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Abstract. We prove a Grothendieck-Lefschetz theorem for equivariant Pi-
card groups of non-singular varieties with finite group actions.

1. Introduction

The geometry and K-theory of schemes with group scheme actions have been
extensively studied by various authors in recent years (e.g., see [7], [9], [8]). The
generalization of some of the fundamental theorems of algebraic geometry to
the equivariant setting has played an important role in the development of this
subject. The classical Lefschetz-type theorems compare the various algebraic
invariants of non-singular projective varieties and their hyperplane sections. Let
X be a non-singular projective variety over a field k of characteristic zero and
let Y be a non-singular subvariety of X, of dimension ě 3, which is a scheme-
theoretic complete intersection in X. The Grothendieck-Lefschetz theorem for
Picard groups (see [4, Théoremè XI.3.1], [6, Corollary IV.3.3]) states that the
Picard groups of X and Y are isomorphic. The purpose of this article is to
prove an analogous result for varieties with finite group actions.

For a variety X with G-action, let PicGpXq denote the equivariant Picard
group of X (see [10, 1.3, page 32]). Our main result is the following.

Theorem 1.1. Let k be a field of characteristic zero and let G be a finite
group. Let X be a non-singular projective variety over k with G-action and
let Y be a non-singular G-invariant subvariety of dimension ě 3, which is a
scheme-theoretic complete intersection in X. Then the natural map PicGpXq Ñ
PicGpY q is an isomorphism.

In view of the Kodaira-Akizuki-Nakano vanishing theorem, Theorem 1.1 is
a straightforward consequence of the technical result Theorem 3.3, which is
proved by closely following the proof of the Grothendieck-Lefschetz theorems
given in [6, Chapter IV]. The main idea is to use the formal completion of X
along Y and a suitable equivariant generalization of the Lefschetz conditions,
which is discussed in (2.2). As a corollary to Theorem 3.3, we also deduce that
if G acts on a projective space X over k (a field of arbitrary characteristic)
and Y is a G-invariant scheme-theoretic complete intersection in X such that
dimpY q ě 3, then the equivariant Picard groups of X and Y are isomorphic
(see Corollary 3.4, [6, Corollary IV.3.2] for the non-equivariant case).
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2. Preliminaries

We will work over a base field k of arbitrary characteristic. All schemes are
assumed to be separated and of finite type over k. The term variety will refer
to an integral scheme over k. In this note, G will always denote a finite group.

2.1. Group action on formal schemes. In this section, we recall briefly the
notion of G-action on a locally ringed space and equivariant sheaves. In the
process we set up notations and terminologies for the rest of the paper.

Let pX,OXq be a locally ringed space. A G-action on pX,OXq is a group
homomorphism fromG to the group of automorphisms of pX,OXq. A morphism
θ : pX,OXq Ñ pX 1,OX 1q of locally ringed spaces with G-actions is said to be
G-equivariant if it is compatible with the G-actions on pX,OXq and pX 1,OX 1q.

Definition 2.1. Let pX,OXq be a locally ringed space with a given G-action.

(1) A G-sheaf of abelian groups on X is a sheaf of abelian groups F together

with a collection of sheaf isomorphisms φg : F »
Ñ g˚F , for each g P G,

which are subject to the conditions φe “ id and φgh “ h˚pφgq ˝ φh, for
all h P G. We shall denote a G-sheaf in the sequel by pF , tφguq.

(2) A G-module is a G-sheaf pF , tφguq such that F is an OX -module and
each φg is an OX -module isomorphism. A locally free (resp. invert-
ible) G-sheaf is a G-module pF , tφguq, where F is a locally free (resp.
invertible) sheaf of OX -module.

(3) A G-equivariant morphism of G-sheaves f : pF , tφguq Ñ pG, tφ1guq is a

morphism of sheaves f : F Ñ G such that φ1g ˝ f “ g˚pfq ˝ φg, for all
g P G. The set of G-equivariant morphisms from F to G is denoted
by HomGpF ,Gq. If F and G are G-modules, the set of G-equivariant
OX -module homomorphisms is denoted by HomG

OX
pF ,Gq.

