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External non-uniform magnetic fields acting on molecules induce non-collinear spin densities and
spin-symmetry breaking. This necessitates a general two-component Pauli spinor representation.
In this paper, we report the implementation of a general Hartree-Fock method, without any spin
constraints, for non-perturbative calculations with finite non-uniform fields. London atomic orbitals
are used to ensure faster basis convergence as well as invariance under constant gauge shifts of
the magnetic vector potential. The implementation has been applied to investigate the joint orbital
and spin response to a field gradient—quantified through the anapole moments—of a set of small
molecules. The relative contributions of orbital and spin-Zeeman interaction terms have been studied
both theoretically and computationally. Spin effects are stronger and show a general paramagnetic
behavior for closed shell molecules while orbital effects can have either direction. Basis set con-
vergence and size effects of anapole susceptibility tensors have been reported. The relation of the
mixed anapole susceptibility tensor to chirality is also demonstrated. Published by AIP Publishing.
https://doi.org/10.1063/1.5029431

I. INTRODUCTION

Quantum-chemical calculations of magnetic field effects
on molecules routinely rely on the assumptions that the mag-
netic field is either uniform or a dipole field and weak enough
to be treated by low-order perturbation theory. As magnetic
fields accessible with present laboratory technology are weak
compared to a molecular energy scale, this approach is reason-
able for many purposes. However, effects beyond the reach of
these idealizations are largely unexplored. An example is the
behavior of atoms and molecules subject to strong uniform
magnetic fields1 and another is the response of molecular sys-
tems subject to magnetic field gradients.2 The response of the
electrons to inhomogeneities in the external magnetic field
may be broadly divided into orbital effects and spin effects.
Both of these effects are relatively little explored. The main
exception is the work by Lazzeretti and co-workers on a per-
turbative formalism for the orbital response due to field gra-
dients.3,4 Some computational studies have also appeared at
the Hückel level,5 Hartree–Fock (HF) level,6–10 and correlated
levels.11

Spin effects have not been explored directly in quantum-
chemical studies, having so far been the domain of solid-state
physics.2 The present work aims to take the initial step to fill-
ing this gap by studying combined orbital and spin effects in a
few molecular systems. To capture spin effects, standard sim-
plifying constraints on the spin degrees of freedom need to
be dropped in favor of general two-component Pauli spinors.

a)Electronic mail: sangita.sen310187@gmail.com
b)Electronic mail: erik.tellgren@kjemi.uio.no

Magnetic field gradients induce non-collinear spin densities,
with the spin Zeeman interaction driving (anti-)alignment
toward the local magnetic field direction, as well as spin-
symmetry breaking. Neither the magnitude of the total spin
nor the spin projection onto an axis are good quantum numbers
in the presence of magnetic field gradients. Geometric frustra-
tion and static correlation can also result in non-collinear spin
densities,12–16 though in this case the spin operator Ŝ2 com-
mutes with the Hamiltonian and any spin-symmetry breaking
is an artifact of limitations of the Hartree–Fock and most
post-Hartree–Fock methods.

The perturbative approach quickly becomes unwieldy for
higher-order magnetic response, in particular when London
atomic orbitals (LAOs) are employed to enforce gauge-origin
invariance and accelerate basis set convergence.17–20 When
ordinary Gaussians are used, very large basis sets become
necessary to approach gauge-origin invariance.6–10 We use
LAOs in combination with a non-perturbative (finite field)
approach. This necessitates an implementation of integral eval-
uation for the LAOs which are plane-wave/Gaussian hybrid
functions,21,22 but requires no additional modification for
higher-order properties. An added implementation advantage
is that only the one-electron part of the Hamiltonian is mod-
ified for various external fields and no additional effort is
required for extension to post-Hartree–Fock theories. It there-
fore opens up the possibility of studying non-perturbative
phenomena. The finite field procedure for both uniform
and non-uniform magnetic fields involving LAOs has been
developed recently.21,23 This has led to the discovery of non-
perturbative transition from closed-shell para- to diamag-
netism24 and a new bonding mechanism23,25,26 in very strong
magnetic fields.
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A convenient quantification of the response to (transverse)
magnetic field gradients is provided by the anapole moment.
In a multipole expansion of the energy, anapole moments
are those moments which couple linearly to the curl of the
magnetic field.27 They have been largely neglected ever since
they were first considered by Zeldovich in 1957,28 who also
introduced the term “anapole.” These moments are distinct
from the usual magnetic moments arising out of a perturba-
tive expansion in the magnetic field and can be visualised
instead as arising from the meridional currents in a toroidal
charge distribution. They are anti-symmetric under both spa-
tial inversion and time-reversal. Due to the relation of nuclear
anapole moments with parity violation in atoms and molecules,
they have received attention from nuclear physicists29,30 with
the first experimental evidence coming from measurements
on the Cs atom.31–33 Spaldin et al. have suggested experi-
ments for measuring anapole moments in ferrotoroidic mate-
rials.34 Experiments for measuring permanent and induced
electronic anapole moments have also been suggested.35,36

Only special structures have permanent anapole moments
such as molecular nanotoroids,5,37 ferroelectric nanostruc-
tures,38,39 ferromagnetic structures,40 and Dy clusters (single
molecule magnets).41–43 Several groups have experimentally
demonstrated anapole moments in metamaterials for poten-
tial application in sensors.44–46 In an external non-uniform
field, toroidal spin and/or orbital currents are induced, giving
rise to anapole moments and the corresponding susceptibilities
can be computed. The induced anapolar current densities have
been studied for conjugated cyclic acetylenes.37 Another study
analyzed topological features of anapolar current densities in
small molecules.35 Spin and orbital contributions to anapole
moments have been analyzed in a simple analytical model
of diatomics.36,47 Ab initio computational studies, both per-
turbative approaches6–10 and non-perturbative approaches,48

have estimated the orbital contribution to anapole susceptibil-
ities in closed-shell molecules. Some recent efforts have also
been aimed at further understanding the interactions of toroidal
moments with external fields.34,44,45,49,50

In this work, we study the combined orbital and spin
effects in a set of molecules subject to magnetic field gra-
dients. We focus on transverse gradients and induced anapole
moments. The relative importance of orbital and spin effects
is investigated numerically. We also provide theoretical results
on the direction and additivity of the spin contributions to
induced anapole moments. The outline of the article is as fol-
lows. In Sec. II, we define the Hamiltonian and the properties
relevant to our study. The General Hartree-Fock (GHF) model,
necessary for mean-field computations in non-uniform mag-
netic fields, is described in Sec. III. Sections IV and V discuss
the theory behind the spin and orbital interactions with the
external magnetic field and their relative effect on the molec-
ular energy and properties. In Sec. VI, we present our numer-
ical results and, finally, we conclude with the summary in
Sec. VII.

II. HAMILTONIAN AND PROPERTIES

In what follows, we shall consider electronic systems
subject to a linearly varying magnetic field of the form

Btot(r) = B + rT
h b � 1

3
rh Tr(b), (1)

where B is a uniform (position independent) component, b is
a 3 ⇥ 3 matrix defining the field gradients, and rh = r h
is the position relative to some reference point h. This type
of magnetic field is most naturally viewed as arising from a
Taylor expansion around r = h, truncated at linear order. The
corresponding vector potential can be written as

Atot(r) =
1
2

B ⇥ rg �
1
3

rh ⇥ (rT
h b), (2)

where rg = r g, g being the gauge origin. It can be verified that
Btot = r ⇥ Atot and that the magnetic field is divergence free,
r·Btot = 0, due to the term 1

3 rh Tr(b) in Eq. (1), even when b is
not traceless. In what follows, we focus on the anti-symmetric
part C↵ = ✏↵��b�� of the matrix b and take the symmetric part,
b = bT , to vanish. We can then write

Atot(r) =
1
2

B ⇥ rg �
1
3

rh ⇥ (C ⇥ rh), (3)

Btot(r) = B +
1
2

C ⇥ rh. (4)

Furthermore, the constant vector encoding the anti-symmetric
part of b equals the curl of the magnetic field, r ⇥ Btot = C.

The non-relativistic Schrödinger–Pauli Hamiltonian is
given by

Ĥ =
1
2

X

l

⇡̂l
2 �

X

l

v(rl) +
X

k<l

1
rkl

+
X

l

Btot(rl) · Ŝl, (5)

where ⇡̂l = �irl + Atot(rl) is the mechanical momentum oper-
ator. Properties can be alternately viewed as expectation values
h |⌦̂| i or as derivatives of the energy E = h |Ĥ | i related
to terms in a Taylor expansion. The first-order properties are
the orbital and spin magnetic dipole moments,

Lq =
X

l

h |L̂q;l | i, L̂q;l = rq;l ⇥ ⇡̂l, (6)

S =
X

l

h |Ŝl | i, (7)

which combine to a total dipole moment Jq = Lq + 2S. Here, q
is an arbitrary reference point. Given the form of the magnetic
vector potential above, it is Lg, with the reference point at the
gauge origin, which is the relevant magnetic dipole moment.
The anapole moment is similarly given by

a = �
X

l

h |rh;l ⇥ ( 1
3 L̂h;l + Ŝl)| i. (8)

The weighting of the orbital and spin contributions to these
quantities is not arbitrary and takes a more intuitive form when
they are expressed in terms of the total current density,

j(r) =
�E

�Atot(r)
=

X

l

1
2
h |{�(rl � r), ⇡̂l}| i

+ r
X

l

h |�(rl � r)Ŝ| i, (9)

where the first term is the orbital current density and the last
term—the curl of the spin density—is the spin current density.

