
Journal of Geophysical Research: Solid Earth

The Effective Transmissivity of a Plane-Walled Fracture
With Circular Cylindrical Obstacles

Lukasz Jasinski1 and Marcin Dabrowski1,2

1Computational Geology Laboratory, Polish Geological Institute-National Research Institute, Wroclaw, Poland, 2Physics of
Geological Processes, University of Oslo, Oslo, Norway

Abstract Stimulated and propped fractures provide the conductive pathways in low matrix
permeability rocks. We study the impact of fracture aperture and proppant size and fraction on the
effective transmissivity of a stimulated fracture filled with a partial monolayer of proppant grains.
The proppant grains are treated as circular cylindrical obstacles, and the fracture walls are planar.
The key geometric parameters are the obstacle fraction f and the ratio between the fracture aperture
and the obstacle diameter 𝛼. We use three-dimensional Stokes flow numerical simulations to demonstrate
that the fracture flow model given by the Reynolds equations may largely overestimate the flow rate.
To circumvent the inability of the Reynolds model to fulfill the no-slip boundary condition at the
rims of the obstacles, we use the Brinkman flow model adapted to the case of fracture flow. The relative
difference between the effective transmissivities computed with the Stokes and Brinkman models
for systems with multiple obstacles is below 10% for fractions up to 0.5. We use the Brinkman model
to study the effective transmissivity of a plane-walled fracture with circular cylindrical obstacles.
Systematic numerical simulations show that the normalized effective transmissivity is predominantly
dependent on f and 𝛼, and the effects of obstacle ordering are minor. The presented numerical
results can be used by petroleum engineers for estimating transmissivities of propped fractures
under in situ conditions. The model can also be applied to microfluidic systems and for deriving
first-order estimates of the effective transmissivity of rough-walled, natural fractures with
load-bearing contact areas.

1. Introduction

Fracture flow is the prime mechanism of fluid transport in low matrix permeability formations, for example,
shales and crystalline rocks. It may play an important role during natural processes such as hydrocarbon migra-
tion (Aydin, 2000), hydrothermal circulation (Andersen et al., 2015; Curewitz & Karson, 1997; Lupi et al., 2010),
and metamorphism (Bickle & McKenzie, 1987; Jamtveit & Yardley, 1997). Fracture flow can also be a key factor
in industrial applications. A detailed knowledge of the transport properties of a fracture network is required
to ensure long-term gas storage in caverns in granitic rocks (Lindblom, 1989; Yoshida et al., 2013) and to assess
the safety of radioactive waste repositories in cystalline rocks (Neretnieks, 1990; Pruess et al., 1990). Simi-
larly, a detailed characterization of the flow properties of both single fractures (Méheust & Schmittbuhl, 2001;
Mourzenko et al., 1996; Renard et al., 2006) and fracture networks (Berkowitz & Adler, 1998; Odling, 1997) is
needed to build a model of a reservoir. Fracture transmissivity is an essential property that controls produc-
tion efficiency in the oil and gas industry, especially in low-permeability reservoirs (King, 2010; Palisch et al.,
2010; Warpinski et al., 2009).

Based on laboratory and in situ permeability measurements for crystalline and argillaceous rocks, Brace
(1980) discussed the influence of burial depth on the overall permeability of rock fractures. Berkowitz (2002)
reviewed state-of-the-art measurements and mathematical models of flow and transport phenomena in
fractured rock. The permeability of natural fracture networks is often too low for industrial processes, and
both geothermal energy extraction from low-permeability crystalline rocks and oil and gas recovery from
tight and shale gas reservoirs can be enhanced by hydraulic fracturing. Injection of high-pressure fluids into
rock formations produces new surfaces and promotes opening of the existing fractures, increasing the sur-
face area contributing to hydrocarbon or geothermal energy production (King, 2010; Legarth et al., 2005).
Proppant slurries are often pumped into the induced and stimulated fractures to maintain their apertures
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once fluid pressure is released (Liang et al., 2016; Zimmermann & Reinicke, 2010), and technological flu-
ids are mediated through propped fractures during the production phase in unconventional reservoirs and
geothermal fields.

Fracture roughness has a major impact on flow efficiency in natural fractures (Brown, 1987; Lee et al., 2014;
Mourzenko et al., 1995; Pyrak-Nolte et al., 1987; Zimmerman & Bodvarsson, 1996). However, for most techno-
logical fractures, the main resistance to flow is posed by proppant obstacles, and fracture surface roughness
is likely to play a subordinate role. The transmissivity of a propped fracture has been studied experimen-
tally (Cooke, 1973; Zhang et al., 2015) and numerically (Khanna et al., 2012). It was already demonstrated
by Darin and Huitt (1960) that a partial monolayer of proppants provides transmissivity that otherwise
would require several proppant layers, and monolayer proppant arrangements can be achieved by selecting
lightweight proppants and low-viscosity fluids (Brannon et al., 2004; Ramurthy et al., 2013). Proppant grains
can experience embedment into the rock matrix due to high confining pressures, which can significantly
reduce fracture aperture and have a detrimental effect on the transmissivity of a propped fracture. Alramahi
and Sundberg (2012) showed that the embedment process is particularly significant for clay-rich rocks, which
are prone to creep, and the monolayer configuration of proppant grains.

The problem of flow in narrow apertures with obstacles has been gathering attention for over a hundred years.
Hele-Shaw (1898) performed a series of experimental studies of the steady state viscous flow past cylindri-
cal obstacles embedded between parallel planar plates. For narrow apertures, the observed flow was laminar
and resembled the theoretical flow of an inviscid fluid around an infinite cylinder, except in the direct vicin-
ity of the obstacles, where boundary layers formed. Neglecting inertia effects and assuming that the velocity
component perpendicular to the walls is small compared to the in-plane components, Stokes (1851) derived,
to leading order, a simplified flow equation, which stated that the wall-perpendicular component of veloc-
ity vanishes, the velocity is given by pressure gradient, and the pressure is constant across the aperture and
harmonic in the wall plane. The same partial differential equation was independently proposed earlier in the
context of thin viscous fluid films by Reynolds (1886). Stokes recognized that the assumptions, which allowed
for deriving a simplified, reduced-order approach, led to the inability of satisfying the no-slip condition at the
rims of the obstacle. In particular, the in-plane components of the second-order derivatives of the velocity
vector are not necessarily negligible in the vicinity of the obstacle.

Thompson (1968) presented an expansion solution of the Stokes flow around an isolated circular obsta-
cle confined between two parallel plates. The velocity field was given for small ratio between the plate
separation and obstacle diameter. Lee and Fung (1969) derived a more general series solution, whose con-
vergence was examined for the distance between the plates reaching 5 times the diameter of the obstacle.
An approximate solution was obtained by retaining only two leading-order terms in the expansion, and it
was shown to perform well for the distance between the plates not exceeding the diameter of the obsta-
cle. The two-term approximation was further asymptotically expanded in the limit of small plate separation,
and it was found to favorably compare to the Thompson’s solution. Lee (1969) extended the approximate
two-term solution to develop a periodic solution for regularly spaced circular obstacles between parallel
plates. The solution was used to find the resistance of the flow as a function of geometric parameters. Balsa
(1998) used a combination of matched asymptoptic expansions and a numerical method to obtain the cor-
rection term taking into account the no-slip boundary condition at inclusion rims into the classical Hele-Shaw
expression.

Spielman and Goren (1968) and Pop and Cheng (1992) presented analytical studies of the incompressible
steady state flow past a circular cylinder embedded in a porous medium using the Brinkman model (Brinkman,
1949), which allows for satisfying the no-slip boundary condtion at the rim of the cylinder. Although frac-
ture flow is not considered in the original study, the derived analytical models can be used to obtain an
approximation to the flow around a circular obstacle embedded in a narrow aperture by supplying it with the
permeability of an empty fracture rather than the permeability of a homogeneous three-dimensional porous
medium. A similar derivation was presented by Wang (2009) and was used to build an effective medium model
of the pressure drop for multiple inclusions with a minimum separation large enough to neglect mutual inter-
actions. An approximate, depth-integrated Brinkman-type fracture flow model was used by Fernandez et al.
(2001) to derive a linear stability analysis of viscous fingering inside the Hele-Shaw cell. Zeng and Weinbaum
(1994) provided a detailed analysis of the Brinkman correction for unidirectional flows in a Hele-Shaw cell.
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The authors showed that although the correction should in general involve a nonlocal operator of the aver-
aged velocity, using the local Laplace term scaled by the inverse of the background permeability of the cell is
a good approximation at long wavelength.

