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To the reader

The author’s PhD thesis grew out of the desires, firstly to establish an interesting
model structure on non-singular simplicial sets with a connection to simplicial sets
that uses the desingularization functor, and secondly to describe desingularization.
As a product of this work, the author proved four major results. Each of these
theorems developed into a self-contained text that the author intends to try
to publish. Therefore, this dissertation is not quite a monograph, but rather
four attemped articles with connections between them and with a surrounding
text that supports them so as to supplement the material and make all of the
material readable in a suitable context. The four articles are the chapters
and[7} Consequently, there may be advantages and disadvantages for the reader,
compared with reading a monograph.

Presumably, there are two possible minimum requirements for reading this
dissertation. A master student with some prior knowledge of simplicial sets and
of model categories should be able to read the dissertation. So too, should a
more experienced topologist that is familiar with homotopy theory, but without
prior knowledge of model categories. is a minimal treatment of model
categories. For a master student with prior knowledge, this chapter serves to fix
notation and terminology. On the other hand, a more experienced topologist
that is familiar with homotopy theory, is likely to surmise the motivation behind

model structures by reading

One possible disadvantage with reading this hybrid between a monograph
and an article-based dissertation is that some material is repeated, in order to
make the four chapters 2|B][6] and [7] self-contained.

A possible advantage is the opportunity to read any of the three articles
in chapters [2|[3] or [7] without looking at the other material prior to the reading.
The reason that this is possible is that the number of references out of the four
attempted articles is kept to a minimum. As such, it is realistic to immediately
read any one of the chapters or [7] with the occational glance at the few
external references.

However, to read one might want read [Chapter 4] first, because
concerns the establishing of a model structure on non-singular sim-
plicial sets, and is our minimal treatment of model categories. In
the event that the reader is already familiar with Hirschhorn’s or Hovey’s book,
can be skipped and then looking up the occational reference if needed.

Another possibility is to just read the chapters in order. This is likely to
be more rewarding. builds on [Chapter 2] and [Chapter 3| whereas
builds on

Reading any of the chapters in the complement of the chapters and [7]
out of context is not particularly meaningful, as the complement is simply there

Vv



To the reader

to supplement the four attempted articles.

Vi
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Chapter 1
Introduction

Combinatorial structures on topological spaces can be a useful tool. Highly
relevant to this day are simplicial complexes. They were invented by Poincaré
in the late 19th century, though Alexandroff fully clarified the notion in 1925
. Although possible, it is in general not meaningful to form limits and
colimits of diagrams of simplicial complexes. We mean this in the sense that
neither limits nor colimits are preserved by geometric realization. The reason
for this phenomenon is the high rigidity of the rules of the glueing of simplices.

Relaxing the rules of glueing leads to the concept of simplicial set. This
was introduced in 1950 by Eilenberg and Zilber under the name of semi-
simplicial compleres. A common viewpoint is that simplicial sets X are graded
sets X = |_|n>0 X, that come with face maps d; : X,, = X,,—1, 0 <i <mn, and
degeneracy maps s; : X,, = X, 41, 0 < j < n, that specify the result of omitting
the i-th vertex or repeating the j-th vertex, respectively.

To make a connection between the older simplicial complexes SiCo and the
newer simplicial sets one can adjust the definition by demanding that the vertices
of a simplex belonging to a simplicial complex is a totally ordered set. Then it
makes sense to refer to the i-th vertex of a simplex, and to the i-th face, which
is the simplex one gets by removing the i-th vertex.

Let OSiCo denote the category of these ordered simplicial complexes. Because
of the numbering of vertices of each simplex OSiCo embeds as a full subcategory
of simplicial sets. There is also an interesting functor SiCo — OSiCo known as
barycentric subdivision, which plays a role in this thesis.

Consider the diagram of adjunctions in [Figure 1.1} in which there are three
categories that often occur in the literature. Namely, we have sSet, which is
the category of simplicial sets, we have Cat, which is the category of small
categories and we have PoSet, which is the category of partially ordered sets
(posets). One of the categories almost never occur in the literature, however. A
simplicial set is non-singular if the representing map of each non-degenerate
simplex is degreewise injective. We let nsSet denote the full subcategory of sSet
whose objects are the non-singular simplicial sets. The category nsSet is strictly
between sSet and OSiCo, as we explain in

Non-singular simplicial sets play a role in the book by Waldhausen,
Jahren and Rognes. The reason is that they have a natural piecewise linear (PL)

structure [WJR13| §3.4].

In this thesis we consider two model structures on sSet. The first is the
standard model structure on sSet due to Quillen [Qui67|. The second is a model
structure introduced by J. F. Jardine . One can use the Kan subdivision,
denoted Sd, and its right adjoint, sometimes referred to as extension and denoted
FEx, to shift the fibrations and cofibrations so that the fibrations become more



1. Introduction

sSet
Sd?

¢ Ex?
Cat S—— sSet

o " el

PoSet % nsSet

Figure 1.1: Diagram of adjunctions.

abundant. This operation can be iterated. For example, the Kan subdivision
performed twice becomes a left Quillen functor, of the Quillen equivalence
(Sd?, Ex?), whose source is sSet equipped with Quillen’s structure and whose
target is sSet equipped with Jardine’s structure Thm. 1.1., p. 274].

Using ideas from regular neighborhood theory [Hud69, §1I], Thomason man-
aged to lift Quillen’s structure to Cat along Eac27 where N : Cat —
sSet is the standard nerve functor §2]. The result was that Cat be-
came a proper cofibrantly generated model category and that the adjunction
(eSd?, Ex? N) became a Quillen equivalence. As a consequence, the adjunction
(¢, N) is a Quillen equivalence when sSet has Jardine’s Sd?-model structure.
Much later, Raptis restricted Thomason’s model structure to posets .
The functors denoted U in are inclusions and the subsquare of right
adjoints commutes precisely.

In this thesis, we adapt Thomason’s method to the setting of non-singular
simplicial sets and prove an analogous result, namely that nsSet is a proper
cofibrantly generated model category and that (DSd?, Ex?U) is a Quillen equiva-
lence. The functor ¢, often called categorification, has an elementary description,
but the functor D Rem. 2.2.12], called desingularization, does not.
Here lies a potential difficulty in trying to establish a model structure on nsSet
that is Quillen equivalent to sSet equipped with Quillen’s model structure.
Thomason’s auxiliary morphisms known as Dwyer maps are used as a source
of inspiration in establishing (DSd?, Ez2U) is a Quillen equivalence, which is
stated as[T'heorem 6.1.2} [Chapter 6|is more or less devoted to this result.

Using the chosen strategy to establish made it necessary
to understand how desingularization behaves when applied to certain sensibly
formed quotients of non-singular simplicial sets and to certain finite products.
Out of these tasks grew the work of [Chapter 2|and [Chapter 3| Specifically, we use
techniques from the work to establish and we use
directly in the proof of

For the reader that is familiar with homotopy theory, but not with the
language of model categories, we try to mend this eventuality in [Chapter 4 The
chapter also serves to fix notation and terminology.

deals with some technical aspects of the category of non-singular
simplicial sets. As one might expect, the inclusion U : nsSet — sSet preserves
filtered colimits. We prove this in [Section 5.1 a fact that is used several places

2



in the dissertation. The final section of is devoted to the folklore
that a non-singular simplicial set can be glued together over its non-degenerate
simplices.

Calculations done in suggests that the left Quillen functor
DSd? might be naturally isomorphic to the improvement functor from [WJR13,
Thm. 2.5.2], which is also explicitly and implicitly the topic of most of the
exercises in Section 4.6 of pp. 219-220]. The question was raised in

Rem. 2.2.12]. We answer it in the affirmative by stating
The result is derived from which is interesting in its own right as
it seems to bring new knowledge concerning the reduced mapping cylinder from
2.4]

Having established there are many questions that can be
raised. For example, is every cofibrant non-singular simplicial set the nerve of
some poset? The statement seems analogous to a result by Thomason [Tho80|
Prop. 5.7]. There are reasons to think that the answer is yes and we state the
informed guess as|Conjecture 8.0.1] [Chapter §is largely devoted to justify this.
Parts of goes beyond a justification for [Conjecture 8.0.1] however,
and is instead speculative. In fact, the chapter becomes increasingly speculative
towards the end. consists of constructions and speculations. The
only construction therein that is of value to the justification is the construction
of ¢, which we make light use of in the proof of |[Proposition 8.2.2|
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Chapter 2
Iterative desingularization

Abstract

A simplicial set is said to be non-singular if the representing map of
each non-degenerate simplex is degreewise injective. The inclusion into
the category of simplicial sets, of the full subcategory whose objects
are the non-singular simplicial sets, admits a left adjoint functor called
desingularization. In this paper, we provide an iterative description of
desingularization that is useful for theoretical purposes as well as for doing
calculations.

2.1 Introduction

Desingularization is defined thus.

Definition 2.1.1. Let X be a simplicial set. The desingularization of X
[WJR13| Rem. 2.2.12], denoted DX, is the image of the map

given by & — (f(x))s, where the product is indexed over the quotient maps
f: X — Y whose targets Y are non-singular.

A product of non-singular simplicial sets is again non-singular

Rem. 2.2.12], and a simplicial subset of a non-singular simplicial set is
again non-singular [WJR13, Rem. 2.2.12]. Therefore, the simplicial set DX is
non-singular. In this paper, we will give a systematic, but minimal introduction
to the functor D.

If we corestrict the map X — Hf:X_>Y Y to its image DX, then we get a
map 1y : X — DX. By this we simply mean the following. If h: Z — W is
a simplicial map whose image is contained in some simplicial subset W’ of W,
then we say that the induced map Z — W' is a corestriction of h to W’.

Thus far, the description given in is the only description
available in the literature. In this paper, we provide the viewpoint of
[rem 2:T.3] to desingularization. To obtain this viewpoint, we introduce the notion
of enforcer in [Definition 2.3.31

When we say that a simplex is embedded if its representing map is de-
greewise injective, we get a more convenient definition of the term non-singular
simplicial set. Given a simplicial set X and a non-degenerate simplex z in X,
the enforcer p, is the degeneracy operator that in the least drastic way makes
the cobase change of the representing map of x into the representing map of
a degenerate simplex, in the case when x is not embedded, or that makes the

7



2. lterative desingularization

trivial cobase change, in the case when x is embedded. In other words, the
enforcer is the degeneracy operator that is as close as possible to the identity
meanwhile honouring any pairwise equalities between the vertices of x.

Simultaneously pushing out along all the enforcers associated with a simplicial
set X yields a simplicial set Cen(X) that we refer to as the enforced collapse of
X. The notion is properly introduced in [Definition 2.5.1} One should think of
the enforced collapse as a preferred first step towards making X non-singular.
If some non-degenerate simplex of X is not embedded, then we say that X
is singular. Note that Cen(X) may be singular. By which is
formulated in a slightly generalized context compared with the enforced collapse,
we get that pushing out along enforcers is never too drastic. Moreover, if the
result is non-singular, then it is canonically the desingularization.

We are ready to explain the iterative description of desingularization, which
is formulated using the following piece of language.