Example 2.2. When X is a k-scheme, a G-action on the locally ringed space
X defined as above coincides with the usual notion of group scheme action
on schemes, where G is viewed as a finite constant group scheme over k. Let
σ : G ˆ X Ñ X denote the action map. It is easy to verify that a G-module
structure on a sheaf F of OX -modules as above is equivalent to giving an
isomorphism of OGˆX -modules, φ : σ˚F Ñ p˚2F , over GˆX. Therefore F is a
G-module in the sense of [10].

Example 2.3. Let X be a noetherian scheme with G-action and let Y be a
G-invariant closed subscheme, defined by a sheaf of ideals I (which is a G-

submodule of OX). Then p pX,O
pX
q, the formal completion of X along Y , has
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an induced G-action, as the direct image functor commutes with inverse lim-

its. The canonical morphism i : pX Ñ X is then G-equivariant. Given a

G-equivariant coherent OX -module F , the completion pF of F along Y , has a

natural G-equivariant O
pX
-module structure. Furthermore, the functor F ÞÑ pF

from the category of coherent OX -modules to the category of coherent O
pX
-

modules is exact (see [5, Corollary II.9.8]) and therefore it is easy to see that it
induces an exact functor on the category of coherent G-modules.

Let pX,OXq be a locally ringed space with G-action. Let ShGpXq denote
the category of G-sheaves, which is an abelian category with enough injectives.
Given a G-sheaf F on X, the group G acts on the global sections ΓpX,Fq. Let
ΓpX,FqG denote the G-invariant global sections, and let HppG;X,´q denote
the right derived functors of the functor ΓpX,´qG. The groups HppG;X,Fq
are the G-cohomology groups of F .

Lemma 2.4. Let pX,OXq be a locally ringed space with G-action and let
pF , tφguq, pG, tφ1guq be G-modules. The sheaf HomOX

pF ,Gq has an induced

G-module structure such that HomG
OX
pF ,Gq “ HomOX

pF ,GqG.

Proof. For each g P G, let ρg : HomOX
pF ,Gq Ñ HomOX

pg˚F , g˚Gq be the OX -
module homomorphism defined as follows. Given an open subset U of X and
f P HomOU

pF |U ,G|U q, let ρg|U pfq :“ pφ1g|U q˝f˝pφ
´1
g |U q. Let rρg “ θg˝ρg, where

θg : HomOX
pg˚F , g˚Gqq

θg
Ñg˚pHomOX

pF ,Gqq are the canonical isomorphisms.
Then pHomOX

pF ,Gq, tρguq is a G-module. Now,

f P HomG
OX
pF ,Gq ô ρgpXqpfq “ φ1g ˝ f ˝ pφgq

´1 “ g˚pfq,@g P G
ô rρgpXqpfq “ f,@g P G
ô f P HomOX

pF ,GqG.

�

Remark 2.5. If F and G are G-sheaves then one can show using the same argu-
ment as above that HompF ,Gq is a G-sheaf and HomGpF ,Gq “ HompF ,GqG.

Corollary 2.6. Let pX,OXq be a locally ringed space with G-action and let F
be an invertible G-sheaf on X. There is a G-equivariant isomorphism OX

»
ÝÑ F ,

where OX has the canonical G-action, if and only if ΓpX,FqG has a nowhere
vanishing section.

Proof. The proof follows from Lemma 2.4, since HomOX
pOX ,Fq “ ΓpX,Fq as

G-sets and isomorphisms OX Ñ F correspond to nowhere vanishing sections
in ΓpX,Fq. �

2.2. The equivariant Lefschetz Conditions. In [4, Section X.2], Grothendieck
introduced the Lefschetz conditions for pairs pX,Y q, inspired by Lefschetz,
where X is a locally noetherian scheme and Y is a closed subscheme of X.
These were essential in the proof of Grothendieck’s theorems comparing the
Picard groups and the fundamental groups of a projective variety X with a
complete intersection subvariety Y . For schemes with action of a finite group
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G, we define the equivariant Lefschetz conditions in this section and prove equi-
variant analogues of some results in the Grothendieck-Lefschetz theory that will
be useful in the sequel.