Kumar et al. (1991) investigated fluid flow between two parallel plane walls with randomly distributed,
monodisperse cylindrical obstacles, which were considered as an analog of contact areas in natural rock
fractures. The authors developed an expression for the overall permeability by deriving and integrating the
fracture-perpendicular distribution of the average velocity. The approach builds on the effective permeabil-
ity due to in-plane averaging for an unbounded system consisting of infinitely long cylinders. Interestingly,
a Brinkman-type equation arises again during the depth integration of the in-plane averaged velocity. The
authors claimed that their estimate provides a very good fit to the experimental results. The same result,
although in a different context, was also obtained by Tsay and Weinbaum (1991).

The Brinkman model of fracture flow has also been used in numerical simulations. Flekkøy et al. (1995) studied
the hydrodynamic dispersion around a single cylindrical obstacle in a Hele-Shaw cell using both experiment
and Lattice Boltzman numerical simulations. While reducing the dimensionality of the problem and deriving
an approximate flow model, the authors treated the viscous drag effect due to the walls by assuming a per-
fectly parabolic shape of the velocity profile across the thickness of the cell, which led them to the Brinkman
model. Using an analytical solution for the open channel flow, the accuracy of the approximate flow model was
assessed at about 10%. The Brinkman model was also used for modeling two phase flows in a Hele-Shaw cell
with cylindrical obstacles (Ferrari et al., 2015; Horgue et al., 2013). Nagel and Gallaire (2015) used a boundary
element method (BEM) to solve the Brinkman model for a deformable droplet in a microfluidic flow in a nar-
row channel. Laleian et al. (2015) used 2-D and 3-D lattice Boltzmann method (LBM) simulations to study the
accuracy of the depth-averaged flow model for variable aperture and cylindrical obstacles of different size,
reporting an accuracy of 10% in terms of the effective permeability.

The Brinkman flow model can be viewed as combining the Stokes model, which governs the flow in pure
fluid regions at the microscale, and the Darcy model, which describes the macroscopic flow in porous media.
The Brinkman fracture flow model can be obtained from the two-dimensional Stokes model by adding a
velocity-proportional linear term due to the wall resistance. Such approach allows for using the no-slip bound-
ary condition at the rims of the obstacles. On the other hand, the classical Reynolds model, or the local cubic
law (LCL), is widely used for flow description in fractures. It can be derived from the Stokes equations assum-
ing a constant pressure across the fracture aperture and a smooth variation of fracture aperture. Various
approaches to measuring the local fracture aperture and including fracture tortuosity have been proposed to
improve the performance of the Reynolds model (Brown, 1987; Brush & Thomson, 2003; Ge, 1997; Lee et al.,
2014; Mallikamas & Rajaram, 2010; Mourzenko et al., 1995; Oron & Berkowitz, 1998; Renshaw, 1995; Wang,
Cardenas, et al., 2015; Yeo, 2001; Zimmerman & Bodvarsson, 1996). However, due to a reduced-order approach,
the Reynolds model cannot satisfy the no-slip condition at the contacts. Although the local cubic law model
has been often used to study the influence of contacts on the flow in rough-walled fractures (see for a
review, e.g., Dippenaar & Rooy, 2016), already at low obstacle fractions, the contact regions may influence flow
paths more significantly than predicted in the LCL models (Berkowitz, 2002; Durham & Bonner, 1994; Oron &
Berkowitz, 1998)

In the present work, we focus on the idealized fracture bounded by parallel planar walls and filled with circu-
lar obstacles. The studied geometry can directly represent hydraulic fractures propped with large proppant
grains (Alramahi & Sundberg, 2012; Brannon et al., 2004), or it can be a good approximation to fractures
formed by reactive processes (Budek et al., 2017; Detwiler et al., 2003; Szymczak & Ladd, 2009). We use the
2.5-D Brinkman flow model, which ensures the satisfaction of the no-slip boundary condition at the rims of
the obstacles, to perform numerical simulations of the flow transmissivity of an idealized fracture. The numer-
ical model is validated against an analytical solution in the case of an isolated circular obstacle. We carry out
direct numerical simulations using a three-dimensional finite element incompressible Stokes solver for both
fractures with mutliple obstacles to validate the accuracy of the approximate 2.5-D solutions based on either
the Stokes-Brinkman or the Reynolds model. Then, systematic simulations of the transmissivity tensor are
conducted using the Brinkman model for a wide range of obstacle fractions and various fracture aperture
to grain diameter ratios. The computed transmissivities are compared with the predictions of the effective
medium approximations.
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Figure 1. A geometric model of a plane-walled fracture filled with randomly
located cylindrical circular obstacles. The cylindrical obstacles approximate
embedded proppant grains of a spherical shape. b denotes the fracture
aperture, and R and d are the cylindrical obstacle radius and diameter,
respectively.

2. Model
2.1. A Geometric Model of a Fracture With Obstacles
Figure 1 shows our geometric model of a plane-walled fracture supported
by randomly distributed circular cylinders, which may correspond to a par-
tial monolayer of proppant grains. We postulate that spherical proppant
grains appear as cylindrical circular obstacles due to their embedment into
the wall rock under high confining pressures. A parameter 𝛼 is introduced
to characterize the level of proppant embedment

𝛼 = b
d

(1)

where b is the fracture aperture and d is the obstacle diameter. We use R
to denote the obstacle radius, and f is the surface fraction occupied by the
obstacles in 2-D. For cylindrical obstacles, the areal fraction is equivalent
to the volumetric fraction.

The obstacles are assumed to be monodisperse throughout the model.
Although for embedding proppant grains, we expect 𝛼 to be less than 1,

higher values may be relevant to other applications. Hence, we use 𝛼 up to 5 in our simulations. To obtain
two-dimensional distributions of nonoverlapping circular obstacles, we use the following:

1. RSA. Random Sequential Adsorption algorithm, in which disks are sequentially placed at random loca-
tions and only nonoverlapping disks are added to the model. Using RSA, a maximal packing limit
fc = 0.547± 0.002 can be reached in an unbounded two-dimensional domain. The details of the algorithm
are present in Feder (1980). We enforce a minimal separation of 0.05R between the disks, which allows us
to obtain packing fractions of up to about f = 0.5 with RSA.

2. LSA. Modified Lubachevsky-Stilinger algorithm (e.g., Skoge et al., 2006), in which initially small disks, seeded
with a Poisson distribution in space, are grown to a desired fraction, while their positions are redistributed
in energy-dissipating collisions to ensure no overlaps. Again, a minimal separation of 0.05R between the
disks is enforced, and packing fractions of up to f = 0.8 can be obtained.

3. HCP. Hexagonal packing arrangement, in which the maximum packing fraction for such configuration is
f = 𝜋∕(2

√
3) ≈ 0.9069 (e.g., Berryman, 1983). In our numerical simulations, we have generated packings

up to fraction of f = 0.905.

In 3-D and the corresponding 2.5-D simulations, we use nonperiodic distributions of the obstacles; that is,
the cylinders are fully contained within a square computational domain. Otherwise, we use periodic distribu-
tions with a square unit domain, whose boundaries are in general intercepted by the obstacles. We presented
examples of periodic obstacle distributions generated with RSA, LSA, and HCP in Figure 2.

