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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree
of Philosophiae Doctor at the University of Oslo. The research presented here
is conducted under the main supervision of Professor Leiv-J Gelius, Associate
Professor Einar Iversen, and co-supervision of Professor Anne H. Schistad Sol-
berg, Doctor Walter Sollner and Doctor Endrias Asgedom. This work is a part
of a joint project, improved seismic imaging based on resolution enhancement
and pattern recognition, which is cooperated between the Department of Geo-
sciences and the Department of Informatics at the University of Oslo. The
project is funded by the Norwegian Research Council under the Large pro-
gram for petroleum research (PETROMAKS2) with the project number 234019.

The thesis is a collection of three papers, presented in chronological order.
The common theme to them is in the methods to improve seismic imaging and
migration-velocity model building. The papers are preceded by an introductory
chapter that relates them together and provides background information and
motivation for the work. One of the papers, I am the second author for the joint
work. For the remaining papers, I am the first author.

Acknowledgements

I would like to thank my supervisors for their support through my Ph.D. study.
I am especially grateful to Prof. Leiv-J Gelius and Assoc. Prof. Einar Iversen for
their good guidance and advice for my studies and researches. I would also like to
extend my gratitude to Prof. Martin Tygel, Prof. Anne H. Schistad Solberg., Dr.
Walter Sollner and Dr. Endrias Asgedom for their co-supervision and discussions
regarding my papers. I also specially thank Anders U. Waldeland for his good
collaboration and valuable discussions in this project. I would also like to thank
all the co-authors of the articles appended. During my Ph.D. study, I have
worked at both the Department of Geosciences and the Digital Signal Processing
and Image Analysis Group in Department of Informatics, where I have obtained
the great support for my study and research. I especially thank professor Annik
M Myhre, Professor Valerie Maupin, Michael Heeremans, Hans Peter Verne
and Svein Bge for your kind help of providing me the good environment for my
study and arranging the necessary computing resource for conducting my work.
Finally, T especially thank my parents and families for all the love and support
for this journey.

eHao Zhao
Oslo, December 2019






List of Publications

This thesis is based on the following papers, referred to in the text by their
romain numbers(I-11I):

Paper |

Fast and robust common-reflection-surface parameter estimation.

Anders U. Waldeland, Hao Zhao, Jorge H. Faccipieri, Anne H. Schistad Solberg,
and Leiv-J. Gelius.

Geophysics VOL.83 NO.1 (2018), 01-O13

Paper Il

3D Prestack Fourier Mixed-Domain (FMD) depth migration for VTI media with
large lateral contrasts.

Hao Zhao, Leiv-J. Gelius, Martin Tygel, Espen Harris Nilsen, and Andreas
Kjelsrud Evensen.

Journal of Applied Geophysics VOL.168 (2019), 118-127

Paper Il

Time-migration velocity estimation using Fréchet derivatives based on nonlinear
kinematic migration/demigration solvers.

Hao Zhao, Anders U. Waldeland, Dany Rueda Serrano, Martin Tygel, and
Einar Iversen.

Studia Geophysica et Geodaetica. Accepted for publication, November 2019

The published papers are reprinted with permission from Hao Zhao. All rights
reserved.






Related Publications

The following papers are related to the thesis but not included in their full text:

Paper |

A New Generalized Screen Propagator for Wave Equation Depth Migration.
Hao Zhao, Leiv-J. Gelius, and Martin Tygel.

Extended abstract 77th EAGE Conference and Exhibition , Madrid, 2015

Paper Il

Time-migration Tomography based on Reflection Slopes in Pre-stack Time-
migrated Seismic Data.

Hao Zhao, Anders U. Waldeland, Dany Rueda Serrano, Martin Tygel and
Einar Iversen.

Ezxtended abstract 80th EAGE Conference and Exhibition , Copenhagen, 2018

Vil






Contents

Preface

List of Publications

Related Publications

Contents

List of Figures

List of Tables

1

Introduction

1.1 Motivations . . . . . . . . .. .o
1.2 Scope of the thesis. . . . . .. ... ... . ... ...,
1.3 Thesis outline . . . . .. . . .. ... . ... .. ...,

Structure tensor methods for a common reflection-surface
stack

2.1 Common reflection surface stack . . . . . ... ... ...
2.2 Structure tensor methods . . . . . . . .. ... ... ..

Depth imaging with wavefield extrapolation migration

3.1 Overview of seismic migration imaging methods . . . . . .
3.2 Depth-migration methods . . . . . . . . ... ... ... ..
3.3 Wavefield extrapolation and imaging condition . . . . . . .
3.4 One-way wave equation migration algorithms. . . . . . . .
3.5 3D prestack Fourier mixed-domain (FMD) depth-migration

method . . . . . ...

Migration velocity estimation based on kinematic wave-

field attributes

4.1 Overview of migration-velocity estimation methods

4.2 Time-migration velocity estimation based on nonlinear kine-
matic migration/demigration solvers. . . . . . .. ... ..

Summary of publications and discussion of future work

5.1 Paper I . . . . . . . . .
5.2 Paper IT . . . . . . . . .
5.3 Paper III . . . . . . . . . . . .

iii

vii

ix

xi

DD W N =

NN

19
19
22
25
27

36

45
45

60

69

70
71



Contents

Bibliography

Papers

I Fast and robust common-reflection-surface parameter es-
timation

IT 3D Prestack Fourier Mixed-Domain (FMD) depth migra-
tion for VTI media with large lateral contrasts

IIT Time-migration velocity estimation using Fréchet deriva-

tives based on nonlinear kinematic migration/demigration
solvers

73

82

83

99

111



List of Figures

1.1

2.1
2.2

2.3

24

2.5

2.6

3.1

3.2
3.3
3.4

3.5
3.6
3.7
3.8
3.9

Iterative depth-velocity model-building and depth-imaging work-
flow. Those steps marked with yellow represent the content of
this thesis. . . . . . . . . . ...

Schematics of CMP geometry . . . . . . . . ... ... ... ...
Mlustration of the CMP stack. (a) CMP-sorted traces, (b) NMO-
corrected CMP traces, and (c) the stacked trace. . . ... ...
Comparison of the CMP and ZO CRS operators. (a) CMP opera-
tor in the midpoint and half-offset domain . (b) ZO CRS operator
in the midpoint and half-offset domain . The aperture is centred
around the midpoint, and is defined by the green line where the
half-offset is used and the red line where the midpoint is used.

CRS semblance calculation window. The grey surface (tcrs)
represents the CRS travel-time surface calculated at the reference
point (g, ho,to), and the two light blue surfaces resemble the
time gate used for semblance calculation. . . . . . . ... .. ..
Schematic representation of the 3D structure tensor. Vectors
(v1,Vva,vg) are derived from the GST of a local point on a planar
surface. The length of each vector represents the magnitude of
the eigenvalues (A1, Ao, A3). . . . . . o oL
Schematic view of the local reflector-oriented coordinate system.
The vector u is normal to the reflector, while vectors v and w are
orthogonal to u, and correspond to the two principal curvatures

[llustration of the migration concept in relation to a dipping
reflector. (a) Schematics of a ZO seismic acquisition for a dipping
reflector. (b) The recorded seismic section. (¢) The migrated
(true) section. . . . . . . ...
Comparison of migration methods. . . . . . . . . ... ... ...
Kirchhoff prestack depth migration. . . . . . .. ... ... ...
Wavefield extrapolation migration. The reflector image (A-B)
is constructed by correlating the down-going (red curves) and
up-coming (blue curves) wavefields. . . . . ... ... ... ...
Workflow of the (2D) poststack phase-shift depth migration.
Workflow of the (2D) prestack phase-shift depth migration. . . .
Schematics of velocity model decomposition . . . . . . . .. . ..
Workflow of poststack PSPI migration (Gazdag et al., 1984)
Workflow of prestack phase-shift plus interpolation migration.

12

14

16

19
22
23

24
27
28
29
31
32

Xi



List of Figures

3.10
3.11
3.12
3.13
3.14
3.15

3.16
3.17

3.18

3.19

4.1
4.2
4.3
4.4
4.5

4.6

Xii

Workflow of SSF migration (2D).. . . . .. ... ... ... ...
Workflow of prestack SSF migration (2D). . . . ... ... ...
Sigsbee 2A stratigraphic model. . . . . . ... .. ...
Sigsbee 2A ZO synthetic stack. . . . . . .. ... ...
Poststack FMD migration image. . . . . . . . ... ... ... ..

Single-shot migration profile. (a) First-order dual-velocity FMD
with cross-correlation imaging condition, (b) first-order dual-
velocity FMD with deconvolution imaging condition and mute

Prestack FMD migration image. . . . . . . . ... ... ... ..

CIG from shot profile migration using perturbed velocity field.
Location outside the salt indicated by the red vertical line to the
left in Fig.3.17. . . . . . . . . .

CIG from shot-profile migration using perturbed velocity field.
Location inside the salt, indicated by the red vertical line to the
right in Fig.3.17. . . . . . . ... oo

Initialisation step employed prior to reflection tomography. Rays
are traced from a specific image point (P;) on an interpreted
horizon in the migrated CIG, and the ray (S;P;) closest to the se-
lected source location is picked or interpolated. The corresponding
receiver location (R;) is now defined by the specular or stationary
ray (R;FP;), fulfilling Snell’s law; that is, using information about
the angle of incidence («) and the local dip (/3) of the reflection
interface. . . . . .. ..

Conventional workflow of time MVA . . . . . . . ... ... ...
Schematics of Dix conversion . . . . . . . . ... ... ......
Coherent inversion. . . . . . . . .. ... ... .. ...,
Schematics of reflection tomography in the migrated domain. . .

Schematic workflow of linearized tomography. After the first
model is set up. PSDM is run with this model. CIG gathers
are analysed in terms of event flatness. The model is updated in
such a way as to reduce the coset function C(m). The process is
iterated until C(m) reaches a minimum value. A PSDM is needed
in each iteration. . . . .. ... oo oL

Stereotomography data and model. The dataset consists of a set
of shot and receiver positions (s and r), travel times (Ts,.) and
slopes at both the receiver and shot locations (P, and P), picked
on locally-coherent events. The model is composed of a discrete
description of the velocity field C),, and a set of diffracting points
(x), two scattering angles (¢s, @), and two one-way travel times
(Ts,T,) associated with each picked event (Billette et al., 1998,
figure redrawn) . . . . . . ... L

33
34
38
39
39

40
40

41

42

42

46
49
50
53

53

56



List of Figures

4.7

4.8
4.9

4.10

4.11

4.12

4.13

Definition of data and model components. The data consist

of the quadruples (T, M, ¢, &), while the model consists of the
corresponding triples (x,z,0) and the velocity field v(x,z) =

Z?il Sz meBi(@)Br(2). o 58
Schematic workflow of nonlinear tomography. . . . . . . . . . .. 59
Kinematic time migration (green) and demigration (orange) pro-

cesses for constant offset, with indicated input and output reflection-

time parameters. The process estimates the aperture vector and

a number of diffraction-time partial derivatives, using the given

input parameters and the known time-migration velocity model.

Small green/orange arrows signify the data flow. Redrawn from
Iversen et al. (2012). . . . . . ... L 60
Coordinate system used for describing 3D seismic experiments.

The source (s), receiver (r), CMP (x) and common-image point

(m) are defined in the horizontal measurement plane. The vectors

of the aperture (a), half-offset h, source-offset (hS ) and receiver-

offset (h®) are outlined.. . . .. .. ... ... ... ... ... 62
Schematic overview of kinematic time migration and demigration

for a 2D prestack seismic dataset. Based on the known diffraction-

time function, with its associated derivatives, and a time-migration
velocity model, the local kinematic parameters (x,7%, p*, p”) in

the recording domain can be forward/backward-mapped to/from

the counterpart (m, 7™ ,7,bm,1/)h) in the migration domain by

kinematic time migration/demigration. . . . . . ... ... ... 65
Grid cell and local dimensionless coordinate (u, v, w) used for

describing the 3D time-migration velocity model. . . . . . . . .. 66
Time-migration velocity estimation workflow . . . . . . ... .. 68

Xiii






List of Tables

2.1

4.1

Number of parameters in CRS .

Tomographic types and domains

XV






Chapter 1
Introduction

In reflection seismology, reflected seismic waves are used to image, and estimate
the elastic properties of, the subsurface. This method is widely used in the
petroleum industry for hydrocarbon exploration and reservoir monitoring. The
principle of reflection seismology is based on the reflection of acoustic waves
generated from a seismic source, and the measurement of the propagation of those
waves through the medium of the earth. In reflection experiments, the emitted
seismic waves propagate down into the earth, and are reflected and refracted at
each litho stratigraphic boundary. Those reflected waves are recorded by sensors
near the surface within a defined time period, and are subsequently processed in
order to image the subsurface structures, predict the types of rocks encountered
and determine the presence of hydrocarbons (oil and gas).

Seismic migration — the major technique used for imaging Earth’s interior
— extrapolates and maps seismic events recorded at the surface to their true
subsurface locations, thereby creating an accurate image of the subsurface.
Migration algorithms are classified by time and depth based on the domain of
the application. Both of these can be performed either after (poststack migration)
or before (prestack migration) stacking. The time-migration method generates
the migrated image in the time domain, which is known to be a fast and robust
process that has enabled its wide use in the seismic industry for several decades.
In comparison, depth migration produces the image in the depth domain, which
can be directly used in hydrocarbon characterisation. The significant difference
between time and depth migration is that time migration assumes mild, lateral
velocity variations, while depth migration accommodates large velocity variations,
both in vertical and lateral directions, thus deriving more accurate images under
variable circumstances .

Depth-migration algorithms can be further classified into ray-based and
wavefield-extrapolation-based methods. The ray-based depth migration meth-
ods, which solve the wave equation under the assumption of high-frequency
approximation, have an advantage in being computationally efficient, but their
weakness being in their limited accuracy in imaging complex structures. The
wavefield-extrapolation-based depth migration methods directly solve the wave
equation, and are able to handle more complex cases of seismic imaging. Based
on differences in the way the dispersion relationship of the wave equation is
solved, wavefield-extrapolation-based depth migration is divided into one-way
and two-way wave equation migration (OWEM, TWEM). TWEM is represented
by reverse-time migration (RTM), which utilises full wave fields in the imaging
process, making it theoretically capable of handling the most complex cases
of depth imaging. However, due to its high demand for computer memory
and the computational costs, RTM use is still limited in large-scale industrial
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situations. OWEM, with appropriately-developed algorithms, is able to achieve
migrations comparable to those from RTM in moderate to complex geological
scenarios, but works more efficiently in large-scale situations. Moreover, due
to its superior performance when compared to Kirchhoff-type depth-migration
methods, OWEM still plays an import role in the industry for seismic depth
imaging in complex subsurface areas.

The accuracy of depth imaging relies on the quality and details of the
velocity model. Iterative depth-velocity model building, based on Kirchhoff-
based depth-migration and ray-theory reflection tomography, is the most widely
used approach in constructing detailed depth-velocity models. Two limitations
of this approach are the heavy costs associated with the iterations, and it also
usually requires an appropriate initial-velocity model generated by time-domain
processing. Moreover, the process of velocity model building becomes more
challenging if the subsurface contains complex geological structures, such as
salt domes. Time-consuming manual interpretation of the geological bodies
and the iterations are always needed in such circumstances. Reflection-based
tomography methods rely on the quality of the seismic data, and deliver velocity
models with limited resolution. In the case of data with a low signal-to-noise
ratio (SNR), or associated with strong attenuation, these methods fail to provide
satisfactory tomographic results. Full-waveform inversion (FWI) attempts to
invert the high-resolution velocity model, using TWEM-based modelling and
an inversion scheme for velocity optimisation. FWI calculates the difference
between the modelled synthetic data and the seismic record, generating the
gradient of the cost function for iterative velocity optimisation. Although FWI
has been regarded as one of the best tools for velocity estimation and imaging in
complex geological settings, its application requires preserved low frequencies, as
well as considerably larger offsets, to record the direct/diving/refracted waves in
seismic acquisition, which limits its application in conventional seismic reflection
situations.

