
wave equation into two one-way wave equations (Eqs. 3.3 and 3.4) by applying
a 3D Fourier transform with respect to the variables (x, y and t). The derived
equations represent the solution of the down-going and up-going wavefields in
the frequency-wavenumber domain.

∂p2

∂x2 +
∂p2

∂y2 +
∂p2

∂z2 =
1
v2

∂p2

∂t2 , (3.2)

where x and y are the spatial coordinates, z is the depth, v is the velocity of the
medium and p is the pressure wavefield.

∂d̃

∂z
= −i

√
ω2

v2 − (K2
x + K2

y) d̃, (3.3)

∂ũ

∂z
= +i

√
ω2

v2 − (K2
x + K2

y) ũ, (3.4)

where Kx and Ky are horizontal wavenumbers, z is the depth, v is the velocity
of the medium, ω is the angular frequency. d̃ and ũ are respectively the 3D
pressure down-going and up-going wavefield following the 3D Fourier transform,
with respect to x, y and t.

From the integration of both sides of Eqs. 3.3 and 3.4, between limits z and
z+dz, we derive the wavefield extrapolation equations for both the down-going
(Eq.3.5) and up-going (Eq.3.6) wavefields in the frequency-wavenumber domain:

d̃(z + Δz) = d̃(z) exp−i
√

ω2
v2 −(k2

x+k2
y)Δz, (3.5)

ũ(z + Δz) = ũ(z) expi
√

ω2
v2 −(k2

x+k2
y)Δz, (3.6)

where d̃ and ũ denote the down-going and up-going 3D pressure wavefields in
the frequency-wavenumber domain.
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3. Depth imaging with wavefield extrapolation migration

Eqs. 3.5 and 3.6 illustrate that wavefield extrapolation is a recursive process,
where the wavefield can be extrapolated from one depth to another. In PSDM, the
down-going wavefield is derived by the downward extrapolation of a predefined
source function at the surface, and the up-going wavefield is the downward
extrapolation from the receiver positions. The imaging condition is usually based
on different versions of the concept: reflectivity = up-going wavefield/down-going
wavefield. The original imaging condition was proposed by Claerbout (1971):

R(x, y, zi) =
∫

u(x, y, zi, ω)
d(x, y, zi, ω)

dω, (3.7)

where u(x, y, zi, ω) and d(x, y, zi, ω) are the extrapolated up-going and down-
going wavefields at depth level zi, and R is the computed reflectivity.

In order to avoid instabilities associated with the division in Eq.3.7, the
alternative formulation is used:

R(x, y, zi) =
∫

u(x, y, zi, ω)d∗(x, y, zi, ω)
d(x, y, zi, ω)d∗(x, y, zi, ω)

dω ≈
∫

u(x, y, zi, ω)d∗(x, y, zi, ω)dω,

(3.8)
where d∗(x, y, zi, ω) is the complex conjugate of wavefield d(x, y, zi, ω). The
denominator d(x, y, zi, ω).d∗(x, y, zi, ω) is treated as a negligible weight factor in
the equation.

Eq.3.8 is known as the cross-correlation imaging condition. In practice,
different extensions of the original imaging condition have been proposed (Sava
et al., 2005; Guitton et al., 2007). In Paper II, we adapted a modified imaging
condition (Eq.3.9), which demonstrated good qualities in numerical examples:

R(x, y, zi) =
∫

u(x, y, zi, ω)d∗(x, y, zi, ω)dω〈∫
d(x, y, zi, ω)d∗(x, y, zi, ω)dω

〉 , (3.9)

where the notation 〈〉 denotes a smoothing operation with a triangular filter.
Before applying the smoothing, a threshold can be applied to the illumination
function (

∫
d(x, y, zi, ω)d∗(x, y, zi, ω)dω) to remove extremely small values. The

imaging condition in Eq.3.9 is a deconvolution type of imaging condition.
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3.4 One-way wave equation migration algorithms

Downward extrapolation/continuation, based on one-way wave equation meth-
ods, has been studied for decades. Many OWEM algorithms exist, including
finite-difference migration, phase-shift migration, frequency-wavenumber domain
migration and Fourier finite-difference (FFD) migration. Among them, the
frequency-wavenumber and FFD techniques have attracted much attention due
to their simplicity of implementation and computational efficiency. We introduce
the most classic frequency wavenumber migration algorithms and FFD migration
algorithms in the following. By following the same concept, the extension to the
3D code is straightforward.

3.4.1 Phase-shift migration method

Wave-equation migration by phase shift was proposed by Gazdag (1978). It is
based on the downward extrapolation equation:

Pz+Δz(ω, k) = Pz(ω, k) · eikzΔz, (3.10)

kz =

√
ω2

v(z)2 − (kx)2, (3.11)

where Pz and Pz+Δz denote the pressure wavefield in the frequency and wavenum-
ber domains at respective depth levels z and z + Δz, ω and k are the angular
frequency and horizontal wavenumber respectively, v(z) is the depth-dependent
velocity, and kz is the vertical wavenumber in a 2D migration; for 3D migration,
kz =

√
ω2

v(z)2 − (kx)2 − (ky)2.

Based on the phase-shift operator (Eqs. 3.10 and 3.11), the algorithm for the
(2D) poststack phase-shift depth migration can be summarised into the workflow
shown in Fig.3.5.

Figure 3.5: Workflow of the (2D) poststack phase-shift depth migration.
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3. Depth imaging with wavefield extrapolation migration

Figure 3.6: Workflow of the (2D) prestack phase-shift depth migration.

The poststack phase-shift migration algorithm can be easily extended to the
prestack. As shown in Fig.3.6, the (2D) prestack phase-shift depth migration is
based on the wavefield extrapolation of both the source field and shot records.
‘D’ and ‘U’ represent the forward-extrapolated down-going wavefield from the
source and the backward-extrapolated up-going wavefield from the shot record
(receivers), respectively. Compared to the backward operator applied to the
up-going wavefield, a sign change in the operator has to be applied to forward-
propagate the source field. Once the down-going and up-going wavefields have
been extrapolated separately for each depth level, the prestack imaging condition
is applied to derive the image of each level. By repeating this process, a prestack
migrated section is finally obtained.

As can be seen, the phase-shift migration algorithm has the advantages of
simple implementation and high computational efficiency. However, this method
has not been widely used in practice due to its inability to handle laterally-variant
velocity media. For this reason, other OWEM methods, implemented in a mixed
frequency-wavenumber and frequency-space domain, were introduced.
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3.4.2 Mixed frequency-wavenumber and frequency-space
migration method

In order to improve the limitation of phase-shift migration, mixed frequency-
wavenumber and frequency-space migration methods have been proposed. The
phase-shift plus interpolation (PSPI) migration (Gazdag et al., 1984) and the
split-step Fourier (SSF) migration (Stoffa et al., 1990) are representative methods
of this category.

The main concept of these methods hangs on the decomposition of the
laterally-varying velocity model into constant background and velocity pertur-
bations (Fig.3.7) and application of the decomposed wavefield-extrapolation
operators in the frequency-wavenumber and frequency-space domains.

Figure 3.7: Schematics of velocity model decomposition

All of these mixed frequency-wavenumber and frequency-space migration
methods concentrate on approximating the single-square-root (SSR) equation
(3D case shown in Eq.3.12); the accuracy of the approximation is key to these
OWEM methods.

kz = SSR(ω, k) =

√
ω2

v2
(z,x,y)

− |k|2, (3.12)

where, ω and k denote the angular frequency and horizontal wavenumber vector,
v(z,x,y) is the velocity model, with lateral and vertical variations, and kz is the
vertical wavenumber.

Various solutions have been proposed over the years to approximate the SSR
operator. The generalised solution can be written symbolically as:

kz = SSR(ω, k) ≈
(√

ω2

v2
ref

− |k|2
)

+
(

ω

v(z, x, y)
− ω

vref

)
+ ε, (3.13)
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where vref is the reference velocity and ε denotes high-order scattering terms.

Based on Eq.3.13, the vertical wavenumber kz can then be decomposed into
three terms – as indicated in Eq.3.14 – that correspond to the split vertical
wavenumber, with respect to the reference velocity, velocity perturbations and
high-order terms.

kz = SSR(ω, k) ≈ kref
z + ksplit−step

z + khigh_order
z

⎧⎪⎨⎪⎩
kref

z =
√

ω2

v2
ref

− |k|2

ksplit−step
z = ω

v(z,x,y) − ω
vref

khigh_order
z = ε

(3.14)

, where kref
z is the vertical wavenumber, based on the reference velocity, the

thin-lens term is the vertical wavenumber, based on velocity perturbations, and
the high order is the vertical wavenumber, based on the remaining high-order
terms.

With the generalised solution of SSR, we can rewrite the wavefield extrapola-
tion equation as:

Pz+Δz(ω, k) = Pz(ω, k) · eikzΔz

≈ Pz(ω, k) · eikref
z Δz · eiksplit−step

z Δz · eikhigh_order
z Δz,

(3.15)

where Pz and Pz+Δz respectively denote the pressure wavefield in the frequency
and wavenumber domain at depth levels z and z + Δz, and Δz is the depth
interval in the migration.

It should be noted that, in the implementation, the three decomposed
wavefield-extrapolation operators in the symbolic Eq.3.15 must be applied sep-
arately in the frequency-wavenumber and frequency-space domains. We give
details of the relevant methods in the following. The discussion is limited to the
2D case, but further extension to 3D is trivial.

3.4.2.1 Phase-shift plus interpolation method

The PSPI migration method was developed to take into account lateral velocity
variations by interpolating extrapolated wavefields using a phase shift employing
two or more reference velocities.

The PSPI algorithm only utilises the first two operators in Eq.3.15, and can
be arranged and expressed as Eqs. 3.16 and 3.17. The detailed 2D workflow
shows in Fig.3.8.

P ∗
z (ω, x) = Pz(ω, x) · ei ω

v Δz, v = v(x, z), (3.16)
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and

Pz+Δz(ω, x) = F−1
kx

{
Fx {P ∗

z (ω, x)} · ei(kz− ω
v′ )Δz

}
, kz =

√
ω2

v′2 − kx
2, (3.17)

where Pz(ω, x) is the input wavefield in the time-space domain, Fx and F−1
kx

de-
note forward and inverse Fourier transform with respect to x and kx respectively.
Moreover, v and v′ are the input velocity and reference velocity.

Figure 3.8: Workflow of poststack PSPI migration (Gazdag et al., 1984)

Following a similar scheme to that shown in Fig.3.6, we can also generate the
prestack PSPI migration scheme (Fig.3.9). As can be seen from the workflow
of prestack PSPI migration, the source and shot record wavefields have to be
extrapolated separately, using multiple reference velocities in the frequency-
wavenumber domain, and being interpolated in the frequency-space domain,
leading to high computational costs.
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3. Depth imaging with wavefield extrapolation migration

Figure 3.9: Workflow of prestack phase-shift plus interpolation migration.

PSPI migration is an extension of phase-shift migration, and is capable of
handling media with lateral velocity variations. However, as the accuracy of the
migration depends on the number of reference velocities used in the migration,
and the interpolation has to be applied at each depth level, the PSPI migration
performs less efficiently than other migration approaches.

3.4.2.2 Split-step Fourier method

SSF migration was introduced by Stoffa et al. (1990). This approach separates
the velocity field into a constant background (reference) velocity field and a
varying velocity perturbation field (thin-lens term), and approximates the SSR
equation as:

kz = SSR(ω, k) ≈ kref
z + ksplit−step

z . (3.18)

The corresponding wavefield extrapolation is then treated as a separate
constant phase-shift operation in the frequency-wavenumber domain, followed
by an additional phase correction in the frequency-space domain.
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Pz+Δz(ω, k) = Ft,x {Pz(t, x)} · e
i
√

ω2
v2

ref

−(kx)2Δz

, (3.19)

Pz+Δz(ω, x) = F−1
k {Pz+Δz(ω, k)} · e

iω( 1
V − 1

Vref ) Δz
. (3.20)

As shown in Fig.3.10 (poststack SSF workflow), this method splits the wave-
field extrapolation into two steps: (1) operation of the phase-shift extrapolation,
using a defined constant reference velocity (Eq.3.19); and (2) application of the
additional thin-lens term correction to handle the velocity perturbation (Eq.3.20).
The corresponding prestack SSF workflow is also shown in Fig.3.11.

Figure 3.10: Workflow of SSF migration (2D).
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Figure 3.11: Workflow of prestack SSF migration (2D).

Compared to the PSPI method, SSF migration has a higher computational
efficiency, since it does not require interpolation due to the use of only one
reference velocity during the downward extrapolation. It is also unconditionally
stable because the downward continuation only involves phase correction terms
in the frequency-wavenumber and frequency-space domains. However, as the SSF
operator assumes moderate lateral variations in velocity, it performs relatively
poorly in cases where the subsurface has large velocity contrasts and structures
with steep dips.
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3.4.3 Fourier finite-difference migration method

SSF migration is unconditionally stable, and is capable of handling steep dips;
however, it is inaccurate in cases where large lateral velocity contrasts exist.
Another type of one-way wave migration – finite-difference migration (Claerbout,
1971, 1985) – is able to handle large velocity variations in both lateral and
vertical directions, but has shortcomings in dealing with steeply-dipping events
(Claerbout, 1985). Ristow et al. (1994) proposed the FFD migration, which
combines the advantages of a SSF migration and a finite-difference migration to
improve the migration performance in cases of large velocity contrasts and steep
dips.

FFD is a high-order, hybrid algorithm implemented in mixed frequency-space
and frequency-wavenumber domains. It is formulated by a direct expansion of
the difference between the SSR equation, evaluated at the real medium velocity
and the reference velocity. The (3D) SSR equation is approximated as:

kz = SSR(ω, k) ≈ kref
z + ksplit−step

z + khigh_order
z

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kref

z =
√

ω2

v2
ref

− |k|2

ksplit−step
z = ω

v(z,x,y) − ω
vref

khigh_order
z =

(
ω

v(z,x,y) − ω
vref

)(
2vrefvX2

4−(v2
ref+v2+vrefv)X2

) (3.21)

where, kref
z is the vertical wavenumber based on the reference velocity, ksplit−step

z

is the vertical wavenumber based on velocity perturbations, and khigh_order
z is

the vertical wavenumber based on the remaining high-order terms (wherein
X = |k|vref /ω).

The downward extrapolation can then be approximated as (B. L. Biondi,
2006):

Pz+Δz(ω, k) ≈ Pz(ω, k) · eikref
z Δz · eiksplit−step

z Δz · eikhigh_order
z Δz, (3.22)

where Pz and Pz+Δz denote the pressure wavefield in the frequency and wavenum-
ber domain at the respective depth levels z and z + Δz, and Δz is the depth
interval in the migration.

As shown in Eqs. 3.21 and 3.22, FFD migration includes the constant phase-
shift term applied in the frequency-wavenumber domain, the split-step (thin-
lens) correction term in the frequency-wavenumber domain and the additional
cascading high-order correction term implemented by an implicit finite-difference
scheme in the frequency-wavenumber domain.
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3. Depth imaging with wavefield extrapolation migration

Compared to other OWEM methods, this hybrid FFD migration operator
effectively improves the accuracy of the depth image in cases of complex structures
with steep dips and large lateral velocity variations. Thus, it has been widely used
in industry for OWEM. However, the FFD migration method has shortcomings
in 3D. Although the FFD approach can be extended to a 3D wave-migration
scheme, employing finite-difference operator splitting (e.g. Li, 1991; Ristow et al.,
1997). This splitting process is not straightforward and generates numerical
anisotropy. Furthermore, the extension of the FFD technique to the VTI case
is also challenging due to difficulties in selecting appropriate references for the
anisotropy parameters.

3.5 3D prestack Fourier mixed-domain (FMD)
depth-migration method

As discussed above, although many OWEM methods exist for seismic depth
migration, most of them struggle either with stability, accuracy, anisotropic noise
or computational cost. Thus, in Paper II, we proposed a new OWEM method
based on a mixed space- and wavenumber-propagator that effectively overcomes
these issues and is feasible in VTI media.

FMD PSDM can be regarded as a high-order extension of the SSF migration
method. Unlike the mixed domain depth migration methods (SSF and PSPI),
FMD is capable of imaging complex geology with large lateral contrasts, in both
isotropic and anisotropic cases. Furthermore, compared to the FFD migration
method, FMD naturally avoids numerical anisotropy in its implementation, and
achieves sufficient accuracy for 3D VTI media with large lateral contrasts in
terms of the velocity and anisotropy parameters.

3.5.1 3D Fourier mixed-domain one-way propagator for a vertical
transversely isotropic medium

For VTI media, the mixed-domain representation of the vertical wavenumber is
formulated as (3D case):

kzj(x, k, ω) =

√
k2

j (x) − (1 + 2εj(x)) k2
T

1 − 2 [εj(x) − δj(x)] k2
T /k2

j (x)
, (3.23)

with:

kj =
ω

cj(x)
, k · k =

√
k2

x + k2
y = k2

T , (3.24)

where cj(x) is the laterally-varying vertical medium velocity in the j-th layer,
and εj(x) and δj(x) are the Thomson parameters.

In FMD migration, the VTI vertical wavenumber can be approximated by
Eq.3.25, where the vertical wavenumber is decomposed into a background plane-
wave term associated with a layered model, a thin-lens term to correct the
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velocity perturbations and an additional high-order correction term of order N,
taking into account the strong lateral velocity variations and higher dip angles.

kzj(x, k, ω) ∼= kz0j(k, ω) + [kj(x) − k0j ] (1 + ξ)

+k0j

[{
a0j−

√
1+γj(x)Aj(x)

}2

T
/k2

0j

{1−b0jk2
T

/k2
0j}

−
∑N

n=1

√
1+γj(x)Aj(x){Bj(x)−b0j}n(k2

T /k2
0j)n+1

{1−b0jk2
T

/k2
0j}n+1

]
,

(3.25)
where:

Aj(x) =
aj(x)

1 + γj(x)
, Bj(x) =

bj(x)
1 + γj(x)

, (3.26)

and

kj(x) =
√

1 + γj(x) · k0j , γj(x) =
c2

0j

c2
j (x)

− 1, k0j =
ω

c0j
, (3.27)

with coefficients defined as:
ξ = −0.00099915, aj(x) = 0.46258453 (1 + 2δj(x)) ,

bj(x) = 2 (εj(x) − δj(x)) + 0.40961897 (1 + 2δj(x)) ,
(3.28)

and

a0j = 0.462584531 (1 + 2δ0j) , b0j = 2 (ε0j − δ0j) + 0.40961897 (1 + 2δ0j) .
(3.29)

Based on Eq.3.25, the generalised mixed-domain VTI PSDM scheme can be
formulated (after reorganisation and neglecting the high-order cross terms):

P (zj + Δz) =P (zj) · e[ikz0jΔz] · e[i(kj(x)−k0j)(1+ξ)Δz] · {1 + Γj(u, x)} ,
(3.30)

where: u = k2
T /k2

0j and

Γj(u, x) =
{

ik0j

{
a0j −

√
1 + γj(x)Aj(x)

}
Δz

}
u

[1 − b0ju]

−
N∑

n=1
ik0j

√
1 + γj(x)Aj(x) [Bj(x) − b0j ]n Δz

un+1

[1 − b0ju]n+1 .

(3.31)

To make the proposed FMD scheme unconditionally stable, a dip filter in the
frequency-wavenumber domain is applied. Moreover, a dual-reference scheme for
highly-complex geological models (with the inclusion of large velocity anomalies,
such as salt bodies) is proposed. The corresponding updated scheme can be
found in Eqs. (18) and (20) in Paper II.
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3.5.2 Examples of Fourier mixed-domain migration

We can now demonstrate the potential of the FMD migration, using a controlled-
data example based on prestack data from the Sigsbee2A model, made public
by the Subsalt Multiples Attenuation and Reduction Technology Joint Venture
(SMAART JV) between 2001 and 2002. As shown in Fig.3.12, this model
describes the subsalt geological setting of the Sigsbee Escarpment in the deep-
water Gulf of Mexico. Both the upper and lower parts of the Sigsbee2A model
represent complex features. The shallow geology has a challenging combination of
strong lateral variation and steep dip structures, defined by two synclines. Below
the salt, faulted blocks with fine-layered structures are present, superimposed
on a line of point scatterers.

Figure 3.12: Sigsbee 2A stratigraphic model.

To test the poststack version of the FMD migration, a ZO dataset, based on
the exploding reflector model, were generated using a finite-difference programme
from the CREWES software package. The controlled data (shown in Fig.3.13)
were characterised by a spatial sample interval of 7.62 m (25 ft), a temporal
sample interval of 8 ms and a total recorded length of 12 s. A Ricker wavelet,
with a centre frequency of 20Hz, was used in the modelling.

In poststack FMD migration, a frequency range of between 5 and 20Hz
and a depth interval of 7.62 m (25 ft) were employed. The corresponding
depth-migration results are shown in Fig.3.14. On direct comparison with the
stratigraphic model, the migrated image demonstrates good quality for both
the salt and most of the sedimentary structures. However, the image shows
some dipping noise and degraded structures under the salt body, which would
be expected in the poststack depth migration. This can be improved by using
the prestack FMD migration, as shown in the following.
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Figure 3.13: Sigsbee 2A ZO synthetic stack.

Figure 3.14: Poststack FMD migration image.

For the prestack FMD migration test, the prestack data consisted of 500
source gathers, each containing a total of 348 receivers. During the migration, we
employed a bandwidth of 0–40 Hz, a dual-velocity reference and a second-order
scattering scheme (Eq. (18) in Paper II).

We first give an example of a single-shot migration, employing a cross-
correlation imaging condition (IC) (Fig.3.15a). By introducing the denominator
from Eq. (23) in Paper II, we obtain the deconvolution IC actually employed,
where the denominator can be interpreted as an illumination compensation. The
corresponding result is given in Fig.3.15b, where it can be seen that the subsalt
events have now been amplified. In addition, an appropriate mute has been
applied. The final image is constructed by summing all the partial images output
from each shot-point migration. The spatial sample interval of the final image is
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37.5 ft along the horizontal direction and 25 ft along the vertical direction. As
can be observed from Fig.3.16, most of the subsalt features were well recovered.
The deep, flat reflector was also well reconstructed, and the scatterers along the
two horizontal lines are mostly well focused.

Figure 3.15: Single-shot migration profile. (a) First-order dual-velocity FMD
with cross-correlation imaging condition, (b) first-order dual-velocity FMD with
deconvolution imaging condition and mute applied.

Figure 3.16: Prestack FMD migration image.
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In Paper II, we further demonstrated the performance of the prestack FMD
method in both 2D and 3D VTI anisotropic migration cases, which included con-
trolled data and 3D field data from the Barents Sea. All the results demonstrated
the good performance of the proposed FMD migration algorithm.

3.5.3 Schematics of iterative Fourier mixed-domain
depth-migration and velocity-building

Besides being a powerful PSDM method in itself, a possible future application of
the FMD technique might be in velocity model building, as part of an iterative
migration loop. In cases of complex velocity fields associated with embedded
salt bodies, or other strongly-contrasting inhomogeneities, the conventional
approach that employs a Kirchhoff PSDM may give poor results in areas below
such structures. In iterative Kirchhoff PSDM, typical input data will comprise
constant-offset (or, alternatively, constant-angle) sections. Shifts in depth, picked
in a series of common-image gathers (CIGs), are then used as inputs into a
reflection-tomography programme to obtain an updated velocity model, followed
by a new iterative migration step.

Figure 3.17: CIG from shot profile migration using perturbed velocity field.
Location outside the salt indicated by the red vertical line to the left in Fig.3.17.

In the case of the FMD method, which is a shot-point-based PSDM technique,
the concept of CIG is still valid, but the offsets are replaced by shot-point indices
(or shot-point offsets). Figs. 3.17 and 3.18 illustrate examples of two CIGs from
the Sigsbee2A model. In both figures, results are shown for a true velocity model
and perturbed models in the range +20% to -20%. The locations of the two CIGs
are indicated by the left (corresponding to Fig.3.17 and outside salt) and right
(Fig.3.18 and inside salt) red vertical lines in Fig.3.16. In both examples, it can
be seen that these CIGs demonstrate the same sensitivity to velocity errors as
the more conventional CIGs formed from depth-migrated constant-offset sections.