Definition 2.1.2. Let ¢ be some cocomplete category and suppose A some ordinal.
A A-sequence in % is a cocontinous functor X : A — %, that we will denote

f1,2

fﬂyl fﬁﬁﬁ+1

xlol X1 X8

The canonical map X0 — colimg )X [6] is the composition of the A-sequence.
A sequence in % is a A-sequence for some .

If \ is finite, then the composition is a composite in the usual sense.

Theorem 2.1.3. Let X be a simplicial set. There is an ordinal A such that the
map 1y : X — UDX is the composition of the A-sequence

C@’ﬂo(X) HC@’H}(X) —_ . HCBTLB(X) —_— .

of iterations of the enforced collapse.

provides an alternative description of the desingularization functor.
Note that the ordinal A\ depends on the simplicial set X.

Let sSet denote the category of simplicial sets. Furthermore, let nsSet
denote the category of non-singular simplicial sets. It is by definition the full
subcategory of sSet whose objects are the non-singular simplicial sets.

As we explain and as we explain how desingularization is
functorial in [Section 2.2] we fix some notation and terminology to be used
throughout the paper. Furthermore, we point out the implications for limits
and colimits in nsSet of the fact that D is left adjoint to the (full) inclusion
U : nsSet — sSet. is merely an elaboration of Rem. 2.2.12],
where desingularization is introduced.

In we introduce the enforcer to serve as the most basic technology
for doing calculations as well as for theory. Building on this notion, we provide
the two results |Proposition 2.3.4| and [Lemma 2.3.5|as tools.

We illustrate how desingularization behaves in Our examples
include applying D to highly singular, somewhat subdivided and very subdivided
simplicial sets, most of which are models of low-dimensional spheres.

8



Preliminaries

Finally, in [Section 2.5 we explain how [Proposition 2.3.4] and [Cemma 2.3.5]
can be used to construct the sequence that refers to and we
conclude the section as well as the paper by deducing from the

construction.

2.2 Preliminaries

In this section, we establish the functorality of desingularization. To do this, we
first fix some basic notation and terminology, which is anyhow useful throughout

this paper. Additionally, we properly explain to avoid any

confusion.

2.2.1 Notation and terminology

Fritsch and Piccinini is a source of the style we use, when it comes to
notation and terminology.
The category
sSet = Fun(A°P, Set)

is the category of functors (and natural transformations) with source A°? and
target the category Set of sets (and functions). When we write A, we mean the
skeleton of finite ordinals whose objects are totally ordered sets

[n]={0<1<---<n}

and whose morphisms are order-preserving functions « : [m] — [n], meaning
a(i) < aj) if i < j. An object in the category sSet is a simplicial set.

Morphisms of A are referred to as operators. We sometimes think of a
simplicial set X as an Ny-graded set | |, , X, with operators acting from the
right. Here, we mean X,, = X([n]), n > 0. Elements of X,, are referred to as
n-simplices, n > 0. We also say that n is the degree of z if x is an n-simplex. If
x is an n-simplex of X and if « : [m] — [n] is an operator, then « acts on a from
the right. The result will be denoted xa. The induced function o* : X,, = X,,
thus takes z to o*(z) = za.

When we think of simplicial sets as graded sets under right action of operators,
we also think of a simplicial map f: X — Y, meaning a natural transformation
X =Y, as a function that respect the degree, meaning f(z) € Y, if z € X,,, and
that is compatible with the right action of operators, meaning f(za) = f(z)a.

An operator « : [m] — [n] is referred to as a face operator if a(i) # a(j)
whenever i,5 € {0,...,m} and i # j. It is referred to as a degeneracy
operator if k = a(j) for some j € {0,...,m} for all k € {0,...,n}. These
classes of morphisms are precisely the monomorphisms and epimorphisms of A,
respectively.

For each n > 0 and each j with 0 < 7 < n, we can define the face operator
6% [n — 1] — [n] such that j is not in its image, referred to as an elementary
face operator. Similarly, for each n > 0, we can define the degeneracy operator
n .

o? i [n+1] — [n] with j = j and j+ 1+ j. Also useful is the vertex operator

9



2. lterative desingularization

€%+ [0] = [n] with 0+ j, defined whenever 0 < j < n. We often omit the upper
index when referring to these three special types of operators.

A degeneracy operator or face operator is proper if it is not an identity
morphism. We say that a simplex y is a (proper) face of a simplex z if y = zpu
for some (proper) face operator u and that y is a (proper) degeneracy of x if
y = xp for some (proper) degeneracy operator p. A simplex is non-degenerate
if it is not a proper degeneracy.

The Eilenberg-Zilber lemma Thm. 4.2.3] says that any simplex z of
a simplicial set can be written uniquely as a degeneration of a non-degenerate
simplex. This means that there is a unique pair (xﬁ,xb) consisting of a non-
degenerate simplex z¥ and a degeneracy operator z” that satisfies

Tr = .’I3ﬂ$b.

The non-degenerate simplex x# will be referred to as the non-degenerate part
of z and 2” will be referred to as the degenerate part of z. We let X! denote
the set of non-degenerate simplices of a simplicial set X and X! the set of
non-degenerate simplices of degree n, for each n > 0.

By the Yoneda lemma, there is a natural bijective correspondence x — &
between the set X, of n-simplices and the set of simplicial maps A[n] — X. We
say that

Z:An|— X

is the representing map of the simplex .

2.2.2 Quotients
Desingularization has the following property [WJR13| Rem. 2.2.12].

Lemma 2.2.1. Let X be a simplicial set. Every simplicial map whose source is
X and whose target is non-singular factors uniquely through nx.

Before we prove the property, we explain properly.

Let X be some simplicial set. Consider the event that we for each n > 0
have an equivalence relation R,, on X, such that whenever we have an operator
a : [m] — [n], then the composite

Rp — Xp x X =225 X, x X,
corestricts to R,,, C X,,, X X,,,. This means that we have a commutative square

R,—— X, x X,

i l (2.1)

10



Preliminaries

which in turn gives rise to a dashed map in the square
X, —— X,/Rn
\
a* i I (22)

Y

such that it commutes.
Thus we obtain a simplicial set X/R given by defining the set

(X/R)n = Xn/Rn

as the set of n-simplices. It is readily checked that the right hand vertical map
in is a right action of the operator « on the set X,,/R,, so that X/R is
indeed a simplicial set. From the commutativity of , it is automatic that
the canonical map X — X/R is a simplicial map. We say that it is a quotient
map. If we fix a simplicial set X, then the quotient maps X — Y form a set.
This explains

If f: X — Y is a degreewise surjective simplicial map, then we may define
R, n >0, by letting x ~ 2’ if f(z) = f(a’). Because f respects operators, as a
simplicial map, it follows that the equivalence relations R,,, n > 0, form a set
of equivalence relations of the type described above. By making a choice of a
representative one can define a map X/R — Y such that the triangle

7
\ P (2.3)

commutes. The dashed map is an isomorphism by design. This makes
tion 2.1.1] meaningful in the sense that we can obtain
We are ready to prove the lemma.

Proof of[Lemma 2.2.1} Let k: X — A be a map whose target A is non-singular.
First, note that there is at most one map k such that k = k o nx. This is
because nx is degreewise surjective and because the degreewise surjective maps
are precisely the epimorphisms of sSet p. 142]. Tt remains to argue that
there is a map k such that k = ko nx.

Corestrict k to its image A’ so that we get a factorization

X—F -

IS

11



2. lterative desingularization

of k. Then the map k’ is a degreewise surjective map whose target is non-singular.
We get the diagram

Hf:X%Y Y

x(f(2)) g T %
k//

X

X/R (2.4)

in which we have restricted the projection map

Prys. - H Y _>X/R
[ X—=Y

to DX — a restriction we denote g.

From we can conclude that k” = g o nx as the outer square and the
upper triangle commute. Hence, by the design of DX, the map £’ factors through
the restriction g up to identification with a quotient of X that is isomorphic to
A’. This yields a factorization of k through nx as the composite

X2 DX L X/RES AL A
is equal to k. |

If we fix a simplicial set X, then we can consider degreewise surjective maps
k : X — A whose targets are non-singular. When factored through nx, the
resulting unique maps k : DX — A are degreewise surjective. In this sense,
desingularization is the least drastic way of forming a non-singular quotient from
a (possibly singular) simplicial set.

2.2.3 Functorality of D and (co)limits in nsSet

It is possible to define D on morphisms in a straightforward way. Then one
realizes that the construction is functorial and that nx is natural as a map
X — UDX. If A is non-singular, then 7y 4 is an isomorphism. This is observed
by factoring the identity UA — U A through 7y 4 by means of As
U is a full embedding, the latter fact suggests the formulation of
below.

A full subcategory of some category is a reflective subcategory if the
inclusion admits a left adjoint. The terminology is not quite standard as the
fullness assumption is omitted by some, for example in :Mac98|7 §IV.3] and
p. 1306]. As announced, we have the following result [WJR13, Rem. 2.2.12].

Lemma 2.2.2. The category of non-singular simplicial sets is a reflective subcat-
egory of sSet.

12
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Proof. We will prove the lemma by establishing the natural map 7y as the unit
of a pair (7, €) consisting of a unit and a counit e.
Let f: A — B be a morphism in nsSet. Consider the diagram

/ UD(Uf)
/ \ )

in which the inverse 77[}114 appears. As U is full, the latter is equal to U(e) for
some morphism €4 : DU A — A of nsSet. It is evident from the outer part of
the diagram that €4 is natural in A.

The triangle at the right hand side, which defines €4, is the first half of the
compatibility criterion that a unit and a counit must satisfy. The commutative
square

X UDX

nx
nxl lULKWX)

UDX ——— = UD(UDX)
NubXx

shows that
nupx = UD(nx)

for every simplicial set X. If we combine this with the definition of epx, then
we get the commutative triangle-shaped diagram

D(UDX)=DU(DX)

which is the second half of the compatibility criterion. This concludes the
verification that D is left adjoint to the inclusion U. |

The implication of is that it has a strong bearing on the formation
of (co)limits of diagrams in nsSet, as we now explain.

A diagram in a reflective subcategory has a limit if it has a limit when
considered a diagram in the surrounding category. In that case, the limit is

inherited by the subcategory. See for example [Mac98| p. 92] or [AR15] p. 1306].
Consequently, nsSet is complete as sSet is.

13



2. lterative desingularization

The colimit in a reflective subcategory can be formed by taking it in the
surrounding category, if it exists there, and then applying the reflector. As the
counit of an adjunction is an isomorphism whenever the right adjoint is fully
faithful §IV.3 Thm.1], we obtain a colimit of the original diagram. The
reflector is in our case desingularization. Thus nsSet is cocomplete because
sSet is cocomplete, although this way of computing a colimit in nsSet requires
knowledge of desingularization.

For later reference we record the following consequence of

Corollary 2.2.3. The category nsSet of non-singular simplicial sets is bicomplete.

2.3 Calculational methods

As far as we know, the only explicit description of DX that is present in the
literature is that of It has the advantage that we easily obtain
However, the description is otherwise rather difficult to work with.
Consequently, we would like some tools to aid in calculation. In this section, we
will make a couple of observations that are actually enough to perform a few
simple, yet interesting desingularizations.