1.1 Motivations

With the progress of exploration and production, the petroleum industry has
moved into exploring fields that have ever more complex geological structures.
Examples include salt deposits in the Nordkapp Basin in the Norwegian Barents
Sea, carbonate reservoirs in the Middle East and pre-salt discoveries in the
Santos Basin in Brazil. Conventional seismic processing and imaging methods
face challenges with resolution, SNR or accuracy of the image in such geological
scenarios. Thus, there is a strong need to further develop the techniques employed
in seismic processing and imaging to better handle these challenges.

The motivation behind this project was to develop improved techniques for
high-resolution seismic imaging, in combination with the iterative, 3D depth-
velocity model-building approach, in order to address velocity modelling and
depth imaging in complex geological scenarios. Based on this motivation, we
have developed three new methods for enhancing seismic images in complex
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environments. First, in order to improve the SNR in images of complex sub-
surface geological environments, we have proposed a fast parameter estimation
approach for a common reflection surface (CRS) technique. Second, to improve
the accuracy of seismic depth-domain imaging in vertical transversely-isotropic
(VTI) media with large lateral contrasts and complex structures, we have devel-
oped a 3D prestack Fourier mixed-domain (FMD) depth-migration technique.
Finally, to develop an accurate time-migration velocity model for time-domain
migration, and an accurate initial model for depth imaging, we have developed
a numerical algorithm for time-migration velocity estimation using nonlinear
mapping processes based on kinematic time migration and demigration.

1.2 Scope of the thesis

This study constitutes part of the joint project Improved seismic imaging based
on resolution enhancement and pattern recognition, which is a collaboration
between the Department of Geosciences and the Department of Informatics at
the University of Oslo. An outline of the entire project’s workflow is shown in
Fig.1.1.

As a first step, we employed the CRS method (e.g. Mann et al., 1999; Jager
et al., 2001) to estimate the kinematic wavefield attributes; that is, the CRS
stack parameters. The CRS method is known to be an effective approach for
improving the SNR and the continuity of the reflections in the stack, but is
computationally expensive in terms of parameter estimation. For this project,
we proposed a fast and robust approach for CRS parameter estimation that
can effectively speed up the process. The conventional poststack CRS approach
only derives a zero offset (ZO) stack. Zhang et al. (2001) generalised the CRS
approach to produce a finite offset stack, thus extending the CRS approach to
prestack application. In this project, a fast parameter searching approach was
also provided in order to estimate the prestack CRS attributes (Waldeland et al.,
2019). Based on the derived prestack CRS parameters, the SNR of the prestack
data can be significantly enhanced, and used for subsequent seismic processing
and imaging.

Next, in order to derive an accurate depth-velocity model for depth-domain
seismic imaging, we started with an estimation of the time-migration velocity
using kinematic wavefield parameters. Unlike formalising the tomography to
obtain the depth-velocity model directly (Duveneck, 2004), we simplified the
process using a more stable approach, including the estimation of time-migration
velocity using first-order kinematic attributes, and mapped the derived time-
migration velocity to the depth domain by image-ray tomography (Cameron
et al., 2007; Dell et al., 2014; Gelius et al., 2015). The mapped depth velocity
was then used as the initial velocity model for the following iterative process of
depth-velocity model-building.

Finally, the conventional iterative depth-velocity modelling approach consists
of prestack Kirchhoff depth migration (Claerbout, 1985; Biondi et al., 1996)
and reflection tomography (Trier, 1990; Stork, 1992; Boehm et al., 1996). The

3
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Figure 1.1: Iterative depth-velocity model-building and depth-imaging workflow.
Those steps marked with yellow represent the content of this thesis.
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prestack Kirchhoff method is widely used in the industry due to the attractiveness
of its efficiency of computation. However, as a ray-based migration approach, it
has limited accuracy in imaging complex structures with strong velocity variations
and steep dips. We thus proposed an OWEM-based FMD depth-migration
approach to handle such scenarios. The proposed FMD prestack depth-migration
(PSDM) method, which provides greater accuracy than the Kirchhoff method
in imaging complex geological areas, and is more computationally efficienct
than RTM, was more suitable to be used for the iterative velocity estimation in
complex geology. The FMD migration made use of shot gathers, and derived
migrated shot profiles in the depth and summed depth images.

In order to fine-tune the depth-velocity model, a shot-profile-based depth-
velocity update can be applied to derive the updated velocity model (Al-Yahya,
1989; Shen et al., 2008). In cases where the studied area also contains strong
velocity anomalies related to salt or volcanic rocks, manual intervention is
always needed to monitor the conventional velocity model-building process. Also,
iterations of the manual interpretation of anomalous geological bodies are needed
in the velocity modelling. On this join project, We therefore proposed a deep-
learning-based (convolutional neural network), semi-automatic interpretation
approach to assist in this process (Waldeland et al., 2018). As proved through
testing, this automated method derived high-quality salt interpretation, and
effectively reduced the cost of manual picking as part of the velocity modelling
iterations. In the last step of velocity updating, the derived anomalies, delineated
using interpreted contours and a predefined velocity, can be concatenated into
the original velocity model. The FMD depth migration and velocity updating can
then be applied iteratively in order to derive the optimal depth-velocity model
and depth image. In this study, I focused on three topics from the workflow
mentioned above (steps marked in yellow):

1. The CRS method is effective in improving the SNR and the continuity of
the reflections on the stack. However, the conventional semblance-based
CRS parameter search is computationally expensive. In order to speed
up the parameter estimation process, we proposed a method based on
gradient and quadratic structure tensors (GSTs, QSTs) to extract the CRS
parameters (slope and curvature). This topic is described in Paper 1.

2. In the iterative process of depth-velocity modelling, 3D prestack Kirchhoff
depth migration is the most widely used algorithm; however, its loss of
accuracy in imaging complex media with large lateral contrasts is well
known. OWEM techniques are therefore more suitable, due to their better
performance in complex media and their computational attractiveness
compared to RTM. Although there are many different methods that can
accomplish one-way wave propagation in VTI media, most of them struggle
either with stability, anisotropic noise or computational cost. In Paper
I1, we presented a new method based on a mixed space and wavenumber
propagator that overcomes these issues effectively.
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3. The initial velocity used for PSDM always originates from a time-to-
depth converted time-migration velocity. In conventional time-domain
seismic processing, the time-migration velocity is derived from stacking
velocity picking and Dix conversion. As an alternative, we proposed a
time-migration velocity estimation method that directly uses the kinematic
wavefield parameters, deriving the optimal time-migration velocity through
an iterative linear inversion approach. This topic is described in Paper III.

1.3 Thesis outline

This thesis is organised as follows. In Chapter 2, we describe the basic concepts
of the CRS method and introduce the GST and QST techniques, which were used
in kinematic wavefield parameter extraction in Papers I and III. In Chapter 3, we
firstly discuss the major (ray- and wavefield-based) categories of depth-migration
imaging algorithms, going on to discuss wavefield extrapolation methods and
migration imaging conditions in some detail, then explaining the advantages and
disadvantages of major OWEM methods in the Fourier domain and pointing
out the importance of improving those methods by using the proposed FMD
migration (Paper IT). In Chapter 4, we focus on the background underpinning
Paper I1I, providing an overview of the approaches used in migration-velocity
estimation. We then introduce the specific definition of the kinematic wavefield
attribute, and the kinematic migration and demigration approach for nonlinear
kinematic attribute mapping and time-migration velocity estimation. Finally, we
summarise the three papers included in this thesis, present the main contributions
made, and give suggestions for possible future work.



Chapter 2

Structure tensor methods for a
common reflection-surface stack

The Common-Reflection-Surface (CRS) method is an effective approach in
enhancing the SNR of a stack. The bottle-neck of CRS is the time-consuming
semblance search to obtain CRS parameters. In order to speed up this parameter
estimation process, we introduced a fast method in paper I for extracting the
CRS parameters using local kinematic parameters: the slope and the curvature.
To further demonstrate the application of local kinematic parameters, in paper
III, we developed a time-migration velocity estimation method by employing the
first-order local kinematic parameters (slopes). In this chapter, we first present
an overview of the common-midpoint (CMP) method and the CRS method, and
introduce the conventional CRS parameter estimation based on semblance search.
Then, we give an introduction to the structure tensor method and demonstrate
how this method is used to extract the local slope and curvature sought in the
CRS parameter estimation.

2.1 Common reflection surface stack

The CRS stack (Mann et al., 1999; Jéger et al., 2001) was developed to enhance
the SNR of seismic data. Compared to the conventional normal moveout (NMO)
stack, the CRS stack provides a strong increase in redundancy and SNR, leading
to clearer sections and more continuous events. The well-known problem with
CRS is its expensive computation of the semblance-based parameter searches. In
order to solve this problem, based on the gradient structure tensor (GST) method,
we have introduced an efficient and robust method for the CRS parameter search.
In this section, we provide an overview of the CMP method, then we extend this
concept to the CRS method and introduce the conventional-semblance-search-
based CRS parameter estimation.

2.1.1  Common-mid-point method

The CMP stacking method was introduced by Mayne (1962). It is an efficient
and widely used method for improving the SNR in seismic imaging. As shown in
Fig.2.1, the CMP is the central point between the source and receiver pairs at the
surface. The set of traces recorded from different source/receiver pairs that have
the same CMP is called a CMP gather. Under the assumption of a horizontally-
layered model for the earth and a small offset spread, the travel time of the
rays associated with the different source/receiver pairs can be approximated
by a hyperbolic two-way travel-time equation (Eq.2.1),where g is the two-way

7
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travel time at ZO, and h and vy ;o denote the half offset and NMO velocity,
respectively.

Sources Common Receivers
b 4 ¥ % midpoint v v v
________ N

Raypaths

Reflection point

Figure 2.1: Schematics of CMP geometry

2
2=t + U;i (2.1)
NMO
Following acquisition, the recorded dataset is sorted into CMP gathers based
on the coordinates of the sources and receivers. Traces in each of the CMP
gathers are NMO corrected to remove the moveout effect on the travel times.
The NMO-corrected traces are then summed to form a stacked trace. The
summation of the NMO-corrected CMP traces leads to the enhancement of
the SNR through the addition of coherent reflections and the stacking out of
incoherent noise. Fig.2.2 shows a schematic of the recorded and sorted traces in
a CMP gather, the NMO-corrected CMP traces, and the final stacked trace.
In most cases, CMP stacking is a robust process that will enhance the SNR
of the stacked section. However, CMP stacking has limitations in its application.
Because it assumes a straightforward stratigraphic earth model and a short
spread in the acquisition, where complex geological structures or structures
associated with strong lateral velocity variations exist, CMP stacking is less
accurate and thus degrades the quality of the stack. The CRS stack can be
regarded as an extension of the CMP stack. To obtain a stacked trace from a
given midpoint, unlike stacking traces only in a CMP gather, CRS sums the
traces along a common reflection surface that covers the traces from nearby
midpoints. This leads to a significantly higher SNR in the final stack.

2.1.2 2D common reflection surface method

The CRS method (Mann et al., 1999; Jager et al., 2001) was originally developed
as an alternative to conventional stacking approaches, such as the NMO/DMO
stack, as a way of enhancing the SNR. The CRS operator can be derived by
paraxial ray theory (Schleicher et al., 1993) or by the geometrical approach of

8



Common reflection surface stack
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Figure 2.2: Illustration of the CMP stack. (a) CMP-sorted traces, (b) NMO-
corrected CMP traces, and (c) the stacked trace.

Hocht et al. (1999). It resembles the polystack (Bazelaire, 1988) and multifocusing
(Berkovitch et al.,1998) operators. The CRS method was initially developed for
Z0O CRS, and was then further generalised to handle the common offset (CO)
case by Zhang et al. (2001). In this thesis, we focus on the ZO CRS and its
related parameter estimation. Fig.2.3 shows a schematic comparison of the CMP
and ZO CRS operators in the midpoint and half-offset domain .

a) CMP b) ZO CRS

Time
Time

Figure 2.3: Comparison of the CMP and ZO CRS operators. (a) CMP operator
in the midpoint and half-offset domain . (b) ZO CRS operator in the midpoint
and half-offset domain . The aperture is centred around the midpoint, and is
defined by the green line where the half-offset is used and the red line where the

midpoint is used.

In the general case, the CO CRS in 2D can be formulated as a second-order
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Taylor expansion of the travel-time surface around a central point with the
coordinates xg,hg (Faccipieri et al., 2016):

tZps(x, h) = (to + AAz + DAR)? + BAz? + CAh? 4+ eAzAh, (2.2)

where x and h denote the coordinates of the midpoint and half-offset of a selected
point in the reflection surface. Az = x —xg and Ah =h—hy. A, B, C, D and E
are the CRS model parameters defined in Eq.2.3, which represent the first- and
second-order derivatives with respect to the reflection surface at the reference
point.

ot 0%t 0%t ot 0%t
) =055 C:tO_v D:_v €
Ox 0x? Oh? oh
According to paraxial ray theory, and because the approximation of the CRS
operator is truncated to the second order in the Taylor expansion, Eq.2.3 is only
accurate in the vicinity of the reference midpoint (xg,hg). With respect to the

Z0O CRS case (hg = 0), the general 2D CRS operator simplifies to:

A= 2.3)

- 2t0m‘$:$07h:h0' (

ters(z,h) = (to + AAz)® + BAZ® + CR?, (2.4)

where A, B and C are the CRS model parameters describing the ZO case. In
the case of the 3D ZO CRS, these parameters are generalised to vectors and
matrices, as given in Eqgs. 2.5-2.7:

ot
oz
A= [ o ] : (2.5)
0y Jlx=xy,h=0
9%t 9%t
Ox? Oz 0y
B=t 2.6
0 52t 5t s ( )
9xdy dy? x=xXg, h=0
9%t 9%t
Oh2 Oh,Oh
C=t * Y 2.7
0 aZt 82t ( )
2
OhyOh,y oh? x=x0, h=0

We can see from Eq. 2.4 that three model parameters must be determined
for the 2D (ZO) CRS, and eight for the 3D (ZO) CRS because B and C are
symmetric matrices. Once we have derived the CRS parameters, the stack can
be applied by summing all traces within a selected aperture. Bear in mind that
a larger stacking aperture will increase the SNR, but may also lead to too much
smoothing of details in the stack. Thus, the CRS operator in the offset and
midpoint has to be selected carefully to retain both the high resolution and high
SNR in the stack image (Faccipieri et al.,2016).
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2.1.3 Common reflection surface parameter estimation

As indicated above, CRS parameter estimation is a challenging and expensive
computational process. With respect to the number of parameters in the CRS
calculation (Tab. 2.1), in the case of ZO CRS, there are three parameters in
2D and eight in 3D. The number of parameters increases to five for 2D and 13
for 3D in the case of CO CRS. Thus, the balance between accurate parameter
estimation and feasible computational cost is always the issue with CRS.

2D 3D
Z0 CRS | 3 parameters | 8 parameters
CO CRS | 5 parameters | 13 parameters

Table 2.1: Number of parameters in CRS

A semblance-based parameter search (Neidell et al., 1971) is the most com-
monly used approach in CRS. As defined in Eq.2.8, semblance measures the
ratio between the coherent energy and the total energy in a defined time window.
As shown in Fig.2.4, the window used in the semblance calculation is given as a
time gate along the CRS operator. Based on the criteria of the semblance, we
can evaluate all possible CRS parameter combinations at any given point in the
stack, and so derive the optimal CRS parameters.

tcrs+Tw ?
2 ( > I(:L'?hvt))

t=tcrs—Tw \z,h€Xy
tcrs+Tw ’

> I(w, h,t)?

t=tcrs—Tw x, hEXy

S(tCRS,I'O, hOvtO) -

where I(x, h,t) is the 2D prestack data in the midpoint and offset domain , and
N is the total number of traces. tors is the CRS travel-time surface, defined at
the reference point (xg, ho,to). The aperture of the surface is given by Xj, and
the time-window used in the semblance calculation is defined along the CRS
travel-time surface within the time gate: [tcrs — Tw,tcrs + Tw|, where T, is
half of the window size.
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ho Offset (h)

|

Time (t)

Figure 2.4: CRS semblance calculation window. The grey surface (tcrs) repre-
sents the CRS travel-time surface calculated at the reference point (xg, ho, to),
and the two light blue surfaces resemble the time gate used for semblance
calculation.