41



3. Depth imaging with wavefield extrapolation migration

Note that the number of traces in each CIG is about 100 for this dataset, which
is actually higher than the fold of 87.

Figure 3.18: CIG from shot-profile migration using perturbed velocity field.
Location inside the salt, indicated by the red vertical line to the right in Fig.3.17.

Figure 3.19: Initialisation step employed prior to reflection tomography. Rays
are traced from a specific image point (Pi) on an interpreted horizon in the
migrated CIG, and the ray (SiPi) closest to the selected source location is picked
or interpolated. The corresponding receiver location (Ri) is now defined by the
specular or stationary ray (RiPi), fulfilling Snell’s law; that is, using information
about the angle of incidence (α) and the local dip (β) of the reflection interface.
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Thus, by analogy with the conventional Kirchhoff type of velocity analysis
and model building, depth shifts can be (automatically) picked for each imaged
trace in a given CIG. Before these picked data can be input into a reflection
tomography programme, a preprocessing step needs to be carried out; for each
shot-point index associated with an imaged trace in the CIG, the corresponding
receiver location needs to be determined. This procedure is shown schematically
in Fig.3.19. We assume an initial smooth velocity model and a set of interpreted
key horizons.

In this short discussion, the 2D case is used as an illustration. Extension to
3D requires that a sophisticated regularisation technique can be applied to the
data to compensate for the irregular source and receiver distribution.
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Chapter 4

Migration velocity estimation
based on kinematic wavefield
attributes

In Paper III, we revisited the kinematic time migration and demigration, and
developed a detailed numerical scheme for time-migration velocity estimation,
using nonlinear mapping. This proposed time-migration velocity method is
based on the input of kinematic attributes (travel times and local slopes), which
are extracted from the prestack seismic dataset in the migration or recording
domain. Using the derived kinematic attributes, an algorithm based on Fréchet
derivatives, employing a nonlinear kinematic time-migration/demigration solver,
was developed for the time-migration velocity estimation. This generalised scheme
is valid for both 2D and 3D homogeneous and heterogeneous time-migration
velocity estimation, and is feasible for use in both narrow- and wide-azimuth
geometries. As an alternative to conventional time-migration velocity estimation,
it can be used for initial velocity model building in depth-migration velocity
modelling, and is likely to be extendable to direct depth-migration velocity
estimation. In this chapter, we first give an overview of migration velocity
estimation methods, then provide the key elements of the time-migration velocity
estimation based on nonlinear kinematic migration/demigration solvers.

4.1 Overview of migration-velocity estimation methods

In seismic imaging, two main problems need to be addressed: (1) the estimation
of the subsurface velocity model; and (2) the choice of an appropriate migration
algorithm. As discussed in the previous chapter, seismic migration is a process of
placing recorded data into the correct subsurface position, and it is classified into
time and depth migration based on the domains being migrated. Prestack time
migration (PSTM) (e.g. Claerbout, 1976, 1985; Bancroft et al., 1994; Fowler,
1997) uses prestack seismic data and a locally homogeneous time-migration
velocity model to construct a migrated image in the time domain. The more
sophisticated PSDM algorithm (e.g. Gazdag, 1978; Bleistein, 1987; Hill, 1990;
Stoffa et al., 1990; Ristow et al., 1994) honours a complex depth-migration
velocity model and generates a more accurate subsurface image. For both PSTM
and PSDM, accurate migration-velocity models are relied on to obtain the
correct migration image. We introduce the classic time/depth migration-velocity
estimation in the following. The content of this section is based on Yilmaz
(2001), B. L. Biondi (2006) and Jones (2010).
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4.1.1 Time migration-velocity estimation

PSTM is a robust and efficient process that is routinely applied in seismic
imaging. It achieves a reasonable accuracy in imaging simple to moderate
structures with a homogeneous velocity background. An accurate time-migration
velocity determines the image quality of PSTM, and affects the depth-migration
result, as most depth-migration velocity estimations use this as the initial velocity
model. In the following, we give an overview of the classic time-migration velocity
estimation methods.

4.1.1.1 Migration-velocity analysis

To derive an accurate migration-velocity model, Al-Yahya (1989) proposed a
migration-velocity analysis (MVA) based on the analysis of residual moveouts
(RMOs) of migrated common-image-gathers (CIGs). Although the proposed
scheme is based on the migration of shot gathers, and is used for depth-MVA,
this MVA concept has been adapted for time MVA (e.g. Deregowski, 1990; Liu
et al., 1995; Schleicher, Tygel, et al., 2007). Among all such analyses, the time
MVA by iterative PSTM and residual MVA is the most used approach in the
industry. As shown in Fig.4.1, this method uses multiple iterations of PSTM and
NMO MVA on CIGs to estimate the time-migration velocity (Biondi, 2006). In
this process, the flatness of events on the CIGs is used as a criterion for optimal
time-migration velocity estimation.

Figure 4.1: Conventional workflow of time MVA

Due to the simplicity of the method, this time-migration velocity-estimation
method has been used routinely in the industry. However, the limitation of this
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method is that it assumes a horizontally-layered model without lateral velocity
variations. Similar to the conventional NMO velocity analysis on CMP gathers,
in the case of dipping reflectors or lateral velocity variations, this method is
inaccurate in estimating the optimal time-migration velocity. Moreover, this
approach requires manual NMO-velocity picking in every iteration, and the cost
increases greatly as the density of the MVAs increase.

4.1.1.2 Migration velocity estimation by velocity continuation

Another type of time-migration velocity estimation – velocity continuation – was
proposed by Fomel (1994), Hubral et al. (1996) and Schleicher et al. (1997).
This migration velocity estimation method is based on the analysis of migrated
images using a series of migration velocities. Applying velocity continuation to
migration analysis includes the following steps (Fomel, 2003):

1. The prestack CO migration to generate the initial data for continuation.

2. Velocity continuation with stacking and semblance analysis across different
offsets to transform the offset data dimension into the velocity dimension.

3. Picking the optimal velocity and slicing through the migrated data volume
to generate an optimally-focused image.

This method is essentially a process of migration-velocity scanning, which de-
termines the time-migration velocity based on searching of the optimal migration
image. As mentioned above, the first step of this approach is to transform the
prestack data into multiple migrated images, using a series of constant velocities,
and time-migration velocity picking based on these migrated images.

4.1.1.3 Migration velocity estimation by using local event slopes

Ottolini (1983) proposed an PSTM method based on local event slopes. Fomel
et al. (2007) further generalised this approach for time-domain imaging and the
estimation of the NMO, interval and migration velocities.

Based on the 2D formulation of Fomel et al. (2007), using the oriented PSTM
approach, the recorded data can be mapped from the prestack data domain (t,
h, y) to the time-migrated image domain (τ, x) (Eqs4.1 and 4.2). Furthermore,
a time-migration velocity model can be derived from mapping the prestack local
event slopes (Eq.4.3):

τ2 =
tph

[
(t − hph)2 − h2p2

y

]2

(t − hph)2 [
tph + h

(
p2

y − p2
h

)] , (4.1)

x = y − htpy

tph + h
(
p2

y − p2
h

) , (4.2)
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4
v2 =

t
[
tph + h

(
p2

y − p2
h

)]
h (t − hph)

, (4.3)

where t, h and y are the prestack data coordinates, (τ, x) are the time-migrated
image coordinates, phandpy are the prestack local event slopes in the offset and
space direction, h is a half-offset and v is the time-migration velocity.

Based on this formulation, time-migration velocities turn into data attributes
associated with local event slopes, which can be directly extracted from the input
data. As discussed in the previous chapter, the local slopes in Eqs4.1–4.3 can be
extracted from the prestack data based on the local slant stack (Ottolini, 1983),
the Hilbert transform (Cooke et al., 2009), plane-wave destruction (Claerbout,
1992) and the GST (Bigun et al., 1987) methods.

4.1.2 Depth-migration velocity estimation

In the subsurface imaging of complex structures and laterally-varying velocities,
depth migration provides a more accurate subsurface image than time migration.
Unlike time migration, which assumes a laterally-invariant velocity model, depth
migration honours the lateral velocity variation in the migration algorithm, and
thus is capable of accurately imaging complex structures with strong velocity
variations. In this sense, an accurate depth-velocity model is critical for depth-
domain migration. Conventionally, the depth-migration velocity estimation can
be divided into two categories – non-tomographic and tomography-based (Jones,
2003). We give an overview of each category in the following.

4.1.2.1 Non-tomographic type depth-velocity estimation

• Dix conversion

Dix conversion (Dix, 1955) was one of the most common non-tomographic
velocity-estimation methods used before the development of tomographic meth-
ods. As shown in the schematic (Fig.4.2), the interval velocity in a series of flat
layers can be derived from the associated rms velocities and travel times:

vintn =

√
V 2

n tn − V 2
n−1tn−1

tn − tn−1
, (4.4)

where vintn is the interval velocity in the layer bounded by interfaces n-1 and n,
tn−1 and tn are the corresponding ZO two-way travel times, and Vn−1 and Vn

are the corresponding rms velocities, which are approximated by the stacking
velocity obtained from the NMO analysis of the CMP gathers.

Assuming the subsurface is composed of flat layers with homogeneous ve-
locities, the Dix formula transforms rms velocities into interval velocities. The
advantage of the Dix transform is its simple implementation. However, its
fundamental problem is that the Dix conversion does not take into account
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Figure 4.2: Schematics of Dix conversion

lateral velocity variations in the layers. As stacking-velocity estimation assumes
a flat-layered and homogeneous velocity model in a cable length, where the
structure is associated with lateral velocity variations, the stacking-velocity
estimation becomes unfeasible, leading to inaccurate interval velocities.

In order to solve this problem, other non-tomographic velocity-estimation
methods have been proposed, such as normal and image ray map migration
(Hubral, 1975), stacking velocity inversion (Thorson et al., 1985), coherency
inversion (Landa et al.,1987), the Deregowski loop (Deregowski, 1990), MVA
based on RMO analysis (Audebert et al., 1997;I. F. Jones et al., 1998), and more
advanced Dix inversion approaches (Cameron et al., 2007; Iversen et al., 2008).
We briefly introduce two classic methods in the following.

• Velocity-estimation techniques based on map migration

Map migration is a mapping technique that has frequently been used in velocity-
estimation approaches. It repositions picked time horizons at their ‘true’ depth
locations, given an estimate of the interval velocities between the picked horizons.
This technique can be grouped into normal and image ray map migration, and
interval-velocity map migration. As far as the author is aware , for the map
migration of events in the recording domain, the first reference is Kleyn (1977),
whilst Hubral (1977) introduced the image ray. Concerning map migration from
the time-migration domain, a useful reference is Hubral and Krey (1980). We
give a short introduction to these methods in the following.

i Normal ray map migration: Using picked time horizons and the associated
interval velocities, normal ray migration maps non-migrated time horizons
to migrated horizons at depth by applying Snell ray-bending at each
interface and calculating the positions at depth. This process gives an
estimation of the depth horizons, but does not update the velocity between
the horizons.
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ii Image ray map migration: This maps the migrated horizons in time to
the migrated horizons at depth by employing the known interval velocity
and the lateral derivatives of the velocity field. Similarly to normal ray
migration, this process does not update the velocity between the horizons.
However, this process is more reliable than the normal ray migration
because the horizon picking is applied to the migrated data.

iii Interval velocity map migration: This is a tool for velocity sensitivity
analysis. In order to evaluate an effect of velocity perturbations on depth
horizons, interval velocity mapping is applied, consisting of two key steps
– a de-map-migration using the original migration velocity, and then a
re-map-migration using the perturbed migration velocity.

• Coherency velocity inversion

Coherent inversion (shown in Fig.4.3) is an interval-velocity scanning technique.
It uses ray tracing through predefined velocity models to compute moveout
trajectories and calculate the coherency (semblance) along the trajectories in
CMP gathers. The estimated velocity is the one with the highest semblances.

Figure 4.3: Coherent inversion.

As shown in Fig.4.3, with the perturbation of overburden velocities above
the reflection point, the calculated trajectories vary. The trajectory calculated
at the optimal velocity will best fit the seismic event and generate the highest
semblance. The advantage of this method is that it employs ray tracing in
the trajectory’s modelling, thus being able to handle non-hyperbolic events
in the data. However, the main disadvantage of this method is that it is not
very accurate for complex structures, and is susceptible to noise in the seismic
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data. Therefore, this method is more commonly used to construct an initial
depth-velocity model.

• Deregowski loop

This approach assumes that the seismic data has been migrated using an ap-
propriate depth-migration velocity model to generate flat events on migrated
gathers. In its operation, the migrated-depth gathers are scaled to time, and
an inverse NMO correction is applied using the rms velocity converted from the
depth-migration velocity. A new rms velocity picking is applied subsequently.
Ideally, if the depth-migration velocity is accurate, the newly-derived rms velocity
will be identical to the converted rms velocity. If not, the new rms velocity will
be converted to an interval velocity using Dix, and used to update the existing
migration velocity. The advantage of this method is that it is simple to apply.
The disadvantage is that the process is a 1D operation that does not consider
lateral variation caused by a velocity update and, also, the picked RMS velocity
is used to update the existing depth-migration velocity by Dix transform, which
will inevitably lead to errors in the velocity updates.

4.1.2.2 Tomography-based depth velocity estimation

The non-tomographic velocity-estimation methods mentioned above can be
regarded as local velocity updating schemes. They are generally capable of
handling moderately-complex structures, but are not suitable for geological sce-
narios with complex overburden structures. As global velocity update schemes,
variant-tomography-based velocity-estimation approaches have been proposed
and applied in the industry for several decades. Most of the tomographic methods
were formulated to solve an inverse problem (Backus et al., 1968; Backus et al.,
1970; Tarantola, 1987). With a predefined objective function, the tomographic
inversion process measures the difference between the recorded data and the
forward-modelled data derived from the existing velocity field, minimising the
difference to obtain the next velocity update.

As shown in Tab.4.1, the tomographic velocity estimation can be categorised
into ray- and waveform-based tomographies. Based on the domains used in the
operation, they can be further classified into data domain/recording domain
and image domain/migration domain tomographies. Ray-based tomography
consists of reflection (e.g. Bishop et al., 1985), transmission (Brownell, 1984) and
refraction (e.g. Osypov, 1999) tomographies. The waveform-based tomography
represented by full waveform inversion (e.g. Pratt et al., 1996; Sirgue et al., 2004)
integrates both the velocity estimation and depth migration into an inversion
process to generate the optimal depth image and the migration velocity model. In
this thesis, the focus is on a discussion of ray-based tomography in the data and
image domains. We outline some of the main ray-based tomographic methods in
the following.
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Data domain Image domain

Ray-based
tomography

Reflection travletime tomography

Transmission tomography

Refraction tomography

PSTM tomography

PSDM tomography

Waveform-based
tomography

Waveform tomography

Full waveform inversion (FWI)

Diffraction tomorgaphy

WEM velocity analysis
Wavepath tomography

Table 4.1: Tomographic types and domains.

• Reflection tomography

Most of the ray-based tomographic velocity-estimation methods work by
constructing an initial depth velocity model, followed by ray tracing to predict
the travel times in the prestack datasets. The travel time differences are then
minimised by iterative linear inversion to derive the velocity updates (e.g. Aki
et al., 1977; Bishop et al., 1985; Williamson, 1986; Farra et al., 1988). The
early reflection-tomography approaches use prestack datasets for tomographic
velocity estimation, but suffer from the challenge of reflection-horizon picking in
the data domain (i.e. the stacked data in the recording domain). To solve this
problem, reflection-tomography methods based on depth-migrated data have
been developed (e.g. Stork, 1992; Whitcombe et al., 1994; Ehinger et al., 1995).
Stork, 1992 introduced the tomographic method based on a linear inversion of
RMO on depth-migrated gathers. Due to the robustness of this method, it has
been widely used in industrial applications of reflection tomography.

As shown in Fig.4.4, reflection tomography in the migrated domain includes
the following steps: (1) the sorting of prestack data into the CO domain; (2)
construction of an initial depth velocity model; (3) application of PSDM to
CO sorted data using the velocity model derived from Step 2; (4) sorting
the PSDM-migrated data into CIGs; (5) picking the RMO on the CIGs; (6)
applying linearised tomography using the RMO to derive the velocity update;
(7) updating the initial velocity model; and (8) repeating Steps 3–7 until the
CIGs are flattened.
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Figure 4.4: Schematics of reflection tomography in the migrated domain.

Figure 4.5: Schematic workflow of linearized tomography. After the first model
is set up. PSDM is run with this model. CIG gathers are analysed in terms
of event flatness. The model is updated in such a way as to reduce the coset
function C(m). The process is iterated until C(m) reaches a minimum value. A
PSDM is needed in each iteration.
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The goal of the depth-velocity estimation is to find the depth-velocity model
that best flattens the CIGs. This is achieved through a tomographic inversion
process. Tomography can be regarded as an optimisation problem. With a
defined cost function, the tomography must find the best velocity-model parame-
ters to minimise the cost function. With respect to the reflection tomography, a
linearised tomography workflow is formulated, as shown in Fig.4.5. As shown, the
cost function of the reflection tomography is mathematically quantified by the
RMO on the CIGs and additional constraints (seismic-to-well ties, regularisation
and geological constraints, etc.). With the defined cost function, the tomography
is formulated to give a linearised problem, and is solved by an optimisation
method.

To solve a linearised tomography, the equivalent optimisation problem is
to minimise the RMOs (ΔZ) of the events on the CIGs. Assuming a prestack
dataset has been migrated using an initial depth-migration velocity mcur, we
can characterise the RMO of the event on the CIGs by comparing the migrated
depth at offset 2h with the depth at the reference (ZO) offset:

ΔZevent (x, y, h, mcur) = Zevent (x, y, h, mcur) − Zevent_ref, (x, y, h = 0, mcur) ,
(4.5)

where Zevent is the migrated depth for a given event, Zevent_ref is the migrated
depth at the reference offset, ΔZ is the depth difference representing the RMO
of the picked event, x and y are the coordinates of a CIG location, h is the
half-offset and mcur is the current velocity model.

After quantifying the RMO, we hope to obtain a more accurate velocity model
(mfinal = mi + dmi) to flatten the events on the gathers and to remove the
RMO. Based on the linearised inversion theory, if the current RMO is small,
we can linearise the problem by finding the small velocity perturbation dmi to
correct the RMO. Thus, by using the first-order Taylor expansion, Eq.4.5 can be
written as:

ΔZevent (x, y, h, mfinal ) = ΔZevent (x, y, h, mcur ) +
∑
mi

∂Δz

∂mi
· dmi ≡ 0, (4.6)

The quantity ∂Δz
∂mi

is the gradient representing perturbations of the RMO Δz,
with respect to the small changes in a single velocity-model parameter mi. Eq.4.6
can be further rewritten as a matrix notation:

[∂ΔZj/∂mi]i=1,N ;j=1,M ·

⎡⎢⎢⎣
...

dmi

...

⎤⎥⎥⎦
i=1,N

= −

⎡⎢⎢⎣
...

ΔZj

...

⎤⎥⎥⎦
j=1,M

, (4.7)
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where [∂ΔZj/∂mi] is a Jacobian matrix represented by M x N gradients,[
. . .dmi. . .

]T is the N x 1 vector, representing the velocity perturbation to be
solved, and

[
. . .ΔZj . . .

]T is the M x 1 vector, denoting the RMOs.

Based on the known RMOs, and the necessary gradients (calculated by ray
tracing), the velocity perturbations are then estimated by solving the linear
equations (Eq.4.7). In practice, as the formulated linearised equations may
have billions of parameters, and need to be repeated for many iterations, some
numerical algorithm-like conjugate gradients can be employed to solve the system.
Once the velocity perturbations have been derived from Eq.4.7, the migration
velocity is updated for the next iteration of the reflection tomography. After
several iterations, we can finally obtain the optimal depth-migration velocity
model.

• Stereotomography

Stereotomography (another type of reflection-based tomography) was devel-
oped by Billette et al., 1998, and is based on the concept of slope tomography,
introduced by Rieber, 1936, Riabinkin, 1957 and Sword, 1986. This technique
makes use of the picked travel times and slopes from the shot and receiver gathers,
and constructs a ray-based tomographic system to derive the velocity-model
update.

The idea behind this method is to use locally-coherent events in the prestack
non-migration domain, which are characterised by travel times and slopes, to
derive information about the velocity model. As shown in Fig.4.6, each locally-
coherent event of the tomographic dataset d is described by:

d = (s, r, Tsr, Ps, Pr) , (4.8)

where s and r are the source and receiver positions, respectively, Tsr is the two-
way travel time, and Ps and Pr are slopes of the event in the common-receiver
and common-shot gathers.

Any locally-coherent event is associated with a pair of model parameters
(ray-segment parameters):

(x, φs, φr, Ts, Tr) , (4.9)

where x is the position of the reflector, φs and φr are the ray-shooting angles
from x toward s and r, and Ts and Tr are two one-way travel times from x
toward s and from x toward r.

Meanwhile, the stereotomographic model is defined as a combination of the
velocity model, described by a set of velocity parameters (Vm) and a set of pairs
of ray segments associated with each picked event:
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Figure 4.6: Stereotomography data and model. The dataset consists of a set of
shot and receiver positions (s and r), travel times (Tsr) and slopes at both the
receiver and shot locations (Pr and Ps), picked on locally-coherent events. The
model is composed of a discrete description of the velocity field Cm, and a set
of diffracting points (x), two scattering angles (φs, φr), and two one-way travel
times (Ts, Tr) associated with each picked event (Billette et al., 1998, figure
redrawn)

.

m =
[
(Vm)M

m=1 , [(x, βs, βr, Ts, Tr)n]N
n=1

]
, (4.10)

where x is the position of the reflector/diffractor point, βs and βr are the ray-
shooting angles from x toward x, and Ts and Tr are two one-way travel times
from x toward s and from x toward r.
At the modelling stage, assuming the model parameters and associated ray-
segment parameters are known, a set of stereotomographic data attributes
(Eq.4.11) can be calculated by ray tracing from scatter point X to the surface,
using the initial ray-shooting angles φs and φr, and with the travel time lengths
corresponding to Ts and Tr.

dcalc = (s, r, Tsr, Ps, Pr)calc , (4.11)

Once the initially-picked locally-coherent event attributes d and the velocity-
model-calculated attributes dcalc have been prepared, a tomographic scheme can
be formulated to minimise the calculated and observed data. The corresponding
cost function is defined as:

C(m) =
1
2

(dcalc(m) − dobs)T
C−1

D (dcalc(m) − dobs) , (4.12)
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where CD denotes a prior covariance matrix for the data parameters (Tarantola,
1987).

To solve this optimisation problem, an iterative nonlinear local optimisation
scheme, such as a quasi-Newton method, can be used to calculate the velocity
update, and the Fréchet derivatives of the data d, with respect to model m, can
be derived by paraxial ray tracing (Billette et al., 1998).

As an effective tomographic method, stereotomography has been one of the
most popular methods used for depth-velocity estimation. However, because this
approach requires accurate slope picking on the shot and receiver gathers in the
recording domain, the quality and cost of the picking becomes a major limitation.
To solve this problem, Chauris et al. (2002a,b) proposed a flatness criterion
for locally-coherent events in the migrated domain for the linear tomographic
inversion. It proposed locally-coherent event-picking on the CIGs in the migrated
domain, a demigration process to map the attributes to the recording domain,
and a tomographic inversion for the velocity estimation. This approach improves
the stability of the stereotomographic method because of the more feasible
picking in the migrated domain. However, the limitation of this method is
that it still needs tedious manual interaction and careful quality control for the
locally-coherent event picking.

• Tomography based on CRS wavefront kinematic attributes

As understood from previous chapters, CRS stacking provides enhanced ZO
stack and local kinematic wavefront attributes. These kinematic attributes can
also be used in tomographic inversion to derive velocity information. The concept
of tomography based on (CRS) kinematic wavefront attributes was proposed by
Duveneck and Hubral (2002) and Duveneck (2004).