X
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The magnetic dipole moment and anapole moment can now
be identified with linear and quadratic moments of the total
current density,

Jg =

⌅
rg ⇥ j(r) dr, (10)

a = �1
3

⌅
rh ⇥

�
rh ⇥ j(r)

�
dr. (11)

In a non-perturbative setting, the energy E as well as
expectation value properties like Jg and a can be obtained
directly as functions of B and C. On the other hand, a Taylor
expansion of the energy defines second-order properties

E(B, C) ⇡ E0 + B · Jg �
1
2

C · a� 1
2

BT �B�BMC� 1
2

CTAC,
(12)

where Jg and a are here evaluated at vanishing Btot. Specifi-
cally, � is the magnetizability tensor, M is the mixed anapole
susceptibility tensor, and A is the anapole susceptibility
tensor.

When the preconditions of the Hellmann–Feynman the-
orem are satisfied, the above expectation value quantities can

be identified with energy derivatives. With the notation !
= to

indicate equality under this assumption,

Jg
!
= 2
@E(B, C)
@B

, (13)

a
!
= �2

@E(B, C)
@C

. (14)

However, when LAOs are used, the basis set depends on the
parameters B and C leading to the expectation values and the
energy derivatives being slightly different, in general, though
the discrepancy vanishes in the limit of a complete basis.

Turning to the second-order susceptibilities, the defining
expressions are

A↵� = �2
@2E(B, C)
@C↵@C�

����B=0,C=0
, (15)

M↵� =
@2E(B, C)
@B↵@C�

����B=0,C=0
. (16)

When the preconditions of the Hellmann–Feynman theorem
do not apply, one can also introduce the closely related, but
inequivalent, quantities

A0↵� =
@a↵(B, C)
@C�

����B=0,C=0
, (17)

M0
↵� = �

@Lg;↵(B, C)
@C�

����B=0,C=0
, (18)

M00
↵� =

@a�(B, C)
@B↵

����B=0,C=0
. (19)

Again, in the basis set limit, equivalence is restored, i.e.,
A = A0 and M =M0 =M00. However, for finite LAO basis
sets, numerical investigation of the basis set convergence is
warranted.

III. THE GENERAL HARTREE-FOCK MODEL
WITH AN EXTERNAL NON-UNIFORM
MAGNETIC FIELD

For a constant magnetic field B aligned to the z-axis,
the spin operators Ŝ2 and Ŝz commute with the Hamiltonian

and each molecular orbital can be chosen in a factorized form,
where each spatial function multiplies a constant spin part.
Moreover, each spin part defines a spin that is either paral-
lel or anti-parallel to B—the uniform field defines a global
spin quantization axis. In the presence of a non-uniform mag-
netic field, however, neither Ŝ2 nor any projection u · Ŝ (on
a fixed unit vector u) needs to yield good quantum numbers.
The spatial and spin parts of molecular orbitals become cou-
pled, requiring a representation as 2-component Pauli spinors.
Because the direction of the magnetic field varies with posi-
tion, there is also no natural global spin quantization axis
and the spin density becomes non-collinear. The present set-
ting is thus unusual in that it concerns a non-relativistic
Hamiltonian that requires a non-collinear, 2-component
representation.

The Hartree-Fock (HF) models in the non-relativistic
domain may be subdivided into Restricted HF (RHF), Unre-
stricted HF (UHF), Restricted Open-shell HF (ROHF), and
General HF (GHF). The RHF model imposes singlet spin sym-
metry and is therefore oblivious to the spin-Zeeman term,
making it a useful analysis tool for estimating the purely
orbital contribution to the total magnetic field effect. The UHF
and ROHF flavors impose a global spin quantization axis and
are therefore not meaningful in combination with a position-
dependent spin-Zeeman term. Nonetheless, we shall consider
below UHF results obtained with the spin-Zeeman term dis-
abled in order to isolate the purely orbital field effects in
open-shell systems. In order to treat joint orbital and spin
effects, the HF flavor can be no less than a complex GHF
model.

In more detail, molecular orbitals �K (r) in the GHF model
take the form of generic 2-component spinors,

�K (r) =
X

a

Ca,K" �a(r)
 
1
0

!
+

X

a

Ca,K# �a(r)
 
0
1

!

=
X

a

�a(r)
 
Ca,K"

Ca,K#

!
, (20)

where �a denotes a spin-free basis function. From now on,
 will denote a Slater determinant formed from such spinors.
The spinors also define an associated 2 ⇥ 2 density matrix
kernel,

D2⇥2(r, r0) =
occX

K

�K (r)�K (r0)†

=
X

ab

�a(r)
 
D"";abD"#;ab

D#";abD##;ab

!
�b(r0)⇤. (21)

For given basis function indices a and b, the corresponding
matrix elements are written as

D�⌧;ab =
X

K

Ca,K�Cb,K⌧⇤, �, ⌧ 2 {",#}. (22)

The GHF electronic energy can be decomposed
into kinetic, spin-Zeeman, electrostatic nuclear attraction,
Coulomb repulsion, and exchange energy. Only the spin-
Zeeman and exchange terms differ substantially from the stan-
dard RHF and UHF forms since only these terms involve the
off-diagonal spin blocks of D2⇥2.
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When evaluating the spin-Zeeman term, it is convenient
to introduce density matrix-like quantities obtained by letting
the Pauli spin matrices act on D2⇥2 and tracing out the spin
degrees of freedom,

Mx(r, r0) =
X

⌧

h⌧ |�xD2⇥2(r, r0)|⌧i

=
X

ab

�a(r)�b(r0)⇤(D#";ab + D"#;ab), (23)

My(r, r0) =
X

⌧

h⌧ |�yD2⇥2(r, r0)|⌧i

=
X

ab

�a(r)�b(r0)⇤(�iD#";ab + iD"#;ab), (24)

Mz(r, r0) =
X

⌧

h⌧ |�zD2⇥2(r, r0)|⌧i

=
X

ab

�a(r)�b(r0)⇤(D"";ab � D##;ab). (25)

Letting Sba = s �b(r)⇤ �a(r)dr denote an overlap integral and
µba;� = s r� �b(r)⇤ �a(r)dr a dipole moment integral, the spin-
Zeeman term is given by

EZ =
X

l

h |Btot(rl) · Ŝl | i =
1
2

⌅
Btot(r) ·M(r, r)dr

=
1
2

(HBxSba + µba;�Hb�x)(D#";ab + D"#;ab)

+
1
2

(HBySba + µba;�Hb�y)(�iD#";ab + iD"#;ab)

+
1
2

(HBzSba + µba;�Hb�z)(D"";ab � D##;ab), (26)

with implicit summation over repeated indices and the notationHb = b � 1
3 Tr(b)I and HB = B � hTHb. The contribution to the

Fock matrix is obtained as the derivative

F⌧�
Z;ba =

@EZ

@D�⌧
ab

. (27)

With the compact notationHB± = HBx±iHBy andHb�,± =Hb�x±iHb�y,
the spin blocks are given by

F2⇥2
Z;ba =

1
2
*,
HBzSba + µba;�Hb�z HB�Sba + µba;�Hb�,�HB+Sba + µba;�Hb�,+ HBzSba + µba;�Hb�z

+-. (28)

Turning to the exchange energy, we use Mulliken notation
for the electron–electron repulsion integrals and write

EX = �
1
2

occX

KL

(KL |LK) = �1
2

D�⌧;daD⌧�;bc(ab|cd), (29)

again with implicit summation over spin and basis function
indices. The exchange contribution to the Fock matrix is
obtained as

K⌧�
fe =

@EX

@D�⌧;ef
= �D⌧�;bc(eb|cf ). (30)

Alternatively, in a 2 ⇥ 2 component form,

K2⇥2
fe = �*,

D"";bc D"#;bc

D#";bc D##;bc
+-(eb|cf ). (31)

IV. DIRECTION OF SECOND-ORDER SPIN EFFECTS

Because the space of RHF wave functions is a strict sub-
set of the space of GHF wave functions, the corresponding
ground state energies must satisfy ERHF(B, C) � EGHF(B, C).
This entails a simple result on the direction of second-order
spin effects on the tensor A. For any system without a per-
manent anapole moment and with a singlet ground state in
the absence of magnetic fields, the second-order expansion in
Eq. (12) yields

ERHF(0, C) = E0 �
1
2

CTARHFC � EGHF(0, C)

= E0 �
1
2

CTAGHFC, (32)

where E0 = ERHF(0, 0) = EGHF(0, 0). The above inequality
holds for all directions of C and it therefore follows that the
difference

AGHF �ARHF � 0 (33)

is positive semidefinite. Moreover, when the corresponding
eigenvalues are placed in ascending order, ↵RHF,1  ↵RHF,2
 ↵RHF,3 and ↵GHF,1  ↵GHF,2  ↵GHF,3, it follows that ↵GHF,j
� ↵RHF,j for each j = 1, 2, 3. All closed-shell molecules
considered in Sec. VI exhibit a type of generalized orbital dia-
magnetism in the sense that �ARHF > 0 is positive definite.
Hence, the RHF energy increases with increasing magnitude of
C. In these closed-shell molecules, the orbital and spin effects
oppose each other since the latter always exhibit a type of
generalized paramagnetism in the sense that they lower the
second-order energy.