Definition 2.7. Let X be a noetherian scheme with G-action, and let Y Ď X

be a G-invariant closed subscheme. Let pX be the formal completion of X along

Y . Then pX is a locally ringed space with G-action as discussed in Example 2.3.

(1) The pair pX,Y q satisfies the equivariant Lefschetz condition, written
LGpX,Y q, if for every G-invariant open set U Ě Y , and every G-
equivariant locally free sheaf E on U , there exists a G-invariant open

set U 1 with Y Ď U 1 Ď U such that the natural map ΓpU 1, E|U 1q
G »
Ñ

Γp pX, pEqG is an isomorphism.
(2) The pair pX,Y q satisfies the equivariant effective Lefschetz condition,

written eLGpX,Y q, if LGpX,Y q holds, and in addition, for every G-

equivariant locally free sheaf E on pX, there exists a G-invariant open
set U Ě Y and a G-equivariant locally free sheaf E on U such that
pE » E as G-modules.

With pX,Y q as above, let E and F be locally free G-sheaves defined on G-
invariant open neighbourhoods U and V of Y , respectively. We write E „ F
if there exists a G-invariant open set W with Y Ď W Ď U X V such that
E|W » F |W as G-sheaves. We define the category LF0

GpY q of germs of locally
free G-sheaves around Y as follows. An object of this category is a class of
locally free G-sheaves defined on G-invariant open neighbourhoods of Y under
the equivalence relation „. For any two objects rEs and rF s in LF0

GpY q, the set
of homomorphisms from rEs to rF s is defined to be the set lim

ÝÑU
HomG

OU
pE,F q,

where the colimit is taken over all G-invariant open neighbourhoods U of Y such

that both E and F are defined over U . Let LFGp pXq denote the category of

locally free G-sheaves on pX.

Lemma 2.8. Let ^ : LF0
GpY q Ñ LFGp pXq be the functor sending E ÞÑ pE.

(1) If LGpX,Y q holds, then ^ is fully faithful.
(2) If eLGpX,Y q holds, then ^ is an equivalence of categories.

Proof. Suppose LGpX,Y q holds. Let E,F P LF0
GpY q. Without loss of gen-

erality, we may assume that E,F are G-equivariant locally free OV -modules
for some G-invariant open neighbourhood V of Y . Let U be any G-invariant
open neighbourhood of Y such that U Ď V . HomOU

pE,F q is a G-equivariant
locally free OU -module, by Lemma 2.4. Since LGpX,Y q holds, there exists
a G-invariant open set U 1 with Y Ď U 1 Ď U such that the natural map

ΓpU 1,HomOU
pE,F qqG

»
Ñ Γp pX,HomOU

pE,F q^qG is an isomorphism. Since

HomOU
pE,F q^

»
Ñ HomO

xX
p pE, pF q as G-sheaves, Γp pX,HomOU

pE,F q^qG
»
Ñ

Γp pX,HomO
xX
p pE, pF qqG is an isomorphism and hence ΓpU 1,HomOU

pE,F qqG
»
Ñ

Γp pX,HomO
xX
p pE, pF qqG is an isomorphism. By Lemma 2.4, the above isomor-

phism can be rewritten as HomG
OU 1
pE,F q

»
Ñ HomG

O
xX
p pE, pF q. This proves that

the functor ^ is fully faithful. If eLGpX,Y q holds, ^ is further essentially
surjective (by definition), and therefore an equivalence of categories. �
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Proposition 2.9. Let X be a non-singular projective variety with G-action.
Let Y Ď X be a G-invariant closed subscheme, which is a scheme-theoretic
complete intersection in X. If dimpY q ě 2, then eLGpX,Y q holds.

Proof. Let U Ě Y be any G-invariant open set, and let E be a locally free G-
sheaf on U . Since Y is a complete intersection, by [6, Corollary IV.1.2] and the

proof of [6, Proposition IV.1.1], the G-equivariant restriction map ΓpU,Eq
»
Ñ

Γp pX, pEq is an isomorphism. This induces an isomorphism ΓpU,EqG
»
Ñ Γp pX, pEqG.

Therefore LGpX,Y q holds.