It is maybe in order that the following near-trivial example be mentioned
first.

Example 2.3.1. Consider a simplicial set X whose set X, of O-simplices is a
singleton. It follows immediately from the definition of the term non-singular
that any simplex of A = DX is degenerate if its degree is 1 or higher. If a is a
simplex of A, then we can write it uniquely as a degeneration
a=da

of a non-degenerate simplex af, by the Eilenberg-Zilber lemma. As we have just
argued, the only non-degenerate simplex is the single 0-simplex, so af is that
one. If a and b have the same dimension, n say, then

> =a

as there is only one operator [n] — [0]. This proves that the set A,, of n-simplices
is a singleton, implying that the unique map

DX =5 AJ0]

is an isomorphism.

Arguably, is the simplest non-trivial example.

Let X be a simplicial set. Towards the goal of making it non-singular we
would need to force any non-embedded non-degenerate simplex into becoming
degenerate. Suppose x € ng. The simplex = is embedded if and only if its
vertices are pairwise distinct. If it is not embedded, then we would like to make it

14



Calculational methods

degenerate according to any pairwise equalities between its vertices. To achieve
this we begin by defining a reflexive, symmetric binary relation ~ on

O([nz]) ={0,...,nz}

by letting
iNj<=>$€i=$Ej.

Next, we can define a reflexive binary relation ~ on O([n;]) by letting ¢ ~ k if
and only if there is a j such that ¢« < k < j in the total order on [n,] and such
that 7 ~ j. If i ~ j and ¢ < j, then 7 & j. This means that ~ is contained in the
equivalence relation ~ on O([n,]) that is generated by ~.

Crucially, the equivalence relation ~ has the property described in the
following result.

Lemma 2.3.2. The equivalence relation ~ on O([n.]) that is generated by ~ has
the property that if ¢ ~ j and if i < k < j in the total order on [n,], then i ~ k.

Proof. Assume that ¢ ~ j and that ¢ < k < j in the total order on [n,]. Consider
the non-trivial case ¢ < j.

In the special case when i = j, there is a 5’ such that i < j < 7' and i ~ j'.
As j<j'and i <k < j we get that i < k < j’. Because i ~ j we then get that
1 ~ k from the definition of this binary relation, which implies i ~ k.

If it is not true that i ~ j, then we still have elements

i0,...,iq € O([na])

for some ¢ > 1 such that

and

Q

or il

%

10
g1 A Gy Or iy A igq

There is some p < g such that i, < k < ip,41, in the case when 4, ~ 4,41, or that
ip > k > ipy1, in the case when 4,1 ~ 7,. Thus i ~ k. [ |

An immediate consequence of [Lemma 2.3.2] is that the set O([n,])/ ~ has a

canonical total order < that the canonical function
O([nz]) = O([na])/ ~

respects.
If m, + 1 is the cardinality of the set O([ny])/ =, then the canonical identifi-
cation

~

(O([nz])/ =, <) = [ma]

suggested above gives rise to the method of enforcing the rules of glueing in
nsSet.

15



2. lterative desingularization

Definition 2.3.3. Let © be a non-degenerate simplex of some simplicial set.
Define p, as the composite

(2] = (O(Ina])/ =, <) => [ma).

Let the degeneracy operator p, be known as the enforcer of z.

In general, the degeneracy operators whose source is [n,] correspond to equiv-
alence relations on the set O([n,]) that satisfy precisely the condition from

The name of p, is meant to signify that it has a role in making sure that the
result of desingularizing X is a simplicial set that obeys the rules of glueing in
the category nsSet. These are stricter than the rules in the category sSet. By
construction, the enforcer deals with any equalities between vertices of =, but in
the least drastic manner. It is proper if and only if z is not embedded.

Proposition 2.3.4. Let J C X* be some set of non-degenerate simplices. There
is a canonical map
| | Alm;] - UDX

such that the square

Uies(ps)
LljeJ A[n]} s I_ljeJ A[m]]

vwl l (2.5)
X UDX

commutes.

Proof. First, note that if z € X%, then the composite
Aln,] & X P UDX

factors through Np,. One realizes this by considering the image z of x under 7x.
It is uniquely a degeneracy of a non-degenerate simplex. We get the diagram

/\

UDX

\/

16



Calculational methods

in which Nz” factors uniquely through Np,. The explanation for the latter
factorization is as follows.

That there is at most one factorization comes from the fact that the nerve N
is fully faithful and that p, is epic in C'at. That there is a factorization follows
from the observation that 2°(i) = 2°(i') whenever p,(i) = p, (i), as we now
argue.

First, suppose i ~ i’, meaning xe; = xe;. As nx is a simplicial map it follows
that

z”szb(i) = 21206 = 26 = 260 = 22"ey = ZuEZ"(i’)'

The simplicial set UDX is non-singular, so z! is embedded. Hence,
27 (i) = 2°(i').
Next, as 2” is order-preserving we have that 2°(i) = 2°(k) for each k with
i <k <i'. As a consequence, 2°(i) = 2°(k) whenever i ~ k.
In turn, we get that the the equivalence relation ~ on O([n,]), which cor-

responds to p,, is contained in the equivalence relation that corresponds to 2°.
Thus we obtain a canonical degeneration w, of z* such that the square

X —UDX
nx

commutes.
The composites

Alnj] & X ™% DX,

J € J, give rise to a canonical map Ljc yA[n;] — DX. The latter can be factored
in two different ways due to (2.6]).
The diagram illustrated by

LljeJA[nj] - == |_|jeJ A[mj} -->=UDX

T =

Alng] e Almy]

provides the first of the factorizations that we have in mind and the diagram

A[nr]

R

nx
UjeJA[nj} - —->X —"—DX

provides the second. The promised commutative square consists of precisely
these two factorizations. |

17



2. lterative desingularization

Lemma 2.3.5. Let X be a simplicial set and let J C X* be some set of non-
degenerate simplices. Consider the cocartesian square

Uies(pj)
Ujes Alnyl ~ Ujes Almy]
VjeJ(j)l i
X Y

in sSet. The unit nx factors through the canonical degreewise surjective map
X — Y. If Y is non-singular, then the map Y — UDX of the factorization is
an isomorphism.

Proof. As a result of [Proposition 2.3.4] the solid diagram
Ljes Alny]

vjEJ(j)l/

X

Ujea(p;

L ey Almy)

commutes. Thus a canonical map ¥ — UDX arises. It is degreewise surjective
as nx is degreewise surjective.

Suppose Y non-singular. We will argue that ¥ — UDX is even degreewise
injective in this case and that it is thus an isomorphism. We get the commutative
diagram

UDX
X Y (2.6)
7
7
UDX

in which the upper triangle comes from the pushout above and in which the
lower triangle comes from Y being non-singular. Hence, the composite

UDX —-Y - UDX

is the identity as nx is epic in sSet. This implies that UDX — Y is degreewise
injective.

The canonical map X — Y that comes with the pushout Y is degreewise
surjective as it is a cobase change of a degreewise surjective map. Consequently,
we can conclude from that the map UDX — Y is degreewise surjective.
This implies that Y — UDX is degreewise injective in this case. |

confirms the intuition that taking the pushout along enforcers is
never too drastic.

18



A few calculations

2.4 A few calculations

What happens if one desingularizes, say the result of collapsing the second face
of a standard 2-simplex, as in [Figure 2.1 The dashed line segment is meant to
indicate that the second face has been collapsed. The dotted lines are meant to
illustrate the identifications that arise as a result of the desingularization. The
next example is a slight generalization in that it replaces 2 with n and ds with

Op + -+ Op+1 for some k that replaces 1. We will use the notion of enforcer from
Definition 2.3.3

Example 2.4.1. Let p : [k] — [n] be the face operator defined by

=0 g1

Consider the cocartesian square
Alk] —— AJ0]
| o
X

Aln] ——

in sSet, in the non-trivial case 0 < k < n. The non-degenerate simplex x is then
not embedded. We will argue that

DX = Aln — k]

by use of the decomposition of X as the pushout above.

The enforcer

of x fits into the commutative solid diagram

Alk] ——= A0

]
Aln] —— .

in sSet, which gives rise to a canonical dashed map X — A[n — k]. Next,
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2. lterative desingularization

0 1

Figure 2.1: Desingularizing the standard 2-simplex whose second face has been
collapsed.

consider the diagram

in sSet where X — A[n — k] is the map from (2.8). In (2.9)), the simplicial set
Y is the pushout

Y=X UA[n] A[n — k]

From the triangle on the right it follows that A[n—k] — Y is degreewise injective
and that Y — A[n — k| is degreewise surjective.

Meanwhile, the map A[n — k] — Y is a cobase change of the map Z, which is
itself a cobase change of the degreewise surjective map A[k] — A[0], as is seen
from (2.7). Hence, the map A[n — k] — Y is degreewise surjective. It follows

that Y = A[n — k] is an isomorphism. Thus Y is seen to be non-singular. From

Lemma 2.3.5, we get that
DX @Y = Aln — kl,

which was our claim.

The computation of DX in was particularly easy because of the
unusual decomposition of X which in turn arose partly from the fact that X
was generated by a single non-degenerate simplex.

Let us consider a few models of spheres. The first ones have desingularizations
that can be calculated simply by an inspection and ad hoc arguments.

20



A few calculations

Example 2.4.2. Counsider the cocartesian square

dA[] —— A[0]

L

Aln] —— A[n]/9A[n]

in sSet. The non-degenerate simplex = is not embedded if n > 0. In the case
when n = 0, we get
A[0]/OA[0] = A[0] LI A[0],

which is non-singular. In other words, desingularization has no effect on

A[0]/OA[0]. Else if n > 0, then we can apply to obtain
D(A[n]/0A[n]) = AJ0].

The latter calculation shows that desingularization has homotopically destructive
tendencies.

We record the results from [Example 2.4.2]in [Table 2.1] below, which is explained
shortly.

What if we subdivide the model A[n]/0A[n] of the n-sphere before applying
desingularization? Let Sd denote the Kan subdivision. See Def. 2.2.7]
or p. 148] for a definition. The Kan subdivision is the left Kan extension
of barycentric subdivision along the Yoneda embedding p. 37|, so to
get a mental picture of its effect one can think of barycentric subdivision. There
are illustrations of desingularizations of Kan subdivisions in and
Figure 2.3] Note that Sd preserves degreewise injective maps Cor. 4.2.9]
and that it has a right adjoint Prop. 4.2.10]. In particular, the Kan
subdivision preserves attachings.