Turning next to the mixed anapole susceptibility tensor
M, we note that there are no second-order spin effects when
the ground state is a closed-shell singlet in the absence of
any magnetic field. In particular, the trace of M (or orien-
tational average) is unaffected by spin contributions, leaving
previous analyses of chiral discrimination using this quantity
unaffected.51,52 The situation is more involved for open-shell
systems with degenerate states that each possess a permanent
spin density, where there can be spin contributions to M.
An orientational average might also need to take into account
the decoupling of spin and spatial degrees of freedom (in the
absence of relativistic effects) so that even a weak field can
align a permanent spin density independent of the molecular
orientation.

V. ADDITIVITY OF SECOND-ORDER ORBITAL
AND SPIN EFFECTS

For a fixed wave function, the orbital and spin con-
tributions to the expectation value of the anapole moment
are clearly additive. A more involved case is when a RHF
ground state, optimized without any spin-Zeeman interac-
tions, is allowed to relax into a GHF ground state subject to
spin-Zeeman interactions. The orbital and spin contributions
to the anapole susceptibility A remain additive in this case,
despite the coupling of orbital and spin degrees of freedom.
However, in the absence of a permanent GHF spin anapole
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moment, the second-order effect on the energy is exactly half
the spin-Zeeman interaction. Hence,

EGHF(B, C) � ERHF(B, C) =
1
2

Equadratic
Z + O(|C|3). (34)

One can also consider relaxation from an initial UHF state,
optimized without spin-Zeeman interactions, to a GHF state.
Taking into account the possibility of a permanent anapole
moment, the corresponding relation is

EGHF(B, C) � EUHF(B, C) = Elinear
Z +

1
2

Equadratic
Z + O(|C|3).

(35)

This effect is illustrated by our results in Sec. VI. Below, we
also provide a theoretical derivation.

The additivity indicated above can be understood as a
general feature of perturbation theory though it takes a sur-
prising form in the present setting where non-perturbative
numerical results are matched to a perturbation expansion with
the spin-Zeeman term as the perturbation. A simple model
case is provided by full diagonalization of a Hamiltonian in
a space of two N-electron states |0i and |1i, chosen as eigen-
states of a spin-independent Hamiltonian Ĥ0. With a suitable
choice of zero level for the energy, we can write the matrix
representation as

FIG. 1. H2: The first column of plots shows the change in energy of H2 (Luaug-cc-pVQZ) with variation in the gradient of the external non-uniform magnetic
field, C = Cxex + Cyey + Czez . The second column of plots shows the corresponding changes in the total spin quantum number, S.
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FIG. 2. H2: The plot numerically demonstrates that the spin-Zeeman and
orbital-Zeeman contributions to the total energy are not additive but are such
that the lowering of the energy by the spin-Zeeman term is offset by exactly
half of its value by the orbital term. This holds generally to second order.

H0 =

 
0 0
0 !

!
. (36)

For simplicity, assume B = 0 and C = Cez, and take the
matrix elements related to the z-component of the spin anapole
moment to be

Z =
 
h0|âz |0i h0|âz |1i
h1|âz |0i h1|âz |1i

!
=

 
↵0 µ
µ⇤ ↵1

!
. (37)

Diagonalization of H0 � 1
2 CZ now yields the (un-normalized)

lowest eigenstate

 =

 
�2! � �↵C �

p
(�↵2 + 16|µ|2)C2 � 4!�↵C + 4!2

4µC

!
,

(38)

FIG. 3. H2: The plot shows the change in energy of H2 (Luaug-cc-pVQZ)
with variation in the gradient of the external non-uniform magnetic field,
C = Cxex + Cyey + Czez , in the presence of a constant uniform field,
B = 0.01ex . The reference point for the gradient of the field, h, is placed
on a H atom. The continuous lines are the polynomial fits to the data points,
whose equations are indicated on the plot.

where �↵ = ↵1 ↵0 is the difference in permanent anapole
moments. Separating contributions of different orders in C, we
obtain the spin-Zeeman energy

EZ =
 †(� 1

2 )CZ 

 † 

= �1
2

C↵0 �
2|µ|2C2

!

� 3�↵ |µ|2C3

2!2
+ O(C4) (39)

and the total energy

FIG. 4. O2: The plot shows the change in energy of O2 (Luaug-cc-pVQZ)
as a function of transverse field gradient, C = Cxex + Cyey + Czez . The top
plot corresponds to the reference point for the gradient, h, placed at the bond-
centre and the two plots below it to h placed on one O atom. In the former
case, first-order effects are canceled due to symmetry reasons.
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E =
 †(H0 � 1

2 CZ) 

 † 

= �1
2

C↵0 �
|µ|2C2

!

� �↵ |µ|
2C3

2!2
+ O(C4). (40)

Hence, half the second-order spin-Zeeman interaction, and two
thirds of the third-order interaction, is canceled by the response
in other degrees of freedom.

Our current problem in the Hartree–Fock setting dif-
fers from the model Hamiltonian in that the Fock operator
is density- or state dependent and the ground state needs to
be found through a self-consistent field procedure. In order
to provide an explanation for Eqs. (34) and (35) tailored
to the present Hartree–Fock setting, we provide an analysis
using McWeeny’s formalism.53,54 Assume for simplicity an
orthonormal basis of 2-component spinors and let D denote

the one-particle reduced density matrix. All GHF states give
rise to idempotent density matrices, D2 = D. Then the Fock
matrix can be written as a sum of a density-independent and a
density-dependent part,

F = h + G(D). (41)

The Hartree–Fock energy is conveniently expressed in terms
of the modified matrix F0,

E = Tr(F0D), with F0 = h +
1
2

G(D), (42)

and the density-matrix form of the Roothaan–Hall equation is

FD � DF = 0. (43)

Expanding in orders of the perturbation strength �, we
write F as

F = F(0) + �F(1) + �2F(2) + . . . (44)

and analogously h, G, and D as well as the energy E.

FIG. 5. O2: The plots numerically demonstrate that the
spin-Zeeman and orbital-Zeeman contributions to the
total energy are not additive but are such that the low-
ering of the energy by the spin-Zeeman term is offset by
exactly half of its value by the orbital term. The inset
shows the variation of only the spin-Zeeman energy with
C and the fitting equation is indicated on the plot. The top
plot corresponds to the reference point for the gradient, h,
placed at the bond-centre and the bottom plot to h placed
on an O atom. In the former case, first-order effects are
canceled due to symmetry reasons.
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Using the projector P = D(0) onto the occupied space of the
unperturbed solution and its complement Q = I P, a projec-
tor on the virtual space, any matrix can be decomposed into its
four projected blocks M = Moo + Mov + Mvo + Mvv, with
Moo = PMP, Mov = PMQ, and so on. Occupied-virtual
projections of the perturbative expansion of the idempo-
tency condition D2 = D enable us to relate density matri-
ces of various orders with each other while Eq. (43)
provides us with the equations to determine the density
matrices at a given order. For the details of this pro-
cedure, we refer to the paper by McWeeny.53 The final
expressions for the first-order density matrices are given
by

TABLE I. O2: Basis set convergence of the Cartesian anapole suscepti-
bility tensor computed at the UHF level. L = London atomic orbitals,
u = uncontracted. A and A0 are defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 15.451 . . . . . . 15.438 0 0
. . . 15.451 . . . 0 15.438 0
. . . . . . 2.692 0 0 2.692

ucc-pVDZ 10.094 . . . . . . 10.086 0 0
. . . 10.094 . . . 0 10.086 0
. . . . . . 2.988 0 0 2.988

ucc-pVTZ 6.932 . . . . . . 6.925 0 0
. . . 6.932 . . . 0 6.925 0
. . . . . . 2.386 0 0 2.386

uaug-cc-pVDZ 5.710 . . . . . . 5.705 0 0
. . . 5.710 . . . 0 5.705 0
. . . . . . 2.244 0 0 2.244

uaug-cc-pVTZ 4.603 . . . . . . 4.597 0 0
. . . 4.603 . . . 0 4.597 0
. . . . . . 1.941 0 0 1.940

uaug-cc-pVQZ 4.368 . . . . . . 4.363 0 0
. . . 4.368 . . . 0 4.363 0
. . . . . . 1.859 0 0 1.859

