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Abstract

We advance the Coupled Cluster method’s in the time-dependent realm, by imple-
menting a robust solver based on the orbital-adaptive time-dependent Coupled Cluster
(OATDCC)|1] method. This involves implementing both a simplified static orbital
time-dependent coupled cluster solver with single and double excitations (TDCCSD)
and an orbital-adaptive scheme with double excitations (OATDCCD). To supplement
the time-dependent methods we implement several ground state solvers based on the
Lagrangian Coupled Cluster formulation, with single and double excitations, as well as
a non-orthogonal orbital-optimised Coupled Cluster (NOCC) solver|2].

We construct several quantum dot basis sets with different potential functions in
one- and two dimensions, including interactions with magnetic fields. What is more,
we also implement an interface with popular quantum chemistry software modules
PySCF|3]| and Psi4|4] for extraction of additional basis sets for atoms and molecules.
The quantum systems are allowed to vary with time by addition of a time-dependent
term to the Hamiltonian, with which we simulate a laser field in the dipole approxima-
tion.

As a validation we reproduce results from the scientific literature, both for atoms,
molecules and quantum dots. We show that our methods lead to convergence in the
ever-increasing basis set size limit, for simple quantum dot systems. For the same
quantum dot system, we show how sensitive a system is to changes in the frequency of a
driving oscillating field. Frequencies closer to the resonant frequency lead to exctiations
and increased energy. We are able to simulate systems that are fairly large - quantum
dots in one- and two dimensions with up to twelve electrons. For systems that meander
far from the reference state, we show that the orbital-adaptive method has far superior
stability, compared with the method with static orbitals.

For all quantum dot systems we find strong comformity with the harmonic potential
theorem|5|, yet we see a slight many-body effect for a two-dimensional double dot
system. By subjecting the two-dimensional quantum dots to a homogoenous, static
magnetic field in the form of an angular momentum operator, we see two frequencies
in the dipole spectrum, instead of one frequency. This is also in accordance with the
harmonic potential theorem. The difference between the two frequencies in the new
spectrum is the same as the Larmor frequency of the magnetic field, within acceptable
tolerance levels.
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Chapter 1

Introduction

The aim and raison d’étre of this thesis is to implement methods that enable the study
of many-body quantum systems in time. The word ‘implement” entails construction of
numerical solvers on a computer. Such computational modelling have since its inception
around the middle of the last century become present in all of the natural sciences, and
have since made its foray in the social sciences as well. In the natural sciences, one
could argue that computation plays as big a role as the two conventional congregations
of theory and experiment. In physics, computations are a central component in a vast
area of fields so diverse as quantum chromodynamics|7, 8], molecular dynamics|9, |10]
and astrophysics|11].

Quantum mechanics is the description of the behaviour of matter and light in all its
details, and in particular of the happenings on an atomic scale. A state of a quantum
system is described by a wavefunction W¥(r,t), which provides us with all there is to
know about a particular system. We can determine ¥(r,¢) at any point in the future
by solving the Schrodinger equation, given the inital state of the system ¥(r, ),

L 0 -
i U(r,t) = HU(x, 1) (1.1)

Our ability to solve the Schrodinger equation analytically is constrained to only a few
quantum systems, and vanishes rapidly as the number of constituent particles in such
a system exceed just a few. It has therefore been necessary to extend the proverbial
chalk and blackboard with numerics and a computer.

This thesis deals specifically with the electronic quantum many-body problem,
which is the central topic in quantum chemistry. The underlying theory for all of
chemistry is well-known and has been known for more than half a century, but the
only element we are able to solve analytically is the very simplest element, hydrogen.
Adding an electron to the quantum model for the hydrogren atom results in an analyt-
ically unsolvable Schrédinger equation. As such, in order to actually solve chemistry
we need numerical approximations.
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1.1 The Quantum Many-Body Problem

We have established that solving the Schrodinger equations exactly with hand, mind,
pencil and paper is impossible in the overwhelming majority of interesting cases. For
this reason, a plethora of computational, approximative methods have been developed
aiming to solve the many-body Schrédinger equation. Starting from first principles, or
ab initio, the goal of such algorithms is to procure some information about a quantum
system in a reasonable amount of time. In order to accomplish this, some sacrifices
must be made in the form of simplifications.

The Hartree-Fock method [12/14] which has seen extensive use since its inception
in 1930 employs a mean-field appriximation, which provides an efficiently computed
result, but not a very accurate one. The most popular approximative method is without
doubt the density functional theory (DFT), developed by Kohn and Sham in 1965 [15].
Density functional theory simplifies the quantum many-body problem by reformulating
it in terms of electron number density. However, DF'T is also insufficient if one requires
a high degree of accuracy.

It is possible to solve a quantum many-body problem “correctly” by direct diag-
onalisation of the matrix representation of the Hamiltionian, best known as a Full
Configuration Interaction (FCI) computation. Such a method will yield an absolutely
accurate result in the limit of an infinite orbital basis set, but it suffers from expo-
nential complexity scaling [16]. A sophisticated Monte-Carlo scheme, like Diffusion
Monte-Carlo (DMC) can in principle also provide the exact solution to the Schrodinger
equation by imaginary time-evolution of an inital wave function ansatz [17]. However,
the high dependence on the initial guess is problematic. What is more, the method
often requires the input of another less accurate method as a starting point. Another
example of a similar method is the Variational Monte-Carlo (VMC) method, which is
simpler and faster than DMC, but not as accurate.

Since the Hartree-Fock method is the earliest of methods designed to solve the
quantum many-body problem, it has become the purpose of all subsequent many-body
methods to describe electron correlation, defined as the difference between the Hartree-
Fock description of the electronic wavefunction and the exact solution of the Schrédinger
equation. The simplest approach to treat electron correlations is by performing a Con-
figurations Interaction (CI) expansion,

U=0pp+ Y Cidf+ > Codib+ .., (1.2)
ia 1<J
a<b

where ®¢ is a singly excited configuration and C is the matrix of coefficients associated
with this configuration. We obtain the exact, Full Configuration Interaction (FCI), by
including all terms in the CI expansion. It is common to perform a truncation of this
expansion after some purposefully pre-determined excitation level. Truncating after
double-excitation level, for instance, produces Configuration Interaction Singles Dou-
bles (CISD), which is the most common choice in quantum chemistry. We will under-
stand presently why such a truncation is problematic for the Configuration Interaction
method.
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Two important properties that a many-body method must incorporate is size-
extensivity and size-consistency. A quantum-mechanical model is said to be extensive
if the energy of the system computed with this model scales with the size of the sys-
tem |18]. For systems of non-interacting helium atoms, for instance, we must have that
E(NHe) = NE(He). Moreover, a model is size-consistent if the energies of two systems
A and B and of the combined system AB, with A and B very far apart, computed in
equivalent ways, satify E(AB) = E(A) + E(B) |19]. It can be shown that truncated
Configuration Interaction does not comply with the concept of extensivity [20].

A class of methods of which most constituents provide proper ezxtensive model de-
scriptions is Many Body Perturbation Theory (MBPT) [21]. Many-body perturba-
tion theory can also be truncated at a certain excitation level, in the same manner as
truncated Configuration Interaction. The linked-diagram theorem [22|, states that a
particular perturbation expansion can be expressed by “linked terms” onlyﬂ leading to
the Coupled Cluster method [23, |24]. Coupled Cluster has become one of the most
prevalent methods in quantum chemistry, as it is very accurate, whilst maintaining
size-consistency and size-extensivity. The Coupled Cluster method also has elegant
truncation levels, similar to the truncated Configuration Interaction methodﬂ.

Computational scaling of ab initio quantum mechanical models range from O(N!)
for Full Configuration Interaction (FCI), via O(N®) for Coupled Cluster Singled Dou-
bles with Perturbed Triples (CCSD(T)) to O(N?) for formal Hartree-Fock (HF) [25].

1.2 Goals

The specific task of this thesis is to study the time evolution of quantum mechanical
systems using the Coupled Cluster method. In particular this pertains to the study
of time-dependent electronic systems, with an emphasis on quantum dots [26]. By
use of proper object-orientation the implementation can also be used to study simple
atoms and molecules in three dimensions. The aim was to extend the formalism and
algorithms developed in the thesis of Kristiansen [27].

The thesis progression milestones have been split into the following steps,

1. Write a Coupled Cluster Doubles code with double exciations (CCD) capable of
solving a system of two electrons in two or three dimensions in a single harmonic
oscillator well.

2. Extend the Coupled Cluster solver to include single excitations (CCSD) and time
evolution with static orbitals (TDCCSD). Moreover, expand system implementa-
tions to include more interesting systems, for example double potential wells or
simple atoms.

3. Include orbital dependencies in the time-dependent coupled cluster solver, as dis-
cussed by Kvaal|l], in an Orbital Adaptive Time-Dependent Coupled Cluster
Doubles (OATDCCD) solver.

LA thorough treatment of these terms are found in the end of [chapter 5
2Coupled Cluster and Configuration Interaction has an elegant correspondence, see
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1.3 Our Contributions

There already exists an abundance of optimised and well-tested ab inito quantum chem-
istry software packages. As such we do not seek to build software meant to compete
with such software, but to function as a supplement. As far as we know there is cur-
rently no software that allows for time-dependent Coupled Cluster computations in
widespread use, making our contribution worthwhile. The interest we have seen for our
work at the Hylleraas centre at the University of Oslo is testament to this|28§].

We construct two modules for use with the Python programming language that
works well in conjunction, but can also be used separately. The module coupled_cluster,
as the name suggests contains all our Coupled Cluster solvers, both ground state and
time-dependent. The module quantum_systems provides basis sets designed to work with
the coupled_cluster module. The quantum_systems module also contains functions for
extracting basis sets from the very popular quantum chemistry modules PySCF|3| and
Psi4|4]. The source code for the coupled_cluster module can be found at github.com/
Schoyen/coupled—clustelﬂ and documentation at www.coupledcluster.com. The
source code for the quantum_systems module can be found at |github.com/Schoyen/
quantum-systems and documentation at Schoyen.github.io/quantum-systems.

We choose Python as a development language for a couple of reasons. First, even
though Python is essentially a “scripting language”, in the sense that it is usually slower
than a compiled language like C++, most of our computations are matrix or tensor
computations which are very fast in Python. We do matrix multiplications and linear
algebra in NumPy, which is highly optimised because of its use of Basic Liner Alge-
bra Subprograms (BLAS) [29] and Linear Algebra PACKage (LAPACK) [30]. Both
implemented in Fortran, BLAS consists of a low-level matrix and vector arithmetic
operations, while LAPACK is a collection of common algorithms used in linear algebra,
such as routines for solving systems of linear equations. For heavy operations that are
not vectorisable, we have found just-in-time compilations with Numba very beneficial
[31].

Second, Python is a high level language which has sped up development greatly
compared to developing in a lower level language. For this reason we have a feeling that
we have accomplished more than we would have otherwise. The drawback of developing
in a higher level language is the lack of low level control, like memory management. All
things considered, we are satisfied with the choice of development language, with the
benefits outweighing the necessary sacrifices.

1.4 Structure of this Thesis

This thesis consists of five main parts. The first part, Fundamentals introduces the
basis of quantum mechanics as well as the second quantisation formalism.

In the second part, Quantum Many-Body Approximation, we thoroughly present
three many-body methods, each in its own chapter. We start with on
Hartree-Fock Theory, because this is the first ab initio many-body method that saw

3At the time this document is first printed, the source code may not be public. We plan to make
the source code open and public as soon as possible.


github.com/Schoyen/coupled-cluster
github.com/Schoyen/coupled-cluster
www.coupledcluster.com
github.com/Schoyen/quantum-systems
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truly widespread use, but also because the Lagrange multiplier path we take to derive
the method is similar to what we will do later, when we introduce the Lagrangian for-
mulation of Coupled Cluster. We also introduce a time-dependent Hartree-Fock scheme
in this chapter. Next, we present many-body Perturbation Theory in which
is a method often used as a supplement to other many-body methods as well as on its
own. Deriving the Rayleigh-Schrédinger perturbation theory also highlights the origins
of the Coupled Cluster method, the topic of the following chapter.

In we provide a detailed derivation of the Coupled Cluster equations,
before detailing the problems caused by the method’s non-variational nature. This leads
naturally to the Lagrangian formulation of Coupled Cluster|32| and the bivariational
principle|33|. Lastly, we introduce time-dependent Coupled Cluster theory, with both
static and adaptive orbitals|1].

In Implementation, the third part of the thesis, we bestow upon the reader a speci-
fication of the two python modules, quantum_systems in and coupled_cluster
in Furthermore, we seek to explain the machinery in the two python mod-
ules, and their functionality. As the code base is somewhat extensive, it is not feasible
to go through every aspect of the modules, but we provide a sufficient overview of
the ideologies used in developments, the class structure hierarchy and the possibilites
available to the user and future developer.

In the fourth part of the thesis, we provide Results generated with the coupled
cluster solvers we have implemented. We start by a validation against some existing
literature on time-dependent ab initio solvers in This includes the repro-
duction of several results from relatively well-known articles. Chapter 10| contains the
central results of this thesis. Here we provide results from simulations of one- and
two-dimensional quantum dots, as well as two-dimensional quantum dots affected by a
homogenous, static magnetic field. Because this study has been conducted in close con-
junction with Schgyen, more results that are computed with the same solvers, relating
to atoms and molecules can be found in ref. [6].

Finally, in the fifth and final section we present a Conclusion in [chapter 11| Here
we also put forward some suggestions for future work in the same field of study as this
thesis.
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Fundamentals






Chapter 2

Quantum Mechanics

Here we present basic and foundational quantum theory, a theory that seeks to describe
the nature at the smallest scales of energy. The name “quantum” stems from the need
to see energy not as continuous and infinitely divisible , but rather as a sum of discrete
quantities of equal size. Quantum mechanics came to the rescue when classical physics
was unable to explain phenomena such as the mysterious sodium line, the ultraviolet
catastrophe, and the bewildering photo-electric effect. With the new theory came
new challenges like an axiomatic uncertainty, the wave-particle duality of light and a
probabilistic interpretation of nature. In this chapter we will not be so hubristic as to
delve into the philosophical particulars, but hope only to revitalise the reader’s faculties
with the principal ideas on which this thesis is built.

2.1 Classical Mechanics

The formalism used in quantum mechanics largely stems from William Rowan Hamil-
ton’s formulation of classical mechanics. Through the process of canonical quantisation
any classical model of a physical system is turned into a quantum mechanical model.

In Hamilton’s formulation of classical mechanics, a complete description of a system
of N particles is described by a set of canonical coordinates ¢ = (qi,...,¢n) and cor-
responding conjugate momenta p = (p1,...pn). Together, each coordinate-momentum
pair forms a point & = (g,p) in phase space, which is the space of all possible states
of the system. Moreover, pairs of generalised coordinates and conjugate momenta are
canonical if they satisfy the Poisson brackets so that {g;, pr} = J;;. The Poisson bracket
of two functions is defined as

{f9t=o5 57 (2.1)

- (¢:p) (2.2)
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where J#(q,p) is the Hamiltonian, a function for the total energy of the system.
Hamilton’s equations may also be stated in terms of the Poisson brackets,
B oy, = (g, 0y (24
A system consisting of N particles of equal mass m, subject to forces caused by an
external potential, as well as acting on each other with forces stemming from a central
potential w(g;, ¢;) has the following Hamiltonian,

1 9 . 1 oo
A(Q,p)=T +V+W = mzi:\l?z" +zi:”(qz')+22w(qz‘,qg‘)’ (2.5)

1<j

where the sum over i < j implies sum over different indices. This Hamiltonian con-
veniently contains several parts - the kinetic energy, the external potential energy and
the interaction energy; denoted by .77, ¥ and #  respectively.

2.2 Canonical Quantisation

In order to transition from a classical system to a quantum system, we move from the
classical phase space to the Hilbert space, through the procedure known as canonical,
or ﬁrsﬂ, quantisation. Whilst the state of a classical system is a point in phase space, a
quantum state is a complex-valued state vector in discrete, infinite-dimensional, Hilbert
space. A physicist would define a Hilbert space as a complete vector space equipped
with an inner product. This space is most commonly chosen to be the space of square-
integrable functions ¥, dependent on all coordinates

U =U(z,z2,...,ZN). (2.6)

These functions are dubbed wavefunctions and are maps from a point (z1,...,zN)
in configuration space to the complex vector space,

v XN . (2.7)

It has been widely discussed how such an object can represent the state of a particle.
One answer is provided by Max Born’s probabilistic interpretation, which says that
|W(z1,...,2x5)|% gives the probability of finding the particle at a certain position. For
a situation with one particle in one dimension we have,

/ b w( )|2d probability of finding the (2.8)
x)|“dx = )
a particle between a and b

while | (x1,x9,...,2 N)]2 is the probability density for locating all particles at the
point (z1,...2x5) € X¥. Since the total probability must be 1, we are provided with a
normalisation condition for the wavefunction,

1Second quantisation comes later.
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/N (w1, 39, ., 2 Pdaydas . . dzy = 1. (2.9)
X

The relation between a classical- and quantum description of a mechanical system
is most clearly seen when the two descriptions are expressed in terms of the same
variables. In fact, we may apply quantisation of the classical variables to produce the
quantum equivalent of the system. The classical phase space variables are changed into
quantum observables,

¢ — Gis pi = Di- (2.10)

The quantum observables are required to satisfy the Heisenberg commutation relation,
[qi,ﬁj] = ih&ij, (2.11)

instead of the Poisson bracket from Here h is the reduced Planck’s
constant. For any general variables A and B, this transition can be expressed by
substitution between Poisson brackets for the classical variables and commutators for

the quantum observables,
1 . .
{A,B} — %[A, BJ. (2.12)
i
This correspondence between the classical and quantum dynamical equations is di-
rectly related to Fhrenfest’s therom, which states that the classical dynamical equations
keep their validity also in the quantum theory, with the classical variables replaced by

their corresponding quantum expectation values|34].

2.2.1 The Dirac-von Neumann Postulates

The following postulates, or axioms, provide a precise and concise description of quan-
tum mechanics in terms of operators on the Hilbert space. There are many variations
of these postulates, two of which were introduced by the namesakes of the postulates,
Paul Adriene Maurice Dirac [35] and John von Neumann [36].

Hilbert Space

A quantum state of an isolated physical system is described by a vector with unit norm
in a Hilbert space H, a complex vector space equipped with an inner product. The
inner product associates a scalar value, which may be either real or complex, with any
pair of state vectors.

The inner product can be defined as

(alts) = / (@) s(x)d, (2.13)

where ¥* is the complex conjugate of ). Here we have introduced Dirac notation,
which is very common when describing quantum states. For each quantum state [1),)
there exists a dual state (¢,|. We refer to these two vectors as bra and ket vectors,
respectively. Some properties of an inner product, written in Dirac’s style, read

(Yalthg) = (Wpltba)” (2.14)
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(Yal (21 [¥8) + 22[1p)) =21 (Yals) + 22 (Yalt)g) (2.15)
(Yaltha) 20, (2.16)

where z, = a, + ib,, is a complex number. Notice that in these properties, a superposi-
tion of a state wavefunction in the form of linear combination of two other states have
appeared. Such superpositions are generally written

1) = 21 |ta) + 22 [Ug) (2.17)

where we have produced a new quantum state from two other states. Any two or more
states may be superposed to produce a new state in this manner. Superposition is of
fundamental importance to quantum mechanics, and even though the concept is similar
to the classical superposition principle for waves in classical physics, "the superposition
that occurs in quantum mechanics is of an essentially different nature from any occuring
in the classical theory" according to Dirac [35].

To conclude the description of quantum states for now; a state function 1 is said
to be normal if its innerproduct with itself is one, (¢|)) = 1. Two different state
functions are orthogonal if their inner product is zero. We have orthogonal functions if
(Yalthg) = bap, Where 43 is the Kronecker delta.

Observables

Each physical observable of a system is associated with a Hermitian operator acting on
the Hilbert space. The eigenstates of each such operator define a complete, orthonormal
basis set of vectors B for the d-dimensional Hilbert space,

B = {|i)}. (2.18)

Completeness of the basis set B means,
> i) (i = 1. (2.19)

With O an operator, hermiticity means,

(6] Ov) = (O |v) = (8| O ). (2.20)

This implies that the operator O must be its own Hermitian conjugate,

~

Of = 0. (2.21)
Some properties of the Hermitian conjugate read,
(z0)F =20t (2.22)

1+ 0y)t =0} + Of (2.23)
(0,0,)F =0101. (2.24)
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Measurements

Physically measurable values, associated with an observable O are defined by the eigen-
values o, of the observable,

O|n) = oy, |n), (2.25)

where |n) are the eigenvectors of the same observable O. The probability for finding a
particular eigenvalue in the measurement is

pn = [(nl) ], (2.26)

with the system in state |1)) before the measurement, and |n) as the eigenstate cor-
responding to the eigenvalue o,. If the observable O is Hermitian, we can write the
operators as a spectral decomposition

d
O => onln)nl|, (2.27)
n=1

where d is the dimensionality of the Hilbert space.

Time Evolution

In the Schrédinger picture time evolution of the state vector, [0) = |1)(t)), is given by
the Schrédinger equation,

. d -
i 9(8)) = H () (2.28)

Note that any superposed state, as described by will also be a solution to the
Schrédinger equation due to its linearity.

The Schrodinger equation is first order in the time derivative, meaning that the
time evolution [¢)) = |¢(t)) is uniquely determined by some initial condition |¢g) =
l(to)). H is the Hamiltonian of the system, which is a linear, hermitian operator.
The Hamiltonian gives rise to the time evolution, which is a unitary mapping between
quantum states in time,

(1)) = U(t, to) [to) - (2.29)

The time evolution operator U is determined by the Hamiltonian through the equation

mgta(t, to) = HU(t, to), (2.30)

which follows from the Schrodinger equation. For a time-independent Hamiltonian it
is given by
U(t, to) = e HE=t0/N), (2.31)

We see that this time-propagator is Hermitian

Uit =uy = 1. (2.32)
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If however H is time-dependent, so that the operator at different times do not commute,
we may use a more general integral expression for the time-propagator,

tn—1

Ult, to) :Z(—%)” /t /t1 dt, /t1 dt2-~/ dtnH(t)H(t2) ... H(tn). (2.33)
=0 to Jto to t

0
A unitary transformation of states and observables

W) = [y =Uly), O — 0 =000, U'U=1. (2.34)

leads to a different, but equivalent representation of a quantum system. The transition

to the Heisenberg picture is defined by a special time-dependent unitary transformation,

U=U'(t,to), (2.35)

which is the inverse of the time-evolution operator. When applied to the time-dependent
state vector of the Schrodinger picture it will cancel the time-dependence

W)y =UT(t,t0) [Y(1))s = [u(to))s - (2.36)
The time-dependence is now carried by the observables, rather than the state vectors,
On = U (t,t0)OsU(t, to), (2.37)
and the Schrédinger equation is replaced by the Heisenberg equation
d 1, A 0
—=—-H,0 —Oq. 2.38
g = R Onl + 5 On (2.38)

There is a third representation called the interaction picture, but we will remain
firmly rooted in the Schrédinger picture and halt this general introduction to time-
development here.

2.3 The Quantum Hamiltonian

The full Hamiltionian for a quantum many-body system can be a large and unwieldy
thing. In this study we will constrain ourselves to the study of electronic systems. On
a phenomenological basis, one would include nuclear terms in the Hamiltonian as well.
In this study however, we will stay within the Born-Oppenheimer approximation and
treat the nuclei as stationary, thereby refraining from introducing terms that involve
the motion of nuclei.

The full molecular electronic Breit-Pauli Hamiltionian, thoroughly described in Hel-
gaker et al.[37], contains the following types of terms

( ~

Hyi, <+ kinetic energy
+ﬁcou < Coulomb interactions
—i—I:Iee + external electric field interaction
ﬁﬁfl _ —H?z — Ze.eman .inFeractior.ls (2.39)
+H, < spin-orbit interactions
+Hy < spin-spin interactions
—i—ﬁoo < orbit-orbit interactions
—i—ﬁdia — ot diamagnetic interactions
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We will not be working the full Breit-Pauli Hamiltionian, but we will go into some of
the most import terms that an electronic Hamiltonian can constitute.

Kinetic energy The genereal kinetic energy operator is given by
N h 9
Hkin = _% Z via (240)
(2

where V is the differential operator and the sum is over all electrons in the system. This
term is an example of what we call a one-particle operator as it remains the same for
all electrons and contains no terms that would represent interactions between particles.

For a free particle or a gas of non-interacting particles, is sufficient to

describe the entire system.

Potential terms Adding a confining potential to the Hamiltonian in addition to the

kinetic energy term in
05 Hg, +V (2.41)

gives rise to much more interesting systems and is the beginning of an approximation
of reality. Perhaps the most common is the harmonic oscillator potential, which in one
dimension reads

Viz)= %mw%z, (2.42)
where m is the mass of the particles and w is the (angular) frequency of oscillation.
This is a very popular confining potential because virtually any oscillatory motion
can be approximated by it, if the amplitude of the oscillations is sufficiently small.
This parabolic, harmonic potential is the basis of a quantum dot which is a central
part of this study. In quantum chemistry we only consider potentials derived from
particle-particle interactions, and not such external potentials.

Coulomb interactions The electrostatic interaction between particles in a molecule
or atom is modelled by Coulomb terms in the Hamiltonian.

. koZxe? 1 k.e?
I P
iK ¢ ity Y

1 keZZpe?
= RKiLe, (2.43)
KZL KL

where e is the elementary particle charge and k. = 1/4meq is the Coulomb constant.
The first term is the potential between nuclei and electrons, the second term is the
potential between electrons and the last term is the potential between nuclei.

External electric field interactions Now comes the time to go through, in broadest
of strokes, a quantisation of an electromagnetic field. For a thorough derivation see for
instance Joachain et al.|38]. When we include an electromagnetic field in the model it
is necessary to include terms in the Hamiltonian that model the effects of an externally
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applied scalar potential ¢ = ¢(r,t) and a vector potential A = A(r,¢). This will also
affect the kinetic energy of the particles, which we therefore include at first,

2

A 1 p2 e e

He C —(eA — p)? =———(Ap+p-A)+_—A? : 2.44
f C o (eA—p) tep=C— — o (A-D+P A)+ A" +ed (2.44)

This Hamiltonian now describes a free particle subject to an external electric field.

Since we have already included a term for kinetic energy we now wish to remove it,

keeping only the new terms,

e (&

2
(A-p+p-A)+-—A%+ep. (2.45)

fly = <
ef m

2m

We assume that the external field has sufficiently large wavelength compared to the

system, making the vector potential uniform in space A(r,t) = A(t). This approxima-

tion is very reasonable, considering visible light has a wavelength of A ~ 5000A and

the diameter of an atom is around 1A. In the dipole approximation we can write the
vector potential as

A(t) = Age ™kt Afelrt, (2.46)

where Ay and A are photon creation and annihilation operators, and wy, is the an-
gular frequency of the field. The photon creation and annihilation operators allow for
spontaneous emission and absorption of photons without the presence of a field, but we
will disregard such phenomena and stick to a semi-classical description. We therefore
rewrite the vector potential as

A(t) = €eAgsin(wgt), (2.47)
where € is the polarisation vector. This expression is the same as up to
a phase. In the Coulomb gauge we have

d
E=——A 2.48
94, (2.48)

which gives us an expression for the E-field

E(t) = €Eq cos(wit), (2.49)
where Eg = —wiAp and we can approximate the external field time-dependent electric
field by

Hy = —d - €Eq cos wyt, (2.50)

where d = qr, is the dipole operator, dictating the allowed transitions.

2.3.1 Angular Momentum and Intrinsic Spin

In general, modelling of interactions with magnetic fields necessitates the use of opera-
tors for intrinsic angular momentum (S) and extrinsic angular momentum (L). These
are often referred to as spin and angular momentum, respectively. We will spend some

time here elaborating on such terms.
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Angular momentum

In a classical system, the angular momentum of a particle with respect to the origin is
given as
L=rxp, (2.51)

which broken down into components becomes,

Ly =yp. — zpy, Ly = ype — Dz, L. = 2Dy — yYpa. (2.52)

From this we can obtain the quantum mechanical description by promotion to operators,
and inserting the representation for the momentum operator in position space, p, —
ihd/0x.

The commutators of the angular momentum operators obey the following cyclic
permutation of indices rule,

[Ls, L) = ihL., [Ly, L. = ihL,, [L.,Ly] = ihL,. (2.53)

We see that they do not commute with each other, but the square of the total angular
momentum, defined by
P=02+12+12, (2.54)

does
[L?,L,] =0, [L* L, =0, [L} L,] =0. (2.55)

In spherical coordinates, which is better suited for our needs, the angular momentum
operator is given by
L=—ihr x V. (2.56)

Given the gradient in spherical coordinates,

0 10 1 0
V=egten 5t ans0s (2:57)
and r = re, we get
- ) 0 0 1 0
L=—in [r(eT X e,,)a + (e, X 69)% + (er X e4) sin96¢} 05%)
—infe L9 '
— N\ "800 T “sing o)
Now, with a bit of algebra we get
L, =ih ( sin QSQ + cos ¢ cot 92 (2.59)
v 00 0] '
L, =il cos ¢£ + sin ¢ cot 93 (2.60)
v 00 0p '
L,= —ind (2.61)

99
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The squared operator becomes

o e L0 (e, L
L7 =—h [sin@@@ 056 )+ SZg a6z (262)

The eigenvalue equations of L% and L, are
L = K1+ 1), L. = hmap, (2.63)

where ¢ = Y;™(0, ¢) are the spherical harmonics,

Y (6, 6) e\/ (214; D ((i - ||:Z||>)!! €m0 P (cosh), (2.64)

and P/ are the associated Legendre polynomials.

Spin

In classical mechanics, intrinsic spin (S = Iw) is associated with an object’s motion
about its centre of mass. A similar thing goes on in quantum mechanics, but it has
nothing to do with motion in space. In quantum mechanics spin is seen as a property
that particles can carry, but is analoguous with its classical counterpart only in name.

Algebraically, spin is the same as angular momentum, beginning with the commu-
tator relations,

(S, 8,) = ihS., [Sy,S8.] = ihSy, [S., S| = ihS,, (2.65)
while the eigenvectors of $2 and S, satisfy
52 |s mg) = h2s(s+ 1) |s ms), S.|s ms) = hm|s my). (2.66)

Here,|s ms) is an eigenstate determined by the quantum numbers s and ms.

Because the quantum mechanical spin has nothing to do with motion in space and
is independent of any coordinates r, 8 or ¢, there is no reason to exclude half-integer
values of s and my,

1.3

s=0,-,1,

5 Lo ms=—88+1,...s —1,s. (2.67)

As it would turn out, every elemental particle has a specific and immutable value of s,
1

and the most important one is s = 5 (!) as it is the spin-value for all leptons, including
the electron, all quarks as well as protons and neutrons. Since our particle of scrutiny
is the electron our interest lies in spin-half systems, i.e.

1 1

me = +=. (2.68)

Ty 2

In such a system there are only two spin eigenstates,

55y =M =10 [5m3) = =1, (269
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This means that the Hilbert space H for spin-half particles has two dimensions, and
that any state can be expressed as a two-dimensional vector called a spinor,

o= () =amssm=a(y) +o(3)- 2:10)

The probability of finding a particle represented by the state vector |x) in the spin up
or spin down state is |a|?> and |b|?, respectively. This requires a normalisation, such
that |a|? + |b]? = 1.

In the basis of |1) and ||) the operators 525, S'y and S, are represented by
two-dimensional matrices,

A 3 1 0
2 _ Y2
et () ) o
- h . h . h
Sx = 50'3;, Sy = §O'y, Sz = §O'z, (272)

where the Pauli matrices are given by,

Op = (? é) oy = (? _OZ> o, = <(1) _01> . (2.73)

2.3.2 Atomic Units

It is common practice to switch to a set of units that are easier to work with, in
essence setting h = me = e = --- = 1. In this study we use atomic units, a form of
such dimensionless units. To see how these units arise, consider the time-independent
Schrédinger equation for a Hydrogen atom,

R, e?
<_ 2m Vs 47T607"> ¢ =E9, (2.74)

where & is the reduced Planck constant, equal to Planck’s constant divided by 27; m.
is the mass of the electron, —e is the charge of the electron, ¢y is the permitivity of
free space and V is the many-dimensional differential operator. We make this equation
dimensionless by letting r — Ar’,

2 2
< g ¢ >¢’:E¢’. (2.75)

2mA2 " Amegr’

We can factor out the constants in front of the operators, if we choose A so that,

h2 2 4 h2
SRR 5 BN R L (2.76)

meA2  Ameg\ -

mee?

where FE, is the atomic unit of energy that chemists call Hartree. Incidentally, we see
that A is just the Bohr radius, ag. If we let E' = E/E,, we obtain the dimensionless
Schrodinger equation,

| 1 TR
<—2v _7~/>¢ _ By, (2.77)

Some conversion factors between atomic units and SI units can be found in [Table 2.11
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Table 2.1: Conversion of atomic units to SI units.

Physical quantity Conversion factor Value

Length ag 5.2918 x 10~ m

Mass Me 9.1095 x 103 kg

Time h/E, 2.4189 x 107175

Charge e 1.6022 x 10~ C

Energy E, 4.3598 x 10187
Velocity apEq/h 2.1877 x 10%ms~!
Angular momentum h 1.0546 x 10734Js
Electric dipole moment eag 8.4784 x 1073°C'm

Electric polarizability e?a}/E, 1.6488 x 10~41C?*m2J 1

Electric field E,/(eap) 5.1423 x 101" Vm™!
Wave function ag 2.5978 x 10157,73/2

2.4 Indistinguishable Particles

In classical mechanics, although particles are indistinguishable, one typically regards
particles as individuals because a permutation of particles is counted as a new arrange-
ment and something different than the initial configuration. This was called “Transce-
dental Individuality” by Heinz Post|39]. In quantum mechanics, on the other hand,
a permutation is not regarded as giving rise to a new arrangement. It follows that
quantum objects are very different from anything else we know from everyday life, and
must be considered “non-individual”. This idea has its origin from the uncertainty prin-
ciple, stating that no sharply defined particle exist. If we take this idea to its extreme
one may postulate that all particles of a given type are one and the same. Here from
Richard Feynman’s Nobel lecture[40|: “I received a telephone call one day at the grad-
uate college at Princeton from Professor Wheeler, in which he said, ‘Feynman, I know
why all electrons have the same charge and the same mass’ ‘Why?’ ‘Because, they are
all the same electron!’ ”

Following the brief discussion above one may begin to postulate that, the probability
density for the location of particles in a system must be permutation invariant,

| U (21,22, ... ,xi,xj,...,xN)IQ = |¥(x1, 2, ... ,afj,xi,...,xN)IQ, (2.78)

where WU represents a wavefunction description of N particles For any arbitrary permu-
tation, this is equivalent to

U(x1,...an) = DV (2,0), To2), - To(v)s (2.79)

where o € Sy is some permutation of N indices and « is some real number that may
be dependent on o. The same relation can be written by way of a linear permutation
operator, R

(PU\I/)(:L’l, ey .CUN) = \I/(xg(l),xg(g), ey xa(N))‘ (280)

The ‘indistinguishability postulate” states that if a permutation P is applied to a state
representing an assembly of particles, there is no way of distinguishing between the
permuted state and the original, by means of an observation at any time.
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One can show that the resulting wavefunction that has undergone a permutation
operation falls into two categories,

. v
Bow = Vo € Sy, 2.81
{(—1)'“|\1/ 7EoN (2.81)

where |o| is the number of transpositions in ¢ and the sign will be (=1)ll = £1. In the
former case, when the sign is +, the wavefunction is “totally symmetric with respect to
permutations”; while in the latter case, when the sign is —, the wavefunction is “totally
anti-symmetric.” We show this result with a simple permutation operator Pij that
exchanges coordinates of particle ¢ and j, i.e.

Pij\:[/(l'l’l'Q, ce sy Ly Ly e e ,QTN) = \I/<$1,:U2, ey Ly Ly e e ,HZN). (282)
Applying this permutation operator twice will return us to the initial wavefunction,
PPy =1, (2.83)

which implies that the permutation operator is Hermitian and unitary. Morover, the
Permutation operator must commute with any operator O,

[P, 0] = 0. (2.84)
Consider an eigenvalue equation for the permutation operator 152-]-,
Pu =\, 0, (2.85)
from which it follows that
U=P2U =)0 — ) =1 (2.86)

This leads us to another postulate in quantum theory, that we have only two types of
basic particles. Bosons have totally symmetric wavefunctions only, while fermions have
totally anti-symmetric wavefunctions only. “The physical consequences of this postulate
seems to be in good agreement with experimental data” [41]. Moreover, all particles
with integer spin are bosons, and all particles with half-integer spin are fermions [42,
43|. This can be proved in relativistic quantum mechanics, but must be accepted as an
axiom in nonrelativistic theory [44]. Generally, the degeneracy of a state for a given
energy € is divided into three categories,

e~ (e=n)/kpT Maxwell-Boltzmann

n(e) = m Fermi-Dil"aC (287)

1

———m/FET_1 Bose-Einstein.

The Maxwell-Boltzmann distribution is the classical result, for distinguishable particles;
the Fermi-Dirac distribution applies to identical fermions, and the Bose-Einstein distri-
bution is for identical bosons. Here, T is the temperature, kg is Boltzmann’s constant
and p is the chemical potential.

To this day, particles with no other spin has been found, but the norwegian physicists
Jon Magne Leinaas and Jan Myrheim discovered that in one- and two dimensions,
more general permutation symmetries are possible. They dubbed this third class of
fundamental particles "anyons"[41].
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2.5 Density Operators

Density operators will become very useful, especially later when we use them to com-
pute expectation values. A formal introduction to this concept is therefor warranted.
Consider a system that is described not by a single state vector, but by an ensemble of
state vectors {|1);,[¥)y,..., 1), } with a probability distribution {p1,p2,...pm} de-
fined over the ensemble. We may consider this ensemble to contain quantum probabilites
carried by the state vectors {|1), } and classical propabilities carried by the distribution
{pr}. A system described by an ensemble state is said to be in a mized state.

The expectation value of a quantum observable in a state described by an ensemble

of state vectors is . "
(0) =2 pe(0) =D puWilOlwn) (2.89)
k=1 k=1

This expression motivates the introduction of the density operator associated with the
mixed state,

p="> i |vr)ul. (2.89)
k=1

The corresponding matrix, defined by reference to an orthogonal basis {|¢;)}, is called
the density matriz,

pij = > i (il [PrXtn [65) - (2.90)
=1

An important note is that all measurable information about the system is contained in
its density operator. We can for instance compute expectation values using the density

operator,
<O> => i Y (WrlOles) (dilyn)
k=1 i

n (2.91)
=33 i (oiln) (l0lon) = tr{ 0.
i k=1
There are certain general properties that any density operator has to satisfy,
P =D, — p=p Hermiticity
pr >0 — (x|plx)Vx Positive semi-definite (2.92)
Zpk =1 — tr{p} =1 Normalisation.
k
We also note that
trp® => pp — trp® <1, (2.93)

because all eigenvalues are p; < 1, which means that tr p?> < trp. The pure state is
a special case where one of the probabilities pj is equal to one, and the others are 0.
In this case, the density operator will be equivalent to a projection operator onto this
single state. Moreover, trp?> = 1 for a pure state, while for a mixed state we have
trp? < 1.
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Second Quantisation

The second-quantisation formalism is a very useful tool used in the description of many-
body systems. Here the particles themselves are discrete quanta created and destroyed
by creation- and annihilation operators. We start by introduction of the Slater deter-
minant, a very useful description of an anti-symmetric wavefunction, in order to build
a nomenclature for describing the many-electron systems with which we are concerned.