Assuming the CRS stack has been applied to a dataset, and the kinematic
wavefront attributes (i.e. the emergence angle φ, the radius of curvature RNIP

of the NIP wave emerging at the surface position ξ, and the two-way-travel time
t0) have been generated, the tomographic problem can then be set as: given
input data (T, M, φ, ξ)i, i = 1, ..., ndata, find velocity model parameters mjk,
j = 1, ..., nx, k = 1, ..., nz, and normal ray starting parameters at depth (x, z, θ)i,
i = 1, ..., ndata that correctly model the input data (shown in Fig.4.7). Here,
M = 1/v0RNIP and T = t0/2 are used in the calculations (V0 is the near-surface
velocity); M is the second derivative of the travel time, with respect to the
ray-centre coordinate; x and z are the coordinates of the reflection point; and θ
is the starting angle of the normal ray (i.e. the reflector dip). Once the data
and model have been parameterised, the tomographic problem can be set up to
minimise the misfit between the measured values (T, M, φ, ξ)i and those obtained
by dynamic ray tracing in the model. This nonlinear tomography problem is
then linearised and solved by iterative least squares inversion.
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Figure 4.7: Definition of data and model components. The data consist of the
quadruples (T, M, φ, ξ), while the model consists of the corresponding triples
(x, z, θ) and the velocity field v(x, z) =

∑nx

j=1
∑nz

k=1 mjkβj(x)βk(z).

Another tomographic method utilising (CRS) kinematic wavefront attributes
was proposed by Lavaud et al. (2004) – poststack stereotomography. Contrary to
the approach introduced by Duveneck and Hubral (2002) and Duveneck (2004),
this method converts CRS wavefront kinematic attributes into stereotomographic
parameters, and uses the stereotomography to solve the velocity estimation. The
workflow of this method is summarised as:

i Calculation of CRS and wavefront parameters for each CMP position and
time sample.

ii Picking locally-coherent events on the CRS stacked section.

iii Prestack travel time and slope calculations using the picked events and
the associated wavefront parameters. For each picked event at (Xcmp, t0),
we compute for a given offset h:

a) the source position s = Xcmp − h/2 and the receiver position r =
Xcmp + h/2.

b) the associated prestack traveltime t(s, r) = tCRS (Xcmp, h) using the
CRS operator.

c) the local slopes in the offset direction ph = ∂tCRS

∂h and in the CMP
direction pm = ∂tCRS

∂xcmp
. The local slopes at the source andreceiver are

then given by ps = (pm−ph)
2 , pr = (pm+ph)

2 .

Based on these steps, a set of prestack data parameters (s, r, ps, prandtsr) for
stereotomographic inversion is prepared. A stereotomographic scheme can then
be applied to estimate the depth-migration velocity model.
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• Non-linear tomography

Most of these depth-velocity estimation methods require a full PSDM at each
iteration of the tomography. Thus, this linear tomography process is expensive,
and may converge slowly in complex areas. In order to reduce the cost of
the tomography, another tomographic approach – nonlinear tomography – was
introduced by Adler et al. (2008). This method proposed employing nonlinear 3D
tomographic inversion to replace the conventional linear tomographic processes.
As shown in Fig.4.8, the nonlinear tomography only applies full PSDM once in
the tomographic process. Unlike linear tomographic methods that pick the events
in the recording or migrated domain, nonlinear tomography first demigrates
a horizon picked on the RMO-corrected stack in the migrated domain to its
ZO equivalent horizon in the recording domain, and then uses ray tracing to
emulate PSDM by finite-offset map migration, and models synthetic CIGs in the
migrated domain. Ultimately, the modelled synthetic gathers are compared with
the PSDM gathers (RMO applied) to derive misfits for velocity tomographic
optimisation.

Figure 4.8: Schematic workflow of nonlinear tomography.

Apart from the method proposed by Adler et al. (2008), Guillaume et al.
(2008) addressed the flexibility of using the kinematic invariants (travel times
and slopes in the unmigrated recording domain) for nonlinear depth tomography.
Lambaré et al. (2009) also demonstrated the concept of nonlinear tomography
for time-migration velocity estimation. These proposed nonlinear tomographic
approaches greatly reduce the turnaround time and costs associated with depth-
migration velocity estimation by replacing the conventional PSDM and velocity
RMO analysis with the kinematic migration/demigration-based internal velocity
updating scheme. Due to the their efficiency and effectiveness, The nonlinear
tomographic technique has attracted much more attention and development for
industrial application and from academic research in recent years ( Guillaume et
al.,2013; Messud et al., 2015).
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4.2 Time-migration velocity estimation based on nonlinear
kinematic migration/demigration solvers

As discussed in previous sections, nonlinear tomography is an effective and
efficient technique for seismic migration velocity estimation. Compared to
linear tomography, nonlinear tomography does not require complete PSDM and
RMO picking in each iteration, which greatly reduces project costs. Moreover,
nonlinear tomography quantifies the RMO by its kinematic attributes, and uses
those kinematic attributes (travel times and slopes) in the tomographic velocity
estimation, which also increases the flexibility and stability of the tomography.

In Paper III, we revisited the nonlinear tomographic technique, introducing a
time-migration velocity-estimation technique based on the concept of nonlinear
kinematic migration and demigration. In this paper, based on available explicit
and analytic expressions that relate kinematic attributes (namely, travel times
and local slopes) of locally-coherent events in the recording (demigration) and
migrated domains, we revisited tomographic methodologies for velocity-model
building with a specific focus on the time domain. We particularly focused on
the ones that made use of local slopes, as well as travel times, as key attributes
for imaging. We adopted a strategy of estimating local inclinations in the time-
migrated domain (where there is less noise and better focus), and use demigration
to estimate those inclinations in the recording domain.

Figure 4.9: Kinematic time migration (green) and demigration (orange) processes
for constant offset, with indicated input and output reflection-time parameters.
The process estimates the aperture vector and a number of diffraction-time partial
derivatives, using the given input parameters and the known time-migration
velocity model. Small green/orange arrows signify the data flow. Redrawn from
Iversen et al. (2012).
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As shown in the kinematic migration and demigration scheme from Iversen
et al. (2012) (Fig.4.9), assuming the time-migration velocity model and a
diffraction function with its derivatives are known, the kinematic attributes in
the recording and migration domains can be mapped correspondingly with the
kinematic migration/demigration. In Paper III , we revisited this kinematic
time-migration and -demigration scheme (Iversen et al., 2012) and develop a
detailed numerical scheme for time-migration velocity estimation, employing the
kinematic attributes. In the following, we provide an introduction to the basic
elements of the proposed method.

4.2.1 Overview of kinematic attributes

Kinematic attributes (kinematic parameters) refer to the local kinematic pa-
rameters of a seismic event point, which are represented by the local slopes
and curvatures of the individual event point. It is known that such quantities
provide the travel time approximation of the seismic event in the vicinity of that
reference event point (e.g, Ursin, 1982; Landa et al., 1999; Hubral, 1999; Jäger
et al., 2001; Fomel et al., 2012), and that they are associated with the first- and
second-order derivatives of the measured travel time (Bortfeld, 1989; Schleicher
et al., 1993).

Kinematic attributes have been used for a number of applications in seismic
processing, imaging and inversion. These include: (1) poststack/prestack data
enhancement (e.g. Baykulov et al., 2009; Faccipieri et al., 2016); (2) diffraction
separation and imaging (e.g., Berkovitch et al., 2009; Klokov et al., 2012); (3)
time migration/demigration (e.g. Dell et al., 2011; Iversen et al., 2012); (4) data
interpolation and regularisation (e.g. Hoecht et al., 2009; Coimbra et al. (2016));
and (5) attribute-oriented seismic processing (e.g. Zhang et al., 2002; Cooke
et al., 2009).

Iversen et al (2012) systematically generalised and extended kinematic time
migration and demigration using kinematic attributes. We follow the convention
for defining the kinematic attributes, as explained below. We first define the
coordinate system used for the kinematic attributes and the associated kinematic
mapping, then we present the analytic diffraction function, which can be used
to derive the derivatives, and ultimately provide the generalised kinematic
attributes.

• Coordinate systems for recorded and migrated seismic data

We use a 2D Cartesian coordinate system (ξ1, ξ2) to describe the acquisition
geometry of 3D seismic experiments. As shown in Fig.4.10, in the horizontal
measurement plane, we consider a source point, s = (s1, s2), and a receiver point,
r = (r1, r2). The midpoint and half-offset coordinates are given as:
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4. Migration velocity estimation based on kinematic wavefield attributes

x =
1
2

(r + s), h =
1
2

(r − s). (4.13)

We also define the output point of the time migration using the notation m.
Then we can derive the aperture vector a as:

a = x − m. (4.14)

and define hS and hR as the source-offset vector and the receiver-offset
vector, respectively.

hS = s − m = a − h,

hR = r − m = a + h. (4.15)

Figure 4.10: Coordinate system used for describing 3D seismic experiments. The
source (s), receiver (r), CMP (x) and common-image point (m) are defined in
the horizontal measurement plane. The vectors of the aperture (a), half-offset h,
source-offset

(
hS
)

and receiver-offset
(
hR
)

are outlined.

• Diffraction Time Function for Time Migration and Demigration

The analytic diffraction-time function is used to generate the kinematic
attribute-related derivatives. The example given here uses one widely-used
diffraction-time function – the double-square-root (DSR) equation – which is
based on the exact travel-time function for both P- and S-wave-propagation
homogeneous isotropic media. The formulation is:

T D = T S + T R, (4.16)
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T S =
√

τ2

4
+ (a − h)T SM (m, τ)(a − h)), (4.17)

T R =
√

τ2

4
+ (a + h)T SM (m, τ)(a + h)), (4.18)

where T S , T RandT D represent the travel time from source to diffraction point,
travel time from diffraction point to receiver, and total travel time, respectively.
SM (m, τ) is defined as the time-migration velocity model.

• Diffraction-time function partial derivatives

Based on the predefined diffraction-time function, such as the presented
DSR travel time function, we can derive the analytic expression of the partial
derivatives used in the kinematic migration and demigration. Those derivatives
are the partial derivative of the diffraction time T D, with respect to the half-
offset, h, aperture, a, image gather location, m, and migration time, τ , which
are given as:

i First order partial derivatives

u =
∂T D

∂τ
, qh =

∂T D

∂h
, qa =

∂T D

∂a
, qm =

∂T D

∂m
. (4.19)

ii Second order partial derivatives

uh =
∂2T D

∂h∂τ
, ua =

∂2T D

∂a∂τ
, um =

∂2T D

∂m∂τ

Uhh =
∂2T D

∂h∂hT
, Uaa =

∂2T D

∂a∂aT
, Umm =

∂2T D

∂m∂mT

Uha =
∂2T D

∂h∂aT
, Uhm =

∂2T D

∂h∂mT
, Uam =

∂2T D

∂a∂mT

Uah = UhaT

, Umh = UhmT

, Uma = UamT

(4.20)

where,qh, qa, qm, uh, ua, um are 2x1 diffraction-time partial derivative
vectors, and Uhh, Uaa, Umm, Uha, Uhm, Uam, Uah, Umh, Uma are 2x2
diffraction-time partial derivative matrices.
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• Reflection-time function partial derivatives

For the reflection-time function, we generalise two single-valued reflection-
time functions corresponding to symmetrically-reflected waves:

t = T (h, x), τ = τ(h, m), (4.21)

where T and τ are the reflection time function in the recording and time-migration
domains, respectively.

By obeying the same convention, we can also define the reflection-time
parameters in the recording and time-migration domains:

i First- and second-order partial derivatives in the recording domain

p =
∂T

∂x
=
(

ph

px

)
, M =

∂2T

∂x∂xT
=
(

Mhh Mhx

MhxT

Mxx

)
, (4.22)

where we define the kinematic parameters for a reflection event at a given
trace location in the recording domain thus: reflection time, T X = T (h, x),,
slope (first-order derivative) vectors ph = ∂T/∂h, px = ∂T/∂x, and
second-order derivative matrices Mhh = ∂2T/∂h∂hT , Mhx = ∂2T/∂h∂xT ,
Mxx = ∂2T/∂x∂xT .

ii First- and second-order partial derivatives in the migration domain

ψ =
∂T
∂m

=
(

ψh

ψm

)
, M =

∂2T
∂m∂mT

=
( Mhh Mhm

MhmT Mmm

)
, (4.23)

where we also define the kinematic parameters for a reflection event at a
given trace location in the migration domain: migrated reflection time,
T M = T (h, m),, slope vectors ψh = ∂T /∂h, ψm = ∂T /∂m, and second-
order derivative matrices Mhh = ∂2T /∂h∂hT , Mhm = ∂2T /∂h∂mT , Mmm

= ∂2T /∂m∂mT .

In our method, considering the implementation efficiency and calculation
robustness, we chose the GST method for the first-order kinematic parameter
(slope) extraction and the QST for the second-order kinematic parameter (curva-
ture) extraction. The numerical GST and QST schemes are described in Chapter
I. This operation is applied either to stacked data in the migration domain or to
the NMO stack in the recording domain.
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4.2.2 Kinematic migration and kinematic demigration

Kinematic migration and its counterpart kinematic demigration have been used
to map kinematic local wavefront attributes (travel times, slopes and curvatures)
from/to the recording time domain to/from the migrated time or depth domain
(e.g. Hubral et al., 1980; Gjøystdal et al., 1981; Ursin, 1982; Iversen et al., 1996;
Iversen, 2004). With respect to the kinematic demigration, Whitcombe et al.
(1994) introduced a ZO kinematic time demigration scheme using the constant
migration velocity assumption. Söllner et al. (2004) further investigated ZO
kinematic migration and demigration under the framework of ray theory.

A systematic generalisation and extension of kinematic time migration and
demigration was developed by Iversen et al., (2012). The proposed technique
extends the kinematic time migration and demigration from ZO to finite-offset,
includes both the first-order (slope) and second-order (curvature) travel time
derivatives during the mapping, and generalises for any type of diffraction-time
functions. We illustrate the concept of kinematic migration and demigration using
the 2D prestack schematics in Fig.4.11, which use the diffraction-time function
and time-migration velocity to nonlinearly map the kinematic parameters (travel
time and slope) between the recording and migration domains. In Paper III,
we presented a detailed and generalised numerical scheme for kinematic time
demigration and migration.

Figure 4.11: Schematic overview of kinematic time migration and demigra-
tion for a 2D prestack seismic dataset. Based on the known diffraction-time
function, with its associated derivatives, and a time-migration velocity model,
the local kinematic parameters (x, T x, px, ph) in the recording domain can be
forward/backward-mapped to/from the counterpart (m, T M , ψm, ψh) in the
migration domain by kinematic time migration/demigration.
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4.2.3 Time-migration velocity model

In this proposed algorithm, we use the grid-based velocity model to describe the
time-migration velocity. The time-migration velocity model is defined on a 3D
rectangular grid in the variables ξ1 = m1, ξ2 = m2 and ξ3 = τ , where we add ξ3
to describe the velocity model in the time domain. Model parameters related
to cells or vertices within the grid will be unknowns in the velocity-estimation
process. The velocity model is described in terms of a multi-component vector
function, (Mλ), λ = 1, . . . , Nλ, where each component function Mλ(ξ1, ξ2, ξ3)
corresponds to one of the coefficients of the diffraction-time function.

Figure 4.12: Grid cell and local dimensionless coordinate (u, v, w) used for
describing the 3D time-migration velocity model.

As shown in Fig.4.12, the time-migration model is defined on a 3D rectangular
grid. The model parameters relate to the cells and the corresponding vertices
within the grid. A rectangular grid cell (i, j, k) is defined in terms of eight
vertices. We assume that the value of the function Mλ is known in all relevant
grid vertices Xi,j,k, and these values are denoted as Mλ

i,j,k.

In the tomography, we apply a local function Mλ(u, v, w) that pertains to
only one selected cell. The variables u, v, w are dimensionless, and take values
in the interval [0, 1] (in this case, Mλ (ξ1, ξ2, ξ3) = Mλ(u, v, w)). The function
Mλ is then expressed as values in the grid vertices that are neighbours to the
cell. To allow the differentiability of this function up to the second order, we use
a local cubic spline function to describe the velocity model (bicubic and tricubic
spline functions are used for 2D and 3D grids, respectively).
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4.2.4 Inversion scheme of time-migration velocity estimation

Based on the formulated kinematic time-migration/-demigration scheme, we set
up an inversion scheme to estimate the time-migration velocity. In the following,
we first give an overview of a common way of linearising a generally nonlinear
inversion problem, then we introduce the approach of iterative linearised inver-
sion to estimate the optimal time-migration velocity model.

Assuming we have observed (true) data and predicted data in the migration
domain, the misfit between these can be expressed as a function Dm(ν), where
ν is the model parameter vector with M components:

Dm(ν) = dtrue
m − dpred

m (ν), m = 1, . . . , M. (4.24)

This equation can be linearised with respect to a reference model ν0, where
the quantity ∂dpred

m /∂νn is the Fréchet derivative of Dm, with respect to ν.

Dm(ν) = Dm

(
ν0)+

∂Dm

∂νn

(
ν0) (νn − ν0

n

)
. (4.25)

Given Dm(ν) = 0 with optimal model parameters, the equation is rearranged
as:

∂Dm

∂νn

(
ν0) (νn − ν0

n

)
= −Dm

(
ν0) . (4.26)

In our time-migration velocity estimation, the observed data represent ideal
slopes in the offset coordinates of the CIGs, which are zero and correspond to
an optimal time-migration velocity model. The predicted data represent the
corresponding slopes of the CIGs migrated using the current time-migration
velocity model. The Fréchet derivative of Dm, with respect to ν, is now ∂ψh

I

∂νn
,

which is a partial derivative of the reflection slope in the offset coordinates ψh
I ,

with respect to the parameters νn of the time-migration velocity model.

∂ψh
I

∂νn

(
ν0) (νn − ν0

n

)
= −ψh

I

(
ν0) . I = 1, 2. (4.27)

To derive the Fréchet derivative of the above linear system, ∂ψh
I

∂νn
, we applied

the sensitivity analysis of kinematic time migration, with respect to the time-
migration velocity model, and derived the analytic expression of the first-order
changes of the reflection location, with respect to the time-migration velocity
model (i.e. the derivatives dm̂I/dν and dτ̂ /dν), as well as the the first-order
changes of the reflection slopes (i.e. the derivativesdψh

I /dν
)
.

Based on the above inversion scheme as set up above, and the derived
Fréchet derivatives, we are able to estimate the time-migration velocity by
using the kinematic parameters and the nonlinear mapping of the kinematic
migration/demigration.
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4.2.5 Workflow of time-migration velocity estimation based on
kinematic migration/demigration

Based on the formulated inversion scheme, we can summarise the workflow
of the time-migration velocity estimation based on the nonlinear kinematic
migration/demigration solvers as:

i Sort prestack data into common offset planes.

ii Construct an initial time-migration velocity model by smoothing the stack-
ing velocities.

iii Apply PSTM with the initial time-migration velocity model to derive the
migrated CIGs.

iv Derive the kinematic attributes in the migration domain
(

m, τ, ψh, ψm
)

by applying the GST methods and picking the locally-coherent events.

v Apply the kinematic demigration to generate the invariant kinematic
attributes in the recording domain

(
x, T, ph, px

)
.

vi Apply the internal iterations for time-migration velocity estimation, em-
ploying the invariant kinematic attributes in the recording domain. This
process includes kinematic migration and a constrained linear inversion
scheme.

vii Apply full PSTM, once the optimal time-migration velocity is obtained.

Figure 4.13: Time-migration velocity estimation workflow
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Chapter 5

Summary of publications and
discussion of future work

In this chapter, the contributions of the papers are summarised, and potential
future work is proposed.

5.1 Paper I

Fast and robust Common Reflection Surface (CRS) parameter esti-
mation
Anders U. Waldeland, Hao Zhao, Jorge H. Faccipieri, Anne H. Schistad Solberg,
and Leiv-J. Gelius
Geophysics, 83, O1-013, January, 2018.

The CRS method is an effective way to enhance the SNR of seismic data.
Compared to the conventional NMO stack, the CRS stack provides a strong
increase in redundancy and SNR. Conventionally, CRS parameters are obtained
by semblance-based parameter searches, which require expensive computation. In
order to solve this problem, we proposed a fast and robust (ZO) CRS parameter-
estimation technique in this paper. The proposed method can be generalised
as the following steps: (1) assume that a velocity guide is provided and derive
parameter C based on the velocity field; (2) construct a CMP stack based on
the known velocity; and (3) apply GST and QST methods to derive parameters
A and B. In numerical examples, we compared the proposed method with an
existing slope-based CRS parameter-estimation method. Our proposed method
demonstrated comparable accuracy and considerably improved efficiency over
the conventional semblance search- and slope-based CRS parameter-estimation
methods.

Although the proposed method is robust and efficient for CRS parameter
estimation, there are some limitations to its application. First, the proposed
approach assumes that an appropriate initial velocity field is provided for the
stack and parameter estimation. If a poor initial velocity field is used in the
stacking process, the stacked section will not have consistent reflections, or it will
be contaminated by noise, which will deteriorate the CRS parameter estimation.
In such a case, we would suggest applying the proposed method with a limited
aperture size to estimate the initial CRS parameters, and then employ the
semblance-based search to further refine the parameters. Moreover, the proposed
approach has limitations in its application to complex structures or structures
with conflicting dips. This is because the GST and QST methods assume that
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there is only one dominant direction for a local structure. To address this
challenge in a future work, we would propose implementing an extended (higher-
order) structure tensor method for multi-directional estimation (Barmpoutis
et al., 2007; Herberthson et al., 2007; Andersson et al., 2013). Alternatively, the
kinematic parameters can also be estimated in the time-migration domain, as we
proposed in Paper III, and mapped back to the recording domain via a nonlinear
kinematic demigration scheme. As discussed above, the CRS parameters can
be utilised to estimate the time- and depth-migration velocities (Duveneck et
al., 2002; Duveneck, 2004; Lavaud et al., 2004; Gelius et al., 2015). In a future
study, we would integrate the GST- and QST-based CRS parameter estimation
into those velocity estimation methods to further improve the efficiency of the
migration-velocity estimation based on CRS parameters.

5.2 Paper II

3D Prestack Fourier Mixed-Domain (FMD) depth migration for VTI
media with large lateral contrasts
Hao Zhao, Leiv-J. Gelius, Martin Tygel, Espen Harris Nilsen, and Andreas
Kjelsrud Evensen
Journal of Applied Geophysics, 168C, 118-127, September, 2019.

The superiority of RTM in imaging complex media is well known. How-
ever, as a costly and computer-intensive technique, RTM is typically used in
processing data from complex models. OWEM, as an effective wave-equation
depth-migration approach, is still widely used among the contracting companies
for 2D and 3D fast-track depth migration. Although many OWEM methods
exist for isotropic depth migration, most of them struggle either with accuracy,
stability or computational costs. The problem becomes more complicated when
extending OWEM from 2D isotropic media to 3D anisotropic media. Thus, in
this paper we presented a new method based on a mixed space- and wavenumber-
propagator that overcomes these issues very effectively, as demonstrated by
provided examples. The proposed method is a new OWEM algorithm for 2D and
3D prestack data that is also valid for VTI media, which can be regarded as a
higher-order version of the split-step Fourier (SSF) method, and is denoted as a
FMD migration. We tested the FMD technique in numerical experiments, using
both the control data generated by the synthetic models (the 3D SEG/EAGE salt
model and the 2D anisotropic Hess model) and the 3D field dataset, including
anisotropy from the Barents Sea. All the tests demonstrated the superior image
resolution provided by FMD migration.

The current version of the FMD method can handle 3D VTI media. Further
extension to the more general (Tilted Transverse Isotropy) TTI case is the
subject of ongoing research. In addition to the set of perturbed media parameters
inherent in the present formulation, the tilt of the symmetry axis also needs
to be included in a computer-efficient manner. Several similar studies have
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indicated the potential for an extension of the phase-screen methods, from 3D
VTI to 3D TTI media (Shan et al., 2005; Bale et al., 2007; Shin et al., 2014).
Future potential use of the FMD technique, besides it being an efficient PSDM
method, might include iterative PSDM velocity building as an alternative to the
industry-preferred Kirchhoff method.