LuSTO-3G 4.423 . . . . . . 6.201 0 0
. . . 4.423 . . . 0 6.201 0
. . . . . . 2.692 0 0 2.692

Lucc-pVDZ 5.225 . . . . . . 6.352 0 0
. . . 5.225 . . . 0 6.352 0
. . . . . . 2.988 0 0 2.988

Lucc-pVTZ 4.950 . . . . . . 5.484 0 0
. . . 4.950 . . . 0 5.484 0
. . . . . . 2.386 0 0 2.386

Luaug-cc-pVDZ 4.697 . . . . . . 4.840 0 0
. . . 4.697 . . . 0 4.840 0
. . . . . . 2.244 0 0 2.244

Luaug-cc-pVTZ 4.427 . . . . . . 4.438 0 0
. . . 4.427 . . . 0 4.438 0
. . . . . . 1.941 0 0 1.940

Luaug-cc-pVQZ 4.330 . . . . . . 4.328 0 0
. . . 4.330 . . . 0 4.328 0
. . . . . . 1.859 0 0 1.859

D(1)
oo = D(1)

vv = 0, (45)

D(1)
ov = f�1

0 F(1)
ov + f�1

0 D(1)
ov f0, (46)

where f0 = F(0) to simplify the notation. Iteration of Eq. (46)
yields

D(1)
ov =

1X

m=0

f�(m+1)
0 F(1)

ov fm
0 . (47)

It should be noted that this is a form of the coupled perturbed
HF self-consistency condition54 since F(1)

ov depends on D(1)
ov .

In our finite-field computation, we do not explicitly solve this
equation, but an expansion of our final density in orders of
perturbation would yield a first-order contribution satisfying

TABLE II. O2: Basis set convergence of the Cartesian anapole suscep-
tibility tensor computed at the GHF level. L = London atomic orbitals,
u = uncontracted. A and A0 are defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 10.187 . . . . . . 10.121 0 0
. . . 10.187 . . . 0 10.121 0
. . . . . . 2.171 0 0 2.171

ucc-pVDZ 4.536 . . . . . . 4.475 0 0
. . . 4.536 . . . 0 4.475 0
. . . . . . 1.840 0 0 1.840

ucc-pVTZ 0.807 . . . . . . 0.756 0 0
. . . 0.807 . . . 0 0.756 0
. . . . . . 0.470 0 0 0.471

uaug-cc-pVDZ 0.899 . . . . . . 0.935 0 0
. . . 0.899 . . . 0 0.935 0
. . . . . . 0.464 0 0 0.464

uaug-cc-pVTZ 2.129 . . . . . . 2.160 0 0
. . . 2.129 . . . 0 2.160 0
. . . . . . 0.902 0 0 0.902

uaug-cc-pVQZ 2.392 . . . . . . 2.422 0 0
. . . 2.392 . . . 0 2.422 0
. . . . . . 1.035 0 0 1.035

LuSTO-3G 0.774 . . . . . . 0.968 0 0
. . . 0.774 . . . 0 0.968 0
. . . . . . 2.171 0 0 2.171

Lucc-pVDZ 0.273 . . . . . . 0.819 0 0
. . . 0.273 . . . 0 0.819 0
. . . . . . 1.840 0 0 1.840

Lucc-pVTZ 1.136 . . . . . . 0.636 0 0
. . . 1.136 . . . 0 0.636 0
. . . . . . 0.470 0 0 0.471

Luaug-cc-pVDZ 1.897 . . . . . . 1.780 0 0
. . . 1.897 . . . 0 1.780 0
. . . . . . 0.464 0 0 0.464

Luaug-cc-pVTZ 2.302 . . . . . . 2.316 0 0
. . . 2.302 . . . 0 2.316 0
. . . . . . 0.902 0 0 0.902

Luaug-cc-pVQZ 2.429 . . . . . . 2.457 0 0
. . . 2.429 . . . 0 2.457 0
. . . . . . 1.035 0 0 1.035
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this equation. For our present purposes, it is sufficient to estab-
lish the above relation to eliminate F(1)

ov , and we do not need to
further determine D(1)

ov .
Collecting the first-order contributions to the energy, we

find
E(1) = Tr(D(0)h(1)) + Tr(D(1)F(0)). (48)

The last term vanishes since F(0) can be chosen diag-
onal and D(1) then only has off-diagonal components—
hence, Tr(D(1)F(0)) = 0 and the equation simplifies to
E(1) = Tr(D(0)h(1)).

Turning to the second-order contributions, we first note
that the idempotency condition determines the blocks D(2)

oo and
D(2)

vv ,

D(2)
oo = �D(1)

ov D(1)
vo , (49)

D(2)
vv = D(1)

vo D(1)
ov . (50)

The remaining blocks D(2)
ov and D(2)

vo are not needed to determine
the second-order contribution to the energy. We may now write

E(2) = Tr(F0(2)D(0) + F0(1)D(1) + F0(0)D(2)). (51)

To evaluate F(0)D(2), we note that since F(0) is diagonal (in the
basis of canonical orbitals), only the diagonal components of
D(2) contribute to the trace. Following McWeeny, we use first
Eqs. (49) and (50) and then cyclic permutation on Eq. (47) to
arrive at the relation

Tr(f0(D(2)
oo + D(2)

vv )) = �Tr(
1X

n=0

F(1)
ov fn

0F(1)
vo f�(n+1)

0 )

= �Tr(F(1)
ov D(1)

vo ) = �Tr(F(1)
vo D(1)

ov ), (52)

where we again use the shorthand notation f0 = F(0). Thus,

Tr(F(0)D(2)) = �Tr(F(1)
ov D(1)

vo ) = �Tr(F(1)
vo D(1)

ov )

= �1
2

Tr(F(1)D(1)) (53)

FIG. 6. H2O2: The plot shows the variation of the mixed anapole susceptibil-
ity, M0 with the dihedral angle. Tr(()M0) is the trace of the M0 tensor and µi,
i = 1, 2, 3, are its eigenvalues. The trace goes through a sign shift at a dihedral
angle of 86�. Two of the eigenvaluesµ2 andµ3 constitute complex-conjugated
pairs while µ1 is real.

and, consequently,

E(2) = Tr(h(2)D(0) + 1
2 h(1)D(1)). (54)

Next, we choose � to be a formal scaling factor applied to
the spin-Zeeman interaction. More specifically, the � = 0 ref-
erence is a UHF ground state (RHF ⇢ UHF) obtained without
a spin-Zeeman term. The � = 1 case, with full spin-Zeeman
interaction, corresponds to a GHF solution. Explicitly,

h = h(0) + �h(1), with ĥ(1) =
X

l

Btot(rl) · Ŝl. (55)

There are no higher-order corrections to h, e.g., h(2) = 0. How-
ever, the perturbation of h(0) perturbs the self-consistency
condition and therefore induces corrections to the energy,
density matrix, and Fock matrix to all orders in �. Using
Eqs. (48) and (54), the difference between the GHF energy
EGHF = E and the UHF energy EUHF = E(0) can now be written
as

EGHF�EUHF = �Tr(D(0)h(1))+
�2

2
Tr(D(1)h(1))+O(�3kh(1)k3),

(56)
where kh(1)k is the largest eigenvalue of h(1). Setting � = 1
finally shows that only half the spin-Zeeman interaction for
the induced spin density is present in the total EGHF. The other
half is canceled by the coupling between the spin and orbital
degrees of freedom.

VI. RESULTS AND DISCUSSION

The implementation described in Sec. III was applied to
study a set of small molecules subject to magnetic field gra-
dients. The H2 molecule was used for a preliminary study
of the effect of transverse field gradients on closed shell
molecules. The O2 molecule was used as the correspond-
ing example of an open-shell system. Further studies on the
induced anapole moments were carried out on H2O2 and
CHFXY (X,Y = Cl,Br). The GHF model was used to cap-
ture joint spin and orbital effects, and the RHF model was
used to isolate the purely orbital effects in closed shell sys-
tems. For the open shell molecule studied, the UHF model,
with the spin-Zeeman term disabled, was used for the same
purpose.

All calculations were performed using the London pro-
gram,21,55 to which we have added the necessary GHF
implementation. The anapole susceptibilities A and M were
calculated by second-order numerical differentiation of the
energies. The susceptibilities A0, M0, and M00 were calcu-
lated by a mixed approach: expectation values approximating
first-order analytic derivatives were differentiated once numer-
ically. The symmetric finite difference formula was used, with
step sizes of ✏ = 0.01 a.u. for B and ✏ 0 = 0.005 a.u. for C.
The smaller value for ✏ 0 was chosen as the effect of C on the
local magnetic field is scaled by the interatomic distances in
the molecule. The error in the energy is quadratic in the step
size within the limits to which the energy is converged while
the error in the analytically computed moments (first deriva-
tive of energy) is linear. All numerical results presented in this
paper are given in SI-based atomic units—see earlier work for
the conversion factors to SI units.48
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The basis sets employed for studying basis set conver-
gence come from the family of Dunning’s correlation consis-
tent basis sets56,57 with and without augmentation with diffuse
functions. The names of the basis sets are prefixed with “L”
to denote the use of London atomic orbitals and “u” to indi-
cate that the basis sets are uncontracted. The studies of the
energies of H2 and O2 in a range of non-uniform fields are
carried out using the Luaug-cc-pVQZ basis set. The location
of the gauge origin, g, only affects the non-LAO calculations.
For H2 and O2, g is on one of the H or O atoms while for
H2O2 it is at the mid-point of the O–O bond. For the CHFXY
group of molecules, g is on the central C atom. Different

TABLE III. H2O2 at a dihedral angle of 120�: Basis set convergence of
the Cartesian anapole susceptibility tensor computed with RHF. L = London
atomic orbitals. Contracted basis sets have been used. A and A0 are defined
in Eqs. (15) and (17), respectively.