3.1 Slater Determinants

For some smaller systems it can be satisfactory or even provident to use a single,
special function to describe the entire system. Here however, we introduce the Slater
determinant which is a way to write a product of wavefunctions. We will only consider
many-electron wavefunctions that can be written as a single Slater determinant or as a
linear combination of several Slater determinants.

We define an orbitaﬂ which is the wavefunction for a single particle, or more pre-
cicely a single electron. The wavefunction for a larger group of electrons, for instance
those electrons that surround an atom or molecule, we call the molecular orbital. We
also discriminate between spatial orbitals which are functions of spatial coordinates;
and spin-orbitals, which are functions of the space and spin coordinates (typically a
product of a spatial orbital and a spin function). A very complete description and
thorough discussion of various aspects concerning electronic sructure wavefunctions is
given by Szabo & Ostlund [14].

The best description for a multiple-electron wavefunction, given by the independent-
particle approximation is the Slater determinant,

1(w1)  da(w1) ... dn(m1)
o 1 [Su(@2)  go(w2) .. dn(x2)
p1(zn) P2(zN) ... On(TN)

= <x171’2,...xN‘¢17¢27'"¢N>

!Sometimes also called a single-particle function, a single-particle orbital, a single-electron orbital
or similar. There is a chance that these terms will be used interchangably throughout this text without
warning.

23
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where ¢;(x,) is a spinorbital indexed by 4, at coordinates x,. The spin-orbitals, are
single-particle functions in the proper two-dimensional Hilbert space and they are not
necessarily orthonormal. The Slater determinant in defines an N-electron
system. Adding a column and a row to the determinant in corresponds to
adding a particle to the system, and we obtain an N + 1l-electron Slater determinant.
Similarly, removing a columns and a row from the determinant corresponds to removing
a particle from the system, and we obtain an N — 1 Slater determinant. In the final
expression in [Equation 3.1 a compact notation is introduced. Here the normalisation
constant and labels for the fermion coordinates are understood — only the wavefunctions
are exhibited.

To illustrate why this is a good approximation of the electronic wave function,
consider first the two-electron case,

1
DNy = ﬁ

We see from this relatively simple expression that if the electrons were to occupy the
same state the wavefunction would equal zero, in effect forbidding such a state. This
ensures that the Pauli exclusion principle for fermions is satisfied [45]. Moreover, if we
switch coordinates of any two single-particle functions (spin-orbitals), corresponding to
the interchange of rows in the result is a change of sign. This attribute
of a determinant accomodates the total anti-symmetry necessary for a fermionic wave-
function. Conversely, a bosonic wavefunction can be constructed as a permanent.

(¢1(1)2(2) — ¢1(2)p2(1)). (3.2)

We usually write a Slater determinant in a much more simple way,

D) = |¢ich; bk - .. b2) = |ijk...2) . (3.3)

The N single-particle functions ¢; ... ¢,, that make up this Slater determinant now
form a basis for an N-particle Hilbert space H .

3.2 Creation and Annihilation Operators

The introduction of creation- and annihilation operators are what establishes the sec-
ond quantisation formalism. As we will see, such operators make the construction of
N-particle wavefunctions as symmetrised or anti-symmetrised products redundant, be-
cause these symmetry properties are encompassed in the anticommutation properties of
the operators. This is a great advantage of the second quantisation framework. Another
advantage is the relatively easy management of many-particle systems.
The notation of creation and annihilation operators vary,
ANIRAR

. . . ot
creation operator for spinorbital ¢;, X/, a;,¢;,';

annihilation operator for spinorbital ¢;, X;, a;, ¢, 4.

Herein, d;, a; is used and, if there is no chance of confusion, i1, 1.
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The Creation Operator For every single-particle index ¢, we define the creation
operator a,}L acting on the vacuum state by

al10) = i) (3.4)

al |jk...2) = lijk...2), (3.5)
Hijk...z) =o0. (3.6)

We see that this the the same as inserting a column into the matrix-form of the Slater

determinant in

The Annihilation Operator It is sufficient to state that the annihilation operator
a; is the hermitian adjoint of the creation operator a;, but to be specific we need

ai |0y =0, (3.7)

as there is no particle in the vacuum state to annihilate. For any arbitrary Slater
determinant, we have

ailijk...z)y=1ij...z), (3.8)
ai ljk ... 2) = 0. (3.9)

The creation- and annihilation operators map wavefunctions between Hilbert spaces
of different dimensionality, or particle number;

&;r : HN — Hy+1 (3.10)
a;: HyN — Hn_-1, (3.11)

where Hy is the Hilbert space for N particles. The space comprising all Hilbert spaces
of different particles numbers is called the Fock space, defined as a direct sum of all
Hilbert spaces

F = P Hn. (3.12)
N=0

The creation- and annihilation operators act on this Fock space.
We can now build a Slater determinant as the result of successive operations of

several creation operators dl} on the vacuum state |0),

tal ...al|0) = |ijk...2). (3.13)

It is convenient to arrange the spin-orbitals in a Slater determinant in alphabetical
order, as in This makes it necessary to ascertain the effects a creation
or annihilation operator will have on a Slater determinant when the affected orbital is
not at the beginning of the string of orbitals in the Slater determinant. Generally we
have, A

Plijk...2) = (=1)°P) Jijk ... 2), (3.14)
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where P permutes the string of orbitals and 0(15) is the parity of the permutation P.
We have

al lijk...z) = (=1)" lijk...p...z), (3.15)

ap ligk...p...z) = (=1)" |ijk...z), (3.16)

where 7, is the number of orbitals preceeding the orbital ¢,, pertaining to the creation
(annihilation) operator, in the Slater determinant.

3.3 Anticommutator Relations

To show how the anticommutator relations are built into the creation- and annihilation
operators, we start by considering two arbitrary creation operators acting on a Slater
determinant,

alal lijk...) = |pqgijk...),

"t ’ ) (3.17)
ayay, |igk...) = lgpijk...) = — pqijk...).
We demand that these two operations be equivalent, or that
alal = —alal,
) (3.18)
{a},al}y = afal + afal = 0.

This is the first of three anti-commutator relations we are going to derive.
The logical next step is to perform a similar operation with annihilation operators,

aplq |qpijk . ..) = ap |pijk...) = |ijk...),

D L o . (3.19)
aqly |qpijk . ..) = —aqap |pgijk . ..) = —aq |qijk...) = —|ijk...).
We also require these two operations to be equivalent,
plq = —Gqhp, (3.20)

{ap, g} = dpag + aga, = 0.

One case remains, when a creation operator and an annihilation operator is applied
together on a Slater determinant,

alaq |qijk...) = al lijk...) = |pijk...). (3.21)

This operation will replace ¢4 by ¢, even if ¢, would have been somewhere else in the
interior of the Slater determinant. Any sign change as an effect of moving the orbital to
the front of the string would be negated when the orbital is moved back to the original
position. Exchanging the order of the operators however, gives

aqa) |qijk . ..) = aq |paijk...) = —aq |qpijk...) = —|pijk...). (3.22)
We again see a sign change and have,

{al,a,} =0 (p#4q). (3.23)
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If, on the other hand, p = ¢ we have

alay pijk...) = |pijk...),

A (3.24)
apa;g lpijk...) =0,
and if the orbital ¢, in question does not appear in the Slater determinant,
A-I-A .. o
alaplijk...) =0,
I =0 ) (3.25)
apay, igk...) = ap|pijk...) = ijk...).
For all cases we have that,
(a;,ap + apa;) )=, (3.26)
or
{af,ap} = {ap,al} = 1. (3.27)

In conclusion, the anti-commutator relations of the creation and annihilation operators
are,

{a‘pv dq} = 67 (328)
{a},al} =0, (3.29)
{d;r?’ g} = {ap, &:5} = Opg> (3.30)

where 0,4 is the Kronecker delta.

3.4 Representation of Operators

Here we shall see that it is very useful to express operators in terms of creation- and
annihilation operators. We introduce a general one- and two-body operator. It is
possible to create operators pertaining to any number of particles, but these are very
uncommon to see in quantum chemistry, which is our domain.

A second-quantised one-body operator is written like

N
h=3 h(i) = (il hlj) ala;, (3.31)
=1 0]

v

where in general, (p| h |g) is the matrix element of the single-particle operator hin a
given one-particle basis,

= olika) = [ ooy (oo, (o). (3.32)

More accurately, we see from |Equation 3.31] that h weighs each occupied orbital of a

Slater determinant with the appropriate matrix element.
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A second-quantised two-body operator is written like

N
. L 1 At ata 1 A At ata
= Zu(z,]) =5 Zuzr’ga;ra;alak, =1 Z (ig] 0 |kl) oq Za}alak, (3.33)
ij ijkl ijkl
where
(ij|a|kl) E//qu(xl)qﬁ;(xg)u(ﬂ:l,x2)¢k(x1)¢($2)d:v1dx2. (3.34)

Notice the transposed order of indices in The interpretation of the expression is
that a fermion is removed from state |k) and |l) and created in state |i) and |j), with
the probability (ij|a|kl). The antisymmetric two-eletron integral for 4 is abreviated,

(g a|kl) — (ij] @ |kl) = (ij| @ [kD) zg (3.35)

We see that a full second-quantised Hamiltonian can be written,

H=h+1 (3.36)
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3.5 Normal Order and Wick’s Theorem

We have built the foundations necessary to describe wavefunctions in terms of creation-
and annihilation operators as well as a simple way of writing a general electronic Hamil-
tionian in the second-quantised manner. The following is a necessity to be able to
compute vacuum expectation values (—| AB... |—) of products of creation- and annihi-
lation operators. Such expectation values are very important for several computational
methods, see Harris et al. |46].

3.5.1 Normal ordering and contractions

The normal-ordered product of a string of operators Al, Ag, A3, ..., 1s defined as the
rearranged product of operators such that all the creation operators are to the left of
all the annihilation operators, including a phase factor corresponding to the parity of
the permutation, producing the rearrangement

n[A1A2 e An] = (-1 |U|AU 1)140(2) cee Ag(n)

(3.37)

where P is a permutation operator acting on the product of operators, and o is the
parity of the permutation. One should bear in mind that this definition is by no means
unique. Here are some examples,

nlatd) = afb  nlbat] = —a'b
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nlab] = ab = —ba
nfafb1] = at = —baf
nlatbétd] = —atetvd = étatbd = afetdb = —éfaldb.
Note that the second quantised Hamiltonian in is already on normal-

ordered form.
For two arbitrary creation and annihilation operators, we define their contraction

as —

AB = (—|AB|-), (3.38)
or equivalently, _

AB = AB — n[AB]. (3.39)

For a creation- and annihilation operator there are four possible contractions,

afdt = (—|a'vt |—) = afbl — nfa’dl] =0

P . . .

ab={(—|ab|—) =ab—nlab] =0

al (=lab|-) [ab] (3.40)
a'b = (—|afb|-) = a'b—nlafb] =0

o . . . . .

abt = (—|ab' |-) = ab’ — n[ab'] = ab" — (=bTa) = {a,b'} = d4p.

We see that all contractions between creation- and annihilation operators are a number,
most of them are zero and only those with an annihilation operator to the left and a
creation operator to the right can be one.

Contractions inside a normal ordered product is defined as follows,

— — ]

~

n[ABC...R...S...T...U...]=(-1)°RT'SU ...n[ABC...], (3.41)

where all contracted operator pairs are moved to the front of the normal ordered prod-
uct, and o is the parity of the permutations required for this relocation. The result will
be zero, or plus or minus the normal ordered product without the contracted operator
pairs.

3.5.2 Wick’s Theorem

Wick’s theorem states that every string of creation and annihilation operators can be
written as a sum of normal-ordered products with all possible contractions,

ABCD---=n[ABCD ...+ n[ABCD...]+n[ABCD...|+n[ABCD...]
+---+n[ABCD...|+n[ABCD...]+---+n[ABCD...] +--- +
[ ﬁ A AL_L,\

(3.42)
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where eventually all possible contractions of one, two pairs etc, are included.

Especially when computing vacuum expectation values of normal-ordred products
Wick’s theorem becomes very important. The reason for this is that each contraction
will not contribute to the result, unless it is a fully contracted operator string,

—t— 1
(|A...B...C...D...)= > (n[Ad...B...C...D...]]). (3.43)
all possible
contractions

Most vacuum expectation values contain operator strings that already have sub-
strings that are on normal-ordered form. This warrants a very useful generalisation of
Wick’s theorem for such strings,

n[flljzlg]n[BlBg]n[leg]:n[AlAgBlég2122]

where we sum over all combinations of contractions that each involve operators from
different substrings, starting with one contractions and up to when all operators, or as
many as possible, are contracted.

3.5.3 Particle-Hole Formalism
We see that a Slater determinant can be built recursively with creation operators,
D =iyig...iy=1dlih...iN]). (3.45)

Instead of rewriting Slater determinants with operators applied to the vacuum state in
this manner we will introduce the reference state, or Fermi vacuum,

10) = |®o) = |ijk...n). (3.46)

We will define other Slater determinants relative to this reference state. For instance,

|®%) = ali |[®g) = |ajk...n) (3.47)
\cpg;)> = 4153 |®0) = |abk ... n) (3.48)
;) = i|®o) = |jk...n) (3.49)
|9) = @ @) = |aijk...n) (3.50)

where equations [3.47] [3.48|[3.49] and [3.50] constitute a single excitation, a double ex-
citation, an electorn removal and an electron attachment, respectively. Note that the
reference state Slater determinants excited relative to the Fermi vacuum have the fol-

‘(I)?j’> - ®§g> - ’cpf;> - ‘¢;§’>. (3.51)
Take note of the specific letters used for creating and annihilating electrons in the ex-
ample above. 7,5, k,[,... are letters restricted to indices of hole states, and a, b, ¢, d, . ..

lowing properties,
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are letters restriced to indices of particle states, while p,q,r,... are for general use,
indicating any state. Notice that
10y =0 alo) =0,

(Oli=0 (o]af=o. (3.52)

Whenever we try to insert an electron where there already is one, or when we try to
remove an electron that is not there, we get zero as result.

3.5.4 Wick’s theorem relative to the Fermi vacuum

Now we will modify the concepts of normal-ordering, contractions and Wick’s theoreom
so that they relate to the reference state and the Fermi vacuum, instead of the physical
vacuum. First we introduce the pseudo-operators,

=

S
I

>

)

T=3
:L " (3.53)
R

>
>

a:a7

where B;f is a hole creation operator and b; is a particle creation operator, but only for
vacant spaces below the fermi level. The reason for introducing such operators is to
be able to work with the fermi vacuum in the same manner as regular operators work
with the physical vacuum. FExcited Slater determinants can easily be written using
pseudo-operators,

~

|®%) = bl bl | @) (3.54)
‘cpg;’> = Bb1o0! o) . (3.55)

We introduce a new type of normal ordering for the pseudo-operators and for the
actual operators that they represent,

{ABC} = (—1)bjb} .. . bubs. (3.56)

We write a contraction in the same manner,
AB = AB — {AB}. (3.57)

A normal-ordered product with contractions inside is also defined in the same way. We
see that the only non-zero contractions are

~

bibl =i

~

= 6ij, bab} =

<51
S

F = 6ap. (3.58)

Here we are also made aware of the benefit of pseudo-operators, as we now have only
have non-zero contributions from contractions that have a creation operator to the right,
and an annihilation operator to the left. More generally we have the anticommutator
relations

{0y, b1} = 6pqs  {bp, by} = 0. (3.59)
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Chapter 4

Hartree-Fock Theory

In 1927, soon after the discovery of the Schrodinger equation in 1926, Douglas R.
Hartree introduced a procedure which he called the self-consistent field method [12].
Hartree sought to do without empirical parameters and to solve the many-body time-
independent Schrédinger equation from fundamental principles, ab initio. A year later
John C. Slater and John A. Gaunt provided a sounder theoretical basis for the Hartree
method by applying the variational principle to a trial wave function as a product of
single-particle functions [47|[48]. Slater later pointed out, with support from Vladimir
A. Fock, that the method merely applied the Pauli exclusion principle in its older, incor-
rect formulation; forbidding presence of two electrons in the same state, but neglecting
quantum statistics [49]|13]. It was shown that a Slater determinant satisfies the anti-
symmetric property of the exact solution and would be a suitable ansatz for applying
the variational principle. Later, Hartree reformulated the method for calculations [50].

The Hartree-Fock methods makes the following simplifications to the multi-electron
atomic (molecular) problem,

e The full molecular wavefunction is constrained to a function of the coordinates of
only the electrons in the molecule. In not so many words, the Born-Oppernheimer
approximation is inherent in the method.

e Any relativistic effects are completely ignored, i.e. the momentum operator is
assumed to be completely non-relativistic.

e A variational solution is assumed to be a linear combination of a basis set, which
is assumed to be approximately complete. This set of basis functions is usually
non-orthogonal.

e Some electron correlation effects are ignored, as the methods implies a mean-field
approximation. Coulomb correlations are fully incorporated in the Hartree-Fock
method, but the method ignores Fermi correlations and is therefore unable to
describe some effects, like London dispersion[ﬂ

e The ground state is approximated by a single Slater determinant.

'Named after Fritz London; London dispersion forces (LDF) are a type of force between atoms and
molecules|51]

35
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Relaxation of the last two simplifications give rise to the large group of many-body
methods commonly referred to as post-Hartree-Fock methods.

4.1 Deriving the Hartree-Fock Equations
Consider a Hamiltionian for some system
H=h+1 (4.1)

where the ground state of h is a Slater determinant consisting of N single-particle
functions,

O =[p1d2...0n), (Pilpj) = iy, (4.2)

If 4 is only a limited perturbation to the system, it is reasonable to assume that the
actual ground state of the full system can also be represented by a Slater determinant.
Because the Hartree-Fock theory includes a mean-field approximation, each particle
moves independently of the others interacting with the remaining electrons only indi-
rectly through an average potential ¢HF

The expectation value of the Hamiltionian in is

(BT 12) = 3 (01l h16:) + 5 3 (duonl dloud; — 0301
' ) . Y (4.3)
= (il h|gi) + 3 > (Git| @]dids) ag »
i ij
where

(656t |dr) = / / Gi(21)8; (w2) (1, w2)bi (1) 1 () dary v

Now we want to minimise the energy (| under the constraint of or-
thonormal single-particle functions, that is (¢i]¢k> = 0;;. The minimum solution is
called the Hartree-Fock state, |®gp). An optimisation problem with a constraint begs
the formulation of a Lagrangian functional with a Lagrange multiplier for each con-
straint,

g(@ﬁaw-ﬂbm ) (I)‘H’(I) Z/\zj ¢z’¢y - zg)
(4.4)
= (¢l hlgs) + 3 Z (Dij| Tl dicrs — bidi) — > Nig((dilj — bij))-
i ij ij
The constraints can always be treated separately, 0.2/0\;; (¢s|¢;) — dij, as this
demand will be fullfilled by finding that the solutions ¢; are orthonormal.

In order to find the optimum of the Lagrangian in (Equation 4.4)), we choose a

k€ {1,...,N} and compute the directional derivative of ¢}, by varying this single
particle function and leaving all others fixed,

d0pr, =en, O0¢p =0,k #1, (4.5)
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where € is some small number, and 7 is a normalized single-particle function. We define
a function representing this variation,

fle) =ZL(g1,.... Q. ten,..., 0N, A), (4.6)
expanded to first order in e,
fle) = £(0) +ef'(0) + O(). (4.7)
For an optimum we must have
f'(0)y=0, Vn, (4.8)

which means that the directional derivative of .Z at {¢;}\,, in the direction 7 vanishes.

We compute the Taylor expansion of the varied Lagrangian (Equation 4.6)),

F€) =" (¢ + uien| h|gi) + %Z (i + Swien) (¢ + rjen)| @ |did; — ¢ji)
‘ 9 (4.9)
_Z)‘U (i + diwen|¢y) — bij) + O (e )

(4]

=2 (@ilhlon) + Zy (pits| | pid; — dibi) + € (n| B |)

+§ D (pidkjen| @] did; — b
1 i (4.10)
+5 Z (Oriendj| i |pid; — djdi)
- Z)\z] ¢l|¢] Z )"L] zk€77|¢.7> - l]) + 6(62)

= (il hloi) + Zy (bicos| | dico; — b} + € (n| | ) ZM (Bil$;) — 0ij)

7

1 +5e3 (ol |¢z¢k>—7ez<¢m\ k)

1
+§€ > (ngjl il dres) — QGZ (nd;| i |djon)
i i

—e > A (lég) + (%)
’ (4.11)
=2 (@il hlon) + Zy (Ditj| | pich; — bi i) ZM ((pileg) — 6i5)
+e (| b |én) + EZ (neil & |prdpi) — EZ <77<Z5i| |9idr) (4.12)

_GZAij 77|¢J +ﬁ( )
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Notice that the zeroth term, represented by the first line in is simply
the original Lagrangian in We equate all the first-order terms to zero,

(nl | br) + Z (neul i |rdi) = > (il tt | pichr) — Z Aik (nld:) = 0. (4.13)

(2

This must be valid for any choice 17, meaning

hlgr) + Z (- il @t pra) — Y (- il il dicr) — Z)\ik |¢i) =0, (4.14)

(2

where (- ¢1| 1 |p2¢3) is interpreted as an integral over only the second particle in the
matrix element. We define,

@HF = ﬁdirect + @exchange = Z < ¢2| U |¢k¢2> - Z < ¢’L| U |¢Z¢k> (415)
7 7
f = h+iup, (4.16)
Where is the Fock operator. We can now rewrite rewrite
to
F@1, - on)16i) =D Xijléy) s (4.17)
J

which is a set of linear equations, one equation for each single-particle function ¢;, we
call the non-canonical Hartree-Fock equations.

It so happens that the Slater determinant |®) is invariant under unitary transforma-
tion of the single particle functions. Consider a rotation of the single-particle functions,

b= _ Cig, (4.18)
j

where C'is a unitary matrix. We choose a particular unitary transformation C, rotating
the single particle functions in a certain manner so that A = CEC", where Eji = djrer
are the elements of a diagonal matrix (the eigenvalues of A). This provides us with a
new set of eigenvalue equations,

F(B1,...,0N) |6i) = € |i) (4.19)

which are the canonical Hartree-Fock equations. From now on we will stick with these
equations and suppress the tilde notations.

4.2 The Roothan-Hall Equations

In order to solve the Hartree-Fock equations (Equation 4.19)) we discretise the equations
in terms of a finite, fixed basis {Xp}£:1 size L. It is not a necessity for this basis to be

orthonormal, and we therefore define the overlap matrix,

S5 = (Xalxs) - (4.20)
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The Hartree-Fock single-particle functions are expanded in this basis,

[6p) = D> Cp [Xa) » (4.21)

«

where C' is not necessarily unitary, because the basis is not necessarily orthogonal.
However, we do have CTSC = 1.

We insert the expansion from into the expression for the canonical
Hartree-Fock equations from

FY 05 xa) =& Y Cp Ixa) (4.22)

Then we left project with an arbitrary function from our new basis,

<Xﬁ‘ fz C;? [Xa) = €a <X5|Xa> ZCS
D_IECE =& SiCy
F(D)C = SCe. (4.24)

where D = CCT is the density matrix. [Equation 4.24|is a matrix equation called the

Roothaan-Hall equations.
Elaborating on the computation of the Fock matrix element,

(4.23)

fﬁ = <X0c‘ f‘Xﬁ) = (Xal h |X5> + (Xal Vdirect |X6> - (Xa’ ﬁexchange ’XB> ) (4.25)
where
<Xo¢’ ﬁdirect ’Xp> = Z <on¢j‘ U |Xp¢j> = Z C]a (Cé/>* <Xo¢Xa” U ‘XpXB’>
g , oo (4.26)
= D5 (XaXa' @ |[XpXa')
B/a/
<on’ @exchange ’Xp> = Z <Xa¢j| ] |¢jXp> = Z C]a (Cé/)* <onXo/’ U ’X,B’Xp>
7 , e (4.27)
= D§ (XaXarl @ X3 Xp) »
IBla/
gives,
8 = (xal R1x8) + Y D ((XaXar | i | X5X5 ) — (XaXar| @ [ XprX5))s (4.28)
ﬁ/a/

which is the matrix element of the Fock operator.

The benefit of the Roothan-Hall equations (Equation 4.21)), is that they are repre-
sented by matrices, and therefore easy to implement on a computer. The Roothan-Hall
equations are solved iteratively, starting from an initial guess for C. This guess can
be used to compute the density matrix, D) = C(k)(C(k))T, where k denotes the kth
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iteration. The density matrix is used to compute the Fock matrix. This provides us
with a general eigenvalue problem, from which a new C' and e can be found. This
formula is then repeated until the iterations converge. At this point we say that we
have reached self-consistency in the mean field, and this method is usually called the
method of self-consistent field (SCF) iterations.

4.3 Restricted Hartree-Fock Theory

Consider N electrons confined in a potential. To begin with we will assume that these
are non-interacting, and can therefore be described by the one-body part of the Hamil-
tionian, only

h(r) = i(r) + o(r), (4.29)

where © is the potential set up by an atomic nucleus, or some other confining force.
The one-body operator h does not couple to electron spin, so the spin-orbitals or single-
particle eigenfunctions of h separate,

QSP(I'?O-) = @P(r)Xa(a)a (4'30)

where P = (p,«) is the combined spin- and spatial index and o = +1/2 is the value
of the projection of the electron spin along the z-axis. The spin index/coordinate can
only take values o & 1, and we employ orthonormal spinorbitals, (xa|xg) = 6ag.

We restrict the orbitals to have the same spatial wavefunction for spin up and spin
down, and we consider only closed-shell configurations. This means that our molecular
wavefunctions, in the form of a Slater determinant, can only have an even number of
N electrons, with all electrons paired in such a manner that there are two spin values
for each of the n = N/2 spatial orbitals. The N-electron ground state of h is given by
the first N eigenfunctions ¢, ,) occupied,

@) = 91,401, Ox PN ), (4.31)
commonly also written as

|P)jur = 0101 -+ ©N/20N/2) - (4.32)

The reasoning behind this restriction is that one would assume, for many systems, that
the exact wavefunction has the same kind of structure. This is a good approximation for
almost all electronic systems in nature. We therefore do not optimise all the N single-
particle functions freely, but assume that they form sets of doubly occupied spatial
orbitals. Matrix elements can now be computed more easily on the restricted form,

(Do) |hld(q,8)) = (Xalxp) / drpy(r) g (r). (4.33)

And similarly for two-body operators,

<¢pa¢qﬁ|ﬂ|¢m¢sé> = <Xa’X'y> <X5|X6>//drldFZSpp(rl)Soq(rQ)a(I'lI'Z)SOr(rl)SDs(I'Q)-
(4.34)
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Now we will find the special form of the Fock operator in restricted Hartree-Fock
theory. First we insert the wavefunction restriction into the Hartree-Fock equation

) for(r,0) = €¢r(r,o) (4.35)
fei(r)xalo) = €pi(r)Xxalo).

Here we have joined the spatial- and spin indices with a capital letter I = (i,). We
left multiply with x7,, suppress indices for brevity and integrate over spin,

Xalfloixa) = (Xa|flbr=(a)) = €ipi- (4.36)

Next we insert the Fock operator,
f=h+ Z <'<Pi"&"§0i>As .
i

This special notation (-¢1|t|-p2) means that we integrate over the second orbital in the
matrix element only. After insertion we get

<Xa|iL|Xa> wi + Z <Xa¢Jm|¢I¢J>As = €
J

hoi+Y (Xa®s8l6105) =D (Xadlilésor) = eipic
7

J

(4.37)

Because we have a closed-shell system, the sum over occupied spinorbitals include an
equal sum over spin up and spin down functions so that

N n/2

J B J
We next insert this into our eigenvalue equation and split the single-particle functions
into separate spin- and spatial orbitals,

n/2 n/2
hpi+ 3 (xapixslilpixavixs) = Y D (Xa@iXsl@lejXs0iXa)
BJ B J (4.38)
n/2 n/2
=hei +2Y Cojlileies) + Y Cojlileie) = apr
j j

We now have the form of the Fock operator within the restricted Hartree-Fock theory,

n/2
F=h+>" (@il20— P)lg)
‘ (4.39)

n/2 n/2

25D / dra; (c)ig(r2) = / et (12)ip; (xs)
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The Hartree-Fock energy also has a special form in the restricted Hartree-Fock
domain,

(BlA18) =3 (orlhlor) + 5 33 (ordolilérsa) s
P Q

P
n/2
=> > (e lhldpa)
a p
+3 2> > bpmten| i ([padus) — [wndea))
a p B q
n/2 n/2 n/2
:22 (eplhleq) + QZ (Ppeqltleppq) — Z {epeqlt]ioppq) -
P pq Pq

4.4 Unrestricted Hartree-Fock Theory

The restricted Hartree-Fock model is often a good enough approximation, but under
some circumstances it will fail to provide a good result. The unrestricted Hartree-Fock
model is an intermediate between the general Hartree-Fock model and the restricted
Hatree-Fock model. Compared with the restricted Hartre-Fock single-particle wave-
function form, what we do in unrestricted form is somewhat obvious - we now allow
the spins to be different,

¢p(r,0) = ¢y (r)xal0), (4.41)

where we have given the spatial orbitals a spin-index as well. As before, a capital index
is the combined spatial- and spin index P = (p, «), where P € [1,L], p € [1,L/2] and
a = £1/2. Like before, we require the states to be orthonormal

(6pldq) = (L5100 (Xalxs) = dpq- (4.42)

We can write a general unrestricted Hartree-Fock state as

@) unr = 01201 20y %0 2o e AT = [G162036a . bLa6L) . (4.43)

In order to find an expression for the Fock operator we insert the wavefunction into
the canonical Hartree-Fock equation,

f¢P = €p¢P, - f‘P?Xa = €p90gXa- (4-44)
Now we left multiply by x}, and integrate over spin,
<Xa}f’cnga> = <Xa‘€p‘80gXa> (4.45)

Pﬁ—meMNMMMMﬂﬁ—wﬁ (4.46)
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We now have what is called the spatial unrestricted Hartree-Fock equations. Inserting
for the canonical Fock operator yields the following left-hand side
L L

£ =he% + 3 (xato|i|eiXaq) 1 — Y (Xato|d|dQeiXa)
Q Q
L/2

—hos + 3D (Xaghxsi
B aq
L/2

=33 (xavixs|| e xsvixa )
B q

L/2 L)2

—hop + 33 (ila-f ) e = 3 (wglalep) ol
B g q

This means that we get the following form for the spatial Fock operators in unrestricted
Hartree-Fock

oxs )

©pXap
(4.47)

L/2 L/2
- 4 1 N
fT =h+ Z[UCOulomb - vexchange} + Z Voulomb? (4.48)
p P
L/2 L/2
A} . ) A1
fl{ =h+ Z[vCoulomb - ,Uexchange} + Z VGoulomb* (449)
p P

From the definition of the two spatial Fock operators in [Equation 4.48|] and
we see that the two integro-differential eigenvalue equations that arises from

inserting fT and f¢ into the canonical Hartree-Fock equation,
Flob = elel, (4.50)
Frep = ey, (4.51)

are coupled and cannot be solved independently. The spin-up orbitals depend on the
occupied spin-down orbitals and vice versa. This means that the two equations must
be solved by a simultaneous iterative process.

We can also derive an equation for the unrestricted Hartree-Fock energy,

Eynr = (dunr|H|Pynr)
L/2 L2 L)2

=33 (epxalblepxa) + 3D DD (epnartixa|i|epxaring)
a p a p B q

L)2 L/2 L/2
=D (eplhlep) + 30D (wsefalenel) - 307 (wpvslaleses)-
a pg aB g a  pg
(4.52)
If we were to expand the unrestricted Hartree-Fock equations, and

in a basis like we did in we would get the Pople-Nesbet-
Berthier equations [52, [53].
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4.5 Time-Dependent Hartree-Fock

This section follows closely the narrative of Hochstuhl et al. [54]. Deriving the time-
dependent Hartree-Fock equations starts, of course, with the time-dependent Schrédinger
equation,

() = (D) [2(1). (4.53)
where the Hamiltonian is
H(t) = h(t) + a(t). (4.54)

This is the same Hamiltonian that we started with in this chapter (see [Equation 4.1J),
except for the introduction of a time-dependence. We start by multiplying from the

left with the reference Slater determinant (®|. The right-hand side of the Schrodinger
equation becomes the familiar Hartree-Fock energy,

N - 1 N
(@UH|®) = > (plhldp) + 5 D (Spdalildpda) s (4.55)
P Pq
The left-hand side, is more interesting,
=>_ (% |¢p (4.56)
P

which we will deal with in due time, but before doing so we need to introduce functional
derivatives and the functional derivatives of various matrix elements. First, the one-
body matrix elements,

5 . 5 » o
s 3 (nlilon) =3 5o [ ardjio, = 8ub =l (50)
"op p T P
Second, the matrix elements of the time-derivative,
1) 0 0
il = —|¢,), 4.

which is so similar to the one-body computation that the result is simply written down,
instead of computing the result explicitly. Lastly, we have the two-body matrix ele-
ments,

4]
S 2 (000allérda) as
T pq

- 5¢;(r1) %q:/drldmgb;(rl)(b;(7“2)&[@7(7“1)%(7"2) — ¢q(r1)Pp(r2)]

= Z(Spq/drﬂb (r2)a[ep(r1)dq(r2) — dq(r1)dp(re)] = Z (gt Prog) ag
! (4.59)
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Now we want to vary the reference state to find the optimal one, applying the
so-called time-dependent variational principle|35|,

(00|(H — ihs; )y<1>>_o (4.60)

which we want to minimise under the requirement of orthonormal single-particle func-
tions in time,

<¢p(t)|¢q(t)> = 5pq' (4.61)

Such an optimization problem under a constraint begs the formulation of a Lagrangian.
We have then

L, 2g) = (B — B ®) = Y N(Glée) ~ ). (462)
pq

We find a stationary point of this Lagrangian functional, by variation of the single-
particle functions so that

0.7
S 0, Vr. (4.63)
This is where we will make use of the functional derivatives we computed before,
0.7 - . .0
5or = o)+ Coulildrdadas — iy 6r) = 3 Arg|ér) = 0. (4.64)
" q q

Now we want to solve for the Langrange multiplier, we do this by left-projection of
the functional derivative above with (¢s| and move the resulting multiplier Ay, to the
left, and all other terms to the right. We get the following expression for the Lagrange
multiplier,

N R ) 0
>\sq = <¢s|h|¢r> + <¢s¢q|u’¢r¢Q>AS —ih <¢s’a|¢r> (4'65)
We insert this expression for the Lagrange multiplier into which results
in,

. 0
P |blgr) + 37 Colilorda)as — iz |¢k>] -0, (4:66)
q

where we have introduced the projection operator P,

P=1-Y"|¢pNoyl- (4.67)

p
Rearranging yields
P10y = P [R16:) + (ulil-60)] [0n)as = PF161) (4.68)

where we see that Fock operator has appeared. This equation is an integro-differential
equation, as the projection operator P appear on both sides of the equality sign, and a
solution can be difficult to find. Because the time-dependent Hartree-Fock wavefunction
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is invariant under unitary transformation, we can obtain equations that are numerically
more appropriate, by applying a unitary transformation @(¢) which satisfies

0 A
h(@pl 57 10q) = (05 Q(1)]0) - (4.69)
It turns out that a reasonable choice for Q(¢) is f(t), in which case
becomes 5
iha 16p(1)) = f(2) [6p(0)) (4.70)

where we have explicitly written out the time-dependence. This is the time-dependent
Hartree-Fock equation.

Now we pick a specific, finite and static basis { Xp};%:l and expand the Hartree-Fock
single-particle functions in this basis,

|¢p () an ) IXa) - (4.71)

Notice that the basis set is indeed static, with no time-dependence, only the coefficients

of the expansions Uy(t) evolve in time. We insert the expansion into [Equation 4.70
. 0 o R o
ih > Gy Ixa) = £(£) Y C} [Xa) (4.72)
(63 6
We left-project this equation with (xgs],

0
ihaZCg(tMXﬁ‘Xa ZC”‘ (xalf ) |xa)

‘ (4.73)
—ihy CoSh = chfg (t)
which can be written as a matrix equation,
ihSC(t) = F(t)C(t). (4.74)

We have derived the time-dependent Hartree-Fock equations, in the form of a matrix
equation in The time-dependent Hartree-Fock equations are a set of
elegant equations of motion that dictate the time-development of the system by simple
propagation of the Hartree-Fock coefficients. Moreover, we have come to the realisiation
that it is necessary to compute the Hatree-Fock self-consistent field iterations only once,
and after that we can treat [Equation 4.74]as set of ordinary differential equations, which
can solved numerically without great effort. The only consideration one must make is
to update the Fock matrix at each time step.



Chapter 5

Perturbation Theory

Perturbation theory is a very powerful method and a generic method applicable to all
matrix problems. Additionally, perturbation theory is relatively cheap in terms of com-
puting time, especially compared with coupled cluster theory. The method provides a
different route to the solution of the Schrédinger equation, by approaching the exact
solution systematically, based on an order-by-order expansion of the energy and wave-
function. Therefore, perturbation theory is often used to improve the results from other
computational schemes. What is more, the exponential form of the wavefunction in cou-
pled cluster theory stems from the non-degenerate Rayleigh-Schrodinger perturbation
theory (RSPT) expansion.

5.1 Formal perturbation theory
We split the Hamiltonian into a known part and a perturbed part,

H=H,+V. (5.1)
Sometimes it is convenient to write

H=Hy+\V, (5.2)

where we have included an "order parameter" A. This parameter is used to categorise
the contributions of different orders. The exact solution is given by

HY, = E,¥
. . n n n (53)
(H0+V)\Iln =E¥,, VY,= q)n+XNa
while the solvable and simple zero order problem is given by
Hy®, = EV®,. (5.4)

The set {®,} is assumed to be an orthonormal basis for the Hilbert space. The exact
wavefunction ¥, is split into a zero-order part ®,, and the perturbative part x,.

47
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By projecting [Equation 5.3| with (®g] we get

(D] Ho [Un) + (Bn| V [U0) = E (€] W)
— By = (®| H [V,,) (5.5)
— AE, = E, — E° = (®,|V |¥,,)

where we have used that

(U |®n) = (P + Xn|Pn) = 1, (5.7)
<\Ijn’q/n> =1+ <Xn‘Xn> . (5.8)

This is called the intermediate normalisation assumption.

5.1.1 Energy- and Wavefunction Expansion

To proceed further we expand the wavefunction and energy in the order parameter A

from

Uy =B+ xn = 0O 4 20D 4 2200 4 (00 =9,)

n
5.9
E,=E9 + AE, = EO + AEW + X2E?) 4 (5:9)
We insert these expansions into the Schrodinger equation,
H—E,)¥, =0
( ik (5.10)

(Hy 4+ AV, =0,
resulting in
(Hy+ AV — EQ — XEW — X2E@) — (0w 4 xo) 4 xw@ 4 y=0. (511)

We gather the coefficients of different powers of A and obtain

(Hy — EOw® = ¢ (5.12)
(y — O = (B — V)0l (5.13
(Hy — ENT®@ = (ED — 7)o + EOg©® (5.14)
. . m—2

(Hy — EOYw(m = (B — y)yglm=1 1 N7 pin= g0 (5.15)

where the last line gives a general mth-order equation. This equation can be simplified
somewhat,

(B — Hy)®(m = yyim=1) ZEm Dy®, (5.16)
=0
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By applying (®,]| to each of the equations, we get expressions for Eflm). For \! 1

tion 5.13|) we get,

(@al o — BY [0 = (@] B — V| @,)
(Ao = E)2,[0D) = (@, EY) ~V |@,) (5.17)
— EY = (2, V |®,,) = V.