5.3 Paper III

Time-migration velocity estimation with Fréchet derivatives based on
nonlinear kinematic migration/demigration solvers
Hao Zhao, Anders Ueland Waldeland, Dany Rueda Serrano, Martin Tygel, and
Einar Iversen
Studia Geophysica et Geodaetica, submitted, August 2019

PSTM is a robust and efficient process that is routinely applied in seismic imag-
ing. It achieves reasonably accuracy in imaging simple to moderate structures
with a homogeneous velocity background. An accurate time-migration velocity
determines the image quality of the PSTM and affects the depth-migration
result, as most depth-migration velocity estimations are highly dependent on a
sufficiently accurate initial depth-velocity model, derived from the time-migration
velocity, to guarantee convergence in iterative tomographic schemes. Convention-
ally, the most commonly-used approach of time-migration velocity estimation is
migration-velocity-analysis (MVA). This is based on the iterative PSTM and
residual moveout (RMO) analysis of migrated CIGs. Because this approach
assumes a horizontally-layered model and invariant lateral velocities in the MVA,
it is inaccurate in handling dipping structures and lateral velocity variations.
Recently, seismic wavefield kinematic parameters (i.e. travel time, local slopes
and local curvatures) have been more widely used in seismic processing, imaging
and inversion. Migration-velocity estimation methods employing kinematic at-
tributes have also been proposed, and have demonstrated their robustness and
efficiency in depth-migration velocity estimation (e.g. Rieber, 1936; Riabinkin,
1957; Billette et al., 1998; Chauris et al., 2002a,b; Adler et al., 2008).

In this paper, we revisited nonlinear tomography, and introduced a time-
migration velocity-estimation technique based on the concept of nonlinear kine-
matic migration and demigration. This approach utilises the kinematic attributes
(travel time and local slopes) of locally-coherent events in the recording (demi-
gration) and migrated domains, and estimates the time-migration velocity model
via nonlinear kinematic migration and demigration. In order to derive accurate
kinematic parameters, we adopted the gradient structure tensor (GST) method
of estimating local slopes in the time-migrated domain, where we have less noise
and better focus, and used demigration to estimate those slopes in the recording
domain. We also formulated an iterative linear inversion scheme, and derived the
Fréchet derivatives for the time-migration velocity estimation. In the numerical
test, we demonstrated proof-of-concept examples, employing both 2D control and
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3D field datasets. Based on the proposed approach, the time-migration velocity
estimation could be further extended to construct the initial depth-migration
velocity model in a future study. The nonlinear time- to depth-migration velocity
mapping proposed by Cameron et al. (2007) and Iversen et al. (2008) could be
employed for the velocity conversion.
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Although many 3D One-Way Wave-equation Migration (OWEM) methods exist for VTI media, most of them
struggle either with the stability, the anisotropic noise or the computational cost. In this paper we present a
new method based on a mixed space- and wavenumber-propagator that overcome these issues very effectively
as demonstrated by the examples. The pioneering methods of phase-shift (PS) and Stolt migration in the
frequency-wavenumber domain designed for laterally homogeneous media have been followed by several ex-
tensions for laterally inhomogeneous media. Referred many times to as phase-screen or generalized phase-
screen methods, such extensions include as main examples of the Split-step Fourier (SSF) and the phase-shift
plus interpolation (PSPI). To further refine such phase-screen techniques, we introduce a higher-order extension
to SSF valid for a 3D VTI medium with large lateral contrasts in vertical velocity and anisotropy parameters. The
method is denoted Fourier Mixed-Domain (FMD) prestack depth migration and can be regarded as a stable ex-
plicit algorithm. The FMD technique was tested using the 3D SEG/EAGE salt model and the 2D anisotropic Hess
modelwith good results. Finally, FMDwas appliedwith success to a 3Dfield data set from the Barents Sea includ-
ing anisotropy.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In seismic processing and imaging, the terminology seismic migra-
tion refers to methods designed to correct the distortions in position
and shape of reflections and diffraction events, in such a way that the
transformed (migrated) data are amenable to geological interpretation.
Because of its prominent role in extractingmeaningful information from
seismic data, migration has always been a topic of active research, lead-
ing to a large variety of methodologies and applications. A general
overview of migration methods, in particular their advantages and dis-
advantages in theory and practice, can be found in Gray et al. (2001)
(see also references therein). Gray and collaborators provide a rough
classification of the migration techniques into four main categories:
Kirchhoff migration (performed, e.g., by stacking along diffraction
curves), finite-difference migration (employing one-way wavefield
continuation in space-time or space-frequency domain), reverse-time
migration (using finite-differences to solve the full wave equation)
and frequency-wavenumber migration (using one-way wavefield con-
tinuation in the frequency-wavenumber domain).

As an extension to the latter category, we can define the class
of phase-screen propagators that represent a hybrid frequency-
wavenumber formulationwhere also parts of the operations are carried
out in the space-domain (a typical example being the thin-lens term).
Well-known isotropic algorithms include the Split-Step Fourier (SSF)
method (Stoffa et al., 1990) and the Phase Shift Plus Interpolation
technique (PSPI) (Gazdag and Sguazzero, 1984). However, SSF degrades
severely in accuracy for large velocity contrasts in combination with
non-vertically travellingwaves. The PSPI can handle lateral velocity var-
iations by using multiple reference velocities within each depth level.
However, the accuracy of the method relies on the number of multiple
reference functions employed, which again in combination with neces-
sary interpolations unavoidably increases the computational cost. More
importantly, an extension of the PSPI method to the anisotropic case
represents a major challenge with respect to the construction of an op-
timized range of reference functions for the anisotropic parameter set.
The authors are not aware of any such successful implementation re-
ported. Based on these observations, a new 3Dphase-screen propagator
scheme is derived in this paper which can handle large contrasts in the
anisotropy parameters and the vertical velocity (both laterally and in
depth in a VTI medium). The method is denoted Fourier Mixed-
Domain (FMD) prestack depth migration (PSDM), due to its combined
use of both wavenumber- and space-domain calculations. FMD can be
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regarded as a stable explicit formulation implemented as a phase-
screen operator. For completeness, it should be noted that the higher-
order correction terms could alternatively be implemented using an
implicit finite-difference scheme. This approach is known in the litera-
ture as the Fourier Finite-Difference (FFD) method (Ristow and Rühl,
1994). However, by avoiding a finite-difference implementation in 3D
as in the FMD proposed here, numerical anisotropy will not be an
issue to cope with (Collino and Joly, 1995). Note also that the extension
of the FFD technique to the VTI case is more challenging than that of the
implicit FD technique due to difficulties in selecting appropriate refer-
ences of anisotropy parameters (Hua et al., 2006 Shan, 2009). As
pointed out byZhang andYao (2012), the choice of the reference anisot-
ropy parameters as the minimum of each layer, will imply construction
of a large table of coefficients, whereas the zero-value reference choice
will lead to a simplified table but significant loss of accuracy.

The potential superiority of Reverse-Time Migration (RTM) to One-
Way Wave-equation Migration (OWEM) in case of complex media is
well known. However, RTM is still a costly and computer-intensive
technique which typically will be employed in the late stage of process-
ing data from complex models. OWEM is therefore still used as a prag-
matic and effective wave-equation depth migration approach and is
widely used among the contracting companies for 2D and 3D fast-
track depthmigration. Thus, the proposed 3D FMD-PSDM technique in-
troduced here should represent a good alternative to current OWEM
techniques due to its accuracy and computational efficiency. Moreover,
in the velocity model building of complex media, 3D prestack Kirchhoff
depth migration is still the ‘working horse’, due to its computational
attractiveness. FMDwill outperform Kirchhoff migration in image qual-
ity in case of complex geology, and may also be used as an alternative
in the iterative velocity-model building due to its computational
attractiveness.

This paper is organized as follows. In the first section, we derive the
FMDone-wayVTI propagator and then introduce the full PSDM scheme.
In the section to follow, we discuss the stable implementation of the
algorithm in case of strong contrasts in velocity and anisotropy param-
eters. The FMDmethod is then tested on controlled data employing the
3DSEG/EAGE saltmodel and the 2Danisotropic Hessmodel. In addition,
FMD is applied with success to a 3D field data set from the Barents Sea,
including anisotropy where the high-velocity target zone representing
Permian carbonate rocks is well imaged.

2. 3D Fourier Mixed-Domain (FMD) one-way propagator for a VTI-
medium

With some abuse of notation, we introduce the Fourier transform
pairs for a general 3D seismic pressure field p(x,z, t) with x = (x,y)
representing a position vector in the horizontal plane

p x; z;ωð Þ ¼ ℑt p x; z; tð Þf g ¼
Z ∞

−∞
dt exp −iωtð Þp x; z; tð Þ;

p x; z; tð Þ ¼ ℑ−1
ω p x; z;ωð Þf g ¼ 1

2π

� �Z ∞

−∞
dω exp iωtð Þp x; z;ωð Þ;

ð1Þ

and

p k; z;ωð Þ ¼ ℑx p x; z;ωð Þf g ¼
Z ∞

−∞

Z ∞

−∞
dx exp −ik � x½ �p x; z;ωð Þ;

p x; z;ωð Þ ¼ ℑ−1
k p k; z;ωð Þf g ¼ 1

2π

� �2 Z ∞

−∞

Z ∞

−∞
dk exp ik � x½ �p k; z;ωð Þ;

ð2Þ

with k = (kx,ky) representing the wavenumber vector. Our aim is to
back-propagate p(x,z,ω) from level zj to zj+1 = zj + Δz by downward
extrapolation in the frequency and dual space-wavenumber domains.
In symbols, we assume that p(x,zj,ω) is known and wish to find an ap-
proximation of p(x,zj+1,ω).

The starting point is the following ansatz for a mixed-domain repre-
sentation of the vertical wavenumber (dispersion relation)

kzj x;k;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2j xð Þ− 1þ 2ε j xð Þ� �
k2T

1−2 ε j xð Þ−δ j xð Þ� �
k2T=k

2
j xð Þ

vuut ð3Þ

with

kj ¼ ω
c j xð Þ ; k � k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
¼ k2T ð4Þ

Note that in Eq. (3), the positive sign in front of the square root cor-
responds to the backpropagation (migration) case. Correspondingly,
forward propagation is obtained by introducing a negative square
root. In Eq. (4), ω is a fixed angular frequency, εj(x) and δj(x) are the
Thompson parameters, and cj(x) is the laterally varying vertical me-
dium velocity within the j-th layer. We assume that evanescent waves
are removed in Eq. (3), namely that kj2(x) − [1 + 2εj(x)]kT2 ≥ 0.

In case of no anisotropy, Eq. (3) takes the form of themixed-domain
representation as proposed by Margrave (1998) and Margrave and
Ferguson (1999) for the isotropic case within the framework of nonsta-
tionary filter theory. In case of a constantmedium, Eq. (3) resembles the
dispersion relation introduced by Alkhalifah (1998) for a VTI medium.

Let x′ and x represent position vectors in the horizontal plane at
input level zj and output level zj + Δz, respectively. Based on Eq. (3),
the following one-way wavefield extrapolation scheme can be con-
structed:

p x; z j þ Δz;ω
� � ¼ ℑ−1

k ℑx0 p x0; z j;ω
� �	 
 � exp ikz j x;k;ωð ÞΔz

h ih i
ð5Þ

Eq. (5) can be regarded as a generalization of the continuous-
velocity PSPI algorithm of Margrave and Ferguson (1999) to the aniso-
tropic case. The name continuous-velocity PSPI is given with reference
to the original PSPI-method of Gazdag and Sguazzero (1984).

To achieve efficient implementation of the algorithm in Eq. (5), we
seek to factorize the dispersion relation in Eq. (3) in separatewavenum-
ber and spatial terms. We begin by introducing the globally optimized
cascaded form of the VTI dispersion relation to second order (Zhang
and Yao, 2012)):

kzj x;k;ωð Þ≅kj xð Þ 1þ ξ−
aj xð Þk2T=k2j xð Þ

1−bj xð Þk2T=k2j xð Þ

" #
ð6Þ

with coefficients defined as

ξ ¼ −0:00099915; ajðxÞ ¼ 0:46258453ð1þ 2δjðxÞÞ; bjðxÞ
¼ 2ðεjðxÞ−δjðxÞÞ þ 0:40961897ð1þ 2δjðxÞÞ ð7Þ
We are seeking a solution to Eq. (5) which allows a split into a back-

ground plane-wave term associated with a layered model and addi-
tional correction terms taking into account lateral velocity variations
and higher dip angles. This approach is by analogy with the well-
known Split-Step Fourier (SSF) method of Stoffa et al. (1990). Thus,
we introduce a constant background or reference medium character-
ized by the parameters{c0j,ε0j,δ0j} and with a corresponding dispersion
relation:

kz0 j k;ωð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 j− 1þ 2ε0 j

� �
k2T

1−2 ε0 j−δ0 j
� �

k2T=k
2
0 j

vuut ≅ k0 j 1þ ξ−
a0 jk

2
T=k

2
0 j

1−b0 jk
2
T=k

2
0 j

� ; k0 j ¼
ω
c0 j

"

ð8Þ
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where

a0 j ¼ 0:462584531 1þ 2δ0 j
� �

; b0 j ¼ 2 ε0 j−δ0 j
� �þ 0:40961897 1þ 2δ0 j

� � ð9Þ

We also introduce the following useful relation:

kj xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
� k0 j; γ j xð Þ ¼ c20 j

c2j xð Þ−1 ð10Þ

with γj being the scattering potential or velocity contrast. By the use of
Eq. (10) and a Taylor expansion (finite number of termsN assumed),we
can approximate Eq. (3) as follows:

kzj x;k;ωð Þ≅kj xð Þ 1þ ξ−
aj xð Þk2T=k2j xð Þ

1−bj xð Þk2T=k2j xð Þ

" #
¼ k0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
�

1þ ξ−
Aj xð Þk2T=k20 j

1−Bj xð Þk2T=k20 j

" #
¼ k0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
�

1þ ξ−
Aj xð Þk2T=k20 j

1−b0 jk
2
T=k

2
0 j

n o
1−

Bj xð Þ−b0 j
� �

k2T=k
2
0 j

1−b0 jk
2
T=k

2
0 j

h i
8<
:

9=
;

2
6666664

3
7777775
≅k0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
�

1þ ξ−∑N
n¼0

Aj xð Þ Bj xð Þ−b0 j
� �n k2T=k

2
0 j

� �nþ1

1−b0 jk
2
T=k

2
0 j

n onþ1

2
64

3
75

ð11Þ

where

Aj xð Þ ¼ aj xð Þ
1þ γ j xð Þ ; Bj xð Þ ¼ bj xð Þ

1þ γ j xð Þ ð12Þ

Next, we introduce the equation

kzj x;k;ωð Þ≅kz0 j k;ωð Þ þ kzj x;k;ωð Þ−kz0 jðk;ωÞ� �
approx ð13Þ

where the quantities inside the bracket are calculated employing Eq. (8)
and Eq. (11) giving as a final result:

kzj x;k;ωð Þ≅kz0 j k;ωð Þ þ kj xð Þ−k0 j
� �

1þ ξð Þ

þ k0 j
a0 j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ

n o
k2T=k

2
0 j

1−b0 jk
2
T=k

2
0 j

n o −∑N
n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ Bj xð Þ−b0 j

	 
n k2T=k
2
0 j

� �nþ1

1−b0 jk
2
T=k

2
0 j

n onþ1

2
64

3
75 ð14Þ

The three terms on the right-hand side of Eq. (14) can now be easily
identified as the background term, the modified thin-lens term and a
higher-order correction term of order N.

To test the robustness of the approximation given by Eq. (14), we
calculated the relative dispersion error as a function of phase or propa-
gation angle (no lateral variation in parameters). We considered two

cases: (i) weak-contrast case with
c0
c
¼ ε0

ε
¼ δ0

δ
= 4/5 and a (ii)

strong-contrast case with
c0
c
¼ ε0

ε
¼ δ0

δ
= 1/2. In both simulations, we

let ε = 0.3, δ = 0.1, but the velocity c changed from 2500 m/s to
4000 m/s between the two runs. It can be easily seen from Fig. 1 that
the strong contrast case performs almost as well as the weak-contrast
case and that the 1% phase-error limit is around 55–60 degrees. Due
to the use of an optimized version of the anisotropic dispersion relation
to second order, it may happen that for a given combination of anisot-
ropy parameters, the weak-contrast case will locally perform slightly

more poorly than the strong-contrast case (e.g. in the current example
for the largest angles).

Improved accuracy can be obtained if the analytical expressions for
the parameters Aj and Bj are replaced by parameter fitting at higher an-
gles formulated as an optimization problem. Such an approach is used by
Shan (2009) to obtain optimized implicit finite-difference schemes for
VTI media. However, because our ultimate goal is to carry out 3D
prestack PSDM in complex geological models, such an optimization
approach will be a highly time-consuming task, building several
predefined tables of coefficients. However, such tables are typically
built once for a given dataset and applied to all the shots in the survey.
In this paper, we also avoid a finite-difference implementation of the
perturbation term in Eq. (14) but introduce a stable explicit propagator
in the Fourier mixed-domain. Accordingly, we denote our method as
Fourier Mixed-Domain (FMD) PSDM. By avoiding a finite-difference im-
plementation in 3D, numerical anisotropy will not be an issue to cope

with (Collino and Joly, 1995) as in Ristow and Rühl (1994). These latter
authors derived an alternative expression for the dispersion relation in
Eq. 14 with one perturbation term and implemented this term as a cas-
cading Fourier finite-difference (FFD) operator (implicit and stable
scheme).

Based on Eq. (14), a one-way VTI propagator can now be con-
structed:

exp ikzj x;k;ωð ÞΔz� � ¼ exp ikz0 j k;ωð ÞΔz� � � exp i k j xð Þ−k0 j
� �

1þ ξð ÞΔz� ��
exp

k2T=k
2
0 j

1−b0 jk
2
T=k

2
0 j

n o ik0 j a0 j−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ

� �
Δz

n o2
4

3
5�

exp −∑N
n¼1

k2T=k
2
0 j

� �nþ1

1−b0 jk
2
T=k

2
0 j

n onþ1 ik0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ Bj xð Þ−b0 j

� �nΔzn o2
64

3
75
ð15Þ

Fig. 1. Relative dispersion error versus phase angle: weak-contrast case (solid line) and
strong-contrast case (broken line). The 1% dispersion-error line has also been
superimposed.
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The two last exponential factors on the right-hand side of Eq. (15)
are approximated using a first-order Taylor expansion, an approach
which leads to the following symbolic version of a mixed-domain VTI
PSDM scheme (after reorganization and neglecting high-order cross-
terms):

P zj þ Δz
� � ¼ exp ikz0 jΔz

� �
exp i k j xð Þ−k0 jÞð1þ ξ

� �
Δz

� �
� 1þ Γ j u; xð Þ	 


P zj
� �

; Γ j u; xð Þ
¼ ik0 j a0 j−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ

n o
Δz

n o u
1−b0 ju
� �−∑N

n¼1ik0 j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ Bj xð Þ−b0 j

� �nΔz unþ1

1−b0 ju
� �nþ1 ; u ¼ k2T=k

2
0 j ð16Þ

To make the explicit formulation in Eq. (16) unconditionally stable,
we introduce a dip-filter Ψj(u) defined by the condition.

Ψ j uð Þ ¼ 1
max 1þ Γ j u; xð Þ

 

� � ; 0≤u≤1 ð17Þ

To ensure that this dip-filter harms the data as little as possible, ref-
erence values of the vertical velocity and the anisotropy parameters are
computed using the mean values. In the explicit migration of Hale
(1991), a stability constraint similar to Eq. 17 is employed but in the
space domain. It should be noted that the conventional FD method is
not stable when the medium velocity has sharp discontinuities
(Biondi, 2002). Zhang et al. (2003) also use similar ideas to stabilize
an isotropic phase-screen migration scheme.

The final version of the FMD scheme now takes the form:

p x; z j þ Δz;ω
� � ¼
exp i k j xð Þ−k0 j

� �
1þ ξð ÞΔz� �

I−1
k exp ikz0 jΔz

� �
Ψ j k2T=k

2
0 j

� �
Ix0 pðx0; z j;ω

� �n o
þ

ik0 j a0 j−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ

n o
Δz

n o
exp i kj xð Þ−k0 j

� �
1þ ξð ÞΔz� ��

I−1
k exp ikz0 jΔz

� �
Ψ j k2T=k

2
0 j

� � k2T=k
2
0 j

1−b0 jk
2
T=k

2
0 j

h i Ix0 pðx0; z j;ω� �8<
:

9=
;−

∑N
n¼1ik0 j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γ j xð Þ

q
Aj xð Þ Bj xð Þ−b0 j

� �nΔz exp i k j xð Þ−k0 j
� �

1þ ξð ÞΔz� ���

I−1
k exp ikz0 jΔz

� �
Ψ j k2T=k

2
0 j

� � k2T=k
2
0 j

� �nþ1

1−b0 jk
2
T=k

2
0 j

h inþ1 Ix0 pðx0; z j;ω:
� �

8><
>:

9>=
>;
3
75

ð18Þ

In case of an isotropic medium, the parameters in Eq. (18) take the
simplified forms

a0 j ¼ 0:46258453; b0 j ¼ 0:40961897; Aj

¼ a0 j

1þ γ j xð Þ
� � ; Bj ¼

b0 j

1þ γ j xð Þ
� � ð19Þ

2.1. Dual-referencemodel

Our overall goal is to develop a reconstruction (migration) scheme
that is able to image complex geological models (e.g., with the inclusion
of salt diapers), and at the same time being computationally attractive.
Due to its formulation, the FMD technique fulfils the last criterion, but
inaccuracies in phases are to be expected in case of very strong
vertical-velocity contrasts (i.e., velocity jumps of a factor of three and
more) and/or similar large contrasts in the anisotropic parameters. In
order to handle such more extreme cases, we propose dual-reference
FMD for which the basic idea is as follows:

• if a region exists within a given depth-migration strip where the ve-
locity and/or the anisotropy contrasts are larger than a user-defined
factor (e.g. 2.5), backpropagation employing FMD is carried out
twice for that extrapolation depth: first with the mean values as the

references and second with a parameter set chosen as the mean of
the values of the anomalous region(s);

• for such a migration strip, the two results are finally merged at the
output level in the space domain.

The above conditions can be mathematically described as

p x; z j þ Δz;ω
� � ¼ X2

i¼1

Μi xð Þpi x; z j þ Δz;ω
� �

; ð20Þ

where pi (i=1,2) represents the extrapolated field using as a reference
velocity field themean-velocity of the non-anomalous regions (say, i=
1) and the anomalous regions (i = 2) respectively. Moreover, as in the
equation, Mi denote corresponding mask functions as follows: If i = 1
specifies the mean velocity, then M1, as in the equation, takes the
value 1 at all location points corresponding to the non-anomalous re-
gions and 0 otherwise. Correspondingly, the second mask-function M2

represents the complementary case, M2 = 1-M1.

2.2. Comparison with literature of screen-propagators

The attractive features of simplicity and computational efficiency of
frequency-wavenumber techniques have motivated a series of works
aiming to generalize the approach to be valid in a more realistic geolog-
ical setting. The most popular frequency-wavenumber migration
schemes are Phase Shift (Gazdag, 1978) and Stolt f-k migration (Stolt,
1978). Although very quick and inexpensive, both techniques have the
drawback of being limited to velocity media that varies only with
depth. In order to handle lateral velocity variations, Gazdag and
Sguazzero (1984) introduced PSPI. It can handle lateral velocity varia-
tions by using multiple reference velocities within each depth level.
However, the accuracy of the method relies on the number of multiple
reference functions employed, an approachwhich again in combination
with necessary interpolation unavoidably increases the computational
cost. An extension of the PSPI method to the anisotropic case represents
amajor challenge regarding how to construct an optimized range of ref-
erence functions of the anisotropic parameter set. The authors are not
aware of any such successful implementation being reported.