Basis A A0

STO-3G 14.076 0 0 14.076 0 0
0 12.778 1.904 0 12.778 1.905
0 1.904 6.955 0 1.905 6.955

cc-pVDZ 7.448 0 0 7.448 0 0
0 7.792 0.995 0 7.793 0.995
0 0.995 4.458 0 0.995 4.458

cc-pVTZ 4.164 0 0 4.165 0 0
0 5.213 0.700 0 5.213 0.700
0 0.700 3.381 0 0.700 3.381

aug-cc-pVDZ 3.657 0 0 3.657 0 0
0 5.090 0.517 0 5.090 0.517
0 0.517 2.869 0 0.517 2.869

aug-cc-pVTZ 2.457 0 0 2.458 0 0
0 4.102 0.504 0 4.102 0.504
0 0.504 2.451 0 0.504 2.451

aug-cc-pVQZ 2.126 0 0 2.127 0 0
0 3.803 0.489 0 3.803 0.489
0 0.489 2.355 0 0.489 2.356

LSTO-3G 3.597 0 0 6.044 0 0
0 4.785 0.631 0 6.578 1.087
0 0.631 4.403 0 0.745 5.207

Lcc-pVDZ 3.075 0 0 4.244 0 0
0 4.514 0.718 0 5.329 0.894
0 0.718 3.884 0 0.711 4.091

Lcc-pVTZ 2.627 0 0 3.058 0 0
0 4.093 0.615 0 4.372 0.683
0 0.615 3.207 0 0.619 3.283

Laug-cc-pVDZ 2.375 0 0 2.503 0 0
0 4.008 0.493 0 4.087 0.504
0 0.493 2.810 0 0.469 2.813

Laug-cc-pVTZ 2.118 0 0 2.139 0 0
0 3.797 0.491 0 3.813 0.496
0 0.491 2.434 0 0.494 2.440

Laug-cc-pVQZ 2.051 0 0 2.053 0 0
0 3.750 0.485 0 3.752 0.487
0 0.485 2.349 0 0.486 2.352

reference points h for the linear component of the field have
been explored. The equilibrium bond lengths (Req) for H2 and
O2 were taken to be 1.3984 a.u. and 2.287 a.u., respectively.
Geometries for the other molecules are as reported in an ear-
lier publication48 and are also provided in the supplementary
material.

A. H2

For the H2 molecule, the leading order response of the
energy is quadratic in C, as expected from any system that
is a closed-shell singlet in the absence of magnetic fields. In
RHF computations where the response is restricted to orbital

TABLE IV. H2O2 at a dihedral angle of 120�: Basis set convergence of
the Cartesian anapole susceptibility tensor computed with RHF. L = Lon-
don atomic orbitals. Uncontracted basis sets have been used. A and A0 are
defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 11.459 0 0 11.459 0 0
0 10.588 1.793 0 10.588 1.793
0 1.793 5.407 0 1.793 5.407

ucc-pVDZ 6.328 0 0 6.328 0 0
0 6.754 0.986 0 6.754 0.986
0 0.986 4.390 0 0.986 4.389

ucc-pVTZ 3.715 0 0 3.715 0 0
0 4.810 0.700 0 4.810 0.700
0 0.700 3.347 0 0.700 3.347

uaug-cc-pVDZ 2.907 0 0 2.908 0 0
0 4.353 0.533 0 4.353 0.533
0 0.533 2.869 0 0.533 2.870

uaug-cc-pVTZ 2.204 0 0 2.204 0 0
0 3.876 0.509 0 3.877 0.509
0 0.509 2.464 0 0.509 2.464

uaug-cc-pVQZ 2.067 0 0 2.066 0 0
0 3.765 0.490 0 3.764 0.490
0 0.490 2.358 0 0.490 2.357

LuSTO-3G 2.835 0 0 5.231 0 0
0 4.257 0.825 0 5.917 1.357
0 0.825 3.586 0 0.840 4.200

Lucc-pVDZ 3.025 0 0 4.107 0 0
0 4.436 0.718 0 5.177 0.905
0 0.718 3.839 0 0.718 4.052

Lucc-pVTZ 2.596 0 0 3.011 0 0
0 4.067 0.611 0 4.336 0.683
0 0.611 3.170 0 0.613 3.246

Luaug-cc-pVDZ 2.400 0 0 2.507 0 0
0 4.014 0.501 0 4.070 0.514
0 0.501 2.814 0 0.484 2.820

Luaug-cc-pVTZ 2.124 0 0 2.140 0 0
0 3.809 0.492 0 3.820 0.498
0 0.492 2.441 0 0.495 2.449

Luaug-cc-pVQZ 2.053 0 0 2.054 0 0
0 3.752 0.485 0 3.752 0.487
0 0.485 2.352 0 0.486 2.353

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003819
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-003819
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effects, the energy increases sharply in a parabolic curve. In
the case of GHF, the spin degrees of freedom allow a negation
of the orbital effects leading to partial or full cancellation or
even an inversion of the parabolic energy change. For H2, the
balance of spin and orbital effects is seen to depend neatly on
the bond length (see Fig. 1). In our calculations, the H–H bond
axis is aligned to the z-axis and we observe identical spin and
orbital effects for Cx and Cy. Thus, only the variation with Cx
is plotted. The reference point, h, is placed at the centre of the
H–H bond at each of the bond lengths we have studied. At
R = 0.5Req, the GHF plot is inverted relative to RHF
indicating a dominance of the spin effect introduced by

TABLE V. H2O2 at a dihedral angle of 120�: Basis set convergence of the
Cartesian anapole susceptibility tensor computed with GHF. L = London
atomic orbitals. Contracted basis sets have been used. A and A0 are defined
in Eqs. (15) and (17), respectively.

Basis A A0

STO-3G 25.222 0 0 22.285 0 0
0 25.304 2.338 0 22.349 2.507
0 2.338 4.496 0 2.338 4.496

cc-pVDZ 36.145 0 0 33.106 0 0
0 34.841 0.249 0 31.787 0.166
0 0.249 1.108 0 0.249 1.108

cc-pVTZ 40.102 0 0 37.048 0 0
0 38.160 0.202 0 35.093 0.317
0 0.202 1.205 0 0.202 1.205

aug-cc-pVDZ 38.472 0 0 36.083 0 0
0 36.258 0.229 0 33.857 0.302
0 0.229 2.487 0 0.229 2.487

aug-cc-pVTZ 42.735 0 0 39.627 0 0
0 40.321 0.314 0 37.201 0.420
0 0.314 2.995 0 0.314 2.995

aug-cc-pVQZ 44.005 0 0 40.657 0 0
0 41.564 0.341 0 38.204 0.458
0 0.341 3.110 0 0.342 3.110

LSTO-3G 35.702 0 0 30.318 0 0
0 33.299 1.062 0 28.552 1.690
0 1.062 1.944 0 1.178 2.748

Lcc-pVDZ 40.517 0 0 36.309 0 0
0 38.119 0.029 0 34.250 0.065
0 0.029 0.533 0 0.036 0.741

Lcc-pVTZ 41.639 0 0 38.154 0 0
0 39.281 0.286 0 35.934 0.334
0 0.286 1.379 0 0.283 1.303

Laug-cc-pVDZ 39.753 0 0 37.237 0 0
0 37.340 0.253 0 34.861 0.314
0 0.253 2.546 0 0.277 2.543

Laug-cc-pVTZ 43.074 0 0 39.946 0 0
0 40.626 0.327 0 37.490 0.428
0 0.327 3.012 0 0.324 3.006

Laug-cc-pVQZ 44.080 0 0 40.731 0 0
0 41.618 0.346 0 38.256 0.461
0 0.346 3.116 0 0.345 3.114

mixing of the triplet state with the singlet ground state
of H2. This trend continues as we stretch to R = 1.5Req,
where the downward curvature of the GHF plot is even
larger.