Since we have an expression for Er(bl), we can solve the equation for \117(11), by also requiring

the intermediate normalisation condition (@nl\llgll)> = 0. For the general mth-order

expression (Equation 5.15|) we have,

(o

\pg>>

E°— ﬁo(\ygm>> - <<I>n

vjwimn) - mzl B0 (@,
=0

v]qum—l>>.

(5.18)
B = <q>;m>‘ - <<I>n

(m)

In principle, we can obtain every next-order energy contribution Fy, ’ from the previous-

order wavefunctions \Il%m_l) and then solve for \I'%m).

5.1.2 Projection Operators

We define the projection operators, P and Q, in terms of the zero-order wavefunctions,

P = |®) (P
L . O (5.19)
QZl_P:Z|(I)Z><(I)z|
i=1
The projection operators have the following convenient properties,
? = [ @) (Do) (Bo| = [Po) (®o| = P
Ao N a A s A L o .
1-P)¥*=1-P-P+P=1-P=
Q"= ( ) —r- Q (5.20)
PQ=QP =0
[P, Hy) = [Q, Ho] =

If we write the wavefunction as a linear expansion in terms of ®;,

=)0, (5.21)
A

acting on it with the projection operators yields

PO =" a;|®o) (Bo| ;) = D a; |®0) do; = aoo. (5.22)
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For sake of specificity, the operator P will extract ®¢ from W, while Q annihilates @,
N

QU =(1-P)U =T — Py = Za@i, (5.23)
i=1

meaning we can write

U = PO+ Q0. (5.24)

5.1.3 The Resolvent

Now follows what some considers a more elegant derivation of the perturbation equa-
tions, including the introduction of the resolvent of the unperturbed part of the Hamil-
tonian I:IO.

Starting from a rearrangment of the Schrédinger equation,

(Hy+V)¥ = ET,

. . (5.25)
— —Hy® = (V - E)¥

we introduce a seemingly arbitrary parameter ¢, the purpose of which will be apparent
later. This parameter is introduced by adding (P to both sides,

(C—Hy)® = (V- E+()®. (5.26)
Next, we apply Q to both sides,
Q(C— Ho)V =Q(V — E+()V. (5.27)
The right-hand side of this expression can be rewritten as,

Q¢ — Ho)¥ = Q*(¢ — Ho) = Q(¢ — Ho)QW

- ZZ |®3) (] ¢ — Ho |5) (®5], (5.28)
i#0 j#0
[Equation 5.27]is now ) o o
QI Hh)QW =RV =B+ OF. (5.29)

By restricting to choice of (, so they do not coincide with the eigenvalues of Hy in
Q-space, i.e. {®;]i # 0}, we ensure that the inverse of Q(¢ — Hp)Q exists. This inverse
is the resolvent of Hy,

Ro(¢) = =D D 18a) (il (¢~ Ho) 7' @) (&5]. (5.30)
- HO i#0 j#0

The resolvent simplifies in the diagonal case to

=;|@><@i|<¢—fs°> o 0:1= 3 ’f g’é) (5.31)
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We can prove that RO(C) is the inverse of Q(C - ﬁg)@ in Q-space,

o .

¢
= D0 1@0) (@l (¢ = Ho) ™M [@5) (D51 | | D 1@k) (@k] (¢ — Ho) [@1) (]
i 320 10
=120 (@i (¢ D2 125 (] ) (€ — Ho) @) (@]
1,17#0 j#0
= > [®) (@] (¢ — Ho) (1 — [Do) (Do) (¢ — Ho) |®1) (Py]
1,17£0
=3 ) (@] =
20
(5.32)
Applying the resolvent to both sides of
QY = Ro(¢)(V — E++(Q)V (5.33)

— W=D+ Ry(O)(V —E+ U

which can be interpreted as a recursive relation for W. Inserting the expression for ¥
into itself repeatedly, yields

= Z [Ro(C)(V) — E + (] . (5.34)

We can find an expression for the perturbative energy correction by left-projecting this
expression with (o] V,

AE = (@|V]W) = 3 @oy[Ro V—E+<)]myq>0>. (5.35)

m=0

The problem with these equations is that F, which is unknown, appears on the
right-hand side. One would also wonder what to do with . There are two common
choices for ¢ that give rise to two important theories,

(¢ = F + Brillouin-Wigner Perturbation
(= E(()O) — —F + ( = —AF + Rayleigh-Schrodinger Perturbation.

5.2 Brillouin-Wigner Perturbation Theory

By setting ( = FE in [Equation 5.34] and [Equation 5.35| we get Brilloun-Wigner pertur-
bation theory|[55, [56]. The wavefunction- and energy expression becomes the following,

U= "[Ro(E)V]"® (5.36)

m=0
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AE =Y (Do|V[Ro(E)V]™|®o) . (5.37)

m=0

Moreover, the resolvent is given by
A | D)}
Ry = E ——- (5.38)
~ E-EY

As we can see, these equations are still implicit, i.e. E appears on the right-hand side.
In order to compute corrections in the energy and wavefunctions estimates, we need

an estimate for £. A common estimate for the first-order energy is E[()O) + (Do V| Po).
From this we can continue computing the second-order energy,

E®) = (0| V Ro(E)V|®0)
-y (@o|V| i) (@:|V|Po)
- E—EY (5.39)
B Z VoiVi0
4~ p_gO°
Similiarly for the third-order energy,

E® = NAGASL . (5.40)
D B

ij
These expressions are somewhat simple, but Brilloun-Wigner is plagued by a fun-
damental problem as it does not provide a true order-by-order expansion of the energy.
This is due to the systematically prevalent presence of the infinite-order E-term in the
right-hand sides of the equations. Related to this problem, is the lack of extensivity
if the perturbation is truncated at any finite order. See Shavitt & Bartlett|20] for a
derivation of this non-extensivity of finite-order Brilloun-Wigner perturbation theory.
For this reason, we move on to Rayleigh-Schrédinger perturbation theory.

5.3 Rayleigh-Schrodinger Perturbation Theory

By setting ¢ = Eéo) in |Equation 5.34| and |Equation 5.35| we get Rayleigh-Schrédinger
perturbation theory[57} |58]. This parametrisation means that ( — E = —AFE, which
gives us

U= i [RO(E(()O))(V - AE)}m o (5.41)
m=0
AE =Y (@0l [Ro(ES)(V — AB)| " |@0), (5.42)
m=0

where the resolvent becomes

b (0)y _ | i )P
Ro(Ey )_Zm. (5.43)
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The keen reader will have noticed that these expressions are lacking the unknown F,
but we still have an expression for AF in the right-hand side of the expressions.
The first-order correction in energy is simply

EW = (&|V]®) . (5.44)

For the second order energy correction, E(?) we need the first-order wavefunction cor-
rection,

o) = RyV®,. (5.45)

Notice that the AE-term to the right disappears as RoAg |®g) = AgpR |®p) = 0. This
gives us

(®o|V|@;) |2

@) _ (o U BT |
E (®o|V RV | D) Z 50~ 50 (5.46)

For the third-order energy correction we need the second-order wavefunction correction,
U = Ry(V — AE)RV®y = Ry(V — (®o|V|®0)) RV B, (5.47)

where we have started to treat the stepwise expansions as a recursive relation, by in-
serting the first-order energy corrections for AE. Generally, we can write this recursive
relation as

EM = <\11

; \1:(”*1>> , (5.48)

= RyV 1) ZE =)y (5.49)

The third order-energy correction becomes

E®) = (®o|VRo[V — (®0|V|®0)]|Po)

N NP 5.50)
= (®g|[VRVRV|®) — (®g|VR*V|®y) (

We should now notice that a pattern has arisen in the energy terms, albeit a bit com-
plicated one. There will always be a leading term,

EM = (Bg|VRVR...V|®), (5.51)
with n factors V and n — 1 factors R. But then we will have terms that are on the form
B9 (w0 1g0=0)y = pU) ($o|VM(R, V)V|Dy) (5.52)

where /\/l(]%, V) is the monomial of in total n — j — 2 operators V and R’s, in some
order. The terms can be systematically generated from the leading energy term by a
procedure called bracketing.

The bracketing procedure can be quickly summarised as follows. The nth order
energy E(™ can be written as the leading term plus terms generated by inserting some
brackets ( ) around one or more VS, except for the outer ones, in any possible way, in
any number. These terms may also be nested. The bracket represents an expectation
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value with W. The sign of each term is (—1)7, where j is the number of brackets in the
term. For example, for n = 4 we have four possibilities,

Ry — (0| V|@0) (Po|V RV RoV|®o)
— (Do|V|®o) (Do|V RV REV|®g)
(Bo|V|Do)? (o VRV | Do)

— (Bo|V RV | @) (Bo|VREV|Dp) .

5.93
5.54
5.55
5.56

V|®
<<I>OyVROVRO f/
(®|V Ry (V) R

(®0|V Ry (VR

(®o|V Ry (V >R0
(v
o (V

VRV o) (5.53)
) RoV'|®0) (5.54)
) RoV|®o) (5.55)
/) RoV|®o) (5.56)

For higher order energies, we would see brackets within brackets, leading to an increasing
growth rate in the number of terms.

We will end our discussion of many-body perturbation theory presently. In closing,
one should take notice of the special form the second term in E() (Equation 5.50) takes.
These kinds of terms, called unlinked terms, becomes more and more prevalent as the
series expansion continues. This is apparent from the fourth-order energy term derived
from the bracketing technique above. A very powerful theorem called the linked-diagram
theorem, derived by Goldstone [22], states that the energy and the wavefunctions can
be expressed as a sum of linked terms only (!), because all the unlinked diagrams in
a Rayleigh-Schrodinger perturbation series cancels against the renormalisation termsﬂ
Proving the linked-diagram theorem requires a herculean effort, and we will refrain
from doing so. The entirety of chapter 6 in Shavitt & Bartlett [20] is devoted to a proof
of the linked-diagram theorem. What we will take with us is that the linked-diagram
theorem forms the foundation for the coupled cluster “ansatz” wavefunction, which we
will introduce at the very beginning of the next chapter.

! Additional sums in the wavefunction expression involving lower-order energies in RSPT, see



Chapter 6

Coupled Cluster

In the late 1950s Fritz Coester constructed a rigorous formal solution of the bound state
Schrodinger equation as a set of single particle wave functions |23]. He wanted to find
an expression for the wave operator (2, which transforms a zero-order wavefunction to
the exact wave function,

U = Q. (6.1)

From Coester’s solutions it would become apparent that the Rayleigh-Schrédinger per-
turbation expansions of the energy does not contain matrix elements representing the
products of so-called unlinked diagram. In other words, one form of 2 is given a
“linked-diagram expansion”,

o0

20) = [@0) = Y ((Ro?)* [20)) - (6.2)

k=1

This is further underlined in discussions by Hubbard [59] and Hugenholtz [60].
Conveniently, €2 may be written quite generally as

Q=cl, ¥=cla, (6.3)

This exponential form is known as the Coupled Cluster ansatz, even though it is much
more than a simple guess for the form of the exact wavefunction. To underline this
point we quote Herman Kiimmel: “Strange as it may be, in spite of the many successes
of the coupled cluster method there is still a widespread belief that the underlying
exponential structure is something artificial, accidental or an approximation only. This
is why I want to make it clear that this feature is extremely natural - even necessary -
on a very fundamental level, not necessarily connected with many-body theory” [61].
Throughout the 1950s and early 1960s, Coester and Kiimmel developed the coupled
cluster method together and proposed using the exponential-form wave operator as a
relation between the shell-model state and the correct state vector for nuclear matter
[24]. At the time, the method proved to be too computationally intensive. Specifically,
the hard core potentials of nuclear physics leave no freedom in truncating the set of cou-
pled cluster equations. However, the method was picked up by Jiri Cizek who in 1966
reformulated the method for studies of electron correlations in atoms and molecules

95
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[62]. Further development by Josef Paldus made the coupled cluster method one of the
most prevalent methods in quantum chemistry. Together with Isaiah Shavitt, Cizek
and Paldus did the first ab initio computations with the method, which they called
the coupled-pair many-electron-theory (MET) 63|, as it can be intepreted as the per-
turbative variant of the many-electron-theory of Sinanoglu [64]. See Lowdin [65] for a
thorough historical development of the treatment of the electron correleation problem.

6.1 The Cluster Operator
Having established the form of the coupled cluster wavefunction as
W) = T |Dy), (6.4)
we now take a closer look at the cluster operator, which is divided into sub-operators
T=T1+To+To+T5+..., (6.5)

where the one-, two- and three-body operators are defined,

T = Zt?{fﬁ%} (6.6)

Ty = 2| g >t {aliblj} (6.7)
ijab
- 1 SO
_ AR
T35 = EIE ij%;bc{a gk}, (6.8)

where the coefficients tabc are commonly referred to as the coupled cluster ampli-

tudes, and are coefﬁc1ents to be determined. The strings of operators are automatically
normal-ordered. The general m-body cluster operator is given by

A 1 a AFATEA

which produces an m-fold excitation. It is not necessary to include cluster-operators
up to an infinite-fold excitation. Logically, the maximum excitation order is dictated
by the number of electrons in the system n, such that n > m. Any higher-order
excitation operator would eventually annihilate an unoccupied orbital, resulting in a
zero-contribution. The prefactor 1/(m!)? accounts for the redundancy created by un-
restricted summations, as a permutation of any of the m hole or m particle indices will
not produce a distinct contribution. Indeed, we have for example that

atibty = —atjvli = —bhial) = bfjalj, (6.10)
and therefore we must also have that

teh = b = —¢h0 = 4% (6.11)
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Hence, the (2!)2 = 4 contributions of two hole indices, ab, and two particle indices, 47,

will produce four equal terms, which is offset by the prefactor 1/4.

T

The exponential wave operator e* may be expanded as a Taylor series,

. PO 1.
eT:1+T+§T2+§TS+.... (6.12)
By including only single- and double excitations, TCCSD =T + T 5, this expressions
becomes
1

3‘T§+... (6.13)

eTeesd = 14 Ty + Ty + %le + 1T+ %ng + %Tf + %Tffz + %Tﬂ? +
Contributions to the wave function containing only a single cluster operator, T,,, are
called connected cluster contributions, while those containing products of cluster oper-
ators, TT‘,"“T,ELQ, are called disconnected cluster contributions.

This inclusion of only single- and double excitations is called “Coupled Cluster Sin-
gles Doubles”, elucidating the subscript CCSD [66]. The most common approximation
in coupled cluster theory is the CCSD model. Here, the operator T describes the im-
portant electron-pair interaction and the T operator carries out the orbital relaxations
induced by the field set up by electron-pair interactions.

Importance of different parts of the cluster operator

The most important contribution to the wave-function in quantum chemistry
is undoubtedly Th, because of the two-electron nature of the Hamiltonian. It
describes the most important interaction of quantum chemistry, the electron-pair
interaction. The inclusion of 7} and 1its products are relatively insensitive to the
choice of basis set, as the operators e’* has the effect of transforming the reference
state |®g) to another Slater determinant. This is known as Thouless theorem
[67]. With very high electron-density, the three-particle operator T3 becomes
important. Higher-order terms are usually of less and decreasing importance,
but they can be of concern in special situations. For instance, the four-particle
operator Ty is very important in nuclear physics. See for instance Helgaker et al.
[16] or Shavitt & Bartlett [20] for further discussions on this topic.

6.2 Coupled-Cluster Doubles

As a good starting point for understanding the coupled cluster scheme and especially
where the coupled-cluster equations come from, we now constrain the cluster operator
to X X

Tcep = 15, (6.14)

and derive the coupled cluster equations for this case. The CCD wave function includes
all connected and disconnected clusters involving 75 only,
1

3!T23<I>0 + ... (6.15)

. . 1.
Weep = e’ = g + Th®g + §T22‘I>o +
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There are several methods with which to arrive at the coupled-cluster equations.
Here we will give an example derivation of how to derive the coupled cluster doubles
equations, using the “algebraic method”, employing second quantisation and Wick’s
theorem. As an alternative, in [section B.3| we use the configuration-space technique
and the Slater-Condon rules . A third way is with the aid of diagrams,
which is done in Shavitt and Bartlett [20], for instance. Instead of deriving coupled
cluster equations by hand it is often convenient to do so with the aid of a symbolic
calculator. For higher-order schemes we have used python’s SymPy library.

In this derivation we make great use of second quantisation formalism and Wick’s
theorem. We start with the normal-ordered Hamiltionian,

ﬁN:FN+WN

Lt 1 ot 6.16
= 3" el i} + 5 D bl dlsr). (619
Pq pars
First we want to find an expression for the energy,
AEcop = (0] Hy(1+ 1) [0) = (0| HN T3 [0), (6.17)

where only the vacuum expectation value of the product of the Hamiltonian and the
doubles cluster operators give contributions, because the vacuum expectation value of
the Hamiltonian is zero. Inserting for the operators we get

At A 1 At At An AtTEAS a
ABcep =D (O] | D fog{p'@} + 5 D ubi{p'q's7}| {abT5i} [0) 27, (6.18)
i>jl') pq pqrs
a>

Here the one-particle part will vanish as there are no ways one can contract all the
operators in this term without using an internal contraction in the normal-ordered
product. It is also useful to convert the first sum to an unrestricted sum,

1 F ot aay fatitns ab
AEcep = 15 Z%}; ufd (0 {p'q'si}{a'dlj} 0) £37. (6.19)
1ja TS

We contract the operators in the normal-ordered products using Wick’s theorem,

~

(0l{p'qtsr{aloljiy + {p'q'7} {a'b1ji}

(6.20)
+{pq'srH{ablji} + {p'q"srH{a'bTji} |0)
:5pi5qj5sb5ra - 6pi6qj55a5rb (621)

_5pj 5qi 5sb5ra + 5pj 5qi 55a57"n .

All these products of delta functions give us a reduction in the sums and the CCD
energy becomes,

1 -
AEcep = | > ugtd, (6.22)

ijab
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The natural next step is to find the amplitude equations,

. .1
(3P| Hy <1 + T+ 2T2> 0) = AEccpti?. (6.23)
We compute this expression in steps, starting with the lone normal-ordred Hamiltonian,
' 1 e At At an
(@37 Hy [0) = 7 > (0 {abj"i"}{p'q" 57} |0) ul, (6.24)
pars

here we also have to compute a few contractions. Using Wick’s theorem we obtain,

aata ] Af At
L= L=
(OHi'5'ba{p'q 57} + {i'j'ba} {p'q' 57} (6.25)
A.TA.TAL—LTATAA ATat2 oy f ot ot an
o g bal{p'q" 57} + {5 ba}{p'q" 57} |0)
:5ir5j35bq5ap - 5ir5j55bp6aq (626)
*6iséjr5bq5ap + 5i55jr5bp6aq-

This will leave us with a similar expression as the one in the energy equation,
(P Hy |0) = uf?. (6.27)
Now for the linear terms,
(01| HNT210) =) (@3] Hy{eld'lk} |0) 5]
k>1
. e>d (6.28)
= 3> (@8] B+ W [ogf ) 5.
Kled

Starting with the first term we obtain,

Li=3 Z<q>ab w | b
:’szm@’%

klcd pq

= iZprq (o {i"jTba}{p' g {ctdlik} [0) t57

kled pq

) (6.29)

The product of normal-ordered operators must be contracted in such a way that three
and three operators in the first and last operator strings are contracted with one another,
and the two operators in the middle string are contracted with one operator in the
last and first operator string. This provides us with a total of 4 x 4 = 16 possible
contractions. Here are the first four contractions,

(=l [ =]
(i bay (ptay{etdliky + ("5 bay {pl gy el dliky

==l ==

Atats . T NP Atats . PSRN IR
+{i' i baypra{ediiky + {5 bay {pta (et dTiky

(6.30)
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=0;ik0;10bd0apdcq + 0ik0510acObpddg

(6.31)
—0ik0jqObd0acOpl — 0igOpk0i10pddac-

The last twelve contractions will be equivalent to these four, and thus we get rid of the

%—prefactor from [Equation 6.29] yielding

Li =Y (foeldf — factls) + Y (Firt§s — Fintin)- (6.32)
c k
Proceeding to the second linear term,
1 .
L= LS o a o
1klcd . o (633)
=15 2 D uk (01 {j"bita}{p"q" s H{e"d ki} [0) 17

pqrs kled

Here there are many possible ways to contract the operator strings. Then it is convenient
to label the different kinds of contractions. We divide the types of contractions into
three groups, for which we choose the labels a, b and ¢. The a-terms consist of two
hole-hole contractions, the b-terms consist of two particle-particle contractions and the
c-terms consist of one particle-hole constraction and one hole-particle contraction,

[ T \‘
1 NESEN At At any rat 3F1T c
Loo =5 > > ubd (0] {i'5ba} {p'q" s el d ki o) 5]

. pqrs kled (634)
= g 2o > w0 {ba} {p'a'srH{eld"} 0) 13
pqrs cd
Loy =3 SO wra ol {ifbat{ptt s {etdl ik (o) 5
pqrs kled (635)
1 ok el At At A~ ol c
= g 2 D bt (O] (i H{p g s} (I} o) o5
pars  kl
[ r 1 ‘
1 AT+ T A At At A A A M
Loc =7 D> bt (0l ba}{p'q" s el dl Tk}
pqrs kled

[ r 1 ‘
{5 bay(pt gt s {etdl T}

s L

{5 hay {pt T syt dtiky

. L
+{it7 ba} {p'g" 57} et d1Tk} |0) t54

= 1SS olilaHsta s e Ry

pqrs ke

(6.36)

—{jtar{ptqTsrH{etk}
—{ito}{p'qtsr}{etk}
+{T0Hp T s Tk o) .



6.2. COUPLED-CLUSTER DOUBLES 61

The vacuum expectation value in Lo, can be evaluated as,

N ’—‘ " N "
(O{ba}{p'q'srH{e’d"} + {ba}{p'q s7}{c'd"}

(6.37)
+{ba}{p'q'srH{eld"y + {ba}{p'q 57 }{cld"} |0)
=0 (Sa 53 67"0 -0 5a 53057"
bq pYsd bq D d (638)

_5aq5bp55d5rc + 5aq5bp5305rd-
Inserting this result into the original expression and substituting similar indices yields,
1 byed
cd
A very similar computation yields the following result for the next linear term,
1
Loy =5 > ufltg. (6.40)
ki
The last linear term is somewhat different, however,
Loc == (ulbtie — ubkes —uekely + uehely.) (6.41)
k
Finally, we have only the quadratic term to deal with,
1 o2 et TADN At At Any AT TS At Pt A A
Q=3 DD w0l {i'Tha}{p"q sr et dlikY{el fram} |0) tifee],.  (6.42)
pqrs k>l m>n

c>d e>f

In this expression there are no non-zero contractions between the third and fourth
normal-ordered operator string. We therefore need to contract operators in the first
normal-ordered string with operators either in the third or four string, and the operator
in the second string with the rest.

We start by contracting all operators in the first normal-ordered string with all the
operators in the fourth normal-ordered string,

[ 1]
1 At atal oan . A
SO0 > (ol balpl s el dt k(e fliaml (o) e,
pqrs k>l m>n
c>d e>f (6.43)

1 AL AN
=52 > w0 {p'a'sr}{eldlik} o) tiiey.
pqrs k>cll
c>

There are four possible ways to contract this last term, resulting in

1 k

5 D ueatiity (6.44)
k>l
c>d
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We get the same result by contracting the four operators in the first string with the
four operators in the third string, cancelling the factor %, eventually yielding a result
equal to AECCDt?Jb-

There are four reasonable groups into which to sort the permutations of contractions

that remain in [Equation 6.42]

a the two hole operators in the first string are contracted with either the third or
fourth operator string. The remaining two particle operators are contracted with
the fourth or third operator string, respectively;

b one hole operator and one particle operator in the first string are contracted with
operators in the third or fourth string, the remaining two operators in the first
string are contracted with operators in the fourth or third string, respectively;

¢ two particle operators and one hole operator from the first string are contracted
with operators in the third string, the last hole operator is contracted with an
operator in the fourth string, or vice versa;

d one particle operator and two hole operators are contracted with operators in the
third string and the last particle operator with an operator in the fourth string,
or vice versa.

The results for group a are arguably the least complicated to compute there are two
types of contractions that yield the same result, cancelling a factor . Making the sums
unrestricted then adds a factor 1 1

S0 S (ol (ot srHTRH e o) )

pqrs kled
- 4 Upg i
kled

(6.45)

For group b we have many more possible contractions. There are four ways to contract
i and @ with operators in the third string, and four ways to contract j and b with
operators in the fourth string, for a total of 16 possible contractions. These contractions
can be exchanged in four possible ways leading to a total of 64 choices. The final result

becomes,

= 1 S0 w0 (s e R 0) (i — e

pqrs kled (6 46)
_ k: ac bd c acybd bd ac
- Z Ued lktjl Z Ueq tzkt]l zk gl )

kled kled

The sets of terms for group ¢ and group d can each be generated in two distinct
ways, dependent on the choice of the tree operators from the first operator string (%TdZ)
or j‘le; for ¢ and ¢'j%a or ﬁj’ﬁ) for d). In each case there are 16 possibilities; the three
operators from the first string can be contracted with operators in both the third or
fourth string in four ways and the remainding operators can then be contracted in two
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ways. All these possibilities lead to equivalent results. For example, here is the first Q.
term,

Ny = |
030 3 w0l G b (e (T i 0) e,

pqrs kled mnef (647)
1 At AT ARy (AT 5T 7 cd ya
= = SO SO {aTa s HEd R 0) 1482 10)
pqrs kled

The remainding operators in this expression can be contracted in four ways,

|

1, .. [
(ORp'q st H{ed R} + {p'a st HeTd k1Y (6.48)
[T 1 | Teen |
+{p'q"sr{etd k1) + {p'q" s} {e d k}H{1} |0)
= plquérddsc - 5pk6q15rd530 - 5pl5qk6rc(ssd + 5pk5ql5rcésd (6~49)
Some algebraic extertion will eventually lead to,
1
-5 > ukitapest. (6.50)
kled
A similar computation provides the second Q. term,
1
-3 usptsHay. (6.51)
kled
These two terms give us,
1
Qo= —2 3 ubbtestet — et (6.52
kled
Treating the group d terms gives,
1
Qu— L3 ez — ). (6.53
kled

Collecting all terms yields the complete Coupled Cluster Doubles (CCD) amplitude
equation,

.. 1 1
u%l-’ + fé’t?jCP(ab) — ft?,gP(zj) + ftf]dtab Upy" + §tf;lugg

4 mn
1 1 .
+ Sttt P(if) — Stumtss ued P(ab) + t55 5 uc" P(ij) (6.54)

1
b . b
+timtje P(ab)P(if) + Stmn "™ =0,
where we have introduced exchange operators P(ab) and P(ij) which interchanges
two particles with indices a, b and ¢, j, respectively. Here we have also removed the
summation signs for simplicity, and taken advantage of the Einstein notation |68|, where
summation over equal indices is implied.
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6.3 The Coupled Cluster Equations

In general there is a more useful and compact approach that can be used to derive the
coupled cluster equations, compared to the lengthy derivation of the CCD equations
above. We start by inserting the coupled cluster wavefunction into the time-independent
Schrédinger equation,

I:IN€T |<I)()> = AEeT ’(I)o> . (6.55)

In order to find an expression for the energy and amplitude equations one could try to
left-project with (®g|. This would propel us in the same direction as in the previous

section. Instead, we multipy from the left with e T first, and then left-project with
<(I)0‘a

(@] e T Hyel |®g) = (Bo| e T AEET |®y) (6.56)
— (@] e THyel |@0) = AE.

Left-projecting with an excited state, (CDfJb| will give us an expression for the corre-
sponding amplitude t%l-’.'.'.',

(@t e~ T HyeT |@g) = 0. (6.57)
Now we have obtained a non-Hermitian[l] similarity-transformed Hamiltonian,
# =e THyel, (6.58)

which has |[®g) as right eigenfunction and E as the corresponding eigenvalue. Im-
portantly, a similarity-transformation will not change the eigenvalue spectrum of the
operator. This holds for any operator or matrix, and is easy to show.

Consider some matrix A, and the matrix C' which is a square, non-singular matrix
of the same order as A. We say that the matrices A and C~'AC are similar, and
C~1AC is the similarity transformation of A. If (\,x) is an eigenvalue-eigenvector pair
of A, then (\,C~1x) is the eigenvalue-eigenvector pair for C~1AC,

(CTTAC)C™'x = 71 Ax = AC7 x. (6.59)

Thus, we have shown that the eigenvalue spectrum of an operator is unchanged by a
similarity transformation.

A benefit of the similarity-transformed Hamiltionians that we will take advantage
of, is that we can write the operators more expicitly by applying the Baker-Campbell-

1We will show later that this non-Hermiticity is somewhat problematic.
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Hausdorff expansion [69-71],

i 5o Llpe 1 ; Sl 1
—B B __ 2 3
e A" =(1-B+ B — g+ )AL+ B+ o+ 5B+
A+ (AB—~ BA) + [(AB + 2BAB + BA)
+ (A —3BAB +35°AB - BA) +
—A+[A,B]+ %{(AB _ BAVB - B(AB — BA)) (6.60)
1
_i_i

Applying the Baker-Campbell-Hausdorff expansion to the similarity-transformed Hamil-
tonians yields

I PO S S O O
H=e THNeT:HN+[HN,T]+§[[HN,T],T]+§[[[HN,T],T],T]
1 .

+ [N, 1), T, 7], 7).

(6.61)

Notice the absence of an “and so on™operator (...) in this expression. The Baker-
Campbell-Hausdorff expansion for the electronic Hamiltionian, containing at most two-
particle interactions, will terminate with the four-fold commutator. We will show this
presently.

By applying the generalised Wick’s theorem to the Baker-Campbell-Hausdorff ex-

pansion of the Hamiltonian in we will be confronted with a vast simpli-
fication. Applying the generalised Wick’s theorm to a commutator gives the following

[A,B] = AB — BA = {AB} + {AB} — {BA} — {BA}, (6.62)
where A and B are normal-ordered operators, each with an even number of creation-
and annihilation operatorsﬂ. In this expression {} denotes a normal-ordering of the

operators inside the braces and {AB} represents a sum of all normal-ordered products
of operators in which there are one or more contractions between creation or annihilation
operators in A and those in B. We must also have that

{AB} = {B A}, (6.63)

since the two operators both contain an even number of creation- and annihilation

operators. This means that what remains of [Equation 6.62]is simply

(A, B] = {ZE}} - {f;i}. (6.64)

21t is not a coincidence that both the normal-ordred Hamiltonian H ~ and the cluster operator T
satisfy these condtions
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The general m-fold cluster operator T, contains some number of creation operators

at, bt ... and hole operators i,j’, ..., and the only possible non-zero contractions are

ab’ = ., and %T]A' = 0;5. Moreover, since the different cluster operators commute, no
nonzero contractions exist between different 7, operators. Ergo, in the nested commu-
tators from we only see surviving terms between the Hamiltonian Hy
and one or more of the cluster operators T,,. This accounts for the natural truncation
at the four-fold commutator. In fact, we can rewrite the Baker-Campbell-Haussdorff-
expanded similarity-transformed Hamiltonian as

S A Tl = 1 == 1 ==

jf:ufTHNér:fﬁp+HNT4—EHNTT+?5HNTTT+7HHNTTTT, (6.65)
where the notation combining a contraction line and a horizontal bar indicates a sum
over all terms in which the Hamiltonian Hy is connected by at least one contraction
with each of the following cluster operators T.

Disconnected clusters on the form Tan, which can be found in the coupled clus-
ter wavefunction are not present in the Baker-Campbell-Hausdorff expansion of the
similarity-transformed Hamiltonian. This is true also for the coupled cluster amplitude
equations, which may be written

(ol e T Hye" |Bo) = (o] Hye” |®p); = AE (6.66)
(@0 e T el |@g) = (B2 | Hye” [@0) = 0, (6.67)

where the inclusion of only connected terms is underlined.
The Coupled Cluster Singles Doubles (CCSD) equations take the form

N o 1. ~
@MHN@y+#?+B)@@C:AE (6.68)
N o 1. 1 - PN N
(MUMO+H+§ﬁ+§ﬁ+EB+BN%MZO (6.69)
i s lay Llan Loy o Ly o 1.
@%HNO+E+?ﬁ+§ﬁ+aﬁ+ﬂ+§ﬁ+ﬂﬂ+§ﬁﬂw%b:O

(6.70)
For Coupled Cluster Singles Doubles Triples (CCSDT), the energy expression is the

same, while the amplitude equations take the form
1
2
ab| £ SR SRR SV SN Pr e
<q)”’HN<1 +T1 + *Tl + 7T1 + 7T1 +T2
1. P (PO A A ’
+ 518 + [y + ST + Ty + TaTy ) | @) = 0

. . . 1. .
@ Ay (14T + ST+ TP+ Ty + T+ T3) (D)o =0 (671)

N ~ ~ 1. PN PN PN

(@l A (T + Ty + 513 + DTy + Ty + Ty

1

3!

The Coupled Cluster Singles Doubles (CCSD) amplitude equations, fully written
out are provided in

(6.73)

Lo 1o 1. o
+ 5T + STT3 + TP T3 + 517 T) | @0) ¢ = 0
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6.4 A Variational Formulation of Coupled Cluster

In the following section we follow the narrative of Kvaal 72| closely.

The Coupled Cluster method is very successful in computing energies, but comput-
ing other expectations values has been a problem. For instance we see that the way we
compute the coupled cluster energy,

Ecc = (®le THeT|D), (6.74)
is not the same as one would compute the energy of the system variationally,

- {(UHY) (@) AT |0)
Hhar = "gw) = (@[T el | @) (6.75)

Moreover, the similarity transformed operators are not Hermitian. This can be showed
by inference

ia

T
T = (Z tgaT%> > (tyrita £ 1, (6.76)
ia
from which it follows that
LNt L . P P
(e_THeT) = (eT)TH(e_T)Jr — T freT" + e THe. (6.77)

Variational computations as in [Equation 6.75| have been attempted by Cizek [62| and
Fink [73]. Regrettably, the coupled cluster exponential wavefunction is not a varia-

tionally optimal wavefunction, as it give rise to series expansions in the numerator
and denominator in the expression for the variational expectation value. For a general
operator O, we have
(0. — (HOIY) _ (@le"OcT|@)
o (W]w) <‘I’|€TT€T|(I)>
@1+ T+ LT + LT + .. JO[L + T + 472+ 41° +...]| @)
(@L+TT+ HTH2+ L@+ .+ T+ 4T% + 4T°% +...]|®)
(6.78)

In contrast with the expansions of the coupled cluster amplitude equations, which

truncate naturally after products of four T operators, the expansions for eI and €T
terminates only if the total excitation level represented by a product of T operators
exceeds the number of electrons in the wavefunctions. This means that the number of
terms and the computational effort required to compute expectation values in this way
are usually very high.

An idea is to simply use a similar expression to the coupled cluster energy expression

<O>Goldstone = <(I)‘67TOABT|(I)> . (679)

The problem with this expression, as well as with is that none of them

conform with the Hellmann-Feynman theorem and the problem remains, the coupled
cluster energy is arrived at non-variationally, and is therefore non-stationary.
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6.4.1 The Hellmann-Feynman Theorem

The Hellmann-Feynmann|74] theorem relates the first order change the total energy
with respect to a parameter to the first order change of the Hamiltonian with respect

to the same parameters,
dE 0

@ a=0 8t
where W is the exact state, variationally determined from the Hamiltonian of the system,
and ¥, = N(VU+adV) is a variation of this state, implicitly dependent on the parameter
.

(Ual H|W,), (6.80)

N\

Proof of the Hellmann-Feynman theorem

Using the following conditions,

Hy [ihy) = Ex [1h) (6.81)
(alhn) =1, (6.82)
we prove
OB ol 2 ). (6.83)
Now,
By = (ia H o) = [ onBtugar (6.84)
whence,

WH%d —|—/1,be Xy

aE
* /wm%dw
—/w*d E w dr+E Ad (6.85)
= Aa)\wx T+ £y ¢A + £ ¢A r .

= [ rsae + B2 atin) = (nl 2 .

By treating an observable of the system as a perturbation of the Hamiltonian,
H'(a)=H+aV,

the Hellman-Feynman theorem provides us with a way to evaluate the expected value
of this observable if we have the exact wavefunction and energy,

dE 0

Toloco = 7a (Yol +a0[Ta) = {(0). (6.86)

The problem with some computational techniques, like the coupled cluster method,
is that the final energy is not variationally determined (non-stationary), and we cannot
invoke the Hellmann-Feynman theorem to simplify computations of molecular proper-
ties. At first, it would appear that one would have to resort to a more cumbersome
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computation, like the expansion of cluster operators above (Equation 6.78]). But for-
tunately, there exists a way to reformulate the energy function of a non-variational

wavefunction in such a way that the energy is stationary with respect to the variables
of the new formulation.

Consider an energy that depends on two sets of parameters. The parameter «
which describes a perturbation and the parameters A which describe the wavefunction.
The optimal energy F(«) is obtained by an optimised set of parameters A\*, which are
inserted into the energy function

E(a) = E(a, \"), (6.87)
the values for o and A* are obtained as the solution to some set of equations
f(a,\") =0 Va, (6.88)

For wariational wavefunctions, this condition corresponds to the stationarity require-
ment,

OFyar(cr, \) ‘
_— =0 V 6.89
O\ (A=2%) @ (6.89)
but not for non-variational wavefunctions. Writing out this derivative yields,
dE(a) dE(a,)\)‘ B 8E(a,)\)‘ 8E(a,)\)‘ Qa (6.90)
da da  lp=x) 0 o lo=an) N lp=x) 0 lp=an

For a variational wavefunction, the last term will vanish due to the stationarity condition

in This would leave us with
dByvar(a) 8E(a,)\)‘
doo  da =29

(6.91)

i.e. that the total derivative corresponds to the partial derivative. This means that if
the variational energy corresponds to an expectation value Eyar(c, \) = (A H()|N),
and the perturbed system is described by the Hamiltonian H (@) = H+aV, we recover
the presumed expression
dE(a, \)

do ‘(a:0)7
in accordance with first-order perturbation theory and the Hellmann-Feynmann theo-
rem.
But if we look at nonvariational energies, [Equation 6.90] will not simplify to just
the partial derivative, since the stationarity condition does not hold. What we do
is replace the now nonvariational function E(a, \) by a new function L(a, A, \) with
a stationary point (A\*, \*) that satisfies the nonvariational condition ,
and whose values at this point correspond to the optimal energy. Indeed, we apply
Lagrange’s method of undetermined multipliers, by regarding the energy F(a, A) as an
unconstrained optimisation problem, but subject to the constraints of the variational

parameters \, which satisfy
L(a, M, \) = E(a, \) + A - f(a, A). (6.93)

(6.92)

A necessary condition for the optimum Lagrange multipliers A* to be unique is that the
the Jacobian of f, ¢ = 0f(«, A)/0\ is non-singular and invertible.
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6.4.2 The Lagrangian Formulation of Coupled Cluster

As we outlined in the previous section, the solution to making the coupled cluster
theory into a variational theory is to find a set of equations which are zero for a set

of parameters (Equation 6.88]). These parameters should in turn provide the optimal
energy by insertion into the expression for energy. Luckily, Helgaker and Jgrgensen

[32, [75] had the insight to realise that we are already given such a set of parameters
and equations in the formulation of coupled cluster, namely the amplitudes and the
amplitude equations respectively. The Hellmann-Feynman theorem will be baked into
the very definition of such an expectation value functional,

(Obp = Lo(a®, N, X*) = E(a”, A, X*) + A" - £(a*, M), (6.94)

This equation is essentially a restatement of with the optimal parame-
ters.