The semblance-based global search is computationally expensive. It has to
search all predefined parameter combinations to obtain the optimal parameters.
The computational cost increases significantly from a ZO CRS to CO CRS,
and from a 2D (ZO/CO) to 3D (ZO/CO) CRS. To overcome this limitation,
alternative approaches have been proposed. The pragmatic searches proposed
by Mann et al. (1999) and Jager et al. (2001) suggested finding the three
parameters sequentially. In 2D, this begins with searching for the correlation
parameter in the CMP domain, and subsequently by constructing the CMP stack
and search for the remaining parameters — emergency angle and curvature. In
the last step, based on the initial searched parameters, a global parameter opti-
misation is applied to further refine the parameters. A further pragmatic search
approach was proposed by Garabito et al. (2001). Their hybrid method started
with a simultaneous search for the emergence angle and velocity on prestack
data, followed by a one-parametric semblance search to obtain the curvature,
and a global optimisation employed to refine the parameters. In addition to
these pragmatic CRS parameter approaches, other search strategies have been
proposed. Most of them are based on optimisation algorithms that reduce the
number of searches in the semblance approach. The most popular approach in
this category is the CRS parameter search based on simulated annealing (Miiller,
2003; Garabito et al., 2001; Minato et al., 2012).

One of the main challenges in CRS parameter estimation is to handle the
case of conflicting dips, since conventional parameter estimation approaches lead
to only one set of CRS parameters. This may lead to a problem of conflict in the
dips. To solve this problem, Mann (2001) and Miiller (2009) proposed deriving
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multiple CRS parameter sets for conflicting-dip regions that are identified by
a threshold of multiple-semblance maxima on the emergence angle. The final
stack is then constructed by merging the multiple sections generated by these
individual parameter datasets.

2.2 Structure tensor methods

Structure tensor methods use the gradient information from an image to de-
termine the orientation information of local structures in that image. This
technique has been widely used in image processing and computer vision for pat-
tern recognition and feature detection. In the following, we give an introduction
to the structure tensor concept, and a demonstration of its application to local
slope and curvature extraction from seismic data.

2.2.1 Gradient structure tensor

The structure tensor describes the local structures in an image by calculating the
predominant directions of the gradient in a specified neighbourhood of a point.
There are several implementations and applications of the structure tensor in
the literature. Bigun et al. (1987) introduced the GST method to detect the
orientation of a local neighbourhood, in both the frequency and space domains.
Kass et al. (1988) used the structure tensor derived from first-order derivatives to
calculate the local orientation of 2D images. Knutsson (1989) successfully used
the structure tensor to estimate the orientation of 3D surfaces. The GST (Bigun
et al., 1987), being an efficient and simplified implementation of the structure
tensor, was used in the present study for the estimation of slopes and curvatures
from the seismic data.

According to Bakker (2002), for a 3D seismic cube, represented by a vector
x (x = [z,y,t]T), the generalised form of GST can be defined as:

where g is the gradient vector field g = [g,(x), g,(x), g:(x)]”, g’ is the trans-

posed vector, || g || is the normalisation factor, and () represents the local
smooth operation of the tensor.

The gradient vector field g can be derived from the finite difference scheme
or the convolution of a gradient filter. The latter scheme is easy to implement
and is less sensitive to noise, as shown in Eq.2.10, which derives the gradient
fields (gx, gy, g+) by convolving the input seismic image I(x) with the derivative
of a Gaussian function G(x, o).

0 G(x,04), 1= (x,y,1). (2.10)

Xi

gi = I(x) *

13



2. Structure tensor methods for a common reflection-surface stack

where % is the differentiation operator applied to the Gaussian function, and

the parameter o, is the variance that represents the scale of the defined Gaussian
function.

Once the gradient vector fields are derived, the GST is constructed as Eq.2.11,
which corresponds to the co-variance matrix of the gradient vector fields.

- 92 Gy9: Gida
T =1 G29y 95 9t9y | > (2.11)
920t Gy9 9%

where the elements g,, g, and g, are the gradient vector fields obtained from
Eq.2.10. The symbol ~ represents the additional smoothing operation on the
gradients. The purpose of the additional smoothing is to further remove the
noise in order to stabilise the GST in the subsequent matrix decomposition. The
smoothing operation can be implemented through a normal spatial smoothing
filter on the derived gradient volumes.

2.2.2 Local slope estimation by gradient structure tensor

Because the orientation information of local structures is associated with the
eigenvalues and eigenvectors of the above-constructed GST T, the eigen de-
composition of the tensor (T) is applied to derive the eigenvalues (A1, A, A3)
and eigenvectors (vq,va, vs), which are illustrated in Fig.2.5, where those three
vectors point in the direction of the eigenvectors, and the length of each vector
on each axis resembles the corresponding magnitude of the eigenvalues.

Y

T

Figure 2.5: Schematic representation of the 3D structure tensor. Vectors
(v1,Vva,vs) are derived from the GST of a local point on a planar surface. The
length of each vector represents the magnitude of the eigenvalues (A1, A2, A3).
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By analysing the decomposed eigenvalues and eigenvectors, we can obtain
orientation information about the local structure in the image. The eigenvector
associated with the largest eigenvalue corresponds to the dominant orientation of
the gradient vector field. In the case of the derived eigenvalues (A1 > Ay > A3),
the corresponding eigenvector v, is then the dominant direction of the gradient
vector field.

With respect to a seismic planar reflector, the GST-derived eigenvector v,
represents the normal vector to the reflector plane. Thus, by considering the
components of vi = [v14, U1y, v1¢], the corresponding slopes along the dominant
direction can then be derived using Eqgs. 2.12 and 2.13:

5; Vg
= = T 2.12
= = (2.12)
5% U1y
= =Y 2.13
qy dy V1t ( )

When the GST method is applied to 3D seismic data, we can obtain the
slope and azimuth attributes of the local reflector surfaces, which are directly
related to the CRS parameters defined by their kinematic wavefront attributes.

2.2.3 Local curvature estimation using the quadratic gradient
structure tensor

The GST method can be extended from the estimation of first-order derivatives

(slope) to second-order derivatives (curvature). This extended method — the
QST — was proposed by Weijer et al. (2001) and Bakker (2002).

This method assumes that an arbitrary surface S(x) = 0 can be described
by a second-order polynomial approximation:

S(x)~xTAx+bx+c=0, (2.14)

where A is a symmetric 3 x 3 matrix, with at least two non-zero eigenvalues,
and b is a unit normal vector to this surface.

Assuming that this quadratic surface is described by two principal curvatures,
the approximated second-order polynomial (Eq.2.14) can be expressed as Eq.2.15
in the reflector-oriented coordinate system:

1 1
S(x) ~ SRVt SRew tu, (2.15)

where k1 and ko are the two principal curvatures of the surface, and (u, v, w) are
the vectors describing the local reflector-oriented coordinate system (Fig.2.6).
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T

Figure 2.6: Schematic view of the local reflector-oriented coordinate system. The
vector u is normal to the reflector, while vectors v and w are orthogonal to u,
and correspond to the two principal curvatures (K1, K2).

As shown in Bakker (2002), this quadratic surface is described by two
curvatures (k1, ko) and a local frame, which is oriented along the normal
vector and the two vectors that correspond to the principal curvatures. By
employing a coordinate transform scheme (Bakker, 2002), the quadratic surface
can be deformed to a plane, and those curvatures can be estimated in the
deformed surface system based on the traditional GST method. The two
principle curvatures obtained from the reflector-oriented coordinate system
can be expressed as:

w uJw
Ky = 92 92 : (2.17)
W=gz,

where v and w are vectors derived from the traditional GST method, while g,,,
g, and g,, are the gradients along the axes in the reflector-oriented coordinate
system.

Since the gradients (g, gy, gw) used in Egs. 2.16 and 2.17 are computed
in the local reflector-oriented coordinate system, this means that the gradient
calculation is spatially variant with respect to different locations in the stack,
which leads to a heavy computational cost. To avoid such a problem, Bakker
(2002) introduced an approach based on a linear combination of the convolutions,
which can be invariantly applied to the full stack, thus increasing the computa-
tional efficiency.
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Finally, in order to obtain the derivatives with respect to  and y, the v and
w must be set to be oriented along the x and y axes, in order to obtain the
curvatures along axes x and y. Furthermore, to get the final curvatures in the
3D Cartesian coordinate system (x,y,t), the following coordinate rotations must

be applied:
o2 AR

o o\ 2\ *
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Chapter 3

Depth imaging with wavefield
extrapolation migration

In Paper II, we proposed an OWEM depth-migration technique, Fourier Mixed-
Domain (FMD) prestack depth migration. This can be regarded as a stable
and explicit wavefield extrapolation-based migration algorithm. The FMD is a
phase-screen type of migration, implemented both in the space and wavenumber
domains, and valid for a 3D VTI medium with large lateral contrasts in vertical
velocity and anisotropic parameters. In this chapter, we give an overview of
the most important depth-migration methods and the necessary background for
deriving the FMD migration algorithm.

3.1 Overview of seismic migration imaging methods

Seismic migration is a process that builds an image from recorded data by
repositioning the recorded data to its true geological position in the subsurface.
Fig.3.1 illustrates the concept of migration in the case of a dipping reflector.
As shown in the figure, assuming a ZO seismic experiment was conducted in a
constant-velocity medium (Fig.3.1(a)), the recorded traces are plotted vertically
in time, causing a distorted image in the time domain (Fig.3.1(b)). In order to
obtain the correct spatial position of the dipping reflector, migration needs to be
applied to reposition the misplaced recorded data to its true geological position

(Fig.3.1(c)).

\ Y source =2
m receiver TP

a) b) <)

Figure 3.1: Illustration of the migration concept in relation to a dipping reflector.
(a) Schematics of a ZO seismic acquisition for a dipping reflector. (b) The
recorded seismic section. (c¢) The migrated (true) section.
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3. Depth imaging with wavefield extrapolation migration

Migration algorithms can be classified by time and depth, both of which
can be performed either after stacking (poststack migration) or before stacking
(prestack migration). Prestack migration applies to prestack data (shot, CMP
or CO gather), while poststack migration operates on stacked data. In the
following, we give a brief description of the major migration methods and discuss
the strengths and weaknesses of these methods in different scenarios.

e Poststack migration versus prestack migration

Poststack migration is a cost-effective process. It assumes that the stacking
process simulates a ZO section, and the migration performs in the ZO domain.
However, with the growth of structural complexity, poststack migration becomes
inaccurate because the stack is not able to approximate the ZO section; prestack
migration must be applied in such scenarios.

e« Time migration versus depth migration

Time migration builds a migrated image in two-way travel time, while the
depth migration method directly outputs vertical-depth images. Apart from
the cost efficiency of time migration over depth migration, the major difference
between them is how they cope with lateral velocity variations. Time migration
assumes that lateral velocities are invariant/homogeneous along a cable length
and are generally gentle. Conversely, depth migration accommodates lateral
velocity changes and is capable of correctly imaging complex structures associated
with strong velocity variations. However, in order to get an accurate image
from depth migration, accurate depth-velocity parameters (vertical velocity,
anisotropic parameters) are required, which are always challenging to obtain.

« Ray-based versus wavefield-extrapolation-based migration

With respect to the implementation of migration algorithms, migration can be
categorised into ray-based and wavefield-extrapolation-based methods. These are
also known as integral migration algorithms and differential migration algorithms,
respectively. Unlike the wavefield-extrapolation-based methods that solve the
wave equation directly, ray-based migration methods are based on high-frequency
approximations. Thus, seismic waves approximate rays and ray-paths, with the
assumption that the scale of the structure is greater than the seismic wavelength.
The Kirchhoff integral migration is the classic ray-based migration method, and
it has been widely used in industry for both time and depth migrations. However,
ray-based migration methods rely on a gently varying smooth velocity field for
calculating travel times, which makes these less accurate than the wavefield-
extrapolation-based methods in cases where the subsurface is complex and has
strong velocity variations. An extension of the Kirchhoff migration method is the
ray-based Gaussian beam migration (GBM). Compared to traditional Kirchhoof
methods that migrate one trace at a time, the GBM processes a group of traces
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Overview of seismic migration imaging methods

(a supergather) and maps the supergather collectively into the migration domain.
The advantage of the GBM is that it can handle multi-path arrivals, as opposed
to the single-path Kirchhoff method, and it can achieve comparable results to
wavefield-extrapolation-based migration methods, but with less computational
cost in imaging structures with moderate complexity.

e One-way versus two-way wave equation migration

Wavefield-extrapolation-based migration (also known as wave-equation migration
(WEM)) models the full wavefield in a propagation so that it can image all the
energy from the surface to the subsurface point in order to generate an accu-
rate image in areas where the subsurface is complex. wave-equation migration
can be classified into one-way wave-equation migration (OWEM) and two-way
(full-wave) wave-equation migration (TWEM). Reverse time migration (RTM) is
the best known algorithm based on TWEM, which utilises both down-going and
up-coming wavefields. As an advanced WEM method, RTM is able to handle
most of the challenges associated with seismic imaging, including large velocity
variations, steep dips, multiple paths and caustics. However, RTM requires full
wavefield modelling in each migration step, which leads to a heavy computational
cost and large memory requirement. In comparison, OWEM is more cost-effective
and requires less memory for computation. Moreover, OWEM is superior to
ray-based migration methods, and is able to achieve comparable results to RTM
in imaging complex structures, as well as strong velocity variations. Compared
with RTM, the disadvantages of OWEM are that it has less accuracy in imag-
ing very steep dips, and it does not treat turning waves and prismatic waves
intrinsically. We give a detailed discussion of OWEM methods in the next section.

The above is summarised in Fig.3.2. This demonstrates the appropriate
migration method needed, with respect to the complexity of the subsurface
structures and of the lateral velocity. As can be seen, with an increase in the
complexity of geological structures and lateral velocity, more advanced seismic
migration methods, such as Kirchhoff PSDM, beam migration, one-way wavefield-
extrapolation-based migration or RTM, must be applied. In this chapter, we
focus our discussion on PSDM.
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Figure 3.2: Comparison of migration methods.

3.2 Depth-migration methods

Depth migration handles complex subsurface structures with both vertical and
lateral velocity variations, and generates an image directly in the depth domain.
The quality of depth migration relies on an accurate depth-velocity model and
an appropriate algorithm. Depth-migration methods can be categorised into
ray-based and wavefield-extrapolation-based methods as already mentioned. We
introduce these methods in more detail in the following sections.

3.2.1 Ray-based depth-migration methods

Ray-based migration methods, such as Kirchhoff and Gaussian beam migration,
are based on solutions of the wave equation, assuming a high-frequency approxi-
mation. This assumption is acceptable if the seismic wavelength is much smaller
than the scale of the structure(s) (Etgen et al., 2009; Jones, 2010). The classic
method is Kirchhoff migration, as introduced by Schneider (1978) and developed
further by Bleistein (1987), Bancroft et al. (1994) and Etgen et al., (1997).
The basic formulation of Kirchhoff migration is given by Eq.3.1 (common-shot
migration):

ot

where X is the image point location, X, and X, are, respectively, the locations
of the source and receiver, ts and t, are travel times from the source and receiver
locations to the image point, W is a weight function, P, is the recorded wavefield,
and 0 is the Dirac function, representing the time shift in the integration.