If we consider the limit of vertically travelling waves (e.g., kT → 0)
and an isotropic case, Eq. (16)will take the formof the Split-Step Fourier
(SSF) method introduced by Stoffa et al. (1990). SSF can handle lateral
variations and only requires a single reference velocity for each depth
level. The SSF operator is unconditionally stable but degrades in accu-
racy for large velocity contrasts in combinationwith non-vertically trav-
elling waves. Popovici (1996) extended SSF to the prestack case
formulated in the offset-midpoint domain employing the DSR equation.
Jin and Wu (1999) extended this latter work to also include higher-
order terms. Still, the combination of strong velocities and steep angles
is not treated in an accurate manner. Within an isotropic formulation,
other higher-order alternatives to the SSF technique have been pro-
posed to copewith larger propagation angles. Huang et al. (1999) intro-
duced the Extended Local Born Fourier (ELBF) propagator to include
waves propagating at non-vertical angles and Chen andMa (2006) pro-
posed a higher-order version of ELBF. However, despite being able to
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handle larger angles more accurately, this class of screen-propagators
still suffers from the underlying Born assumption in case of larger veloc-
ity contrasts and the propagators become unstable in use in the
frequency-wavenumber domain. Le Rousseau and de Hoop (2001a) in-
troduced an isotropic higher-order scheme which they denoted Gener-
alized Screen (GS) propagators. The GS scheme is more robust to
velocity variations than ELBF type of schemes, but all of these tech-
niques suffer from a singularity at the evanescent boundary. Le Rous-
seau and de Hoop proposed a phase normalization to stabilize the
algorithm, but the accuracy of this normalization degrades with the
complexity of the model (only exact for a homogeneous model). In an
accompanying work, Le Rousseau and de Hoop (2001b) extended the
GS scheme to a VTI type of medium. However, only weak approxima-
tions of the anisotropy parameters were introduced, and the demon-
stration part was limited to one modeling example (thus, no imaging
results provided).

Note that all techniques discussed above are restricted to a range of
propagation angles when it comes to accuracy. Thus, they do not per-
form better than FMD in terms of this issue in case of an isotropic
medium.

2.3. 3D common-shot implementation of FMD

Applied to each common-shot gather, the FMD migration follows
the classical procedure (see Claerbout, 1971) of computing, as a first
step, the frequency-domain reflectivity function r(x,zj,ω) at all levels z
= zj, and next applying the imaging condition of inverse Fourier
transforming that reflectivity to the time domain and evaluating it at
time zero.

We now explain the algorithm to extrapolate the reflectivity r
(x,zj,ω) at level z = zj (supposedly already known) to the (unknown)
reflectivity r(x,zj + Δz,ω) at the new level z = zj + Δz. Following
Claerbout (1985), an estimate of the reflectivity function r(x,zj
+ Δz,ω) can be written in the form

r x; z j þ Δz;ω
� � ¼ U x; zj þ Δz;ω

� �
D x; z j þ Δz;ω
� � ¼ U x; z j þ Δz;ω

� �
D� x; z j þ Δz;ω
� �

D x; zj þ Δz;ω
� �

D� x; z j þ Δz;ω
� � :

ð21Þ

Here, U(x,zj + Δz,ω) and D(x,zj + Δz,ω) are upward and downward
pressure wavefields defined as follows. On one hand, U(x,zj + Δz,ω)
represents the backward extrapolation of the recorded common-
source surface data to level z = zj + Δz. On the other hand, D(x,zj +
Δz,ω) represents the forward extrapolation of the common-source
point wavefield from the surface to level z = zj + Δz. We assume that
U(x,zj,ω) and D(x,zj,ω) at level z = zj are already available. Then, the
FMD extrapolations to U(x,zj + Δz,ω) and D(x,zj + Δz,ω) can symbol-
ically be expressed as

U x; zþ Δz;ωð Þ ¼ ℓFMDU x; z;ωð Þ and D x; zþ Δz;ωð Þ
¼ ℓ�

FMDD x; z;ωð Þ; ð22Þ

where ℓFMD represents the backward FMD propagator and ℓFMD
∗ the

corresponding FMD forward propagator. Thus, we assume that our
FMD propagator can be well approximated by a pure-phase or plane-
wave propagator. In such a case, the forward propagator is readily ob-
tained from its backward propagator counterpart by means of a simple
complex conjugation.

Finally, taking the inverse Fourier Transform over frequency and ap-
plying it to t = 0 and an additionally summation over number of shot
points, provides the sought-for pre-stack FMD depth migration

R x; z j þ Δz
� �

≅
X
k

X
i

Uk x; z j þ Δz;ωi
� �

D�
k x; z j þ Δz;ωi
� �

X
i

Dk x; z j þ Δz;ωi
� �

D�
kðx; zj þ Δz;ωiÞ

* + ; ð23Þ

the summations running over all available discrete frequencies (i) and
shot points (k). Note that Eq. (23) represents a slightly different
deconvolution imaging condition (IC) than the classical version of
Claerbout (1985). The summation over frequencies is here carried out
separately for the nominator and denominator in Eq. (23). We found
that this approach gave an improved image in case of the data investi-
gated in this paper. The notation b N in Eq. (23) indicates smoothing
with a triangular filter. Before the smoothing was applied, the spatial
average value Iav of the illumination function Iðx; zj þ ΔzÞ ¼

X
i

Dkðx; z j
þΔz;ωiÞD�

kðx; z j þ Δz;ωiÞ was calculated and the following threshold
introduced: if I(x,zj + Δz) b 0.2Iav then replace it with that value.

Fig. 2. Slices through final image cube.
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From experience based on the datasets considered in this study, the
scale-factor of 0.2 in this threshold equation seemed to be a good choice.
However, in general this scale-factor can be user selected and depend
on the data being employed.

3. Controlled data examples

In this section, we demonstrate the ability of the proposed FMD
technique to provide accurate imaging results in case of complex con-
trolled models. The first example involves the 3D isotropic SEG/EAGE
model, whereas the second study is based on the 2D VTI Hess model.

3.1. 3D isotropic SEG/EAGE model

Data were taken from the SEG/EAGE Salt Model Phase C WA (Wide
Azimuth) survey (Aminzadeh et al., 1996). For this data set, each shot
has eight streamers with a maximum of 68 groups per streamer. The

group interval is 40m, the cable separation is 80m and the shot interval
is 80 m. The sample interval is 8 ms, the recording length is 5 s and the
centre frequency of the source pulse is 20 Hz. The survey consists of 26
sail lines separated by 320 m and with 96 shots per line. In order to
properly apply the FK-part of our imaging technique, the original 2D re-
ceiver layout corresponding to each shot point was interpolated to a
finer and regular grid of 20 m × 20 m. This interpolation was carried
out in the frequency domain employing a 2D spline algorithm. It is likely
that the use of the more sophisticated 5D-type of interpolation algo-
rithms would have given even better results. However, the authors
did not have access to such techniques. A depth increment of 20 m
was used in the FMDmigration scheme. In this example, we employed
the dual-velocity concept and a second-order scattering scheme (corre-
sponding to n = 2 in Eq. (18)).

Fig. 2 shows a 3D visualization of the final imaging results based on
representative slices through the image cube. The overall quality seems

Fig. 3. (a) Stratigraphic interval velocity model and (b) corresponding FMD image.
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to be quite satisfactory, given the complexity of the model and the im-
perfectness in the data generation and acquisition geometry.

To further address the quality of the FMD technique, we selected the
inline profile located at X= 7700m. Fig. 3a represents the correspond-
ing velocitymodel andwith the associated imaged line shown in Fig. 3b.
The obtained reconstruction shown in Fig. 3b can now be compared
with recently published results in the literature:

• Jang and Kim (2016) gave examples of the implementation under the
use of Parallel 3D PSPImigration. The citedwork is one of the latest ar-
ticles of a 3D screen-propagator technique employed to the 3D SEG/
EAGE salt model. In this way, it is appropriate to include their results
in this paper. Their Fig. 6 represents the same inline profile as the
one in our Fig. 3b. Direct comparison shows that the 3D FMD result
is superior with respect to resolution and accuracy. The image ob-
tained by Jang and Kim (2016) demonstrates the difficulties when
going from 2D to 3D using Fourier techniques; in particular, the
issue of spatial aliasing is a main challenge.

• Li et al. (2015) introduces 3D weak-dispersion RTM using a so-called
Stereo-Modeling Operator. They apply the RTM method to the SEG/
EAGE Salt Model, and their Fig. 5 gives the image of the same profile
as in our Fig. 3b. However, note that Li et al. (2015) employed data
from Phase A, an approach which implies that each shot has six
streamers and not eight as in Phase C. More importantly, the coverage
of the right part of themodel is larger in Phase A. Thus, themost-right
part of our image is missing simply because of this lack of coverage.
When the relevant parts of the image are compared, ourmethod is su-
perior with more reflectors present.

3.2. 2D Hess VTI model

This model was originally built by J. Leveille and F. Qin of Amerada
Hess Corp, and is considered to be representative of several exploration
areas in the Gulf of Mexico. The overall structural complexity is moder-
ate, but it includes a salt body surrounded by sedimentary layers and a
relatively steep fault plane. The magnitudes of the coefficients ε and δ
are in some of the intervals considered to fall between moderate to
strongly anisotropic. In this study, we employ the multiple-free version
of the data generated by SEP at the Stanford University. The data set
consists of a 2D linewith 720 shots separated by 100 ft. andwith offsets
ranging from 0 ft. and 26,200 ft. (receiver spacing of 40 ft). The trace

length is 8 s and the temporal sampling interval is 6msec. A depth incre-
ment of 20 ft. was used in the imaging stage. Fig. 4 shows thefinal image
obtained using the VTI-FMD technique. In this example, we used the
dual-velocity approach and a first-order scattering approximation (i.e.
use of n = 1 in Eq. (18)). The reconstruction is well resolved with re-
spect to both the fault system, the steep salt flank and the anisotropic
anomalous regions.

We can also compare the image in Fig. 4with recent results reported
in the literature:

• Shin and Byun (2013) implemented the VTI version of the GS scheme
(Le Rousseau and deHoop, 2001a, 2001b) and tested it using the Hess
model. Direct comparisonwith their Fig. 7b shows that the FMD tech-
nique is superior in quality: better resolved shallow parts and top salt,
better-defined faulting system and the ability to image the steep flank
of the salt structure. Due to the fact that the VTI-GS scheme is gener-
ally regarded as the most optimal one among the phase-screen prop-
agators, the result obtained by our FMD technique is therefore rather
encouraging.

• Han et al. (2018) introduced a wavelength-dependent Fresnel-beam
migration (FBM) technique valid for VTI media. They applied the
wavelength-dependent FBM to the Hess model and obtained the re-
sult shown in their Fig. 9c. In addition, a comparison with standard
FBM was included (cf. their Fig. 9b). Han et al. (2018) employed
Gaussian smoothing of themodel parameters in advance of themigra-
tion. Direct comparison with the FMD reconstruction in Fig. 4 shows

Table 1
Key acquisition parameters.

Number of sources 2
Depth of source arrays 6 m
Shot point interval 18.75 m
Number of streamers 12
Active streamer length 7050 m
Depth of streamers 18.0–29.0 m ± 2.0 m
Group interval 12.5 m
Number of groups 564 per streamer
Streamer separation 75 m
Nominal near offset 120.9 m
Sample rate 2 ms
Record length 7060 ms
Nominal fold 94

Fig. 4. Image of the Hess model obtained using 2D VTI-FMD.
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that the two results are very similar in quality, but with FMD recover-
ing more structures at the far-most left part of the model. However, a
slight variation in amplitude of events to the right of the salt exists in
the FMD result. This is due to a tighter mute applied to the migrated
shots closer to the major fault to minimize spurious events.

4. 3D Marine field data example

A 3Dmarine dataset provided by Lundin Norway AS and acquired in
the Barents Sea is used as a benchmark of the full 3D VTI-FMDmethod.
The dataset was acquired with 12 streamers separated by 75 m and a
dual-source configuration. Table 1 provides a summary of the key acqui-
sition parameters.

Several challenges were associated with this field data set. Firstly,
strong ocean currents forced the seismic survey to be acquired along
the strike direction of the subsurface geology to increase the operational
efficiency. However, this approach implied increased challenges for
both the 3D seismic processing and imaging due to the increased
amount of out-of-plane contributions. The strong ocean current also
led to a significant amount of cable feathering. Fig. 5 gives an example
of cable feathering for one selected shot point, where the feathering is
seen to amount to approximately 300 m or more. Finally, the hard sea
floor in the Barents Sea also caused strong noise interference in thema-
rine data set.

The field data had been pre-processed by a contracting company
prior to being employed in this study. This pre-processing involved nav-
igationmerging, debubble, attenuation of swell noise, and seismic inter-
ference noise as well as 3D SRME. The authors, to improve data quality

and save computational time, further processed the data set. This addi-
tional processing involved the following steps:

• resampling from 2 to 4 ms,
• application of a tau-p mute to remove residual linear noise,
• bandpass-filtering to keep frequencies between 2 and 80 Hz only,
• data regularization employing a 2D spline interpolation in the fre-
quency and space domain (12.5m by 12.5m inline and crossline sam-
pling after regularization),

• mute in offset keeping only smaller offsets for larger travel times (due
to a large increase in velocity from overburden to target zone), and

• keeping only a recording length of 2 s (sufficient to image the main
target area).

In case of a real production processing, interpolation using 2D
splines should be avoided due to possible smearing effects. Thus, more
advanced 5D interpolation algorithms like Minimum Weighted Norm
Interpolation (MWNI) (Liu and Sacchi, 2004) or Anti-Leakage Fourier
Transform (ALFT) reconstruction (Xu et al., 2005) should be the pre-
ferred choice.

Before the actual 3D shot-point migration was executed, an appro-
priate zero-padding was introduced in space and time to minimize
transform and migration noise. The contracting company had provided
3D depth cubes of the vertical velocity, aswell as the anisotropy param-
eters ε and δ (cf. Fig. 6). It can be seen from Fig. 6 that a significant jump
in the vertical velocity characterizes the area at larger depths and that

Fig. 7. 3D VTI-FMD depth migration: slices through the image cube. Note that the result is
based on one sail-line only (cross-line sections stretched for ease of visualization).

Fig. 6. Vertical-velocity cube, epsilon cube and delta cube (from left to right).

Fig. 5. Example of strong cable feathering for selected shot point.
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the anisotropy parameters are reflecting the same jump and in general
with a simple step-like variation.

A depth increment of 4 mwas chosen for the migration. In this field
data example, we applied a single-velocity approach and a first-order
scattering approximation to lower the computational burden. Fig. 7
shows a 3D visualization of the final imaging results based on represen-
tative slices through the image cube. The fits between the inline and
crossline sections seem to be overall good. Note that due to the heavy
computational burden associated with 3D VTI type of PSDM using our
prototype-software in Matlab, we limited the 3D demonstration of our
algorithm to three sail lines in Fig. 7. To investigate further the quality
of the migrated cube, one representative inline section is shown in
Fig. 8. This reconstruction is formed by employing a depth-dependent
aperture that only included one sail-line in the overburden and a
smooth transition to the use of three sail lines within the carbonate tar-
get zone. The overall image quality is seen to be highly satisfactory. The
overburden is well imaged with its highly-resolved fault systems. The
high-velocity target zone starting at Top Permian reconstructs equally
well both the top structures and the faulted reflector band below.

Because these Permian carbonate rocks represent a major jump in the
velocities, only a smaller band of offsets were employed within this
zone in order to avoid critically refracted events harming the overall
image quality.

To further demonstrate the good performance of our proposed
method, the corresponding image result obtained by the previously
mentioned contracting company is shown in Fig. 9. The contracting
company made use of a sophisticated common-angle migration ap-
proach implemented in the offset-midpoint domain. Direct comparison
between Figs. 8 and 9 support our claim regarding the excellent image
quality provided by the FMD technique. It represents a better-resolved
and less noisy migration except for the left-most part of the image at a
depth of approximately 2 km where some dipping noise appears,
which is due to the use of a smaller lateral aperture than the contractor.

4.1. Computational issues

In this work, we have followed common practice and developed a
research prototype of ourmethod employingMatlab. To develop a com-
mercial C++ code has been outside the scope of this paper. However,
by the use of figures reported from the literature describing typical
speed improvements when converting a Matlab code to an optimized
C++ version, we can make estimates regarding how well the FMD
technique will perform after such a conversion.

TheMatlab code ran on a supercomputer consisting of 650+ Super-
micro X9DRT computing nodes. All nodes are dual Intel E5–2670 (Sandy
Bridge) running at 2.6 GHz, yielding 16 physical cores. Each node has
64 GB of DDR3 memory operating at 1600 MHz, giving 4 GB memory
per physical core at approximately 58 GB/s aggregated bandwidth
using all physical cores. Because this super computer is a shared re-
source for several universities, we only had access to a limited part of
its computing capacity (typically not N40–60 nodes). The computational
time for 100 3D shots, taken from the field data set, distributed on 20
nodes (16 cores each) was typically about 20 h, a result which implies
that on average, five 3D shots per node consumed the same amount
of time.

If a program written in a high-level language such as Matlab is con-
verted to an optimized C++ code, we can expect a typical improvement
in computational speed in the range of 10–100based on the experiences
reported by professional program developers. Andrews (2012) even re-
ports an improvement in speed of several hundreds. If we employ the
conservative factor of 20, it implies that we can compute five 3D shots
per node using about 60 min (or approximately 12 min per 3D shot
per node). From a major contracting company, we have been informed
that for 3D depth migration based on 1-way formulation, the computa-
tional cost for an optimized code with the same source-receiver layout
will be typically around eight minutes per 3D shot per node. However,
to obtain such a computational speed, the company also made use of a
GPU environment. Thus, based on this industry example as well as our
conservative analysis of possible gain in computational speed within a
CPU environment, it is highly likely that a significantly efficient and
competitive implementation can be achieved for the FMD method on
a C++/GPU platform.

5. Conclusion

In this paper, a newmigration technique for 2D and 3D prestack data
also valid for vertical transverse isotropic media has been presented. It
can be regarded as a higher-order version of the Split-Step Fourier
(SSF) method and is denoted Fourier Mixed-Domain (FMD) migration.
By applying an optimized dip filter, the FMD is shown to be stable for
strong variations in anisotropy and velocity parameters despite being
an explicit type of scheme.

In contrast to Fourier FiniteDifferencemigration, the high-order cor-
rection terms are implemented as screen-propagator terms, avoiding
the issues of anisotropic noise in 3D finite-difference implementations.

Fig. 9. Same inline section as in Fig. 8, but as provided by the contracting company using
3D VTI common-angle migration.

Fig. 8. Inline section taken from the image cube in Fig. 7.

126 H. Zhao et al. / Journal of Applied Geophysics 168 (2019) 118–127

109



The FMD technique was tested using the 3D SEG/EAGE salt model
and the 2D anisotropic Hess model with good results. Finally, FMD
was applied with success to a 3D field data set from the Barents Sea in-
cluding anisotropy where the high-velocity target zone representing
Permian carbonate rocks was well imaged. Direct comparison with the
result obtained by a contracting company using a sophisticated com-
mon-angle migration technique, further demonstrated the superior
image resolution provided by FMD imaging.

The current version of the FMD method can handle 3D VTI media.
Further extension to the more general TTI case is ongoing research. In
addition to the set of perturbed medium parameters inherent in the
present formulation, also the tilt of the symmetry axis needs to be in-
cluded in a computer efficient manner.

Future potential use of the FMD technique, besides being an efficient
prestack depth migration (PSDM) method, could also be in iterative
PSDM velocity building as an alternative to the industry-preferred
Kirchhoff method.
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SUMMARY

Advanced seismic imaging and inversion are dependent on a velocity model that

is sufficiently accurate to render reliable and meaningful results. For that reason,

methods for extracting such velocity models from seismic data are always in high

demand and are topics of active investigation. Velocity models can be obtained from

both the time and depth domains. Relying on the former, time migration is an inex-

pensive, quick and robust process. In spite of its limitations, especially in the case of

complex geologies, time migration can, in many instances (e.g. simple to moderate

geological structures), produce image results compatible to the those required for

the project at hand. An accurate time-velocity model can be of great use in the

construction of an initial depth-velocity, from which a high-quality depth image can

be produced. Based on available explicit and analytical expressions that relate the

kinematic attributes (namely, traveltimes and local slopes) of local events in the

recording (demigration) and migrated domains, we revisit tomographic methodolo-

gies for velocity-model building, with a specific focus on the time domain, and on

those that makes use of local slopes, as well as traveltimes, as key attributes for imag-

ing. We also adopt the strategy of estimating local inclinations in the time-migrated

domain (where we have less noise and better focus) and use demigration to esti-

mate those inclinations in the recording domain. On the theoretical side, the main

contributions of this work are twofold: 1) we base the velocity model estimation

on kinematic migration/demigration techniques that are nonlinear (and therefore

more accurate than simplistic linear approaches) and 2) the corresponding Fréchet

derivatives take into account that the velocity model is laterally heterogeneous. In

addition to providing the comprehensive mathematical algorithms involved, three

proof-of-concept numerical examples are demonstrated, which confirm the potential

of our methodology.
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INTRODUCTION

In seismic data, wave responses to subsurface structures (e.g. layer interfaces or geological

bodies) manifest themselves in the form of signal alignments, referred to as seismic events.

In the simplest case of a 2D section, such as shot or common-midpoint (CMP) gathers, data

points along an event occupy a traveltime strip around a curve within that section. In the

case of 2D acquisition, with the arbitrary location of sources and receivers, an event aligns

on a strip around a surface in a 3D data volume. For 3D data acquisition, the alignment

occurs in the neighbourhood of a hypersurface within a 5D data volume. Seismic events in

the data set represent the time link for accessing information on depth geological structures.

For complex geologies and noisy environments, however such events, are generally obscured

or hidden within the data, requiring proper processing schemes for their identification and use.

As recognised in the literature, it is advantageous to describe an event alignment by means

of slopes and curvatures that pertain to their individual points. Referred to as local kinematic

parameters of an event point, such quantities are able to provide parametric traveltime ap-

proximations of the seismic event in the vicinity of that original event point (see, e.g., Ursin

1982; Hubral 1999; Landa et al. 1999; Perroud et al. 1999; Jäger et al. 2001; Bergler et al.

2002; Hertweck et al. 2007; Landa 2007; Tygel & Santos 2007; Berkovitch et al. 2008; Landa

et al. 2010; Fomel & Kazinnik 2012; Gelius & Tygel 2015; Bloot et al. 2018). In this way, the

search for seismic events is reduced to the search for event points and their corresponding local

kinematic parameters. Each of the traveltimes is associated with specific events (e.g. primary

reflections or diffractions) for which, conceptually, best approximations are expected. As also

documented in the literature, the formulation outlined above allows for the use of coherence

(e.g. semblance) analysis (see, e.g., Neidell & Taner 1971) for the detection of the desired

information (see, e.g., Bonomi et al. 2009; Minato et al. 2012; Barros et al. 2015; Walda &

Gajewski 2017; Garabito et al. 2017; Waldeland et al. 2019). Local kinematic parameters have

shown to be rather instrumental in a number of applications of seismic processing, imaging

and inversion. These include a) poststack/prestack data enhancement (Baykulov & Gajewski

2009; Faccipieri et al. 2016); b) diffraction separation and imaging (Rad et al. 2018; Bauer

et al. 2009; Berkovitch et al. 2009; Faccipieri et al. 2013; Klokov & Fomel 2012); c) time

migration/demigration (Spinner & Mann 2006; Bóna 2011; Dell & Gajewski 2011; Iversen

et al. 2012; Coimbra et al. 2013; Dell et al. 2014; Coimbra et al. 2016a); d) data interpolation

and regularisation (Hoecht et al. 2009; Coimbra et al. 2016b); e) attribute-oriented seismic

processing (Fomel 2002; Zhang et al. 2002; Fomel 2007a,b; Cooke et al. 2009; Khoshnavaz
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et al. 2016a,b; Stovas & Fomel 2015; Khoshnavaz 2017; Vanelle et al. 2018).

In addition to the applications mentioned above, local kinematic parameters have made

a substantial impact on ray-based reflection tomography through the introduction of new al-

gorithms that are able to use slope parameters in addition to the traveltimes normally used

in conventional schemes. In the classic literature, such an approach is referred to as slope

tomography. (Rieber 1936; Riabinkin 1957; Sword 1986). A powerful extension of slope to-

mography was proposed by Billette & Lambaré (1998) under the name of stereotomography.

Such an extension takes full advantage of the more recently available theoretical and practical

(computational) advances in inverse-problem solving. To overcome the difficulties of travel-

times and slope picking of local coherent events in the recording time domain, Guillaume

et al. (2001) and Chauris et al. (2002a,b) proposed that the picking should first be done in

the prestack depth migration (PSDM), and then demigrated back to the recorded domain.

Such an approach demonstrates the interest in using kinematic migration and its counterpart

kinematic demigration for velocity-model building. In fact, kinematic migration and kine-

matic demigration also have a history in the seismic literature, having been used to map the

local kinematic parameters (traveltimes, slopes and curvatures) from/to the recording time

domain to/from the migrated time or depth domain (Shah 1973; Kleyn 1977; Hubral & Krey

1980; Gjøystdal & Ursin 1981; Ursin 1982; Iversen & Gjøystdal 1996; Iversen 2004; Douma &

de Hoop 2006; Stolk et al. 2009).