The total spin quantum number, which directly indicates
the amount of spin-symmetry breaking induced by the exter-
nal magnetic field, is plotted as a function of C at various
points on the potential energy surface of H2 in the sec-
ond column of Fig. 1. This quantity is obtained from the
relation

S(S + 1) = hŜ2i, (57)

TABLE VI. H2O2 at a dihedral angle of 120�: Basis set convergence of
the Cartesian anapole susceptibility tensor computed with GHF. L = Lon-
don atomic orbitals. Uncontracted basis sets have been used. A and A0 are
defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 20.713 0 0 19.668 0 0
0 20.279 1.902 0 19.220 1.944
0 1.902 2.337 0 1.902 2.337

ucc-pVDZ 34.771 0 0 32.312 0 0
0 33.366 0.213 0 30.892 0.140
0 0.213 0.808 0 0.213 0.808

ucc-pVTZ 40.237 0 0 37.261 0 0
0 38.260 0.203 0 35.271 0.316
0 0.203 1.263 0 0.203 1.263

uaug-cc-pVDZ 38.251 0 0 36.059 0 0
0 36.032 0.195 0 33.828 0.260
0 0.195 2.489 0 0.195 2.488

uaug-cc-pVTZ 43.429 0 0 40.210 0 0
0 40.985 0.304 0 37.753 0.413
0 0.304 2.985 0 0.305 2.985

uaug-cc-pVQZ 44.071 0 0 40.722 0 0
0 41.609 0.341 0 38.248 0.457
0 0.341 3.110 0 0.341 3.109

LuSTO-3G 29.337 0 0 25.897 0 0
0 26.611 0.934 0 23.892 1.507
0 0.934 0.516 0 0.949 1.130

Lucc-pVDZ 38.072 0 0 34.531 0 0
0 35.684 0.056 0 32.469 0.060
0 0.056 0.257 0 0.055 0.471

Lucc-pVTZ 41.356 0 0 37.966 0 0
0 39.003 0.292 0 35.746 0.333
0 0.292 1.440 0 0.289 1.364

Luaug-cc-pVDZ 38.758 0 0 36.460 0 0
0 36.370 0.228 0 34.111 0.279
0 0.228 2.544 0 0.245 2.538

Luaug-cc-pVTZ 43.509 0 0 40.274 0 0
0 41.053 0.322 0 37.810 0.424
0 0.322 3.009 0 0.318 3.001

Luaug-cc-pVQZ 44.085 0 0 40.734 0 0
0 41.623 0.345 0 38.259 0.460
0 0.345 3.116 0 0.344 3.113
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and despite the terminology, it is no longer a good quantum
number. The spin-symmetry breaking is found to be directly
proportional to C at all geometries.

Figure 2 demonstrates the relation of the GHF and RHF
energies and numerically verifies our assertion in Sec. V. On
shifting up the GHF energies by half of the spin-Zeeman
energy, the plot comes to lie exactly on top of the RHF plot.

When both a uniform component, B, and a transverse gra-
dient, C with h on one of the H atoms, are switched on, the
mixed anapole susceptibility is expected to come into play.
In Fig. 3, we plot the variation in energy of H2 with the
components Cx, Cy, and Cz, for a fixed uniform component

Bx = 0.01 a.u. For the component Cx, the transverse gradient
and uniform component are in the same direction and the mixed
susceptibility tensors have zero diagonal elements resulting in
a parabolic energy curve just like in the previous case of van-
ishing B. However, the B = 0 and B = 0.01ex a.u. curves do not
coincide as the values of the local field, Btot(r), are different.
The nature of the variation of energy with Cy, on the other
hand, is modified in the presence of the Bx component. An
induced anapole moment, ay = BxMxy, leads to the addition
of a linear component to the energy as a function of Cy. When
RHF calculations are performed, the orbital effects result in
an unsymmetric parabola. On the other hand, the presence of

TABLE VII. H2O2 at a dihedral angle of 120�: Basis set convergence of the Cartesian anapole susceptibility
tensor computed with GHF. L = London atomic orbitals. Contracted basis sets have been used. M, M0, and M00

are defined in Eqs. (16), (18), and (19), respectively.

Basis M M0 M00

STO-3G 0.600 0 0 0.634 0 0 0.602 0 0
0 0.749 1.643 0 0.786 1.643 0 0.752 1.643
0 2.052 0.012 0 2.040 0.012 0 2.049 0.012

cc-pVDZ 0.141 0 0 0.172 0 0 0.142 0 0
0 0.193 0.702 0 0.228 0.702 0 0.195 0.702
0 0.926 0.018 0 0.917 0.019 0 0.925 0.019

cc-pVTZ 0.306 0 0 7.858 0 0 0.305 0 0
0 0.249 1.528 0 8.804 1.531 0 0.248 0.540
0 0.756 0.350 0 8.552 0.350 0 0.755 0.025

aug-cc-pVDZ 0.403 0 0 0.377 0 0 0.403 0 0
0 0.349 0.450 0 0.319 0.450 0 0.348 0.450
0 0.715 0.033 0 0.708 0.033 0 0.714 0.033

aug-cc-pVTZ 0.520 0 0 8.182 0 0 0.519 0 0
0 0.458 1.898 0 8.356 1.900 0 0.456 0.434
0 0.704 0.314 0 8.809 0.315 0 0.703 0.034

aug-cc-pVQZ 0.529 0 0 8.158 0 0 0.528 0 0
0 0.462 1.874 0 8.448 1.875 0 0.460 0.424
0 0.698 0.314 0 8.861 0.315 0 0.697 0.035

LSTO-3G 0.620 0 0 0.562 0 0 0.459 0 0
0 0.524 0.501 0 0.468 0.503 0 0.288 0.930
0 0.838 0.033 0 0.472 0.009 0 1.375 0.025

Lcc-pVDZ 0.583 0 0 0.555 0 0 0.276 0 0
0 0.539 0.341 0 0.507 0.348 0 0.210 0.569
0 0.617 0.062 0 0.542 0.046 0 0.771 0.026

Lcc-pVTZ 0.557 0 0 8.197 0 0 0.440 0 0
0 0.505 1.617 0 8.433 1.641 0 0.373 0.511
0 0.656 0.373 0 8.702 0.361 0 0.724 0.028

Laug-cc-pVDZ 0.590 0 0 0.556 0 0 0.511 0 0
0 0.520 0.383 0 0.490 0.380 0 0.455 0.422
0 0.694 0.036 0 0.666 0.034 0 0.679 0.034

Laug-cc-pVTZ 0.568 0 0 8.247 0 0 0.558 0 0
0 0.501 1.912 0 8.303 1.913 0 0.493 0.429
0 0.699 0.314 0 8.813 0.314 0 0.700 0.034

Laug-cc-pVQZ 0.568 0 0 8.200 0 0 0.566 0 0
0 0.501 1.878 0 8.406 1.880 0 0.498 0.422
0 0.698 0.314 0 8.861 0.315 0 0.697 0.035
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spin-field interactions in the GHF case results in a change in the
curvature accompanied by a flipping of the sign of the anapole
susceptibility. The linear component remains the same as the
RHF calculation. This is borne out by our analysis in Sec. V as
the zeroth-order density is the same for RHF and GHF. When
h is placed at the centre of the bond, the linear effects are
canceled on account of symmetry.

B. O2

The O2 molecule in its ground triplet state serves as our
example molecule for interaction of non-singlet molecules
with non-uniform fields. In order to isolate pure orbital effects,

we carried out UHF calculations without the spin-Zeeman
term for the ms = 1 triplet state. The advantage of this con-
straint on the UHF wave function, compared to the ms = 0
constraint, is that it guarantees that the wave function opti-
mization does not accidentally lead to a singlet state. In our
calculations, the O–O bond axis is aligned to the z-axis.

As shown in Fig. 4, the energy vs. Cz curve is flatter
than the curves for the Cx and Cy components. When the
spin-Zeeman interactions are included in a GHF calculation,
we find that the energy vs. Cz curve changes only slightly.
The energy as a function of Cx (or Cy), on the other hand,
changes drastically. In the top plot, h is placed at the centre

TABLE VIII. H2O2 at a dihedral angle of 120�: Basis set convergence of the Cartesian anapole susceptibility
tensor computed with GHF. L = London atomic orbitals. Uncontracted basis sets have been used. M, M0, and
M00 are defined in Eqs. (16), (18), and (19), respectively.