I(X;X,) = /er/W(?P“(XT’XS’t)cS[t— (ts + t,.)]dt, (3.1)
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Depth-migration methods

This equation shows that the image point can be constructed by the integra-
tion of the combined rays from the source and receiver locations via the image
point (as indicated in Fig.3.3). In practice, the Kirchhoff migration process
is separated into two steps — the travel time table calculation, using dynamic
ray tracing, and collection of the associated data samples for the summation.
Due to the efficiency in its implementation and computation, Kirchhoff PSDM
has been widely used in industry for depth imaging. However, as most of the
commonly used Kirchhoff migration algorithms assume a single ray path between
the source and receiver (although a multi-path Kirchhoff migration has recently
been developed ), these methods have limited accuracy in imaging complex struc-
tures. To solve this challenge, another type of ray-based migration — Gaussian
beam migration (GBM) (Hill, 1990, 2001) — has been developed. GBM, being a
directional Kirchhoff migration approach, is performed by applying the imaging
to decomposed local-slant stacked traces and summing the contributions to form
the migration image. Because this approach adds the contribution of different
rays to the imaging, it naturally overcomes the single-path limitation of Kirchhoff
migration, and thus derives improved image results for complex subsurface struc-
tures. However, as ray-based migration approaches, both GBM and Kirchhoff
migration solve the wave equation under high-frequency approximation, which
relies on a smooth velocity field for the ray path calculations.

Source Receiver

X

Imaging ponint

Figure 3.3: Kirchhoff prestack depth migration.
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3. Depth imaging with wavefield extrapolation migration

3.2.2 Wavefield-extrapolation-based depth migration

Wavefield-extrapolation-based depth migration is the most effective way to han-
dle complex structures and strong velocity variations. Unlike the ray-based depth
migration method, which uses ray tracing to construct the ray paths, wavefield-
extrapolation-based depth migration uses the wave equation to model complete
wavefronts. It can be classified into OWEM and TWEM, both of which use so-
lutions of the (acoustic) scalar wave equation for the wavefield extrapolation. In
general, all wavefield-extrapolation-based depth migration methods are based on
two key steps: (1) extrapolation of the source wavefield and the receiver (record)
wavefield; and (2) construction of the image by applying the imaging condition.
Wavefield extrapolation can be implemented either in the time or depth domains.
RTM (a TWEM method) employs both the down-going and up-coming wavefields.
On the other hand, OWEM methods, such as shot-profile and survey-sinking
migration, only utilise the one-way wavefield in the depth domain extrapola-
tion. As mentioned above, RTM is able to solve most seismic-image challenges,
but is characterised by expensive computational costs and significant memory
demands. Thus, OWEM, as a cost-efficient WEM method, is still attractive
in industrial application. We focus on discussing OWEM in the following sections.

Source Receivers
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Figure 3.4: Wavefield extrapolation migration. The reflector image (A-B) is
constructed by correlating the down-going (red curves) and up-coming (blue
curves) wavefields.

Fig.3.4 illustrates the concept of wavefield extrapolation migration proposed
by Claerbout (1971), who generalised it into two steps — computation of the
down-going and up-going wavefield and application of an imaging condition to
obtain an image of the reflectors. As illustrated in the figure, the down-going
wavefield is derived from the forward propagation of the source field, and the
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up-coming wavefield is derived from the backward propagation of the recorded
receiver field. The reflectors are then imaged when the down-going wavefield
and up-going wavefield coincide in time (imaging condition).

3.3 Wavefield extrapolation and imaging condition

In wavefield-extrapolation-based migration, the wavefield extrapolation can be
achieved by either directly solving the two-way wave equation through employing
finite difference schemes, or by implementing the wavefield downward continua-
tion, based on the one-way wave equation. We focus our discussion on the latter
approach in this section.

Based on the 3D acoustic wave equation (Eqs. 3.2), we can split the two-way
wave equation into two one-way wave equations (Eqs. 3.3 and 3.4) by applying
a 3D Fourier transform with respect to the variables (x, y and t). The derived
equations represent the solution of the down-going and up-going wavefields in
the frequency-wavenumber domain.

op? . op? n op? 1 op?

0x2 0y 022 2ot
where x and y are the spatial coordinates, z is the depth, v is the velocity of the
medium and p is the pressure wavefield.

(3.2)

867_ o w? ~

ou o w2 ~
o =iy S~ (K24 K2) @, (3.4)

where K, and K, are horizontal wavenumbers, z is the depth, v is the velocity

of the medium, w is the angular frequency. d and u are respectively the 3D
pressure down-going and up-going wavefield following the 3D Fourier transform,
with respect to x, y and t.

From the integration of both sides of Eqs. 3.3 and 3.4, between limits z and

z+dz, we derive the wavefield extrapolation equations for both the down-going
(Eq.3.5) and up-going (Eq.3.6) wavefields in the frequency-wavenumber domain:

d(z 4+ Az) = d(z) exp "V oz ~(keth)Az (3.5)
U(z + Az) = U(2) exp'V iz ~(kath) Az (3.6)

where d and U denote the down-going and up-going 3D pressure wavefields in
the frequency-wavenumber domain.
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3. Depth imaging with wavefield extrapolation migration

Egs. 3.5 and 3.6 illustrate that wavefield extrapolation is a recursive process,
where the wavefield can be extrapolated from one depth to another. In PSDM, the
down-going wavefield is derived by the downward extrapolation of a predefined
source function at the surface, and the up-going wavefield is the downward
extrapolation from the receiver positions. The imaging condition is usually based
on different versions of the concept: reflectivity = up-going wavefield /down-going
wavefield. The original imaging condition was proposed by Claerbout (1971):

u(x,y,zi,w)
)= [ BnL IS, .
R(xjy,Z) /d(a:ayaziaw) “ (3 7)

where u(z,y, z;,w) and d(z,y, z;,w) are the extrapolated up-going and down-
going wavefields at depth level z;, and R is the computed reflectivity.

In order to avoid instabilities associated with the division in Eq.3.7, the
alternative formulation is used:

u(x,y, zi,w)d* (x,y, z;,w) / .
R i) — dw = y Y~y d s Yy <1 d ’
(z,y,2;) /d(:c,y,zi,w)d*(x,y,zi,w) w u(z,y, z,w)d* (z,y, 2z, w)dw
(3.8)

where d*(x,y, z;,w) is the complex conjugate of wavefield d(z,y, z;,w). The
denominator d(z,y, z;,w).d*(z,y, z;,w) is treated as a negligible weight factor in
the equation.

Eq.3.8 is known as the cross-correlation imaging condition. In practice,
different extensions of the original imaging condition have been proposed (Sava
et al., 2005; Guitton et al., 2007). In Paper II, we adapted a modified imaging
condition (Eq.3.9), which demonstrated good qualities in numerical examples:

Rz, %) = Ju(z,y, zi,w)d* (z,y, 2, w)dw | (3.9)
<f d(x,y, zi,w)d*(:c,y,zi,w)dw>
where the notation () denotes a smoothing operation with a triangular filter.
Before applying the smoothing, a threshold can be applied to the illumination
function ( [ d(z,vy, z;,w)d*(z,y, z;,w)dw) to remove extremely small values. The
imaging condition in Eq.3.9 is a deconvolution type of imaging condition.
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One-way wave equation migration algorithms

3.4 One-way wave equation migration algorithms

Downward extrapolation/continuation, based on one-way wave equation meth-
ods, has been studied for decades. Many OWEM algorithms exist, including
finite-difference migration, phase-shift migration, frequency-wavenumber domain
migration and Fourier finite-difference (FFD) migration. Among them, the
frequency-wavenumber and FFD techniques have attracted much attention due
to their simplicity of implementation and computational efficiency. We introduce
the most classic frequency wavenumber migration algorithms and FFD migration
algorithms in the following. By following the same concept, the extension to the
3D code is straightforward.

3.4.1 Phase-shift migration method

Wave-equation migration by phase shift was proposed by Gazdag (1978). It is
based on the downward extrapolation equation:

Poinz(w, k) = Po(w, k) - ™27, (3.10)

k. = \/W - (kw)27 (311)

where P, and P,; A, denote the pressure wavefield in the frequency and wavenum-
ber domains at respective depth levels z and z + Az, w and k are the angular
frequency and horizontal wavenumber respectively, v(z) is the depth-dependent
velocity, and k, is the vertical wavenumber in a 2D migration; for 3D migration,

k. = \/ﬁ - (kx)z - (ky)2-

Based on the phase-shift operator (Eqs. 3.10 and 3.11), the algorithm for the
(2D) poststack phase-shift depth migration can be summarised into the workflow
shown in Fig.3.5.

P(X, z=0, t) Apply imaging condition for
wavefields at each depth level

-D FFT Summa’iion of w
‘L P(k,, z;, t=0)
P(ky,Zo,w)
3 1 b
2 : 1D Inverse FFT
3 * elkde 7
= ) P(x, z, t=0)
P(k,, Z,+dz, w)

Figure 3.5: Workflow of the (2D) poststack phase-shift depth migration.
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3. Depth imaging with wavefield extrapolation migration
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Figure 3.6: Workflow of the (2D) prestack phase-shift depth migration.

The poststack phase-shift migration algorithm can be easily extended to the
prestack. As shown in Fig.3.6, the (2D) prestack phase-shift depth migration is
based on the wavefield extrapolation of both the source field and shot records.
‘D’ and ‘U’ represent the forward-extrapolated down-going wavefield from the
source and the backward-extrapolated up-going wavefield from the shot record
(receivers), respectively. Compared to the backward operator applied to the
up-going wavefield, a sign change in the operator has to be applied to forward-
propagate the source field. Once the down-going and up-going wavefields have
been extrapolated separately for each depth level, the prestack imaging condition
is applied to derive the image of each level. By repeating this process, a prestack
migrated section is finally obtained.

As can be seen, the phase-shift migration algorithm has the advantages of
simple implementation and high computational efficiency. However, this method
has not been widely used in practice due to its inability to handle laterally-variant
velocity media. For this reason, other OWEM methods, implemented in a mixed
frequency-wavenumber and frequency-space domain, were introduced.
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3.4.2 Mixed frequency-wavenumber and frequency-space
migration method

In order to improve the limitation of phase-shift migration, mixed frequency-
wavenumber and frequency-space migration methods have been proposed. The
phase-shift plus interpolation (PSPI) migration (Gazdag et al., 1984) and the
split-step Fourier (SSF) migration (Stoffa et al., 1990) are representative methods
of this category.

The main concept of these methods hangs on the decomposition of the
laterally-varying velocity model into constant background and velocity pertur-
bations (Fig.3.7) and application of the decomposed wavefield-extrapolation
operators in the frequency-wavenumber and frequency-space domains.

Lateral varying

Velocity: Viz, x,) V(z, %)

V(z;, %;.4) V(z;, x;) Depth = Z,

Constant Velocity

Reference velocity within the layer: V,(z; =7
Background: ty yer: Vo(z;) Depth = Z,

+ 4

Velocity

P AV(z, x, AV(Z, %) | seeeees Av(z;, X;. AV(z;, X; -7
perturbations: (zx) (zx,) (zis X;.1) (zw X;) | Depth=z

Figure 3.7: Schematics of velocity model decomposition

All of these mixed frequency-wavenumber and frequency-space migration
methods concentrate on approximating the single-square-root (SSR) equation
(3D case shown in Eq.3.12); the accuracy of the approximation is key to these
OWEM methods.

w2
k. = SSR(w,k) = , | —5—— — |k[?, (3.12)

(z,x,y)

where, w and k denote the angular frequency and horizontal wavenumber vector,
U(z,x,y) 18 the velocity model, with lateral and vertical variations, and k. is the
vertical wavenumber.

Various solutions have been proposed over the years to approximate the SSR
operator. The generalised solution can be written symbolically as:

k. = SSR(w, k) ~ ( ;"TQ - ]kP) + (U( 2 > te,  (3.13)

ref 2y Ly y) Uref
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3. Depth imaging with wavefield extrapolation migration

where vt is the reference velocity and e denotes high-order scattering terms.

Based on Eq.3.13, the vertical wavenumber k. can then be decomposed into
three terms — as indicated in Eq.3.14 — that correspond to the split vertical
wavenumber, with respect to the reference velocity, velocity perturbations and
high-order terms.

kz — SSR(W, k) ~ k,;ef + k;plit—step + k?ighiorder

2
k,;ef — ;JQ _ |k|2 (314)
ref
ksplit—step _ w W
? o ’U(Z,LE,y) Uref

klizzighiorder €

, where k;ef is the vertical wavenumber, based on the reference velocity, the
thin-lens term is the vertical wavenumber, based on velocity perturbations, and
the high order is the vertical wavenumber, based on the remaining high-order
terms.

With the generalised solution of SSR, we can rewrite the wavefield extrapola-
tion equation as:

P.inr(w, k) =P, (w, k) - etk Az

| | 3.15)
cp.ref .7.split—step -1, high__order ( ‘
~ Pz( ,k) . ezkz Az ezkz Az ezkz Az

)

where P, and P, A, respectively denote the pressure wavefield in the frequency
and wavenumber domain at depth levels z and z + Az, and Az is the depth
interval in the migration.

It should be noted that, in the implementation, the three decomposed
wavefield-extrapolation operators in the symbolic Eq.3.15 must be applied sep-
arately in the frequency-wavenumber and frequency-space domains. We give
details of the relevant methods in the following. The discussion is limited to the
2D case, but further extension to 3D is trivial.

3.4.2.1 Phase-shift plus interpolation method

The PSPI migration method was developed to take into account lateral velocity
variations by interpolating extrapolated wavefields using a phase shift employing
two or more reference velocities.

The PSPI algorithm only utilises the first two operators in Eq.3.15, and can
be arranged and expressed as Eqgs. 3.16 and 3.17. The detailed 2D workflow
shows in Fig.3.8.

Pf(w,z) = Py(w,z)-e'v2%, v =u(z, 2), (3.16)
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One-way wave equation migration algorithms

and

— * i(k—% )Az w?
Poyas(w,z) = F! {fx (P (w,z)} - eilk=—37)A }k =\ kS (317)

where P, (w,z) is the input wavefield in the time-space domain, F, and F,_ L de-
note forward and inverse Fourier transform with respect to x and k, respectively.
Moreover, v and v’ are the input velocity and reference velocity.

P(x,z,w)

.
e IFAZ

P*(x,z, w)
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Figure 3.8: Workflow of poststack PSPI migration (Gazdag et al., 1984)

Following a similar scheme to that shown in Fig.3.6, we can also generate the
prestack PSPI migration scheme (Fig.3.9). As can be seen from the workflow
of prestack PSPI migration, the source and shot record wavefields have to be
extrapolated separately, using multiple reference velocities in the frequency-

wavenumber domain, and being interpolated in the frequency-space domain,
leading to high computational costs.
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3. Depth imaging with wavefield extrapolation migration

Source field Shot Record
FJ;‘T FJ;'T
J, D(x,z,w) \l, U(x,z, w)
e—i%Az ei%xz
D(x,z, w) U(x,z,w)
FFT FFT
Vi(z) D(ky, z, ) v2(z) Vi(2) U(ky, z, ) v2(2)
! |
—i(kz—;"—l)/:\z o iCkz —%)Az ei(kz—f—l)Az ei(kz—%)Az
Dy (ky,z + Az, w) Dy(ky, 2z + Az, w) Uy(k, 7 + A2, ) Uy(ky, z + Az, )
Inverse FFT Inverse FFT Inverse FFT Inverse FFT
Dy(x,z + Az, w) Dy(x,z + Az, w) U,(x,z + Az, w) U,(x,z + Az, )
—> [Interpolation € —> Interpolation €
D(x,z + Az, w) D(x,z+ Az, w)

v
Apply the imaging condition ‘

R(x, z+dz)

Figure 3.9: Workflow of prestack phase-shift plus interpolation migration.

PSPI migration is an extension of phase-shift migration, and is capable of
handling media with lateral velocity variations. However, as the accuracy of the
migration depends on the number of reference velocities used in the migration,
and the interpolation has to be applied at each depth level, the PSPI migration
performs less efficiently than other migration approaches.