At this point, we introduce the Barratt nerve Def. 2.2.3]

BX = N(x*%

of a simplicial set X for comparison with Sd X. Here, we let the set X of
non-degenerate simplices have the partial order < defined by letting y < z if
y is a face of x. We think of a partially ordered set, poset for short, (P, <) as
a small category by letting the elements of P be the objects and we let there
be a morphism p — p’ if p < p’. One can interpret B as an endofunctor of
simplicial sets, although its image is in the full subcategory nsSet. Indeed, the
Barratt nerve BX, of every simplicial set X, is the simplicial set associated with
an ordered simplicial complex. There is p. 37] a natural degreewise

surjective [WJR13| Lem. 2.2.10] map

bx : SdX — BX,

which is an isomorphism if and only if X is non-singular [WJR13, Lem. 2.2.11].
Let Sd* denote the Kan subdivision applied k times, for each integer k& > 0.
We consider X = Sd*(A[n]/0A[n]) for 0 <n <2 and 0 < k < 2. As we obtain
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2. lterative desingularization

=0 k=1 k = 2
n = 0| A0 UA[] A[0] U A[0) A[0] U A[0)
n =1 A[O] A[l] BPYNHY A[l] Allga A
n = 2 A[0] All] S(12 — gon)

Table 2.1: Desingularizations of models of certain spheres. Here, we denote
X = A[n]/0A[n], A = Sd(A[1]) and 0A = Sd(OA]1]).

desingularizations of these simplicial sets, we record the results in
Example 2.4.2| took care of the case when & = 0. Furthermore, we have the

following calculations.

Example 2.4.3. For every k > 0, we have
Sdk(A[O]/aA[O]) =~ A[0] U A[0].

So too, for k = 1 and k = 2. Applying desingularization has no effect as
Sd*(A[0]/OA0]) is already non-singular. By a coincidence, the simplicial set
Sd(A[1]/0A]1]) is also non-singular, as we explain next.

The commutative square

0] ————1[1]

EI\L iOn—wo, 1—e

1] Af1J?

O—eq, 10
where ¢ denotes the identity, gives rise to a canonical map
All]Uag) A[1] = B(A[L])

that is an isomorphism. Inverting it and forming the composite

Sd(A[1]) 2225 B(A[1]) 2 Al1] U A[1]
which is in turn precomposed with the canonical map
AU A[L] — A[1] Upap) Al1]
yields the solid diagram

SA(IA[L]) —— Sd(A[0])

v v
Sd(A[L]) — Sd(A[1]/0A[L])

\/é[l] Uaaq) Afl]

IR

/
¥
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A few calculations

Figure 2.2: Desingularizing the Kan subdivision of the 2-simplex with collapsed
boundary.

that commutes, thus giving rise to a canonical dashed map that is in fact an
isomorpism. Then the desingularization is trivially

DSd(A[1]/0A[1]) = A[1] Upap) A[1],
which is also recorded in [Table 2.11

We resume with slightly more complicated examples.

By we obtain a map tx : DSd X — BX. Because ngq x and
bx are natural, because 754 x is degreewise surjective and because the target of

bx is non-singular, the map tx can be interpreted as a natural map between
functors sSet — nsSet when we corestrict B to nsSet.
We will prove the following result.

Proposition 2.4.4. The map

DSd(A[n]/9A[n]) ELEV0AD B Aln] /OA[R])

is an isomorphism for 0 < n < 2.

For the proof of [Proposition 2.4.4] note we have already taken care of the case
when n =0 in The case when n = 1 follows from
below.

Example 2.4.5. By [Example 2.4.3] the simplicial set Sd(A[1]/0A[1]) is non-

singular. Therefore the map bsq(ap]/aaq)) is an isomorphism, which implies
that the map

tsaanysoan) : DSA*(A[1]/OA[1]) = BSd(A[1]/0A1])

is an isomorphism.

To prove [Proposition 2.4.4] it remains to consider the case when n = 2.

Before we prove [Proposition 2.4.4]in the case when n = 2, we contemplate
how to desingularize Sd(A[2]/0A[2]), which is a similar task, although slightly
casier. We make use of the notion of enforcer from [Definition 2.5.91
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2. lterative desingularization

Example 2.4.6. Consider the cocartesian square

Sd(OA[2]) — Sd(A[0])

]

Sd(A[2]) Sd X

in sSet, where we have written X = A[2]/JA[2] for brevity. We will prove that
DSdX = All]. (2.11)

In we illustrate the effect of desingularizing Sd X. This illustration
indicates the idea of the proof and is helpful in bookkeeping. The dashed line
segments that are part of the boundary are meant to indicate that the boundary
has been collapsed in order to form A[2]/0A[2]. The dotted line segments are
meant to illustrate how identifications arise when desingularizing.

The simplicial set Sd X is generated by six (non-degenerate) 2-simplices as
Sd(A[2]) is generated by six non-degenerate 2-simplices and as

Sd(A[2]) — Sd X

is degreewise surjective. We will name these six generators. Let the simplex 1,
be the image under

B(A[2]) 2 Sd(A[2]) — Sd X
of the simplex {0 < 01 < 012}. Furthermore, let y be the image of the next non-
degenerate 2-simplex {1 < 01 < 012} as we move counterclockwise in
and so on up to and including j = 6. Thus the set

{yitjer, J =11,...,6}

generates Sd X.

The simplicial set Sd(A[2]) has seven 0O-simplices that correspond to the
seven elements of A[2]*. The six 0-simplices on the boundary Sd(0A[2]) are
identified with each other when Sd X is formed from Sd(A[2]). However, the
O-simplex 012 is not identified with these. Write z; = ngq x (y;) for each j € J.
Each of the 2-simplices y;, j € J, is such that the vertices y;e0 and y,e; are
on the boundary and that y;es is equal to 012. Thus we see that each of the
simplices y;, j € J, has the elementary degeneracy operator

Py; = 00

as its enforcer. Let p denote this common enforcer.
For each j € J, write z; = ngq x (y;). From [Proposition 2.3.4] we have the
commutative square

Ujes(p)
|_|jeJ A[Q] €—> |_|jeJ A[l]
ng@j)i ivjej(wj) (2.12)
Sd X UDSdX
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in sSet, where w; is the canonical degeneracy of the non-degenerate part of
zj, j € J. In this case, the simplices wj, j € J, are embedded and therefore
non-degenerate. This way we see how the simplices z;, j € J, are degenerate.

Because the simplices z;, j € J, are all degenerate it follows that DSd X is
generated by the images under 754 x of the six embedded 1-simplices of Sd X.
We will argue that all of these images are equal.

Pick a j € J. Two of the six embedded 1-simplices of Sd X are the faces y;01
and y;0g of y;. Because ¢; and d¢ are both sections of p, we get that

Zj51 =
Zj50 =

wjp)él = wj(pdl) = wj
wjp)éo = w](pdo) = wj.

—~

Thus it follows that the image under nsq x of each of the faces y;6; and y;d is
equal to w;. Let us express this with y;01 ~ y;0¢ for each j € J.

By moving counterclockwise in we get that
Y100 = Y200 ~ Y201
Y201 = Y301 ~ y3do
y3do = yado ~ Yal1
Ya01 = ys01 ~ Y500
ys0o = Yedo ~ Yel1-

This shows that
wy = wy = -+ = w,

implying that holds.
To complete the only remaining case is when k = 2 and n = 2.

Note that the functor B.Sd replaces a simplicial set with an ordered simplicial
complex of the same homotopy type Ex. 3-8, pp. 219-220]. To conjecture
the homotopical content of the claim of [Proposition 2.4.4] one uses the sort
of intuition that comes from knowledge of regular neighborhood theory, as
explained in §3] or §I1]. For example, the reason that collapsing
the boundary of Sd*(A[2]) in the category nsSet is an operation that preserves
the homotopy type in the case when k = 2, but not in the case when k =1 is
indicated and illustrated in a remark in p. 51]. It turns out that the
double subdivision creates a sufficiently nice neighborhood around the boundary.
which is used for bookkeeping in the proof of [Proposition 2.4.4]
illustrates the phenomenon.

We are ready to prove the proposition. The method is similar to that of

Fxample 2.4.6

Proof of |Proposition 2.4.4 We will argue that

DSd? X = S(12 — gon) (2.13)

where X = A[2]/0A[2]. By this, we mean that DSd? X is the suspension of a
12-gon, which is what BSd X is. As the cases when n = 0 and n = 1 were taken

25



2. lterative desingularization

Figure 2.3: Desingularizing the double Kan subdivision of the standard 2-simplex
with collapsed boundary.

care of by [Example 2.4.3| and [Example 2.4.5] respectively, the argument below
finishes the proof.

To study DSd? X is to study the diagram that we get by applying Sd to
. For an illustration of the formation of DSd? X from Sd? X, see
We use the same conventions as in and one additional convention.
Namely, there are exactly twelve line segments that are thicker than the others.
These form the 12-gon we mentioned. The simplicial set BSd X is the nerve of
the poset

(2.14)

namely Sd(X)*. In (2.14) we have drawn the 0-simplex 012 as the cone point at
the top.
The cone point at the bottom, which we denote [0], is the O-simplex that is
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the result of the identifications
0~01~1~12~2~02.

These names arise in an intuitive manner from considering the poset A[2]* whose
objects correspond to the 0-simplices of

B(A[2]) = Sd(A[2])
whose non-degenerate simplices in turn correspond to the 0-simplices of
B%(A[2]) = BSd(A[2]) = Sd?(A[2]).

For example, the object 0 arises from £¢ and 1 from ;. Furthermore, the object
02 arises from &;. The objects of the poset Sd(X)! that are not cone points
are the non-degenerate 1-simplices of Sd X, of which there are six, and the
non-degenerate 2-simplices, of which there are also six.

We proceed by naming the twelve non-embedded non-degenerate 2-simplices
of Sd? X. First, we let y; be the image of

{{0} < {0 <01} < {0 <01 <012}}

under Sd?(A[2]) — Sd? X. Next, we let yo be the image of the next 2-simplex
as we move counterclockwise in up to and including j = 12. Write
J ={1,...,12}. Each of the simplices y;, j € J, has the elementary degeneracy
operator
Py; = 00
as its enforcer. Let p denote this common enforcer.
From [Proposition 2.3.4] we have the cocartesian square

Ujes(p)
Ujes ARl —— e, Al1]
v]»e,@»i i (2.15)
Sd* X 7

in sSet. Let z;, j € J, be the image of y; under Sd? X — Z. Suppose Zj = w;p
for some simplex w;, j € J. Then w; is embedded as Sd? X — Z is injective in
degree 0.

The elementary face operators d; and dg are both sections of p, so we have

zjél = (’U)jp)(51 = wj(pdl) = wj
Zj50 == (Uij)(So = ’LUj(p(S()) = wj.

for each j € J. It follows that the image under Sd? X — Z of each of the faces
y;01 and y;0p is equal to w;. Let us express this with y;01 ~ y;0o.
Suppose j € J odd. Then
Y01 ~ yj00 = Yj+100 ~ Yj+101-
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2. lterative desingularization

Thus we observe that w; = wjy;. We get that Z is non-singular by the
bookkeeping performed with the aid of [Figure 2.3] From it follows
that the simplicial set Z is the desingularization of Sd? X. Moreover, the
simplicial set Z is the nerve of . The naturality of tgqs x shows that it is
an isomorphism. |

2.5 Ilterative description

In the appendix of his PhD thesis, Gaunce Lewis Jr. [Lew78, p. 158] makes
explicit the least drastic way of transforming a k-space into a compactly generated
space, which is (defined as) a space that is both a k-space and a weak Hausdorff
space. Lewis describes an iterative process. At each stage of the process, two
points are identified whenever it is impossible to separate them by (disjoint)
open sets.