Concerning kinematic demigration, Whitcombe et al. (1994) introduced a zero-offset kine-

matic time demigration scheme using the constant migration velocity assumption. Söllner et al.

(2004); Söllner & Andersen (2005) further investigated zero-offset kinematic migration and

demigration under the framework of ray theory. A more systematic generalisation and ex-

tension of kinematic time migration and demigration was developed by Iversen et al. (2012).

Their proposed technique extends the kinematic time migration and demigration from a zero-

offset to a finite-offset, including both first-order (slope) and second-order (curvature) travel

time derivatives during the mapping, and taking into account the diffraction time functions

of the second order in the common-image gather location, the source-receiver offset and the

migration aperture. To use kinematic migration and demigration in velocity estimation, an-

other type of tomography technique, nonlinear tomography, has been proposed by different

authors. Adler et al. (2008) proposed a technique of nonlinear 3D tomographic inversion to

replace the conventional linear process of PSDM using residual moveout analysis (RMO).
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Guillaume et al. (2008) addressed the flexibility of using the kinematic invariants (traveltimes

and slopes in the unmigrated recording domain) for nonlinear depth tomography. Lambaré

et al. (2009) extended this nonlinear inversion concept to time imaging. These proposed non-

linear tomographic approaches greatly reduce the turnaround times and cost of the PSDM

and velocity estimation by replacing the conventional PSDM-plus-velocity-RMO analysis with

the kinematic demigration and migration internal velocity updating scheme. Due to its men-

tioned efficiency and effectiveness, the non-linear tomography technique attracted much more

attention and development through industrial application and academic research in recent

years (Guillaume et al. 2013; Messud et al. 2015).

In this paper, we revisit the kinematic time migration and demigration scheme (Iversen

et al. 2012), developing a detailed numerical scheme for time-migration velocity estimation.

As the authors are aware, a general description of time-migration velocity estimation us-

ing nonlinear mapping processes, based on kinematic time migration and demigration, has

been missing from the geophysical theory. Considering the importance of the generalisation

of time-migration velocity estimation using Fréchet derivatives based on nonlinear kinematic

migration and demigration solvers, this paper provides the missing element for event-oriented

seismic velocity estimation. In the following, we first describe the diffraction time function for

time migration, the time-migration velocity model. Thereafter, we review the algorithms for

kinematic time migration and demigration, and derive the Fréchet derivatives using sensitivity

analysis of the kinematic time migration with respect to the time-migration velocity model.

Finally, we formulate the linear system for time-migration velocity estimation. Based on the

derived mathematical algorithms, we provide three proof-of-concept examples. First, we ver-

ify the derived formulation for kinematic time migration and the calculation of the Fréchet

derivatives based on a constant time-migration velocity model. Next, we present an example of

a time-migration velocity estimation based on a 2D synthetic dataset. In the last - a 3D real-

data example, in which we did not have access to the individual, non-stacked, time-migrated

common-offset panels - we use a workaround by identifying the times and slopes on a stacked

image in the time-migration domain, and verifing the availability of the 3D time-migration

velocity estimation based on the theoretical formulations. The three examples confirm the

potential of our methodology.
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1 DIFFRACTION TIME FUNCTION FOR TIME MIGRATION

We describe the diffraction time function for time migration and the coordinates and coef-

ficients related to it. The description follows Iversen et al. (2012) but includes an extension

from second to fourth order.

1.1 Coordinates

We use a 2D Cartesian coordinate system (ξ1, ξ2) for describing the acquisition geometry of

3D seismic experiments. As shown in Figure 1, in the horizontal measurement plane, consider

a source point, s = (s1, s2), and a receiver point, r = (r1, r2). The midpoint and half-offset

coordinates are given as

x =
1

2
(r+ s), h =

1

2
(r− s). (1)

For the output point of time migration, i.e., the image-gather location, we use the notation

m. The aperture vector a is defined as

a = x−m. (2)

We will also need the quantities hS and hR,

hS = s−m = a− h,

hR = r−m = a+ h. (3)

referred to, respectively, as the source-offset vector and the receiver-offset vector.

Figure 1: Coordinate system used for describing the 3D seismic experiments. Source(s),

receiver(r), common-mid point(x) and common-image point(m) are defined in the horizontal

measurement plane. The vectors of aperture(a), half-offset(h), source-offset(hS) and receiver-

offset (hR) are outlined.
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1.2 Diffraction time

Assuming single scattering and traveltime fields without caustics, the diffraction time function

for time migration, TD, can be introduced as the traveltime from the source point to the

scattering point, TS , plus the traveltime from the scattering point to the receiver, TR,

t = TD(h,a,m, τ) = TS(hS ,m, τ) + TR(hR,m, τ). (4)

In equation (3) the source- and receiver-offset vectors are expressed in terms of a and h.

We note that t = TD is the (two-way) diffraction time from source to receiver, while τ is

the migration time, i.e., the time coordinate of the domain of the time-migrated data. The

diffraction time function TD is required stationary for h = a = 0.

Let the source and receiver traveltime fields correspond to the same wave type, e.g., a

direct P wave. We establish a Taylor expansion for the squared one-way time TS2
,

TS2
=

(τ
2

)2
+

1

2

∂2(TS)2

∂hSI ∂h
S
J

hSI h
S
J

+
1

6

∂3(TS)2

∂hSI ∂h
S
J ∂h

S
K

hSI h
S
J h

S
K +

1

24

∂4(TS)2

∂hSI ∂h
S
J ∂h

S
K ∂hSL

hSI h
S
J h

S
K hSL + . . . , (5)

and an analogous expansion for TR2
. The first order derivatives of TS2

and TR2
are zero,

as the diffraction time function is stationary for h = a = 0. Since the source and receiver

traveltime fields have the same wave type, the Taylor coefficents in the expansions of TS2
and

TR2
must be equal. Hence, we can write

TS2
=

(τ
2

)2
+ S

M(2)
IJ hSI h

S
J + S

M(3)
IJK hSI h

S
J h

S
K + S

M(4)
IJKL h

S
I h

S
J h

S
K hSL + . . . ,

TR2
=

(τ
2

)2
+ S

M(2)
IJ hRI h

R
J + S

M(3)
IJK hRI h

R
J h

R
K + S

M(4)
IJKL h

R
I h

R
J h

R
K hRL + . . . . (6)

If the lateral variations within the medium are small, and anisotropy effects are laterally

symmetric, the odd terms in equation (6) can be neglected. Applying this assumption and

truncating the series after the fourth order terms, our diffraction time function is given by

equation (4) with arguments (3) and source/receiver time fields

TS =

[(τ
2

)2
+ S

M(2)
IJ hSI h

S
J + S

M(4)
IJKL h

S
I h

S
J h

S
K hSL

]1/2
,

TR =

[(τ
2

)2
+ S

M(2)
IJ hRI h

R
J + S

M(4)
IJKL h

R
I h

R
J h

R
K hRL

]1/2
. (7)

For the subtle details on the partial derivatives of the diffraction-time function, see Ap-

pendix A.
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1.3 Diffraction time coefficients

The coefficients in equation (7) may be expressed, for example, as

S
M(2)
IJ = 2τ

∂2TS

∂aI∂aJ
, (8)

S
M(4)
IJKL = 1

12

[
2τ

∂4TS

∂aI∂aJ∂aK∂aL

+
∂2TS

∂aI∂aJ

∂2TS

∂aK∂aL
+

∂2TS

∂aI∂aK

∂2TS

∂aJ∂aL
+

∂2TS

∂aI∂aL

∂2TS

∂aJ∂aK

]
, (9)

where all derivatives are taken for a = h = 0. Observe, however, that the coefficients S
M(2)
IJ

and S
M(4)
IJKL are functions of m and τ . We can relate these coefficients to derivatives of the

diffraction time function and its square, as follows,

∂2TD

∂aI∂aJ
=

4

τ
S

M(2)
IJ , (10)

∂4TD

∂aI∂aJ∂aK∂aL
=

16

τ

[
3S

M(4)
IJKL − 1

τ2

(
S

M(2)
IJ S

M(2)
KL + S

M(2)
IK S

M(2)
JL + S

M(2)
IL S

M(2)
JK

)]
, (11)

∂2(TD)2

∂aI∂aJ
= 8S

M(2)
IJ , (12)

∂4(TD)2

∂aI∂aJ∂aK∂aL
= 96S

M(4)
IJKL. (13)

1.4 A simplified setup of diffraction time coefficients

Equation (7) is formulated to allow for a full coverage of directions and magnitudes of the

source- and receiver-offset vectors. For situations with limited coverage it is however useful to

have a simplified setup for the diffraction time coefficients.

One approach often used is to assume that the diffraction time moveout is rotationally

symmetric. We then write

S
M(2)
IJ = SM(2) δIJ , S

M(4)
IJKL = SM(4) δIJδKL, (14)

where SM(2) and SM(4) are scalar functions of the coordinates (m, τ). Using the relations

(14) in equation (7) yields

TS =

[(τ
2

)2
+ SM(2) (hS)2 + SM(4) (hS)4

]1/2
,

TR =

[(τ
2

)2
+ SM(2) (hR)2 + SM(4) (hR)4

]1/2
. (15)
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Here, the quantities hS and hR denote the magnitudes of the respective source- and receiver

offset vectors, hS and hR.

1.5 Time-migration velocity model

The time-migration velocity model is defined on a three-dimensional rectangular grid in the

variables ξ1 = m1, ξ2 = m2, ξ3 = τ , where we add ξ3 to describe the velocity model in time

domain. Model parameters related to cells or vertices within the grid will be unknowns in a

velocity estimation process.

Our velocity model is described in terms of a multi-component vector function, (Mλ), λ =

1, . . . , Nλ, where each component functionMλ(ξ1, ξ2, ξ3) corresponds to one of the coefficients

of the diffraction time function. For different contexts for these coefficients, see equations (6),

(7), and (15). The vector function (Mλ) is introduced to yield a compact equivalent of the

diffraction time coefficients under consideration. For example, for the simplified situation (15)

we take

M1 = SM(2), M2 = SM(4). (16)

To allow the differentiability up to the second order, we use a local cubic spline function

(see Appendix C) to describe the velocity model. Bicubic and tricubic spline functions are

used for 2D and 3D grids respectively. In Appendix E, we give a detailed description of the

parameterization of the time-migration velocity model.

2 KINEMATIC TIME MIGRATION AND DEMIGRATION

Kinematic time migration maps the local kinematic parameters (traveltimes, slopes and cur-

vatures) from the recording time domain of seismic data to the time-migration domain. The

inverse process, kinematic time demigration, maps the local kinematic parameters in time-

migration domain back to the recording time domain. As illustrated in Figure 2, by using

the diffraction function with its associated partial derivatives, and a known time-migration

velocity model, kinematic time migration and demigration are able to map the local kine-

matic parameters between the recording time domain and the migration time domain. In this

paper, we focus on the utilization of the kinematic parameters up to the first order for time-

migration velocity estimation. For mapping of second order kinematic parameters, see Iversen

et al. (2012).
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The local kinematic parameters can be extracted from both the recording domain and

the migration domain. Since the time-migrated dataset in general contains less noise and is

more easily interpreted, the kinematic parameters extraction is commonly often applied in the

migration domain, and subsequently demigrated to the recording domain. The time-migrated

dataset is normally generated by pre-stack time migration of the recorded seismic data with

an initial time-migration velocity model. The migrated dataset is not necessarily to be optimal

but is assumed to have a good resolution for the local kinematic parameters picking. Once the

picking process applied in the migration domain, the local kinematic parameters are able to

be mapped to the recording domain by kinematic demigration with the same initial velocity

model. This process needs the computation of the first and second order partial derivatives of

the known diffraction-time function (i.e. equations (4), (7), and (15)), which are then used in

the kinematic demigration and migration for velocity estimation. We give the formulation of

kinematic time demigration and migration in the following context.

Figure 2: Schematic overview of kinematic time migration and demigration for 2D pre-stack

seismic data set. Based on the known diffraction time function with its associated derivatives,

and a time-migration velocity model, the local kinematic parameters (x, T x, px, ph) in record-

ing domain can be forward/backward mapped to/from the counterpart (m, T M , ψm, ψh) in

migration domain by kinematic time migration/kinematic time demigration.
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2.1 Algorithm for kinematic time demigration

Consider equation (43) in Iversen et al. (2012), referred to as the consistency equation,

∂TD

∂aI
− ∂TD

∂mI
=

∂TD

∂τ

∂T
∂mI

, (17)

with I = 1, 2. We can use equation (17) to obtain the aperture vector corresponding to a

kinematic time demigration,

âI = x̂I −mI . (18)

Under special conditions the vector â = (âI) can be obtained analytically, see equation 78 in

Iversen et al. (2012).

Based on equation (17) we introduce a vector function (fI(a)) so that

fI(a) =
∂TD

∂aI
− ∂TD

∂mI
− ∂TD

∂τ

∂T
∂mI

, (19)

where a = â is the sought unknown aperture vector. As a consequence, the system of equations

to be solved has the general form

fI(a) = 0. (20)

One possible approach to obtain a solution is to use the Newton-Raphson iteration method. Let

us assume that the component values of the function fI is known for some starting component

values a = a(0). For these starting values we compute the first-order partial derivatives of fI ,

∂fI
∂aJ

(a(0)) =
∂2TD

∂aI∂aJ
− ∂2TD

∂mI∂aJ
− ∂2TD

∂τ∂aJ

∂T
∂mI

, (21)

with all the partial derivatives on the right-hand side evaluated for a = a(0). To first order we

can then write

0− fI(a
(0)) =

∂fI
∂aJ

(a(0))
(
a
(1)
J − a

(0)
J

)
. (22)

Defining

WIJ(a
(0)) =

∂fI
∂aJ

(a(0)), W̄MN (a(0)) =

{{
∂fI
∂aJ

(a(0))

}−1
}

MN

, (23)

equation (22) yields

a
(1)
J = a

(0)
J − W̄JL(a

(0)) fL(a
(0)), (24)

Equation (24) provides a first-order update of the aperture vector. We can now compute the

components fI(a
(1)) and check if these are sufficiently close to zero. Should that be the case,

the Newton-Raphson process is completed and has returned the solution â = a(1). Otherwise,

the process goes on to the next iteration. The process is stopped when both components fI
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are sufficiently close to zero. It is also stopped if we do not attain convergence to a meaningful

solution.

Equations (19) and (21) contain first- and second-order partial derivatives of the diffraction-

time function, TD. For the calculation of such derivatives, see Appendices C and D in Iversen

et al. (2012).

Now that we know the kinematic demigration aperture vector, â = (âI), it is easy to find

the time TX and the slopes pxI = ∂T/∂xI and phI = ∂T/∂hI resulting from the kinematic

demigration. To compute TX and pxI we simply use the equalities

TX = TD(h, â,m, T M ), pxI =
∂TD

∂aI
(h, â,m, T M ). (25)

The slope phI is given by equation (45) in Iversen et al. (2012),

phI =
∂TD

∂hI
(h, â,m, T M ) + ψh

I

∂TD

∂τ
(h, â,m, T M ). (26)

2.1.1 Half-offset vector with only one degree of freedom

The coverage of azimuthal directions for the half-offset vector h may be two small to permit

extraction of two slope components ψh
I to be input to kinematic time demigration. For this

situation the (two-component) half-offset vector has effectively only one degree of freedom, so

that we can parametrize the components of h by a single scalar, σ. The quantity σ will then

be a distance variable for traces belonging to a common-image gather in the migration-time

domain or a common-midpoint gather in the recording-time domain. The parametrization

reads

hI(σ) = h(σ)nI(σ), (27)

where h is the magnitude of h and n = (nI) is a unit vector. The quantity σ is a distance

variable for traces belonging to a common-image gather in the migration-time domain or a

common-midpoint gather in the recording-time domain. The first derivative of hI with respect

to σ is

dhI
dσ

=
dh

dσ
nI + h

dnI
dσ

. (28)

The slope mapping in equation (26) can now be restated

pσ =
∂TD

∂hI

dhI
dσ

+ ψσ ∂T
D

∂τ
, (29)

where we have introduced new, effective, slopes with respect to offset in the recording-time

and migration-time domains,

pσ =
∂T

∂σ
, ψσ =

∂T
∂σ

. (30)
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2.2 Algorithm for kinematic time migration

In the case of kinematic time demigration we first solved a system of two equations in two

unknowns, i.e., the components of the aperture vector, followed by a straightforward evaluation

of the diffraction-time function to obtain the output time. In the kinematic time migration

situation there will still be three unknowns of the same type, the aperture vector components

plus an output time, but now we will in general need to solve simultaneously a system of three

equations in the three unknowns. The equations under consideration are given as (68) and

(69) in Iversen et al. (2012); we restate them here as

∂T

∂xI
(h,x) =

∂TD

∂aI
(h, â,x− â, τ̂), (31)

T (h,x) = TD(h, â,x− â, τ̂). (32)

To describe the unknowns it is convenient to introduce a three-component vector (ζi) such

that ζI = âI and ζ3 = τ̂ .

We use equations (31)–(32) to formulate a three component vector function (gi(ζ)), as

follows

gI(ζ) =
∂TD

∂aI
− ∂T

∂xI
, (33)

g3(ζ) = TD − T, (34)

where function arguments on the right-hand side have been skipped. Equations (31)–(32) can

then be restated

gi(ζ) = 0. (35)

To solve the system of equations (35) we may proceed in the same way as described for

equation (20). That means, to use a Newton-Raphson approach using derivatives ∂gi/∂ζj .

These derivatives are given explicitly as

∂gI
∂ζJ

=
∂2TD

∂aI∂aJ
− ∂2TD

∂aI∂mJ
, (36)

∂gI
∂ζ3

=
∂2TD

∂aI∂τ
, (37)
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∂g3
∂ζJ

=
∂TD

∂aJ
− ∂TD

∂mJ
, (38)

∂g3
∂ζ3

=
∂TD

∂τ
. (39)

To obtain them, we have used that the time T and the slopes ∂T/∂xI in equations (33)–(34)

are invariant in kinematic time migration.

Knowing the output point (h, m̂, τ̂) resulting from a kinematic time migration, it means

that any requested partial derivative of the diffraction-time function TD in the variables hI ,

aI , mI , and τI may be computed. The natural next task is to obtain the slopes ψm
I and ψh

I

at the point (h, m̂, τ̂). For that, we reuse here equation (70) in Iversen et al. (2012),

ψh
I =

(
∂TD

∂τ

)−1(
phI −

∂TD

∂hI

)
, (40)

ψm
I =

(
∂TD

∂τ

)−1(
pxI −

∂TD

∂mI

)
. (41)

For a half-offset vector with only one degree of freedom, see equation (27), equation (40)

can be restated

ψσ =

(
∂TD

∂τ

)−1(
pσ − ∂TD

∂hI

dhI
dσ

)
. (42)

3 SENSITIVITY OF KINEMATIC TIME MIGRATION WITH RESPECT

TO THE TIME-MIGRATION VELOCITY MODEL

Considering one selected parameter ν of the time-migration velocity model, we study how the

kinematic time migration is affected by a perturbation in ν. We investigate the first-order

changes of the reflection location with respect to the time-migration velocity model (i.e. the

derivatives dm̂I/dν and dτ̂ /dν), as well as the the first-order changes of the reflection slopes

with respect to the time-migration velocity model (i.e. the derivatives dψh
I /dν).

In view of the model representation described in Appendix E, we take ν specifically as the

node value

ν = Mλ
r,s,t. (43)
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3.1 First-order changes of the reflection location with respect the

time-migration velocity model

The location of a reflection in the migration-time domain can be expressed in terms of the

parameter ν as (h, m̂(h, ν), τ̂(h, ν)). As shown in Figure 3, we investigate how this location

(m̂, τ̂) is affected, to first order, by a perturbation in ν.

Figure 3: Schematic overview (2D) of the first-order changes of the reflection location with

respect to the time-migration velocity model. The symbol hi signify a specific common-offset

section. The figure shows, perturbation of a time-migration velocity model parameter (δν)

leads to the position change (δm, δτ) of the kinematic migration result: the kinematic migrated

output is shifted from red point to green point. These perturbations are described by the

derivatives: dm/dν and dτ/dν. In the figure, the yellow point and the dash black line represent

the input event point and its local slope. The red point and the red dash line represent the

migrated point and its diffraction traveltime curve by using the initial time-migration velocity

of ν0. Correspondingly, the green point and the green dash line represent the migrated point

and its diffraction traveltime curve by using the updated time-migration velocity ν0 + δν.

Equation (35) yields a mapping from a location in the recording-time domain to a location

in the migration-time domain. The relation is valid regardless of which time-migration velocity

model we use. As a consequence, we have

dgi
dν

= 0. (44)

Also, we note that the time T and the slopes ∂T/∂xI in equations (33)–(34) are insensitive
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to the value of ν. A differentiation of these equations with respect to ν therefore yields

d

dν

(
∂TD

∂aI

)
= 0, (45)

dTD

dν
= 0. (46)

Equations (45)–(46) contain information to estimate the derivatives dm̂I/dν and dτ̂ /dν. The

total derivative operator in these equations can be stated as

d

dν
=

∂

∂ν
+

dâJ
dν

∂

∂aJ
+

dm̂J

dν

∂

∂mJ
+

dτ̂

dν

∂

∂τ
.

Using that the location (xI) is insensitive to the value of ν, the operator appears in the form

d

dν
=

∂

∂ν
+

dm̂J

dν

(
∂

∂mJ
− ∂

∂aJ

)
+

dτ̂

dν

∂

∂τ
. (47)

The specific partial derivatives of the diffraction time with respect to ν are given in Appendix

B.

Applying equation (47) in (45)–(46) yields[
dm̂J

dν

(
∂

∂mJ
− ∂

∂aJ

)
+

dτ̂

dν

∂

∂τ

](
∂TD

∂aI

)
= − ∂2TD

∂ν∂aI
,

[
dm̂J

dν

(
∂

∂mJ
− ∂

∂aJ

)
+

dτ̂

dν

∂

∂τ

] (
TD
)

= −∂T
D

∂ν
,

and hence,(
∂2TD

∂aI∂mJ
− ∂2TD

∂aI∂aJ

)
dm̂J

dν
+
∂2TD

∂aI∂τ

dτ̂

dν
= − ∂2TD

∂ν∂aI
, (48)

(
∂TD

∂mJ
− ∂TD

∂aJ

)
dm̂J

dν
+
∂TD

∂τ

dτ̂

dν
= −∂T

D

∂ν
. (49)

Equations (48)–(49) can be restated as the matrix equation

Aη = b, (50)

which includes the 3× 1 matrix of unknowns

η =

⎡⎣{dm̂J
dν

}
dτ̂
dν

⎤⎦ , (51)

and the 3× 3 and 3× 1 coefficient matrices

A =

⎡⎣{ ∂2TD

∂aI∂mJ
− ∂2TD

∂aI∂aJ

} {
∂2TD

∂aI∂τ

}
{

∂TD

∂mJ
− ∂TD

∂aJ

}
∂TD

∂τ

⎤⎦ , (52)

b = −

⎡⎣{ ∂2TD

∂ν∂aI

}
∂TD

∂ν

⎤⎦ . (53)
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Inversion of equation (50),

η = A−1b, (54)

will then yield the sought derivatives dm̂I/dν and dτ̂ /dν.

3.2 First-order changes of reflection slopes with respect to the time-migration

velocity model

Apart from the investigation of the reflection position changes of a kinematic time migration

output, we also need study the variation of reflection slopes with respect to the perturbation

of time-migration velocity. As presented in the Figure 4, the derivative dψh
I /dν describes the

sensitivity of the variation of the reflection slopes with respect to the velocity perturbation.

In the following, we derive an expressions for the first-order derivatives of reflection slopes

in offset, resulting from a kinematic time migration, taken with respect to parameters of the

time-migration velocity model.