2.2. Fracture Flow Models
We assume that the flow is in the laminar regime, that is, the Reynolds number Re is small. We also consider
a low Knudsen number regime, in which the no-slip boundary condition applies at the solid-fluid interfaces

Figure 2. Selected examples of periodic obstacle distributions generated using (a) RSA, (b) LSA, and (c) HCP. The obstacle
fraction is 0.3 in Figure 2a, 0.65 in Figure 2b, and 0.3 in Figure 2c.
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(e.g., Landau and Lifshitz, 1959). Lauga et al. (2007) and Wang, Schmitt, and Wang (2015) described the
limitations of using the no-slip boundary conditions.
2.2.1. The 3-D Stokes Model
Low Reynolds number flows are governed by the three-dimensional Stokes equations

− ∇p + 𝜇∇2u + f = 0 (2)

∇ ⋅ u = 0 (3)

where p is fluid pressure, u is the velocity vector, f is the body force, and 𝜇 denotes the fluid shear viscosity. In
equation (2), we assume that the fracture is filled with a single-phase, incompressible Newtonian fluid, which
is characterized by a constant viscosity. We use the 3-D Stokes model to perform direct numerical simulations,
in which fluid flow is computed using the exact three-dimensional fracture geometry. However, solving the
incompressible Stokes equations for complex fracture geometries poses certain numerical challenges. There-
fore, we seek an appropriate 2.5-D upscaled flow model, which could be used during systematic simulations
for representative systems with a large number of obstacles (N> 1,000).

For technical reasons, we use nonperiodic obstacle distributions in our 3-D Stokes simulations. Thus, no obsta-
cles intercept the boundaries of a regular computational box. We drive the flow by imposing a background
pressure gradient, which is achieved by accordingly prescribing the normal component of the traction vec-
tors at the upstream and downstream model boundaries. The tangential components of the velocity vectors
are set to 0 at these walls. The no-slip boundary conditions are used at the remaining boundaries, that is, the
other pair of the side walls, the top and bottom fracture walls, and at the rims of the obstacles.
2.2.2. The 2.5-D Brinkman Model
The Stokes equation (equation (2)) can be integrated across the fracture depth assuming locally parabolic
velocity profiles, as it was, for example, proposed in Flekkøy et al. (1995). As a result, we obtain a Brinkman
type of equations

− b∇p + 𝜇∇2J − 𝜇

K
J + bf = 0 (4)

∇ ⋅ J = 0 (5)

where J is the local flow rate (i.e., the depth-integrated in-plane components of the velocity vector), and K is
the permeability of an empty plane-walled channel of an aperture b, K = 1∕12b2. The additional Brinkman
term 𝜇

K
J in equation (4) corresponds to the viscous drag due to the presence of the fracture walls.

We use the Brinkman model in our systematic simulations of the effective fracture transmissivity for peri-
odic distributions of the obstacles. In the simulations, periodic boundary conditions are applied in both x
and y directions, and fracture flow is driven by a prescribed body force f. In the Brinkman model, the no-slip
boundary conditions can be prescribed to the rims of the obstacles. The no-slip boundary conditions are also
implicitly used at the fracture walls.
2.2.3. The 2.5-D Reynolds Model
Fracture flow is typically described using the Reynolds model (e.g., Adler & Thovert, 1999)

J = b3

12𝜇

(
−∇p + f

)
(6)

∇ ⋅ J = 0 (7)

The Reynolds model is governed by a scalar-valued partial differential equation, which is an appreciable sim-
plification over the vector-valued Stokes model. However, it only allows for applying the free-slip rather than
the no-slip boundary conditions, which is expected to result in a significantly overestimated flow rate in
fractures with a large fraction of obstacles.

2.3. Finite Element Method Flow Solvers
The Brinkman model (equations (4) and (5)) is solved numerically using a modified MILAMIN code. MILAMIN
(Dabrowski et al., 2008) is a finite element method (FEM)-based incompressible Stokes solver based on
the mixed formulation, which is capable of solving two-dimensional problems on unstructured computa-
tional meshes. We run Triangle (Shewchuk, 1996) to discretize the void space between the obstacles with
body-fitting triangular meshes. MUTILS package (Krotkiewski & Dabrowski, 2013) is used to call Triangle
directly in MATLAB, without using any file I/O. The second-order, Ladyzenskaja-Babuska-Brezzi (LBB)-stable
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Figure 3. (a) An example of the three-dimensional Stokes model. The peak
velocity magnitude u normalized by the reference flow rate uref in an empty
fracture is color-coded. (b) A zoomed portion of the model, illustrating the
computational mesh.

seven-node Crouzeix-Raviart triangular element with a linear discontinu-
ous pressure is used. The FEM discretization of the Brinkman model gives
in an indefinite, symmetric system of linear equations(

A BT

B 0

)(
v
p

)
=
(

f
g

)
(8)

where v and p denote the discrete velocity (depth-integrated) and pres-
sure (scaled with the fracture aperture), B is the discrete divergence oper-
ator, and f and g are the right-hand side terms taking into account the
body force and the Dirichlet and Neumann boundary conditions. The A
operator is given by the sum of the velocity stiffness matrix scaled by the
fluid viscosity and the velocity mass matrix scaled by 𝜇∕K , which corre-
sponds to the Brinkman term in equation (4). A block Gaussian elimination
of equation (8) results in a symmetric, positive-definite pressure Schur
complement

BA−1BT p = BA−1f − g (9)

We avoid explicitly computing the pressure Schur complement, and the
conjugate gradient iterations preconditioned with the pressure mass
matrix M are used to solve equation (9). To reduce the number of itera-

tions, we improve the conditioning of the pressure Schur complement by adding a penalty term 𝜅BT M−1B to
the A matrix, where 𝜅 denotes the penalty factor. For a discontinuous pressure space, M can be inverted on
the element level, and the inner matrix A + 𝜅BT M−1B can be formed explicitly and factorized by the Cholesky
decomposition as it remains sparse, symmetric, and positive definite. Despite its nonlinear scaling, highly effi-
cient modern implementations of the sparse Cholesky factorization can be used in practice for systems with
up to several tens of millions of degrees of freedom, if preceded with an appropriate fill-in reducing reorder-
ing. The time spent on the factorization, which dominates the computation time, is on the order of 1 min for
systems with 1 million computational nodes. During pressure iterations, the action of the inverse of the inner
matrix is found by applying the forward and backward substitutions to the Cholesky factor, which is com-
puted once and stored. Increasing the penalty factor generally reduces the number of iterations. However, a
too high penalty factor may result in an ill conditioning of the inner system. We have also noticed that the
simple mass matrix preconditioning deteriorates for models with a small permeability (fracture aperture). The
velocity field can be easily recovered, once the pressure is found.

We use TetGen (Si, 2015) to generate unstructured tetrahedral meshes (Figure 3b), which are used in our 3-D
Stokes simulations. MUTILS package (Krotkiewski & Dabrowski, 2013) is again used to call TetGen directly
in MATLAB. Due to a higher nodal connectivity, the Cholesky factorization is impractical for 3-D problems.
Instead, we use the minimal residual (minres) iterations directly on the indefinite system (equation (9)), setting
𝜅 to 0 or a small value. The minres iterations are preconditioned by either a simple Jacobi or a two-level
Bramble-Pasciak-Xu (BPX) type of the preconditioner for the A block and the pressure mass matrix for the
remaining part. The sparse matrix vector multiplications are performed with a NUMA-aware routine from the
MUTILS package, which allows us to use a tailored blocked storage for the symmetric sparse matrix and reach
an almost optimal memory bandwidth during the computations.

In Figure 3 we present an example solution of flow in a plane-walled fracture with 128 circular cylindrical
obstacles using three-dimensional Stokes model. The obstacle positions are generated using RSA algorithm
in which the fraction is f = 0.5 and the fracture aperture to obstacle diameter ratio is equal to 1. The flow is
driven by a nonzero pressure gradient applied to the opposite walls in the x direction (∇p = (p2−p1)∕L, where
p2 and p1 are constant pressures applied at the walls yz at x = 0 and x = L, respectively, and p2 > p1). The
no-slip boundary condition is used at the rims of the obstacles, at the lateral walls in the y direction, and at the
fracture wall. Only a bottom half of the fracture aperture is modeled due to the presence of mirror symmetry
about the midplane, where we apply the free-slip boundary condition.