We will provide an iterative description of the process of forming UDX from
X that is analogous to Lewis’ method. In the least drastic way possible, we
want to make a quotient of X so that the vertices of any non-degenerate simplex
are pairwise distinct. In other words, any non-degenerate simplex of X whose
vertices are not pairwise distinct, must be made degenerate. For this purpose,
we will use the notion of enforcer from [Definition 2.3.31

In relation to there is a systematic study of reflective subcat-
egories provided by S. Baron . First, nsSet is epi-reflective as the map
X — DX is epic in general. Second, Baron discusses the possibility of factoring
the reflector through a unique intermediate category.

In the following way, we define a functor J : sSet — sSet together with
a natural quotient map X — JX that nx factors through. The functor J is
thought of as a preferred first step towards making a simplicial set non-singular.
We have taken the symbol J because Lewis uses it to denote his analogous
endofunctor of k-spaces.

Let X be a simplicial set. Given a non-degenerate simplex = of X, we let n,

denote its degree. Recall the enforcer p, : [ng] — [my] of x from [Definition 2.3.3

We will construct a cobase change of

|—| Anx Lexﬁ(l’f |_| Amx _

zeX!t reX!

along
A g:\/mexﬁ (i) X

The latter map is degreewise surjective as X¥ generates X.

For each integer n > 0, define a symmetric binary relation R/, on X,, by
letting (z,2") € X,, X X,, be a member of a set R, if there are a,a’ € A,, such
that

z = g(a)
= g(d)
fla) = f(a).
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Iterative description

The binary relation R/, n > 0, is reflexive as g is degreewise surjective.

Let R, be the equivalence relation generated by R!, for each n. It follows
immediately that the equivalence relations R,,, n > 0, satisfy the condition that
the diagrams commute. This implies that we can form the quotient

JX = X/R.
Thus we obtain the cocartesian square

U,ext(pe)
I_lgceXﬁ A[nz] E—> Ll;ceXﬁ A[mz]

vmexﬁ(z)l \L

X JX
in sSet. By it gives rise to a commutative triangle
X JX
S -
UDX

that factors the unit nx through a quotient map X — JX, which is the identity
in the case when X is already non-singular.

For the purposes of making an iterative description of desingularization, the
notation above is suitable. However, the construction .J X deserves its own name.

Definition 2.5.1. Let X be a simplicial set. The map X — JX is the enforced
collapse of X.

Outside of the context of the iteration process below we may choose to use the
following symbol

Notation 2.5.2. Let X be a simplicial set. Let
Cen(X)=JX

denote the enforced collapse of X.

Note that the enforced collapse need not be non-singular, as

shows.

Example 2.5.3. Consider the 2-dimensional simplicial set depicted in [Figure 2.4]
Identify the two O-simplices v and w. The result can be constructed thus.
Let
N={1,2,...}
and
Ny ={0,1,2,... }.

Next, for each n € 2N, let B, = AJ[2]. For each n € Ny, let A4, = A[l].
Furthermore, let Cy = A[1]/0A[1]. Finally, for each n € N, let C),, = A[1].
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2. lterative desingularization

v

Figure 2.4: Simplicial set such that every finite iteration of enforced collapses is
singular.

Take the pushout X in sSet of
LlneNO A’ﬂ - |_|n€2N0 Cn
l (2.17)

|_|n62N Bn

where the maps are defined as follows. Let X denote the pushout.

Suppose n € Ny. In the case when n = 0 (mod4), we let A, — By, 12 be the
map induced by 41 and we let A, 11 — Bj,+2 be the map induced by d2. In the
case when n = 2 (mod4), we let A,, — B,,1+2 be the map induced by ¢; and we
let A, 11 — Bpyo be the map induced by dg. These maps give rise to the map

|_|An—>|_|Bn

n€eNg ne2N

in (17,

Let Ay — Cy be the canonical map. Suppose n € Ny odd. Then we let
A, — Chyp and A, 11 — Cpyq be the identity A[1] — A[1]. These maps give

rise to the map
L] 44— |] ¢

n€Ng ne2Ng
in .
If Cen® denotes the k-fold iteration of the enforced collapse for k a non-
negative integer, then Cen®(X) is singular for every k.

shows that one might need an infinite number of enforced collapses
in order to make a simplicial set non-singular.
We point out the following, which is not really part of the storyline.

Remark 2.5.4. The map V¢ x: (%) is degreewise surjective because X* generates
X. In this way, the construction of the functor J is less arbitrary than the
setting in

One can, however, replace X* with a subset and still construct symmetric
binary relations R/, n > 0, the same way. Each of them is reflexive if and only
if the subset generates X. We can in either case choose a quotient map as the
cobase change of U ¢ x:(ps) along V,cx: ().

For example, in the proof of [Proposition 2.4.4] or more specifically the
diagram , we did choose a suitable subset of the set of non-degenerate
simplices to perform a desingularization.
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Iterative description

might be useful in some cases as suggested by the proof of
Eifion 2241

To define J on morphisms f : X — Y we need a diagram of the form

X <~— leeXﬁ Alng] —— I_Ia:eXﬂ Almy]

\
fl l \l' (2.18)

Y <— |_|er11 Alny| —— Uyeyﬁ Alm,]

in which an obvious choice of middle vertical map is f(z)” for each index = € X*.
Here, we write f(z) = f(x)*f(x)” by means of the Eilenberg-Zilber lemma.
There is at most one dashed map that makes the square

1] - [m]
|
f(w)bi | (2.19)
v
(53] 5,7 [ o]

commute as p,. We claim that if u, is a section of p,, then

Priey © F(2)” 0ty

makes the square commute. This claim holds if

Priay © F(@)°(3) = prays © ()" () (2.20)
whenever
pa (i) = pa(j)- (2.21)
If the claim holds, then any other section of p, would yield the same functor
[kz] = [kf(z):]. From dashed maps that makes the diagrams (2.19) commute,
we get a dashed map that makes (2.18)) commute. With it arises a map J(f).
Now we argue that (2.20) holds whenever (2.21) does. The degeneracy
operator p, corresponds to the equivalence relation on [n,] that is generated by
the reflexive binary relation ~ that is defined in Hence, our claim
will follow if ¢ ~ k implies that
Pi(ay © F(2)" (1) = ppaye © f(2) (k) (2.22)
holds.

Suppose xe; = xe;. This implies f(x)e; = f(x)e;, which can be rewritten as
f@) f(@) e = (@) f(2)’e,
which in turn can be rewritten as
F@)e iy = F@) ey ()
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2. lterative desingularization

By definition of py(,)s it follows that

sy (F(@) (1) = preay (F ()" ()

Next, suppose 7 < k < j. In other words, we assume i =~ k. Degeneracy operators
are order-preserving, so holds. This concludes our definition of J(f).

It is clear that J(id) = id, for in the case f = id we have that f(z)" = id
and p; = py(z). 1t follows that

J(gof)=J(g)oJ(f)

from the fact that the square

X——Y

L

JX ——=JY
J(f)

commutes for each simplicial map f : X — Y combined with the fact that
X — JX is degreewise surjective for each simplicial set X. Thus the construction
JX is functorial and the map X — JX is natural. Because X — JX is natural
and degreewise surjective and because nx is natural, it follows that JX — UDX
is natural.

The plan is to obtain a quotient of X that is isomorphic to U DX by applying
J successively. Moreover, we aim to establish To arrange for the
iteration, we refer to Let f%! be the natural map

JOX =X > JX =JX.

Due to (2.16]), we can assume that we for some ordinal v > 1 have defined a
~-sequence

of commutative triangles

S 23)

UDX
denoted T'#! and natural transformations, in which the component
Fr
JOX —— JPX
of Tl*l = T8 is a quotient map whenever a < 3 < 7.
If 7 is a limit ordinal, then we take the colimit in the following way to define

JYX. For each n > 0, let R,, be the equivalence relation on J°X = X that
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Iterative description

consists of the elements (z,y) € X,, x X,, such that there is some § < v with
o8 (z) = fOB(y). Tt is clear that the diagrams commute so that we obtain
the quotient JYX = X/R of J°X. In this case, we automatically get a diagram
T0! that plays the role of .

Else if v = 3+ 1 is a successor of an ordinal 3, then we simply define J#+1 X
by applying J to J?X. Consider the solid commutative diagram

RN

X JPX
id UDX o+t

(2.24)

X JATIX

id -
-
nx 2z - p5+1

UDX

in which we have yet to define the dashed map p°*'. By [Proposition 2.3.4] we
obtain the dashed map in the solid diagram

U_je(Jﬂx)ﬁ (pj)
Ujerexyr Alng] ————— ;e x) Almyl

Viewsxt (@

(2.25)
fO,/f f[i,[i-%—l
X JBX JBH1 X
nl / n - P U]
UDX UD(JPX) UD(JP*Y)
UD(f*7) UD(f%P 1)

in sSet, which commutes because f%? is a quotient map and hence degreewise
surjective.

The whole diagram commutes because %P1 is degreewise surjective.
This implies that UD(f%”) and UD(f?#*1) are isomorphisms. Hence, from
we obtain a canonical dashed map p?t! in that makes the whole
diagram commute, including the lower triangle.

We have finished the construction of a y-sequence T : v — sSetl?! for each
ordinal . By the design of these sequences, there is a canonical composition of
each of them that is a quotient map.

Next, we verify that this iterative process does indeed come to a halt. The
proof uses the following observation.

Lemma 2.5.5. If 3 is some ordinal and if some 2 € (J?X)* is not embedded,
then f#4+1(x) is a degenerate simplex in J+1X.
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2. lterative desingularization

Proof. Consider the diagram

Aln,] b Almg)]
Ujeraxys Alngl —[= Lje(ss xys Almy] (2.26)
Vje(ﬂx>u(J)l Y _ \L
JPX \ JAHLX
fﬂ’5+1

where we take the pushout
Y = JPX Uppn,) Alms).

The quotient map f#5+1X factors through the canonical map J°X — Y. The
map Y — JPH1X is then also degreewise surjective. To say that x is not
embedded is the same as saying that its vertices are not pairwise distinct, so p,
is a proper degeneracy operator. Thus we see that

Alng & JPX Y

is the representing map of a degenerate simplex. To precompose this representing
map with Y — J5T1X yields the map f#5%! 0z, as we see from (2.26). Tt
follows that f57+1(x) is degenerate. |

Proposition 2.5.6. Let X be a simplicial set. There is an ordinal A such that
J*X is non-singular.

Corollary 2.5.7. Let X be a simplicial set. There is an ordinal A such that the
map

P JNX = UDX

is an isomorphism.

Proof of|Corollary 2.5.7 Use [Proposition 2.5.6|to choose an ordinal x such that
J"X is non-singular.

According to the canonical map J51X = UD(J"X) is an
isomorphism as J**1X is non-singular, which is in turn because f*"*! is the
identity. Recall the successor ordinal step from the construction of 7" and replace
B with x in the diagram .

As frrt1l s the identity, it follows that the isomorphism above is in fact
equal to 7y~ x. The map J*T1X — UDX is by design equal to the composite

JLX = grx M UD(JRX) — UDX.