3.4.2.2 Split-step Fourier method

SSF migration was introduced by Stoffa et al. (1990). This approach separates
the velocity field into a constant background (reference) velocity field and a
varying velocity perturbation field (thin-lens term), and approximates the SSR
equation as:

k. = SSR(w, k) ~ kTS 4 fplit=step, (3.18)

The corresponding wavefield extrapolation is then treated as a separate
constant phase-shift operation in the frequency-wavenumber domain, followed
by an additional phase correction in the frequency-space domain.
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i) ] —(ka)?Az
Pz—l—Az(wv k) - Ft,m {Pz(t’ LE)} € et

Poynz(w,z) = fk—l {Poynz(w,k)}-e

iw(%—

(3.19)

Y

1Az

Vrep) =7, (3.20)

As shown in Fig.3.10 (poststack SSF workflow), this method splits the wave-
field extrapolation into two steps: (1) operation of the phase-shift extrapolation,
using a defined constant reference velocity (Eq.3.19); and (2) application of the
additional thin-lens term correction to handle the velocity perturbation (Eq.3.20).
The corresponding prestack SSF workflow is also shown in Fig.3.11.
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Figure 3.10: Workflow of SSF migration (2D).
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3. Depth imaging with wavefield extrapolation migration
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Figure 3.11: Workflow of prestack SSF migration (2D).

Compared to the PSPI method, SSF migration has a higher computational
efficiency, since it does not require interpolation due to the use of only one
reference velocity during the downward extrapolation. It is also unconditionally
stable because the downward continuation only involves phase correction terms
in the frequency-wavenumber and frequency-space domains. However, as the SSF
operator assumes moderate lateral variations in velocity, it performs relatively
poorly in cases where the subsurface has large velocity contrasts and structures

with steep dips.
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3.4.3 Fourier finite-difference migration method

SSF migration is unconditionally stable, and is capable of handling steep dips;
however, it is inaccurate in cases where large lateral velocity contrasts exist.
Another type of one-way wave migration — finite-difference migration (Claerbout,
1971, 1985) — is able to handle large velocity variations in both lateral and
vertical directions, but has shortcomings in dealing with steeply-dipping events
(Claerbout, 1985). Ristow et al. (1994) proposed the FFD migration, which
combines the advantages of a SSF migration and a finite-difference migration to
improve the migration performance in cases of large velocity contrasts and steep
dips.

FFD is a high-order, hybrid algorithm implemented in mixed frequency-space
and frequency-wavenumber domains. It is formulated by a direct expansion of
the difference between the SSR equation, evaluated at the real medium velocity
and the reference velocity. The (3D) SSR equation is approximated as:

k. = SSR(w, k) ~ kref 4 fsplit=step | phigh_order

ref — w? |2
K’ oz K (3.21)

ksplit—step w . w
z ’U(Z,Zl?,y) Uref

w 2UrerX2

— __w W
o (v(z,x,y) Uref) 4—(vfef+v2+vrefv)X2>

khighimﬂder
z

where, k7¢/ is the vertical wavenumber based on the reference velocity, ksPlit=step
is the vertical wavenumber based on velocity perturbations, and k*t9h—order ig
the vertical wavenumber based on the remaining high-order terms (wherein
X = [k|Vpef/w).

The downward extrapolation can then be approximated as (B. L. Biondi,
2006):

P,in-(w, k) =~ P,(w,k) - iR Az ik A eik?igh*orderAZ, (3.22)

where P, and P,; A, denote the pressure wavefield in the frequency and wavenum-
ber domain at the respective depth levels z and z + Az, and Az is the depth
interval in the migration.

As shown in Egs. 3.21 and 3.22, FFD migration includes the constant phase-
shift term applied in the frequency-wavenumber domain, the split-step (thin-
lens) correction term in the frequency-wavenumber domain and the additional
cascading high-order correction term implemented by an implicit finite-difference
scheme in the frequency-wavenumber domain.
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3. Depth imaging with wavefield extrapolation migration

Compared to other OWEM methods, this hybrid FFD migration operator
effectively improves the accuracy of the depth image in cases of complex structures
with steep dips and large lateral velocity variations. Thus, it has been widely used
in industry for OWEM. However, the FFD migration method has shortcomings
in 3D. Although the FFD approach can be extended to a 3D wave-migration
scheme, employing finite-difference operator splitting (e.g. Li, 1991; Ristow et al.,
1997). This splitting process is not straightforward and generates numerical
anisotropy. Furthermore, the extension of the FFD technique to the VTI case
is also challenging due to difficulties in selecting appropriate references for the
anisotropy parameters.

3.5 3D prestack Fourier mixed-domain (FMD)
depth-migration method

As discussed above, although many OWEM methods exist for seismic depth
migration, most of them struggle either with stability, accuracy, anisotropic noise
or computational cost. Thus, in Paper II, we proposed a new OWEM method
based on a mixed space- and wavenumber-propagator that effectively overcomes
these issues and is feasible in VTT media.

FMD PSDM can be regarded as a high-order extension of the SSF migration
method. Unlike the mixed domain depth migration methods (SSF and PSPI),
FMD is capable of imaging complex geology with large lateral contrasts, in both
isotropic and anisotropic cases. Furthermore, compared to the FFD migration
method, FMD naturally avoids numerical anisotropy in its implementation, and
achieves sufficient accuracy for 3D VTI media with large lateral contrasts in
terms of the velocity and anisotropy parameters.

3.5.1 3D Fourier mixed-domain one-way propagator for a vertical
transversely isotropic medium

For VTI media, the mixed-domain representation of the vertical wavenumber is
formulated as (3D case):

)~ (1 +25,@)
by ko) = \/ T2 (@) 0@ /R @) (3:23)

with:

w
ki=——, k-k=/k2+k2=Fk, 3.24
J cj(ac) :Jc+ Yy T ( )

where ¢;(x) is the laterally-varying vertical medium velocity in the j-th layer,
and €;(x) and 6;(x) are the Thomson parameters.

In FMD migration, the VTT vertical wavenumber can be approximated by

Eq.3.25, where the vertical wavenumber is decomposed into a background plane-
wave term associated with a layered model, a thin-lens term to correct the
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3D prestack Fourier mixed-domain (FMD) depth-migration method

velocity perturbations and an additional high-order correction term of order N,
taking into account the strong lateral velocity variations and higher dip angles.

kzj(, k,w) = kaoj (K, w) + [k () — Koj] (14 )

e {an_\/1+’Yj(w)Aj(w)},2r/k§j _ZN V17 (@) A, (@) {B; (@) =bo, }" (k7 /k3;)"
05 ik /82, ) n=1 {imbo, k2 /0,1

(3.25)

where:

a;(z) bj(x)
Ai(x) = —""F— | Bi(zx) = —2 , 3.26
J( ) 1+7g(33) J( ) 1+’Yj(w) ( )
and

]C](:IZ) =4/ 1 + ’)/J((B) . ]{30]', ’}/J(.’IE) = CQ(:JE) — 1, kOj = aj, (327)

with coefficients defined as:
¢ = —0.00099915, a;(x) = 0.46258453 (1 + 20;(x)) , (3.28)
bi(x) =2(g;(x) —0;(x)) + 0.40961897 (1 + 26;(x)) , '

and

ag; = 0.462584531 (1 + 200;) , bo; = 2 (20; — do;) + 0.40961897 (1 + 250]-() o
3.29

Based on Eq.3.25, the generalised mixed-domain VTT PSDM scheme can be
formulated (after reorganisation and neglecting the high-order cross terms):

P (24 82) =P () - o5 A M@0 (1)),

where: u = k% /kg; and

o w
[1 — boju]

N n+1
. / n u
_ nE:1 Zk’oj 1+ Yj (m)AJ (a:) [Bj(a:) — b()j] AZ—[l - boju]n_H .

To make the proposed FMD scheme unconditionally stable, a dip filter in the
frequency-wavenumber domain is applied. Moreover, a dual-reference scheme for
highly-complex geological models (with the inclusion of large velocity anomalies,
such as salt bodies) is proposed. The corresponding updated scheme can be
found in Egs. (18) and (20) in Paper II.

T (u,z) = {z’k:oj {aoj — /14 yj(w)Aj(x)} Az}
(3.31)
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3. Depth imaging with wavefield extrapolation migration

3.5.2 Examples of Fourier mixed-domain migration

We can now demonstrate the potential of the FMD migration, using a controlled-
data example based on prestack data from the Sigsbee2A model, made public
by the Subsalt Multiples Attenuation and Reduction Technology Joint Venture
(SMAART JV) between 2001 and 2002. As shown in Fig.3.12, this model
describes the subsalt geological setting of the Sigsbee Escarpment in the deep-
water Gulf of Mexico. Both the upper and lower parts of the Sigsbee2A model
represent complex features. The shallow geology has a challenging combination of
strong lateral variation and steep dip structures, defined by two synclines. Below
the salt, faulted blocks with fine-layered structures are present, superimposed
on a line of point scatterers.
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Figure 3.12: Sigsbee 2A stratigraphic model.

To test the poststack version of the FMD migration, a ZO dataset, based on
the exploding reflector model, were generated using a finite-difference programme
from the CREWES software package. The controlled data (shown in Fig.3.13)
were characterised by a spatial sample interval of 7.62 m (25 ft), a temporal
sample interval of 8 ms and a total recorded length of 12 s. A Ricker wavelet,
with a centre frequency of 20Hz, was used in the modelling.

In poststack FMD migration, a frequency range of between 5 and 20Hz
and a depth interval of 7.62 m (25 ft) were employed. The corresponding
depth-migration results are shown in Fig.3.14. On direct comparison with the
stratigraphic model, the migrated image demonstrates good quality for both
the salt and most of the sedimentary structures. However, the image shows
some dipping noise and degraded structures under the salt body, which would
be expected in the poststack depth migration. This can be improved by using
the prestack FMD migration, as shown in the following.

38
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Figure 3.13: Sigsbee 2A ZO synthetic stack.
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Figure 3.14: Poststack FMD migration image.

For the prestack FMD migration test, the prestack data consisted of 500
source gathers, each containing a total of 348 receivers. During the migration, we
employed a bandwidth of 0-40 Hz, a dual-velocity reference and a second-order
scattering scheme (Eq. (18) in Paper II).

We first give an example of a single-shot migration, employing a cross-
correlation imaging condition (IC) (Fig.3.15a). By introducing the denominator
from Eq. (23) in Paper II, we obtain the deconvolution IC actually employed,
where the denominator can be interpreted as an illumination compensation. The
corresponding result is given in Fig.3.15b, where it can be seen that the subsalt
events have now been amplified. In addition, an appropriate mute has been
applied. The final image is constructed by summing all the partial images output
from each shot-point migration. The spatial sample interval of the final image is
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3. Depth imaging with wavefield extrapolation migration

37.5 ft along the horizontal direction and 25 ft along the vertical direction. As
can be observed from Fig.3.16, most of the subsalt features were well recovered.
The deep, flat reflector was also well reconstructed, and the scatterers along the
two horizontal lines are mostly well focused.
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Figure 3.15: Single-shot migration profile. (a) First-order dual-velocity FMD
with cross-correlation imaging condition, (b) first-order dual-velocity FMD with
deconvolution imaging condition and mute applied.

Distance (m)
0 5000 10000 15000 20000

1000

2000
3000

4000

5000 E

(w) yadeq

6000

7000

8000

9000 ST

Figure 3.16: Prestack FMD migration image.
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3D prestack Fourier mixed-domain (FMD) depth-migration method

In Paper II, we further demonstrated the performance of the prestack FMD
method in both 2D and 3D VTT anisotropic migration cases, which included con-
trolled data and 3D field data from the Barents Sea. All the results demonstrated
the good performance of the proposed FMD migration algorithm.

3.5.3 Schematics of iterative Fourier mixed-domain
depth-migration and velocity-building

Besides being a powerful PSDM method in itself, a possible future application of
the FMD technique might be in velocity model building, as part of an iterative
migration loop. In cases of complex velocity fields associated with embedded
salt bodies, or other strongly-contrasting inhomogeneities, the conventional
approach that employs a Kirchhoff PSDM may give poor results in areas below
such structures. In iterative Kirchhoff PSDM, typical input data will comprise
constant-offset (or, alternatively, constant-angle) sections. Shifts in depth, picked
in a series of common-image gathers (CIGs), are then used as inputs into a
reflection-tomography programme to obtain an updated velocity model, followed
by a new iterative migration step.
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Figure 3.17: CIG from shot profile migration using perturbed velocity field.
Location outside the salt indicated by the red vertical line to the left in Fig.3.17.

In the case of the FMD method, which is a shot-point-based PSDM technique,
the concept of CIG is still valid, but the offsets are replaced by shot-point indices
(or shot-point offsets). Figs. 3.17 and 3.18 illustrate examples of two CIGs from
the Sigsbee2A model. In both figures, results are shown for a true velocity model
and perturbed models in the range +20% to -20%. The locations of the two CIGs
are indicated by the left (corresponding to Fig.3.17 and outside salt) and right
(Fig.3.18 and inside salt) red vertical lines in Fig.3.16. In both examples, it can
be seen that these CIGs demonstrate the same sensitivity to velocity errors as
the more conventional CIGs formed from depth-migrated constant-offset sections.
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3. Depth imaging with wavefield extrapolation migration

Note that the number of traces in each CIG is about 100 for this dataset, which
is actually higher than the fold of 87.
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Figure 3.18: CIG from shot-profile migration using perturbed velocity field.
Location inside the salt, indicated by the red vertical line to the right in Fig.3.17.
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Figure 3.19: Initialisation step employed prior to reflection tomography. Rays
are traced from a specific image point (F;) on an interpreted horizon in the
migrated CIG, and the ray (5;P;) closest to the selected source location is picked
or interpolated. The corresponding receiver location (R;) is now defined by the
specular or stationary ray (R;F;), fulfilling Snell’s law; that is, using information
about the angle of incidence («) and the local dip (f) of the reflection interface.
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Thus, by analogy with the conventional Kirchhoff type of velocity analysis
and model building, depth shifts can be (automatically) picked for each imaged
trace in a given CIG. Before these picked data can be input into a reflection
tomography programme, a preprocessing step needs to be carried out; for each
shot-point index associated with an imaged trace in the CIG, the corresponding
receiver location needs to be determined. This procedure is shown schematically
in Fig.3.19. We assume an initial smooth velocity model and a set of interpreted
key horizons.

In this short discussion, the 2D case is used as an illustration. Extension to
3D requires that a sophisticated regularisation technique can be applied to the
data to compensate for the irregular source and receiver distribution.
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Chapter 4

Migration velocity estimation
based on kinematic wavefield
attributes

In Paper III, we revisited the kinematic time migration and demigration, and
developed a detailed numerical scheme for time-migration velocity estimation,
using nonlinear mapping. This proposed time-migration velocity method is
based on the input of kinematic attributes (travel times and local slopes), which
are extracted from the prestack seismic dataset in the migration or recording
domain. Using the derived kinematic attributes, an algorithm based on Fréchet
derivatives, employing a nonlinear kinematic time-migration/demigration solver,
was developed for the time-migration velocity estimation. This generalised scheme
is valid for both 2D and 3D homogeneous and heterogeneous time-migration
velocity estimation, and is feasible for use in both narrow- and wide-azimuth
geometries. As an alternative to conventional time-migration velocity estimation,
it can be used for initial velocity model building in depth-migration velocity
modelling, and is likely to be extendable to direct depth-migration velocity
estimation. In this chapter, we first give an overview of migration velocity
estimation methods, then provide the key elements of the time-migration velocity
estimation based on nonlinear kinematic migration/demigration solvers.