Basis M M0 M00

uSTO-3G 0.570 0 0 1.463 0 0 0.571 0 0
0 0.698 7.063 0 25.805 7.063 0 0.699 1.348
0 1.629 0.857 0 32.946 0.857 0 1.628 0.018

ucc-pVDZ 0.019 0 0 0.048 0 0 0.021 0 0
0 0.078 0.711 0 0.109 0.711 0 0.080 0.711
0 0.935 0.018 0 0.927 0.018 0 0.934 0.018

ucc-pVTZ 0.371 0 0 0.342 0 0 0.370 0 0
0 0.314 0.539 0 0.282 0.539 0 0.312 0.539
0 0.758 0.026 0 0.750 0.026 0 0.757 0.026

uaug-cc-pVDZ 0.451 0 0 0.425 0 0 0.450 0 0
0 0.395 0.466 0 0.366 0.465 0 0.394 0.465
0 0.724 0.034 0 0.717 0.034 0 0.724 0.034

uaug-cc-pVTZ 0.559 0 0 0.530 0 0 0.558 0 0
0 0.497 0.439 0 0.464 0.439 0 0.495 0.439
0 0.707 0.034 0 0.699 0.034 0 0.706 0.034

uaug-cc-pVQZ 0.567 0 0 0.537 0 0 0.566 0 0
0 0.500 0.424 0 0.467 0.424 0 0.499 0.424
0 0.698 0.035 0 0.690 0.035 0 0.698 0.035

LuSTO-3G 0.589 0 0 0.080 0 0 0.221 0 0
0 0.505 4.917 0 27.161 5.974 0 0.050 0.902
0 0.576 1.910 0 31.585 0.772 0 1.105 0.033

Lucc-pVDZ 0.553 0 0 0.524 0 0 0.297 0 0
0 0.509 0.339 0 0.475 0.348 0 0.225 0.598
0 0.617 0.060 0 0.568 0.045 0 0.790 0.026

Lucc-pVTZ 0.557 0 0 0.534 0 0 0.450 0 0
0 0.505 0.397 0 0.478 0.402 0 0.384 0.510
0 0.655 0.047 0 0.636 0.041 0 0.725 0.029

Luaug-cc-pVDZ 0.580 0 0 0.548 0 0 0.508 0 0
0 0.513 0.403 0 0.483 0.398 0 0.449 0.434
0 0.698 0.036 0 0.679 0.033 0 0.689 0.034

Luaug-cc-pVTZ 0.570 0 0 0.540 0 0 0.561 0 0
0 0.503 0.418 0 0.469 0.417 0 0.495 0.432
0 0.703 0.036 0 0.695 0.036 0 0.702 0.034

Luaug-cc-pVQZ 0.567 0 0 0.537 0 0 0.566 0 0
0 0.501 0.419 0 0.467 0.419 0 0.498 0.422
0 0.699 0.035 0 0.691 0.035 0 0.697 0.035
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of the O–O bond. Inversion symmetry causes the first-order
spin-Zeeman interaction with Cx (or Cy) to cancel. In the bot-
tom plot, on the other hand, h is placed unsymmetrically on an
O atom and first-order effects are observed. Due to the ground
state degeneracy at B = C = 0, ground states with positive,
negative, and vanishing permanent anapole moments ax and
ay are possible. These states have different energy curves that
cross at Cx = 0, resulting in a cusp when the lowest energy is
plotted as a function of Cx. Hence, the first-order spin-Zeeman
interaction results in a sharp decrease in the energy as soon as
the field is switched on. A superposition of this linear varia-
tion with a parabolic response on account of the orbital effects

in the opposite direction gives the bottom curve in Fig. 4 its
characteristic shape.

Figure 5 demonstrates the perturbative relation between
UHF and GHF, as discussed in Sec. V for open-shell
molecules. The top plot corresponds to h placed at the cen-
tre of the O–O bond while in the bottom plot, h is placed
on the O atom at the origin of the coordinate system. The
insets in Fig. 5 show plots of the spin-Zeeman energy vs. Cx,
which are fitted to separate out the linear and parabolic com-
ponents of the spin-Zeeman interaction. The fitting equation
is also indicated in the graph. In the top plot, the first-order
linear spin effects are canceled due to the symmetry of the

TABLE IX. CHFCl2: Basis set convergence of the Cartesian anapole susceptibility tensor computed with GHF.
L = London atomic orbitals, u = uncontracted. A and A0 are defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 118.429 . . . . . . 118.425 0 0
. . . 215.102 . . . 0 215.090 29.875
. . . . . . 259.845 0 29.875 259.829

ucc-pVDZ 80.650 . . . . . . 80.646 0 0
. . . 155.533 . . . 0 155.520 23.669
. . . . . . 184.587 0 23.670 184.570

ucc-pVTZ 48.206 . . . . . . 48.204 0 0
. . . 105.138 . . . 0 105.126 18.053
. . . . . . 125.091 0 18.054 125.077

uaug-cc-pVDZ 41.734 . . . . . . 41.738 0 0
. . . 99.461 . . . 0 99.465 18.199
. . . . . . 118.646 0 18.199 118.652

uaug-cc-pVTZ 32.208 . . . . . . 32.209 0 0
. . . 83.467 . . . 0 83.463 16.191
. . . . . . 100.006 0 16.191 100.003

uaug-cc-pVQZ 22.126 . . . . . . 22.126 0 0
. . . 59.965 . . . 0 59.961 12.050
. . . . . . 73.027 0 12.051 73.022

LuSTO-3G 27.682 . . . . . . 37.774 0 0
. . . 38.525 . . . 0 57.434 6.283
. . . . . . 43.363 0 6.160 66.115

Lucc-pVDZ 23.693 . . . . . . 29.615 0 0
. . . 35.690 . . . 0 46.423 5.382
. . . . . . 41.051 0 5.357 54.045

Lucc-pVTZ 13.458 . . . . . . 15.863 0 0
. . . 26.123 . . . 0 30.249 4.747
. . . . . . 32.469 0 4.709 37.545

Luaug-cc-pVDZ 9.397 . . . . . . 10.098 0 0
. . . 22.389 . . . 0 23.810 4.532
. . . . . . 29.357 0 4.491 30.910

Luaug-cc-pVTZ 6.122 . . . . . . 6.301 0 0
. . . 19.019 . . . 0 19.408 4.358
. . . . . . 25.907 0 4.357 26.336

Luaug-cc-pVQZ 5.325 . . . . . . 5.352 0 0
. . . 18.163 . . . 0 18.228 4.297
. . . . . . 25.006 0 4.300 25.072
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system but the main curve in the bottom plot clearly demon-
strates the relation in Eq. (35). This indicates that our numerical
results are adequately described by up to first- and second-
order effects on the energy. We note that in this study, we
have used relatively weaker fields up to 0.020 a.u. where
higher-order effects do not set in for small molecules like H2

and O2.
The basis set convergence of the anapole susceptibility

values for triplet O2 follows the same trends as the singlet
molecules reported below. However, the spin effects push the
values in the same direction as the orbital effects unlike in
the other cases—see Tables I and II. This is to be expected
as O2, unlike the singlet molecules, exhibits first-order spin
effects, i.e., permanent spin magnetic dipole and spin anapole
moments, which dominate the energy response in the absence
of symmetry reasons which may cancel these effects. By con-
trast, the leading orbital effects are always second order in the
field.

C. H2O2

A previous study of anapole moments48 (see also a recent
further analysis58) focused on H2O2 as this system can be
continuously deformed from an achiral to a chiral and back
to an achiral structure by changing the dihedral angle con-
tinuously from 0� to 180�, the energy minimum being at
120�. This is useful since features of the mixed anapole sus-
ceptibility tensor, M, are sensitive to chirality.51 However,
spin-symmetry breaking effects only enter as a correction to
M that is second order in Cx. Hence, the GHF results in Fig. 6
are identical, to within numerical noise, to what was obtained
in the RHF case.48 At a dihedral angle of 86�, the trace under-
goes a sign change. This marks the point of highest chirality
for H2O2.

At a fixed dihedral angle of 120�, the full 3 ⇥ 3 ten-
sors for A, A0, M, M0, and M00 have been computed
using both RHF and GHF—see Tables III–VI. An earlier
study48 showed that LAOs dramatically accelerate basis set

TABLE X. CHFClBr: Basis set convergence of the Cartesian anapole susceptibility tensor computed with GHF.
L = London atomic orbitals, u = uncontracted. A and A0 are defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 170.888 . . . . . . 170.883 62.915 39.246
. . . 349.579 . . . 62.922 349.556 51.454
. . . . . . 415.077 39.252 51.455 415.046

ucc-pVDZ 118.315 . . . . . . 118.311 46.888 29.446
. . . 254.354 . . . 46.892 254.334 39.752
. . . . . . 298.734 29.450 39.753 298.709

ucc-pVTZ 81.786 . . . . . . 81.782 43.718 27.740
. . . 195.693 . . . 43.722 195.675 33.162
. . . . . . 229.790 27.743 33.163 229.769

uaug-cc-pVDZ 76.973 . . . . . . 76.978 46.504 29.406
. . . 195.320 . . . 46.505 195.326 34.409
. . . . . . 229.682 29.407 34.410 229.690

uaug-cc-pVTZ 63.496 . . . . . . 63.498 42.057 26.681
. . . 169.600 . . . 42.059 169.599 30.851
. . . . . . 199.893 26.683 30.853 199.891

LuSTO-3G 34.853 . . . . . . 47.504 6.371 4.027
. . . 50.394 . . . 6.322 75.982 8.767
. . . . . . 56.250 3.957 8.608 86.705

Lucc-pVDZ 29.066 . . . . . . 36.282 5.528 3.615
. . . 46.331 . . . 5.572 60.852 7.528
. . . . . . 52.893 3.613 7.491 70.224

Lucc-pVTZ 17.274 . . . . . . 20.656 5.472 3.636
. . . 35.672 . . . 5.522 42.639 6.865
. . . . . . 43.370 3.672 6.833 51.686

Luaug-cc-pVDZ 12.531 . . . . . . 14.441 5.745 3.695
. . . 31.264 . . . 5.756 35.986 6.783
. . . . . . 39.691 3.725 6.738 45.029

Luaug-cc-pVTZ 8.706 . . . . . . 9.739 5.313 3.467
. . . 27.440 . . . 5.321 30.135 6.440
. . . . . . 35.766 3.470 6.437 38.853
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convergence of RHF level anapole susceptibilities. This
remains true when spin effects are included. However, LAOs
also violate the assumptions of the Hellmann–Feynman the-
orem. This manifests itself as a discrepancy between the
values of A and A0 in Tables III–VI. A loss of the sym-
metry between A0yz and A0zy is also notable in the results.
Both of these discrepancies vanish in the basis set limit.
Conversely, they become larger for smaller basis sets. Uncon-
tracted basis sets improve the basis set convergence, which is
natural given that the contraction coefficients were not opti-
mized for the response to magnetic field gradients. A com-
parison of the results for contracted and uncontracted basis
sets are reported in Tables III–IV (RHF level) as well as in
Tables V and VI (GHF level). Similar conclusions hold for
the basis effects on the mixed anapole susceptibility tensors
in Tables VII and VIII. Coming to one of the main con-
clusions of this work, the spin contributions to the anapole
susceptibility, A, are found to be much larger than the orbital
contributions and act in opposition to the orbital effects. This is
in line with our theoretical understanding presented in Sec. IV.