2.4. Effective Fracture Permeability and Transmissivity
The specific discharge qx in x direction through an arbitary yz plane −L < x < Lis defined by the following
integral

qx(x) =
1

2Lb ∫
b∕2

−b∕2 ∫
L

−L
ux(x, y, z)dydz (10)
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where ux denotes the x component of the velocity vector and L is a half-length of the computational box.
For an incompressible flow, the discharge qx integrated on yz plane is independent of x, and any fluctua-
tions are due to numerical resolution. The integral (equation (10)) can be evaluated by performing Gaussian
quadratures on a set of triangles due to intercepting the tetrahedral mesh with a given yz plane (intercepting
a tetrahedron with a plane results in either a triangle or a quadrangle, which can be subdivided into two
triangles). In the case of 2.5-D models, the depth integration can be performed analytically by invoking the
parabolic profile, and the numerical integration is used for the individual segments of the line that cuts the
triangles from the mesh. The Kxx component of the effective fracture permeability tensor is given by

Kxx = 2L𝜇
Δp

qx (11)

where Δp denotes the pressure difference applied in the x direction. The off-diagonal Kxy component is
given by

Kxy = 2L𝜇
Δp

qy (12)

where the pressure difference is still applied in the x direction and the specific discharge qy in y direction can
be defined in an analogous way as qx . The complete effective fracture permeability tensor

K =
[

Kxx Kxy

Kyx Kyy

]
(13)

can be obtained by computing the specific discharges for two independent flows imposed with pressure
gradients acting in the perpendicular directions, namely x and y. Then, the eigenvalues K1 and K2 of the perme-
ability tensor (equation (13)) can be obtained and ordered as K1 > K2. The anisotropy of the effective fracture
permeability can be characterize by the anisotropy factor

𝛿 =
K1

K2
(14)

The mean permeability can be defined as the geometric mean of the principal permeabilities

K =
√

K1K2 (15)

The effective fracture transmissivity 𝜎 can be obtained by scaling the effective fracture permeability K with
the fracture aperture b.

3. Analytical Solution for Brinkman Flow Around an Isolated Cylinder

We use the analytical model of Spielman and Goren (1968) for Brinkman flow around an isolated imper-
meable cylinder to validate our Stokes-Brinkman 2.5-D (section 4.1.1) and to obtain the effective medium
theory estimates (section 5). The solution was rederived and applied in several other works (e.g., Chernyakov,
2001; Pop & Cheng, 1992; Wang, 2009). Wang (2009) presented the Brinkman equation (a distinction between
the effective viscosity of porous media and the fluid viscosity is made in the original paper of Wang, 2009)
in a dimensionless form by introducing a characteristic length scale R (inclusion radius), velocity U0, and
pressure 𝜇U0∕R

∇p′ = ∇2u′ − s2u′ (16)

The parameter s is a dimensionless parameter representing the ratio between the obstacle radius and the
length scale derived from the permeability of porous medium

s2 = R2

K
(17)

In our fracture flow model, the permeability is given by the permeability of an empty fracture

s2 = 12
(R

b

)2

= 3𝛼−2 (18)

A uniform flow is considered in the far field, and no-slip boundary conditions are invoked at the rim of
the cylinder. The solution to the problem can be found using the stream function approach in cylindrical
coordinates

𝜓 (r, 𝜃) = f (r) sin 𝜃 (19)
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Figure 4. Two-dimensional Brinkman flow around an isolated impermeable circular inclusion subject to a uniform flow
in the far field. The host permeability is given by the permeability of an empty fracture of an aperture equal to 2𝛼 times
the inclusion radius. The depth-averaged velocity is normalized by the far-field flow rate, and its magnitude is color
coded. The results are given for three different 𝛼 values: (a) 0.1, (b) 0.5, and (c) 1.0. In the inset of Figure 4a the definition
of r and 𝜃 in cylindrical coordinates is shown (equation (19)).

where the radial dependence is given by

f (r) = r −
(

1 + 2
K1(s)

sK0(s)

)
⋅

1
r
+

2K1(sr)
sK0(s)

(20)

and K0 and K1 are the modified Bessel function of second kind. The velocity field can be calculated using
the relation

u′ =
(

1
r2 sin 𝜃

d𝜓 (r, 𝜃)
d𝜃

,− 1
sin 𝜃

d𝜓 (r, 𝜃)
dr

)
(21)

Finally, the net force acting on the cylinder is per unit width

D = 2𝜋𝜇U0

(
s2 +

2sK1(s)
K0(s)

)
(22)

In Figure 4, we present the velocity field around an isolated circular inclusion using the analytical solution.
The velocity is uniform in the far field, and the no-slip boundary condition is imposed at the rim of the inclu-
sion. The results are presented for three selected 𝛼 values: 0.1 (Figure 4a), 0.5 (Figure 4b), and 1.0 (Figure 4c).
Increasing 𝛼 (fracture aperture with respect to the inclusion diameter) results in a more distant perturbation
of the velocity field but of a smaller amplitude. The regions of the highest velocity are visibly separated from
the inclusions in the case of 𝛼 = 0.5 and 𝛼 = 1.0, while they are almost next to the inclusion for 𝛼 = 0.1,
resulting in a steep velocity gradient. Although the magnitude of the velocity exhibits rather large differences
between the models, the directions of the velocity vector remain quite similar.

4. Benchmarks
4.1. Flow Model Comparison
We compare the numerical solutions of the Stokes, Brinkman, and Reynolds flow models (section 2.2) for the
simple case of an isolated cylinder and for RSA configurations with mutliple circular obstacles (N = 128).
In this set of experiments, we use a square computational domain, which fully embeds all the obstacles,
and we impose nonperiodic boundary conditions; that is, fluid flow is induced by a pressure difference
applied between the two opposite sides of the sample in x direction, and the no-slip boundary conditions
are used at the other pair of the side boundaries. To perform a direct comparison between the 3-D Stokes
and 2.5-D Brinkman and Reynolds models, we evaluate the peak velocity field in the xy midplane of the
three-dimensional Stokes model and obtain the corresponding quantity by scaling the local flow rate J in the
2.5-D models with 2

3
b.

4.1.1. A Plane-Walled Fracture With a Single Circular Obstacle
Figure 5 shows two perpendicular velocity magnitude profiles for flow around an isolated cylinder using
𝛼 = 0.5 (a, b) and 𝛼 = 1.0 (c, d). The profiles are taken along the lines x = R∕2 (Figures 5a and 5c) and y = R∕2
(Figures 5b and 5d). The velocity fields have been obtained for the Stokes, Brinkman, and Reynolds fracture
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Figure 5. A comparison of velocity profiles along lines (a, c) x = R∕2 and (b, d) y = R∕2 for 𝛼 = 0.5 (Figures 5a and 5b)
and 𝛼 = 1.0 (Figures 5c and 5d) obtained using a numerical solution of the Stokes model, analytical and numerical
solutions of the Brinkman model, and an analytical solution of the Reynolds model. Only half of the profile is shown due
to symmetry.