4.1 Overview of migration-velocity estimation methods

In seismic imaging, two main problems need to be addressed: (1) the estimation
of the subsurface velocity model; and (2) the choice of an appropriate migration
algorithm. As discussed in the previous chapter, seismic migration is a process of
placing recorded data into the correct subsurface position, and it is classified into
time and depth migration based on the domains being migrated. Prestack time
migration (PSTM) (e.g. Claerbout, 1976, 1985; Bancroft et al., 1994; Fowler,
1997) uses prestack seismic data and a locally homogeneous time-migration
velocity model to construct a migrated image in the time domain. The more
sophisticated PSDM algorithm (e.g. Gazdag, 1978; Bleistein, 1987; Hill, 1990;
Stoffa et al., 1990; Ristow et al., 1994) honours a complex depth-migration
velocity model and generates a more accurate subsurface image. For both PSTM
and PSDM, accurate migration-velocity models are relied on to obtain the
correct migration image. We introduce the classic time/depth migration-velocity

estimation in the following. The content of this section is based on Yilmaz
(2001), B. L. Biondi (2006) and Jones (2010).
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4.1.1 Time migration-velocity estimation

PSTM is a robust and efficient process that is routinely applied in seismic
imaging. It achieves a reasonable accuracy in imaging simple to moderate
structures with a homogeneous velocity background. An accurate time-migration
velocity determines the image quality of PSTM, and affects the depth-migration
result, as most depth-migration velocity estimations use this as the initial velocity
model. In the following, we give an overview of the classic time-migration velocity
estimation methods.

4.1.1.1 Migration-velocity analysis

To derive an accurate migration-velocity model, Al-Yahya (1989) proposed a
migration-velocity analysis (MVA) based on the analysis of residual moveouts
(RMOs) of migrated common-image-gathers (CIGs). Although the proposed
scheme is based on the migration of shot gathers, and is used for depth-MVA,
this MVA concept has been adapted for time MVA (e.g. Deregowski, 1990; Liu
et al., 1995; Schleicher, Tygel, et al., 2007). Among all such analyses, the time
MVA by iterative PSTM and residual MVA is the most used approach in the
industry. As shown in Fig.4.1, this method uses multiple iterations of PSTM and
NMO MVA on CIGs to estimate the time-migration velocity (Biondi, 2006). In
this process, the flatness of events on the CIGs is used as a criterion for optimal
time-migration velocity estimation.

Seismic data sorted in
common offset planes

Time migartion velocity
< (initally derived from

¥ smoothed stacking velocity)
Pre-stack time migration Y

(Kirchhoff PSTM)

l

Migrated CIG gathers

!

Inverse NMO correction by
using applied migration velocity

|

Inversed NMO corrected
CIG gathers

}

NMO velocity analysis
(with/without high-order NMO equation,
anisotropic parameters)

ajepdn AlDojap

Figure 4.1: Conventional workflow of time MVA

Due to the simplicity of the method, this time-migration velocity-estimation
method has been used routinely in the industry. However, the limitation of this
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method is that it assumes a horizontally-layered model without lateral velocity
variations. Similar to the conventional NMO velocity analysis on CMP gathers,
in the case of dipping reflectors or lateral velocity variations, this method is
inaccurate in estimating the optimal time-migration velocity. Moreover, this
approach requires manual NMO-velocity picking in every iteration, and the cost
increases greatly as the density of the MVAs increase.

4.1.1.2 Migration velocity estimation by velocity continuation

Another type of time-migration velocity estimation — velocity continuation — was
proposed by Fomel (1994), Hubral et al. (1996) and Schleicher et al. (1997).
This migration velocity estimation method is based on the analysis of migrated
images using a series of migration velocities. Applying velocity continuation to
migration analysis includes the following steps (Fomel, 2003):

1. The prestack CO migration to generate the initial data for continuation.

2. Velocity continuation with stacking and semblance analysis across different
offsets to transform the offset data dimension into the velocity dimension.

3. Picking the optimal velocity and slicing through the migrated data volume
to generate an optimally-focused image.

This method is essentially a process of migration-velocity scanning, which de-
termines the time-migration velocity based on searching of the optimal migration
image. As mentioned above, the first step of this approach is to transform the
prestack data into multiple migrated images, using a series of constant velocities,
and time-migration velocity picking based on these migrated images.

4.1.1.3 Migration velocity estimation by using local event slopes

Ottolini (1983) proposed an PSTM method based on local event slopes. Fomel
et al. (2007) further generalised this approach for time-domain imaging and the
estimation of the NMO, interval and migration velocities.

Based on the 2D formulation of Fomel et al. (2007), using the oriented PSTM
approach, the recorded data can be mapped from the prestack data domain (t,
h, y) to the time-migrated image domain (7,z) (Eqs4.1 and 4.2). Furthermore,
a time-migration velocity model can be derived from mapping the prestack local
event slopes (Eq.4.3):

tpn [(t — hpn)® — h2p§] i
(t—hpn)? [tpn + b (92— p3)]
B htp,

tpn + b (p2 —p3)’

, (4.1)
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4. Migration velocity estimation based on kinematic wavefield attributes

4 tfm b (- )
v? h(t—hpn)
where t, h and y are the prestack data coordinates, (7,z) are the time-migrated

image coordinates, ppandp, are the prestack local event slopes in the offset and
space direction, h is a half-offset and v is the time-migration velocity.

(4.3)

Based on this formulation, time-migration velocities turn into data attributes
associated with local event slopes, which can be directly extracted from the input
data. As discussed in the previous chapter, the local slopes in Eqs4.1-4.3 can be
extracted from the prestack data based on the local slant stack (Ottolini, 1983),
the Hilbert transform (Cooke et al., 2009), plane-wave destruction (Claerbout,
1992) and the GST (Bigun et al., 1987) methods.

4.1.2 Depth-migration velocity estimation

In the subsurface imaging of complex structures and laterally-varying velocities,
depth migration provides a more accurate subsurface image than time migration.
Unlike time migration, which assumes a laterally-invariant velocity model, depth
migration honours the lateral velocity variation in the migration algorithm, and
thus is capable of accurately imaging complex structures with strong velocity
variations. In this sense, an accurate depth-velocity model is critical for depth-
domain migration. Conventionally, the depth-migration velocity estimation can
be divided into two categories — non-tomographic and tomography-based (Jones,
2003). We give an overview of each category in the following.

4.1.2.1 Non-tomographic type depth-velocity estimation

e Dix conversion

Dix conversion (Dix, 1955) was one of the most common non-tomographic
velocity-estimation methods used before the development of tomographic meth-
ods. As shown in the schematic (Fig.4.2), the interval velocity in a series of flat
layers can be derived from the associated rms velocities and travel times:

V2t, — V2 th_
vmtn:\/ non - Tnoiinml (4.4)

tn - tn—l

where v;,,; is the interval velocity in the layer bounded by interfaces n-1 and n,
t,—1 and t, are the corresponding ZO two-way travel times, and V,,_1 and V,,
are the corresponding rms velocities, which are approximated by the stacking
velocity obtained from the NMO analysis of the CMP gathers.

Assuming the subsurface is composed of flat layers with homogeneous ve-
locities, the Dix formula transforms rms velocities into interval velocities. The
advantage of the Dix transform is its simple implementation. However, its
fundamental problem is that the Dix conversion does not take into account
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Figure 4.2: Schematics of Dix conversion

lateral velocity variations in the layers. As stacking-velocity estimation assumes
a flat-layered and homogeneous velocity model in a cable length, where the
structure is associated with lateral velocity variations, the stacking-velocity
estimation becomes unfeasible, leading to inaccurate interval velocities.

In order to solve this problem, other non-tomographic velocity-estimation
methods have been proposed, such as normal and image ray map migration
(Hubral, 1975), stacking velocity inversion (Thorson et al., 1985), coherency
inversion (Landa et al.,1987), the Deregowski loop (Deregowski, 1990), MVA
based on RMO analysis (Audebert et al., 1997;1. F. Jones et al., 1998), and more
advanced Dix inversion approaches (Cameron et al., 2007; Iversen et al., 2008).
We briefly introduce two classic methods in the following.

e Velocity-estimation techniques based on map migration

Map migration is a mapping technique that has frequently been used in velocity-
estimation approaches. It repositions picked time horizons at their ‘true’ depth
locations, given an estimate of the interval velocities between the picked horizons.
This technique can be grouped into normal and image ray map migration, and
interval-velocity map migration. As far as the author is aware , for the map
migration of events in the recording domain, the first reference is Kleyn (1977),
whilst Hubral (1977) introduced the image ray. Concerning map migration from
the time-migration domain, a useful reference is Hubral and Krey (1980). We
give a short introduction to these methods in the following.

i Normal ray map migration: Using picked time horizons and the associated
interval velocities, normal ray migration maps non-migrated time horizons
to migrated horizons at depth by applying Snell ray-bending at each
interface and calculating the positions at depth. This process gives an
estimation of the depth horizons, but does not update the velocity between
the horizons.
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ii Image ray map migration: This maps the migrated horizons in time to
the migrated horizons at depth by employing the known interval velocity
and the lateral derivatives of the velocity field. Similarly to normal ray
migration, this process does not update the velocity between the horizons.
However, this process is more reliable than the normal ray migration
because the horizon picking is applied to the migrated data.

iii Interval velocity map migration: This is a tool for velocity sensitivity
analysis. In order to evaluate an effect of velocity perturbations on depth
horizons, interval velocity mapping is applied, consisting of two key steps
— a de-map-migration using the original migration velocity, and then a
re-map-migration using the perturbed migration velocity.

e Coherency velocity inversion

Coherent inversion (shown in Fig.4.3) is an interval-velocity scanning technique.
It uses ray tracing through predefined velocity models to compute moveout
trajectories and calculate the coherency (semblance) along the trajectories in
CMP gathers. The estimated velocity is the one with the highest semblances.

CMP gather Velocity Perturbation
Offset

yadaqg

=
yidaq

yidaq

Time
Figure 4.3: Coherent inversion.

As shown in Fig.4.3, with the perturbation of overburden velocities above
the reflection point, the calculated trajectories vary. The trajectory calculated
at the optimal velocity will best fit the seismic event and generate the highest
semblance. The advantage of this method is that it employs ray tracing in
the trajectory’s modelling, thus being able to handle non-hyperbolic events
in the data. However, the main disadvantage of this method is that it is not
very accurate for complex structures, and is susceptible to noise in the seismic
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data. Therefore, this method is more commonly used to construct an initial
depth-velocity model.

e Deregowski loop

This approach assumes that the seismic data has been migrated using an ap-
propriate depth-migration velocity model to generate flat events on migrated
gathers. In its operation, the migrated-depth gathers are scaled to time, and
an inverse NMO correction is applied using the rms velocity converted from the
depth-migration velocity. A new rms velocity picking is applied subsequently.
Ideally, if the depth-migration velocity is accurate, the newly-derived rms velocity
will be identical to the converted rms velocity. If not, the new rms velocity will
be converted to an interval velocity using Dix, and used to update the existing
migration velocity. The advantage of this method is that it is simple to apply.
The disadvantage is that the process is a 1D operation that does not consider
lateral variation caused by a velocity update and, also, the picked RMS velocity
is used to update the existing depth-migration velocity by Dix transform, which
will inevitably lead to errors in the velocity updates.

4.1.2.2 Tomography-based depth velocity estimation

The non-tomographic velocity-estimation methods mentioned above can be
regarded as local velocity updating schemes. They are generally capable of
handling moderately-complex structures, but are not suitable for geological sce-
narios with complex overburden structures. As global velocity update schemes,
variant-tomography-based velocity-estimation approaches have been proposed
and applied in the industry for several decades. Most of the tomographic methods
were formulated to solve an inverse problem (Backus et al., 1968; Backus et al.,
1970; Tarantola, 1987). With a predefined objective function, the tomographic
inversion process measures the difference between the recorded data and the
forward-modelled data derived from the existing velocity field, minimising the
difference to obtain the next velocity update.

As shown in Tab.4.1, the tomographic velocity estimation can be categorised
into ray- and waveform-based tomographies. Based on the domains used in the
operation, they can be further classified into data domain/recording domain
and image domain/migration domain tomographies. Ray-based tomography
consists of reflection (e.g. Bishop et al., 1985), transmission (Brownell, 1984) and
refraction (e.g. Osypov, 1999) tomographies. The waveform-based tomography
represented by full waveform inversion (e.g. Pratt et al., 1996; Sirgue et al., 2004)
integrates both the velocity estimation and depth migration into an inversion
process to generate the optimal depth image and the migration velocity model. In
this thesis, the focus is on a discussion of ray-based tomography in the data and
image domains. We outline some of the main ray-based tomographic methods in
the following.
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Data domain Image domain

Reflection travletime tomography

Ray-based PSTM tomography

tomography Transmission tomography

PSDM tomography
Refraction tomography

Waveform tomography

WEM velocity analysis
Wavepath tomography

Waveform-based

Full waveform inversion (FWI)
tomography

Diffraction tomorgaphy

Table 4.1: Tomographic types and domains.

o Reflection tomography

Most of the ray-based tomographic velocity-estimation methods work by
constructing an initial depth velocity model, followed by ray tracing to predict
the travel times in the prestack datasets. The travel time differences are then
minimised by iterative linear inversion to derive the velocity updates (e.g. Aki
et al., 1977; Bishop et al., 1985; Williamson, 1986; Farra et al., 1988). The
early reflection-tomography approaches use prestack datasets for tomographic
velocity estimation, but suffer from the challenge of reflection-horizon picking in
the data domain (i.e. the stacked data in the recording domain). To solve this
problem, reflection-tomography methods based on depth-migrated data have
been developed (e.g. Stork, 1992; Whitcombe et al., 1994; Ehinger et al., 1995).
Stork, 1992 introduced the tomographic method based on a linear inversion of
RMO on depth-migrated gathers. Due to the robustness of this method, it has
been widely used in industrial applications of reflection tomography.

As shown in Fig.4.4, reflection tomography in the migrated domain includes
the following steps: (1) the sorting of prestack data into the CO domain; (2)
construction of an initial depth velocity model; (3) application of PSDM to
CO sorted data using the velocity model derived from Step 2; (4) sorting
the PSDM-migrated data into CIGs; (5) picking the RMO on the CIGs; (6)
applying linearised tomography using the RMO to derive the velocity update;
(7) updating the initial velocity model; and (8) repeating Steps 3-7 until the
CIGs are flattened.
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Figure 4.4: Schematics of reflection tomography in the migrated domain.
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Figure 4.5: Schematic workflow of linearized tomography. After the first model
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function C(m). The process is iterated until C(m) reaches a minimum value. A
PSDM is needed in each iteration.
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The goal of the depth-velocity estimation is to find the depth-velocity model
that best flattens the CIGs. This is achieved through a tomographic inversion
process. Tomography can be regarded as an optimisation problem. With a
defined cost function, the tomography must find the best velocity-model parame-
ters to minimise the cost function. With respect to the reflection tomography, a
linearised tomography workflow is formulated, as shown in Fig.4.5. As shown, the
cost function of the reflection tomography is mathematically quantified by the
RMO on the CIGs and additional constraints (seismic-to-well ties, regularisation
and geological constraints, etc.). With the defined cost function, the tomography
is formulated to give a linearised problem, and is solved by an optimisation
method.

To solve a linearised tomography, the equivalent optimisation problem is
to minimise the RMOs (AZ) of the events on the CIGs. Assuming a prestack
dataset has been migrated using an initial depth-migration velocity m.,, we
can characterise the RMO of the event on the CIGs by comparing the migrated
depth at offset 2h with the depth at the reference (ZO) offset:

AZevent (ZE, Y, h, mcur) = Zevent (xy Y, h7 mcur) - Zeventfref, (xy Y, h = 0, mcur) ’
(4.5)
where Zeyent is the migrated depth for a given event, Zeyent ref is the migrated
depth at the reference offset, AZ is the depth difference representing the RMO
of the picked event, x and y are the coordinates of a CIG location, h is the
half-offset and myc,, is the current velocity model.