There are no spin effects on the mixed anapole suscepti-
bilities and thus GHF and RHF results are identical and
are not reported separately. The mixed anapole suscepti-
bilities computed using GHF are reported in Tables VII
and VIII.

D. CHFXY

The size effects of the orbital anapole moments and their
relation to chirality have been studied earlier48 for a series of
halomethanes, CHFXY with X,Y = Cl, Br. We have carried out
computations including the spin effects on the same sample
set. Here too, we have used uncontracted normalized basis
sets. In Tables IX–XI, the values for A and A0 are reported.
For A, we only calculate the diagonal elements of the tensor
to avoid computing too many finite-field points. The values of
A and A0 increase in magnitude from CHFCl2 to CHFClBr
to CHFBr2 indicating significant size effects. With increasing
size, the discrepancy between A and A0 also increases. The
CHFXY molecule is placed in a coordinate system such that

TABLE XI. CHFBr2: Basis set convergence of the Cartesian anapole susceptibility tensor computed with GHF.
L = London atomic orbitals, u = uncontracted. A and A0 are defined in Eqs. (15) and (17), respectively.

Basis A A0

uSTO-3G 226.336 . . . . . . 226.330 0 0
. . . 477.912 . . . 0 477.882 74.504
. . . . . . 565.218 0 74.505 565.177

ucc-pVDZ 157.930 . . . . . . 157.925 0 0
. . . 348.371 . . . 0 348.346 56.869
. . . . . . 408.674 0 56.871 408.641

ucc-pVTZ 117.270 . . . . . . 117.268 0 0
. . . 281.856 . . . 0 281.835 49.186
. . . . . . 330.595 0 49.187 330.571

uaug-cc-pVDZ 114.366 . . . . . . 114.375 0 0
. . . 286.525 . . . 0 286.537 51.683
. . . . . . 336.685 0 51.684 336.699

uaug-cc-pVTZ 96.688 . . . . . . 96.694 0 0
. . . 251.541 . . . 0 251.542 46.518
. . . . . . 296.165 0 46.520 296.165

LuSTO-3G 42.222 . . . . . . 57.647 0 0
. . . 62.485 . . . 0 94.537 11.518
. . . . . . 69.355 0 11.314 107.409

Lucc-pVDZ 34.493 . . . . . . 43.084 0 0
. . . 56.850 . . . 0 75.027 9.896
. . . . . . 64.565 0 9.848 86.126

Lucc-pVTZ 21.162 . . . . . . 25.602 0 0
. . . 45.142 . . . 0 54.862 9.169
. . . . . . 54.149 0 9.142 65.609

Luaug-cc-pVDZ 15.818 . . . . . . 19.042 0 0
. . . 40.094 . . . 0 47.984 9.254
. . . . . . 49.923 0 9.203 58.952

Luaug-cc-pVTZ 11.435 . . . . . . 13.393 0 0
. . . 35.816 . . . 0 40.723 8.732
. . . . . . 45.533 0 8.730 51.213



184112-17 S. Sen and E. I. Tellgren J. Chem. Phys. 148, 184112 (2018)

C lies at the origin, H on the z-axis, and F in the yz-plane. The
exact geometries are reported in the supplementary material.
With this orientation, the off-diagonal elements A0xy, A0yx, A0xz,
and A0zx, but not A0yz, are zero in CHFCl2 and CHFBr2 due to
symmetry. By contrast, all elements of the A0 tensor are seen
in the chiral CHFClBr.

The basis set convergence is very poor with ordinary basis
sets with values in the largest basis being off by factors of
5-8 from the best estimate with LAOs in the same basis. The
deviation between A and A0 when using LAOs is found to be
larger for GHF than for RHF.

VII. SUMMARY AND CONCLUSION

We have reported a non-perturbative GHF implementation
for molecules subject to finite, non-uniform magnetic fields.
The implementation has been applied to study joint orbital and
spin effects on energies and anapole susceptibilities of several
molecules. The anapole susceptibilities provide a convenient
quantification of the sensitivity to transverse magnetic field
gradients.

By comparing GHF and RHF/UHF results, we are able
to evaluate the relative importance of spin and orbital effects.
Spin symmetry breaking due to magnetic field gradients has
also been directly illustrated using the spin quantum number
in H2. In general, spin effects on the anapole susceptibility
are large and have a consistent direction. We have shown on
theoretical grounds that spin effects always lower the second-
order energy, at least for molecules that are closed shell singlets
in the absence of magnetic fields. For molecules such as those
in the present work, with generalized orbital diamagnetism, the
orbital and spin effects on the tensor A must therefore oppose
each other. An interesting pattern in the numerical results is
that the difference between GHF and RHF, when quadratic in
the transverse field gradient, is equal to half the spin-Zeeman
energy. A theoretical explanation of this fact has been derived
in Sec. V.

Moreover, as has been shown previously for the orbital
effects in isolation, the use of London atomic orbitals dra-
matically accelerates basis set convergence. This remains
true for the spin effects. In addition, our results indicate
that decontraction of the basis sets substantially increases
accuracy.

SUPPLEMENTARY MATERIAL

See supplementary material for explicit geometries of the
molecules studied in this paper.
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15C. A. Jiménez-Hoyos, T. M. Henderson, and G. E. Scuseria, J. Chem. Theory

Comput. 7, 2667 (2011).
16S. J. Luo and D. G. Truhlar, J. Chem. Theory Comput. 9, 5349 (2013).
17F. London, J. Phys. Radium 8, 397 (1937).
18H. Hameka, Mol. Phys. 1, 203 (1958).
19R. Ditchfield, J. Chem. Phys. 65, 3123 (1976).
20T. Helgaker and P. Jørgensen, J. Chem. Phys. 95, 2595 (1991).
21E. I. Tellgren, A. Soncini, and T. Helgaker, J. Chem. Phys. 129, 154114

(2008).
22R. D. Reyhnolds and T. Shiozaki, Phys. Chem. Chem. Phys. 17, 14280

(2015).
23E. I. Tellgren, S. S. Reine, and T. Helgaker, Phys. Chem. Chem. Phys. 14,

9492 (2012).
24E. I. Tellgren, T. Helgaker, and A. Soncini, Phys. Chem. Chem. Phys. 11,

5489 (2009).
25K. K. Lange, E. I. Tellgren, M. R. Hoffmann, and T. Helgaker, Science 337,

327 (2012).
26A. Kubo, J. Phys. Chem. A 111, 5572 (2007).
27C. G. Gray, G. Karl, and V. A. Novikov, Am. J. Phys. 78, 936 (2010).
28I. B. Zel’dovich, J. Exp. Theor. Phys. 33, 1531 (1957).
29W. C. Haxton, Science 275, 1753 (1997).
30W. C. Haxton, C.-P. Liu, and M. J. Ramsey-Musolf, Phys. Rev. C 65, 045502

(2002).
31C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E.

Tanner, and C. E. Wieman, Science 275, 1759 (1997).
32W. C. Haxton and C. E. Wieman, Annu. Rev. Nucl. Part. Sci. 51, 261

(2001).
33D. DeMille, S. B. Cahn, D. Murphree, D. A. Rahmlow, and M. G. Kozlov,

Phys. Rev. Lett. 100, 023003 (2008).
34N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.: Condens. Matter 20,

434203 (2008).
35S. Pelloni, P. Lazzeretti, G. Monaco, and R. Zanasi, Rend. Lincei 22, 105

(2011).
36I. B. Khriplovich and M. E. Pospelov, Z. Phys. D: At., Mol. Clusters 17, 81

(1990).
37R. J. F. Berger, Z. Naturforsch., B 67, 1127 (2012).
38I. I. Naumov, L. Bellaiche, and H. Fu, Nature 432, 737 (2004).
39B. B. Van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig, Nature 449, 702

(2007).
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