More specifically, we simplify the notation in some measure and state the coupled
cluster energy Lagrangian,

Lt A) = (@ THT|@) + 3 A, (@[ Xfe THT|@) = (@](1+ A)e THET|@),
i
(6.95)

where we have introduced A = ) u X ,E Here, X ,JL is a general relaxation operator, for

instance X I = {ia'}. The sum of relaxation operators, A, written out is
L St A 1 1] St At A
A= Z At + o Z AN itagta+ ... (6.96)
ia ijab

In we have provided the Coupled Cluster Singles Doubles (CCSD) La-
grangian written out fully.

The coupled cluster Lagrangian in can be rewritten with the use of
density operators,

La(t,N) = te{Hp}, p=e || (1 +A)e T, (6.97)

in a pure state description. We check to see if the attributes of the density operator
endures,

52 = el || (1+ A)e Tel [o)®| (1 + A)e L

]

=@y (1+A)e T+ W =/
Te{p} = > (d,] T |OX @[ (1 + A)e T |o,) =1

p
() =T (1 + ATy joy @ e £ p.

We see that another problem has presented itself, as the density operator is non-
Hermitian. This leads us to the bivariational, Hellmann-Feynman conforming frame-
work developed by Arponen [33].
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6.4.3 The Bivariational Principle

Arponen approached the coupled cluster problem by employing a very general form of
the variational principle called the bivariational principle. Letting H, be a (possibly
non-Hermitian) operator over Hilbert space H, the bivariational expectation functional

is defined by

o o g )
Eg - H xH—=C, &V, V) 5[ ey (6.98)
The main difference from the traditional and usual variational principle is that (|
and |¥) are treated as independent elements of the Hilbert space, and p = |¥) (¥].
Since the Hamiltonian H is Hermitian, (¥| and |¥) can be treated independently in
the derivations of stationary conditions. However, we must have that (¥| and |¥) are
left- and right eigenvalues of the Hamiltonian, with the same eigenvalue

H|U)=FE|¥), (U|H= (I|E. (6.99)

We also have that £ = Eﬁ(\i!, V) is the value at the stationary point.

We transition to coupled cluster theory by inserting the coupled cluster exponential
wave functions, |¥) = e”'|®) and (U] = (®|e’, where T = iXT are some general
relaxation operator. The bivariational functional becomes

(@[T HT )

TEETY (6.100)

o

Varying this functional over all untruncated excitation and relaxation operators, T and

T, is the foundation of variational coupled cluster theory |[76], which is equivalent to
full configuration interaction within the given single-particle basis set.

Now we wish to show that Arponen’s framework corresponds to that of Helgaker and

Jorgensen [32]. We simplify the expression by performing a variable change (7,7 —
(T, S ), where S is a new relaxation operator. We start by introducing

(] = S2le” (6.101)

which satisfies (w|®) = 1, implying that there must exist an operator S = sXT, such
that (w| = (®|e”. Then we can write,

(] el

_ g B — (i § 1
T (U|e”, — (T = (U|0) (D|ee . (6.102)

This enables us to rewrite the bivariational principle (Equation 6.100|) as

&y = (®leSe THET|D) (6.103)

which is an exact functional if 7' and S are not truncated. Comparing this expression

to the coupled cluster Lagrangian in we can only conlude that the basis
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change has revealed that e = 1 4+ A. Truthfully, we have strong indication that the
coupled cluster bivariational functional (Equation 6.100) is the same as the the coupled
cluster Lagrangian (Equation 6.95 )ﬁ

First-order conditions of the coupled cluster energy Lagrangian in

give us a new set of amplitude equations,

O 6,0 = (x| i) = 0 (6.104)

O, z

o _ “TE x| —

5L (6N = @]+ Ne TH, X,)eT|®) = 0. (6.105)
o

Under constrained optimisation all partial derivatives vanish at the same point,

0z =0, oz =0, VX, (6.106)
O, lt=t* Ot Lt N)=(t*2%)
What we have arrived at are amplitude equations both for the “bra part” and the “ket
part” of the problem, which we refer to as the A amplitude equations ([Equation 6.105)
and the 7 amplitude equations (Equation 6.105)), respectively. Notice that the 7 am-
plitude equations only depend on 7, whilst the A equations depend both on 7 and .
This means that the 7 amplitude equations are solved iteratively first, and then the A
amplitudes are solved similarly. The full equations are given in

The benefit of going through the exercise of reformulating the coupled cluster frame-
work entirely is that it is now possible to define operators,

pl = (W|che,|T) (6.107)
Py = <\I/]ch$cscr|\Il) , (6.108)

which we can use to compute expectation values of operators, <121> = tr{ ,ofl} Here, A

is a general one- and two-body operator,

1
A= a’;c};cq + Zagf;c;c:;cscr. (6.109)

Then we have,

A - - 1. - 1
(A) = (U|A|T) = ab (D|c}|T) + 1% (U|clcleser | W) = abp? + 1Pl (6.110)

6.5 Generalisation in Time

Here, we will outline a derivation of the orbital-adaptive time-dependent coupled cluster
method, a generalisation in time for the coupled cluster method put forth by Kvaal|l|.
The method inherits both size-extensivity and size-consistency from the coupled clus-
ter method and is a hierarchy of approximations to the multi-configurational time-
dependent Hartree method for fermions.

3Pruning the expression in [Equation 6.103| to only include single and double excitations will yield
Arponen’s extended coupled cluster (ECC) method[77]. This method has seen little use due to it’s
complexity.
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We now define a time-dependent generalisation of the bivariational principle (Equa-|
tion 6.98]). This is similar to the usual time-dependent action functional and the time-
dependent Schrédinger equation can be recovered from it,

/ (W) (ihg - H) U (2))
SW(), w0 = [
0 (W(2)[ (1))

Functionals like these are quite common throughout the literature on quantum mechan-
ics, appearing as early as in Dirac[35]. The integral of the functional depends on all
history for the system in question. By applying the principle of least action, requir-
ing that the functional is stationary, S = 0, under all variations of (¥’| and |¥) and
vanishing in the endpoints ¢ = 0 and ¢t = T', gives us the following conditions

(6.111)

0 ~ L 0 1 1 1
ma |U(t)) = H|U(t) - zha (V| =(¥'|H.

By a specific parametrisation of (¥’|, such that (¥/|¥) = 1 we have indeed recovered
the familiar time-dependent Schrodinger euqation.

Instead of venturing down this path, we will presuppose that it is possible that
(U/'|W) # 1. Indeed, that (V| and |¥) are independent. This means we must enact
Arponen’s [33] Hellmann-Feynman conforming bivariational principle, where the energy
expectation functial is given by

o' |eT" Hel | D)
(@|eTeT|o)

Ey(t, 7,9, ®) = < (6.112)

We perform a variable change (77,7) — (A, T), similarly to the section above, and
introduce .
(i = oo
(W'|w)
Where A is the same as in The bivariational energy expectation func-
tional in [Equation 6.112| now becomes

= (B (1 + AT, (6.113)

Eq(\7,®,®) = (B|(1+ \e THeT|®) . (6.114)

Disregarding the difference in ® and @, this expression is the same as the coupled
cluster expectation functional in [Equation 6.103] where the interpretation is that the
As are Lagrange multipliers for a constrained energy minimisation problem. This is not
the interpretation here, as the A-part of the problem is seen as equally important.

We are now assuming biorthogonality in orbitals, <gz~5p]¢q> = 0pq, but independence
of bra and ket states otherwise. For a full Slater determinant state consisting of these
orbitals, we have

(Dpr - Do | By - - - D) = Opyar - - - Oprvan - (6.115)

The second quantised operators asscociated with these Slater determinants are defined
through

|Bgr -+ Ban) = by ooch ) (Dpy By = (| gy - - Cqy.- (6.116)
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These creation- and annihilation operators can furtermore be defined by,
cf = / op(x)UT (x)dx &, = / bp (X)W (x)dx, (6.117)

where UT and U are field creation- and annihilation operators. This particular definition
may seem like an unnecessary and stringent tangent, but its purpose is to underline
the dependence of the cluster operator T not only on the amplitudes 7, but also on the
orbitals. This is an important point to emphasise, in “ordinary” coupled cluster theory,
one thinks of the amplitudes as the only unknowns while keeping the orbitals fixed and
the dependence on 7 are one-to-one. This becomes very important when one computes
derivatives with respect to time of the cluster operators T. Furthermore, the second
quantised operators are subject to the anticommutator relation,

~ ~ S
{¢p, cj]} = cpcz + cgcp = (Pplog) = Opq- (6.118)

The time dependent action (-like) functional (Equation 6.111)) defining the Schrédinger
dynamics becomes,

S\ 7, ®, 0] = /UT <&>‘(1+A)e4‘ (gt —ﬁ) eT(¢>> dt
T 0 g
:/0 i (B](1+ e e

Herein, it is necessary to compute % |) = %eT |®). In order to accomplish this we
indroduce the expansion,

(6.119)

<1>> dt — &5 (N, 7,3, D).

) = I[W) = (&) + > A*[,), A= Ak(r)= (8] |®) (6.120)
o

Here we write ® as the reference Slater determinant and ®, are all the other excited
Slater determinant. The coefficients A* do not depend explicitly on the orbitals, only
on the amplitudes 7. It is important to note that this summation is not truncated,
regardless of the truncation of the cluster amplitudes at some excitation level 7#. To
further the matter, we have introduced a projection operator,

= [DYD|+ Y |2 )P (6.121)
I
The projection operator has the following properties,
) =), (Vo= (¥
H

)

U) = (V|IAI|Y), Of#£I (6.122)

(v

and unless orbitals are complete we have ITHTI # H.
Now we compute the time derivative of a Slater determinant,

0 ) )
—c el el ) :czlczz...c;N|>+CI,10;2'~CLN|>+~'

= <Z C'IIEQ> CLICLQ .. .CLN [y = DcLch2 . ..C;;N ),
q
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where we have defined the operator D by
D = éle,, (6.123)
q
which depends explicitly on orbitals, unlike H. The derivative of the exact wavefunction

becomes,
gtm:;(; ") 18,0 + D) + S ambie,

— (ZT 5 V+D> ) = (ZTVX +D> |W) .

The time-derivative part of the functional (Equation 6.119)) integrand becomes,

(6.124)

m<<i>‘(1 + A)e_T;eT‘@>
:Z'h<(i)}<1—|—z}\“)2u> €_T (Z%VX,/-FD) €T’¢> (6.125)
P v
= in Y At 4 ih <ci>‘(1 + A)e_THﬁHeT‘¢*> ,
I

where the projected operator DI is given by

DI = Do = (dpldy) chéy- (6.126)

2l

Finally we obtain a new expression for the functional in [Equation 6.119]

S\, 7, D, ®] = Zmz AN = Eg_inp [N T, @, Dldt (6.127)
T 1
_ /0 B+ gy — ihp) +  pludt (6.128)
where

P9 = pI(, T)z< )(1+A) Lt e ]q>> (6.129)

pos = pBi(A, 7) = < ‘ 1+ A)e Telclegel q>>, (6.130)

hp = hP(®, @) <¢§ } ’goq> (6.131)

= b (D, @) = (Pplg) (6.132)

W = " (B, B) = <¢p¢r (4 — P12))¢qcps> . (6.133)

We introduced the Einstein summation convention over repeated indices of opposite
vertical placement in [Equation 6.128]
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6.5.1 Equations of Motion

The time has now come to apply the principle of least action to the orbital-adaptive
coupled cluster functional from [Equation 6.127]in order to find the equations of motion.
First we keep 7 constant and vary A,

T 9, B
SSINT) = [ ihoN, 7 — —H=hDo sy at = 0. (6.134)
0 N,

We see that the stationary condition is

0

it — O
iht o,

Ei b, N8, 0] = (B, leT(H — ihDy)eT| @), (6.135)

which is also the eqution of motion, dictating the time-development of 7. Next, we hold
Ay fixed and vary 7,

T 9h_inbd
5SS 7] = / ihA 07 — CCH=inDy gy (6.136)
; o

through integration by parts we see that the first term becomes,

T 0 T
ih/ A 0T = ihA 77— ih/ AoTVdt,
0 0

yielding
T . 087 7
§SIA, 7] = / 5V (—ih)\,, - H‘y’”ﬂ) . (6.137)
0 67’
Here the stationary condition is
0 - - PP :
—ihA\, = wgﬁ—ihf}o A, 7, @, ®] = (P|(1+ Ae T[H — thO,Xﬂ]eT‘@ ) (6.138)

[Equation 6.135| and [Equation 6.138| together make up the orbital-adaptive coupled
cluster (OACC) amplitude equations of motion.

We will return to the OACC equations of motion shortly, but first we consider a
special situation where the operator Dy = > pg (dpDg) c,Tgéq, equates to zero. This is
the same as keeping the orbitals static over time. The resulting equations of motions
are

i = ggﬁ[x,r, b, 0] = (B,|e T HeT|) (6.139)
o
—ilih, = %gﬁp, 7,8, 0] = (D|(1+ A)e T[H, X, )eT|D) . (6.140)
T

We call these equations the time-dependent coupled cluster (TDCC) amplitude equa-
tions. Setting the left-hand side of [Equation 6.139] and [Equation 6.140] to zero will give
a set of non-linar equations that can be solved in order to find initial amplitudes ()\(0),
T(O)). These equations are the same as [Equation 6.104] and [Equation 6.105]
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Returning to the orbital-adaptive scheme, the OATDCC equations (Equation 6.135|
and [Equation 6.138)) have parametric redundancies that we need to address brieﬂyﬁ
The parametric redundancies exist in the sense that when one derives equations of
motion for (7, \, ®, ®) = (7, Auis (]31), ¢q), under the stationary condition S = 0, for a
given pair of coupled cluster wavefunctions ( (|, |¥)) € M, there are many choices for
the amplitudes and orbitals that would give this same wavefunction pair. It is therefore
necessary to define a transformation as a many-to-one mapping from this collection of
points (A, 7, ®, ®) € N to the wavefunction pair on ((¥],|¥)) € M,

fiN =M. (6.141)

As circumstances would have it, the simplest of such transformations corresponds to a
rotation that eliminates the singles amplitudes 7;*. This is the same ansatz employed in
orbital-optimised- or Brueckner coupled cluster theory (see box). Additionally, includ-
ing A! after this rotation would leave the equations of motions overdetermined. The
presence of Ty is compensated by the freely varying orbitals, but this does not hold for
A1, which gives more parameters in the (¥| than in |¥). As such, we set all single
amplitudes, 7¢ and N, equal to zero.

Orbital-optimised and Bruecker coupled cluster theories |78, 79|

In standard coupled cluster theory including single excitations,

el — exp{z méele } (6.142)

we determine a set of non-zero single-excitation amplitudes 7' together with
any higher-excitation amplitudes. An alternative parametrisation of the singles
manifold in [Equation 6.142)]is the orthogonal orbital-rotation operator

e "= exp{ Z Kal(c cl —c ca)} (6.143)

This is a rephrasing of Thouless’ theorem|67]. We may therefore use

[Wocc) = e "elo |@) (6.144)
as a wavefunction ansatz instead. Here,

To=To+T3+... (6.145)

In orbital-adaptive time-dependent coupled cluster theory such a gauge condition
corresponds to considering orbital time derivatives of the form

’¢q> P+Q ’¢q> :Z|¢p> <ép’¢q>+@’¢q> :an+Q’¢q> (6'146)

4A thorough decription of this matter can be found in the supplementary to Kvaal’s articl on
OATDCCI]]|
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(ol = (89| (P+@Q) =3 (Go|) (8| + (0| @ = =D (o] + (&] @ (6.147)
q q

with 773» =n¢ =0, nh = (Ppldy) = — (dp|dy). Here we have defined the projection
operators P and Q, where P = & = Zp |op)dp| Projects onto the single-particle
space defined by the orbitals, and ) = 1 — P projects onto everything else.

We can write down the equations of motions just for the nonzero P-components ;'
and 1% of the orbital derivatives,

mZA’ﬂb 2Pt 2 i+
p

S = S o 3;;] (6.148)

qrs rqs
i) Al = Zpahp quha Sty = S vz |+ inat, (6,149
bj prs rqs

where the matrix elements A’Cf’j are defined by,

Ay = <‘i"[c’§5bafz’lé] > = 8yp; — &y (6.150)
The Q-part of the orbital derivatives are,
] 9 s r
ihy Qs dq) = Zp%@h ) + D PLQWI |6y), ¥ (6.151)
q qrs

. 0 /-~ r
~iny_ ol <at <¢p\> =24 (%] hQ+ (0| WIQ Vg, (6152)
P
where the mean-field operators W are defined by

W ) = (-¢rlultpss) . (6.153)

The logical next step is to write down the equations of motion for the lowest trun-

cated form of OATDCC available to us, namely OATDCCD. In addition to the orbitals

ab

® and ®, the only parameters of the exact wavefunction are the amplitudes 7 = 5

and \ = )\;Jb. The OATDCCD amplitude equations read

ihT, f}b— 8ij Sul\, 7, @, 9] = < & e T q§> (6.154)
NI,
0 - _ P
—ihAY, = =5 6T @, 9] = <¢’(1+A)e T[H,Xa{;]eT‘¢>. (6.155)
ij

The P-space orbitals read

DIRLES UL b [ s S s
J

prs rqs

, (6.156)
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Zp;;i uly =Y phug (6.157)

prs rqs

—zﬁz Anh =" pphl = > plhg
b ;

and the @)-space orbitals read

0
ihy_ Q. |ég) = prQh|¢q + D PQWI |6g), (6.158)
q

qrs

- (5 (3]) @ = S i) Qi+ T 6o W0 (6.159)
p

prs

Notice that the 7 and A OATDCCD equations (Equation 6.154|and [Equation 6.155])
are the same equations as those used in standard TDCCD (]Equation 6.139| and [Equa-|
, because the operator Dy is eliminated due to pd = pt = 0. Because the
operators Do disappears from |Equat10n 6. 154| and |Equat10n 6. 155|, the right-hand sides
can be evaluated independently of equations [6.156] [6.157] [6.158] [6.159} In order to

compute ® and ®, n must be solved for in addition to Q ]¢q> and <<;3p| Q, according to
|[Equation 6.146| and [Equation 6.147]
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Chapter 7

Quantum Systems

In order to study a quantum system on the computer it is necessary to make a dis-
tinction for what defines the system, and one must therefore undergo the mathematical
procedure of constructing a finite basis sets that defines the system in question. Here
we present the quantum_systems python module, mainly designed to provide basis sets
for one- and two-dimensional quantum dots.

For the one-dimensional quantum dot we provide a wide selection of different poten-
tials. This is possible due to the relative computational ease associated with the model.
As for the two-dimensional systems we have implemented each confining potential in
separate classes including the regular harmonic quantum dot, a double quantum dot,
as well as a quantum dot affected by a homogenous, static magnetic field.

In order to achieve maximum usability, the quantum_systems module includes a
class for constructing custom systems, using basis sets imported from somwhere else,
or basis sets defined by the user. We have written functions that interface with popular
quantum chemistry packages PySCF|3] and Psi4[4], allowing the user to easily construct
basis sets representing all kinds of systems of interest in quantum chemistry, like atoms
and molecules.

What is more, the quantum_systems module also contains an implementation of a
plane wave or homogenous electron gas basis set, sometimes called the jellium mode]E].
However, this implementation exists mainly as a curiosity at the time of writing. In
the future it can potentially be developed into something more useful, as the electron
gas can serve as a first approximation to a metal or a semi-conductor.

A complete diagrammatic class hierarchy of the quantum_systems module is shown
in ??. This class hierarchy also illustrates how the quantum_systems module fits into
and works with the coupled_cluster module, to be presented in the next chapter.

The quantum_system module can be installed from github with pip by the following
command,

pip install git+https://github.com/Schoyen/quantum-systems.git

The same task can of course be accomplished by more commands,

git clone https://github.com/Schoyen/quantum-systems.git

!See for instance Ch. 10 in Gross and Heinonen [80]
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ssep joeNSqY |

uoneal laquialy €—————

uonE|a) SauBISYU|

Figure 7.1: Class hierarchy of the two Python modules, coupled_cluster and
quantum_systems.
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cd quantum-systems
pip install

It can be useful to install the module to a separate environment. We have made
this possible through conda,

conda environment create -f environment.yml
conda activate quantum-systems

7.1 Quantum System Abstract Base Class

Here we present the abstract base class that every system class in the quantum_systems
module is built upon. This base class forms the foundation of any quantum sys-
tem, in order to make a system specification work together with solver from the
coupled_cluster module presented in the next chapter. The base class is named
QuantumSystem.

Many of the methods necessary to set up a quantum system can be abstracted away,
which is most of the motivation for constructing a parent class that all other quantum
system classes can inherit from. Examples of such functionality is setting up the Fock
matrix. The one- and two-body operators are necessary to set up for a specific system,
but the Fock matrix computations can be abstracted away to the superclass.

In the QuantumSystem abstract base class we have included a method that changes the
basis of the system according to the coefficient matrices C and C, the change_basis(. . .)
method. This method will be useful later, especially when computing the basis for the
double well system. In the time-dependent coupled cluster scheme with adaptive orib-
tals, this method becomes particularly useful.

A similar method change_to_hf_basis() is also implemented in the QuantumSystems
class. This changes the system basis to a basis based on the coefficient matrix found
from the Roothan-Hall equations,

FC = SCe, (7.1)

which are thoroughly discussed in The basis transformation is performed
by multiplication with the coefficient matrix,

[¢p) = Cp IXa) » (7.2)

where we go from a (naive) basis |xq), to the much better Hartree-Fock basis |¢,). The
basis would be better suited to represent the system because it already consitutes an
approximate ground state solution. The improvement in ground state energies by using
the Hartree-Fock basis is well documented|81}, 82].

The principal method that needs to be implemented in a subclass of QuantumSystem
is setup_system(), including special considerations for dipole computations. These
factors will be discussed for each specific system we have implemented in the following
sections.
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class quantum__systems.QuantumSystem (n, /|, n_up=None, np=None)

Abstract base class defining the common methods used by all different quantum
systems.

Parameters:
n (int) Number of electrons
| (int) Number of spinorbitals
n_up (int, default=None) Number of spin-up spinorbitals
np (module) Matrix library, i.e. numpy, cupy etc.

Attributes:
h One-body matrix Type np.array
f Fock matrix Type np.array
u Two-body matrix Type np.array
s Overlap matrix of spinorbitals Type np.array
spf Single-particle functions Type np.array
spf bra Conjugated single-particle functions Type np.array

Methods:
setup _system()
Method must be implemented by subclasses.
change basis(c, c_ tilde=None)
Changes basis of system according to coefficient matrices C and C.
change to hf basis(*args, verbose=False **kwargs)
Changes basis of system to Hartree-Fock basis.
set time_evolution operator(time_ evolution_operator)
Setter for time-evolution operator.
Parameters:
time_evolution_operator ( TimeEvolutionOperator)

7.2 Quantum Dots

In reality, quantum dots are nanometre-sized structures made of semiconductor ma-
terials. Theoretically, quantum dots are easy to model with the harmonic oscillator
potential and in practice they are relatively easy to manufacture in a laboratory. This
doubly theoretical-experimental benefit has made quantum dots a popular area of study.
Moreover so because of their wide area of applications.

The possible applications of quantum dots are many. Coupled single-electron quan-
tum dots could potentially be used as hardware elements in quantum computers [83;
quantum dots also promise to increase the efficiency of photovoltaic solar cells; and they
have already found use in cellular imaging in biology. Reimann and Manninen [84] has
written a thorough review on quantum dots, covering their varied types of fabrication,
theoretical methods common in their study and several applications.
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We find that the study of quantum dot systems is warranted because of their great
usefulness. What is more, it is relatively easy to approximate such systems theoreti-
cally and numerically. Several classes have been implemented in the quantum_systems
module that constructs basis sets modelling quantum dots in both one and two dimen-
sions. Most of these basis sets model bound systems with the characteristics of infinite
quantum wells.

7.2.1 One Dimension

The one-dimensional quantum harmonic oscillator is perhaps one of the simplest of all
quantum mechanical models. It is studied thoroughly in every introductory quantum
mechanics course. This is with good reason because the system is analytically easy
to manage, and because any arbitrary potential can be approxiamted by a harmonic
oscillator as long as the oscillations are small enough. One must bear in mind that the
harmonic oscillator potential, sometimes also called the parabolic potential, is one of
many potentials that one can use in a quantum dot system.

We have implemented the one-dimensional quantum dot in a class 0DQD, which is a
subclass of the QuantumSystems class. We will now go through some of the intricacies
necessary to compute the basis set contained in the 0DQD class. Not much is needed,
only a matrix representation of the one-body operator h and the two-body operator .
In addition we need the single-particle functions, which are the eigenfunctions of h.

The one-body part of the Hamiltonian for the one-dimensional quantum dot is,

PO o1

h=1t+0=-—4 -mw?i?, (7.3)
where the potential, v = %mw2:@2, forms the well known harmonic potential, making
this example implementation a harmonic quantum dot. In a general one-dimensional

system, this potential could readily be exchanged for something else. For instance that
of the double well,

1 1
b= imw2 (@2 + le - zm) : (7.4)

where [ is the width of a barrier in the middle of the parabolic potential. We have
implemented several other potentials, which we summarise in
In atomic units we can set h = m = 1. Substituting into the momentum operator,

p = —ih(0/0x), this gives us

1 0
2042
The second-order derivative can be approximated by the central difference formula for
some function f(x), yielding

h = + 0. (7.5)

flz+dx) = 2f(z) + f(z — da)
dz? ’

f@) =

(7.6)

for some small dz. This means that we approximate the Hamilton operator of the
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system ([Equation 7.5)) by a matrix,

1/dz? + vy —1/2dz?
—1/2dz?  1/dx® +ve —1/2da?
—1/2dz?  1/dx®+v3 —1/2dz?

—1/2dz? 1/dx® +v,—1 —1/2dz?

—1/2dz?>  1/dz® + v,
(7.7)

and we have thus transformed the time-independent Schrédinger equation

hlg) =elg), (7.8)

into a matrix equation which constitutes a better representation on a computer. Here n
is the number of points used to numerically represent the wavefunction and Hamiltonian
matrix representation. This is done with some generic eigenvalue solver, for instance
numpy.linalg.eigh(...). The eigenfunctions |¢) provide the foundation for the single-
particle functions we need.

Since we would like to model interactions between particles we need something more
than just a numerical representation of the one-body operator. We therefore need to
compute Coulomb integrals. The Coulomb integral matrix elements ube is computed
in several steps, starting with an “inner intergral” over all all space and two and two
single-particle functions,

wt = [ o) e (7.9

where « is the interaction strength parameter and a is called the shielding parameter
and is necessary for this integral to be calculable, as it avoids singular values in the
integrand at x1 = xo. Numerically, this part is divided into two functions in our python
implementation,

def _shielded_coulomb(x_1, x_2, alpha, a):
return alpha / np.sqrt((x_1 — x_2) ** + a %% 2)

def _compute_inner_integral(spf, 1, num_grid_points, grid, alpha, a):

inner_integral = np.zeros((l, 1, num_grid_points), dtype=np.complex128)

for g in range(l):
for s in range(l):
for i in range(num_grid_points):
inner_integral[q, s, i] = _trapz(
spflql
* _shielded_coulomb(grid[i], grid, alpha, a)
* spf[s],
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grid)

return inner_integral

The inner orbital is subsequently used in the computation of the orbital integral,

wt = [ éyutorda, (7.10)

which is implemented numerically as follows,

def _compute_orbital_integrals(spf, 1, inner_integral, grid):
u = np.zeros((l, 1, 1, 1), dtype=np.complex128)

for p in range(l):
for q in range(l):
for r in range(l):
for s in range(l):
ulp, g, r, s] = _trapz(
spf[p] * inner_integral[q, s] * spf[r], grid)

return u

Each integral is solved by the trapezoidal scheme, which approximates the integral by

/:r:+Ax Fladn ~ AnlE A;:) — f@) (7.11)

Needless to say, computing the Coulomb integrals is one of the more intensive tasks,
and we therefore make great use of one the fly compilation from the numba [31] module
for Python.

One-dimensional potentials

We provide several one-dimensional potential classes that can be passed
to the setup_system(Potential) method in the 0DQD class. All these potentials are
implemented as subclasses of the abstract base class OneDimPotential. The only thing
necessary for an inheriting class to implement is the primitive __call__ method which
takes position on the grid, x, as argument, and must return the value of the potential
at that point z.

The parabolic harmonic oscillator potential, which we have made most use of and
which is discussed above is implemented as follows,

class HOPotential (OneDimPotential):
def __init__(self, omega):
self.omega = omega

def __call__(self, x):
return 0.5 * self.omega ** 2 % x *%x 2
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class quantum_systems.ODQD
(n, I, grid_length, num_grid points, a=0.25, alpha=1.0)

Create One-Dimensional Quantum Dot basis set.

Parameters

n(int) Number of electrons

I(int) Number of spinorbitals

grid _length(int, float) Space over which to construct wavefunction.

num_grid points(int, float) Number of points for construction of wavefunc-
tion.

a(float, default 0.25) Coulomb screening parameter.

alpha(float, default 1.0) Coulomb strength parameter.

Attributes
h One-body matrix Type np.array
f Fock matrix Type np.array
u Two-body matrix Type np.array

Methods

setup _system(Potential=None)
Must be called in order to compute basis functions. The method will revert
to regular harmonic oscillator potential with w = 0.25 if no potential has
been provided. Optional potentials include one-dimensional double well
potentials.

contruct _dipole _moment()
Constructs dipole moment. This method is called by setup system().
Necessary when constructing custom systems with time development.

Table 7.1: One-dimensional potential classes in quantum_systems.

. 1, .2 2 1472
DWPotential W (a: + 407 = l\a?|)
DWPotentialSmooth =ty (33 + 9)2 (x — 9)2

2a2 2 2
_(@—w?
GaussianPotential Ae 202
AtomicPotential Za
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7.2.2 Two Dimensions

The one-body part of the Hamiltonian for a two-dimensional quantum dots is almost
identical to the one-body part for a one-dimensional quantum dot. In cartesian co-
ordinates we merely include a second coordinate y in the potential as well as an =,
but because we have analytical expressions for the Coulomb integrals in polar coordi-
nates|85|, we write the one-body operator in polar coordinates as well,

2 2 2 2

P 1 5.9 h 0 10 10 1 5.9

mwr'=——— | g5+ -5+ 555 | T zgmwr. 7.12

2m 2 2m \or?2  ror r2062 2 (7.12)
The wavefunctions for a two-dimensional harmonic oscillator can be written using the
spherical harmonics,

¢(r,0) = Npm Ry (7)Y (0) = Nnm(ar)|m|L‘,T‘(a2r2)e_a2’"2/26im9, (7.13)

where a = y/mw/h si the Bohr radius, Lkn | is the associated Laguerre polynomials, n
and m are the principal and the azimutal quantum numbers respectivelyﬂ and Ny, is
a normalisation factor given by,

Ny = ay /ﬂ(nf"m’)' (7.14)

The energy eigenvalues of a two-dimensional harmonic oscillator is given by
€nm = hw(2n + |m| + 1). (7.15)

It is very beneficial that such a nice expression exists, because the one-body matrix
elements of a harmonic oscillator is simply,

(6| h|dg) = hE = €,0P. (7.16)

These matrix elements encompass both the kinetic energy operator matrix element and
potential energy matrix element. If we deal with completely non-interacting particles
not much more would be needed. We see, however, that this form of one-body matrix
elements necessitate a mapping from the general coordinates p, g, as used above, and
the quantum numbers n, m.

This functionality (n,m) — p is achieved by the following python function

def get_index_p(n, m):

num_shells = 2 *x n + abs(m) + 1

previous_shell = 0
for i in range(l, num_shells):

previous_shell += i

2There is usually another quantum number called the magnetic quantum number. Because of our
restriction to two dimensions, this quantum number does not appear. In three dimensions we would
usually denote the azimuthal quantum number by [ and the magnetic quantum number by m or m;.
A fourth quantum number is the spin projection quantum number commonly written m.
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class quantum _systems. TwoDimensionalHarmonicOscillator
(n, I, radius _length, num_grid points, omega=0.25, mass=1)

Create Two-Dimensional Quantum Dot basis set.

Parameters
n(int) Number of electrons
I(int) Number of spinorbitals
grid _length(int or float) Space over which to construct wavefunction.
num_grid points(int of float) Number of points for construction of wave-
function.
omega(float, default 0.25) Angular frequency of harmonic oscillator potential.
mass(int or float, default 1.0) Mass of electrons. Atomic units is used as default.

Attributes
h One-body matrix Type np.array
f Fock matrix Type np.array
u Two-body matrix Type np.array

Methods
setup _system()
Must be called in order to compute basis functions.
contruct _dipole _moment()
Constructs dipole moment. This method is called by setup _system().

current_shell = previous_shell + num_shells
if m == 0:

if n == 0:
return 0

p = previous_shell + (current_shell — previous_shell) // 2

return p

elif m < 0:

return previous_shell + n

else:

return current_shell — (n + 1)

It will also be necessary to map back p — (n,m),

def get_indices_nm(p):
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n, m=20, 0

previous_shell = 0

current_shell =1

shell_counter =1

while current_shell <= p:
shell_counter += 1
previous_shell = current_shell

current_shell = previous_shell + shell_counter

middle = (current_shell — previous_shell) / 2 + previous_shell
if (current_shell — previous_shell) & 0x1 == 1 and abs(

p — math.floor (middle)
) < le—8:

n = shell_counter // 2

m =0

return n, m

if p < middle:
n = p — previous_shell
—((shell_counter — 1) — 2 * n)

else:
n = (current_shell — 1) — p

(shell_counter — 1) — 2 x n

return n, m

An important difference between the one-dimensional quantum dot and a two-
dimensional quantum dot is that in the latter we have energy degeneracies of the

eigenstates, as shown in In this figure we have included a spin-up and
a spin-down state for each n, m-state. This spin feature is not in any way included in

but we may represent the spin condition by including it in the orthonor-
mality conditions of the wavefunctions,

<n1m101 n2m202> = 5n1n25m1m250'10'2a (717)

where o is the spin.

Because the electrons we will be studying are interacting, we need two-body matrix

elements ul¢ as well. The analytical formula for the Coulomb interaction integrals,
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Figure 7.2: The lowest three energy levels in the two-dimensional quantum dot. Each
arrow representes a spin up or a spin down state with the quantum numbers n and
m as listed below. This pattern goes on indefinitly with the addition of one bar (two
oscillators) per level.

provided by Anisimovas and Matulis [85] is

4 1/2
1)]1+]2+]3+]4
S S S S 5771 ma2,m m.
<¢1¢2|U’¢3¢4> 1,54Ys2,53 1+m2,m3+my Ll;[l ‘mz|+nl) ()Z j1'j2']3']4
- ni+|mi|) 1 - fryg—lo—1
X H( g G+1QZ(_1)’Y2 T
L1 i+ Ji 2G40/ (4)1=0
4
Vi G-L+1
X Oy +1,05+14 [[l(l)]l“(l—i- 2>F< 5 )
(7.18)

The symbols j; are integer summation indices (regular indices) running from 0 to n;.
The symbols v; stand for numbers,

Y1 = j1 + ja + (Jma] +m1)/2 4 (|ma| —ma)/2
Yo = j1 + Ja+ (jma| —m1)/2 + (Jma| +ma)/2

~v9 and 3 can be obtained by replacing indices 1 — 2 and 4 — 3. Moreover,

DD SD D BD I 2 L=k

(4)j=0  j1=032=033=0374=0

For the implementation of this expression for the purpose of computing the two-
dimensional quantum dot Coulomb integral matrix elements, we refer the reader to

section C.11

Dipole Moments

For our implementation of time dependent Hamiltonians, outlined below, we make use
of a dipole approximation of an electric field. For this reason it is necessary to compute
dipole moments. The transitions rules of quantum mechanics stem from evaluating
matrix elements of this kind,

d? = (¢p| £ |dg) =1 (dp| & |0g) + 7 (Bpl T |g) » (7.19)
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where ¢, ¢, are single-particle functions, on the type in [Equation 7.13, As we will be
representing the two-dimensional quantum dots in polar coordinates, we can rewrite
this to,

=1 (¢p| 7 cos B |¢hg) = J (¢p| 75in B |by) . (7.20)

The integrals we need to compute are

2m

(pp| T cosb|pg) = Nnm/ R nm(r)dr/ cos0Y, (0)Y,(6)do  (7.21)
027r

(Pplrsing |pq) = Nnm/ R, nm(r)dr/ sinfY, (0)Y,(0)d6. (7.22)
0

The radially dependent integrals are the most difficult to compute, and we com-
pute this symbolically with sympy. For the angular integrals, we can find analytical
expressions that can be evaluated quickly,

2m o etmo 2t
cos fe'™? = — (sin@ — im cos 0)
0 1 m 0

. : (7.23)

where m = (mg —myp) € Z. We see that the integral evaluates to 0 for all possible
values of m except for m = £1. This special case warrants further investigation,

2w ) 2m 1 4 - o
/ cos fedf = / cos? O+i cos 0 sin 0df = 3 sin 0 cos 0+§+% sin’ 0‘0 =m. (7.24)
0 0

Similarly,
2 o eiﬁle 2
/ sin Ae™ df = — (imsinf —cosf)| =0 VmeZ#1
0 1 —m 0
27 ” 27 1 i g2
/ sin fe” d@z/ cosfsinf + isin?0df = ~sinf — —sinfcosl +i—| =i
0 0 2 2 210
(7.25)

This is a very nice result, as it conforms with the selection rule related to the azimuthal
quantum number m.

7.2.3 Two-Dimensional Double Well

The extension from a single two-dimensional quantum dot to a double quantum dot
is a relatively straight-forward procedure, as it is a mere perturbation of the regular
single dot. There are at least two ways to implement the potential of a double well
in two dimensions. One method is to add a fourth-degree polynomial potential along
one cartesian axis, resulting in a smooth “bump” dividing the two potential wells. We
have opted for another method, with the an absolute value function resulting in a sharp
edge. The potential reads as follows,

7 ﬁ 2 2 2 -,
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class quantum__systems. TwoDimensionalDoubleWell
(n, I, radius_length, num_grid _points, barrier strength=1.0, | _ho_factor=1.0,
omega=0.25, mass=1)

Create Two-Dimensional Quantum Dot with double well potential, i.e. the Double
Dot. This class inherits from TwoDimensionalHarmonicOscillator.

Parameters
n(int) Number of electrons
I(int) Number of spinorbitals
grid _length(int or float) Space over which to construct wavefunction.
num_grid points(int of float) Number of points for wavefunction.
barrier _strength(float, default 1.0) Barrier strength in double well potential.
| _ho_ factor(float, default 1.0) Normal HO vs double well basis function.
omega(float, default 0.25) Angular frequency of harmonic oscillator potential.
mass(int or float, default 1.0) Mass of electrons. Atomic units is used as default.

Attributes
h One-body matrix Type np.array
f Fock matrix Type np.array
u Two-body matrix Type np.array

Methods
setup _ system(axis=0)
Must be called in order to compute basis functions. Parameter axis decices
to which axis the well barrier is aligned. (0,1) = (z,y).

where [ is the “strength” of the barrier between the wells. We can readily see what
makes the barrier so acute, namely the absolute value of the position operator, |:%]El

In we immediately recognise the first two terms as the normal quan-
tum dot. This is beneficial, as we can reuse single-particle functions from
This means that the one-body matrix elements are simply,

1 1
W = eyt + S (6,112 — 112104)
T 4 (7.27)
= 6,,55 + gmw2l255 — §mw2l (Dpl|Z]|dg) -

We see from the first two terms a perturbation in the diagonal matrix elements, i.e.