Figure 4: Schematic overview (2D) of the first-order changes of the reflection (offset) slopes

with respect to the time-migration velocity model. The symbols hi andmj signify, respectively,

a common-offset section and a common-image gather. The figure shows, with a fixed input

point from the recording domain, the perturbation of time-migration velocity model leads to

the changes of the reflection slopes in the kinematic migration domain. The yellow and red

points represent the initial migrated point, the further migrated point after the velocity update

respectively. The green point resembles the idea time-migration result (ψh = 0 )derived from

the optimal migration velocity.
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3.2.1 Half-offset vector with two effective degrees of freedom

The most general mapping of reflection slopes ψh
I is given by equation (40), for which the

half-offset vector has two degrees of freedom. We differentiate this equation with respect to

the parameter ν, which yields,

d

dν

(
∂TD

∂hI
+
∂TD

∂τ
ψh
I

)
= 0. (55)

Using the differentiation operator in equation (47), we obtain after some elaboration

dψh
I

dν
= −

(
∂TD

∂τ

)−1{
∂2TD

∂ν∂hI
+
∂2TD

∂ν∂τ
ψh
I

+
dm̂J

dν

[
∂2TD

∂mJ∂hI
− ∂2TD

∂aJ∂hI
+

(
∂2TD

∂mJ∂τ
− ∂2TD

∂aJ∂τ

)
ψh
I

]
+
dτ̂

dν

[
∂2TD

∂τ∂hI
+
∂2TD

∂τ2
ψh
I

]}
. (56)

3.2.2 Half-offset vector with one effective degree of freedom

When the half-offset vector has effectively only one degree of freedom, we take the mapping

equation (42) as a starting point for obtaining a derivative of the slope along offset, ψσ, with

respect the model parameter, ν. The result is

dψσ

dν
= −

(
∂TD

∂τ

)−1{
∂2TD

∂ν∂hI

dhI
dσ

+
∂2TD

∂ν∂τ
ψσ

+
dm̂J

dν

[(
∂2TD

∂mJ∂hI
− ∂2TD

∂aJ∂hI

)
dhI
dσ

+

(
∂2TD

∂mJ∂τ
− ∂2TD

∂aJ∂τ

)
ψσ

]
+
dτ̂

dν

[
∂2TD

∂τ∂hI

dhI
dσ

+
∂2TD

∂τ2
ψσ

]}
. (57)

In the calculation of equation (57), the partial derivatives related to the time-migration

velocity model are needed. The detailed description of this calculation is described in Appendix

F.

4 VELOCITY ESTIMATION FORMULATION

Once we formulated the kinematic time migration/demigration scheme and derived the Fréchet

derivatives of kinematic time migration with respect to the time-migration velocity model,

we are now able to set up an inversion scheme to estimate the time-migration velocity. In the

following, we first review a common way to linearize a generally non-linear inversion problem,

then we introduce the approach of iterative linearized inversion to estimate the optimal time-

migration velocity model.
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4.1 Linearization of the inversion problem

Consider a parameter vector ν containing N parameters belonging to a general data model

(not necessarily related to seismics) and a vector function D(ν) with M components

Dm(ν) = dtruem − dpredm (ν), m = 1, . . . ,M, (58)

where dpredm is a quantity predicted on the basis of the model parameter vector ν, and dtruem is

the corresponding true (observed or idealized) quantity. Linearization of equation (58) with

respect to a certain reference vector ν0 yields

Dm(ν) = Dm(ν0) +
∂Dm

∂νn
(ν0) (νn − ν0n). (59)

Furthermore, assume that Dm = 0 for all values of the index m. The first-order update ν of

the model parameter vector ν0 must then satisfy the equation

∂Dm

∂νn
(ν0) (νn − ν0n) = −Dm(ν0). (60)

Using the definition of the vector function D in equation (58) we can alternatively write

∂dpredm

∂νn
(ν0) (νn − ν0n) = dtruem − dpredm (ν0). (61)

Equation (61) describes a system of M linear equations with N unknown parameters to be

determined. The quantity ∂dpredm /∂νn is commonly referred to as a Fréchet derivative.

4.2 Iterative linearized inversion

We use an iterative linearized inversion approach where the objective is to minimize the misfit

between idealized and predicted slopes in the offset coordinates of the common-image gathers.

The idealized slopes are zero and correspond to an optimal time-migration velocity model. It

is remarked that such a model may not exist in practice, because of the limitations of time

migration.

In our situation, the linear equations are obtained by adaption of equation (61), so that

each slope event under consideration will give rise to two equations or a single equation,

depending on the effective degree of freedom for the variation of the half-offset vector. The

resulting equations for these two situations are, respectively,

∂ψh
I

∂νn
(ν0) (νn − ν0n) = −ψh

I (ν
0). I = 1, 2 , (62)

and

∂ψσ

∂νn
(ν0) (νn − ν0n) = −ψσ(ν0). (63)
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The Fréchet derivatives of our tomographic approach are partial derivatives of the re-

flection slope in the offset direction, ψh
I or ψσ, with respect to the parameters, νn, of the

time-migration velocity model. These derivatives can be obtained using, respectively, equa-

tion (56) or equation (57).

To avoid artificial jumps of the solution in areas with little data coverage, it is important

to include regularization in the system of linear equations. We use Tikhonov regularization of

zeroth, first, and second order (e.g., Aster et al., 2013). The first- and second-order regular-

ization equations are included separately for each coordinate direction under consideration.

5 EXTRACTION OF LOCAL KINEMATIC PARAMETERS

With the above formulation, we are now able to estimate the time-migration velocity model

based on the kinematic time migration and demigration by using the local kinematic pa-

rameters (traveltimes, slopes, and curvatures). In our method, considering the efficiency in

implementation and the robustness in the calculation, we choose the gradient structure ten-

sor (GST) method for the first-order kinematic parameters (slopes) extraction and quadratic

gradient structure tensor (QST) for the second-order kinematic parameters (curvatures) ex-

traction. This operation is applied either on stacked data in the migration domain or the

seismic stack in recording domains. In the following, we review the gradient structure ten-

sor method and GST method for slope extraction. we also give the description of curvature

extraction in Appendix D.

5.1 The Gradient Structure Tensor

Structure tensors provide a description of the local structure in images using a tensor field.

For a 3D image, this yields a 3× 3 tensor matrix for each voxel. Knutsson (1989) showed that

this tensor could be optimally obtained using six spatially oriented quadrature filters. The

gradient structure tensor (GST) (Bigun 1987), is a simplified implementation of the structure

tensor, where the tensor is estimated using three gradient filters.

For a 3D seismic cube, the GST is computed using gradient estimates along the three

image dimensions (x = [x, y, t]T ). The gradient tensor:

T ≡ ggT , (64)
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is the estimated covariance matrix of the gradient vector field:

g(x) =

⎡⎢⎢⎢⎣
gx(x)

gy(x)

gt(x)

⎤⎥⎥⎥⎦ . (65)

The gradients (gx, gy, gt) along the three axes (x, y, t) are obtained by convolving the seismic

data cube (I(x)) with the derivative of the 3D Gaussian function G(x, σ):

gi = I(x) ∗ ∂

∂xi
G(x, σg). (66)

where σg is the gradient scale. As the GST is sensitive to structures at different scales depend-

ing on σg, when applied to seismic data, we want the GST to be sensitive to reflections. This

can be achieved by setting σg to match half the typical thickness of the reflections. (full width

at half maximum of the Gaussian function). The GST is then computed as the smoothed

outer product of the gradient vector:

T =

⎡⎢⎢⎢⎣
g2x gygx gtgx

gxgy g2y gtgy

gxgt gygt g2t

⎤⎥⎥⎥⎦ , (67)

where ¯ is the smoothing operator. The smoothed tensor elements are computed using the

Gaussian window function:

Tij = Tij ∗G(x, σT ), (68)

where σT is the smoothing scale. The parameter σT controls the spatial smoothing. By having

a large σT , the GST becomes more robust against noise. By having a smaller σT , more detailed

information about the structure may be obtained.

5.2 Slope estimation

The local structure in the image can be analyzed by considering the eigenvalues (λ1 ≥ λ2 ≥ λ3)

and corresponding eigenvectors (v1,v2,v3) of T. Since T is the estimated covariance matrix

of the gradient vector field, the eigenvectors span the axes of the covariance ellipsoid. This

means that v1 will have the same direction as the locally dominant direction of the gradient

vector field. It is also possible to derive attributes from the eigenstructure (Randen et al.

2000).

By considering the components of v1 = [v1x, v1y, v1t], the slopes (estimates of the deriva-

tives) are given as:
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qx =
∂̂t

∂x
=
v1x
v1t

, (69)

qy =
∂̂t

∂y
=
v1y
v1t

. (70)

The eigenvector analysis is carried out for all locations in space, which produces the slope-

fields.

6 NUMERICAL EXAMPLES

In this section, we demonstrate the viability of the proposed time-migration velocity estima-

tion technique using three numerical examples. In the first example, we evaluate the derived

formulation of kinematic time migration and the calculation of the Fréchet derivatives based

on a constant time-migration velocity model. In the next, we present an example based on a

2D synthetic dataset. In the last example, we provide an application of time-migration velocity

estimation on real 3D marine data from the Barents Sea.

6.1 Test of the Fréchet derivative formula for time-migration velocity

estimation

First, we tested the kinematic migration using single event (point) mapping from the recording

domain to the migration domain. As shown in Figure 5, we used an input event point at CMP

location x = 2.5 km, with travel time TD = 2.2676 s and a half offset of h = 1 km. The

corresponding event slopes were px = 0.6840 s/km and ph = 0.0694 s/km. In the example, a

true time-migration velocity model with SM = 0.16 s2/km2 was known, and a time-migration

velocity model with SM = 0.175 s2/km2 was used in the test. The diffraction traveltime curves

based on the true and test are plotted, represented by the solid black and the broken black

lines, respectively in Figure 5. During the test, we applied the kinematic migration to the

selected input event in the recording domain based on the test and true models, and observed

that the kinematic migration using the test migration velocity misplaced the reflection event

in the migration domain and derived kinematic parameters, m = 0.1889 m, τ = 1.1011 s, ψm

= 1.2692 and ψh = -0.0447 s/km, while the kinematic migration using the true migration

velocity correctly mapped the event back to the known diffraction point location, and derived

the correct kinematic parameters, m = 0 km, τ = 1.0 s, ψm = 1.4009 and ψh = 0 s/km in

the migration domain.
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In the next example, we verified the accuracy of the Fréchet derivative approximations

derived in Equations (56) or (57). In the test, we first numerically generated the function ψh(v)

using the input migration velocity quantities v = SM and the reflection slope quantities in

the offset direction ψh, derived from the kinematic migration (Figure 6). Since the Fréchet

derivatives of our constrained linear inversion are partial derivatives of the reflection slope

in the offset direction, ψh
I or ψσ, with respect to the parameters νn of the time-migration

velocity model, we could then calculate these derivatives by using Equations (56) or (57).

In Figure 6,we plotted the linear approximation of ψh(v) using an explicit formula for the

derivative ∂ψh/∂ν at velocity model coordinate v = SM = 0.175 s2/km2. The derived Fréchet

derivative ∂ψh/∂ν = -2.7389 km/s, using the explicit formula in Equation (56), is very close

to the numerically-derived Fréchet derivative ∂ψh/∂ν = -2.7390 km/s. However, if we ignore

the movement of the point (m,τ) in Equation (56), the derived linear approximation of ψh(v)

at the selected velocity model coordinate gives the wrong slope approximation.

Figure 5: Kinematic time-migration test using different velocity models. The red dot represents

an input event point in the recording domain. The black dot represents the output event point

of the kinematic migration based on the true velocity model, while the black circle represents

the migrated output based on the test velocity model. The diffraction time functions using the

true and test velocity models are represented by the solid and dashed black lines, respectively.
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Figure 6: Verification of the Fréchet derivative approximations. The green line represents

the numerically-calculated function ψh(v). The solid blue line denotes the calculated Fréchet

derivative based on Equation (56) at the velocity model coordinate v = SM = 0.175 s2/km2,

while the dashed blue line is the Fréchet derivative calculated for the same velocity-model

coordinate, but ignoring the movement of the point.

6.2 2D time-migration velocity estimation

In the 2D velocity estimation example, we used a 2D synthetic data set to demonstrate the

proposed time-migration velocity estimation workflow (1), shown in Figure 7. This is based

on fully using all common-offset gathers, reflection surface picking and slope extraction in the

migration domain, and iterations of the internal time-migration velocity estimation.

In this example, a 2D depth-velocity model (Figure 8) was generated, consisting of five geo-

logical layers with predefined velocities (1500m/s, 2000m/s, 2500m/s, 3000m/s and 3500m/s),

delineated by four interfaces. A surface with a syncline and anticline is defined on Interface

2, and a dipping surface is defined on Interface 3. The prestack shot-gather dataset was simu-

lated by Kirchhoff modelling in NORSAR using a conventional 2D marine seismic geometry:

shot interval 12.5 m, trace interval 25 m, minimal offset 100 m, maximum offset 3100 m, group

number 121, and total number of shots 953.
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Figure 7: Time-migration velocity estimation workflow (1)

Figure 8: 2D synthetic depth velocity model

Based on the simulated prestack dataset, we applied 2D Kirchhoff prestack time migra-

tion using an initial migration velocity field. To test the feasibility of the velocity estimation

algorithm, we deliberately used a constant water velocity 1500 m/s as an initial migration

velocity model for the Kirchhoff prestack time migration. After the migration, the gradient

structure tensor-based slopes extraction was applied to the migrated volume to derive slopes

volumes, and a semi-automated seed-point-based horizon tracking was applied so as to derive

the reflection traveltime surface in the common image point and offset domain. The corre-

sponding slopes were extracted along the four interpreted surfaces in the migration domain.
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Based on the derived kinematic parameters in the migration domain - the half-offset h, the

common image point coordinate, m, the migration time τ , and the reflection slopes ψm and

ψh the kinematic demigration was applied to map those kinematic parameters to the record-

ing domain and derive the half-offset h, the common midpoint coordinate x, the reflection

time TD and the reflection slopes px and ph. Based on the kinematic demigration, the reflec-

tion surfaces in the recording domain were recreated. Figure 9 shows the picked surfaces in

the migration domain and the corresponding kinematic demigrated surfaces in the recording

domain, selected from the finite-offset panels.

Figure 9: Input finite surface planes in the migration domain (black), and kinematic demi-

grated finite surface planes in the recording domain (red). The selected offset planes (1, 30,

60 and 90) from the second interface are displayed from top left to bottom right.

Using the input of kinematic parameters in the recording domain, the internal iterations

for the time-migration velocity estimation were applied. Each iteration consisted of a kine-

matic migration with a defined velocity field, and the following constrained linear inversion

for deriving the velocity update in order to minimise the reflection slope ψh in the migra-

tion domain. In this synthetic example, we started the kinematic migration, based on the

water velocity (1500 m/s), and the estimated time-migration velocity, by running three in-

ternal iterations. Figure 10 shows the kinematic migrated reflection surfaces based on the

input/estimated time-migration velocity fields. We projected all the finite-offset surfaces onto
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the zero-offset plane to verify the improvement of the estimated time-migration velocity field.

As mentioned earlier, the best estimated time-migration velocity field is able to flatten all the

common image gathers in the offset direction, which is equivalent to zero for the quantity of

reflection slope ψh in the migration domain. From the reduced residual moveout from Figure

10 a-d, the rapid convergence of the algorithm can be seen.

Figure 10: Kinematically-migrated reflection surfaces based on the estimated time-migration

velocity field. a): Reflection surface derived from initial water velocity. b-d): Reflection surface

derived from velocity estimation’s iterations 1-3. All surfaces in the finite-offset were projected

onto the zero offset plane for this comparison.

The constrained linear inversion estimated time-migration velocity field was compared

with the original depth-model-converted time-migration velocity field for the whole section,

as shown in Figure 11, and for the selected common-image-gather (CIG) locations in Figure

12. The estimated time-migration velocity shows good consistency with the model converted

reference time-migration velocity within the spatial coordinates 0 to 10 km. From 10 km to

the end of the model, the estimated velocity presents a slightly slower velocity trend than the

reference velocity, which might be the result of the sparse sampling between the second and

third horizons at the right end of the original model.
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Figure 11: Comparison of time-migration velocity (top) and constrained linear inversion de-

rived time-migrated velocity (bottom).

Figure 12: Comparison of derived time-migrated velocity (red) and Dix converted time-

migration velocity (black) at selected CIG locations.
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Figure 13: CIG gathers migrated using derived migration velocity.

Figure 14: Migration stacked image from PSTM with derived time-migration velocity.

In order to verify the quality of the derived time-migration velocity field, we applied

Kirchhoff prestack time migration to the synthetic common-offset gathers using the derived

time-migration velocity field. Figure 13 shows the selected CIG gathers after the migration.

It can be seen that most of the events on the CIG gathers are flat following the migration

using the estimated time-migration velocity. The final migrated stack, shown in Figure 14,

also proves the good quality of the estimated time-migration velocity field.
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6.3 3D time-migration velocity estimation

In this final example, we employed a 3D marine dataset, acquired in the Barents Sea, to

demonstrate the time-migration velocity estimation in 3D scenarios. The dataset contains

the migrated stacked 3D volume, the interpreted geological horizons, the pre-migration CMP

gathers, and the time-migration velocity field derived from the conventional migration velocity

estimation. As the migrated common image gathers were not available for the study, we

modified the prior workflow (1) of the time-migration velocity estimation demonstrated in

the 2D example, and proposed an alternative version of the workflow (2) (Figure 15) for the

3D time-migration velocity estimation. Instead of the application of an initial prestack time

migration to the input data, and the subsequent picking of each migrated offset volume, the

algorithm uses the interpreted key reflectors from the time-migrated zero-offset volume as

the input and replaces the reflection surface picking and slope extraction in the migration

domain with the reflection surface modelling, fitting and slope extraction in the recording

domain. In the following 3D numerical example, we used the provided migration velocity as

the reference velocity model, and derived the demigrated zero-offset kinematic parameters.

Using the subsequent application of reflection surface modeling, seismic to surface fitting and

slope extraction, we estimated the 3D time-migration velocity based on the internal iteration

of nonlinear constrained 3D velocity inversion. Ultimately, the derived migration velocity

field was compared with the reference velocity model to demonstrate the effectiveness of the

proposed 3D time-migration velocity estimation approach.

Figure 15: time-migration velocity estimation workflow (2)
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The 3D marine dataset was acquired using 12 streamers separated by 75 m and a dual-

source configuration with a shot point interval of 18.75 m. The data on each cable was recorded

using 564 receivers per streamer at interval of 12.5 m. The sorted 3D CMP dataset, a prestack

time-migrated stack volume, the 3D time-migration velocity field and the interpreted horizons

from the operating company were used in this numerical example.

Figure 16: 3D surfaces picked from zero-offset migrated volume, which represent the geological

interfaces of the seabed, top Triassic, intra-Triassic, and top Permian, from top to bottom

respectively.

Based on legacy seismic processing, four horizons (Figure 16) were interpreted based on the

migrated stack volume, which represents the geological interfaces of the seabed, top Triassic,

intra-Triassic and top Permian respectively. The original surfaces covered a 300-km2 area. In

this example , we selected an area of interest of 25 km2 (x = 1.625-6.625 km, y = 0.375-5.375

km) for the time-migration velocity estimation.

In the first step of the algorithm (Figure 15), we proposed applying an initial pre-stack or

post-stack time migration using a raw time-migration velocity field, derived either from stack-

ing velocity analysis or a manually-defined velocity trend, then applying the key reflections

picking and slope extraction based on the migrated zero-offset dataset. In this example, based

on the provided pre-stack time-migration (PSTM) volume and the interpreted key reflection

horizons, we first derived the kinematic attribute slope ψm using the gradient structure ten-

sor method and extracted the slopes along the interpreted surfaces to derive the zero-offset

kinematic parameters (m, τ , ψh = 0, ψm) in the migration domain. Kinematic demigration
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was applied subsequently to generate the zero-offset kinematic parameters in the recording

domain (x, TD, ph = 0, px) by employing the original prestack time-migration velocity. In

Figure 17, the fourth zero-offset surface in the migration domain, the demigrated surface in

the recording domain and the corresponding slopes of ψm are displayed as an example.

Figure 17: Input and output of zero-offset kinematic demigration, and the derived slopes ψm in

the recording domain. (a) Interpreted fourth surface in the migration domain. (b) Kinematic

demigrated fourth surface in the recording domain. (c) Slopes ψm of the demigrated surface

along the x direction. (d) Slopes ψm of the demigrated surface along the y direction.

Next, in order to obtain the kinematic parameters of the finite-offsets in the recording

domain, we introduced a fast-track approach to reflection-surface modelling and surface-to-

seismic fitting in the recording domain. In this process, referring to the derivation of Iversen

et al. (2012) (Eq. 84), we derived the normal moveout matrices SNMO based on the migration

velocity SM and zero-offset slope px. In Figure 17, we display all four components of the normal

moveout (NMO) matrices derived from the kinematic demigration of the fourth reflection

surface. We then modelled the traveltime surfaces of the finite-offset reflections (Figure 18)

using the CMP approximation. The NMO matrices SNMO, zero-offset reflection surfaces T 0,

and offset vectors h extracted from the CMP gathers were used in this calculation. The

generated finite-offset reflection surfaces in the recording domain are shown in Figure 18.
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Meanwhile, considering that the CMP traveltime equation is under the assumption that the

reflection travel time, as the function of the offset, follows hyperbolic trajectories, which are

not valid in the case of complex overburden structures that give rise to strong lateral variations,

in this case, we assumed the gentle velocity variation within the migration aperture and only

tackled the time-migration velocity estimation for the isotropic medium. Thus, at next step in

traveltime surfaces/curves to seismic fitting is needed to match the derived reflection curves

to the seismic events on the CMP gathers. A semblance-based parameter searching approach

was applied in this fitting process. The fitting was applied to the selected CMP locations using

the defined grid size of 500 x 500 m. Once the traveltime was calculated at the selected offset

and CMP locations, the individual finite-offset surfaces were created using the bi-cubic spline

interpolation based on the local traveltime control points. The original modelled reflection

events and the fitted reflection events were overlaid on the corresponding CMP gather, and

are shown in Figure 19.

Figure 18: Modelled finite-offset reflection surfaces in the recording domain. (a) First finite-

offset reflection surfaces using selected offset planes from the zero offset panel to the maximal

offset panel of 15 with step 5. (b) Second finite-offset reflection surfaces using selected offset

planes from the zero offset panel to the maximal offset panel of 15 with step 5. (c) Third

finite-offset reflection surfaces using selected offset planes from the zero offset panel to the

maximal offset panel of 30 with step 5. (d) Fourth finite-offset reflection surfaces with selected

offset planes from the zero offset panel to the maximal offset panel of 60 with step 5.
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Figure 19: Modelled reflection events overlain on the CMP gather (left), and fitted reflection

events overlain on the CMP gather (right)

To derive the finite-offset kinematic parameters in the recording domain, polynomial fitting

and slope extraction along the selected directions were applied on each reflection surface. The

second order polynomial and cubic smoothing spline were used to fit and derive the slopes px

and ph, respectively. Figure 20 shows the reflection surfaces and their corresponding extracted

slopes on the selected offset.

Figure 20: Finite-offset reflection surfaces of the fourth surface and the corresponding ex-

tracted slopes on the tenth offset panel. (a) Finite-offset reflection surfaces. (b) Extracted

slope surface px along x direction. (c) Extracted slope surface px along y direction. (d) Ex-

tracted slope surface ph.
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In the next step, based on the derived finite-offset kinematic parameters (h, x, TD, ph,

px ) in the recording domain, we applied the 3D kinematic migration and constrained the

linear inversion in order to estimate the time-migration velocity. As mentioned in the section

on the velocity estimation formulation, the internal time-migration velocity estimation is

formulated as an iteration of the kinematic time migration and the constrained linear inversion.

The kinematic time migration is applied on a defined velocity model to map the kinematic

parameters from the recording domain to the migration domain, while the constrained linear

inversion provides the time-migration velocity perturbation that minimises the misfit between

the idealised slope ph = 0 and the current slope ph in the common-image gathers. In the 3D

time-migration velocity estimation example, we selected a testing area (5 km x 5 km x 2

s) for the velocity field estimation. Unlike using the constant-velocity model in the 2D time-

migration velocity estimation example, we derived an initial 3D velocity model from a previous

2D time-migration velocity estimation using a specified sparse grid sampling (1 km x 1 km x

0.1 s), which was used to constrain and stabilise the 3D linear inversion. The derived initial

velocity field is shown in Figure 21.