flow models. We show both the analytical and numerical solutions of the Brinkman model. The solutions prac-
tically coincide, and some minor discrepancies (not visible in the plots) can be related to a limited size of the
computational domain rather than the discretization effect (a high numerical resolution was used). The Stokes
and Brinkman models produce largely similar results; however, differences up to several percent are present
in the high-velocity regions. We note that although the z component of the velocity vanishes by mirror sym-
metry in the midplane, it is nonzero away from it in the vicinity of the inclusion in the Stokes model. The result
obtained with the Reynolds are notably different from all the other results, and, in particular, the velocity close
to the obstacle tends to be high, which is a clear manifistation of the free-slip boundary condition.
4.1.2. A Plane-Walled Fracture With Multiple Circular Obstacles
In Figure 6, we show the velocity magnitude fields obtained numerically using the Stokes (a), Brinkman
(b), and Reynolds (c) flow models for a plane-walled fracture with an obstacle fraction of f = 0.3 and an
aperture-to-diameter ratio of 𝛼 = 0.5. One hundred twenty-eight obstacles are seeded using the RSA algo-
rithm. The flow is driven by a pressure gradient applied to the left and right boundary walls, and the no-slip
boundary condition is used at the rims of the obstacles and at the top and bottom lateral walls in the
Stokes and Brinkman models. The flow fields obtained with the Stokes and Brinkman models are almost
indistinguishable, and the flow pattern of disrupted channels of increased flow velocity can be observed.
The Reynolds model produces a largely different flow field, which is characterized by the occurrences of
high-velocity zones in the apertures parallel to the general flow direction between some of the neighboring
obstacles. The velocity is clearly nonvanishing both at the rims of the obstales and at the top and bottom walls.
The effective permeability in the direction of the imposed flow was calculated for the three models, resulting
in K3D∕R2 = 2.05 ⋅ 10−3, KSB∕R2 = 2.17 ⋅ 10−3, and KR∕R2 = 4.24 ⋅ 10−3 for the Stokes, Brinkman, and Reynolds
models, respectively. The relative difference between the effective fracture permeabilities for the Stokes and
Brinkman is about 5%. The effective permeability computed with the the Reynolds model overestimates twice
the reference permeability obtained with the Stokes model. To gain insights into the character of the local
differences, we plot the velocity magnitude profiles along the y direction at x = 0 (middle of the sample).
The velocity profiles for the Stokes and Brinkman models are similar, and only minor differences, below 10%
at maximum, can be observed. Although retaining an overall similarity, the velocity profile obtained with the
Reynolds model exhibits some important differences. First, the velocities tend to be higher than in the other
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Figure 6. Flow field comparison between the (a) Stokes, (b) Brinkman, and (c) Reynolds models for a plane-walled
fracture with an obstacle fraction of f = 0.3 and an aperture-to-diameter ratio of 𝛼 = 0.5. The 128 circular obstacles are
generated with RSA. The velocity magnitude normalized by the reference flow rate for an empty fracture is color coded,
and the normalized effective fracture conductivities are given. (d) Velocity magnitude profiles along y direction at
x∕L = 0 are displayed for the three models.

two models. Second, the velocity tends to decrease toward the center of the apertures giving the local maxima
at the rims of the obstacles. A sixfold velocity increase can be observed in one of the apertures, resulting in a
peak profile velocity. In Figure 7 we present a systematic comparison of the effective transmissivity computed
with the upscaled models and the three-dimensional Stokes model for varying obstacle fraction between 0.1

Figure 7. The relative difference between the effective fracture
permeabilities computed for the upscaled Brinkman and Reynolds models
and the three-dimensional Stokes model as a function of obstacle fraction.
The results are shown for 𝛼 = 0.5 and 1.0 and obtained with a single
realization for a given fraction using 128 obstacles generated with RSA.

and 0.5. In the test, we use 128 inclusions generated with RSA and a single
realization for a given fraction. For the studied fraction range, the results
show a steady increase of the mismatch between the upscaled mod-
els and the reference transmissivity obtained with the three-dimensional
Stokes model. The mismatch reaches up to 10% in the case of the Brinkman
model, and the effective transmissivity computed with the Reynolds
model can be almost 25 times larger for f = 0.5 and 𝛼 = 1.0. At moderate
fractions of about 0.3 the Reynolds model can overestimate the effec-
tive transmissivity by a factor of 4 (𝛼 = 1.0). In our view, the discrepancy
between the transmissivities computed with the Brinkman and Stokes
model is on a sufficiently low level to consider the upscaled Brinkman
model a satisfactory tool for performing systematic simulations for large
systems. On the other hand, the Reynolds model produces largely overes-
timated results and should be avoided even for low obstacle fractions.

4.2. System Size Effects
To quantify the system size effect, that is, the undesirable influence of a
limited computational domain size L (with respect to the obstacle radius
R) on the computed effective flow properties, we have performed system-
atic simulations varying the number of obstacles, that is, 64, 128, 256, 512,
1024, 2048 and finally 10000, while keeping the obstacle fraction fixed.
We use obstacle fractions of 0.1, 0.3, and 0.5 for both RSA and LSA models
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Figure 8. The (a, b) average and (c, d) standard deviation of the anisotropy factor computed for multiple realizations as
a function of the normalized system size L∕R. Dashed lines show power law fits.

and additonally 0.7 in the case of LSA. For each number of obstacles, 128 different realizations are generated
to obtain the average values and standard deviations of the effective properties, with the exception of the
largest system size (N = 10,000), for which only 16 different realizations are investigated.
4.2.1. Anisotropy
In Figures 8a and 8b, we present the average of a reduced anisotropy factor 𝛿−1 (see definition in equation (14)
computed for multiple realizations as a function of system size L∕R. The anisotropy factor reaches up to 1.5
for small system sizes, and it systematically decreases with increasing the system size. For a system size of
about L∕R = 100, the anisotropy factor is below 1.1. For any given system size, increasing obstacle fraction
tends to give a lower degree of anisotropy. The lowest measured averages of the anisotropy factor yield about
1.02. We observe no substantial differences between the results for LSA and RSA. By fitting the system size
dependence of the averaged anisotropy factor with a power law, we obtain 𝛿 − 1 ∝ (L∕R)−1. The power law
fit is in agreement with the scaling proposed by Koza et al. (2009) for randomly generated 2-D porous media
and generalized to the 3-D case by Matyka et al. (2013)

𝛿 − 1 ∝ (L∕R)−
D
2 (23)

where D is the system dimension.The standard deviation of the anisotropy factor (Figures 8c and 8d) exhibits
the same scaling law. For a system size of L∕R = 100, the normalized standard deviation of 𝛿 is already
below 0.05.
4.2.2. Effective Permeability
Figures 9a and 9b show the effective mean permeabilities (< K > =

√
K1K2 normalized by the mean value of

permeability for the biggest system size, i.e., N = 10,000) and their standard deviations as a function of L∕R
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Figure 9. The (a, b) average and (c, d) standard deviation of the mean permeability computed for multiple realizations
as a function of the normalized system size L∕R. The standard deviation is also illustrated with the error bars (Figures 9a
and 9b). Dashed lines show power law fits.

for various packing fractions f and two generation algorithms, that is, LSA and RSA. Figures 9c and 9d show
the scaling of the standard deviation normalized by the average permeability as a function of the system size.
For obstacle fractions below f = 0.5, the effective permeability exhibits clear convergence and the standard
deviation decreases with increasing the system size, with the scaling approximately given by (L∕R)−1, similar
to the one exhibited by the effective anisotropy. The standard deviation is less than 1% for N = 10,000, and
it is less than 5% for 2,048 obstacles, which we consider as an acceptable level for further considerations. The
standard deviation obtained for N = 10,000 and f = 0.7 gives a slightly outlying result, which may indicate
that 16 is a too small number of samples for such high fraction.

5. Effective Transmissivity of a Fracture With Obstacles—Numerical Results
and Effective Medium Theory

Figure 10 shows the effective transmissivity (the effective permeability K multiplied by the aperture b; see
section 2.4) of a plane-walled fracture with circular cylindrical obstacles as a function of f for selected val-
ues of 𝛼. The results are given for 2,500 obstacles, whose positions are generated by either LSA, HCP, or RSA.
We report the mean component of the effective transmissivity, according to equation (15). Both the obsta-
cle distribution and the boundary conditions are periodic, and we use the Brinkman model to compute the
flow field.