The first half 1= x of the composite above is an isomorphism by the choice of &
and the second half is the inverse of

UD(f*%):UDX — UD(J"X)
If we define A = k + 1, then the proof is finished. |
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Proof of [Proposition 2.5.0. The idea of the proof is that we can index the sim-
plicial sets J?X that are singular by a certain subset of the non-degenerate
simplices of X.

If J°X = X is already non-singular, then we can let A\ = 0. Else if X
is singular, then we choose a non-embedded non-degenerate simplex z" of X.
Suppose v > 0 is such that we for all  with 8 < v have defined 2 with 2 # z°
ifa<fp<n.

If J7X is non-singular, then we define A = «. Else if J7 X is singular, then we
choose a simplex z7 of X such that f%7(z7) is a non-embedded non-degenerate
simplex. Suppose [ an ordinal with § < . From the commutative diagram

1o

X JTX
Byy B+1,y
f‘)x f/ \ (2:27)
JhX prves JATIX

we will conclude that

xP £z (2.28)
in the following way.
Define
y = o)
y = [P (y)

Because the diagram (2.27) commutes, this simplex is equal to

As 3/ is degenerate by [Lemma 2.5.5| it follows that f#T17(y’) is degenerate.

) = P (y) = 07 (2).

On the other hand, the simplex f7(27) is non-degenerate, so, as announced, it

follows that (2.28]) holds.
Let A be a cardinal that is strictly greater than the cardinality of X¥. Define

S as the set consisting of those 2 with < A. This is a subset of X*. Then we

can consider the injective function S — A + 1 defined by z” — . If o < 3, then

x® is defined if 27 is. In other words, « is in the image of S — A\ + 1 if /3 is.
By the choice of A, there does not exist a surjective extension

S

.

A+1
7
.
Xt
of S — A+ 1 to X*. Therefore, the function S — X\ + 1 cannot possibly be
surjective. Hence, the element A is not in the image of the latter function. By
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2. lterative desingularization

the definition of S, it follows that 2 is not defined. This implies that the set S
contains every element in X* with a designation 2”. This shows that J*X is
non-singular. |

Proof of[Theorem 2.1.5 Use [Corollary 2.5.7 to choose an ordinal A such that p*
is an isomorphism. Take the corresponding A-sequence T of triangles ([2.23|) from

the family of sequences constructed above. The map f%* is the composition of
the y-sequence

0,1 B,B+1
Jox L sx

by the design of JA*!. Because p” is an isomorphism, the commutative triangle
TW identifies fO* with nx. |
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Chapter 3

Exponentials of non-singular
simplicial sets

Abstract

A simplicial set is non-singular if the representing maps of its non-
degenerate simplices are degreewise injective. The category of simplicial
sets has a simplicial mapping set X whose set of n-simplices are
the simplicial maps A[n] x K — X. We prove that X is non-singular
whenever X is non-singular.

3.1 Introduction

There are times when one would like to know whether a category behaves
similarly, in some sense, to the category of sets and functions. As an example,
for homotopy-theoretical purpose the author would like to know whether the
endofunctor — x A[l] of non-singular simplicial sets preserves colimits. Here,
AJl] denotes the standard 1-simplex.

Let sSet denote the category of simplicial sets. The full subcategory nsSet
whose objects are the non-singular simplicial sets sits strictly between sSet and
the category of ordered simplicial complexes. Despite the fact that non-singular
simplicial sets have a natural PL structure p. 126-127] they almost
never appear in the literature, though they do play a role in the book Spaces
of PL Manifolds and Categories of Simple Maps by Waldhausen, Jahren and
Rognes .

The endofunctor (—)% : sSet — sSet is designed so that the Yoneda lemma
makes it right adjoint to — x K. Our main result is the following.

Theorem 3.1.1. Let K be some simplicial set. Then XX is non-singular whenever
X is.

Part of the author’s interest in this result comes from the case when K non-
singular. Then the restriction of (=) to nsSet corestricts to an endofunctor of
non-singular simplicial sets. Moreover, (—)% viewed as a functor nsSet — nsSet
is right adjoint to the endofunctor — x K of nsSet. This means that we can

derive the following consequence of

Corollary 3.1.2. Taking the product — x K : nsSet — nsSet with a non-singular
simplicial set K preserves colimits.

In particular, taking the product — x A[1] with an interval is a cocontinous
endofunctor of non-singular simplicial sets.
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3. Exponentials of non-singular simplicial sets

The case of the interval is not only of practicle concern, but it is also the

theoretical focus of this article as it is not hard to argue that

follows from the following result.

Proposition 3.1.3. The simplicial set X[ is non-singular whenever X is.

The proof of the latter result is the subject of whereas [Theorem 3.1.1]
is derived from [Proposition 3.1.3]in [Section 3.3]

In we will discuss applications of beyond
We explain how follows from [Proposition 9.1.9 in
Finally, the case of the interval is discussed

3.2 Applications

The inclusion U : nsSet — sSet admits a left adjoint functor called desingu-
larization [WJR13, Rem. 2.2.12., p. 39], which is denoted D. Note that the
unit

nx : X = UDX

is degreewise surjective and that desingularization has the universal property
that any simplicial map f : X — Y whose target Y is non-singular factors
through the unit by a unique map UDX — Y.

In general, we say that a full subcategory of some category is a reflective
subcategory if the inclusion admits a left adjoint, which is then referred to
as a reflector. Thus nsSet is a reflective subcategory of sSet. Note that
the word reflective is not quite standard terminology. For example, Mac Lane
§IV.3] Adamek and Rosicky p. 1306] do not include fullness as an
assumption in their definition, although some other authors do. [Proposition 3.1.3)

and its generalization has a noteworthy application and a couple

of consequences.

establishes a model structure on nsSet that is right-induced
a la Thomason ﬂ@ﬂ from sSet equipped with the standard model structure
due to Quillen [Qui67]. Moreover, the theorem says that (D,U) is a Quillen
equivalence. [Proposition 3.1.9|is used as a technical ingredient in the proof of
[I'heorem 6.1.2

Another way to state [Theorem 3.1.1]is to say that the non-singular simplicial
sets form an exponential ideal in sSet. The category of simplicial sets is cartesian
closed and even a topos. Part of this is the fact that (—)¥ is right adjoint to
— x K. Here, the author has in mind the notions, terminology and notation
from §IV.6-§IV.10]. Note that the construction X¥ is bifunctorial. A
generalized result known as the parameter theorem ensures this p. 102].

Corollary 3.2.1. Desingularization preserves finite products.

It seems that [Corollary 3.2.1] follows from Day’s reflection theorem [Day72]

Thm. 1.2] and its corollary [Day72, Cor. 2.1]. Day’s reflection theorem concerns
a more general setting, although he does refer to the condition that the reflective

38



Applications

subcategory is closed under exponentiation §0]. Another phrase that is
used in the literature is that the non-singular simplicial sets form an exponential
ideal in sSet, which is exactly the content of [Theorem 3.1.1]

In case one does not want to unravel the general form of Day’s reflection
theorem, we provide the following elementary proof.

Proof of It is enough to consider two factors. Suppose X and

Y simplicial sets.

Consider the map
Ny x X

Y x X —= DY x X).
Here, we omit the redundant symbol U for the inclusion functor. By
rem 3.1.1} the simplicial set D(Y x X)¥ is non-singular, so we obtain a factor-
ization
ny

\\\\\ el (3.1)

D(Y x X)X

Y

of the adjoint. Next, we switch the two factors of the adjoint
DY x X = D(Y x X)

of the dashed map in (3.1]) and factor the adjoint of the resulting map by means
of the diagram

X 1 DX

\\\\\ e (3.2)

D(X x Y)PY

in which the dashed map arises by |Theorem 3.1.1:as D(X xY)PY is non-singular.
By adjunction, we can combine (3.1)) and (3.2)) into the solid commutative
diagram

XxY XX X x DY
\ / nx Xid
Ny x X \ (3.3)
D(X xY) DX x DY

(D(pr1).D(pr2))
in which a dashed map arises because DX x DY is non-singular, being a product
of non-singular simplicial sets. Indeed, the dashed map must be equal to the

canonical map (D(pr1), D(prz2)) due to the universal property of desingulariza-
tion.
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3. Exponentials of non-singular simplicial sets

Because the map 7x«y is degreewise surjective and because (3.3) commutes,
it follows immediately that

DX x DY - D(X xY)

is degreewise surjective.
Furthermore, by the universal property of desingularization, it follows that
the composite

(D(pr1),D(pr2))

DX x DY — D(X xY) DX x DY

is the identity. This implies that the first of the two maps of the composite
is even degreewise injective, which implies that it is degreewise bijective and
hence an isomorphism. In this way, we see that (D(pr1), D(prs)) is degreewise
bijective and hence an isomorphism. |

Another consequence of is the following result.

Corollary 3.2.2. The category of non-singular simplicial sets is cartesian closed.

3.3 Arbitrary exponent

In this section we will prove assuming that [Proposition 3.1.J]

holds. First we will point out that the latter result can be generalized fairly
easily from the interval to the standard n-simplex, for all n > 0.

Lemma 3.3.1. Suppose n > 0. The simplicial set X2 is non-singular if X is.

To verify [Lemma 3.3.1| we note that [Proposition 3.1.3| implies that X 21" is

non-singular if X is. This is by induction on n, which is made possible by the
exponential law (X)L = XL*K which holds because sSet is cartesian closed.

Let [n] denote the totally ordered set {0 < 1 < --- < n}. Following
p. 132], we shall refer to an operator as a function « : [m] — [n] such that
a(i) < a(j) if ¢ < j. Observe that A[n] embeds in A[1]™ in such a way that
A[1]™ retracts onto A[n]. The embedding ¢ that we have in mind is induced by
the operator

[n] — [1)"

given by
j—=1...10...0

where the string 1...10...0 starts with j 1’s and the rest are 0’s. One can make
a retraction r : A[1]™ — Aln] by taking the string k; ...k, from [1]™ and then
finding the lowest index j such that k£; = 0. Then one defines an operator by
the rule

klkn i—)j*].,

which induces the announced r. We get that the composite i is the identity as
this is true on the level of operators.
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Arbitrary exponent

There are induced maps
xAmn X yant X7 AR

such that the composite is equal to the identity. In other words, the simplicial
set X2 is identified with a simplicial subset of X2M" | which is non-singular
if X is. Hence, the simplicial set X" is non-singular if X is. This concludes
our proof of given that [Proposition 3.1.3| holds.

By means of we can derive our main result.

Proof of [Theorem 3.1.1. Suppose K is some simplicial set and let X be non-

singular. Let A | K denote the simplex category, meaning the category whose
objects are the pairs (x,n), where x is a simplex of K whose degree is n, and
whose morphisms (y,m) — (z,n) are the pairs (z, «) with « an operator such
that y = za.