1
DW 272
€ =€+ g l“, (7.28)
and that we need only compute the matrix elements of the position operator. Because
we are still working with polar coordinates, we make the necessary transformation, and

3Here we might as well have used the position operator ¢, which would have resulted in an equivalent
potential, rotated ninety degrees.
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the integral becomes

[e') 2
(6|2 g) = /0 /0 B (1,007 €03 0], (r, 0)drd (7.20)

We see that the wavefunctions ¢y, are the same as for the unperturbed two-dimensional
quantum dot, and this directs us to the same kind of integrals as for the dipole cal-
culations above. The radial integral is cumbersome, and therefore left for a symbolic
solver, but for the angular integral we have,

2m ™ 2w
/ | cos 0]e™dg :/ cos O~ dp — / cos B~ dp
0 0 ¢
= / (cos(0m) — isin(6m)) cos
0

2
— / (cos(0m) — isin(6m)) cos
T W (7.30)

eme
= [ (sin@ — im cos 0)]

(1—m?) 0
e—mo 2m
_ [(12) (sin @ — im cos 0)]
—m _
2im - 4am
= gy = m=2 Z.
1—17‘12(6 +1) T2 ™ k, Vk €

where m = (my — m,) € Z. We see that this expression is not defined for m = 1, but
inserting for this value in the interegal will yield zero as a result. In fact, we see that
the integral will evaluate to zero for each odd value of m. If the barrier was aligned in
the other direction, along the y-axis, a similar computation can be performed for sin 6
instead of cos#.

Since the particles are interacting in the same way as before, there is no need to
compute a special version of the Coulomb integral matrix elements for the double well.
We do, however, need to transform the single-particle functions and two-body elements
from the regular harmonic oscillator basis to an approximate basis for the double-well
problem. This can be done via diagonalisation of the one-body Hamiltonian in order
to find a matrix of coefficients C, that performs this basis change,

|9g)pw = Z Cp |Pp)uo > (7.31)
P

which can be inserted into an eigenvalue equation for the one-body operator,

h [Ya)pw = € [Va)pw

> hCyldp) =Y €Chq lép) - (7.32)

Assuming that the eigenvalues ¢, are eigenvalues for the double well single-particle
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functions, we project onto the regular harmonic oscillator basis,

Z <¢r’ﬁ’¢p> = Z Cpr@p <¢r’¢p>

p
> hprCpr = Cprey (7.33)
p

hC = Ce

This is an eigenvalue equation we can solve in order to obtain the coefficient matrix
which transforms from the one basis to the other. This transformation can subsequently
be applied to the two-body operator,

<¢a¢,3!12\%¢5> = Cg*cg* <¢p¢qm‘¢r¢s> C;C[Sg? (7'34)

where summation over same indices is assumed.

7.2.4 Two-Dimensional Magnetic Quantum dots

Extending the two-dimensional quantum dot to be under the influence of a static,
transverse magnetic field is only a matter of adding constant terms to the one-body
operators. We are now considering a system with the following one-body hamiltonian,
where an angular momentum term is added,

h=-—+-mQ%?+ =L, (7.35)
m

where Q = /w3 + %3 and w, is the parameter dictating the strength of the magnetic
field, the Larmor frequency. We see that this Hamiltonian is the same as the normal
two-dimensional quantum dot one-body Hamiltonian for we = 0 as
Q — wp. Conversely, if the magnetic field is infinitely strong we see that Q — w./2
and becomes the one-body hamiltonian of a free electron in a transverse
magnetic field.

The single-particle functions in [Equation 7.13 with the adjusted Bohr radius a =
/mSQ/h, are also eigenfunctions of the angular momentum L. The correspongin energy
eigenvalues are simply

hwcm
2

€nm = hQ(2n + |m| 4+ 1) — (7.36)
We see immediately that the energy undergoes a general shift due to the new €2 which is
dependent on w,, but also that the energy shift of a particular state is dependent on the
sign of the azimuthal quantum number m. These factors will give different degeneracies,
as illustrated in Such a plot of single-particle particle energies are sometimes
referred to as the Fock-Darwin spectrum [86, 87]. With these new degeneracies that are
depedenent on the Larmor frequency w., comes the challenge of sorting the one-body
matrix elements correctly, and ensuring that we keep a closed-shell structure.

Notice in that there are lengthy intervals of b-field strength where there
is no degeneracy in the eigenenergies. Conversely, for certain specific field strengths
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class quantum__systems. TwoDimHarmonicOscB
(n, I, radius_length, num_grid points, omega 0=1.0, mass=1, omega c¢=0)

Create Two-Dimensional Quantum Dot with constant homogenous magnetic field.
This class inherits from TwoDimensionalHarmonicOscillator.

Parameters
n(int) Number of electrons
I(int) Number of spinorbitals
grid _length(int or float) Space over which to construct wavefunction.
num _grid points(int of float) Number of points for wavefunction.
omega 0(float, default 1.0) Part of harmonic osc. not dep. on magnetic field.
mass(int or float, default 1.0) Mass of electrons. Atomic units is used as default.
omega c(float, default 0) Larmor frequency.

Attributes
h One-body matrix Type np.array
f Fock matrix Type np.array
u Two-body matrix Type np.array

Methods
setup _system()
Must be called in order to compute basis functions.
construct _dipole _moment()
Constucts dipole moment. This method is called by setup system().

there are very interesting shell structures with diverse energies and new degeneracies.
Such accidental bunching occurs for w./w = 1/v/2,2/4/3,3/2,4/\/5.... We also see
from figure that for an infinitely strong magnetic field as w./w — oo, in the
free particle limit, that the energy levels form a sequence of so-called Landau bands.

As for the computation of the basis set, not much needs to be added in the com-
putation than the extra energy to the diagonal part of the one-body matrix elements
hY, as everything else is the same, including the two-body Coulomb integrals. But, as
we have already mentioned and displayed in for increasing strength of the
magnetic field, the eigenenergies as function of w. eventually cross over one another.
The magnetic field has the effect of decreasing the energy of a state with m > 0 and
increasing the energy of a state with m < 0. This means that it is necessary to sort the
eigenvalues after they have been computed.

7.3 Constructing a Custom System

We have constructed a subclass of the QuantumSystem base class called CustomSystem
with the intent of interfacing with other quantum chemistry libraries. This interfacing
allows us to extract basis sets for other systems, like atoms and molecules, that will
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Figure 7.3: A few of the lowest eigenvalues €,,, for a two-dimensional quantum dot for
transverse magnetic field of increasing strength. This plot of the single-particle energies
form the Fock-Darwin spectrum. Some states for very high values of m are omitted to
make the formation of Landau bands in strong fields more visible.

function with the coupled cluster solvers we have implemented.

The function of the member methods in the CustomSystem class should be evident
from their names. One can set the one-body matrix elements with set_h(h, add_spin),
set dipole matrix with set_dipole_moment(dipole_moment, add_spin) and so on. How
one would go about getting these structures is somewhat non-trivial, at least for some-
one not used to using quantum chemistry libraries. We have therefore added functions
to the quantum_systems module that do just that. The functions

quantum_systems.custom_system.construct_psi4_system() and

quantum_systems.custom_system. construct_pyscf_system()
extracts the one-body matrix, Coulomb intergrals, dipole moment, overlap matrix and
nuclear repulsion from Psi4[4] and PySCF, respectively. The functions are provided
in full in [section C.2] and [section C.3] We have picked Psi4 and PySCF to interface
with as they seem to be widely used in the quantum chemistry community. Psi4 has
354 stars and 235 forks, while PySCF has 308 stars and 175 forks on GitHub. Arguably
this can be considered widely popular considering the specificity of the topic.

7.4 Time Evolution

In order to compute the time-development of a quantum system, we add a time-
dependent term to the Hamiltonian that describes the system. The class TimeEvolution-
Operator is an abstract base class, which defines components necessary to make such
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class quantum__systems.CustomSystem

Constructs custom quantum system, where a uses can add matrix elements for other
sources. The purpose of this class is to allow usage of quantum many-body solvers
that function with quantum__systems module using other sources basis sets.

Methods:
set h(h, add_spin=False)
Add one-body matrix elements, i.e. matrix elements from non-interacting
part of Hamiltonian.
Parameters:
h (np.array) One-body matrix
add _spin (bool) Enforces spin orthogonality
set _u (u, add_spin=False, anti _symmetrize=False)
Add two-body matrix elements, i.e. matrix elements from interacting part
of Hamiltonian.
Parameters:
u (np.array) Two-body matrix
add _spin (bool) Enforces spin orthogonality
anti_symmetrize (bool) Anti-symmetrises two-body matrix
set _s(u, add_spin=False)
Add overlap matrix
Parameters:
s (np.array) Overlap matrix
add _spin (bool) Enforces spin orthogonality
set dipole__moment(dipole_moment, add _spin=False)
Add dipole moment, i.e. transition matrix.
Parameters:
dipole _moment (np.array) Dipole moment
add _spin (bool) Enforces spin orthogonality
set spf(spf, add_spin=False)
Add single-particle functions, i.e. eigenfunctions of non-interacting part of
Hamiltonian.
Parameters:
spf (np.array) Single-particle functions
add _spin (bool) Enforces spin orthogonality
set nuclear repulsion energy (set_ nuclear_repulsion_energy)
Add nuclear repulsion energy. For atoms and molecules.
Parameters:
nuclear repulsion _energy (float) Nuclear reulsion energy
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class quantum_systems.LaserField (/aser pulse, polarization _vector=None)
Implementation of laser field. Needs time-dependent callable to function properly.

Attributes:
is_one body operator Always True Type Bool

Methods:
h_t(current_ time)
Computes one-body operator as a sum of the one-body operator of the
system and product of /aser pulse parameter at current time, polariza-
tion _vector parameter and dipole _moment attribute of system.

time-dependent operators. A time-dependent operator usually applies solely the one- or
two-body part of the Hamiltonian, and more often just the non-interacting one-body op-
erator. For this reason we have implemented abstract attributes in the TimeEvolution-
Operator which will make it possible for the time-dependent coupled cluster solver to
determine what parts of the Hamiltonian is necessary to update for each time step.

A common time evolution operator used in the study is a dipole approximation of a
laser field. We have implemented a class LaserField, which makes a simulation of such
a field possible. This is a relatively simple time evolution operator, as it only affects
the one-body part of the Hamiltonian, i.e. the non-interacting part. Consequently, the
LaserField class only needs to switch the is_one_body_operator to True and implement
the method h_t (current_time). The time-dependent pulse, incorporating the shape and
frequency of the laser is passed as a parameter to the class. This can be any callable
type. The polarisation of the field is also passed to the class as a simple static vector,
meaning that as of now the class only allows for linear polarisation. The electric field
in the dipole approximation typically reads

E(t) = €Eo(t) cos (wt), (7.37)

where € is the polarisation vector, Ey(t) defines a time-dependent envelope of the laser
pulse, the cosine term makes sure the laser pulse is a waveform and w is the angular
frequency of the laser light.
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class quantum__systems. TimeEvolutionOperator
Abstract base class for time evolution operator

Attributes:

is_one body operator
Property used to determine if the time-evolution operator only applies to
the one-body part of the Hamiltonian.
Type bool

is_two_ body operator
Property used to determine if the time-evolution operator only applies to
the two-body part of the Hamiltionian.
Type bool

Methods:
set system(system)
Internal function used to set callback system. This is done in the Quan-
tumSystem class and allows the user to specify the time-evolution operator
parameters when setting the operator.
Parameters:
system (QuantumSystem) System the time-evolution operator is ap-
plied to.
h_t(current_time)
Function computing the one-body part of the Hamiltonian for a specified
time.
Parameters:
current _time (float) One-body operator evaluated at specified time.
Returns: One-body operator.
Return type: np.array
u_t(current_time)
Function computing the two-body part of the Hamiltonian for a specified
time.
Parameters:
current _time (float) Two-body operator evaluated at specified time.
Returns: Two-body operator.
Return type: np.array







Chapter 8

Coupled Cluster

The main product of this study is manifested in the coupled_cluster module for Python.
This module is designed to fit together with the quantum_systems module described in
the previous chapter. We have tried to make this module easy to extend, resulting in a
framework where every solver scheme inherits from an abstract parent class that speci-
fies what must be implemented in order to make a supplemental solver class operational
in conjunction with the rest of the framework.

As a beginning to this project, which we hope will continue to grow and be used,
we have implemented several different ground state solver classes, and several time-
dependent solver classes. In order of increasing sophistication and elegance, we have a
ground state- and a time-dependent solver for both the coupled cluster method with
double excitations (CCD), the coupled cluster method with singles- and double ex-
citations (CCSD), and for the orbital-adaptive coupled cluster method with double
excitations (OACCD). The time-dependent solvers within a particular category are
dependent on its ground state counterpart, but the ground state solvers can be used
independently.

A complete diagrammatic class hierarchy of the coupled_cluster module can be
found in This class hierarchy also illustrates how the coupled_cluster
module fits into and works with the quantum_systems module. This figure is the same
figure as the one shown in [Figure 7.1] but inserting the class diagram here as well should
make this chapter easier to read.

The coupled_cluster module can be installed from github via pip by the following
command,

pip install git+https://github.com/Schoyen/coupled-cluster.git

If one prefers, the same task can be accomplished by the following commands,

git clone https://github.com/Schoyen/coupled-cluster.git
cd coupled-cluster
pip install

We have supplied environment specifications for conda, with requirement specifications
for the convenience of the user. Assuming the git repository is cloned properly,

conda environment create -f environment.yml

105
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Figure 8.1: Class hierarchy of the two Python modules, coupled_cluster and

quantum_systems.
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Activate the environment with,

conda activate cc

Full documentation of this module, which we hope will be kept up to date with any
future revisions can be found at www.coupled-cluster.com.

8.1 Ground State Computations

Before any development in time can be performed, we need to arrive at configurations
of systems that we can be somewhat certain exist in nature. This makes the implemen-
tation of ground state solvers necessary. We have implemented several ground state
solvers; the CoupledClusterDoubles and CoupledClusterSinglesDoubles are based on
the theoretical framework from the Lagrangian formulation of Coupled Cluster theory
(see [subsection 6.4.2)), while 0ATDCCD is a ground state version of an orbital-adaptive
ground state coupled cluster solver with double excitations. Moreover, we constructed
a data structure for the amplitudes in the AmplitudeContainer class and we have im-
plemented two “mixer” classes that help with convergences of the ground state solvers,
AlphaMixer and DIIS.

class coupled cluster.cc_helper.AmplitudeContainer (t, /, np)
Container for amplitude functions.

Parameters:
t(list, tuple, set) T amplitudes
I(/ist, tuple, set) A amplitudes
np(module) Matrix library, e.g. numpy, cupy etc

Attributes:
t 7 amplitudes
I X\ amplitudes

Methods:
unpack()
Returns: Amplitudes
Return type: generator
asarray()
Returns: Amplitude vector
Return type: np.array

8.1.1 Representation of Amplitudes

The most central structure in any Coupled Cluster solver the way we represent the
amplitudes. The amplitudes are what define the true structure of the wavefunction as
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a linear combination of single-particle functions contained in the reference state Slater
determinant. We have found it beneficial to implement a special container class for the
amplitudes, aptly called AmplitudeContainer.

The AmplitudeContainer class is built as a data structure for the amplitude func-
tions, and comprises all methods and attributes to serve this purpose. This includes
overloading of primitive methods of the base python Object type.: __add__ and __radd__
enables adding a scalar or properly shaped vector to the amplitudes, __mul__ and
__ allows for multiplication with scalars and vectors, and __iter__ is imple-
mented to make the class an iterable. In summary, the AmplitudeContainer functions
as a fully operational data structure for amplitudes of coupled cluster solver, with both
7 and A amplitudes. The 7-amplitudes are first introduced in[6.1] and the A-amplitudes
are introduced in [6.4.2

__rmul

8.1.2 Coupled Cluster Base Class

All ground state solvers within the coupled_cluster module are built as sub-classes of
the abstract base class CoupledCluster. The most important method of this class is the
compute_ground_state() method. This method in turn calls the iterate_t_amplitudes()
and iterate_l_amplitudes() successively.

As we have outlined in the 7 amplitudes are only dependent on 7,
while the A amplitudes are dependent on both 7 and A. Therefore, the 7 amplitude
equations iterative solver iterate_t_amplitudes() is called first, and the A amplitude
equation solver is called second. For illustration, the most important section of the
compute_1_amplitudes() method is the following

for i in range(max_iterations):
self.compute_1l_amplitudes()

residuals = self.compute_l_residuals()

if self.verbose:
print(f"Iteration: {i}\tResiduals (1): {residuals}")

if all(res < tol for res in residuals):
break

assert i < (
max_iterations — 1

), f£f"The 1 amplitudes did not converge. Last residual: {residuals}"”

The equivalent section of code in the compute_t_amplitudes() method is nearly iden-
tical. The CoupledCluster class is supposed to provide a framework for which to im-
plement various coupled cluster ground state solver classes. It therefore has several
abstract methods that such subclasses need to implement and overwrite. The most
important of these are the methods compute_t_amplitudes and compute_1_amplitudes,
which are supposed to contain the evaluation of amplitude equations for a given coupled
cluster truncation and scheme.
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class coupled cluster.cc.CoupledCluster
(system, mixer=<class'coupled _cluster.mix.DIIS'>, verbose=False, np=None)

Abstract base class defining a coupled cluster ground state solver class.

Parameters
system(QuantumSystem) A system class from the quantum__systems module.
mixer(AlphaMixer, default AlphaMixer) Mixer - Subclass of AlphaMixer class.
verbose(bool, default False) Will print results for each iteration if True.

Methods
compute ground _state
(t_args=[], t kwargs={}, | argys=[], | kwargs={})
Computes ground state of system given as parameter. Allows for parameters
relating the the 7- and A amplitudes, for use in inheriting classes.
compute particle density()
Computes the one-body density of the system.
Returns: Particle density
Return type: np.array
compute reference energy()
Computes reference energy
Returns: Reference energy
Return type: np.array
get amplitudes(get_t 0=False)
Getter for amplitudes.
Parameters:
get t 0 (bool, default False) Returns amplitude at ¢t = 0 if True.
Returns: Amplitudes
Return type: AmplitudeContainer
iterate | amplitudes (max_ iterations=100, tol=le~*, **mixer kwargs)
Finds solution to A amplitudes iteratively.
Parameters:
max _iterations (int) The limit of iterations allowed.
tol (float, default 1e=*) The tolerance for convergence.
iterate_t amplitudes (max_ iterations=100, tol=1e™*, **mixer_kwargs)
Finds solution to 7 amplitudes iteratively.
Parameters:
max _iterations (int) The limit of iterations allowed.
tol (float, default 1e=*) The tolerance for convergence.
_get t copy Abstract method
__get | copy Abstract method
compute _energy Abstract method
compute one body density matrix Abstract method
compute t amplitudes Abstract method
compute | amplitudes Abstract method
setup t mixer Abstract method
setup | mixer Abstract method
compute t_residuals Abstract method
compute | residuals Abstract method
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With the hope that the functionality of the rest of the methods in the abstract
base class CoupledCluster can be inferred from name, and with the goal of brevity we
proceed to a study of the simplest ground state coupled cluster solver, namely CCD,
implemented in the CoupledClusterDoubles class.

8.1.3 Coupled Cluster Doubles

Starting from construction, the CoupledClusterDoubles class passes the system, defined
through a QuantumSystem object to the parent class constructor, along with any keyword
arguments, such as turning on verbosity, mixer type and what matrix library to apply.
The QuantumSystem class will contain all the information necessary to set up the system,
i.e. construct a one-body matrix, fock matrix and two-body matrix. These will be used
to set up empty arrays for the 7 and A amplitudes. The compute_initial_guess is called
lastly in the constructor, computing the inital guess of the double-excited amplitudes
as

ab
0 = 2 (8.1)
Dy
where v is the two-body operator and Dab fo+ fb Z - ', where f is the Fock

operator.

In the CoupledClusterDobles class specification one would notice that it has im-
plementations of all the abstract methods from the CoupledCluster abstract class.
The reason for the existence of the class, the compute_ground_state() method, is in-
herited from the parent class, and does the same thing as described above - calling
iterate_t_amplitudes() and iterate_l_amplitudes(). These methods also exist as
members of CoupledClusterDoubles, but are excluded from the class specification for
sake of brevity. It is possible to pass arguments to the the two iterator methods; one
list for each iteration method, or as keywords. One can also pass arguments to the
mixer through the compute_ground_state_method(). An overview of mixing applied to
iterative solvers is given in the next section.

The important part of the specific coupled cluster scheme solver is contained in the
two methods compute_t_amplitudes() and compute_l_amplitudes(). These functions
evaluate the entire coupled cluster doubles amplitude equations. The computation of
each term (diagram) in the amplitude equation is done in separate functions, as calls to
numpy . tensordot (), for a total of ten terms for the 7 amplitude equation in the coupled
cluster doubles method including permutation operators:

1 1 1 ..
0 =ugh + forieP(ab) — fEriP(ij) + {rierob iy + Sriiuch + - ;m oty Pij)

C ’L] J 4 2
1 bd bd b
- §Tnm7-z] ucd (ab) + Tzi)ClT]nucdn ( ) + Tfniu]TP(ab) ( ) + 2Tmn Zm

(8.2)
The initial guess in equation is terms 2 and 3 from These

terms also form the basis of the iterative scheme, if we move them to the left of the

equal sign in

DTl = g(u, ), (8.3)
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class coupled cluster.cc.CoupledClusterDoubles (system, **kwargs)

Implementation of coupled cluster with double excitations ground state solver. In-
herits from the CoupledCluster abstract base class.

Parameters
system(QuantumSystem) A system class from the quantum systems module.

Methods

compute ground _state

(t_args=[], t kwargs={}, | args=[], | kwargs={})

Computes CCD ground state of given system.
compute _initial _guess() Computes initial guess for amplitudes.
_get_t_copy()

Returns: Copy of Tf;-b amplitudes

Return type: AmplitudeContainer
_get | copy()

Returns: Copy of )\Z) amplitudes

Return type: AmplitudeContainer
compute t_residuals()

Returns: Norm of Ti“jb amplitudes

Return type: float
compute | residuals()

Returns: Norm of )\;]b amplitudes

Return type: float
setup t mixer(**kwargs) Sets up mixer for 7 amplitudes
setup_ | mixer(**kwargs) Sets up mixer for A amplitudes
compute _energy()

Returns: CCD ground state energy

Return type: float
compute t amplitudes() Computes 7 amplitudes
compute | amplitudes() Computes X\ amplitudes
compute one_body density()

Returns: One-body density matrix

Return type: np.array
compute two_body density()

Returns: Two-body density matrix

Return type: np.array
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where g(u, 7) now consists of the rest of the doubles amplitude equation, our recursion
relation can be written

(k)
g1y _ 9T ) - ). (8.4)
D!

An example of a computation of one term from [Equation 8.2]is,

def add_d2e_t(u, t, o, v, out, np):

term = np.tensordot(t, ul[o, v, v, o], axes=((1, 3), (2, ®)))
.transpose(

0, 2, 1, 3
)
term —= term.swapaxes (0, 1)
term —= term.swapaxes(2, 3)

out += term

which is a function function for computing the Do, diagram[ﬂ

Most of the rest of the methods in the CoupledClusterDoubles class are there for the
use of other methods, or for extracting observables. We now proceed to the treatment of
the logical expansion of the Coupled Cluster Doubles method, where we have included
single excitations as well, i.e. the Coupled Cluster Singles Doubles (CCSD) method.

8.1.4 Coupled Cluster Singles Doubles

class coupled cluster.cc.CoupledClusterSinglesDoubles
(system, include _singles=True, **kwargs)

Implementation of coupled cluster with single- and double excitations ground state
solver. Inherits from the CoupledCluster abstract base class.

Parameters
system(QuantumSystem) A system class from the quantum systems module.
include _singles(bool, default True) Includes single excitations if True.

The coupled cluster method with single- and double excitations is now a matter of
taking into account the extra computations needed in this scheme, for each method in
the abstract base clase CoupledCluster. There are indeed many more computations,
but the code in this class will structurally be the same as the Coupled Cluster Doubles
class. The class specification for CoupledClusterSinglesDoubles is therefore given here
without specification of the methods as they are excactly the same. For testing pur-
poses, the CoupledClusterSingelsDoubles class have the option to only include double
excitation at construction. The amplitude equations for the CCSD scheme are found

! After the labelling from and Shavitt and Bartlett[20]
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by constructing the coupled cluster Lagrangian (Equation 6.95) in sympy and differ-
entiating it symbolically. These resulting equations written in full can be found in

[section B.4l

8.1.5 Orbital-Adaptive Coupled Cluster

The algorithm applied when computing the ground state in the orbital-adaptive sphere
is the Non-orthogonal Orbital-optimised Coupled Cluster (NOCC) method, developed
by Myhre |2]. The NOCC scheme is shown to converge towards full configuration
interaction. Since the 0ACCD class is acutally applying NOCC it can be perceived as a
misnomer, but as of yet there exist no ground state equivalent of the time-dependent
orbital-adaptive coupled cluster (OACC) method. Such a method is in development,
and there is strong indication that NOCC would be equivalent to a OACC ground
state solver. What is more, in addition to solving some specialised amplitude equations
iteratively in a way that is similar to a normal coupled cluster solver, the NOCC method
does vary the orbitals, and we have therefore opted to call it the Orbital-Adaptive
Coupled Cluster (OACC) method.

Our implementation of the NOCC ground state solver is inherited from a code
written by Myhre |2] and adapted to our framework. We supply a brief overview of the
algorithm here. The starting point for the NOCC model is the bivariational Lagrangian

L = (B|HT) = |1+ Ae Te"HereT|p) (8.5)

which is very similar to the coupled cluster Lagrangian (Equation 6.95)), except for a
biorthogonal basis and a transformation of the Hamiltonian, defined as follows

é;r) =e " A;e“,
cp = e_“é;;e“, (8.6)
|6) =" |8),

where the orthogonal reference creation- and annihilation operators are marked with a
hat (), as is the reference state function. We require that x is antihermitian,

K= Z Hpqc;r)cq, ki = —k. (8.7)
P4

Moreover, we split x into excitations and relaxations (up and down),
K= Z Kcha; 4 /@%cjéa = Z KeiXal + Hglaf(ja. (8.8)
at at

As in any many-body formulation that includes a Lagrangian, we would like to
compute the first-order conditions of the Lagrangian, in order to derive what would be
the Non-orthogonal Orbital-optimised Coupled Cluster (NOCC) equation The problem
with this is that the result would be some extremely lengthy expressions, because k does
not commute with the cluster operators T and A. Therefore, we express the NOCC
equations with an optimized basis where x = 0, where a solution would correspond
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class coupled cluster.cc. OACCD (system, **kwargs)

Implementation of the orbital-adaptive coupled cluster method with double excitation
(OACCD). This algorithm require orthonormal basis functions. Based on work by Rolf
H. Myhre[2]. Inherits from the CoupledClusterDoubles class.

Parameters
system(QuantumSystem) A system class from the quantum__systems module.

Methods
compute _ground _state (max_ iterations=100, tol=le™*,
termination _tol=le~*, tol factor=0.1, change system basis=False,
**mixer _kwargs)
Computes ground state of system by iterating over x equations.
Parameters:
max _iterations (int, default 100) Maximum number of iterations.
tol (float, default 1e=*) Tolerance of convergence.
termination _ tol (float, default 1e~*) Break if tolerance below this.
tol _factor (float, default 0.1) Stricter for each s-iteration.
change system basis (bool, default False) Changes basis.

setup kappa_mixer (**kwargs) Set up mixer for s vector iterations.
compute kappa_down rhs (f u, t_ 2,1 2 o, v, np)
Parameters:
f (np.array) Fock matrix.
u (np.array) Two-body operator, Coulomb integrals.
t 2 (np.array) Tfjb amplitudes.
|2 (np.array) )\Z) amplitudes.
o (Slice) Occupied arbitals.
v (Slice) Virtual orbitals.
np (Module) Linear algebra library.
compute kappa_up_rhs (f u, t 2,/ 2 o, v, np)
Parameters:
f (np.array) Fock matrix.
u (np.array) Two-body operator, Coulomb integrals.
t 2 (np.array) T;‘jb amplitudes.
|2 (np.array) )\Z) amplitudes.
o (Slice) Occupied arbitals.
v (Slice) Virtual orbitals.
np (Module) Linear algebra library.
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to a stationary point of the Schrédinger equation. This is the same as expanding the
exponentials in x and keeping only zero-order terms. This trick leads to an algorithm
which iterates over both orbital transformations and amplitude equations, switching
between the two optimiser schemes, until self-consistency.

At a particular stationary point the differential of the Lagrangian
must be zero with respect to the four sets of parameters {7}, {\}, {s*} and {x¢},
giving us four sets of equations,

;;i = (B X, e THET|9), (8.9)
aaf = (Gl + e T [H, X, ] 16). (8.10)
gf = (311 +N)e T [H, X, ]€7]6) (8.11)
(% = (9l(1+ M)e~T[H, X, JeT|6) (8.12)

The first two equations, [Equation 8.9 and [Equation 8.10] are the Lagrangian Coupled
Cluster stationary points, i.e. the 7 amplitude equations and the A amplitude equations,
respectively. The last two equations, [Equation 8.11] and [Equation 8.12, we call the &
equations. These equations dictate the orbital rotations, and we have provided the full
k equations for doubles excitations in

We are now ready to outline the full algorithm of the compute_ground_state() in the
0ACCD class. The method iterates over the x equations, computing the norm of the right-
hand side of [Equation 8.11] and |[Equation 8.12|for each step. We call these norms the x
residuals, and we continue this iteration until the k residuals are low enough, compared
to a preset tolerance level. For each k iteration, we also iterate over the 7 and A doubles
amplitude, exactly as in a regular Coupled Cluster ground state computation, but at a
less strict tolerance value than we would in the CoupledClusterDoubles class. After the
iteration over 7 and X has converged, the values for k* and k% are recalculated, in order

to compute the aggregate x given by This aggregate value can then in
turn be used to transform the orbitals,

h(k+1) — e—nh(k’)em’

() = (e )8 (™) (ugh) ™ (e)4(e")s,

which is used to compute a new Fock operator. The resulting rotation of the orbitals
will aid in better convergence towards the ground state.

Specialised Orbital-Adaptive AmplitudeContainer

Because of the nature of the orbital-adaptive coupled cluster scheme, it is no longer
sufficient to store just the amplitudes as representation of the exact state. Therefore,
we have implemented a subclass of the AmplitudeContainer data structure which also
contains the coeflicient matrices necessary to perform the required orbital transforma-
tions.
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class coupled cluster.cc helper. OACCVector (t, /, C, C _tilde np)
Container for amplitude functions.

Parameters:
t(list, tuple, set) T amplitudes
I(list, tuple, set) A amplitudes
C(np.array) Right-hand side coefficient matrix
C _tilde(np.array) Left-hand side coefficient matrix
np(module) Matrix library, e.g. numpy, cupy etc

Attributes:
t 7 amplitudes
I X amplitudes
C Coefhicient matrix C
C _tilde Coefficient matrix C

Methods:
unpack()
Returns: Amplitudes and coefficient matrices
Return type: generator
asarray()
Returns: Amplitude vector and coefficient matrices
Return type: np.array

Like the AmplitudeContainer class, this data structure also implements fuctionality
for addition, multiplications and iteration. The 0ACCVector class adds some compo-
nents that are very important to the orbital-adaptive Coupled Cluster schemes, namely
the coeflicient matrices that define the orbital rotations, C for the ket-side state vec-
tors and C for the bra-side state vectors. This class would also function as a regular
AmplitudeContainer by setting the coefficient matrices equation to equal the unity op-
erator.

8.1.6 Mixing of Amplitude Vectors

Iterative many-body methods are prone to convergence problems for certain configura-
tions. This would be doubly important since we have moved to a variational descrip-
tion of coupled cluster theory, where generalisations of the variational theory dictate
inifitesimal variations, which is not always feasible to implement. Moreover, an itera-
tive optimisation scheme may not always converge properly at all. Luckily, there are
numerous techniques both for controlling and accelerating convergence.
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class coupled _cluster.mix.AlphaMixer (theta=0.1, np=None)

Class defining the o mixer. Computes a superposition of current and new amplitude
vector. Also defines base class and methods the new mixer classes must implement.

Parameters
theta(float, default 0.1) Mixing parameter. 6 € [0, 1]
np(Module) Matrix library to be used, e.g. numpy, cupy.

Methods
compute new _ vector (trial _vector, direction_ vector error_vector)

Computes new trial vector for mixing with full right hand side of amplitude
equation.
Parameters:
trial _vector (np.array) Initial vector for mixing
direction _vector (np.array) Vector to be added to trial _vector.
error_vector (np.array) Not used in o mixer. Needed in subclasses.
Returns: New mixed vector
Return type: np.array

Alpha mixer

The simplest way to “massage” convergence out of the coupled cluster ground state
methods is to use a dampening, where one would include a part of the result from the
previous iteration, here applied to the 7 amplitudes,

#(k+1) _ (1— Q)T(k-i-l) + o7k (8.13)

where 7(*t1) is the current result from evaluating the amplitude equations, and 7*) is
the previous value. Choosing 0 € [0, 1] will tune how much of the previous amplitude
to include in the new state. The idea is to allow for a more gentle transition between
the iterations. We have implemented this very simple mixing scheme in the AlphaMixer
class, which also serves as a base class for further mixer implementations.

The Quasi-Newton method with DIIS acceleration

A more sophisticated method to aid in convergence, and perhaps the most popular,
is by performing a direct inversion of the iterative subspace (DIIS). The DIIS method
is built to accelerate the quasi-Newton method, and we will outline the quasi-Newton
before we examine DIIS, which is explained in Helgaker et al. [16].

The commutator of Fock operator with the cluster operator is generally

£, T = Duru Xy, (8.14)
I

where €, is the sum of unoccupied energies minus the sum of all occupied energies, i.e.
ab _ . . . . . . . .
Dij = €, + € — € — €, 7, is the amplitude of a particular excitation, and X, is an
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class coupled cluster.mix.DIIS (num _vecs=10, np=None)

General vector mixing class to accelerate quasi-Newton method using the direct
inversion of iterative space (DIIS) scheme. Inherits from AlphaMixer.

Parameters
num _ vecs(float, default 10) Number of vectors to keep in memory.
np(Module) Matrix library to be used, e.g. numpy, cupy.

Methods
compute new_ vector (trial _vector, direction_vector error_vector)

Computes new trial vector for mixing with full right hand side of amplitude
equation.
Parameters:
trial _vector (np.array) Initial vector for mixing
direction _vector (np.array) Vector to be added to trial _vector.
error__vector (np.array) Error vector associated with QN DIIS.
Returns: New mixed vector
Return type: np.array

clear vectors()
Delete all stored vectors.

excitation operator. For CCD [Equation 8.14] becomes,

[f, o) = D%bejbchZcicj. (8.15)

This allows us to write the coupled cluster vector function QLO), and its Jacobian QY

uv
of the nth iteration in the form

QO = D™ 4 (@, T T |@y) (8.16)
QW) = Db + (@] T [0, XV | o) (8.17)

which are very similar to the coupled cluster energy and amplitude equations, but
the matrix element contains just U, the fluctuation potential, instead of the entire
Hamiltonian H = F + U.

The Jacobian constists only of a diagonal part, involving differences of the orbital
energies, and a nondiagonal part, containing the fluctuation potential. The trick from
Newton’s method is to expand the vector functions around the set of amplitudes of the
current iteration 7",

Q(r™ + A7) = QO M) L QW () Ar 4 (8.18)
which leads to a recursion relation, neglecting terms that are nonlinear in A7,

QW (rM) Ar() = _0(O) (). (8.19)
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By inserting [Equation 8.16| and [Equation 8.17] we get the quasi-Newton equations for
the optimisation of the coupled-cluster wavefunction,

0)/ _(n
A _ RUAGR)

2

The quasi-Newton method is fairly robust, but the convergence may be improved sig-
nificantly by introducing DIIS.

In the DIIS framework |88, the new amplitudes 7("*t1) are obtained by a linear
interpolation among the previous estimates of the amplitudes,

7_(n—i—l) _ Zwk(,]—(k) + AT(k)), (821)
k+1

where A7) are obtained from [Equation 8.20, and the interpolations weights sum to

unity,
n
Zwk =1.
k=1

To determine the DIIS weights, we associate each set of amplitudes 7*) with an error
vector. We use the scaled vector function A7) as error vector and determine the
interpolation coefficients by minimising the norm of the averaged vector

AT =Y wpAr®) (8.22)
k=1

subject to

We have implemented the DIIS acceleration of the quasi-Newton method in the
class DIIS. This class inherits from the AlphaMixer class and would function in its
place. The DIIS class allows one to pick how many vectors to store and compute a
linear interpolation of, with a default value of 10 vectors.

8.2 Time Development

We have sought to formulate the time-dependent coupled cluster methods in the ab-
straction of very general differential equations. By doing this we conform to the mindset
of implement once, apply anywhere. In any implementation of a time-dependent cou-
pled cluster solver, we consider it as though we are working with a general function
f(u(t),t), so that it can be solved by any general solver for a differential equation. The
abstract formulation of a differential equation reads

u'(t) = f(u(t),t). (8.23)

Notice that nearly any equations of motion in physics can be written in this way. Prac-
tically, this framework makes it necessary for us to implement the primitive __call__
method for all coupled cluster solvers, in order to make them into a callable represen-

tation of the right-hand side of



120 CHAPTER 8. COUPLED CLUSTER

class coupled cluster.cc. TimeDependentCoupledCluster
(cc, np=None, system, integator=None **cc_kwargs)

Abstract base class defining a time-dependent coupled cluster solver.

Parameters
cc(CoupledCluster) Class instance defining the ground state solver.
system(QuantumSystem) Class instance defining the system to be solved.
np(module) Matrix/linear algebra library to be used, e.g. Numpy, Cupy
integrator(/ntegrator) Integrator class instance, e.g. RK4, GaussIntegrator

Methods
compute ground _state (t_args=[], t_kwargs={}, | _args=[], |_kwargs)
Call on method from CoupledCLuster class to compute ground state of
system.
compute particle density()
Computes one-body density at time ¢.
Returns: Particle density
Return type: np.array
rhs | amplitudes()
Abstract function that needs to be implemented as a generator. The gener-
ator should return the A-amplitudes right-hand sides, in order of increasing
excitation.
rhs_t amplitudes()
Abstract function that needs to be implemented as a generator. The gener-
ator should return the 7-amplitudes right-hand sides, in order of increasing
excitation.
set_initial _conditions(amplitudes=None)
Set initial condition of system. It is necessary to make a call to this system
before computing time-development. Can be called without argument. Will
in that case revert to amplitudes of ground state solver.
Parameters:
amplitudes(AmplitudeContainer) Amplitudes for initial system con-
figuration.
solve (time_points, timestep tol=1e~%)
Develop given system in time, specified by an array of time points. Inte-
grates equations of motion repeatedly, over all time points.
Parameters:
time points (/ist, np.array) Time points over which to integrate
EOM.
timestep _tol (float, default 1e~®) Tolerance in size of steps dt.
Returns: Amplitudes Return type: Generator(AmplitudeContainer)
compute _energy() Abstract function.
compute one body density matrix() Abstract function.
compute two body density matrix() Abstract function.
compute time_dependent overlap() Abstract function.
compute particle density() Calls compute_one_body_ density matrix.
update _hamiltonian(current_time, amplitudes)
Updates Hamiltonian of system in time, constructs new Fock operator.
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Similarly to the rest of the coupled_cluster module, the portion relating to time
development begins with an abstract base class, TimeDependentCoupledCluster func-
tioning as an interface for the rest of the classes. At construction, the TimeDependent-
CoupledCluster class is passed an affiliated ground state solver in the form of a Coupled-
Cluster object, a QuantumSystems object and an Integrator object. All these are neces-
sary in order to compute a time-development. The starting point for time development
is a system in it’s ground state, necessitating the specification of a system and a ground
state solver. Inclusion of a CoupledCluster object in the TimeDependentCoupledCluster
class allows one to call the compute_ground_state() from this object, and it is included
as a wrapper. Several other methods are included from the ground state realm, like the
methods for particle density computations. The __call__ method is implemented in the
abstract base class, where the current amplitude in the form as an AmplitudeContainer
object is passed as an argument together with the current time step. The right hand
side of all amplitude equations are evaluated, and new amplitudes are returned. The
class is called, i.e. evaluated by an Intergator, i.e. the system is developed in time by
solving the equations of motion with a numerical integrator. We will consider integra-
tors separately in the next section.