Let pX be the formal completion of X along Y , and let pE , tφguq be a lo-

cally free G-sheaf on pX. Since Y is a scheme-theoretic local complete inter-
section, by [6, Theorem IV.1.5], we can find an open set U Ě Y (not nec-

essarily G-invariant) and a locally free sheaf E on U such that θ : pE
»
Ñ E

non-equivariantly. We may assume that U is G-invariant by replacing U by
the open set

Ş

gPG gU . For each g P G, g˚E is then a locally free sheaf on

U such that we have induced isomorphisms yg˚E » g˚E , since direct image
functor commutes with inverse limits. Since E, g˚E are locally free sheaves
on U , HomOU

pE, g˚Eq is a locally free OU -module. Again as above, we have

isomorphisms HomOU
pE, g˚Eq

»
Ñ Hom

pX
p pE, g˚ pEq

»
Ñ Hom

pX
pE , g˚Eq for each

g P G. Therefore, φg P Hom
pX
pE , g˚Eq can be uniquely lifted to a morphism

rφg P HomOU
pE, g˚Eq. Since the lifts are unique and tφgugPG defines a G-module

structure on E , trφgugPG defines a G-module structure on E. Further θ : pE Ñ E
is a G-equivariant morphism, by definition of the G-action on E. Therefore,
eLGpX,Y q holds. �

3. Equivariant Grothendieck-Lefschetz theorem

We prove Theorem 1.1 in this section. The following Lemma identifying the

equivariant Picard groups of a variety X and its formal completion pX will be
crucial for proving our main result.

Lemma 3.1. Let X be a non-singular variety with G-action and let Y Ď X be
a G-invariant closed subscheme such that Y meets every effective divisor on X.

Let pX denote the completion of X along Y with the induced G-action. Assume
that dimpXq ě 2 and eLGpX,Y q holds. Then the canonical map PicGpXq Ñ

PicGp pXq is an isomorphism.

Proof. Since eLGpX,Y q holds, every invertible G-sheaf on pX extends uniquely
to an invertible G-sheaf on some G-invariant open neighbourhood U of Y by
Lemma 2.8. Since Y meets every effective divisor on X, we have codimpX ´

U,Xq ě 2. Therefore by [2, Lemma 2(1)], PicGpXq Ñ PicGpUq is an isomor-

phism. The canonical morphism PicGpXq Ñ PicGp pXq factors through PicGpUq
for every G-invariant open U such that Y Ď U . Hence we conclude that

PicGpXq Ñ PicGp pXq is an isomorphism. �

Lemma 3.2. Let X be a proper scheme with G-action and let Y Ď X be a
G-invariant closed subscheme defined by a G-sheaf of ideals I. For n ě 1, let
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Yn denote the G-invariant closed subscheme defined by the sheaf of ideals In.

Then PicGp pXq » lim
ÐÝn

PicGpYnq.

Proof. If F is an invertible G-sheaf on pX, then Fn “ FbO
xX
OYn is an invertible

G-sheaf on Yn. This defines a map f : PicGp pXq Ñ lim
ÐÝn

PicGpYnq.

An element of lim
ÐÝn

PicGpYnq is given by a collection of invertible G-sheaves

Fn on PicGpYnq along with G-equivariant isomorphisms Fn`1bOYn`1
OYn

»
Ñ Fn.

Composing with the natural G-equivariant map Fn`1 Ñ Fn`1 bOYn`1
OYn , we

get a projective system of invertible G-sheaves of O
pX
-modules. Then F “

lim
ÐÝn

Fn is an invertible G-sheaf on pX with F bO
xX
OYn » Fn. Therefore f

is surjective. To see that f is injective, let F be an invertible G-sheaf on pX

such that for each n, there is a G-equivariant isomorphism F bO
xX
OYn

»
Ñ OYn ,

where OYn has the canonical G-action. By [5, Proposition II.9.2] and since p´qG

is an additive left exact functor preserving products, it follows that the func-

tor ΓpY,´qG preserves inverse limits. Therefore Γp pX,FqG “ lim
ÐÝn

ΓpYn, Fnq
G,

where Fn :“ FbO
xX
OYn and the inverse system ΓpYn, Fnq

G satisfies the Mittag-

Leffler condition [3, Chapter 0, 13.1.2] (since Yn is proper, ΓpYn, Fnq
G is a

finite-dimensional k-vector space). By Corollary 2.6, each Fn has a nowhere
vanishing G-invariant section. Therefore the stable images in the inverse sys-
tem have nowhere vanishing sections, so we can find a nowhere vanishing section

s P Γp pX,FqG. Therefore, again by Corollary 2.6, F » O
pX

is trivial. �

Theorem 3.3. Let k be a field and let G be a finite group. Let X be a proper
non-singular variety over k with G-action and let Y Ď X be a G-invariant
closed subscheme defined by a G-sheaf of ideals I. Suppose that