The simplicial set K can be viewed as the colimit of the diagram

T : Al K — sSet

that sends a simplex of degree n to the standard n-simplex A[n]
[FP90, Lem. 4.2.1]. We explain that X is the limit of the composite

Al K LK sSet g sSet,

denoted X T« or in other words that the cone X* = X T« is universal.
Assume that Z = XT% is a cone. Recall that sSet is cartesian closed. Via
the natural bijection

sSet(Z x Aln], X) =» sSet(Z, X2,
we can consider the cocone Z x XTx = X illustrated in the diagram

Z x Alm]

idx o 7 x K = =X

Z x Aln]

instead. Because Z x — is a cocontinous endofunctor of simplicial sets, the
simplicial set Z x K is the colimit of Z x T . Hence, there exists a (unique)
map Z x K — X that gives rise to a factorization of the cocone Z x XTx = X.
By adjointness, we obtain a map Z — XX such that the given, arbitrary cone
on XTx factors through X% = XTx,

On the other hand, any map Z — X that gives rise to such a factorization
corresponds to a map Z X K — X that factors the cocone Z x T g = X through
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3. Exponentials of non-singular simplicial sets

the universal cocone. However, there is only one map Z x K — X of the latter
type. By adjointness, the map Z — X¥ is therefore unique.

The diagram X T¥ is by [Lemma 3.3.1] a diagram whose objects are non-

singular. Because nsSet is a reflective subcategory of sSet, it follows that X

is non-singular |[AR15| p. 1306]. |
In the proof of we used the non-trivial fact that a reflective

subcategory inherits limits from its surrounding category, although we could
have argued in more elementary terms.

According to Adamek and Rosicky p. 1306], the earliest proof that
appears in the literature, of the inheritance of limits by reflective subcategories,
is to be found in the works of H. Herrlich [Her68|.

3.4 Rigidity of the prism

We give a proof that X2 is non-singular whenever X is non-singular. This is
the claim presented in [Proposition 3.1.3] An informal way of stating this result
is to say that prisms on non-singular simplicial sets are very rigid. Recall that
explains how to derive [I'heorem 3.1.1| from [Proposition 3.1.3] Thus
the work of this section finishes the proof of our main result.

For convenience, we introduce some terminology and notation before we
present the proof. An injective operator is said to be a face operator and a
surjective operator is said to be a degeneracy operator. Special face operators
are the elementary face operators ¢! : [n — 1] — [n] that omit the index i
and vertex operators ¢! : [0] — [n] that hit the indices i. Special degeneracy
operators are the elementary degeneracy operators ¢ : [n + 1] — [n] that
send 7 and its successor 7 + 1 to i. Frequently, we omit the upper index in the
notation. Similar to the terminology in , we will refer to d;, ...0¢ :
[¢ —1] = [n], 0 < ¢ < n, as the ¢g-th front face of [n] and to d, ...d; " :
[n—(p+1)] = [n], 0 < p < n, as the p-th back face of [n].

A face operator or degeneracy operator is proper if it is not the identity.
Consider a simplicial set. A simplex y is a (proper) face of another simplex x
if y = zp for a (proper) face operator u. Analogously, a simplex y is a (proper)
degeneracy of another simplex z if y = xp for a (proper) degeneracy operator p.
A simplex is degenerate if it is a proper degeneracy of some simplex. Otherwise,
it is said to be non-degenerate.

In the proof, we will use the Eilenberg-Zilber lemma Thm. 4.2.3],
which says that any simplex = of any simplicial set X is uniquely a degeneration
x = azt2’ of some non-degenerate simplex zf. We say that z? is the non-
degenerate part of z, following , and that z” is the degenerate part
of z. Note that = and z! are objects in the category A | X while 2” can be
regarded as a morphism = — xf. Thus the terminology is not perfect, however
it is useful. According to the Yoneda lemma, the n-simplices x of a simplicial
set X are in natural bijective correspondence x +— x with the simplicial maps
A[n] = X. The map z is the representing map of . We say that a simplex
is embedded if its representing map is degreewise injective.
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Rigidity of the prism

Because of the new terminology, we get a shorter definition of non-singular
in the second condition of [Lemma 3.4.1] below. Furthermore, there is another
formulation that is useful in the proof of [Proposition 3.1.3] though a bit awkward.

It is given as the third condition [Cemma 3.4.1]

Lemma 3.4.1. The following statements are equivalent.

1. The simplicial set X is non-singular.
2. Each non-degenerate simplex of X is embedded.

3. Eeach simplex of X is degenerate provided its vertices are not pairwise
distinct.

The equivalence of the second and third statement is somewhat refined by the
next lemma.

Lemma 3.4.2. Let X be a non-singular simplicial set and x some simplex with
ze;, = zg;. Then the degenerate part z° of x factors uniquely through the
degeneracy operator oy ...o;_1.

Proof. Write p = oy, ...0;_1. The uniqueness of a factorization of z” through
p is automatic as p is epic in Cat. It is the existence part that requires an
argument.

Because X is non-singular it follows that the non-degenerate part z* is
embedded, which is the same as saying that its vertices are pairwise distinct. This
means that z”(k) = 2°(1). As 2 is order-preserving, it follows that 2°(j) = 2" (k)
if k <j <1. Thus p(i) = p(j) implies 2°(i) = 2°(j). Take a section u of p. We
get that 2° = (2" u)p. u

will be used to break down the proof of [Proposition 3.1.3]into two
parts.

If x is some simplex, say of degree n, whose degenerate part factors through
the elementary degeneracy operator oy, for some k with 0 < k < n, then we will
say that = splits off o. In particular, if X is non-singular and if x is a simplex

of X such that zep = xep11, then x splits off o), according to

The canonical identification

N([n] x [1]) = Aln] x A[1]

gives us a preferred set of generators of the prism A[n] x A[l], namely the n + 1
non-degenerate (n + 1)-simplices

7+ 1] =[] x [1],

0 < j <mn, given by

n+1y/:
. 1) =
) (—1,1), j<i<n

{(z‘,ox 0<i<j
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3. Exponentials of non-singular simplicial sets

Coming from the diagram

(]al) (]+1a1)ﬁﬁ(nvl)
(0,0) —— ... ——> (4,0) — (j +1,0) — ...
are the conditions
5 =00 (34)

for 0 < 57 < n. These conditions, which can be thought of glueing conditions
for constructing the prism from n + 1 copies of the standard (n + 1)-simplex,
generate all relations that the generators satisfy.

We are done with the setup and are ready to prove[Proposition 3.1.3] Suppose
X non-singular. Keep in mind the third and equivalent way to state this, as
formulated in The proof is divided into two parts, the first of
which is the following result.

Lemma 3.4.3. Assume that ® is an n-simplex of X2[ such that the k-th vertex
and the [-th vertex are equal, for some k and some [ with 0 < k <[ <n. Then

@Ek = ©5k+1 == (I)El.

The second part is [Cemma 3.4.4] where we prove that any given n-simplex ® of
XA is degenerate if it is such that the k-th vertex is equal to the (k + 1)-th

vertex, for some k with 0 < k < n.

Thus, by [Lemma 3.4.3 and [Lemma 3.4.4) any simplex of X[ is degenerate
provided its vertices are not pairwise distinct. Lemma [Cemma 3.4.1] then says
that X2 is non-singular. We can therefore conclude that [Proposition 3.1.3|
holds when we have proven the two lemmas.

Proof of [Lemma_3.7.3. Suppose ® an n-simplex of X2 such that ®e;, = g

for some k and some [ with 0 < k < [ < n. What is immediately noticeable
is that the composite of ® with the inclusion of the bottom of the prism is an
n-simplex

Trog = do (Zd, NE())
of X whose k-th and [-th vertex are also equal. Doing something similar at the
top of the prism we get a simplex z1 = ® o (id, Neq) with z1e, = x1¢;.
From|Lemma 3.4.2|it follows that the degenerate part x% of zq factors uniquely
through o ...0;_1. Thus we can write

To = YoOk---01-1
Ty = Yi0k...00-1

for some (k + n — [)-simplices yo and y; of X.
Suppose k < j < [. Writing x¢ and x; as degenerations indicates that the

(n + 1)-simplices q)(V;LJJrT) and ®(y"*!) of X must be degenerate. To answer

J
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Rigidity of the prism

how they are degenerate, form the left hand cartesian square in the following

diagram.
+1
Vit
—_—

Aln +1] Aln] x All] —2 X

T (id,Nso)T / Tyo

Al +1] Aln Alk+n —1]

]N(a'k...a'l,l)

The canonical map A[j + 1] — A[n + 1] is then induced by the (j + 2)-th front
face of [n+1] and the canonical map A[j+ 1] — A[n] is induced by the (5 +2)-th
front face of [n].

The above implies that the j-th and the (j + 1)-th vertex of (I)(%”j_rll) are
equal. A similarly constructed diagram involving x1, y1, (id, Ney) and ®(y "“)
shows that the (j + 1)-th and the (j + 2)-th vertex of ®(v}') are equal.

As a consequence of the previous paragraph we will argue that the j-th and
the (j + 1)-th vertex of the n-simplex ® of X All) are equal. They are the vertices
of the 1-simplex

Npxid
—_—

A1] x A[1] Aln] x Al1] 2 X,

of X2M where p is given by 0+ j and 1 — j + 1.
We can view the vertices ®e; and ®eji; of the simplex ® of XAM as
1-simplices of X. When we do, they fit into the commutative diagram

A[l]
AN e
RN :

that establishes ®c;; as a face of the 2-simplex
21=®o0(Npx1)oy?
and Pe; as a face of the 2-simplex
20=®0 (Npux1)onrZ,

in such a way that z10; = z9d1.
Recall that the j-th and the (j + 1)-th vertex of the simplex ®(y7 ) of X
are equal. This implies that
Z1 = W101.

Similarly, the (j + 1)-st and the (j + 2)-nd vertex of ®(v}') are equal, implying
that zg = wgog. It follows that ®e; = ®ej4q as d; and dg are sections of oy and
61 and 0, are sections of o7. [ |
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3. Exponentials of non-singular simplicial sets

Lemma 3.4.4. Let ® be an n-simplex of X2 such that the k-th vertex is
equal to the (k + 1)-th vertex, for some k with 0 < k < n. Then there is an
(n — 1)-simplex ¥ such that ® = Voy,.

Proof. For the purpose of constructing ¥ we apply Noj X id to the elements of

the preferred set {y; ™, ..., ¥2F1} of generators of the prism. The result of the
calculation is the set of equations
"opy1, 0<j<k
(Noy xid)(y n“) Y5 7k _ j. _
V5-10k> k< J<n

Should W exist, then it must therefore satisfy

@(/yﬂ,{»l) \II(W_;L)UIC*Fl) 0 S ] S k
g W oy, k<j<n.

As dj+1 is a section of both o} and o1 we are lead to define a function

1/11{’761,.._’V:f—1}—>Xn
by

’l/J(’Yn) — (I)(’Y;H_l)(sk-i-lv 0 < .7 < k
J <I>(’yj+11)5k+1, kE<j<mn

that specifies where ¥ sends the generators, if it exists.