The effective transmissivity decreases with increasing f and decreasing 𝛼, which is an expected behavior due
to a systematic reduction of the pore space available for the fluid flow. For R → 0, the effective transmissivity
𝜎

R3 = 2
3
𝛼3 reproduces the solution for an empty fracture, that is, 𝜎 = 1

12
b3. The effective transmissivities com-

puted for RSA and LSA configurations, which can be compared up to a fraction of f = 0.5, show almost no
difference. The LSA transmissivity curves exhibit evident plateaus while approaching f = 0.7, which is espe-
cially visible for high 𝛼 ratios. On the other hand, the HCP curves show a monotonic behavior, with no plateau
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Figure 10. Normalized mean transmissivity < 𝜎 > ∕R3 of plane-walled fractures with 2,500 circular cylindrical obstacles
as a function of obstacle fraction f and fracture aperture to obstacle diameter ratio 𝛼. The obstacle distributions are
produced using RSA, LSA, and HCP generation algorithms, and the results are obtained using numerical solutions of the
Brinkman model.

regions, and the effective transmissivities obtained for the HCP configurations are systematically higher than
the ones obtained for LSA. For moderate 𝛼 values (0.5–1.0) and obstacle fractions of about f = 0.65, the
results obtained for HCP can be 3 times higher than the LSA results. The HCP configuration guarantees that all
the apertures between the obstacles systematically increase with decreasing packing fraction, which explains
the strictly monotonic character of the HCP curves. In addition, the distances between the obstacles are more
evenly distributed in the case of HCP, and in particular the minimal distance is larger than in the case of LSA
configuration, which offers an explanation to systematically higher results for HCP. We hypothesize that the
plateau observed in LSA curves relates to the onset of ordering, which is clearly present in LSA distributions
for high fractions.

For a high aperture-to-diameter ratio of 𝛼 = 5, the effective transmissivity exhibits the largest dependence on
the obstacle fraction, which for the studied range of fractions spans almost 5 orders of magnitude. Between
an empty fracture and an obstacle fraction of f = 0.3 the transmissivity drops 2 orders of magnitude, then
again almost 2 orders of magnitude between f = 0.3 and f = 0.7 and almost an order of magnitude between
f = 0.7 and f = 0.8. Decreasing the fracture aperture 5 times, while keeping the obstacle diameter fixed,
results in a more than 2 orders of magnitude transmissivity drop, if the obstacle fraction is small. On the other
hand, the drop is less than an order of magnitude for a large obstacle fraction. For 𝛼 = 1.0, order of magni-
tude transmissivity drops are observed in the fraction intervals f = 0–0.4, f = 0.4–0.65, and f = 0.65–0.8. For
𝛼 = 0.5, the entire drop over the studied fraction range is less than 3 orders of magnitude, with only an order
of magnitude reduction reached for f = 0.5. For a fixed obstacle diameter and at an intermediate fraction of
f = 0.3, the impact of decreasing𝛼 from 1.0 to 0.5 corresponds to increasing obstacle fraction to about f = 0.5.
For 𝛼 = 0.1, only an order of magnitude transmissivity drop is observed after covering 70% of the fracture area
with obstacles. In general, the range of the observed transmissivities for different 𝛼 values clearly decreases
with increasing obstacle fraction. Figure 11 compares the numerically determined fracture permeabilities
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Figure 11. Effective medium scheme predictions for the normalized effective permeability of a plane-walled fracture
with circular obstacles as a function of obstacle fraction for (a) 𝛼 = 0.1, (b) 0.5, (c) 1.0, and (d) 5.0. Solid lines show the
predictions according to the models of Darin and Huitt (1960), Lee (1969), Walsh (1981), and Kumar et al. (1991), and the
dashed lines give the effective permeability calculated using the differential effective medium (DEM) model developed
based on the drag force formula from Spielman and Goren (1968). The results of numerical simulations are shown with
the circular (LSA), triangular (RSA), and star (HCP) markers.

with the predictions of several selected effective medium schemes. Darin and Huitt (1960) proposed a
modified Carman-Kozeny scheme for a plane-walled fracture containing partly embedded spherical grains

K
R2

= (1 − f )3

CS2f 2
(24)

where Carman-Kozeny constant C = Cv𝜏
2 contains information about obstacle shape factor Cv and hydraulic

tortuosity 𝜏 (we use C = 5 following the original work of Darin and Huitt, 1960, which is a typical value
for unconsolidated porous media), and S is the wetted surface area per unit volume of obstacles contained
between the fracture faces. We have adjusted the original expression for S and f to the case of cylindrical
obstacles rather than partly embedded spheres.

Spielman and Goren (1968) used the drag force (equation (22)) and the self-consistent averaging (SCA) tech-
nique to obtain an implicit relation between the effective conductivity and the obstacle fraction f for a fibrous
material. The original SCA prediction is limited to fractions of up to 0.5, and it is not taking into account
the underlying permeability of an empty fracture. Rather than modifying the SCA scheme, we develop a
differential effective medium type of scheme (Norris, 1985) using equation (22)

ds
df

= 1

1 − f
fm

(
s + 2

K1(s)
K0(s)

)
(25)
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where fm is the random close packing fraction for monodisperse disks and K0, K1, and s are defined in section 3.
We set fm = 0.82 (Berryman, 1983) and numerically solve equation (25) using an ODE solver in MATLAB.

Lee (1969) constructed an approximate three-dimensional solution for circular cylinders periodically dis-
tributed on a hexagonal lattice between two parallel plates. For a large separation between the cylinders the
following expression for the effective transmissivity was proposed

K
R2

= 𝛼2

3

1 − f ⋅ K2

(
𝜋

2𝛼

)
∕K0

(
𝜋

2𝛼

)

1 + f ⋅ K2

(
𝜋

2𝛼

)
∕K0

(
𝜋

2𝛼

) (26)

Based on the Reynolds flow model, Walsh (1981) used the Maxwell’s effective medium approach to derive
an analytical expression for the effective permeability of a fracture with randomly distributed circular
cylindrical obstacles

K
R2

= 𝛼2

3

(
1 − f
1 + f

)
(27)

Kumar et al. (1991) obtained an approximation to the overall velocity distribution across the fracture aper-
ture based on a two-dimensional flow averaging in the fracture plane. By integrating the velocity profile, the
following closed-form expression for the effective permeability was proposed

K = K2D

(
1 − tan h(𝜁 )

𝜁

)
(28)

where K2D is the effective permeability of a two-dimensional Stokes flow across an array of parallel cylinders

and 𝜁 = (1−f )𝛼√
K2D∕R2

. Depending on the obstacle geometry, expressions derived for either periodic (Drummond &

Tahir, 1984; Hasimoto, 1959; Sangani & Yao, 1988) or randomly distributed cylinders (Kuwabara, 1959; Sangani
& Yao, 1988) can be used. For an overview of the available models, we refer the readers to the papers of Åström
et al. (1992), Skartsis et al. (1992), and Yazdchi et al. (2011). Here we use the classical model of Carman (1997),
in the following form

KCK

R2
= 4

(1 − f )3

ΨCK f 2
(29)

where we set ΨCK = 180. Figure 11 shows the normalized effective permeability according to the predictions
produced by the effective media schemes (equations (24)–(28)). For f = 0.1, the models of Kumar et al. (1991)
and Lee (1969) give very good approximations to the numerical results obtained for LSA and HCP, respectively.
As expected, the model of Walsh (1981) overestimates the effective permeability for large obstacle fractions,
but it still provides a useful approximation. For f = 0.1, the DEM model tends to underestimate the transmis-
sivity with increasing f , but the prediciton remains within a factor 3–4 even for f = 0.8. The model of Darin
and Huitt (1960) gives a very good approximation for high fractions (f > 0.4), but it slightly falls below the
numerical results for low obstacle fractions. In particlular, it is incapable of reproducing the exact transmissiv-
ity of an empty fracture. For f = 0.5, the model of Kumar et al. (1991) again gives a very good approximation
to the LSA results over the entire range of the studied obstacle fractions. While the DEM scheme exhibits an
almost perfect fit to the HCP results for all the fractions, the model of Lee (1969) only works well up to a frac-
tion of about f = 0.5. The model of Darin and Huitt (1960) gives a good approximation, within a factor of 2,
over the entire range of fractions. For high obstacle fractions, the model of Walsh (1981) overestimates the
effective transmissivity by almost 2 orders of magnitude. For f = 1.0, both the models of Kumar et al. (1991)
and Darin and Huitt (1960) give satisfactory approximations. The DEM model systematically overestimates the
transmissivity, but the prediction is still close to the numerical results. The model of Lee (1969) can be only
used for fractions up to f = 0.3, and it actually fails to deliver any result for fractions exceeding about 0.4. For
f = 5.0, both the model of Walsh (1981) and Lee (1969) are not applicable. The models of Kumar et al. (1991)
and Darin and Huitte (1960) remain to provide highly accurate approximations, and the DEM model notably
overestimates the effective transmissivity, but it still captures the effective transmissivity within an order of
magnitude for all the fractions. For large 𝜁 , the model of Kumar et al. (1991) recovers the two-dimensional
limit, that is, lim𝜁→∞ K = K2D. For small 𝜁 ,