(1) eLGpX,Y q holds (see Definition 2.7(2));
(2) Y meets every effective divisor on X; and
(3) H ipG;Y, In{In`1q “ 0 for i “ 1, 2 for all n ě 1.

Then the natural map PicGpXq Ñ PicGpY q is an isomorphism.

Proof. The natural map in question factors as PicGpXq
α
ÝÑ PicGp pXq

β
ÝÑ PicGpY q,

where α and β are the natural restriction maps. The map α is an isomorphism
by Lemma 3.1. Factorise the map β further as follows. For n ě 1, let Yn denote
the G-invariant closed subscheme defined by the sheaf of ideals In. We have
natural maps:

PicGp pXq Ñ lim
ÐÝn

PicGpYnq Ñ ¨ ¨ ¨ Ñ PicGpYn`1q Ñ PicGpYnq Ñ ¨ ¨ ¨ Ñ PicGpY q.

We will show that all the above maps are isomorphisms. The first map is an
isomorphism by Lemma 3.2. Let n ě 1 and consider the exact sequence of
G-sheaves 0 Ñ In{In`1 Ñ O˚Yn`1

Ñ O˚Yn Ñ 0, where O˚ denotes the multi-

plicative group of units and the first map is given by x ÞÑ 1 ` x. This gives a
long exact sequence of G-cohomology groups:

¨ ¨ ¨ Ñ H1pG;Y, In{In`1q Ñ H1pG;Yn`1,O˚Yn`1
q Ñ H1pG;Yn,O˚Ynq
Ñ H2pG;Y, In{In`1q Ñ ¨ ¨ ¨ .
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By hypothesis p3q, we conclude that H1pG;Yn`1,O˚Yn`1
q
»
Ñ H1pG;Yn,O˚Ynq. By

[7, Theorem 2.7], this shows that PicGpYn`1q Ñ PicGpYnq is an isomorphism.
Consequently, lim

ÐÝn
PicGpYnq is isomorphic to PicGpYnq for every n ě 1. This

completes the proof of the theorem. �

Corollary 3.4. Suppose G acts on Pnk and Y is a G-invariant closed subscheme
of dimension ě 3 which is a scheme-theoretic complete intersection in Pnk . Then

the natural map PicGpPnkq Ñ PicGpY q is an isomorphism.

Proof. Since Y is a G-invariant scheme-theoretic complete intersection and
dimpY q ě 3, eLGpX,Y q holds by Proposition 2.9 and Y meets every effective
divisor on Pnk by [6, Theorem III.5.1, Proposition IV.1.1]. Further if Y is an
intersection of hypersurfaces of degree d1, ¨ ¨ ¨ , dr then I{I2 » OY p´d1q ‘ ¨ ¨ ¨ ‘
OY p´drq. Hence for all n ě 1, In{In`1 is a direct sum of sheaves of the form
OY pmq for suitable integers m ă 0. By [11, Proposition 5], H ipY,OY pmqq “ 0
for all 0 ď i ă dimpY q for m ă 0. Since dimpY q ě 3, H ipY, In{In`1q “ 0 for
0 ď i ď 2. Therefore by [7, (2.5)], H ipG;Y, In{In`1q “ 0 for i “ 1, 2. This
shows that the hypotheses of Theorem 3.3 are satisfied. �

Proof of Theorem 1.1. It is enough to check as in the above corollary that
H ipY,OY pmqq “ 0 for 0 ď i ď 2 and all m ă 0. This follows from the Kodaira-
Akizuki-Nakano vanishing theorem (see [1, Corollary 2.11]) as dimpY q ě 3. �
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