Figure 21: Initial 3D velocity field model (5km x 5km x 2s)

In the 3D time-migration velocity estimation, we applied three iterations of velocity in-

version using the setting of variant grid sizes. The grid parameters of the migration velocity

used for each iteration are listed in Table 1. The regularisation condition of the first order

of Tikhonov using an adaptive damping scheme, was applied to all the iterations. The initial

velocity model, and the derived migration velocities of each iteration, are shown in Figure 22

for selected inline location (x = 3.4 km).
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Table 1. Grid parameter setting for 3D time-migration velocity estimation

X sampling(m) Y sampling(m) Time sampling(m)

Iteration 1 1000 1000 100

Iteration 2 500 500 50

Iteration 3 250 250 25

Figure 22: Time-migration velocity from the 3D velocity estimation (selected location at x

= 3.4 km). (a) Initial time-migration velocity. (b) Time-migration velocity from the first

iteration of the velocity estimation, (c) Time-migration velocity from the second iteration of

the velocity estimation, (d) Time-migration velocity from the third iteration of the velocity

estimation.
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In the last step, for quality controlling the derived 3D time-migration velocity field, we used

the reference time-migration velocity field, which was derived from conventional migration

velocity analysis as a benchmark against which to compare the velocity field derived from our

approach. The two velocity volumes are compared in Figure 23. The selected inline and xline

velocity profiles are compared in Figures 24 and 25 , respectively. These two velocity fields

were also compared at randomly-selected CIG locations, as shown in Figure 26. From these

figures, it can be clearly seen that the inversion-generated velocity field has good consistency

with the velocity derived by the conventional approach, especially within the time range 0-

1.6 s. In the deeper part, from 1.6 s to 2 s, it can be observed that there is a mismatch

between the inversion-derived velocity and the conventional-approach-derived velocity. The

inversion-derived velocity gives a slower velocity than the conventional approach; however,

upon investigation of the locations that were mismatched, we found that uplift of the bottom

horizon and regularisation were the main reasons, and that, potentially, if more deep horizons

were included, the version might better constrain the inversion, giving an even better velocity

estimation at the bottom.

Figure 23: Comparison of 3D time-migration velocity fields derived from the kinematic time

migration and demigration approach (left), and the conventional migration velocity analysis

approach (right).
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Figure 24: Comparison of the velocity-estimation derived time-migration velocity field (top)

and the conventional migration-velocity-analysis-derived time-migration velocity field (bot-

tom). The plot was selected from location x = 3 km

Figure 25: Comparison of the velocity-estimation derived time-migration velocity field (top)

and conventional migration-velocity-analysis-derived time-migration velocity field (bottom).

The plot was selected along from y = 1.65 km
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Figure 26: Comparison of velocity-estimation derived time-migration velocity field (black line)

and the conventional migration-velocity-analysis- derived time-migration velocity field (red

line) for randomly selected locations.

7 CONCLUSIONS

In this paper, we have presented a technique for time-migration velocity estimation, which

is based on known reflection traveltimes and local slopes. We have generalised the time-

migration velocity estimation using nonlinear mapping processes based on kinematic time

migration and demigration, and derived, to a great detail, the involved Fréchet derivatives;

that is, the partial derivatives of the local reflection slopes in the offset direction with respect

to the time-migration velocity model. Ultimately, a system of linear equations was applied

iteratively in order to solve the nonlinear velocity update.

Using the proposed scheme, we have generalised both the 2D and 3D homogeneous and

heterogeneous seismic time-migration velocity estimation approaches based on reflection trav-

eltimes and local slopes. The scheme is applied to both conventional narrow- and wide-azimuth

acquisition geometries. The proposed time-migration velocity estimation approach is, in gen-
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eral, more accurate than conventional methods because it better honours the spatial variations

of the diffraction time function. Through numerical examples, we have shown that the new

approach is robust. The optimal migration velocity was obtained within the internal velocity

estimation loop, and was subsequently used for final PSTM. Regarding reflection traveltime

picking, we proposed extracting the local reflection slopes using the technique of gradient

structure tensor and semi-automatic reflection horizon picking in the pre-stack migration do-

main in order to utilise the migrated pre-stack data with a higher resolution and signal-to-noise

ratio.

In the numerical experiments, the theoretical formulations were tested using three ex-

amples. In the first example, we verified the Fréchet derivatives used for the time-migration

velocity estimation. The presented examples of the comparison between the analytical and

numerical derivatives of both the kinematic migration and Fréchet derivatives proved the accu-

racy of the theoretical derivation. In the next example, we demonstrated the time-migration

velocity estimation on a 2D dataset. The experimental dataset was initially generated by

Kirchhoff modelling. In the subsequent velocity estimation, the generated synthetic datasets

were migrated by PSTM using an initial migration velocity model, and then the reflection

traveltime picks and corresponding local slopes were derived. The following applied internal

velocity updates showed a rapid convergence of the linear velocity iterations. The accuracy

of the derived 2D time-migration velocity was also proved by the flatness of the final PSTM-

migrated gather and the reasonable quality of the PSTM-migrated stack image. In the last

numerical example, we demonstrated the feasibility of applying the derived scheme for the es-

timation of time-migration velocity to a 3D marine field dataset. In this example, as we were

short of a PSTM-migrated prestack dataset, only obtaining the migrated stacked dataset,

the corresponding integrated reflection horizons, and legacy PSTM migration-velocity field,

we used a workaround scheme to derive the invariant reflection traveltimes and local slopes

in the recording domain, and applied the velocity estimation using the input from selected

finite-offset planes. Although we understand that the picking in the recording domain may

have included artifacts from the complex geological region, the experiment-derived migration

velocity volume still showed good consistency with the velocity derived from conventional

migration-velocity analysis. This proved the feasibility of the 3D time-migration velocity es-

timation formulation.

In general, considering the initial depth-velocity model is still crucial for most of the depth-

domain tomography algorithms, we believe that the proposed technique of time-migration

velocity estimation, using nonlinear kinematic migration/demigration solvers based on Fréchet
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derivatives, will improve the accuracy of velocity model estimation and the resulting final

image in both the time and depth domains.
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Söllner, W., Andersen, E., & Lima, J., 2004. Fast time-to-depth mapping by first-order ray transfor-

mation in a 3-d visualization system, in SEG Technical Program Expanded Abstracts 2004 , Society

of Exploration Geophysicists.

Spinner, M. & Mann, J., 2006. True-amplitude based Kirchhoff time migration for AVO/AVA analysis,

157



46 H. Zhao et al.

Geophysics, 15, 133–152.

Stolk, C. C., de Hoop, M. V., & Symes, W. W., 2009. Kinematics of shot-geophone migration,

Geophysics, 74(6), WCA19–WCA34.

Stovas, A. & Fomel, S., 2015. Mapping of moveout attributes using local slopes, Geophysical Prospect-

ing , 64(1), 31–37.

Sword, C. H., 1986. Tomographic determination of interval velocities from picked reflection seismic

data, in SEG Technical Program Expanded Abstracts 1986 , Society of Exploration Geophysicists.

Tygel, M. & Santos, L. T., 2007. Quadratic normal moveouts of symmetric reflections in elastic

media: A quick tutorial, Studia Geophysica et Geodaetica, 51(1), 185–206.

Ursin, P., 1982. Quadratic wavefront and traveltime approximations in inhomogeneous layered media

with curved interfaces, Geophysics, 47(7), 1012–1021.

van de Weijer, J., van Vliet, L., Verbeek, P., & van Ginkel, R., 2001. Curvature estimation in oriented

patterns using curvilinear models applied to gradient vector fields, IEEE Transactions on Pattern

Analysis and Machine Intelligence, 23(9), 1035–1042.

Vanelle, C., Abakumov, I., & Gajewski, D., 2018. Wavefront attributes in anisotropic media, Geo-

physical Journal International , 214(1), 430–443.

Walda, J. & Gajewski, D., 2017. Determination of wavefront attributes by differential evolution in

the presence of conflicting dips, Geophysics, 82(4), V229–V239.

Waldeland, A. U., Coimbra, T. A., Faccipieri, J. H., Solberg, A. H. S., & Gelius, L. J., 2019. Fast

estimation of prestack common reflection surface parameters, Geophysical Prospecting , 67(5), 1163–

1183.

Whitcombe, D. N., Murray, E. H., Aubin, L. A. S., & Carroll, R. J., 1994. The application of 3-d

depth migration to the development of an alaskan offshore oil field, Geophysics, 59(10), 1551–1560.

Zhang, Y., Bergler, S., Tygel, M., & Hubral, P., 2002. Model-independent travel-time attributes for

2-d, finite-offset multicoverage reflections, Pure and Applied Geophysics, 159, 1601–1616.

158



Time-migration velocity estimation 47

APPENDIX A: FIRST- AND SECOND-ORDER DERIVATIVES OF

DIFFRACTION TIME WITH RESPECT TO MIGRATION-TIME

COORDINATES AND APERTURE

The diffraction-time function relies on migration-time coordinates and aperture– totally seven

independent variables. We specify the first- and second-order derivatives in these variables.

To simplify the formulations, define the coordinate vector ξ = (ξi) such that ξ1 = m1,

ξ2 = m2, ξ3 = τ , and the coordinate vector γ = (γr), with γ1 = h1, γ2 = h2, γ3 = a1, γ4 = a2.

We observe that the first-order relations between source- and receiver-offset components (hSI

and hRI ) and the γr-components (hJ and aJ) are given by

∂hSI
∂hJ

= −δIJ ,
∂hSI
∂aJ

= δIJ , (A.1)

and

∂hRI
∂hJ

= δIJ ,
∂hRI
∂aJ

= δIJ . (A.2)

Once we know the derivative of TS and TR with respect to ξi and/or γr, the corresponding

derivative of TD results by simple summation.

A1 Derivatives of one-way time

First, consider the one-way time function TS . Straightforward differentiation of the first sub-

equation in (7) yields the first-order derivatives

∂TS

∂ξm
=

1

2TS

[
ξ3
2
δ3m +

∂

∂ξm

(
S

M(2)
IJ

)
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S
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∂ξm

(
S

M(4)
IJKL

)
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S
J h

S
K hSL

]
, (A.3)
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∂γr
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J h

S
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)
, (A.4)

with ∂hSM/∂γr given by equation (A.1).

For the second-order derivatives we find
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To obtain formulas for the corresponding derivatives of the one-way time TR, simply

substitute the superscript label R for S in equations (A.3)–(A.7).

A2 Derivatives of one-way time for rotationally symmetric diffraction moveout

If the diffraction-time moveout is rotationally symmetric, equations (A.3)–(A.7) are recast as

∂TS

∂ξm
=

1

2TS

[
ξ3
2
δ3m +

∂SM(2)

∂ξm
(hS)2 +

∂SM(4)

∂ξm
(hS)4

]
, (A.8)
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APPENDIX B: FIRST-ORDER DERIVATIVES OF DIFFRACTION TIME

WITH RESPECT TO PARAMETERS OF THE TIME-MIGRATION

VELOCITY MODEL

We show how one can calculate first-order derivatives of diffraction time with respect to

parameters of the time-migration velocity model.

The first-order derivative of diffraction time with respect to a parameter ν of the time-

migration velocity model is given by

∂TD

∂ν
=

∂TS

∂ν
+
∂TR

∂ν
. (B.1)

Since the derivatives of TS and TR have the same form, we only specify derivatives with

respect to TS in the following.

Consider a model parameter ν = ν(2) associated with the diffraction-time coefficient

S
M(2)
IJ . For this parameter differentiation of the first sub-equation of (7) yields

∂TS

∂ν(2)
=

1

2TS

∂

∂ν(2)

(
S

M(2)
IJ

)
hSI h

S
J . (B.2)

Likewise, for a model parameter ν = ν(4) associated with the diffraction-time coefficient S
M(4)
IJKL

we obtain

∂TS

∂ν(4)
=

1

2TS

∂

∂ν(4)

(
S

M(2)
IJKL

)
hSI h

S
J h

S
K hSL. (B.3)

B1 Derivatives of one-way time for rotationally symmetric diffraction moveout

In the special case where the diffraction-time moveout is rotationally symmetric, equations

(B.2)–(B.3) are simplified to

∂TS

∂ν(2)
=

1

2TS

∂

∂ν(2)

(
SM(2)

)
(hS)2, (B.4)

∂TS

∂ν(4)
=

1

2TS

∂

∂ν(4)

(
SM(2)

)
(hS)4. (B.5)

161



50 H. Zhao et al.

APPENDIX C: REPRESENTATION OF A TRIVARIATE LOCAL

FUNCTION IN TERMS OF B-SPLINE BASIS FUNCTIONS

We consider the representation of a trivariate function in terms of ”B-spline” basis functions.

The generality is trivially extended to yield a multicomponent function and a number of

variables higher than three.

C1 A hierarchy of local functions for a grid cell

Without loss of generality, consider the grid cell for which i = j = k = 1. The normalized

coordinates for this grid cell shall be denoted as u, v, and w. Each of these coordinates extends

between 0 and 1 inside the cell. Generalizing the results of Bartels et al. (1987), we write the

approximate value of a function M in a point inside the cell as

M(u, v, w) =

k=kmax∑
k=kmin

bk(w)

j=jmax∑
j=jmin

bj(v)

i=imax∑
i=imin

bi(u)M
i,j,k . (C.1)

Here, M i,j,k is a known value of the global function M(ξ) in the grid point Xi,j,k, and the

functions bi(u), i = imin, ..., imax are referred to as basis functions. Equation (C.1) may be

used for all three local function representations discussed in section 1.5. The basis functions

and/or the limits of the sums in equation (C.1) are however different for a locally constant

function, a local trilinear interpolator, and a local tricubic spline function.

Assume now that an unknown parameter ν to be estimated by the iterative linearized

process is a coefficient of the type M r,s,t included on the right-hand side of equation (C.1). In

order to obtain Fréchet derivatives, we may need, as indicated by equation (56), the derivative

∂TD/∂ν and therefore also ∂M/∂ν. Since equation (C.1) is linear in the coefficients M i,j,k,

we obtain

∂M
∂M r,s,t

(u, v, w) = bi(u) bj(v) bk(w) δir δjs δkt.

Consequently we have

∂M
∂M r,s,t

(u, v, w) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
br(u) bs(v) bt(w)

if r ∈ [imin, imax]; s ∈ [jmin, jmax]; t ∈ [kmin, kmax];

0 otherwise.

(C.2)

Equation (C.2) is interesting in several respects. In particular, equation (C.2) shows that

derivatives of the type ∂Mλ/∂ν are equal for functions Mλ that are evaluated in the same

location and are defined with respect to the same grid. Careful implementation of equation

(C.2) is therefore expected to be very beneficial with respect to the efficiency of the Fréchet

derivative calculations.
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C2 Taking the mean value

Taking the summation limits in equation (C.1) as imin = jmin = kmin = 0 and imax = jmax =

kmax = 1, and defining the basis functions as

b0(u) =
1

2
b1(u) =

1

2
, (C.3)

equation (C.1) is reduced to

M(u, v, w) =
1

8

i=1∑
i=0

j=1∑
j=0

k=1∑
k=0

M i,j,k . (C.4)

In other words, the constant local function may be obtained by taking the mean value of the

values M i,j,k in the vertices bounding the grid cell. Moreover, equation (C.2) gets the simple

form

∂M
∂M r,s,t

(u, v, w) =

⎧⎨⎩ 1
8 if r ∈ [0, 1]; s ∈ [0, 1]; t ∈ [0, 1];

0 otherwise.
(C.5)

C3 Trilinear interpolation

For trilinear interpolation we have the summation limits imin = jmin = kmin = 0 and imax =

jmax = kmax = 1, and the basis functions are given by

b0(u) = 1− u b1(u) = u . (C.6)

Writing out the various terms in equation (C.1) we therefore obtain

M(u, v, w) = b0(u)b0(v)b0(w)M
000

+ b1(u)b0(v)b0(w)M
100

+ b0(u)b1(v)b0(w)M
010

+ b1(u)b1(v)b0(w)M
110

+ b0(u)b0(v)b1(w)M
001

+ b1(u)b0(v)b1(w)M
101

+ b0(u)b1(v)b1(w)M
011

+ b1(u)b1(v)b1(w)M
111 .
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(C.7)

C4 Tricubic spline evaluation

Considering tricubic spline evaluation, the summation limits in equation (C.1) become imin =

jmin = kmin = −1 and imax = jmax = kmax = 2, and the basis functions are given by Bartels

et al. (1987),

b−1(u) =
1

6
(1− 3u+ 3u2 − u3) ,

b0(u) =
1

6
(4− 6u2 + 3u3) ,

b1(u) =
1

6
(1 + 3u+ 3u2 − 3u3) ,

b2(u) =
1

6
u3 .

(C.8)
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APPENDIX D: CURVATURE ESTIMATION BY QUADRATIC GRADIENT

STRUCTURE TENSOR (QST)

The quadratic gradient structure tensor (QST) (van de Weijer et al. 2001; Bakker 2002) is a

method for estimating local curvature. The main assumption behind this method is that we

are considering a locally quadratic surface on the form:

S(x) ≈ xTAx+ bx+ c = 0, (D.1)

where b is the unit normal vector to the surface and A is a symmetric 3× 3 matrix with at

least two non-zero eigenvalues. When observing the surface in the reflector-oriented coordinate

system (u, v, w) (the u-axis is normal to the surface) the surface becomes:

S(x) ≈ 1

2
κ1v +

1

2
κ2w + u (D.2)

where κ1 and κ2 are the principal curvatures of the surface. Further, it is shown in Bakker

(2002) that these curvatures can be estimated by considering the transform that deforms S into

a plane. This results in the expressions for obtaining the curvatures in the reflector-oriented

coordinate system:

κ1 =
vgugv

v2g2u
, (D.3)

κ2 =
wgugw

w2g2u
, (D.4)

where the gu, gv and gw are the gradients along the axes in the reflector-oriented coordinate

system.

In Bakker (2002), the vectors spanning this coordinate system are given by the eigenvectors

of the GST:

u = [xu, yu, tu]
T =̂v1,

v = [xv, yv, tv]
T =̂v2, (D.5)

w = [xw, yw, tw]
T =̂v3.

In that case, the extracted curvatures will be the principal curvatures of the surface. We

are, however, seeking the derivatives with respect to x and y. Therefore, we do not use the

eigenvectors to span this coordinate system but force v and w to be oriented along the x-

and y- axes.

Further more, Bakker (2002) shows that estimates of the second order derivatives are

obtained by accounting for the rotation of the reflector-oriented coordinate system. Assuming

that the two approaches for defining the reflector-oriented coordinate system coincide (that the
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principal curvature is the same as the derivative with respect to x), the curvatures (estimates

of the second order derivatives) are given as:

κx =
∂̂t2

∂2x
= κ1

(
1 +

(
∂t

∂x

)2
) 3

2

, (D.6)

κy =
∂̂t2

∂2y
= κ2

(
1 +

(
∂t

∂y

)2
) 3

2

. (D.7)
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APPENDIX E: TIME-MIGRATION VELOCITY MODEL DEFINITION

We define the time-migration model on a 3D rectangular grid. The model parameters related to

the cells and the corresponding vertices within the grid. As shown Figure A1, a rectangular grid

cell (i, j, k) is defined in terms of eight vertices Xi−1,j−1,k−1, Xi,j−1,k−1, Xi−1,j,k−1, Xi,j,k−1,

Xi−1,j−1,k, Xi,j−1,k, Xi−1,j,k, Xi,j,k. We assume that the values of the function Mλ is known

in all relevant grid vertices Xi,j,k, and we denote these values as Mλ
i,j,k.

Figure A1: Grid cell and local dimensionless coordinates (u,v,w) used for describing the 3D

time-migration velocity model.

As in (depth) tomography, we apply here a local function Mλ(u, v, w) which pertains only

to one selected cell. The variables u, v, w are dimensionless and take values on the interval

[0, 1]. At any point within the cell the global and local functions must yield the same output

value,

Mλ(ξ1, ξ2, ξ3) = Mλ(u, v, w). (E.1)

The evaluation of the function Mλ is based on the values Mλ
i,j,k in the vertices forming

the cell, and eventually also on values in grid vertices that are neighbors to the cell. In the

following, we consider three ways of representing the local function Mλ in a specific grid cell

(i, j, k).

E1 Constant local function

A common approach in tomography is to assume that the value of the function Mλ is con-

stant within each grid cell. Using this approach, the medium within each cell is treated as
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homogeneous. Application of constant local functions will give rise to discontinuities in the

function values across grid cell boundaries.

E2 Linear interpolation

Depending on whether the grid is 1D, 2D, or 3D, one may use linear, bilinear, or trilinear in-

terpolation in order to obtain function values inside a grid cell. These interpolation approaches

yield a continuous function value along and across the grid cell boundaries, while the first-

and second-order derivatives with respect to the coordinate xi are generally discontinuous.

The number of grid vertices contributing to linear, bilinear, and trilinear interpolation are,

respectively, two, four, and eight.

E3 Local spline approximation

In order to achieve continuity of zeroth-, first- and second-order derivatives, one may use a local

spline function. For 1D, 2D, and 3D grids the spline function is referred to as cubic, bicubic

and tricubic, respectively. The spline function does not interpolate exactly, meaning that the

function value Mλ in the grid vertex Xi,j,k is not necessarily equal to the input value M i,j,k
λ .

However, the local spline function possesses the so-called convex hull property, which prevents

the function from fluctuating drastically between the grid vertices. As approximate coefficients

of the function we take the input values to function generation given in the grid vertices. For

cubic, bicubic, and tricubic spline evaluation, the number of contributing coefficients are,

respectively, 4, 16, and 64.
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APPENDIX F: PARTIAL DERIVATIVES RELATED TO THE

TIME-MIGRATION VELOCITY MODEL

Our time-migration velocity model is described in terms of the vector function (Mλ), λ =

1, . . . , Nλ. Within a given grid cell under consideration, the global function Mλ and the

corresponding local function Mλ for the grid cell must be equal. Using equation (C.1) we can

then write

Mλ(m1,m2, τ) = Mλ(u, v, w) =

k=kmax∑
k=kmin

bk(w)

j=jmax∑
j=jmin

bj(v)

i=imax∑
i=imin

bi(u)M
i,j,k
λ . (F.1)

When differentiating the function Mλ with respect to the variables m1, m2, and τ , we

can utilize their one-to-one linear relationship with the corresponding dimensionless grid-cell

variable,

m1 ↔ u; m2 ↔ v; τ ↔ w. (F.2)

For example, differentiation of equation (F.1) with respect to τ yields

∂Mλ

∂τ
(m1,m2, τ) =

1

Δτ

k=kmax∑
k=kmin

dbk
dw

(w)

j=jmax∑
j=jmin

bj(v)

i=imax∑
i=imin

bi(u)M
i,j,k
λ , (F.3)

where Δτ signifies the grid spacing in the τ direction. Likewise, a partial second derivative

in, say, m1 and τ is given by

∂2Mλ

∂m1∂τ
(m1,m2, τ) =

1

Δm1Δτ

k=kmax∑
k=kmin

dbk
dw

(w)

j=jmax∑
j=jmin

bj(v)

i=imax∑
i=imin

dbi
du

(u)M i,j,k
λ , (F.4)

Equations (53) and (56) contain partial derivatives of the diffraction time TD with respect

to a given parameter of the time-migration velocity model, ν. Furthermore, the dependence

of TD on ν is channelled through the diffraction time coefficients, Mλ Now, let the parameter

ν be defined as in equation (43). Differentiation of equation (F.1) with respect to ν yields, in

view of equation (C.2),

∂Mλ

∂ν
(m1,m2, τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
br(u) bs(v) bt(w)

if r ∈ [imin, imax]; s ∈ [jmin, jmax]; t ∈ [kmin, kmax];

0 otherwise.

(F.5)

Equation (56) implies also computation of the second-order mixed partial derivative in

the model parameter ν and the time variable τ . Differentiation of equation (F.5) with respect
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to τ yields

∂2Mλ

∂ν∂τ
(m1,m2, τ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
Δτ br(u) bs(v)

dbt
dw (w)

if r ∈ [imin, imax]; s ∈ [jmin, jmax]; t ∈ [kmin, kmax];

0 otherwise.

(F.6)
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