K∕K2D ≃ 𝜁2∕3 (30)
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Figure 12. Normalized mean permeability K∕K2D as a function of
(1 − f )−1∕2f𝛼. The results are shown for LSA configurations and a wide range
of obstacle fractions. Solid line gives the power law fit, which is consistent
with the asymptotic scaling in the limit of small aperture and small fraction
derived using the model of Kumar et al. (1991) and the Carman-Kozeny
relationship. Experimental results: Darin and Huitt (1960) for random
arrangement of spherical propping agent (blue cross) and of Gunda et al.
(2013) for hexagonal array of cylindrical pillars in micofluid device (magenta
plus sign). The experimental results are normalized by numerical value of
K2D. The figure inset presents close-up with numerical results in the fraction
range f = 0.1–0.5; additional results for HCP configuration are marked by
open symbols for comparison with experimental data of Gunda et al. (2013).

where Carman-Kozeny model gives

𝜁 =
√
ΨCK

2
(1 − f )−

1
2 f𝛼 (31)

Figure 12 shows the effective permeability data normalized by the numer-
ically obtained K2D (2-D Stokes simulations using infinite cylinders) as a
function of (1 − f )−1∕2f𝛼 parameter. A fair data collapse can be observed,
although the data are shown for the entire range of obstacle fractions.
The results show that the asymptotic effective conductivity computed for
infinitely long cylinders (the 2-D Stokes model) is a good approximation
once (1 − f )−1∕2f𝛼 exceeds about 5 ⋅ 10−1. Thus, 𝛼 value at the transition
yields about 1 for f = 0.5. In Figure 10, the transmissivity curves computed
for𝛼 ≥ 0.5 are roughly parallel to each other for high enough fractions, and
the effective permeability curves for 𝛼 ≥ 0.5 should overlap if they were
displayed in the same plot in Figure 11. For small values of (1 − f )−1∕2f𝛼,
the normalized effective permeability can be fairly well approximated by a
power law fit (solid red line in Figure 12), particularly for low and medium
packing fractions. The fit is obtained with a power law exponent of 2, and it
gives a prefactor of 14.56, which is consistent with equations (30) and (31).

In Figure 12, we also present effective fracture permeabilities from two
experimental works: Darin and Huitt (1960) and Gunda et al. (2013). Darin
and Huitt (1960) performed measurements for random arrangements
of spherical, partially embedded proppant grains (steal balls) placed in
plane-walled fracture (steal plates) in a low packing fraction limit, that is,
f = 0.05 –0.23 and 𝛼 = 0.35 –0.82. The discrepancy between numerical
values for LSA configuration and experimental data are in the range of
12–38%; the smallest discrepancies are for low f and 𝛼, and the error
increases with increasing f and 𝛼. This can be explained by the difference
in the shape of the obstacles used in experiments (spheres) and numerical
simulations (cylinders). Gunda et al. (2013) delivered experimental mea-

surements of the effective permeability for hexagonally placed cylindrical pillars in a microfluidic device
for low Reynolds number, that is, Re < 1, in packing fraction range f = 0.1–0.5 and 𝛼 = 0.98 –3.26. The
experimental data differ from our numerical results of HCP in the range of 1.7–33%.

6. Discussion

Fluid flow in rough-walled fracture is typically studied using the Reynolds model (Brown, 1987; Zimmerman
et al., 1991). Mourzenko et al. (1995) discussed the validity of the Reynolds approximation as a function of
fracture roughness characteristics. The Reynolds model is incapable of capturing recirculation flow develop-
ing within large embayments at the fracture walls and fulfiling the no-slip boundary condition at the rims of
the contact area, which leads to an overestimated effective transmissivity. The Brinkman model (Brinkman,
1949) can be viewed as a hybrid model, combing the characteristics of the Darcy and Stokes models. Typi-
cal applications of the Brinkman model include porous flow in fibrous media (Spielman & Goren, 1968) and
fluid flow in dual-porosity rocks such as karst reservoirs (Krotkiewski et al., 2011). In the case of fibrous media,
the Brinkman model allows for applying the no-slip boundary condition at the interface between the imper-
meable obstacles and the porous matrix, and in dual-porosity media allows for a smooth matching of the
solutions between the domains dominated by the open-space and porous flow.

In this work, we study single-phase flow in the void space of a plane-walled fracture filled with impermeable
circular cylindrical obstacles. We treat the fracture as a two-dimensional porous medium, whose permeability
is given by the cubic law, and compute the flow field using the upscaled Brinkman model. The model embeds
the assumption of a strictly parabolic velocity distribution across the fracture depth, which is not exactly
fulfiled in the vicinity of the obstacles and lateral walls (Flekkøy et al., 1995). Thus, the Brinkman model for
fracture flow is only approximate. Although a higher-order model could be derived following the theoretical
analysis presented in Thompson (1968) and Lee and Fung (1969), our numerical tests show that the mismatch
between the effective transmissivities computed using the Brinkman model and the true 3-D Stokes model
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stays below 10% for fractions as high as 0.5. Transmissivity changes of this order correspond to variations of
either obstacle fraction or fracture aperture well below the implied uncertainty level for typical applications.
On the other hand, the transmissivity obtained with the Reynolds models may be grossly overestimated (up
to several tens of times for relevant geometrical parameters). Although the presented Brinkman model was
discussed for single-phase fracture flows, it can be used for modeling multicomponent miscible fluid flows
and, in general, advection-diffusion problems in plane-walled fractures with obstacles. However, our tests
show that the mismatch between the local velocities in the Brinkman and the Stokes models can be much
larger than the differences observed for the effective transmissivity. Also, the vertical component of the veloc-
ity is not vanishing in the three-dimensional model, and, thus, the differences in the dispersion characteristics
between the upscaled and true models should be carefully studied.

Propped fractures provide the conductive pathways during production phase in unconventional (tight sands,
coal beds, and shale formations) gas reservoirs (Economides & Nolte, 2000). In addition, they form the essen-
tial link for mediating fluids in the emerging concepts of CO2 sequestration in shale formations (Kang et al.,
2011; Liu & Wilcox, 2010; Middleton et al., 2015; Sun et al., 2013). Hydraulic stimulation is also used in geother-
mal applications (Legarth et al., 2005); however, significant fracture wall roughness in crystalline rocks and
coarse-grained sediments promotes self-propping of hydraulic fractures, rendering proppant injections less
necessary.

In our work, we have focused on the idealized case of a plane-walled fracture with a partial monolayer of
monodisperse proppant grains, which are approximated as cylindrical circular obstacles, and some consider-
ation should be given as to the model applicability to the real geometry of propped fractures. In general, the
processes of proppant transport and settlement are complex and dependent on a large number of parameters
including proppant density, fracking fluid properties, pumping rate, and fracture geometry. Unfortunately,
the final distributions of proppant grains are virtually impossible to image nowadays, and direct numeri-
cal simulations of suspension flows in narrow apertures have just begun to emerge (Shiozawa & McClure,
2016; Tomac & Gutierrez, 2015). The monolayer configuration has been traditionally considered as either dif-
ficult or impossible to achieve and treated more of a curiosity rather than technologically relevant scenario
(Harrington & Hannah, 1975; Wendorff & Alderman, 1969), however, this view has been challenged in recent
works (Brannon et al., 2004; Palisch et al., 2010). It may in fact be that a general shift toward slickwater frac-
turing, and technological advances such as ultralight proppants (Gaurav et al., 2010) promote the developed
of the monolayer configuration. Nevertheless, in our view, irrespective of the actual design and targets of any
given hydraulic fracture treatment, the proppant distribution is likely to be heterogeneous and significant
portions of stimulated fractures may be propped with either complete or partial monolayers or not propped
at all. In particular, sparsely distributed proppant configurations are likely to develop in narrow secondary
fractures, which are commonly present in stimulated shales.