The bare minimum that a time-dependent coupled cluster scheme needs to imple-
ment in order to function are the methods rhs_t_amplitudes() and rhs_1_amplitudes(),
which should return the right-hand side of the amplitude equations. These methods
should be integrated as generators, to make it possible to iterate over them, and should
yield the amplitudes in order of increasing excitation level. Most of the remainding
functionality lies in the superclass TimeDependentCoupledCluster.

Arguably the most important method in the TimeDependentCoupledCluster abstract
base class is the solve(time_steps) method. For the array of time steps supplied, this
method propagates with the integrator member of the class for all amplitudes. This
method remains the same for all time-propagation schemes, and is therefore imple-
mented in the base class for inheritance in sub-classes.

The solve method in full is

def solve(self, time_points, timestep_tol=1e—8):
n = len(time_points)

for i in range(n — 1):
dt = time_points[i + 1] — time_points[i]
amp_vec = self.integrator.step(

self._amplitudes.asarray(), time_points[i], dt

self. _amplitudes = type(self._amplitudes).from_array(
self._amplitudes, amp_vec

if abs(self.last_timestep — (time_points[i] + dt)) > timestep_tol:
self.update_hamiltonian(time_points[i] + dt, self._amplitudes)
self.last_timestep = time_points[i] + dt
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yield self._amplitudes

We see that after the integrator is advanced one step in time, returning an ampli-
tude vector. This amplitude object is stored as a member of the class by use of the
from_array() method from the AmplitudeContainer class, after which the Hamiltonian
of the system is updated if enough time has passed.

8.2.1 TDCCSD

We have implemented both a time-dependent CCD (TDCCD) solver and a time-
dependent CCSD (TDCCSD) solver. For the sake of brevity, we present only the
TDCCSD here as their appearance would be nearly identical. The TDCCSD class, a sub-
class of TimeDependentCoupledCluster, inherits all methods from this super-class. It
accepts the same parameter as the super-class, except the parameter that defines the
ground state solver to be used - the CoupledCluster class implementation. The ground
state solver is already decided by the level of excitation for the computation at hand.
All parameters are passed to the constructor in the parent class.

The solve() method will have the exact same functionality as in the parent class, but
since the TDCCSD contains amplitudes and everything else needed to solve the equations
of motions in a singles and doubles trunctation, it will now yield a Generator object
containing amplitudes that are developed in time. Any observable can be extracted
during an iteration over this Generator object. We have implemeted several methods
that can be useful in extracting information about the state of the time-developed sys-
tem, for instance compute_time_dependent_overlap() which computes the probability
of the system being in the ground state, and compute_energy() which computes the
energy of the system in the current time-dependent state.

The ground state probability, i.e. compute_time_dependent_overlap(), is based on
a general time-dependent auto-correlation function,

At t) = (St)|5(t)) . (8.24)

Because coupled cluster theory is not variational in the usual sense it is necessary to
define a general state vector as combination of both |¥) and (],

L (]) >
S) = < ~ 8.25
=5\ (&2
which makes the time-dependent auto-correlation function (Equation 8.24J),
/ 1 T4/ ANESY
A1) = 5 (@) () + (e E)(e)) (8.26)

according to the definitions of the indefinite innerproduct by Pedersen and Kvaal [89).
Here we would set ' = 0, because we are interested in the ground state overlap, trans-
lating to the state before developement in time.
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class coupled _cluster.cc. TDCCSD ( *args, **kwargs)

Sub-class of TimeDependentCoupledCluster. Computes time-development of
provided system, employing time-dependent coupled cluster method with single- and
double excitations. The orbitals are kept static. This class inherits all methods from
the parent class, but includes a few extra.

Parameters
system(QuantumSystem) Class instance defining the system to be solved.
np(module) Matrix/linear algebra library to be used, e.g. Numpy, Cupy
integrator(/ntegrator) Integrator class instance, e.g. RK4, GaussIntegrator

Methods
rhs t 0 amplitude (*args, **kwargs)
Evaluates CC energy expression
Returns: CCSD ground state energy.
Return type: np.array
rhs_t amplitudes()
Evaluates 7/ and T%b amplitude equations
Returns: 77, Tl%b
Return type: Generator
rhs | amplitudes()
Evaluates \}, anq )\Z) amplitude equations
Returns: X}, 7,
Return type: Generator
compute _energy ()
Computes energy at current time step.
Returns: energy
Return type: float
compute particle density()
Computes one-body density matrix
Returns: One-body density
Return type: np.array
compute time_dependent overlap ()
Computes overlap of current time-developed state with the ground state.
Returns: Probability of grond state Return type: np.array
solve (time_points, timestep tol=1e~%)
Develop given system in time, specified by an array of time points. Inte-
grates equations of motion repeatedly, over all time points.
Parameters:
time_ points (/ist, np.array) Time points over which to integrate
EOM.
timestep _tol (float, default 1e~®) Tolerance in size of steps dt.
Returns: Amplitudes Return type: AmplitudeContainer
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Within our truncation to include only single- and double excitations, an inner prod-
uct of two state vectors, in the normal coupled cluster scheme with static orbitals, can
be computed in the following manner

(U|0) = (®|(1+ A)e T eT|D)
= (D|(1+ A+ Ag)(1 = Tf — T + %T{Z)(l +T+ T+ %Tf)]@) .
= (®|®) — (B|AT1|®) + (D|ALTY|®) — (B|ALTITY|®) — (D|AsTH|®) (8:27)
F{B|ATS|®) + 1 (BIAST{T|@) + | (BATiT]2),

where we have ignored terms that would give a zero-contribution. FEvaluating the
remainding terms can be done with your favourite method. Here is an example using
Wick’s theorem,

~ 1 ij A PN
(@[0xT5/0) = (03" (NG (a1} S LrielkdiTy o)
abij cdkl

= ‘I>|Z —)\” e {itas b {é'kd 1} |®) + three more equivalent contractions

abcd
ijkl
_ L A 4§ Bpabind | @) = /\”“b
= Z< | abThl 0acObadindji| ) T
ez

(8.28)
The entirity of the compute_time_dependent_overlap_method() consists of similar
computations,

def compute_time_dependent_overlap():
np = self.np
t 0, t_1, t_2, 1_1, 1_2 = self._amplitudes.unpack()
t_1_0, t_2_0 = self.cc.t_1, self.cc.t_2
110, 1.2_0 = self.cc.1_1, self.cc.1_2

psi_t_ 0 =1

psi_t_0 += np.einsum("ia, ai —", 1_1, t_1_0)

psi_t_® —= np.einsum("ia, ai —>", 1_1, t_1)

psi_t_0 += 0.25 * np.einsum("ijab, abij —", 1.2, t_2_0)

psi_t_® —= 0.5 * np.einsum("ijab, aj, bi —", 1_2, t_1_0, t_1_0)
psi_t_0® —= np.einsum("ijab, ai, bj —", 1.2, t_1, t_1_0)

psi_t_® —= 0.5 * np.einsum("ijab, aj, bi —", 1_2, t_1, t_1)
psi_t_0®0 —= 0.25 * np.einsum("ijab, abij —", 1.2, t_2)

psi_0_t =1

psi_0O_t += np.einsum("ia, ai —", 1_1_0, t_1)

psi_®_t —= np.einsum("ia, ai —", 1_1_0, t_1_0)

psi_0_t += 0.25 * np.einsum("ijab, abij —", 1_.2_0, t_2)
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psi_0_t —= 0.5 * np.einsum("ijab, aj, bi —", 1.2_0, t_1_0, t_1_0)
psi_0®_t —= np.einsum("ijab, ai, bj —", 1_2_0, t_1, t_1_0)

psi_®_t —= 0.5 * np.einsum("ijab, aj, bi —", 1_2_0, t_1, t_1)
psi_0®_t —= 0.25 * np.einsum("ijab, abij —", 1_2_0, t_2_0)

auto_corr = 0.5 * (
psi_t_0 * np.exp(—t_0)
+ (psi_0O_t * np.exp(t_0)).conj()

return np.abs(auto_corr) *x* 2

The time-dependent energy in compute_energy() is found by evaluation of the cou-
pled cluster Lagrangian (Equation 6.95) at the current time-developed amplitudes.

8.2.2 OATDCCD

In order to move to an orbital-adaptive framework, we have implemented a new abstract
base class that includes treatment of orbitals. This class has the modified amplitude
container OACCVector as a memeber. Most important differences from the standard
time-dependent coupled cluster framework in the way the __call__ implementation
also returns coefficient matrices, how the Hamiltonian is updated for every time step
and the inclusion of functions that compute P- and ()-space equations. As we will get
into, the Q-space equations will simplify greatly under the assumption of a complete
basis, but the P-space equations will differ depending on the excitation level.

class coupled cluster.cc. OATDCCD ( *args, **kwargs)

Class for computing time-development of provided system, employing orbital-adaptive
time-dependent coupled cluster with double excitations. Subclass of abstract class
OATDCC, which redefines the essential computations for the orbital-adaptive frame-
work. OATDCC inherits all methods from TimeDependentCoupledCluster, over-
writing those that are necessary to overwrite.

Parameters
cc(CoupledCluster) Class instance defining the ground state solver.
system(QuantumSystem) Class instance defining the system to be solved.
np(module) Matrix/linear algebra library to be used, e.g. Numpy, Cupy
integrator(/ntegrator) Integrator class instance, e.g. RK4, GaussIntegrator

Methods
compute _energy()
Computes energy at current time step.
Returns: energy
Return type: float
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Disappearing RHS of Q-space equations.

A necessary addition to an orbital-adaptive time-dependent coupled cluster framework
is the computation of P- and @Q-space equations. The Q-space equations can be sim-
plified substantially, because almost all the terms disappear for an untruncated basis.
We will show this now, starting with [Equation 6.158|

) 0 s r
ihy_ piQs; #a) ZP%Qh\soq +)pBQWT |og) - (8.29)
q

qrs

Inserting for @ in the second term on the right-hand side gives

D pBEQWT o) =D plWT eg) — > pHWIY ) (leq) - (8.30)
t

qrs qrs qrs

If we assume a complete orthogonal basis, we have
D Lo @il leg) =1
t

and the term will disappear. Inserting for ) in the first term on the right hand side of
the first Q)-space equations also yields zero. This means that the first (-space equations

reduce to
Zﬁzqui
. - s a
thpga lop) = ZhZPZZ |5 X@s| ot |op)
q S
2 et =2_les(®) (20 2 a0 (8:31)

aa
acp |Xa ZC |Xa

_ § : o, S
- Cs npa
S
which we rewrite more nicely using Einstein summation,

C=cn. (8.32)

Similarly for the second Q-space equations (Equation 6.159)),

C=-—nC. (8.33)

We see that the @) space equations describe the time propagation of the orbitals through
the coefficient matrices C and C. These equations are valid for all excitation levels of
the Orbital-Adaptive Time-Dependent Coupled Cluster (OATDCC) method, and have
been implemented in the new abstract class 0ATDCC.

We see that n}) is the only thing needed in order to compute the coefficient matrices
which dictate the orbital time propagation. We get 7 from the P-space equations.
Since the P-space equations will be different for each level of sophistication we move
onto a treatment of the implementation of the 0ATDCCD class.
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P-space equations in OATDCCD

The P-space equations for the Orbital-Adaptive Time-Dependent Coupled Cluster Dou-
bles (OATDCCD) scheme are nothing more than a series of tensor contractions, given
by [Equation 6.156| and [Equation 6.157] restated here.

DV EDW LRI Do Yo
bj b

)

L prs rqs
i Ay = Dttt = 2 oihi o+ Zpiii W =D AU
bj L prs rqs

We apply numpy.linalg.tensorsolve, in order to find 7{ and UZ7 which is the entirity of
ny. Now we have everything we need in order to iterate over the OATDCCD equations
of motion.

For each iteration, i.e. for each Integrator.step() advance, we compute the right
hand side of the OATDCCD equations, [Equation 6.154] and [Equation 6.138] providing
us with new amplitudes )\i and T“b These can be used to compute density matrices,
which in turn can be used to find 77P7 from the P-space equations. These will gives us the
time-development of the orbitals in the form of coefficient matrices C and C, which are
used to update the one- and two-body parts of the Hamiltonian A and i, respectively.

Problematic Overlap

Notice the absence of a compute_time_dependent_overlap() function in the OATDCCD
class specification. It is unfeasible to compute a time-dependent overlap in an orbital-
adaptive scheme, because of the computation increase due to the basis transformations.

Computing the inner product of two state vector at the same point in time would be

unproblematic, and would result in the same kind of computation as in
Moreover, in this inner product with static orbitals, many terms evaluate to zero. At

two different times, as in a computation of the ground state probability | (¥(0)|W(t))|?
this would not be the case, and we need to keep all terms,

(B|w) = (B|(1+ AT |)

= (D|(1+ Ay) <1 — T+ ;:ﬁf) (1 + Ty + ;T22> )

= (B|@) — (D|T3|) +%<<i>!f’2’2\<1>> + (D|A2|®) — (D|AT5|P) (8.34)
+ % (D|ALT|®) + (D|TH|®) — (B|T5T2|®) + % (D|T5°To|D)
F{B|AT5|D) — (BASTIT5|D) + 1 (BASTLT|)
+ six more terms.

With static orbitals, only terms that have the same number of excitations and relax-
ations would give a contribution to the final result. Now, because the orbitals have
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class coupled cluster.integrators.Integrator (np)
Abtract integrator parent class. Subclass must implement step method Parameters
np(Module) Matrix library to be used, e.g. numpy, cupy.

Methods
set _rhs (rhs)

Setter for right-hand side of problem.
Parameters:
rhs (callable, int, float) Right hand side of ODE.

step (u, t, dt)
Shell method. Must be implemented by subclass.

evolved in time, we don’t have the same orthogonal properties that would cancel the
other terms. Because we must include everything it becomes unfeasible to compute the
time-dependent overlap in the orbital-adaptive scheme. The computation cost would
scale at the same level as direct diagonalisation methods does, i.e. Full Configuration
Interaction (FCI) schemes.

8.2.3 Integrators and ODE Solvers

Most, if not all, physical systems that evolve in time can be described as set of equations
that we call the equations of motion. These can be formulated as a single or a set of
ordinary differential equations written on the abstract form

d(t) = flult),t). (8.35)

To this particular equation there is an infinite number of solutions, so in order to make
the solution unique, we must also specify an initial condition

u(0) = Up. (8.36)
Given the right hand side of [Equation 8.35] f(u,t) and the initial condition Uy, our

task would be to compute u(t). The simplest equation of motion in physics is Newton’s
second law,

oty = T (8.37)

m

which we have reformulated to be on the standard form as [Equation 8.35]

In any numerical scheme, the ODE defining our problem will be discretised, such

that the initial value problem becomes the following
Up+1 = Up + hf(una tn)a u(t(]) = Uuo, (838)

where h is some small time step, t,+1 = t, + h. We see that the equation(s) at hand
is (are) solved in steps. The most important method of an implementation of any
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class coupled cluster.integrators.RungeKutte4 (np)
Classical fourth-order Runge-Kutta numerical integrator.

Parameters
np(Module) Matrix library to be used, e.g. numpy, cupy.

Methods
set_rhs (rhs)

Setter for right-hand side of problem.
Parameters:
rhs (callable, int, float) Right hand side of ODE.
step(u, t, dt)
One itegration step
Parameters:
u (np.array) Array of equations to be integrated.
f (float) Current time step.
dt (float) Time step size.
Returns: RHS advanced one step, 1.
Return type: np.array

integrator scheme will be the method defining how one would step from one point to
the next.

We have already derived the equations of motions for several coupled cluster frame-
Workzﬂ Solving these equations in time is done in the same manner as any other
equations of motion. The right hand side of these equations is put into practice by
implementing __call__() for all the time-dependent classes, and the initial condition
of the problem is some configuration defined by the amplitudes of the problem. By for-
mulating the time-dependent many-body problem in this way, we can find solutions to
the equations of motion by any numerical integrator scheme. For convenience, we have
included two integrator implementations in the coupled_cluster module - the com-
mon fourth order Runge-Kutta method and the symplectic Gauss-Legendre method.
Moreover, we have defined an abstract base class Integrator, which defines a general
integrator for eventual future additons.

The Runge-Kutta Method

The Runge-Kutta methods are a large family of implicit and iterative methods of in-
creasing order. The first-order Runge-Kutta method is the same as the forward Euler
method, where a step is defined as follows,

Unt1 = Up + hf (Un, ty). (8.39)

2TDCC1Equation 64139| and |Equation 6.140} OATDCC1Equation 6.135L |Equation 6.138|
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The general step of an explicit n-th order Runge-Kutta method is defined by

Unt1 =1t =hY bk, (8.40)
i=1
where
kl :f(unvtn)a
ko =f(un + h(azik1), tn + c2h),
ks =f(un + h(asik1 + asoka), t, + c3h), (8.41)

ks :f(un + h(aslkl + a82k2 + -+ a8,8—1k8—1)7 tn + Cs)a

where s is the number of stages, and the coefficients a;; (for j € [1,4) and i € (j, s]),
b; (for b € [1,s]) and ¢; (for ¢ € [2,5]) defines the particular method. The matrix a;;
is called the Runge-Kutta matrix and b; and ¢; are known as the weights and nodes,
respectively. We call the Runge-Kutta method consistent if

i—1
Zaij:ci, 1€ [2,8].
j=1

We have implemented the fourth-order Runge-Kutta method in the class RungeKutta4.
This is the most common of the Runge-Kutta method, and is often referred to as simply
“the Runge-Kutta method”.

A step of size h in the fourth order Runge-Kutta method is defined by

1
i1 =tn 4 = (k1 + 2k + 2k + ky),
Un+1 =U +6(1+ 2 + 2ks + ka) (8.42)

tn+1 =tp + ha

where

kl :hf(un7 tn)7
k1 h

kQ :hf(un + 57tn + 5)7
k h
ks =hf(un + 5t + ),

ky =hf(un + ks, tn, + h),

This is implemented in the step(u, t, dt) method as

f = self.rhs

K1 = dt * f(u, t)

K2 = dt * f(u + 0.5 *x K1, t + 0.5 % dt)

K3 = dt *x f(u + 0.5 * K2, t + 0.5 % dt)

K4 = dt * f(u + K3, t + dt)

u_new = u + (1 / 6.0) % (K1 + 2 % K2 + 2 *x K3 + K4
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class coupled cluster.integrators.Gausslntegrator
(np, s=2, maxit=20, eps=le~4)

Simple implementation of symplectic Gauss-Legendre integrator of order 4 and 6
(s=2and 2=23).

Parameters
np (Module) Matrix library to be used, e.g. numpy, cupy.
s (int, default 2) Order = 2s. Scheme only implemented for s € {2, 3}.
maxit (int) Maximum number of iterations.
eps (float, default 1e=*) Convergence tolerance.

Methods
step (u, t, dt)

One itegration step

Parameters:
u (np.array) Array of equations to be integrated.
f (float) Current time step.
dt (float) Time step size.

Returns: RHS advanced one step, w1 1.

Return type: np.array

Symplectic Gauss Integrator

The Runge-Kutta method, as described above, will be unstable for most systems be-
cause of its inability to preserve the structure and the energy of the system. It is
necessary to apply an integrator which is both structure-preserving and symplectic.
We have inherited a code used by Pedersen and Kvaal [89] and have adapted it to our
framework. Nevertheless, we give a brief overview of its inner mechanics here.

A quadrature rule is an approximation of the definite integral of a function over an
interval [a, b].

The most common family of quadrature rules are derived by defining an equidistant
grid of N points on the interval [a, b], where the grid points z;, are given by

Tp = a + nh, (8.43)

where h = (b — a)/N, with index n € [0, N]. A quadrature rule is commonly stated as
a weighted sum of function values at specified points.

(N-1)

b
/ fl@ydo~ Y hf(x).
a i=1

The simplest of such schemes of equidistant points is the trapezoidal rule given by

b
/ f(@)dz =h @g(:co)+f<w1>+f<x2>+...f<xzv_1> +;f<:w>> +O(h?). (8.44)
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A very efficient method consists of repeating the trapezoidal rule and performing
it for successive values of h, each having half the size of the previous one. This yields
a sequence of approximations to the integral for various values of h can be fitted to
a polynomial, and the value for this polynomial for h = 0 will yield a very accurate
approximation to the exact value. This is called the Romberg method.

The n-point Gaussian quadrature rule functions similarly to the family of methods
described above, but instead of equidistant points we use the zeros of orthogonal poly-
nomials for the gripd points x,,. The first pick of orthogonal polynomials are Legendre
polynomials, which are orthogonal on the interval [—1,1], i.e.,

1
/ B)P(x)dr = b (8.45)

We also approximate the function f with Legendre polynomials.

The Gauss-Legendre quadrature rule is constructed to yield an exact result for
polynomials of degree 2n — 1 or less. An advantage of the Gauss-Legendre method is
that its accuracy is much better than that of other methods using the same number
of integration points. In fact, the accuracy of an N-point Gauss-Legendre method is
equivalent to that of an equidistiant point method using 2NN points. The resulting
Gauss-Legendre quadrature rule can be stated as

1 N
/ e = 3w fan) + O), (8.46)
- n=1

where z;, are the zeroes of the Legendre polynomial P,, h is 2/N and w,, are appropri-
ately chosen weights for the method.

Orthogonal polynomials p, of degree r and leading coefficient one, satisfy the fol-
lowing recurrence realtion,

Pr+1($) = ($ - ar,r)pr(x) - ar,r—lpr—l(x) T ar,OpO(x)' (847)
The three-term recurrence relation can be written as a matrix equation
JP =P — p,(x) X e, (8.48)

where P = [po(z), p1(z),...,pn1(2)], e, is the nth standard basis vector and .J is
the Jacobian matrix,

0 ... 0 (8.49)

0 by—2 an—2 1
0 ny-1 anv—

The eigenvalues of this matrix will be the nodes x,, i.e. the zeros of the polynomials
up to degree N. If ¢(™ is an eigenvector corresponding to an eigenvalue such an
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eigenvalue x,, the corresponding weight can be found from the first component of this
vector

Wn, = [0 ( gn))Qa (8.50)
where

o = / ' w(a)da

and w(z) is the weight function. w(z) = 1 when Legendre polynomials are used in
the Gauss quadrature. This efficient way of arriving at weights and nodes is called the
Golub-Welsh algorithm [90].

Generally, a quadrature method is not used to compute the solution to ODEs, but
we adapt it to a Runge-Kutta solver in the way explained in Pedersen and Kvall [89].
A general implicit s-stage Runge-Kutta method is defined by

Up+1 = Up + h Z xzf(un + Zij7 ty + wzh)v (851)
=1
Zinhz aij f(un + Zjn, tn + wjh). (8.52)
j=1

This allows us to make an interpolation between each time step ¢, and ¢, + h by a
polynomial of order s and requiring the ODE to be satisfied at the s Gauss-Legendre
quadrature points gives a symplectic and reversible integrator of order 2s. The matrix

ai; is computed analytically,
wj

Qi5 = ) ej(l')dl', (8.53)

where
S

T — wg
tj(x) = H o —wr’ (8.54)
k=Lkzj 9 Ok

is the jth Lagrange interpolation polynomial. The nonlinear equation

is solved iteratively for each time step, making the method implicit. These fixed-point
iterations are defined by

Zi(:ﬂ) = hz aij f(un + Z](-fl), tn + wjh). (8.55)
=

The initial guess is crucial to the convergence speed of the method. We have employed
guess (A) scheme described in section VIIL.6.1 of Ref. [91].

For the user of the Gauss integrator, the experience will be much more pleasant
than dealing with the derivations of the method, because its opeartion are the same,
as evidenced by the GaussIntegrator class specification.
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Chapter 9

Validation

Here we present a series of reproduced results from the scientific literature as a val-
idation of our computational implementation. We manage to reproduce the instan-
taneous dipole results from the simulation of the hydrogen molecule in Li et al. [92],
the time-dependent ground state probability of a quantum dot from Zanghellini et al.
[93] and the spectrum of Helium from Pedersen and Kvaal [89]. The simulation of
the ionisation of beryllium by Miyagi and Madsen |94, serves as an illustration of
the advantage of adaptive orbitals versus static orbitals in a time-dependent coupled
cluster method. For all time-dependent studies in this chapter we have employed the
symplectic GaussIntegrator integrator class.

We present all results in Hartree atomic units (abbreviated a.u.). The derivation of

these units can be found in [subsection 2.3.2

9.1 Instantaneous dipole in H,

Li et al. |92] employ a time-dependent Hartree-Fock approach in order to study the
electronic optical response of molecules in intense fields. To be specific, they model
the hydrogen molecule Hy with a 6-311++G(d,p) basis setﬂ subject to an oscillating
field of 1.72 x 10'3 W e¢m™2 and 456 nm wavelength. In atomic units, this corresponds
to an intensity of Fpa.x = 0.07 a.u. and a frequency of w = 0.1 a.u. They find the
time-dependent Hartree-Fock method to be nearly indistinguishable from calculations
using the full time-dependent Schrédinger equation. We have managed to replicate the
instantaneous dipole results of hydrogen from figure 5 in Li et al. [92].

A 6-311++G(d,p) basis set corresponds to a 6-311++Gss basis set in PySCF, and we
can extract it from here,

molecule = "
h 0.0 0.0 —0.6948522960236121;
h 0.0 0.0 0.6948522960236121

basis = "6—311++Gss"

In quantum chemistry, there are several specialised basis sets. For a thorough overview of basis
sets, see for instance Jensen [95].
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Figure 9.1: Instantaneous dipole for Hs in an oscillating electric field of intensity Enax =

0.07 a.u. and frequency w = 0.1 a.u., corresponding to 1.72x10'4 W cm~2 and 456 nm,
respectively. The 6-311++G(d,p) basis set has been used.

system = construct_pyscf_system_ao(molecule, basis=basis)

The bond length of the Hydrogen molecule is approximately 0.7354 A, converted to
multiples of the Bohr radius here, the atomic unit for length.

In their simulations Li et al. have used a linearly polarised and spatially homogenous
external field aligned along the z-axis,

e(t) = E(t) sin(wt). (9.1)

The field envelope |E| is linearly increased with time to a maximum value |E,«| at the
end of the first cycle and remains at |Epax| for one cycle and then decreases linearly to
zero by the end of the next cycle,

E(t) = (wt/27)Epax  for 0 <t <271/w
E(t) = Enax for 27/w <t <d4dr/w
E(t) = (3 —wt/2m)Emax  for 4m/w <t <6m/w
E(t)=0 for t<0andt>67/w,

(9.2)

where the maximum field intensity if 1.72 x 104 W cm ™2 (Emax = 0.07 a.u.). Li et al.
also ran a simulation for a lower intensity, but we are concerned only with this relatively
more intensive pulse. The entire simulation lasts for T' = 225 a.u.

The result of our simulation is shown in where we have computed the
instantaneous dipole (Z(t)) = tr{p(t)x} over time using three different methodﬂ The

2The dipole moment normally includes a charge g, i.e, ¢ () but in the atomic units that we use the
charge is 1.
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Figure 9.2: Electron density p(x) in dimensionless units for the ground state wave-
function of a quantum dot with n = 2 eletrons and | = 20 spin-orbitals in the basis set
computed with CCSD. This plot corresponds precisely to figure 1 of Zanghellini et al.
[93].

time-dependent Hartre-Fock result is shown in the bottom sub-figure, and is exactly
the same as figure 4.a from Li et al. [92]. For comparison we have computed the
result with both of our time-dependent coupled cluster methods. The result of the
time-dependent coupled cluster method with single and double excitations are shown
in the top subfigure, and the result of the orbital-adaptive coupled cluster method
with double excitations are shown in the middle subfigure. We see that there is no
perceptible difference between the results of the three methods.

9.2 Ground State Probability in 1D Quantum Dot

Zanghellini et al. [93] calculate the time development of a one-dimensional quantum
dot with two electrons using the Multi-Configuration Time-Dependent Hartree-Fock
method (MCTDHF). This method yields exact results for a very large number of con-
figurations n. This study would provide a proper benchmark for our implementation
because the coupled cluster method with singles and doubles excitations (CCSD) is
exact for n = 2 particles. The harmonic oscillator potential applied in their study had
a frequency of €2 = 0.25 a.u., used a strong laser-like field with maximum intensity of
Enax = 1 a.u. and a laser frequency of w = 8(2 = 2 a.u. The oscillating field is described
much more simply than in Li et al. [92], using a simple sine function,

e(t) = Esin(wt), (9.3)

where the envelope E does not vary in time.
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Figure 9.3: Probability of being in the ground state | (¥(0)|¥(¢)) |? using both TDHF
and TDCCSD, for a one-dimensional quantum dot with n = 2 particles and | = 20
spin-orbitals. The ground state probability and the derived frequency units wt/(2m)
are dimensionless. This plot corresponds precisely to figure 2 of Zanghellini et al. [93].

Zanghellini et al. [93] find that their multi-configurational time-dependent Hartree-
Fock scheme convergences as the number of configurations is 7 > 15, up to the resolution
of their figures. We are able to reproduce this result precisely by employing the time-
dependent coupled cluster method with singles and double excitations (TDCCSD). We
have used our own one-dimensional quantum dot class, 0DQD, with a harmonic potential
and [ = 20 spin-orbitals in the basis set for this simulation.

In we see the ground state electron density for the ground state wave-
function computed with CCSD. Zanghellini et al. computed the electron density for
an increasing number of configurations n using Multi-Configuration Time-Dependent
Hartree-Fock (MCTDHF). This figure matches the convergent electron density found
by Zanghellini et al. as n — oo, in figure 1 from their article.

depicts the probability for the system being in the ground state as a func-
tion of time. Here we have included both a time-dependent Hartree-Fock computation,
corresponding to a multi-configurational time-dependent Hartree-Focke computation
with n = 1 configurations, and a time-dependent coupled cluster computation with sin-
gle and double excitations. We see that our coupled cluster scheme corresponds to the
multi-configurational Hartree-Fock scheme employed by Zanghellini et al. when  — oo,

as [Figure 9.3| match figure 2 in Zanghellini et al. |93| precisely.
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Figure 9.4: Dipole spectrum of helium computed with OATDCCD. The intensity of the
spectral lines is in relative dimensionless units. The ground state of the system is excited
by an oscillating field with strength En . = 10 a.u. and frequency w = 2.8736 a.u. for
tqy = 5 a.u. The system is developed in time for a total of 7= 1500 a.u. A cc-pVDZ basis
set has been used in the simulation.

9.3 Dipole Spectrum of Helium

In their comparison study of symplectic and regular Runge-Kutta type integrators,
Pedersen and Kvaal [89] present a dipole spectrum of helium.

The basis set employed by Pedersen and Kvaal is a cc-pVDZ basis set which we
extract from Psi4,

He = "
He 0.0 0.0 0.0

symmetry cl

options = {"basis": "cc—pvdz", "scf_type": "pk", "e_convergence": le—8}

system = construct_psi4_system(He, options)

For hydrogen this basis set amounts to five orbitals in total. See chapter 5 in Jensen
[95]for a thorough overview of quantum chemistry basis sets.

In their study Pedersen and Kvaal [89] use an oscillating field with frequency w =
2.8736 a.u. and maximum intensity Fpax = 10 a.u. This frequency corresponds to the
lowest-lying electric-dipole allowed transition from the ground state of helium. The
oscillating field can be described as

e(t) = E(t) cos(wt), (9.4)
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with a sinusoidal envelope

E(t) = €Epay sin? (:t) H(tg—t), (9.5)
d

where H is the Heaviside step function designed to return zero when the field has
reached its designated halting time t4. This envelope is similar in behaviour to the
one in the study by Li et al. [92] - it increaes gradually at first, and then gradually
decreases.

The oscillating field is only meant to “disturb” the ground state of the atom, as it
is quickly switched off at t; = 5. Then the system is allowed to propagate in time for a
long period. In our reproduction of the system, we have let the system evolve for a total
time T' = 1500 a.u. For each time step we compute the dipole in the same direction as
the polarisation of the oscillating field. The fourier transform of this signal will then
yield the dipole spectrum of the atom. The time-development is performed with the
orbital-adaptive time-dependent coupled cluster method with double excitations. The
result from this simulation is depicted in which is qualitatively equal to
figure 7 in Pedersen and Kvaal [89].

9.4 Ionmisation of 1D Beryllium

Miyagi and Madsen [94] implement the Time-Dependent Restricted Active Space Self
Consistent Field Singles (TD-RASSCF-S) method and compare it with Time-Dependent
Configuration Interaction Singles (TDCIS) and the Multi-Configuration Time-Dependent
Hartree-Fock (MCTDHF) method. A simulation they perform in this study is the sim-
ulation of the ionisation of beryllium. This simulation is performed by applying an
oscillating field defined by the following vector potential,

A(t) = % sin (?) , (9.6)

giving the following field

e(t) = —Enax sin (7;) EZ cos (gf) sin (wt) + sin (7;) cos(wt)] TS

where Epna.x = €Fnax, Where € is the polarisation vector. We reproduce the one-
dimensional beryllium model with our AtomicPotential class, which can be passed as a
potential to the 0DQD (one-dimensional quantum dot) class when setting up the system,

Z =4; n=4; 1 =40; c = 1; a = 1; alpha = 1;

potential = AtomicPotential(Z, c)

odbe = 0DQD(n, 1, grid_length, num_grid_points, a, alpha)
odbe.setup_system(potential=potential)

where Z are the number of protons, n is the number of electrons, 1 is the number of
spinorbitals, c is the position of the nucleus, a is the Coulomb screening parameter and
alpha is the strength of the Coulomb interaction. We pick a wide grid of 300 a.u., with
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Figure 9.5: Snapshots of the dimensionless electron density p(z,t) in the 1D beryllium
atom at t = 0, t = T/2 and T, where T = 331 a.u., computed with TDCCSD and
OATDCCD.

5001 points, and a time step size of At = 0.01 a.u. The maximum field strength is set
to Emax = 0.0755 a.u. and the frequency of the laser field is set to w = 0.057 a.u. This
corresponds to a peak intensity of 2.0 x 10'* W ¢cm ™2 and a laser wavelength of 800 nm.
The total time of the simulation is 7' = 331 a.u. Both the unit for frequency and time
is derived from the Hartree unit for energy F,, which we derived in [subsection 2.3.2]
The atomic units for time and frequency are i/ E, and E,/h, respectively.

The idea behind the simulation is to compute the particle density over time, and
see if there is more than a significantly high probability to see an electron very far away
from the nucleus. The particle density p(z,t) is computed at the very beginning of the
simulation, halfway through and at the end of the simulation. We do this both with our
time-dependent coupled cluster singles doubles (TDCCSD) method with static orbitials
and the orbital-adaptive time-dependent coupled cluster doubles method (OATDCCD).
The results of the simulations are shown in

In the top subfigure in we see the electron density before the system is
developed in time, and the two methods are in good agreement. In the middle subfigure
the simulation is halfway through its course and the two methods both appear to show
the same effects, but with slight discrepancies. In the bottom subfigure, we see that
the OATDCCD method is doing fine, but the TDCCSD is absolutely non-sensible, with
very high peaks that are periodically greater than 1. We can conclude that propagating
orbitals in time enables us to get the same qualitative result as Miyagi & Madsen in
figure 4 from their study. Keeping the orbitals static as in the TDCCSD method makes
us unable to model the same behaviour. We will delve a bit deeper to try to shed some
light on why the TDCCSD method fails.

If we compute the norm of the amplitudes over the course of the simulation for the
time-dependent coupled cluster singles doubles (TDCCSD) method, we get the result
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shown in In essence, the amplitudes in any coupled cluster computation
provides a linear combination of orbitals from the reference state |®g), in order to
provide the best representation of the exact state |¥). For this reason one would expect
the norm of the amplitudes to be realtively low for an exact state |¥) that is close to
the reference state |®¢). We encounter problems with the static orbitals because we are
dealing with a system that moves very far from its inital state. In[Figure 9.6) we see that
the amplitudes stay within a reasonable magnitude for up to about halfway through
the simulation, after which we see the method is struggling greatly to represent the
current state with the basis it has been given. In figure [Figure 9.7 a plot of the overlap
of the current, time-dependent state with the initial ground state helps to underline
this point. The inset figure in shows the area of the figure with the highest
value for the overlap, at a larger scale. We see that the ground state probability reaches
values of more than 300, which is most definitely unreasonable, because a probability
like this should always be between 0 and 1.

It is difficult to draw a clear conclusion as to when the time-dependent coupled
cluster method with static orbitals breaks down and is unfeasible for use. However,
we can draw some broader, qualitative strokes towards a dis of the problem. Any
coupled cluster method is supposed to provide the best representation of a system’s
exact wavefunction by picking parts of the basis set contained in the reference state
for that system. If the exact wavefunction exists in a very different basis space than
the reference state, it stands to reason that it is very difficult, if not impossible to
find a mapping between the two. This problem stems from the foundations of the
approximative nature of the coupled cluster method as it has a truncated basis set.

Pedersen and Kvaal [89] provide a similar deduction, highlighting there what appears
to be a system-dependent upper limit for the strength of the external field. They
underline the improvement in the computations by using a symplectic integrator instead
of a standard fourth-order Runge-Kutta method. We use the same integrator as the
one Pedersen and Kvaal outline. Pedersen and Kvaal argue that a large amplitude
norm should make one question the validity of the result. It is difficult to gauge what
constitutes a “large” amplitude norm, however.

Lastly with regards to the ionisation study from Miyagi and Madsen [94], we would
like to emphasise how well the Orbital-Adaptive Time-Dependent Coupled Cluster Dou-
bles (OATDCCD) method performs. The OATDCCD method manages to replicate the
desired results to a significant degree, giving relatively high values for the entire grid
of the particle density represented in This is normally interpreted as a free
particle because one would expect the wavefunction of a free particle to spread out in
space as time progresses.
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Figure 9.6: Norm of the amplitudes over time in the 1D beryllium atom, computed
with TDCCSD. We see unreasonably high amplitude norms.
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Figure 9.7: Probability of being in the ground state over time | (¥ (0)|¥(¢)) |?, in di-
mensionless units, for the 1D beryllium atom, computed with TDCCSD. We see unrea-

sonable probabilities.






Chapter 10

Quantum Dots

Here we present results related to time-dependent simulations of parabolic quantum
wells. We have simulated the behaviour of such quantum dots in both one- and two
dimensions, producing time dependent energies and ground state probabilities over time
as the system is under the influence of oscillating fields. We also present dipole spectra
of the one- and two-dimensional quantum dot as well as the two-dimensional double dot
and a two-dimensional double dot under the influence of a homogenous, static magnetic
field. We find that the harmonic potential theorem holds for all simulations.

The harmonic potential theorem |5] states that electrons trapped in a parabolic
quantum well behave as if they were one large quantum oscillator, instead of a system
consisting of many smaller parts. This includes exhibiting only one frequency in the
dipole spectrum of the system. If we compute the Fourier transform of the dipole of an
n-electron quantum dot with a parabolic potential the result would be one line in the
spectrum corresponding to the oscillator frequency of the system. This means that in
the dipole approximations, we can not detect many-body effects in a harmonic quantum
dot with infrared light.