After quantifying the RMO, we hope to obtain a more accurate velocity model
(Mfinal = m; + dm;) to flatten the events on the gathers and to remove the
RMO. Based on the linearised inversion theory, if the current RMO is small,
we can linearise the problem by finding the small velocity perturbation dm; to
correct the RMO. Thus, by using the first-order Taylor expansion, Eq.4.5 can be
written as:

0A
AZevent (377 Y, h, Mfinal ) - AZevent (l‘, Y, h, Mecur ) + Z : : dmz = 0, (46)

The quantity gfj is the gradient representing perturbations of the RMO Az,
with respect to the small changes in a single velocity-model parameter m;. Eq.4.6
can be further rewritten as a matrix notation:

i=1Ny=1,0 | A =—| AZj ; (4.7)
i=1,N o dj=nm
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where [0AZ;/0m;] is a Jacobian matrix represented by M x N gradients,
[ codmg. .. ]T is the N x 1 vector, representing the velocity perturbation to be
solved, and | ...AZj. .. }T is the M x 1 vector, denoting the RMOs.

Based on the known RMOs, and the necessary gradients (calculated by ray
tracing), the velocity perturbations are then estimated by solving the linear
equations (Eq.4.7). In practice, as the formulated linearised equations may
have billions of parameters, and need to be repeated for many iterations, some
numerical algorithm-like conjugate gradients can be employed to solve the system.
Once the velocity perturbations have been derived from Eq.4.7, the migration
velocity is updated for the next iteration of the reflection tomography. After
several iterations, we can finally obtain the optimal depth-migration velocity
model.

e Stereotomography

Stereotomography (another type of reflection-based tomography) was devel-
oped by Billette et al., 1998, and is based on the concept of slope tomography,
introduced by Rieber, 1936, Riabinkin, 1957 and Sword, 1986. This technique
makes use of the picked travel times and slopes from the shot and receiver gathers,
and constructs a ray-based tomographic system to derive the velocity-model
update.

The idea behind this method is to use locally-coherent events in the prestack
non-migration domain, which are characterised by travel times and slopes, to
derive information about the velocity model. As shown in Fig.4.6, each locally-
coherent event of the tomographic dataset d is described by:

d=(s,r,Ts, P, P,), (4.8)

where s and r are the source and receiver positions, respectively, T, is the two-
way travel time, and P4 and P, are slopes of the event in the common-receiver
and common-shot gathers.

Any locally-coherent event is associated with a pair of model parameters
(ray-segment parameters):

<X7 ¢S7 ¢I‘7 TSa TI‘) Y (49)

where x is the position of the reflector, ¢ and ¢, are the ray-shooting angles
from x toward s and r, and T and T, are two one-way travel times from x
toward s and from x toward r.

Meanwhile, the stereotomographic model is defined as a combination of the

velocity model, described by a set of velocity parameters (V;,,) and a set of pairs
of ray segments associated with each picked event:
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Figure 4.6: Stereotomography data and model. The dataset consists of a set of
shot and receiver positions (s and r), travel times (7s,) and slopes at both the
receiver and shot locations (P, and Py), picked on locally-coherent events. The
model is composed of a discrete description of the velocity field C,,, and a set
of diffracting points (x), two scattering angles (¢s, ¢,), and two one-way travel
times (7Ts,T,) associated with each picked event (Billette et al., 1998, figure
redrawn)

m = [(Vm)rj\r/{:l > [(Xv 657 61‘7 TS7Tr)n]nN:1:| ’ (410)

where x is the position of the reflector/diffractor point, s and f, are the ray-
shooting angles from x toward x, and T and 7, are two one-way travel times
from x toward s and from x toward r.

At the modelling stage, assuming the model parameters and associated ray-
segment parameters are known, a set of stereotomographic data attributes
(Eq.4.11) can be calculated by ray tracing from scatter point X to the surface,
using the initial ray-shooting angles ¢ and ¢,., and with the travel time lengths
corresponding to T and 7).

dcalc - (SaraTsraPSaPr) (411)

calc?

Once the initially-picked locally-coherent event attributes d and the velocity-
model-calculated attributes d¢,c have been prepared, a tomographic scheme can
be formulated to minimise the calculated and observed data. The corresponding
cost function is defined as:

C(m) = = (deate(m) — dops)” Cp (deate(m) — dops) , (4.12)

1
2
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where Cp denotes a prior covariance matrix for the data parameters (Tarantola,
1987).

To solve this optimisation problem, an iterative nonlinear local optimisation
scheme, such as a quasi-Newton method, can be used to calculate the velocity
update, and the Fréchet derivatives of the data d, with respect to model m, can
be derived by paraxial ray tracing (Billette et al., 1998).

As an effective tomographic method, stereotomography has been one of the
most popular methods used for depth-velocity estimation. However, because this
approach requires accurate slope picking on the shot and receiver gathers in the
recording domain, the quality and cost of the picking becomes a major limitation.
To solve this problem, Chauris et al. (2002a,b) proposed a flatness criterion
for locally-coherent events in the migrated domain for the linear tomographic
inversion. It proposed locally-coherent event-picking on the CIGs in the migrated
domain, a demigration process to map the attributes to the recording domain,
and a tomographic inversion for the velocity estimation. This approach improves
the stability of the stereotomographic method because of the more feasible
picking in the migrated domain. However, the limitation of this method is
that it still needs tedious manual interaction and careful quality control for the
locally-coherent event picking.

e Tomography based on CRS wavefront kinematic attributes

As understood from previous chapters, CRS stacking provides enhanced ZO
stack and local kinematic wavefront attributes. These kinematic attributes can
also be used in tomographic inversion to derive velocity information. The concept
of tomography based on (CRS) kinematic wavefront attributes was proposed by
Duveneck and Hubral (2002) and Duveneck (2004).

Assuming the CRS stack has been applied to a dataset, and the kinematic
wavefront attributes (i.e. the emergence angle ¢, the radius of curvature Ry;p
of the NIP wave emerging at the surface position £, and the two-way-travel time
t0) have been generated, the tomographic problem can then be set as: given
input data (T, M, ¢,&)i, i = 1,...,Ndata, find velocity model parameters m g,
j=1,...,n.k=1,..,n., and normal ray starting parameters at depth (z, z, 0);,
i = 1,...,n4qtq that correctly model the input data (shown in Fig.4.7). Here,
M = 1/vgRnip and T' = t(/2 are used in the calculations (Vj is the near-surface
velocity); M is the second derivative of the travel time, with respect to the
ray-centre coordinate; x and z are the coordinates of the reflection point; and 6
is the starting angle of the normal ray (i.e. the reflector dip). Once the data
and model have been parameterised, the tomographic problem can be set up to
minimise the misfit between the measured values (T, M, ¢, £); and those obtained
by dynamic ray tracing in the model. This nonlinear tomography problem is
then linearised and solved by iterative least squares inversion.
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(x, )

Figure 4.7: Definition of data and model components. The data consist of the
quadruples (T, M, ¢, &), while the model consists of the corresponding triples

(x,2,0) and the velocity field v(x,z) = 3772, >12 ) myn3;(x) Br(2).

Another tomographic method utilising (CRS) kinematic wavefront attributes
was proposed by Lavaud et al. (2004) — poststack stereotomography. Contrary to
the approach introduced by Duveneck and Hubral (2002) and Duveneck (2004),
this method converts CRS wavefront kinematic attributes into stereotomographic
parameters, and uses the stereotomography to solve the velocity estimation. The
workflow of this method is summarised as:

i Calculation of CRS and wavefront parameters for each CMP position and
time sample.

ii Picking locally-coherent events on the CRS stacked section.

iii Prestack travel time and slope calculations using the picked events and
the associated wavefront parameters. For each picked event at (Xemp, to),
we compute for a given offset h:

a) the source position s = Xemp — h/2 and the receiver position r =
Xemp + h/2.

b) the associated prestack traveltime (s, r) = tcrs (Xemp, h) using the
CRS operator.

c) the local slopes in the offset direction py = &g% and in the CMP

direction pm = gtf—"“s. The local slopes at the source andreceiver are
cmp

then given by pgs = (me;ph), Pr = _(pm;ph)'

Based on these steps, a set of prestack data parameters (s, r, ps, prandts,) for
stereotomographic inversion is prepared. A stereotomographic scheme can then
be applied to estimate the depth-migration velocity model.
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e Non-linear tomography

Most of these depth-velocity estimation methods require a full PSDM at each
iteration of the tomography. Thus, this linear tomography process is expensive,
and may converge slowly in complex areas. In order to reduce the cost of
the tomography, another tomographic approach — nonlinear tomography — was
introduced by Adler et al. (2008). This method proposed employing nonlinear 3D
tomographic inversion to replace the conventional linear tomographic processes.
As shown in Fig.4.8, the nonlinear tomography only applies full PSDM once in
the tomographic process. Unlike linear tomographic methods that pick the events
in the recording or migrated domain, nonlinear tomography first demigrates
a horizon picked on the RMO-corrected stack in the migrated domain to its
70 equivalent horizon in the recording domain, and then uses ray tracing to
emulate PSDM by finite-offset map migration, and models synthetic CIGs in the
migrated domain. Ultimately, the modelled synthetic gathers are compared with
the PSDM gathers (RMO applied) to derive misfits for velocity tomographic
optimisation.

data [ Referencemodel | 1 popy, Picks > Zplh)
ref
(m‘ref)

+ Ray modeling » Emulate PSDM >-

Update loops  minimize cost function: C(m) = ||z™ref (h) — Zm(href)“2

Model (m) =

7N
N

Model updates (dm) —

~ac
am

<«——— Linearized problem

Figure 4.8: Schematic workflow of nonlinear tomography.

Apart from the method proposed by Adler et al. (2008), Guillaume et al.
(2008) addressed the flexibility of using the kinematic invariants (travel times
and slopes in the unmigrated recording domain) for nonlinear depth tomography.
Lambaré et al. (2009) also demonstrated the concept of nonlinear tomography
for time-migration velocity estimation. These proposed nonlinear tomographic
approaches greatly reduce the turnaround time and costs associated with depth-
migration velocity estimation by replacing the conventional PSDM and velocity
RMO analysis with the kinematic migration/demigration-based internal velocity
updating scheme. Due to the their efficiency and effectiveness, The nonlinear
tomographic technique has attracted much more attention and development for
industrial application and from academic research in recent years ( Guillaume et
al.,2013; Messud et al., 2015).
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4. Migration velocity estimation based on kinematic wavefield attributes

4.2 Time-migration velocity estimation based on nonlinear
kinematic migration/demigration solvers

As discussed in previous sections, nonlinear tomography is an effective and
efficient technique for seismic migration velocity estimation. Compared to
linear tomography, nonlinear tomography does not require complete PSDM and
RMO picking in each iteration, which greatly reduces project costs. Moreover,
nonlinear tomography quantifies the RMO by its kinematic attributes, and uses
those kinematic attributes (travel times and slopes) in the tomographic velocity
estimation, which also increases the flexibility and stability of the tomography.

In Paper III, we revisited the nonlinear tomographic technique, introducing a
time-migration velocity-estimation technique based on the concept of nonlinear
kinematic migration and demigration. In this paper, based on available explicit
and analytic expressions that relate kinematic attributes (namely, travel times
and local slopes) of locally-coherent events in the recording (demigration) and
migrated domains, we revisited tomographic methodologies for velocity-model
building with a specific focus on the time domain. We particularly focused on
the ones that made use of local slopes, as well as travel times, as key attributes
for imaging. We adopted a strategy of estimating local inclinations in the time-
migrated domain (where there is less noise and better focus), and use demigration
to estimate those inclinations in the recording domain.

Migration time Recording time

m
™
", Pm

vhh’ v mm oy hm

X
TX

Kinematic time
demigration

Time-migration Diffraction time

velocity model -~ To(h,a,m,T)
and its derivatives

Figure 4.9: Kinematic time migration (green) and demigration (orange) processes
for constant offset, with indicated input and output reflection-time parameters.
The process estimates the aperture vector and a number of diffraction-time partial
derivatives, using the given input parameters and the known time-migration
velocity model. Small green/orange arrows signify the data flow. Redrawn from
Iversen et al. (2012).
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As shown in the kinematic migration and demigration scheme from Iversen
et al. (2012) (Fig.4.9), assuming the time-migration velocity model and a
diffraction function with its derivatives are known, the kinematic attributes in
the recording and migration domains can be mapped correspondingly with the
kinematic migration/demigration. In Paper III , we revisited this kinematic
time-migration and -demigration scheme (Iversen et al., 2012) and develop a
detailed numerical scheme for time-migration velocity estimation, employing the
kinematic attributes. In the following, we provide an introduction to the basic
elements of the proposed method.

4.2.1 Overview of kinematic attributes

Kinematic attributes (kinematic parameters) refer to the local kinematic pa-
rameters of a seismic event point, which are represented by the local slopes
and curvatures of the individual event point. It is known that such quantities
provide the travel time approximation of the seismic event in the vicinity of that
reference event point (e.g, Ursin, 1982; Landa et al., 1999; Hubral, 1999; Jager
et al., 2001; Fomel et al., 2012), and that they are associated with the first- and
second-order derivatives of the measured travel time (Bortfeld, 1989; Schleicher
et al., 1993).

Kinematic attributes have been used for a number of applications in seismic
processing, imaging and inversion. These include: (1) poststack/prestack data
enhancement (e.g. Baykulov et al., 2009; Faccipieri et al., 2016); (2) diffraction
separation and imaging (e.g., Berkovitch et al., 2009; Klokov et al., 2012); (3)
time migration/demigration (e.g. Dell et al., 2011; Iversen et al., 2012); (4) data
interpolation and regularisation (e.g. Hoecht et al., 2009; Coimbra et al. (2016));
and (5) attribute-oriented seismic processing (e.g. Zhang et al., 2002; Cooke
et al., 2009).

Iversen et al (2012) systematically generalised and extended kinematic time
migration and demigration using kinematic attributes. We follow the convention
for defining the kinematic attributes, as explained below. We first define the
coordinate system used for the kinematic attributes and the associated kinematic
mapping, then we present the analytic diffraction function, which can be used
to derive the derivatives, and ultimately provide the generalised kinematic
attributes.

e Coordinate systems for recorded and migrated seismic data

We use a 2D Cartesian coordinate system (£1,&2) to describe the acquisition
geometry of 3D seismic experiments. As shown in Fig.4.10, in the horizontal
measurement plane, we consider a source point, s = (s1, s2), and a receiver point,
r = (r1,72). The midpoint and half-offset coordinates are given as:
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4. Migration velocity estimation based on kinematic wavefield attributes

(r+s), h= %(r—s). (4.13)

We also define the output point of the time migration using the notation m.
Then we can derive the aperture vector a as:

a=x-—m. (4.14)
and define hS and h® as the source-offset vector and the receiver-offset

vector, respectively.

h = s—m = a—h,
h® = r—-m = a+h (4.15)

Depth

Figure 4.10: Coordinate system used for describing 3D seismic experiments. The
source (s), receiver (r), CMP (x) and common-image point (m) are defined in
the horizontal measurement plane. The vectors of the aperture (a), half-offset h,
source-offset (hS ) and receiver-offset (hR) are outlined.

e Diffraction Time Function for Time Migration and Demigration

The analytic diffraction-time function is used to generate the kinematic
attribute-related derivatives. The example given here uses one widely-used
diffraction-time function — the double-square-root (DSR) equation — which is
based on the exact travel-time function for both P- and S-wave-propagation
homogeneous isotropic media. The formulation is:

TP =75 4+ T, (4.16)
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T = \/%2 + (a—h)TSM(m,7)(a — h)), (4.17)
TR = \/TZZ + (a+h)TSM(m, 7)(a + h)), (4.18)

where T, TRandTP represent the travel time from source to diffraction point,
travel time from diffraction point to receiver, and total travel time, respectively.