Already Darin and Huitt (1960) demonstrated that a partial monolayer of large proppant grains may provide
a higher fracture transmissivity than multilayer packings of smaller proppants giving a greater fracture width.
However, the stimulated fracture with a single proppant layer are prone to the processes of proppant embed-
ment and crushing, which readily operate under high effective confining stresses. Proppant crushing can be
limited by either using highly spherical sand grains or tailored high-strength proppants such as sintered baux-
ite (Liang et al., 2016). Deformable proppants, which increase the load-bearing contact area while adjusting
their shape to fracture walls, have been proposed to reduce both proppant crushing and embedment (Bran-
non et al., 2010). We note that the embedded and deformed proppants may be approximately treated as
cylindrical obstacles. The shape of the proppant grains can be even further modified by pressure solution and
chemical precipitation (Liang et al., 2016). Some early experiments on proppant embedment include the lab-
oratory experiments of Volk et al. (1981), which showed that a fracture in a shale sample propped by a partial
monolayer exceeding 50% areal coverage could resist aperture closure equally well as a sandstone sample.
On the other hand, the shale sample exhibited a much more rapid fracture closure once the proppant fraction
was reduced below 50%. In addition, hydraulic fracturing exposes shale formations to fluids of altered compo-
sition, which may lead to an accelerated creep and clay swelling, resulting in an high rate of proppant embed-
ment and fracture aperture reduction (Alramahi & Sundberg, 2012). In general, the laboratory experiments
show that decreasing proppant fraction in the partial monolayer can in principle increase the transmissivity
(Brannon et al., 2004; Palisch et al., 2010); however, an opposite trend is also present due to an increased
proppant embedment as the load-bearing area decreases (Alramahi & Sundberg, 2012). Khanna et al. (2012)
used the Hertz contact theory to find the embedment of rigid spherical proppants into elastic fracture walls
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as a function of proppant concentration and confining pressure. The transmissivity of the deformed fracture
was calculated using computational fluid dynamics, and the optimal proppant fraction was found as a func-
tion of the load. The effective transmissivity is much more sensitive to the details of the proppant packings
rather than the effects of proppant embedment for multilayer proppant configurations (Jansen et al., 2015;
Zhang et al., 2015).

Round proppants with narrow size distribution are commonly used in fracture treatment, in a hope to provide
highest fracture conductivity (Gallagher, 2011). Hence, our assumption of monodisperse circular obstacles
seems to be plausible. On the other hand, disregarding fracure wall roughness may be a more restrictive
assumption, as the lower range of the proppant grain size, which typically falls between 0.1 to 2 mm, coincides
with the amplitude of the fracture wall roughness measured in shales (Pluymakers et al., 2017). It seems likely
that for the partial monolayer configuration part of the load is transmitted through the contacts developed
directly between the fracture walls. It is expected that fracture roughness may lead to a reduced transmissivity.
It can be also speculated that processes such as fines migration, local turbulence, multiphase flow and capil-
lary trapping, gel clogging, and geochemical precipitation may have a detrimental influence on the fracture
transmissivity during the production phase.

Our numerical simulations show that fracture aperture and proppant size and fraction are the key parame-
ters determining the effective transmissivity, and the ordering of the obstacles has a second-order effect. The
effective medium model of Kumar et al. (1991) gives a very good approximation to the effective permeabil-
ity (and transmissivity) of a plane-walled fracture with circular obstacles. Also, the prediction produced by
the simple model of Darin and Huitt (1960) can be used for moderate and high obstacle fractions. We spec-
ulate that the performance of the differential effective medium scheme could be improved by introducing
the effective viscosity into the model (Koplik et al., 1983; Lundgren, 1972; Martys et al., 1994). The effective
medium schemes, which have been calibrated by numerical simulations, could be used to facilitate overall
analysis of the effective transmissivity of propped fracture under in situ loads (e.g., Khanna et al., 2012). On
the other hand, using the Reynolds model and the related effective medium schemes can lead to a gross
overestimation of the fracture transmissivity and should be avoided for propped fractures.

Although the presented model is derived for a plane-walled fracture, it could still be used to provide first-order
estimates to the effective transmissivity of rough-walled fractures by introducing an equivalent aperture and
treating the contact areas as obstacles. The model can be directly used for manufactured systems such as
microfluidic devices for microbiological filration or separation systems (Cady et al., 2003; Nagrath et al., 2007),
high performance liquid chromatography (Song et al., 2012), dielectrophoretic platforms (Khoshmanesh
et al., 2011), heat spreading, and dissipation system for microelectronic Ranjan et al. (2012), which are often
characterized by aperture-to-diameter ratios exceeding 1.

7. Conclusions

We have studied the effective transmissivity of a plane-walled fracture with circular cylindrical obstacles, vary-
ing the obstacle fraction f and the ratio between the fracture aperture and the obstacle diameter 𝛼. We have
used the 3-D Stokes, an approximate 2.5-D Brinkman, and 2.5-D Reynolds fracture flow models to compute
the flow field. In conclusion,

1. Our unstructured FEM implementation of the Brinkman model is capable of reproducing the analytically
calculated flow field around an isolated circular obstacle with a high accuracy. The numerical code can effi-
ciently handle models with a large number of obstacles (up to 10,000), thus allowing for a systematic study
using computational domains of a good representative size. On the other hand, direct numerical simula-
tions based on the 3-D Stokes model are limited to a smaller number of obstacles and require substantially
larger computational resources.

2. The effective transmissivity of a plane-walled fracture with multiple circular cylindrical obstacles compares
favorably to the numerical results obtained with the 3-D Stokes model. For obstacle fractions up to 0.5 and
𝛼 = 0.5 − 1.0, the relative difference between the computed transmissivities is below 10%. On the other
hand, the transmissivities obtained with the Reynolds model can be even 20 times too high.

3. For a given obstacle fraction, the average and standard deviation of the effective transmissivities com-
puted for various realizations converge and decay to 0, respectively. Although the generating algorithms
are expected to produce statistically isotropic obstacle distributions, the system size effect results in a weak
structural anisotropy, which manifests in the anisotropy of the effective transmissivity. Both the standard
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deviation of the effective mean transmissivity and the effective anisotropy factor scale with the inverse of
the system size. The anisotropy factor is less than 0.1 for L∕R = 100, and using 2,500 obstacles ensures that
the standard deviation of the effective transmissivity is less than 5%.

4. We use the obstacle radius to normalize the effective transmissivity of a plane-walled fracture with circu-
lar cylindrical obstacles. For a propped fracture, the obstacle size can be directly related to the proppant
size. Our systematic numerical simulations using the Brinkman model show that the normalized effective
transmissivity is predominantly dependent on the obstacle fraction f and the fracture aperture to obstacle
diameter ratio 𝛼. Although the anticlustered configurations (HCP) produced systematically higher transmis-
sivities than the random configurations generated with either RSA or LSA, the effect of obstacle ordering
on the transmissivity remains within a factor of 2. The effective transmissivity systematically decreases with
increasing obstacle fraction and decreasing fracture aperture (decreasing 𝛼 for a fixed obstacle radius).
The results show, for example, that in terms of the effective transmissivity, decreasing 𝛼 from 1.0 to 0.5
corresponds to increasing obstacle fraction from 0.3. to 0.5.

5. The effective medium model of Kumar et al. (1991) gives a highly accurate approximation to our numerical
results over the entire studied range of f and 𝛼 parameters. For (1−f )−1∕2f𝛼 > 0.5, the effective permeability
of a plane-walled fracture with circular cylindrical obstacles can be approximated with the permeability of
the corresponding two-dimensional system with infinitely long cylinders. For low 𝛼 values, the effective
permeability can be approximated by K∕K2D ≃15(1 − f )−1f 2𝛼2.

6. The presented numerical results and effective medium scheme validations can be used by petroleum engi-
neers for estimating transmissivities of propped fractures under in situ conditions. The model can also
be applied to microfluidic systems and for deriving first-order estimates of the effective transmissivity of
rough-walled, natural fractures with load-bearing contact areas.
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