The harmonic potential theorem generalises to quantum dots under the influence
of a magnetic field [96, 97]. The revised theorem states that one would expect to see a
shift, both up and down, creating two frequencies 2, and €2_ in the dipole spectrum.
The resulting two frequencies would have a difference equalling the Larmor frequency
we =04 —OQ_.

We present all results in Hartree atomic units (abbreviated a.u.). The derivation of

these units can be found in [subsection 2.3.2

10.1 Harmonic Oscillators in One Dimension

For the one-dimensional quantum dot with a harmonic potential we simulate a laser
by adding an oscillating field with a sinusoidal envelope, similar to the one in Pedersen
and Kvaal [89],

e(t) = €Fpax sin® <t;) cos(wt). (10.1)

We set the period of the envelope equal to the duration of the entire simulation,
T = 20 a.u., so that we have a field that at first will gradually increase, then de-
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Figure 10.1: Time-dependent energy of a one-dimensional harmonic oscialltor with n =
2 electrons under the influence of a laser field with maximum intensity Fy.x = 1 a.u.
and frequency w = 2 a.u., for different number of spin-orbitals [ € {6, 8,10,12,20}. The
oscillator frequency of the system is set to 2 =1 a.u.

crease. The oscillator frequency for all simulations are set to 2 = 1 a.u., and at first we
set the frequency of the oscillating field to twice this, w = 2 a.u. We do this to make sure
that we are far from the resonant frequency of the system, and we pick a relatively high
laser frequency in order to enforce a more dynamic system. We use the more standard
time-dependent coupled cluster singles doubles (TDCCSD) method, for these simula-
tions, with the symplectic Gaussian integrator and a time step of At = 0.01 a.u. The
simulations are performed for an increasing number of electrons n = {2,4,6,8,10,12}.
We have computed the energy and the time-dependent overlap, i.e. the time-dependent
probability of being in the ground state, for each simulation. We repeat the simula-
tions for a wide range of different number of spin-orbitals, in order to find convergent
properties of the simulations as the number of spin-orbitals increase.

First we study the time-dependent energy of a quantum dot acted upon by an
oscillating field. The result for n = 2 electrons is shown in [Figure 10.1] We have
produced comparative results for other number of particles n = {4, 6,8, 10,12}, which
can be found in We see an apparent convergence in the time-dependent
energy as we increase the number of spin-orbitals in the basis set. For larger systems
with more electrons it reasonably becomes necessary to also increase the size of the basis
set. As is the tendency with ground state coupled cluster computations for quantum
dots , , the time dependent energy of a quantum dot is decreasing until convergence
for increasing basis set size.

We see the same general convergent tendency when computing the time-dependent
ground state probability | (¥(0)|¥(¢))|?, shown in for n = 2 electrons. We
see that for a lower number of spin-orbitals, the computation of the overlap with the
ground state tends to return a lower value than for a higher number of spin-orbitals.
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Figure 10.2: Dimensionless probability of being in the ground state | (¥(0)|¥(¢)) |? for
a one-dimensional quantum dot with n = 2 electrons under the influence of a laser field
with maximum intensity Fpax = 1 a.u. and frequency w = 2 a.u., for different number
of spin-orbitals [ € {6,8,10,12,20}. The oscillator frequency of the system is set to
Q=1au.
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Figure 10.3: Dimensionless probability of being in the ground state for | (¥(0)|¥(t)) |?
for a one-dimensional quantum dot for different number of electrons n =
{2,4,6,8,10,12}, with accompanying spin-orbitals [ = {20, 20,20, 30,30,40}. All
systems have been subjected to the same oscillating field with maximum intensity
Enax = 2 au. and a frequency of w = 2 a.u.., for a T' = 20 a.u. time period. The
oscillator frequency of each system was {2 =1 a.u.
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Since the ground state probability is a number between zero and one, the results
for systems of different number of electrons are comparable. We have produced such a
comparison in [Figure 10.3] In this figure we have chosen the number of spin-orbitals
that would produce a convergent plot for the given system size. The general tendency
is that a system with more electrons is less likely to be in the ground state over time
than a system with less electrons.

10.1.1 Dipole spectrum

We now turn to a somewhat different kind of simulation. We keep the base system the
same, a one-dimensional quantum dot with harmonic potential and oscillator frequency
Q =1 a.u. We also apply an external oscillating field like in which will
this time be resonant with the frequency of the oscillator w = 2 = 1 a.u., to ensure a
population of excited states. In this simulation we set the field to zero at Ty = 5 a.u.,
by the use of a Heaviside function in a similar manner as Pedersen and Kvaal [89] in
After the field has been switched off we propagate the system in time for
a total of T'= 500 a.u. with a time step At = 0.01 a.u. The same procedure is repeated
for systems with n = {2, 4,6, 8,10, 12} electrons with respective number of spin-orbitals
I ={20, 20,20, 30,30,40}. These systems and basis sizes correspond to the ones used in
Figure 10.3] For each time step we collect the dipole moment (&(t)) = tr{p(t)x}, and
compute the Fourier transform of the entire collected array. The results are presented
in [Figure 109

We see that the result is in accordance with the harmonic potential theorem, as the
simulations have produced dipole spectra that show only one line corresponding to the
frequency of the confining potential. Morover, we see that the relative intensity of the
spectra increases with the number of particles.

10.1.2 Resonance Sensitivity

In order to test the response of a quantum dot as the frequency of the oscillating
field appproaches the oscillator frequency, we have run simulations for a selection of
laser frequencies w with the field described by We chose frequencies
w € {1.0,1.25,1.5,1.75,2.0} in atomic units, and set the oscillator frequencies of the
quantum dot systems to 2 = 1. The laser pulse had a set period of t; = 20 a.u.,
starting from ¢ = 0, while time-development of the system was allowed to continue to
T = 30 a.u.. The maximum intensity of the oscillating field was lowered to Epax =
0.25 a.u., to ensure stability of the simulations.

The results of these simulations are shown for n = 2 particles in and
which show the time-dependent energy and the time-dependendent ground
state probabilities | (¥(0)|¥(t)) |2, respectively.

The results are as expected, but interesting nonetheless. We see that the quantum
dots behave very much as a classical driven harmonic oscillator. If the frequency of the
driving force, in this case the oscillating field, is far from the resonant frequency of the
system the system falls back to the inital position after the force subsides. Only when
we get closer to the resonant system do we see an excitation in energy of the system as a

whole after the laser field is switched off (Figure 10.5)). In the case for the exact resonant
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Figure 10.4: Fourier transform of expected value of dipole moment for a one-dimensional
quantum dot with different number of electrons n = {2,4,6,8,10} with respective
number of spin-orbitals | = {20, 20,24, 30,34,42}. The intensity of the spectral lines
are computed relavtive to the largest system (n = 12), and are dimensionless.
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Figure 10.5: Time-dependent energy of a one-dimensional quantum dot with oscillator
frequency 2 = 1 a.u. and n = 2 electrons. The quantum dot is influenced by an
oscillating field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in atomic units
with a maximum intensity of E.x = 0.25 a.u.
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Figure 10.6: Time-dependendent ground state probability | (¥(0)|¥(¢))|? of a one-
dimensional quantum dot with oscillator frequency 2 = 1 a.u. and n = 2 elec-
trons. The quantum dot is influenced by an oscillating field of different frequencies
w € {1.0,1.25,1.5,1.75,2.0} with a maximum intensity of Epax = 0.25 a.u.



10.2. TWO-DIMENSIONAL QUANTUM DOT 153

76 I
42
74 — 56
';:'72 —
S, —— 72 (0A)
>
<)
o 70
c
Ll
68
66

0.0 25 5.0 75 100 125 150 175 200
t[a.u]

Figure 10.7: Time-dependent energy of a two-dimensional harmonic oscillator with n =
12 electrons under the influence of a laser field for different spin-orbitals [ € {42, 56, 72}.

frequency, such that w = ), we se that the energy of the system is increased even at
the very end of the simulation, when the amplitude of the oscillating field is miniscule.
The same effects are apparent when studying the overlap of the time-developed system
with the initial ground state in Closer to the resonant frequency we see
a much lower probability of being in the ground state. For frequencies far away from
the resonant frequency we see that the system falls back to the exact ground state or a
state close to the ground state.

We have run similar simulations to the one described above, in order to study the
resonant properties of a quantum dot, for n = 4,6, 8, 10 electrons in a one-dimensional
quantum dots. Figures with the results from these simulations can be found in
In the ground state probability plots for these simulations, one would notice
unreasonable probability values | (¥(0)|¥(¢)) |2 > 1. This is an issue we have addressed
in the following sections, when reviewing the results of the two-dimensional quantum
dot results.

10.2 Two-dimensional Quantum Dot

The two-dimensional quantum dot arguably paints a somewhat more interesting picture
than the one-dimensional quantum dot, as we shall see. We construct several harmonic
potential systems using the TwoDimensionalharmonicOscillator class. Similarly to the
one-dimensional case, we simulate a laser by adding an oscillation field of the kind
used by Pedersen and Kvaal [89], shown in [Equation 10.1} Because we have added a
dimension, we must choose a direction of polarisation. This choice is arbitrary because
of the symmetry of the quantum dots. We therefore arbitrarily pick the z-direction.
Unlike the one-dimensional dot, we are restricted to only a certain selection of systems,
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Figure 10.8: Dimensionless ground state probability |(¥(0)[¥(¢))|?> for a two-
dimensional quantum dot with n = 12 electrons under the influence of a laser field
for different number of spin-orbitals | = {42, 56, 72}.

namely systems of n € {2,6,12} electrons, that ensure full shells.

Like in our simulations of a one-dimensional harmonic quantum dot we have at
first sought to show that we obtain convergence in the computations by applying an
oscillating field far from the resonant frequency of the system. We set the oscillator
frequency to 2 = 1 a.u. and the frequency of the electric field to w = 22 = 2 a.u. We
perform a simulation over a period T' = 20 a.u., for an increasing number of spin-orbitals
[. The maximum intensity of the laser field is set to Ejax = 1 a.u. For these initial
computations we use the time-dependent coupled cluster singles doubles (TDCCSD)
method with static orbitals. The simulations for two and six eletrons show expected
results and have therefore been relegated to while the results for twelve
electrons appear to be on the brink of what the TDCCSD method can handle, within
the given basis set size.

The time-dependent energy of a two-dimensional harmonic quantum dot with n =
12 electrons under influence of the oscillating field described above is shown in
lure 10.7 In this figure we have run the same simulation for [ € {42,56, 72} spin-orbitals
with the time-dependent coupled cluster singles doubles (TDCCSD) method, and we
see that only for the very largest of the basis set, we see a behaviour conforming with
our expectations. We expect the energy to be close to the ground state energy after
the laser-field has died out.

In the same figure (Figure 10.7]) we have also included the computed energy over time
for the system using the Orbital-Adaptive Time-Dependent Coupled Cluster Doubles
(OATDCCD) method and the same number of spin-orbitals. We see that the two
methods do not agree completely, and we are prone to trust the OATDCCD method
more than the TDCCSD method in this case, because the energy at the end of the
simulations is lower than the initial energy for the TDCCSD method.
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Figure 10.9: Norm of amplitudes, 71, 72, A1 and A2 (from CCSD, see [section B.4))
computed with the TDCCSD method in an n = 12 electron two-dimensional quantum

dot influenced by an oscillating field with frequency w = 2 a.u., and intensity Fpa.x =
1 a.u. The simulation was run for 7' = 20 a.u., for several number of spin-orbitals
[ ={42,56,72}.

The reason for the problems the TDCCSD method shows are likely caused by the
great difference between the exact state |¥) and the reference state |®). The coupled
cluster method seeks to represent the exact state |¥) by a linear combination, deter-
mined by the amplitudes, of basis functions in the reference state |®). When the exact
state of the system is very fram from the reference state, we are not able to approximate
it with the basis that is provided. We will outline this problem further as we study the
time-dependent ground state probability of the simulation.

The ground state probability of the same simulation with the Time-Dependent
Coupled Cluster Singles Doubles (TDDCCSD) method is shown in We
see immediately that the probability becomes unreasonable at some time step after
t = 6 a.u. This result is similar to the sort of break-down that occured for the TDCCSD
method in the attempt to replicate the results of Miyagi and Madsen [94] in

The probable cause of the unreasonable ground state probability is the need for the
amplitudes of the system to acquire relatively high values, in order to compensate for the
inadequateness of the reference state to describe the exact time-dependent state. This
is underlined by the norm of the amplitudes, displayed in As is apparent,
the lambda amplitudes show an upwards trend throughout the simulation. This should
be unnecessary because the system would revert back to a state similar to the ground
state at the end of the simulation. It appears that some “tipping point” is reached
halfway around ¢ = T'/2 when the instabillty starts to increase. The T-amplitudes are
more or less well-behaved, at least for the largest basis set, showing some correlation in
amplitude with the sinusoidal envelope of the oscillating field.
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Figure 10.10: Fourier transform of the expected value of the dipole moment for a
two-dimensional quantum dot with different number of electrons n = {2,6,12} and
respective number of spin-orbitals [ = {40,40,56}. The intensity of the spectra is
computed relative to the largest system with n = 12 electrons.

We have more trust in the Orbital-Adaptive Time-Dependent Coupled Cluster Dou-
bles (OATDCCD) than the Time-Dependent Coupled Cluster Singles Doubles (TD-
CCSD) method for this simulation. By developing the orbitals in time, as well as the
amplitudes, we are provided with a continuously improved basis set. It is easier to
represent the exact state |¥(t)) with a reference state |®(t)) that is refreshed for each
time step.

10.2.1 Dipole Spectrum

We have for the two-dimensional quantum dot computed the dipole spectrum for sys-
tems of different size, as we did for the one-dimensional quantum dot. We did this for
quantum dots with oscillator frequencies 2 = 1 a.u. with n € {2,6, 12} electrons. We
used [ € {42,42,56} as the number of spin-orbitals for the respective systems. In order
to excite and disturb the systems from the intial ground state we applied an oscillating
field with a resonant frequency w = {2 = 1 a.u. and a somewhat low maximum intensity

Frax = 0.1 a.u., with a three-step linear envelope as in The systems
were allowed to develop in time for T' = 500 a.u. The results of computing the Fourier

transform of the dipole (x) (t) = tr{p(t)x} is depicted in In this figure we
see that the result is qualitatively in accordance with the harmonic potential theorem -
the dipole freqcuencies of all the systems are the same, with an intensity that increases
with the number of particles in the system. For the two larger systems with n = 6 and
n = 12 electrons we see some slight inaccuracies. These are attributable to the time
constraint of this study - a simulation with larger number of spin-orbitals would have
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Figure 10.11: Time dependent energy (left) and ground state probability | (¥ (0)|¥(t)) |?
(right) for a two-dimensional quantum dot with n = 2 electrons. The quantum dot is
affected by an oscillating field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic units with a maximum inntensity E.x = 0.25 a.u. The confining harmonic
potential has frequency 2 =1 a.u.

remedied these inaccuracies, but would have needed more time to complete.

10.2.2 Resonance Sensitivity

For the two-dimensional quantum dot we have also conducted a resonance sensitivity
analysis, similar to the one we performed for the one-dimensional quantum dot. The
results for n = 2 electrons and n = 6 electrons are displayed in and
respectively. The quantum dots in these simulations had an oscillator
frequency of 2 = 1 a.u. and where subjected to an oscillating field with a sinusoidal en-
velope of the type in of different frequencies w € {1.0,1.25,1.5,1.75,2.0}
in atomic units and a maximum intensity of Fp.x = 0.25 a.u.. The simulations were
done with the time-dependent coupled cluster doubles (TDCCSD) method with static
orbitals.

As in the one-dimensional analysis we see that the systems are much more prone to
excitations as the frequency of the laser field approaches that of the quantum harmonic
oscillator. This is apparent both for the energy of the quantum dot systems and the
ground state probabilites displayed in the left and right subfigures of and
respectively. In the six-particle case we again see the problems with the
TDCCSD method when computing the ground state overlap, as the amplitudes acquire
higher and higher values, resulting in probabilities that are unreasonable. In this case
we do believe the energy plots to be correct for w € {1.5,1.75,2.0} in atomic units. We
have less trust in the results from the last two simulations where the oscillating field
had frequencies w € {1.0,1.25} in atomic units. Here we see the same unreasonable
time-dependent ground state probabilities as we did in as the TDCCSD
method breaks down.
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Figure 10.12: Time dependent energy (left) and ground state probability | (¥ (0)|¥(t)) |?
(right) for a two-dimensional quantum dot with n = 6 electrons. The quantum dot is
affected by an oscillating field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic units with a maximum inntensity E,.x = 0.25 a.u. The confining harmonic
potential has frequency Q =1 a.u.

10.3 Two-dimensional Double Dot

We have simulated two different two-dimensional double dot systems, one with n = 2
electrons and one system with n = 4 electrons, using the TwoDimensionalDoubleWell
class described in [subsection 7.2.31 We use | = 20 spin-orbitals for the two-electron
system and [ = 56 spin-orbitals for the four-electron system. The class requires two
special parameters, 1_ho_factor and barrier_strength. These dimensionless parame-
ters define the number of regular harmonic oscillator functions to which the double well
functions are mapped, and the height of the barrier between the wells, respectively. We
set the barrier strength to 2 and the harmonic oscillator factor to 2 for both systems.
The oscillator frequency of the double dot is set to {2 = 1 a.u. As a visual confirmation
of the systems, a one-electron density plot is provided for the n = 2 electrons system
(left) and the n = 4 electron system (right) in We see from these density
plots that the repulsive Couloumb interaction has a stronger effect for the system with
the highest number of electrons.

The double dot is in essence a perturbation of the regular two-dimensional quantum
dot, and we are seeking to uncover any many-body effects that such a perturbation
could lead to. In order to do this we would like to compute the dipole spectrum of
both systems. The time-propagation is done using the orbital-adaptive time-dependent
coupled cluster doubles (OATDCCD) method, as it has shown the best stability of
our time-dependent methods. Both systems are under the influence of an oscillating
field with a linearly decreasing- and increasing envelope of the type used by Li et al.
[92] . We have chosen a frequency of this field that corresponds to the
resonant frequency of the first transition energy of the system w = 0.43 a.u., and an
intensity yielding a maximum amplitude Eyax = 0.1 a.u. The resonant frequency was
found by direct diagonalisation of the one-body matrix produced by the system class
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Figure 10.13: Ground state one-electron density for n = 2 electrons (left) and n = 4
electrons (right) for a double quantum dot. The number of spin-orbitals used in the
two systems are [ = 20 and [ = 56, respectively. The oscillator frequency of the systems
is set to 2 = 1 a.u., with a barrier strength of 2 and a harmonic oscillator mapping
ratio of 2.
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Figure 10.14: Dipole spectrum of two-dimensional double dot system with n = {2,4}
electrons and [ = {20, 56} spin-orbitals. The double well systems have been subject to a
laser pulse with frequency w = 0.43 a.u. and intensity Fpax = 0.1 a.u. The amplitudes
have been computed relative to the highest amplitude value of the two systems.
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TwoDimensionalDoubleWell.

The system is allowed to develop in time for 7" = 100 a.u. We compute the Fourier
transform of the dipole moment (Z(t)) = tr{p(¢t)z}, the results of which are shown in
We immediately see that there is only one frequency apparent in the
spectra for each of the systems, meaning that the quantum double dots have a position
operator that behaves as if it was the centre of mass of the system. We see that the larger
system has a relatively higher dipole frequency compared with the smaller system. We
also see that the larger system has lower intensity compared with the smaller system.

This difference in frequency of the two systems may be caused by the increased
Coulomb force, which creates a higher effective potential and constrains the electrons
more firmly to the wells. The lower intensity of the larger system may also be explained
by the same higher-potential effect of the Coulomb force, but can also be attributed
to the fact that there is more mass to move with the same intensitivity of the external
field. We find this decrease in intensity somewhat puzzling, as the same laser field
applied to a larger system would yield an increase for the single-well potential.

We may have seen more many-body effects in the form of more spectral lines if we
were to increase the intensity of the oscillating laser field, decrease the barrier strength of
the double well potential, or both. This may have made it more likely to tunnel through
the barrier, i.e. increase transition probabilities of higher energy quantum leaps. With
the methods at hand we have had problems with convergence of our solvers for very
large field strength, however. We sought to remedy this by implementing a smoother
double well potential, but had to abandon this effort due to the time restriction of this
thesis.

10.4 Two-dimensional Magnetic Quantum Dot

We start the study of two-dimensional quantum dots under the influence of a mag-
netic field by defining a system of only one particle and solving the time-dependent
Schrédinger equation directly. This is a accomplished by using the TwoDimHarmonicOscB
class to produce a basis set and dipole elements which is everything we need. All of
these items are properties of the class and can be easily extracted. A simple periodic
function that simulates an electric field is constructed, as the product of such a time-
dependent operator and the interaction define the time propagation. We then use a
simple integration scheme, in this case the fourth-order Runge-Kutta method, to prop-
agate the ground state single particle function of the system. Taking care to extract
the dipole moment (Z(t)) = tr{p(t)z} for every time step, we can compute the discrete
Fourier transform of the dipole and compute the frequency spectrum of our system.
This procedure is applied to a system completely absent of a magnetic field, and a
system under direct influence of a magnetic field. Except for the magnetic field the
systems are identical with the same base oscillator frequency wg = 1. It is necessary to
define this new variable name due to the effective increase in the confining potential of
the system caused by the addition of a magnetic field.

Before going straight to the results, we study the shell structure and allowed transi-
tions of our two systems. The left part of [Figure 10.15] presents the shell structure of the
regular two-dimensional quantum dot. The states have all been assigned a number for
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Figure 10.15: Shell structure of six lowest orbitals before (left), and after (right) a
magnetic field is applied to a 2D quantum dot.

easier examination. This shell structure is identical to the one presented in |[Figure 7.2
Additionally, here we have added coloured double arrows to illustrate the allowed tran-
sitions in the quantum dot. These transitions can be encountered in the transition
matrix for the system, which is reproduced with color coding in the left subfigure of
Notice that the coloured arrows representing allowed transitions match
in colour with the elements of the transition matrix.

When we apply apply a magnetic field of strength w./w = v/2/2 we obtain the
shell structure represented to the right in [Figure 10.15] where the allowed transitions
correspond to the transition matrix in the right subfigure in The chosen
magnetic field strength was not chosen arbitrarily, as these accidental degeneracies occur
only rarely as a function of magnetic field strengt}ﬂ For succinctness we repeat the

function from for energy eigenvalues for two-dimensional quantum dot
influenced by a magnetic field,

hw,

where () = \/wg + %‘% is the effective frequency of the confining potential, wq is the
base frequency of the harmonic oscillator, and w, is the Larmor frequency that defines
the strength of the magnetic field. Apart from a general shift up in energy by adding a
magnetic field, the states with negative azimuthal quantum number m will experience
an increase in energy eigenvalue, and vice versa. We see this effect clearly in the new
shell structure in [Figure 10.15] The states with negative m have indeed undergone a
relative shift upwards, whilst the states with positive m have been shifted downwards,
relative to the other states. The ground state, labelled 0, remains relatively stationary,
the states labelled 2 (m = 1) and 4 (m = 2) have been shifted downwards and the states
labelled 1 (m = —1) and 5 (m = —2) have been shifted upwards. State number 5 has
been shifted upwards in energy so much that it has disappeared from the shell structure,
with a new state 6 (m = 3) appearing in its place. This is due to our restriction to
include only the six lowest-energy orbitals. We see that the possible allowed transitions

'Hence the term “accidental”.
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Figure 10.16: Transition matrix for a two-dimensionsal harmonic quantum dot with
(left) and without (right) a magnetic field applied. The two systems both have a base
oscillator frequency of wy = 1 a.u., while the right figure has a magnetic field applied
with Larmor frequency w. = v/2/2 a.u. The effective confining potential is Q = 1 a.u. for
the system represented in the left figure and € &~ 1.118 a.u. for the system represented
in the right figure.

remain the same, except for the transition between state 1 and 5, because state 5 has
been shifted out of our truncated shell structure. We also see a new possible possible
transition between state 4 and state 6.

If we compute the frequency spectrum of the two systems (Figure 10.17) we get a
single line for the normal quantum dot. This is expected, as the quantum harmonic
oscillator has the same energy difference between each level. However, when we apply
a magnetic field and shift the energies of the orbitals in the quantum dot, we see that
we get two different energy transitions. This is revealed as two lines in the frequency

spectrum in [Figure 10.17, This is equivalent to a splitting in transmission spectra of
quantum dot arrays under the effect of a magnetic field in experiments [98, [99].

10.4.1 Many-particle Magnetic Quantum Dots

We will now show that the dipole spectrum splitting holds for a quantum dot of several
electrons. To do this we conduct several simulations of quantum dots consisting of
both n = 2 and n = 4 electrons. Because of the reordering of quantum degeneracies
that occurs by introducing a magnetic field, we will not run into any multi-reference
problems for the n = 4 electron case.

The quantum dot systems are each excited by a laser pulse with the linearly increas-
ing and decreasing envelope, as defined by Li et al. , in . The laser of
this oscillating field is set to the same frequency as the system w = wg = 1 a.u. and the
maximum intensity of the field is Fpax = 0.1 a.u. The Larmor frequency of the mag-
netic field that the quantum dots are subjected to is varied, w. € {0.25,0.5,0.75,1.0}
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Figure 10.17: Spectrum of a single-electron two-dimensional quantum dot both with
and without a magnetic field.

in atomic units. For each of these simulations we compute the Fourier transform of the
dipole moment (Z(t)) = tr{p(t)z}, in the same direction as the polarisation of the laser
field. In the simulations with n = 2 electrons we used [ = 30 spin-orbitals, and in the
simulations with n = 4 spin-orbitals we used I = 56 spin-orbitals. We let the systems
propagate for T' = 1000 a.uE|

We present some selected results here, for Larmor frequency w. = 0.25 for n = 2
and n = 4 electrons, shown in figure [Figure 10.18| and [Figure 10.19] respectively. The
results for the rest of the different Larmor frequencies are consigned to All
results of these simulations conform with the harmonic potential theorem. The distance
between the two lines of the spectrum is approximately equal to the Larmor frequency.
What little error is seen can be attributed to numerical errors, most likely caused by
basis set truncations or premature termination of the time-propagation.

2With the notable exception of the n = 4 electron simulation for w. = 0.25 a.u., which was termi-
nated at 7" = 700 a.u..
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Figure 10.18: Dipole spectrum of a quantum dot with n = 2 electrons and base fre-
quency wg = 1 a.u., subjected to a magnetic field with Larmor frequency w. = 0.25 a.u.
The system was excited with a laser field with frequency w = 1 a.u. and intensity
Enax = 0.1 a.u. for t; = 67/w a.u. then allowed to propagate in time for a total of
T = 1000 a.u.
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Figure 10.19: Dipole spectrum of a quantum dot with n = 4 electrons and base
frequency wg = 1 a.u., subjected to a magnetic field with the Larmor frequency

we = 0.25 a.u. The system was excited with a laser field with frequency w = 1 a.u.
and intensity Fpax = 0.1 a.u. for ¢4 = 67/w a.u. This simulation broke down after a
total time of T' &~ 700 a.u., but the data collected up to this point was sufficient get the
desired result.



Part V

Conclusion

165






Chapter 11

Summary Remarks

The aim of this thesis was to develop and test numerical methods for solving the
time-dependent Schrodinger equation. In particular, we wanted to develop the Orbital
Adaptive Time-Dependent Coupled Cluster (OATDCC) method introduced by Kvaal
[1].

We can with confidence say that this endeavour has been succesful. We have im-
plemented both a time-dependent Coupled Cluster Singles Doubles (TDCCSD) solver
with static orbitals and an Orbital Adaptive Time-Dependent Coupled Cluster Doubles
(OATDCCD) solver, as well as several quantum systems and an interface to quantum
chemistry software which enables extraction of further basis sets. The resulting product
is two modules for python; quantum_systems and coupled_cluster.

With these methods we have have managed to produce many results found in the
existing literature on time-dependent ab initio many-body solvers. This includes a
reproduction of the instantaneous dipole moment of Hy from Li et al. [92], the time-
dependent ground state probability of a one-dimensional quantum dot from Zanghellini
et al. |93|, the dipole spectrum of helium from Pedersen and Kvaal [89] and the ionisation
of a one-dimensional model of beryllium from Miyagi and Madsen [94].

We have been able to compute the time-development of a relatively high number
of particles, up to n = 12 electrons in one- and two-dimensional quantum dots. This
stands as a testimony to the capabilities of our implementations. For ever-increasing
basis set size we have produced time-dependent results that converge, adding to the
confidence in the results. The results relating to quantum dots are in accordance with
the results one would expect from theory. Specifically, in both one-dimensional and
two-dimensional quantum dots we have shown that the harmonic potential theorem [5]
holds - the dipole spectrum of quantum dots consists of only one line consistent with
the oscillator frequency in ordinary harmonic quantum dots. For the two-dimensional
double dot system, we also see only one spectral line, but a shift in frequency. By adding
a homogenous, static magnetic field to the quantum dot, we see a split in the dipole
spectrum resulting in two spectral lines at a distance equal to the Larmor frequency of
the applied magnetic field, also in agreement with the harmonic potential theorem.

In assesment of the time-dependent coupled cluster method with static orbitals, we
found that the solver struggles to correctly represent the current state if the system
progresses too far away from the inital reference state. As such the method is not a
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method that one can trust blindly, as it returns inaccurate results in these situations.
This phenomenon shows most clearly as ground state overlap values that are clearly
unreasonable, but also as exceedingly high amplitude values. The orbital-adaptive
solver remedies this problem, but has a drawback in that it cannot feasibly produce
inner products of two states in time, and therefore is unable to compute time-dependent
ground state probabilities.

This study, with the addition of the study by Schgyen [6], has only scratched the
surface with regards to the cornucopia of results that our code base is able to produce.
The reason for this is for the most part attributed to the time spent in development
and the amount in wall clock time necessary to produce the results herein. A challenge
with time-dependent studies is the impossibility of true parallelisation, as time step t,
will always depend on ¢,_;.

11.1 Further Studies

Based on the results we have produced, we think that a comparative study of the
method with static orbitals and the one with adaptive orbitals is warranted. One
would assume that the two methods yield identical results within a reasonable upper
limit in basis set size, but under what conditions do we get close to this limit? We can
for instance imagine that the orbital-adaptive scheme yields equivalent results com-
pared to the static-orbital method for a lower number of spin-orbitals, because of the
automatic adaption to the current state that an orbital adaption provides. A study is
in preparation for publication which seeks to stress-test the orbital-adaptive method
[28].

The inclusion of triples amplitudes in order to develop a Time-Dependent Coupled
Cluster Singles Doubles Triples (TDCCSDT) algorithm and an Orbital-Adaptive Time-
Dependent Coupled Cluster Doubles Triples (OATDCCDT) algororithm would be a
logical step to take, and is of great interest. Building an orbital-adaptive method with
triples would be a tremendous complication, at least to the orbital equations.

As of now, the apparatus we have developed can easily be used to model the
time-dependent behaviour of additional systems. In fact, one could even easily ar-
gue that the complete investigation of the systems we have implemented ourselves in
quantum_dots is far from over. We have already begun the implementation of a smoother
two-dimensional double well potential, as well as more interesting well potentials such
as the double double dot from Nielsen et al. [100]. Another idea is the construction of
potentials that are not circular-symmetric. That said, we regrettably only had time to
study one of the five potentials we have implemented for the one-dimensional quantum
dot. The addition of a three-dimensional quantum dot system would also be essential
in any further studies. Here, the integral elements provided by Vorrath and Bliimel
[101] would be useful.

We would also like to see the addition of more exotic terms to the Hamiltian in the
quantum dot systems. We think it would not be too difficult to add spin-operator terms
S’x, S'y, S’Z, spin-spin coupling terms S.8 , and spin-orbit coupling terms J 2, LS. We
believe that these would provide very interesting results and enables us to model richer
and more interesting physical effects. We are confident that the mere addition of a S,
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operator would enable us to see Zeeman splitting in the dipole spectrum of quantum
dots, for instance. Eventually, one could hope to implement much more complicated
operators, such as quantum logic gates, with the hope of consequent simulations of
quantum gates.

In their seminal article, Loss and DiVincenzo [83] propose an implementation of a
universal set of one- and two-quantum-bit gates for quantum computation using the
spin states of coupled single-electron quantum dots. The framework that we have built
as part of this thesis together with Schgyen, can readily be adjusted to be able to
simulate such systems in time.

We should highlight the study of systems from nuclear physics, which was the origi-
nal area of application for the coupled cluster method, as an area of great interest. With
a time-devependent coupled cluster method, as we have built, one could potentially be
able to simulate nuclear reactions such as fission and fusion processes, a feat that would
be of tremendous value.

In this study we have implemented the dipole approximation of a laser field to
function as a time-development operator. Richer physics can be modelled by the imple-
mentation of higher order multi-pole terms for such an oscillating laser field. Moving
beyond the allowed transitions dictated by the dipole approximation could potentially
yield very interesting results.

Currently, an article is in preparation for publication that relies on the software we
have developed and the results we have arrived at in this thesis; see Kristiansen et al.
[102].
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Appendix A

Quantum Dot Results

Here we present supplementary data that completes the results presented in
on quantum dot simulations in time. In this appendix we show how the time-dependent
coupled cluster method converges for an increasing basis. These simulations are done for
quantum dots in both one and two dimensions. Additionally, we provide the results from
simulations constructed to show the response of quantum dots subjected to oscillating
fields of different frequencies. Lastly, we show how a quantum dot in two dimensions,
subject to a magnetic field, leads to a splitting in the dipole spectrum of the system.
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A.1 One Dimension

The simulations presented here have been conducted with the Time-Dependent Coupled
Cluster Singled Doubles (TDCCSD) method.

Four electrons
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Figure A.1: Time-dependent energy (left) and ground state probability (right) of a
one-dimensional harmonic oscillator with = 1 a.u. and n = 4 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Enax = 1 a.u., for different number of spin-orbitals | = {8,10,12, 14, 16, 18}.

w [a.u]

20

(W(0)|W(t)]

= = 00 2.0

10.0

0.0

25 5.0 75 100 125 150 175 200 0.0 25 5.0 75 100 125 150 175 200
t[a.u.] t

Figure A.2: Time-dependent energy (left) and ground state probability (right) of a one-
dimensional harmonic oscillator with 2 = 1 a.u. and n = 4 electrons under the influence
of a oscillating electric field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic units with maximum field strength E.x = 0.25 a.u. and [ = 30 spin-orbitals.
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Six electrons
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Figure A.3: Time-dependent energy (left) and ground state probability (right) of a
one-dimensional harmonic oscillator with = 1 a.u. and n = 6 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Epnax = 1 a.u., for different number of spin-orbitals [ = {10, 12, 14, 16, 18, 20}.
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Figure A.4: Time-dependent energy (left) and ground state probability (right) of a one-
dimensional harmonic oscillator with 2 = 1 a.u. and n = 6 electrons under the influence
of a oscillating electric field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic units with maximum field strength E},.x = 0.25 a.u. and [ = 30 spin-orbitals.
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Eight electrons
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Figure A.5: Time-dependent energy (left) and ground state probability (right) of a
one-dimensional harmonic oscillator with 2 = 1 a.u. and n = 8 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Enax = 1 a.u., for different number of spin-orbitals | = {14, 16, 18, 20, 30}.
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Figure A.6: Time-dependent energy (left) and ground state probability (right) of a one-
dimensional harmonic oscillator with 2 = 1 a.u. and n = 8 electrons under the influence
of a oscillating electric field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic orbitals with maximum field strength Fy,.« = 0.25 a.u. and [ = 36 spin-orbitals.
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Ten electrons
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Figure A.7: Time-dependent energy (left) and ground state probability (right) of a
one-dimensional harmonic oscillator with 2 = 1 a.u. and n = 10 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Epax = 1 a.u., for different number of spin-orbitals [ = {18, 20, 30,40}.
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Figure A.8: Time-dependent energy (left) and ground state probability (right) of a one-
dimensional harmonic oscillator with 2 = 1 a.u. and n = 8 electrons under the influence
of a oscillating electric field of different frequencies w € {1.0,1.25,1.5,1.75,2.0} in
atomic units with maximum field strength E},.x = 0.25 a.u. and [ = 40 spin-orbitals.
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Figure A.9: Time-dependent energy (left) and ground state probability (right) of a
one-dimensional harmonic oscillator with 2 = 1 a.u. and n = 12 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Enax = 1 a.u., for different number of spin-orbitals | = {20, 30,40, 50}.
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A.2 Two Dimensions

The simulations presented here have been conducted with the Time-Dependent Coupled
Cluster Singled Doubles (TDCCSD) method.

Two electrons
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Figure A.10: Time-dependent energy (left) and ground state probability (right) of a
two-dimensional harmonic oscillator with €2 = 1 a.u. and n = 2 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Epax = 1 a.u., for different number of spin-orbitals I = {6, 12, 20, 30}.
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Figure A.11: Time-dependent energy (left) and ground state probability (right) of a
two-dimensional harmonic oscillator with €2 = 1 a.u. and n = 6 electrons under the
influence of a oscillating electric field of frequency w = 22 = 2 a.u. and field strength
Epax = 1 a.u., for different number of spin-orbitals | = {12, 20, 30,42,56}.
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A.3 Two Dimensions with Magnetic Field

The simulations presented here have been conducted with the Orbital-Adaptive Time-
Dependent Coupled Cluster Doubles (OATDCCD) method.
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Figure A.12: Dipole spectrum of a quantum dot with n = 2 (left), and n = 4 electron
subjected to a magnetic field with Larmor frequency w. = 0.50 a.u.. Both systems have
base oscillator frequency wg = 1 a.u. and have been excited with an oscillating field with
frequency w = 1 a.u. and intensity Ena.x = 0.1a.u.. The oscillating field had a period
of ty = 6m/w a.u. and the system was developed in time for a total of 7= 1000 a.u..
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Figure A.13: Dipole spectrum of a quantum dot with n = 2 (left), and n = 4 electrons
subjected to a magnetic field with Larmor frequency w. = 0.75 a.u.. Both systems have
base oscillator frequency wyg = 1 a.u. and have been excited with an oscillating field with
frequency w = 1 a.u. and intensity Enax = 0.1a.u.. The oscillating field had a period
of t; = 6m/w a.u. and the system was developed in time for a total of 7= 1000 a.u..
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Figure A.14: Dipole spectrum of a quantum dot with n = 2 (left), and n = 4 electrons
subjected to a magnetic field with Larmor frequency w. = 1.0 a.u.. Both systems have
base oscillator frequency wy = 1 a.u. and have been excited with an oscillating field with
frequency w = 1 a.u. and intensity Enax = 0.1la.u.. The oscillating field had a period
of ty = 6m/w a.u. and the system was developed in time for a total of 7" = 1000 a.u..
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Appendix B

Coupled Cluster

Here we present some supplementary material to the coupled cluster method and theory
that we did not see fit to include in either on coupled cluster theory, or
ter 8, on the implementation of the coupled cluster methods. Nevertheless, these extra
pieces of information that are presented here can be useful. First, we show the relation
between a truncated coupled cluster wavefunction and the configuration interaction ex-
pansion. Second, we derive the Slater-Condon rules, and third, use them to derive the
Coupled Cluster Doubles (CCD) equations. Fourth, we provide the Coupled Cluster
Singles Doubles (CCSD) equations, from the Lagrangian formulation, written out in
full. Fifth, we provide the CCSD Langrangian functional in its full form. Sixth and
last, we provide the k equations that are used in the Non-orthogonal Orbital-optimised
Coupled Cluster (NOCC) scheme.