SM(m, 1) is defined as the time-migration velocity model.

e Diffraction-time function partial derivatives

Based on the predefined diffraction-time function, such as the presented
DSR travel time function, we can derive the analytic expression of the partial
derivatives used in the kinematic migration and demigration. Those derivatives
are the partial derivative of the diffraction time T°, with respect to the half-
offset, h, aperture, a, image gather location, m, and migration time, 7, which

are given as:

i First order partial derivatives

orr orr . orP m O0TP (4.19)
u = = — = — = — .
ar 4 on 4 ga Om
it Second order partial derivatives
p_ 0°TP o 0PTP L o0*TP
ohot’ 0aoT’ omor
Wi _ 82TD aa _ 82TD — aQTD
ohohT’ dadaTl’ omomT  (4.20)
ha _ 62TD hm _ 82TD am _ 62TD
ohoaTl’ OhomT”’ dadmT
Uah — UhaT, Umh — UhrnT7 ume — UamT

where,q”, q%, g™, u”, u® u™ are 2x1 diffraction-time partial derivative
vectors, and UM Uee Uymm yhe Uyhm yem yeh U™ U™ are 2x2
diffraction-time partial derivative matrices.
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4. Migration velocity estimation based on kinematic wavefield attributes

e Reflection-time function partial derivatives

For the reflection-time function, we generalise two single-valued reflection-
time functions corresponding to symmetrically-reflected waves:

t=T(h,x), 7=r(hm), (4.21)

where T and 7 are the reflection time function in the recording and time-migration
domains, respectively.

By obeying the same convention, we can also define the reflection-time
parameters in the recording and time-migration domains:

i First- and second-order partial derivatives in the recording domain

oT ph aQT Mhh thc
P—&‘<pw) M—aaﬁ—(mw‘mm>’ (4.22)

where we define the kinematic parameters for a reflection event at a given
trace location in the recording domain thus: reflection time, T% = T'(h,x),,
slope (first-order derivative) vectors p"* = 0T/0h,p* = 9T/0x, and
second-order derivative matrices M = 92T /0hoh™T , M"* = 9T /ohoxT
M** = 92T /oxoxT .

ii  First- and second-order partial derivatives in the migration domain

AT (" T MM M
¢—%r(wm) M—%ﬁﬁ—(MWFMWJ’“m

where we also define the kinematic parameters for a reflection event at a
given trace location in the migration domain: migrated reflection time,
TM = T(h,m),, slope vectors 9" = 87 /0h, ™ = T /Om, and second-
order derivative matrices M = 92T /0hoh™ , M"™ = 52T /ohom™T , M™™
= 0*T /OmOmT .

In our method, considering the implementation efficiency and calculation
robustness, we chose the GST method for the first-order kinematic parameter
(slope) extraction and the QST for the second-order kinematic parameter (curva-
ture) extraction. The numerical GST and QST schemes are described in Chapter
I. This operation is applied either to stacked data in the migration domain or to
the NMO stack in the recording domain.
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Time-migration velocity estimation based on nonlinear kinematic
migration/demigration solvers

4.2.2 Kinematic migration and kinematic demigration

Kinematic migration and its counterpart kinematic demigration have been used
to map kinematic local wavefront attributes (travel times, slopes and curvatures)
from/to the recording time domain to/from the migrated time or depth domain
(e.g. Hubral et al., 1980; Gjoystdal et al., 1981; Ursin, 1982; Iversen et al., 1996;
Iversen, 2004). With respect to the kinematic demigration, Whitcombe et al.
(1994) introduced a ZO kinematic time demigration scheme using the constant
migration velocity assumption. Sollner et al. (2004) further investigated ZO
kinematic migration and demigration under the framework of ray theory.

A systematic generalisation and extension of kinematic time migration and
demigration was developed by Iversen et al., (2012). The proposed technique
extends the kinematic time migration and demigration from ZO to finite-offset,
includes both the first-order (slope) and second-order (curvature) travel time
derivatives during the mapping, and generalises for any type of diffraction-time
functions. We illustrate the concept of kinematic migration and demigration using
the 2D prestack schematics in Fig.4.11, which use the diffraction-time function
and time-migration velocity to nonlinearly map the kinematic parameters (travel
time and slope) between the recording and migration domains. In Paper III,
we presented a detailed and generalised numerical scheme for kinematic time
demigration and migration.

Midpoint Location

Offset

Image gather
location

S

Recording time

Migration time

Figure 4.11: Schematic overview of kinematic time migration and demigra-
tion for a 2D prestack seismic dataset. Based on the known diffraction-time
function, with its associated derivatives, and a time-migration velocity model,
the local kinematic parameters (x, 7%, p®, p") in the recording domain can be
forward /backward-mapped to/from the counterpart (m, 7™ ™l ) in the
migration domain by kinematic time migration/demigration.
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4.2.3 Time-migration velocity model

In this proposed algorithm, we use the grid-based velocity model to describe the
time-migration velocity. The time-migration velocity model is defined on a 3D
rectangular grid in the variables £ = mq, & = mo and &3 = 7, where we add &3
to describe the velocity model in the time domain. Model parameters related
to cells or vertices within the grid will be unknowns in the velocity-estimation
process. The velocity model is described in terms of a multi-component vector
function, (M,), A = 1,..., N*, where each component function My ({1, o, £3)
corresponds to one of the coefficients of the diffraction-time function.

Xi1jk1 Xij k-1
Xi—],f—l,k—l Xi,_i—l,k—l
MA (ul v, W)
u
v Xitjk . Xiik
w .
i-1,j-1,k
d Xij1k

Figure 4.12: Grid cell and local dimensionless coordinate (u, v, w) used for
describing the 3D time-migration velocity model.

As shown in Fig.4.12, the time-migration model is defined on a 3D rectangular
grid. The model parameters relate to the cells and the corresponding vertices
within the grid. A rectangular grid cell (i, j, k) is defined in terms of eight
vertices. We assume that the value of the function M, is known in all relevant
grid vertices X; j 1, and these values are denoted as My"7"*.

In the tomography, we apply a local function M (u, v, w) that pertains to
only one selected cell. The variables u, v, w are dimensionless, and take values
in the interval [0, 1] (in this case, My (&1,&2,&3) = Mx(u,v,w)). The function
M, is then expressed as values in the grid vertices that are neighbours to the
cell. To allow the differentiability of this function up to the second order, we use
a local cubic spline function to describe the velocity model (bicubic and tricubic
spline functions are used for 2D and 3D grids, respectively).
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4.2.4 Inversion scheme of time-migration velocity estimation

Based on the formulated kinematic time-migration/-demigration scheme, we set
up an inversion scheme to estimate the time-migration velocity. In the following,
we first give an overview of a common way of linearising a generally nonlinear
inversion problem, then we introduce the approach of iterative linearised inver-
sion to estimate the optimal time-migration velocity model.

Assuming we have observed (true) data and predicted data in the migration
domain, the misfit between these can be expressed as a function D,, (v), where
v is the model parameter vector with M components:

Dy (v) = dTe —aPd (v), m=1,..., M. (4.24)

This equation can be linearised with respect to a reference model v°, where
the quantity ddP™? /v, is the Fréchet derivative of D,,, with respect to v.

88112: (1/0) (I/n — Vg) ) (4.25)

Given D,,(v) = 0 with optimal model parameters, the equation is rearranged
as:

Dp(v) = Dy, (V°) +

oD,,
ov,,

In our time-migration velocity estimation, the observed data represent ideal
slopes in the offset coordinates of the CIGs, which are zero and correspond to
an optimal time-migration velocity model. The predicted data represent the

corresponding slopes of the CIGs migrated using the current time-migration

ayh
Ovy, ?

which is a partial derivative of the reflection slope in the offset coordinates w?,
with respect to the parameters v, of the time-migration velocity model.

(VO) (v — 1/2) =—-D,, (1/0) . (4.26)

velocity model. The Fréchet derivative of D,,, with respect to v, is now

8—¢? %) (v —vp) = —ph ). I=1,2 (4.27)
ayn n n _— I . - 9 . .
To derive the Fréchet derivative of the above linear system, gﬁ , we applied

the sensitivity analysis of kinematic time migration, with respect to the time-
migration velocity model, and derived the analytic expression of the first-order
changes of the reflection location, with respect to the time-migration velocity
model (i.e. the derivatives di;/dv and d7/dv), as well as the the first-order
changes of the reflection slopes (i.e. the derivativesdw? / du).

Based on the above inversion scheme as set up above, and the derived
Fréchet derivatives, we are able to estimate the time-migration velocity by
using the kinematic parameters and the nonlinear mapping of the kinematic
migration/demigration.
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4.2.5 Workflow of time-migration velocity estimation based on
kinematic migration/demigration

Based on the formulated inversion scheme, we can summarise the workflow
of the time-migration velocity estimation based on the nonlinear kinematic
migration/demigration solvers as:

i Sort prestack data into common offset planes.

ii Construct an initial time-migration velocity model by smoothing the stack-
ing velocities.

iii Apply PSTM with the initial time-migration velocity model to derive the
migrated CIGs.

iv Derive the kinematic attributes in the migration domain (m, T, wh, ¢m>
by applying the GST methods and picking the locally-coherent events.

v Apply the kinematic demigration to generate the invariant kinematic
attributes in the recording domain (x, T,p", px).

vi Apply the internal iterations for time-migration velocity estimation, em-
ploying the invariant kinematic attributes in the recording domain. This
process includes kinematic migration and a constrained linear inversion
scheme.

vii Apply full PSTM, once the optimal time-migration velocity is obtained.

Input : Common offset gathers

Prestack time migration

Full migration for next external
Iteration / Final migration with
optimal velocity

Migrated offset gathers

Picking & slope extraction

Internal iterations for time migration velocity estimation

(m, T,y", gm)
in migration domain

Updated migration
velocity

Yes

Internal
iterations to Constrained linear
minimize y" inversion

Kinematic

demigration

(X, T,p", p*) !
in recording Kinematic migration
domain |

Updated (m, T, yh, y™m)
in migration domain

Figure 4.13: Time-migration velocity estimation workflow
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Chapter 5

Summary of publications and
discussion of future work

In this chapter, the contributions of the papers are summarised, and potential
future work is proposed.

5.1 Paper |

Fast and robust Common Reflection Surface (CRS) parameter esti-
mation

Anders U. Waldeland, Hao Zhao, Jorge H. Faccipieri, Anne H. Schistad Solberg,
and Leiv-J. Gelius

Geophysics, 83, O1-013, January, 2018.

The CRS method is an effective way to enhance the SNR of seismic data.
Compared to the conventional NMO stack, the CRS stack provides a strong
increase in redundancy and SNR. Conventionally, CRS parameters are obtained
by semblance-based parameter searches, which require expensive computation. In
order to solve this problem, we proposed a fast and robust (ZO) CRS parameter-
estimation technique in this paper. The proposed method can be generalised
as the following steps: (1) assume that a velocity guide is provided and derive
parameter C based on the velocity field; (2) construct a CMP stack based on
the known velocity; and (3) apply GST and QST methods to derive parameters
A and B. In numerical examples, we compared the proposed method with an
existing slope-based CRS parameter-estimation method. Our proposed method
demonstrated comparable accuracy and considerably improved efficiency over
the conventional semblance search- and slope-based CRS parameter-estimation
methods.

Although the proposed method is robust and efficient for CRS parameter
estimation, there are some limitations to its application. First, the proposed
approach assumes that an appropriate initial velocity field is provided for the
stack and parameter estimation. If a poor initial velocity field is used in the
stacking process, the stacked section will not have consistent reflections, or it will
be contaminated by noise, which will deteriorate the CRS parameter estimation.
In such a case, we would suggest applying the proposed method with a limited
aperture size to estimate the initial CRS parameters, and then employ the
semblance-based search to further refine the parameters. Moreover, the proposed
approach has limitations in its application to complex structures or structures
with conflicting dips. This is because the GST and QST methods assume that
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there is only one dominant direction for a local structure. To address this
challenge in a future work, we would propose implementing an extended (higher-
order) structure tensor method for multi-directional estimation (Barmpoutis
et al., 2007; Herberthson et al., 2007; Andersson et al., 2013). Alternatively, the
kinematic parameters can also be estimated in the time-migration domain, as we
proposed in Paper III, and mapped back to the recording domain via a nonlinear
kinematic demigration scheme. As discussed above, the CRS parameters can
be utilised to estimate the time- and depth-migration velocities (Duveneck et
al., 2002; Duveneck, 2004; Lavaud et al., 2004; Gelius et al., 2015). In a future
study, we would integrate the GST- and QST-based CRS parameter estimation
into those velocity estimation methods to further improve the efficiency of the
migration-velocity estimation based on CRS parameters.

5.2 Paperli

3D Prestack Fourier Mixed-Domain (FMD) depth migration for VTI
media with large lateral contrasts

Hao Zhao, Leiv-J. Gelius, Martin Tygel, Espen Harris Nilsen, and Andreas
Kjelsrud Evensen

Journal of Applied Geophysics, 168C, 118-127, September, 2019.

The superiority of RTM in imaging complex media is well known. How-
ever, as a costly and computer-intensive technique, RTM is typically used in
processing data from complex models. OWEM, as an effective wave-equation
depth-migration approach, is still widely used among the contracting companies
for 2D and 3D fast-track depth migration. Although many OWEM methods
exist for isotropic depth migration, most of them struggle either with accuracy,
stability or computational costs. The problem becomes more complicated when
extending OWEM from 2D isotropic media to 3D anisotropic media. Thus, in
this paper we presented a new method based on a mixed space- and wavenumber-
propagator that overcomes these issues very effectively, as demonstrated by
provided examples. The proposed method is a new OWEM algorithm for 2D and
3D prestack data that is also valid for VTT media, which can be regarded as a
higher-order version of the split-step Fourier (SSF) method, and is denoted as a
FMD migration. We tested the FMD technique in numerical experiments, using
both the control data generated by the synthetic models (the 3D SEG/EAGE salt
model and the 2D anisotropic Hess model) and the 3D field dataset, including
anisotropy from the Barents Sea. All the tests demonstrated the superior image
resolution provided by FMD migration.

The current version of the FMD method can handle 3D VTT media. Further
extension to the more general (Tilted Transverse Isotropy) TTI case is the
subject of ongoing research. In addition to the set of perturbed media parameters
inherent in the present formulation, the tilt of the symmetry axis also needs
to be included in a computer-efficient manner. Several similar studies have
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indicated the potential for an extension of the phase-screen methods, from 3D
VTI to 3D TTI media (Shan et al., 2005; Bale et al., 2007; Shin et al., 2014).
Future potential use of the FMD technique, besides it being an efficient PSDM
method, might include iterative PSDM velocity building as an alternative to the
industry-preferred Kirchhoff method.

5.3 Paperlil

Time-migration velocity estimation with Fréchet derivatives based on
nonlinear kinematic migration/demigration solvers

Hao Zhao, Anders Ueland Waldeland, Dany Rueda Serrano, Martin Tygel, and
Einar Iversen

Studia Geophysica et Geodaetica, submitted, August 2019

PSTM is a robust and efficient process that is routinely applied in seismic imag-
ing. It achieves reasonably accuracy in imaging simple to moderate structures
with a homogeneous velocity background. An accurate time-migration velocity
determines the image quality of the PSTM and affects the depth-migration
result, as most depth-migration velocity estimations are highly dependent on a
sufficiently accurate initial depth-velocity model, derived from the time-migration
velocity, to guarantee convergence in iterative tomographic schemes. Convention-
ally, the most commonly-used approach of time-migration velocity estimation is
migration-velocity-analysis (MVA). This is based on the iterative PSTM and
residual moveout (RMO) analysis of migrated CIGs. Because this approach
assumes a horizontally-layered model and invariant lateral velocities in the MVA,
it is inaccurate in handling dipping structures and lateral velocity variations.
Recently, seismic wavefield kinematic parameters (i.e. travel time, local slopes
and local curvatures) have been more widely used in seismic processing, imaging
and inversion. Migration-velocity estimation methods employing kinematic at-
tributes have also been proposed, and have demonstrated their robustness and
efficiency in depth-migration velocity estimation (e.g. Rieber, 1936; Riab