B.1 CC and CI correspondence

Monkhorst [103] gives a general formula for transferring back and forth between Coupled
Cluster (CC) operators T, and Configuration Interaction (CI) operators C,,

m k
R 1 .
Cm—;k'Zé(ml—i-mg—i---‘—kmk,m)l_[lew (B.1)
lj/:

' ko

where the second sum is over all sets of k m-values that sum up to m. The first four
of the terms are,

Ci=T) (B.2)
~ N 1 -
Cy =Ty + 5Tl2 (B.3)
A . PN 1
Cy =T34+ 11T+ ng’ (B.4)
N PO P
C4 - T4 + §T2 —|— §T2T1 —|— ITl . (B5)
For the CCSD and CISDTQ wavfunctions we have,
. 1. 1 . . 1. 1. PN
|Wcesp) = <1 + 11 + §T12 + §T13 + 1>+ §T22 + ITf + T1T2> Do) (B.6)
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|Wcisprq) = (1 +C1+Cy+Cs+ (54> @) (B.7)
which provides us with a relation between the two,
[Wocsp) = [Wersprq) — (15 + Th) [ @) - (B.8)

Moreover, for a system of n = 2 particles, we have that

|Wcesp) = [Yersp) - (B.9)

B.2 Slater-Condon Rules

The Slater-Condon rules are ways to express integrals over operators in terms of single-
particle orbitals. Here is an outline of a proof for these rules.
Consider first some Slater determinants,

I) = |igia...in) = ilib... 00 ]) (B.10)
J) = |jije- .- Gn) = 7178 -- N (B.11)

To get started, we want to compute the inner product (I|.J) of these two Slater deter-
minants,

(I1J) = (Jin .. 5901198 55 1) (B.12)

In order to evaluate this expression, we move every annihilation operater %p to the right.
Starting with 7, for instance, we have two possible outcomes. If there is no j, that is
the same as i; we get

ULTY = (i iof5E G ) (—1)N =0, (B.13)

because 71 [y = 0. The other possibility that may arise is that 1= 3,1, so that

ingh = {in, g} = gl = im, — glin =1 - jlia, (B.14)
and
(1) = (in - ioglgh - 33l Gk ) (—1r=t —o. (B.15)

We continue in this manner, moving all 7 to the right and the final result will be zero if
there are any %p without a matching j'q or (—1)7 if the two operator strings are identical
to a permutation 7.

Next, consider a symmetric one-body operator

N
F=>"f. (B.16)
pn=1

where g is the identity of the electron on which the identical f# operate. Computing
a matrix element of this one-body operator between two Slater determinants will yield
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three possible results,

(I|F|J) = (iyiy...in| F |j1j2 - .- in)
= (ivig...in| fuljrdz - jn)

“w
] S (il f li) (1)) 1
=" (00t G| Fu S Pjis, 5 ) = 3 ial Flig) (<17
o p 0 111
(B.17)
In the last line, the integral is written with spinorbitals instead of Slater determinants.
The result will be the first case (I), if the operators needed to construct the Slater de-
terminants are the same, up to a permutation of parity ¢ associated with the operator
P needed to permute the product of spinorbitals. If there exists exactly one noncoin-
cidence in the string of operators so that Pjijs ... jN = i1ia. .. i), - .. in where iy # i),
we get the result in the second case (II). If there are two or more noncoincidences, the
result is zero (III).
With second quantisation we might write a one-electron operator differently,

> (kI f 1) afa = ka:lakal (B.18)

kl

It is possible to show that the results are the same in this representation. First, consider
the case where the two Slater determinants are equal,

I fuaha [Ty = fu (Il afa |T)
K ¥

N (B.19)
=3 fudum(D) = fre = (k| flix) -
kl kel k=1
Second, we look at the case where we have one noncoincidence, i, # jp,
(1Y Sk agan] Ty =3 fia (T afa |])
kl kl
= > fulIlagalJ) + fiyg, (T ibjp | ) (B.20)

kl#p

=0+ i, (1) = (3|

).
T

Lastly, there is no pair of operators a;a; that will give a non-zero result. Consequently,
we see that the second-quantised form of the one-body operator gives the same result.
Similarly, consider a symmetric two-body operator,

) N
GZZQWZ§ZQW: 22(2]|g|kl>a a;a1Qy;. (B.21)

p<v jiE3% ijkl
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We would like to show that the second-quantized form is correct, and therefore firstly
consider the case where the two Slater determinants are equal, i.e. zero noncoincidences;

(TG = 3 3 (03] G ki) (1] alafas |1 (B.22)
ijkl

We must have k =i, and [ = i, appear in |I), so that

A 1 A Sfata a1 , ;
(I|G|I) =3 E (7] G |ipiq) (I] aTaTaipaiq li1in ... 0p...ig...)
ij
12 ey (Tlatat i (p-1)+(a-2) (8.23)
=3 (7] g lipiq) (I a;a; liig...) (—=1)'P =),
ij

From this point we have two possibilities for the values of ¢ and j, because the creation
operators must put the same values back into the ket,

(ipigl § lipig) (Ilivig. .. ip...iq...) (=1)P~DH@=2)(_1)P=DH(a=2)

A (i =ip, J =1q);
= <Zplq|g‘lplq>

(B.24)
<iqip| g ‘ipiq> <I’i1i2 ceelp g > (_1)@71”((]72)(_1)@71”((#1) (2 =g, ] =1 )
- <iqip| g ‘ipiq> = - <ipiq| g ‘iqip> ! g

(B.25)

By starting in the reverse order, we obtain the same contributions. The total matrix
element is therefore,

(I1G|I) = ZZ (i3 91i5) — (gl @ 138)) = Y (i3l 41i5)as - (B.26)
ZEI jeJ 1<J
i,j€1

Next, we consider a single noncoincidence in |I), i, # Ups

1I) = Jiyig...ip...), (B.27)

11" = |ivig...i...). (B.28)

We get contributions to (I G |I') from the operator string a I ; ay in the following
cases,

i=iy, k=ip, j=1=1iq— (ipiglipiq) (B.29)

i=i, l=rip, j=k=iq— — (iigigip) (B.30)

J=in, L=y, i =k =1iq— (iqi)]igiq) (B.31)

=i, k=i, i=1=1ig— — (igi]ipig), (B.32)

where the two first terms are egual to the last terms, respectively. This leaves us with,

~ 1, 0 .. . T P
(TG 1) = 2% 5 (i3] § ling) = (| 3 iip) = > ] 3 lipd) as - (B-33)
J€el
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. . . g y
After a while we see a pattern emerges. For two noncoincidences (i, # ipy bq F zq)
we have,

(I'| G |I) = (i%it| § lipiq) , (B.34)
while for three or more noncoincidences,

(I'|G|I) = 0. (B.35)

B.3 Configuration space derivation of CCD
We start from the CCD-constrained time-independent Schrédinger equation,

HWccp = Ecep¥een, (B.36)
which we left project with the reference state,

(®o] H |¥cep) = (®o| Ecep |Weep)
— Ecep = (@0 H |Weep)

where we have taken advandage of the intermediate normalisation, (®o|¥ccp) = 1. We
then insert the exponential expansion from the coupled cluster ansatz,

Eccp = (®o| H(1 + Tb) [®o)

= Liyef + Z <(I)0‘ f{ ‘(I)g]b> t(il]l?
> (B.37)

a>b

= B+ E (ij|ab) tgjb.
i>7
a>b

The energy expression will truncate here because no higher-order terms will contribute.
It is common to substract F,e to get,

HxVUcep = AEcepPoch, (B.38)

where H N = H-— FE.et. Here follow the definitions of all the operators we will be dealing
with in this derivation,

ﬁN:F_ﬁ+ﬁ2_Eref:ﬁ0+FO_U+ﬁ2_Eref7 (B39)
where,
Ho=F"=3"fd, (0l filla) = cpdpq (B.40)
m
FO = Zf/(i)’ <p’ fO‘q> = (1_6pq) <p’fIQ> (B.41)
“w

)

U=Y i (plaula) = (pilgi) (B.42)
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- 1

Hy=> —, Ey=E+EY, (B.43)
u>v T
1
Ey —Zez, EY = 2Z<z]\2]>. (B.44)
i iJ

In the canonical HF case we have F* = 0 and F'¢ = F.
In order to compute the energy of the system we need the amplitudes t?}’. Starting
from the modified Schrédinger equation,

HnYocp = AEcep¥ccep. (B.45)
We left project with a doubly-excited Slater determinant, and insert for the CC ansatz,
(%] Hye™ o) = AEcen (97| ™ o) (B.46)
A ~ 1.

b b
(@5 H (1 +1+ 2T22) |®0) = AEccpti; - (B.47)
Here we have only expanded the exponential function up to the quadratic term. The
next term in the series will triple-excite the bra Slater determinant, which will give a
zero-contribution according to the Slater-Condon rules, because of two noncoincidences.

Next we apply the Slater-Condon rules to the rest of the terms on the right-hand side,
starting with just the normal-ordered Hamiltonian,

(62%] Hy |®0) = (ablij) (B.48)

where only H, contributes.
Next we look at the linear term,

(@G N Ty | Bo) = 3 (630

cd
kl

kled
- <<1>@f’ Ho — Evet qﬂf’> £ 1 <<1>“b j@ >t;§l
K K Z (B.49)
+ > (0| o |05 ) t5d = Lo + Ly + L.
k>l
c>1
We are going to evaluate these terms one-by-one, starting with Ly,
Lo = (05| Ho — Brer | @3)) = (@30 o — By — BV |00
, 1 , (B.50)
= -2+ 52(kl\kl> teb
kl
where Eab =& +&j —€q — Ep.
The next term,
L= (g F* -0 \cpgc;> god, (B.51)

k>l
c>d
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yields contributions if at least three of the indices k, I, ¢, d are equal to the indices 1,
J, a, b (we want one or zero noncoincidences). All the possible terms are,

— Z uk)kti]b all indices equal
k

- Z( fjok — )%  one hole index unequal

k
Ly + Z( £ - uik)t;?,g the other hole index unequal (B.52)
k

— Z( 0 - Uac)ti‘); one particle index unequal

C
+ Z( - upc)t;;  the other particle index unequal.
\ C

For the last linear term,

a3 (ot o) 5
k>l
c>d

we require that at least two of the indices k, [, ¢, d are equal to the indices i, j, a, b,
as we can do with at most two noncoincidences in the bra and the ket. For equality in
both the hole indices or both the particle indices we have

cd=ab — ) (ijlkl) 1§y (B.54)
k>l

kl=ij — > (abled)ts. (B.55)
c>d

For one equality in both hole and particle index we have
= 3 ((bkleg) i — (bklei) 55 — (akleg) tl — (bklei) £55). (B.56)
kl

where the sign stems from the maximum coincidence permutations as dictated by the
Slater-Condon rules. Most of the three- and four equal index terms are accounted for
by the expression above, the remaining three-index equality terms are

= ((gllkty tep — (illkt) 57) (B.57)
kl

+ > ((bllel) 55 — (allel) t55), (B.58)
cl

and there is one term for the case where all indices are equal,
a 1 a
> (kKL ) = 3 > (kl|kL) ). (B.59)
k>l kl

These last three- and four-index equality terms are expressible in terms of @, and
will cancel the first term in L1 together with the @ term from L. All terms so far are
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the same as in a configuration interaction with doubles excitations (CID) computation.
The difference between coupled cluster with doubles (CCD) and CID is the following
extra quadratic terms,

1
Q= 5 (] Fiv3120) = 5 37 3 ot |, ) it (B.60)
k>l m>n
c>d e>f

From this expression we will have a contribution only when four of the indices k, I, m,
n, ¢, d, e, f are equal to 7, j, a, b; and only Ho can contribute. We will find that this
becomes,
Q= (klled) [(t80t5] + t50450) — 2(t5ctSy + thdel)
4 (B.61)
=2ttt 4 £59D) + At + o]
From we see that

AEccp = Y _ (if]ab) t5y, (B.62)
i>j
a>b
and because the indices in are dummy variables we see that the first
term here cancels with the right-hand side of This leads to,

1
abyab __ . . cd
egitiy = (ablij) + 2Zd:(ab|cd YT+ = Z (ig|kl) 80
— 37 ((bklej) 35 — (bklei) t% <akku>ak+«akwwtﬁ)
- Z etk + Z FoRtin + ) fotls = foutls (B.63)

1
+3° (kl|ed) [ £t — S (tisthd + thdi)
kled
L ap d ab b bd
— e+ a5 + (el + 1))

which is the CCD amplitude equations. This equation contains simultaneous algebraic
expressions, contrary to CI. The equations must be solved iteratively, substituting t%b
obtained in each iteration, into the quadratic terms for the next iteration.

B.4 CCSD Equations

Here we present the Coupled Cluster Singles Doubles (CCSD) equations written out in
full. These stem from [Equation 6.104] and [Equation 6.105] in [chapter 6]

Single excited T-amplitude equation

1 1
a,_ ¢ k cb, ak k_a ab, kl
fc T1; + fc T2zk + leuzc + 27_21kucb fz Tk — 57—2]{[ uzc + leTll uzc + leTQzl Uep

1 1
k b ak bkl bkl b kl
—femimg — T Uy — 571%725” b — 571572%% — 11T U, + [ =0
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Double excited m-amplitude equation

1 1
272%5)“51 + QTQSJd uly + fEmiRP(ig) + mgmpull + mgul P(ab) + m§m fuls

1
— [ P(ab) — Ti{ullP(if) + 4T2fng2kzucd + fETgmli Plab) + fEmi§mafiP(ij)

1
T ullP(if) + molemoliull Pab) + mafiult P(ab) P(if) + QleTl?szd ubl
1 1 1
+2T1k7'gf]d gdP(ab) + 27'117'1?7'21@?“@ + 27‘2%7'% quP(U) - leTgf“Jd ka(ab)

1 1
bd, kl d b, kl
fQleTleu P(Zj) — ETQU “Tog Ueg P (ab) + TllejTlﬁTllucd

—l—nfﬁj-lﬁzuch(ab) + 11572, uklP(ab)P(ij) + TliTlfrgg’fuféP(ab)
+7'1271?Tg?f’ul§fl]3(ij) Tlllerllu P( Jj)— TlZleuka(ab)P( 7)

—Ti§ Tyl P(ab) P(if) — T fmaiuli P(ab) P(if) + ufy = 0
Single excited A-amplitude equation

1
FING A+ Mbulf + mfully + >‘2de e — fixk - *)\23310%

dl d d
+)\1dT1e . T )‘laTlmudl + )xldTlluae + /\1d7'217% Uge T+ )\Qdeﬁm o

+5 A?deTlanch )‘Zf;dnﬁzulm"_ )\2de7'217% ulf, — fadhmy
—fflhfmz _)‘1d7—1mule AQdeTzlr?@ Uge' /\2adﬁzué§ln
— b mafuly, — fd>\2217722i7i - *fl)ade o, — /\1d72zm ub?
—*A1a72zmudren - )‘2de o, — )‘2ad Tofe U + AQdeTkaualk

. 4 1 4
l d l d k l d
+AzéeTlmTlfUZf:” + Azﬁﬁkﬁ?ﬂém + */\25}71%71?%20

de d !
+5 )\2(16 leTQIrcnuac + )‘Qde TllTkauac )‘1d7—1l 7—1m azb

d _ ec, mk

e il
_AlaTllTlmude - AldTlmTlluae — A20e T 21k Uge

1. 1 .
l d k l d k [ d k
—A24d T1] T2k Uee — *A2fzeﬁkﬁm27 - */\2ZeTlfnT2ufuamc

1
dc de d ik
)‘QadleTQImuec+ )‘2de7—1l7—2mkuac + )‘QadleTQIm éc
il d k d
—5/\22671k71fn71fu31 - >\2ad71k71m711u + [l =

Double excited A-amplitude equation

*/\2¢duab + )‘2abukl + fiday P(ig) + MPud P(ab) + Ao i §uldf 4+ Nl

cl

—fExayl P(ab) — AiiulS P(ig) + Agcdrgg?u’;ng )\gabmi‘lju?d—l— Fixi] P(ab)P(ij)
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+f2)\2f£7'12P(i]) + fF )\gbCleP(ab) + Alchku P(zj) + )anlkubcP(ab)

+)\2a671kub’§P(ab) + /\gabrlluikp(m) + A?chui; (ab)P(i ) — )\gachzclluféP(ab)

1 ..
/\2ch Ll — >\2abT p5dul P(ig) — >\2ch 2sdul) (i)
1
— oM erdul, — >\2ac72kzubdp(ab)+/\1aﬁkubc (ab)P(if)

2
+)\2ac71kubd (ab)P (ZJ)+/\2acT2klude(ab) (ig) — N fugy P (ab)

Xk rgriad P(ig) - )\2achzuka(ab) (i7)
—)\gachlleude(ab) (i) + uab =0

B.5 CCSD Lagrangian

Here we present the Coupled Cluster Singles Doubles (CCSD) Lagrangian, stated in
written out in full for singles and doubles excitations.

) ) 1
L(T,\) = [N+ farf + )\” iy + 47 mbu;fﬁ foNeT?

iyJ.ab ij _bc ab, jk i _bc, aj
+f )‘b i + 7f )‘ac i + Aa ]kubz + 2/\(1 i Upe.
b J b, aj
+ )\akau + )\abTCua bk AT 7 — it Uy

1
iJ Fac bk: J yik _ab b, 1j ij _ab, ki
)‘ab ik - 7f )‘ab Tik — 57-] Ti Uy, + Aakal U5

l]cdab i i _b_c, aj zbac]k
)\ab 11+ A 7' TkubZ + A, T TS ubc + AT Tik Ui

)\aka Tcubk fa)\]T /\aka )\ab T ;‘,fuzlj
- ffuz’s Tl — ffZA?,f i §A; f f,:uzf ~ it
)\ bT]g ab kl )\ bTIS ad bk )\Zjb ]ac bldulcccll (B64)
)\”le“Tku )\ bTCTdugg )\”bT,?f bd ’gcll

i cd bk ij __c,_ab kl ij _ab__cd, kl
+ )\ ka a4+ >\ abTi Thi Uej 8)‘ab7—zl Tk Ued

ij _ab_cd, kl ij _ab cd kl i b_c, jk
)\ —i—f/\ - A

8 abTjk Til Yed 16 abTkl Ti TkT Ti Upe
~ Mgt - gxzzbnwuzs - gxzfm
)‘UleaTkT Cukgl - 5 /\ng Tk albulécll - *)‘Z abTl TkTCdulgfz
_7)\]7_cdab k1 A cd, kl

abT5 Ti Tkl Yed abT TkT Ti Ued:
8 4
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B.6 Kappa Doubles Equations

Here we present the k equations from Non-orthogonal Orbital-optimised Coupled Clus-
ter (NOCC), truncated at doubles excitations, written out in full. The expressions here
stem from [Equation 8.11] and [Equation 8.12]

%
24 __7)\lk cd _ )\lk ec zd + lk cdf
Ol - cdTmk Y al cdTlk Yae 9 ac Tk Jd
H1 a

)\lk cd ’LL _ 7>\lk7_eduzc _ 7>\lk ic
acTmk d 4 ac'lk “ed acUlk (B65)

z f z cd ml )\zk ec, dl
cd lk a cd TrmiWak — AedTlk Yae

ik cd
cdWak + fa’

0%

3 cd ef am Ik _ae_cd , mn Ik __cd

(a,{d >\ mkTil Yef — /\chln TmkUie )‘chmkuzl
p1/ g

Ik __ae cd U lk cd 6f
+ )‘ cdTlk TmnWie cd 1k fl + A mkuef

cd 6f am Ik _cd L &m Ik __ec_fd_ am
)‘ Tim Tk ef - 4)‘cd im Wik + QACdleszuef

)\lk ad 7_lekc ;)ezn )‘f:lfl lekc ad )\lk eCszj;duZ]T‘n (B66)

)\lk eclet;Ldumn Af;’fﬂﬁcd ﬁlcn ;rem )\lk ec ad

)\lk ac d )\lk ac

lk ae cd
edTlk kuzl )\

cdTik Uie

1 1
cd ak Fac Ik a
2 Tik Yed +5 2 Tk Yie — Ji -






Appendix C

Code Listings

Here we present a few select code listings that did not fit naturally into the main text,
but are quite useful. We provide a python function that computes the analytical values
of the Coulomb integral in two dimensions [85|. Moreover, we present two functions
that interface with and retrieve basis sets from the quantum chemistry libraries Psi4
[4] and PySCF |3].

C.1 2D Coulomb elements

Implementation of two-body matrix elements for the two-dimensional quantum dots
[85]. Note that Anisimovas and Matulis uses the convention (ij| @ |lk) which is (ij| @ |kl)
in the convential notation. That is, the last two indices are interchanged.

def coulomb_ho(n_i, m_i, n_j, m_j, n_1, m_1, n_k, m_k):

element = 0

if mi + m_j !'= m_k + m_1:

return 0

M_i = 0.5 % (abs(m_i) + m_i)
dm_i = 0.5 * (abs(m_i) — m_i)
M_j = 0.5 % (abs(m_j) + m_j)
dm_j = 0.5 * (abs(m_j) — m_j)
M_k = 0.5 % (abs(m_k) + m_k)
dm_k = 0.5 * (abs(m_k) — m_k)
M_1 = 0.5 % (abs(m_1) + m_1)
dm_1 = 0.5 * (abs(m_1) — m_1)

= np.array([n_i, n_j, n_k, n_1], dtype=np.int64)
= np.array([m_i, m_j, m_k, m_1], dtype=np.int64)
np.array ([0, 0, 0, 0], dtype=np.int64)
= np.array ([0, O, 0, 0], dtype=np.int64)

Q@ H o B B
Il

= np.array ([0, 0, 0, 0], dtype=np.int64)
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for j_1 in range(n_i + 1):

APPENDIX C. CODE LISTINGS

j0e] = j_1
for j_2 in range(n_j + 1):
jI11 = j_2
for j_3 in range(n_k + 1):
jl2] = j_3
for j_4 in range(n_1 + 1):
ji31 = j_4
gl®] = j_1 + j_4 + M_i + dm_1
gl[1] = j_2 + j_3 + M_j + dm_k
gl[2] = j_3 + j_2 + M_k + dm_j
g[3] = j_4 + j_1 + M_1 + dm_i
G = np.sum(g)
ratio_1 = log_ratio_1(j)
prod_2 = log_product_2(n, m, j)
ratio_2 = log_ratio_2(G)
temp = 0

for 1_1 in range(g[0] + 1):

1[0]

1_

1

for 1_2 in range(g[1l] + 1):

1[1]

1

_2

for 1_3 in range(g[2] + 1):
1[2]
for 1_4 in range(g[3] + 1):

element += (

1.3

1[03] 1_4

if 1.1 + 1.2
continue

1= 1.3 + 1_4:

L = np.sum(1l)

temp += (
—2
* (int(g[1]+g[2]—1[1]—1[2]) & Ox1)
+ 1)
* np.exp(
log_product_3(1, g)

+ math.lgamma (1.0 + 0.5 x L)

+ math.lgamma (0.5 * (G— L + 1.0)))

(—2 * (int(np.sum(j)) & 0x1) + 1)
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* np.exp(ratio_1 + prod_2 + ratio_2)
* temp)

element *= log_product_1(n, m)

return element

C.2 Function for constructing system from Psi4

This function extracts a basis set from Psi4 [4], specified by the molecule argument.
Psi4 also allows for several options in the construction of a basis set. Please consult
the Psi4 documentation on https://psicode.org, for a guide on how to create such
a specification. The return object of this function is an instance of the QuantumSystem

class, specified in [chapter 7]

def construct_psi4_system(

molecule, options, np=None, add_spin=True, anti_symmetrize=True
import psi4

if np is None:
import numpy as np

psi4.core.be_quiet ()
psi4.set_options(options)

mol = psid4.geometry(molecule)
nuclear_repulsion_energy = mol.nuclear_repulsion_energy()

wavefunction = psid.core.Wavefunction.build(
mol, psi4.core.get_global_option("BASIS")

molecular_integrals = psi4.core.MintsHelper(wavefunction.basisset())

kinetic = np.asarray(molecular_integrals.ao_kinetic())
potential = np.asarray(molecular_integrals.ao_potential ())

h = kinetic + potential

u = np.asarray(molecular_integrals.ao_eri()).transpose(®, 2, 1, 3)
overlap = np.asarray(molecular_integrals.ao_overlap())

n_up = wavefunction.nalpha()

n_down = wavefunction.nbeta()
n = n_up + n_down

1

= 2 % wavefunction.nmo ()


https://psicode.org
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dipole_integrals = [
np.asarray(mu) for mu in molecular_integrals.ao_dipole()
]

dipole_integrals = np.stack(dipole_integrals)

system = CustomSystem(n, 1, n_up=n_up, np=np)

system.set_h(h, add_spin=add_spin)

system.set_u(u, add_spin=add_spin, anti_symmetrize=anti_symmetrize)
system.set_s(overlap, add_spin=add_spin)

system.set_dipole_moment (dipole_integrals, add_spin=add_spin)

system.set_nuclear_repulsion_energy(nuclear_repulsion_energy)

return system

C.3 Function for constructing system from PySCF

This function extracts a basis set from PySCF [3], specified by the molecule and basis
arguments. Please consult the PySCF documentation on https://pyscf.github.iol
for a guide on how to create such a specification. The return object of this function is

an instance of the QuantumSystem class, specified in [chapter 7]

def construct_pyscf_system(molecule, basis="cc—pvdz", np, verbose=False):

import pyscf

if np is None:

import numpy as np

# Build molecule in AG-basis

mol = pyscf.gto.Mole()

mol.unit = "bohr"

mol.build(atom=molecule, basis=basis, symmetry=False)
mol.set_common_origin(np.array([0.0, 0.0, 0.0]))
nuclear_repulsion_energy = mol.energy_nuc()

# Perform UHF-calculations to create the MG-basis
hf = pyscf.scf.UHF (mol)
ehf = hf.kernel ()

if not hf.converged:

warnings.warn("UHF calculation did not converge")

if verbose:
print (£"UHF energy: {hf.e_tot}")


https://pyscf.github.io
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# Build the coefficient matriz from the occupied and virtual integrals.
# As we have done a UHF-calculation, we stack the two spin—directions
# on top of each other. That is, instead of using odd or even indices
# for each spin direction, we set up two separate blocks.

C_o = np.hstack(

(
# Fetch occupied coefficients for both spin—directions
hf.mo_coeff[0][:, hf.mo_occ[0] > 0],
hf.mo_coeff[1][:, hf.mo_occ[1l] > 0],

)

C_v = np.hstack(

(
# Fetch virtual coefficients for both spin—directions
hf.mo_coeff[0][:, hf.mo_occ[0] == 0],
hf.mo_coeff[1][:, hf.mo_occ[1l] == 0],

)

# Build full coefficient matrix.
C = np.hstack((C_o, C_v))

# Get the number of occupied molecular orbitals
n = C_o.shape[1]

# Fetch the number of molecular orbitals

1 = C.shape[1l]

# Check that the number of occupied molecular orbitals is correct
assert n == sum(hf.mo_occ[0] > 0) + sum(hf.mo_occ[1l] > O)

# Check that the number of molecular orbitals is twice of that of
# the number of atomic orbitals.

assert 1 == C.shape[0] * 2

# Note: Should the dipole moments have a negative sign?
dipole_moment = [

—transform_one_body_elements(dm, C, np)

for dm in mol.intor("intle_r").reshape(3, mol.nao, mol.nao)

]

dipole_moment = np.asarray(dipole_moment)

# Create a tuple with the shape of the AO two—body elements
u_shape = (mol.nao for i in range(4))

h = transform_one_body_elements (hf.get_hcore(), C, np)
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u = transform_two_body_elements(
mol.intor("int2e").reshape (*u_shape),
c,
np,

)

noa = sum(hf.mo_occ[0] > 0)

nva = sum(hf.mo_occ[0] == 0)

nob = sum(hf.mo_occ[1l] > 0)

nvb = sum(hf.mo_occ[1l] == 0)

no = noa + nob

nv = nva + nvb

oa = slice(®, noa)

ob = slice(noa, no)

va = slice(no, no + nva)

vb = slice(no + nva, no + nv)

a_slices = [oa, val

b_slices = [ob, vb]

# Create a combination of slices that should be zero in

# all matriz elements due to unequal spin—direction.

zero_slices = [(a, b) for a in a_slices for b in b_slices]
zero_slices += [(b, a) for a in a_slices for b in b_slices]
# Create a slice object for all indices, i.e., the ":" syntax in NumPy.

all_slice

slice(None, None)

# Explicitly set all cross—spin terms to
for s in zero_slices:

h[s] =0

dipole_moment[(all_slice,) + s] = 0

all_slice)]

all_slice) + s]

uls + (all_slice,

ul(all_slice,

ZETO0

# Convert to physicist’s notation, from Mulliken notation

u

u.transpose(®, 2, 1, 3)

# Build a custom system from the integral elements

system = CustomSystem(n,
system.
system.
system.

system.

1, np=np)
set_h(h)
set_u(u, anti_symmetrize=True)

set_dipole_moment (dipole_moment)

set_nuclear_repulsion_energy(nuclear_repulsion_energy)
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system.cast_to_complex ()

return system







Appendix D

Solving the Schrodinger Equation
Analytically

Here we will illustrate how one can solve the time-independent Schrodinger equation
analytically in three dimensions. By doing this exercise, we also see where the quan-
tum numbers associated with an extra degree of freedom, that the introduction of an
additional dimension entails. Here we also provide some motivation for the necessity of
numerical approximations, as we introduce a few simple systems. Lastly, we give the
solutions to the quantum harmonic oscillator, an important system in this thesis.

D.1 The Schrodinger Equation in Spherical Coordinates

Here we will solve the time-independent Schrodinger equation,

h2
—~ VW4V =EY, (D.1)
2m
by separation of variables. In [Equation D.I} m is the mass of the particle in the

system, h is Planck’s reduced constant, F is the eigenenergy, and ¥ is the eigenstate
of the system. The squared differential operator V2 becomes the following in spherical
coordinates,

2 10 (,0N\ L 0f. 0N L (0
v ~ 2o\ or +r251n080 Sme(% +r281n9 0¢? )’ (D:2)

where we have used the coordinates r, § and ¢ as the radius, polar angle and azimuthal
angle, respectively. Inserting [Equation D.2into [Equation D.1| yields,

2 2
_» {1‘9 (ﬁa‘l’) 4t 9 Gmeaq’) P <M>] +VU = BV

2m | r2 0r or r2sinf 90 00 r2sinf \ 0¢?
D.3)
We look for solutions to this equations of the form
U(r,0,6) = R(I)Y (6, 0). (D.4)
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Inserting this into gives,

2 2
L [Y d <r2dR> B <sin98y> + B <8 Y)] + VRY = ERY,

S 2m | r2dr dr r2sin 00 r2sin? 6 \ 0¢?
(D.5)
which we multiply by — 12{}”,222,
1d <2dR> 2mr?
= (29 -2 ) - B
d d h?
Rdr r (D.6)

N RO I W
Y \sin080 \""" 00 ) T sma oz [
where the first part is only dependent on r and the second part is only dependent

on # and ¢. Notice that we have also assumed a spherical symmetric potential, i.e.
V = V(r). Next, we introduce the cleverly chosen separation constant (I + 1),

1d [ ,dR 2myr? B
11 0 (. 0 1 0%y
? {sinﬁ(’?@ <SID980> + sin29&¢2} = —l(l + 1) (DS)

D.1.1 The Angular Equation
Starting with [Equation D.8| which dictates the dependence of ¥ on 6 and ¢, we have,

1 0 oYy 1 02
—(sinb— | + ——==5 = —I(l + 1)sin® Y. D.9
Sin6 6 <Sm ae) T angag — [+ 1)sin (D-9)
We wish to make a further separation, by inserting Y (0, ¢) = O(6)®(¢) and dividing
by ©9,

1 d de 1 d*®

o [Sinede <sin9d0>] +l(l+1)sin9+6% =0, (D.10)
where we see that the variables have gathered in separate terms again. We therefore
introduce the separation constant m?, which has nothing to do with the particle mass,

1
) [sinejg (sinHé?)} +1(1 4 1)sin@ = m? (D.11)
1 d*®

Of these two [Equation D.12|is instantly recognisable,

L

e —m?®, (D.13)

with the general solution
O(¢) = C1e™? + Coe™ ™, (D.14)
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but we will choose the more simpler solution
B(¢p) = ™, (D.15)

We require periodicity, i.e. ®(¢ + 2m) = ®(¢), which means that m only takes integer
values,
m=0,+1,+2 43, ...

The other angular equation, in is not so simple,

siDG% (meé?) + [l +1)sind —m?*] © = 0. (D.16)
It has the more complicated solutions,
©(0) = AP™(cosb), (D.17)
where P/™ is the associated Legendre function,
d\ 1™
@) = (-2 (1) ), (D.15)

and P, is the [th Legendre polynomial given by the Rodrigues formula,

A = (L) @ -y (D.19)

)= — | — | (z©=1)". .

: 21 \ dx

We see that for this function to take a value, we must have [ > 0. Moreover, we see

that if |m| > [ then P/ = 0. For a given [, there must be 2/ + 1 possible values for m,
1=0,1,2,... m=10—-1+1,---—1,0,1,...1— 1,1

A mathematician would at this point argue that because is a second-

order differential equation it should have two sets of solutions, not just the solution in

[Equation D.17} Another set of solutions exist but these are not sensible in the physical

sense as they have singularities at # = 0 and 0 = 7.
We would want to normalise the solutions we have found thus far. In spherical
coordinates the volume element is

d®r = r?sin Odrdfde, (D.20)

this gives,

///\11/\%2 sin&drd@dqﬁz/]R\QTQdT//\Y\Qsinedrdﬁdqﬁ: 1. (D.21)

We can normalise these parts separately,

00 21 T
/ |R[>r?dr =1, / / V|2 sin @dfdg = 1. (D.22)
0 0 0

It so happens that the normalised angular wave functions are the spherical harmonics,

20+ 1 (1 — I
Y0, ¢) = e\/ 4—; El n }ZBIEW‘Z’PZ’”(COS 0). (D.23)

A nice attribute of the spherical harmonics is that they are orthogonal.
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D.1.2 The Radial Equation

For the type of spherical symmetric system we are dealing with, we have saved the best

part for last, namely which contains the potential V/,
d [ 5dR 2myr?
— — | = —FIR=I(l+1)R. D.24
o (P5) - v - ER =+ D (D.21)

To make our efforts less effortfull we make a variable change, u(r) = rR(r), such that

v dR ldu u d < 2dR) d?u

o ra 2w\ ar )T

(D.25)

 2mdr? 2

2 12 2
AT VN S ES3) P
2m r

which is identical to one-dimensional Schrodinger equation, except for a new effective
potential,

hI(l+1)
om  r2

For the radial equation with the substituted variable, we also require normalisation,

Veg =V + (D.26)

/ lu|?dr = 1. (D.27)
0

This is as far we get without specifyine a potential.

D.2 Quantum Systems

There are several potentials that can be inserted into in order to define a
system. Some of these constitute mere toy models, like the “particle-in-a-box” potential,
also called the infinite square well,

i .
Vi(r)= {0’ nrew (D.28)
oo ifr>a.

Other potentials can approximate a natural system more properly, like the potential
for the hydrogen atom.

The hydrogen atom consists of a heavy proton of charge e, together with a much
lighter electron of charge —e, that orbits around it. The proton is essentially motionless,
while the electron in bound by the mutual attraction between the opposite charges. The
potential energy follows from Coulomb’s law,

e? 1

Vr)= “Imer (D.29)
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This gives a relatively simple radial equation,

n* dPu [ e? 1+hl(l+1)}

dmegr  2m 12

After Hydrogen, the next atom is helium. The Hamiltonian,

- h? 1 2¢? h? 1 2¢? 1 e’
H={-——V?— T TR e v —_— (D.31)
2m 4dmeg T 2m ey 1o 4mep |r1 — 1o
consists of two hydrogen-like Hamiltonians, one for electron 1 and one for electron 2,
inside curly braces. The last term describes the repulsion between the two electron,
and causes trouble. If we ignore the last term, the Schrédinger equation separates, and

we would get a ground state energy of —109 eV, but the experimentally measured value
is —78.975 eVs |104]. We miss horribly by ignoring electron repulsion!

D.2.1 The Quantum Harmonic Oscillator

The quantum harmonic oscillator is the quantum mechanical analogue to the classical
harmonic oscillator. Any arbitrary potential can be closely approximated as a harmonic
potential about the equilibrium point, making the quantum harmonic oscillator one of
the most important systems in quantum mechanics.

One Dimension

The hamiltionian of a one-dimensional harmonic oscillator is

& hz 2 1 242

where the potential function is a rewritten form of Hooke’s law,

1 1
V(z) = 5k::z2 = §mw2i‘2, (D.33)

such that
k

w = —.
m

The eigenstates of the one-dimensional harmonic oscillator is given by,

1 muw _an:i'Q muw
\Ijn(f[,') = \/ﬁ <E)€ 2h Hn <”hl‘> 5 77/:0,].,2,3,...7 (D34)

where the functions H,, are the Hermite polynomials,

Ho(2) = (—1)"€™ (;Z)n (). (D.35)

The corresponding eigenenergies are,

E, = hw <n + ) . (D.36)
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Higher Dimensions

The three-dimensional harmonic oscillator can be solved in cartesian coordinates by
separation of variables. The time-dependent Schrodinger equation for this system is,
h2

1
- %v%f + §mw2f2\11 = EV, (D.37)

where 7 = /22 + 92 + 22. We insert
U(z,y,2) = (@)n(y)¢(2)
into and divide by €

— 2 o - — = o - — 2+ o2 =E. (D.38)
z

In this expressions we have two terms each of which depends on only one of the variables
x, y and z, the sum of which is the constant £. In turn, each of the three groups of terms
must be constant on its own. We can conclude that one three-dimensional harmonic
oscillator is equivalent to three one-dimensional oscillators, in cartesian coordinates.

The general energy expression for a higher-dimensional quantum harmonic oscillator
reads,

B (o {) s s

where d is the number of dimensions. Unlike the one-dimensional quantum harmonic
oscillator, a higher-dimension system will have energy degeneracies.

It is also possible to solve the harmonic-oscillator system in spherical coordinates,
by inserting the potential

1
Vr)= imwaz,

into the radial equation, specified in [Equation D.7]

2 g2 2
ndu <1mw2f2 LG Gy D) u = Eu. (D.40)

C 2mdr? 2 2m  r?

The solutions will be different, depending on the number of dimensions. In two
dimensions we have eigenfunctions given by,

Uy (r,0) = Nnmaeime(ar)lmlLlnml(a2r2)e_“2r2/2, (D.41)
where
mw
a=/—
h )

Npm is a normalisation contant given by,

n!

N, P
T w (A fm)r
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. Z )= 1r () Lo (D.12)

is an associated Laguerre polynomial, where

Ly(z) = € (;;)q (e~x9), (D.43)

is the gth Laguerre polynomial. The corresponding energy eigenvalues in two dimen-
sions are
Epm = hw(2n + |m| + 1). (D.44)

In three dimensions the eigenfunctions are given by,

1
\Ilnlm(ra 97 ¢) = anrle—a2r2/2L?n+2 (a2T2)lem (97 ¢)7 (D45)

where N, is a normalisation constant, L are the associated Laguerre polynomials given

by and Y are the spherical harmonics given by [Equation D.23] The

corresponding energy eigenvalues in three dimensions are,
3
E, = hw 2n+l+§ . (D.46)

Notice that in two dimensions there are only two quantum numbers, while in three
dimensions there are three quantum numbers. This derivation has completely disregared
spin and angular momentum, which would add further quantum numebers, because
further degrees of freedom are introduced.
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