Note the following regarding the definition of . First, we have made the
choices of the section dx41 of o417 and the section 041 of or. These choices
seem to make the argument below as simple as possible. Second, we have that

VAR = (o1 = Py o) = q’(ﬂﬁ%ﬂ) = ‘I’(’Y;?Ll)fskﬂ

due to (3.4). This ensures that there is some compatibility between the two
clauses of the definition of 1 by cases. We take advantage of the equation below.
Crucially, the function ¢ obeys the compatibility criterion

Y(77)0j+1 = v(Vj41)d541 (3.5)

for 0 < j < n—1, as we now explain. There are three cases. Either j < k, j =k
or j > k.

First, we verify in the case when j = k. For this we use and the
general rule 6;0; = 0;0;,—1 for j < i. We get that

PRk = (P

(@ (’Yk+1)5k+1)5k+1
(7k+1)(5 +10k+1)
(7k+1 )(5k+25k+1)
(‘I)(’Yk+1 )0k+2)0k+1
((I)<7k+15k+2))5k+1
(‘1’('Yk+25k+2))5k+1

Okt1)0k+1
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Rigidity of the prism

and that
1/)(’71?+1)5k+1 = (@(VI?I;)ék-&-l)(sk-&-l
‘I)(’Yk+2 )(Ok410k+1)
= (%12) (Gr+20k+1),
which confirms that holds in the case when j = k.
Second, consider the case when j < k. We get that

PG = (PO 0kr1)0541
= O(v} )(51~c+15]+1)
= B(N)(5410k)
= (@(Wfﬂ)(sﬁl)fsk

(@ ()1 6541))0%

(<I>(7]+1 6j+1))0k

and that "
V(¥ )b = (‘I’(%nﬂ )0k+1)0j+1
¢(VJ+1 )(Ok+105+1)

= (v (0j+10n),

which confirms that (3.5) holds in the case when j < k.
Third, consider the case when j > k. We get that

V()0 = (‘I’(’Yﬁf)%ﬂ) 1
‘I’(VJH )(Ok+10541)
(I)(’VJ-H )(6j+20k+1)
((I)('V]Jﬂ) 0j+2)0k+1
(‘I’(%H 8j+2))0k-+1
(@(vjhy 5J+2))5k+1

and that o
V()0 = (‘I)(’an+12 )0k+1)0541
= ‘I’(V}fz )(Ok+165+41)

= () (0j420k11)-

This confirms that (3.5) holds in the case when j > k and concludes our
verification of (3.5)) for any j with 0 < j <n — 1.
We define ¥ : A[n — 1] x A[1l] = X by letting

U(vje) =¢(7j)a

for all j with 0 < j < n. The map ¥ is well defined and a simplicial map as ¥
satisfies the glueing condition (3.5). Thus it remains to argue that

® = Vo (Noy x id). (3.6)

It suffices to check that the equation holds on the generators 7”“7 ooy for
the prism A[n] x A[1].
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3. Exponentials of non-singular simplicial sets

We use the calculation of (Noy x id)(y ”“) 0 < j < n, above. There are
three cases. Either 0 <7<k, j=k+1orj>k+ 1.
If 0 < j <k, then

Vo (Noy xid)(yj+!) =

|
=<

which confirms for the generators vg+17 'y}ZH. This is because the
vertices of @(7}” ) that are numbered k + 1 and k + 2 are equal. Thus the
simplex splits off o441 by as X is non-singular. Furthermore, 8,1
is a section of op41.

Note that ®(y "+1) splits off o3, when j > k. This is because the vertices of

CID(W?H) that are numbered k and k + 1 are equal. Thus the simplex splits off

oy by as X is non-singular. Furthermore, d;, 1 is a section of oy.
Consider the case when j =k + 1. We get that

Vo (Noy xid)(yii) = ¥(ypor)

= 1/’(’}’1@)01@

= (®(y)0kt1)on
(@ (7k+1)5k+1)
(v,

which confirms l) for the generator vgj_rll

Finally, we consider the case when 7 > k + 1. Then

Vo (Noy xid)(y nH) = V(viy0ok)
= ¢(’Y] 1)k
= (PO 0kr1)on
= (),

which confirms 1’ for the generators 7,?121, ...,y This concludes our
verification of (3.6). Thus ® is a degenerate simplex of X4, |
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Chapter 4
Model categories

In this chapter we will introduce the most basic notions of the language of
model categories such as it is described in Hirschhorn’s book on model categories
. We use another source as well, namely Hovey’s book . Their
treatments of the subject differ. Furthermore, their notion of model category
differs in that Hovey makes choices of functorial factorizations part of the model
structure and does not merely assume the existence of such. This difference
is, however, the only one. In this chapter we make the language as close to
Hirschhorn as possible because we will follow Hirschhorn in

We will use Hirschhorn’s notion of model category outside of this chapter.
Inside of this chapter, we will use Hirschhorn’s notion up to the point where we
introduce the homotopy category and total derived functors. For the purpose of
describing these notions, we will however use Hovey’s notion of model category
because it simplifies the constructions. We will not need to refer to homotopy
categories in Nor do we need it anywhere else in this dissertation.

The purpose of the axioms that are part of the definition of the term model
category is to provide a structure that makes sense of the category that arises
when one inverts a certain class of morphisms, that will be called weak equiv-
alences. It is this category that is known as the homotopy category. We will
outline its construction in and furthermore introduce total derived
functors. The reason we outline the construction of the homotopy category is to
give the reader who knows something about homotopy theory, but who is not
familiar with the framework of model categories, a chance to see how a model
structure makes sense of the homotopy category and how the model structure
provides some basic tools to study it.

Quillen’s original definition [Qui67] of model category has axioms that are
somewhat weaker than what seems usual today. This gives rise to Quillen’s
adjective closed, but we only consider closed model categories, so the adjective
is not used.

When it is relevant to or convenient with respect to establishing non-singular
simplicial sets as a model category, we shall provide examples of the introduced
concepts. Only when it is relevant to or convenient with respect to our goal will
we provide examples. In this sense, the introduction is minimal.

In we will lift the standard model structure on sSet to nsSet
along the right adjoint Ex2U : nsSet — sSet using a method that is credited to
D. M. Kan. We will use the method in the form that appears as Theorem 11.3.2.

in p. 214]. Our intention in [Section 4.1]is to go through only what we

need for our chosen approach to do the lifting.
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4. Model categories

4.1 Language of model categories

4.1.1 Preliminaries

We begin with a few definitions that make the definition of model category
transparent and elegant.

Definition 4.1.1. Let ¥ be a category. We say that % is (co)complete if
each functor from a small category to ¢ has a (co)limit. If ¥ is complete and
cocomplete, we say that it is bicomplete.

Definition 4.1.2. Let ¥ be a small category. Let Map% be the category of
morphisms of %, namely the one whose objects are the morphisms of ¢ and
whose morphisms u — v are the commutative squares

tu —— tv
g

in which su is the source of v and tu its target and similarly for the object v of
Map¥%. Let (f,g) denote the morphism u — v above.

Expand the meaning of the symbol s so that it denotes the source functor
Map %€ — €, which is given by s((f,g)) = f. Similarly, interpret ¢ as the target
functor given by t((f,9)) = g.

Definition 4.1.3. Let a and b be objects of some category 4. We say that a is a
retract of b if there are morphisms a — b and b — a such that the composite
a — b — a is the identity. If f and g are morphisms of a small category %, then
we say that f is a retract of g if f is a retract of g as objects of Map¥%'.

Definition 4.1.4. Let % be a small category. A functorial factorization is an
ordered pair (a, 8) of functors Map % — Map € such that

soa = s
toaw = sof
toff =t

and such that f = 5(f) o a(f).

Notice how a functorial factorization (e, 3) factors a morphism (f,g) : « — v in
Map¥? .
To obtain a factorization of the commutative square

Ao ¢
B——D
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Language of model categories

thought of as a morphism (f,g) : © — v of €, then instead think of it as a
morphism (u,v) : f — g and apply both « and g to it. Then we get the two
squares

soB((u,v

soa((u,v))

soa(f) soaly)  soB(f) 2. s08(g)

a(f)l la(g) B(f)l iﬁ(g)

toa(f) roal(wn) toB(g) toa(f)wtoﬁ(g)

of morphisms of Map%®. Because of the three equations

soa((wv)) = s((wv) =u
toa((wv) = soB((u0))
toB((uv)) = t(ww) = o

we can put the two squares next to each other, and thus obtain the diagram

A a(f) (toa)(f) B(Sf) C

ul itoa((u,’u)) lv

B— s (t .
o (to o) 5

which factors (f,g).
Liftings in certain commutative squares are essential pieces of data in a model
category.

Definition 4.1.5. Given a solid arrow commutative square

A——X

1
il 7 e
/

B——=Y

we say that a dashed map B — X is a lifting if it makes the whole diagram
commute. In this case we say that (i,p) is a lifting-extension pair, that i has
the left lifting property (LLP) with respect to p and that p has the right
lifting property (RLP) with respect to i.

4.1.2 Model structures
We are ready to make the central definition of this chapter and the next.

Definition 4.1.6. Let .# be a category. Assume that there are three classes
of maps in .#Z called weak equivalences, fibrations and cofibrations. A
map that is both a weak equivalence and a (co)fibration is called a trivial
(co)fibration. We say that .# together with the three classes of maps is a
model category if the the following five axioms are satisfied.
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4. Model categories

1. (Limit axiom) The category .# is bicomplete.

2. (Two-out-of-three axiom) If f and g are maps such that g o f is defined
and two of the three maps f, g and g o f are weak equivalences, then so is
the third.

3. (Retract axiom) If f is a retract of another map ¢g and g is a weak
equivalence, a cofibration or a fibration, then f has the same property.

4. (Lifting axiom) A pair (i,p) of maps of .Z is a lifting-extension pair
whenever. ..

a) ...11s a cofibration and p is a trivial fibration, or. ..

b) ...i is a trivial cofibration and p is a fibration.

5. (Factorization axiom) There are functorial factorizations («, 8) and (v, d)
such that for any map f in .#, we have that. ..

a) ...a(f) is a cofibration and SB(f) is a trivial fibration, and. ..
b) ...~(f) is a trivial cofibration and 0(f) is a fibration.

In addition, we will say that an object of a model category .# is cofibrant if
the map to it from the initial object @ is a cofibration. We will say that an object
is fibrant if the map from it to the terminal object * is a fibration.

It is immediate from the axioms that the class of weak equivalences in a
model category is a subcategory. Furthermore, it follows from the axioms that
the class of cofibrations is a subcategory and that the class of fibrations is also a
subcategory Prop. 7.2.4, p. 111]. Thus it follows that Hovey’s
Def. 1.1.4, p. 3] and Hirschhorn’s Def. 7.1.3, p.109] notions of model
category are the same with the exception of the choices of functorial factorizations.
In this regard, the reader should be aware of Hovey’s online erratum to his
definition of the notion of functorial factorization Def. 1.1.1, p. 2].

We will take advantage of the following very useful result in

Lemma 4.1.7 (Ken Brown’s lemma). Suppose .# a model category and Z a
category with a subcategory of weak equivalences that satisfy the two out of three-
axiom. Suppose F : .# — 2 a functor that takes trivial cofibrations between
cofibrant objects to weak equivalences. Then F' takes all weak equivalences
between cofibrant objects to weak equivalences.

In particular, a left Quillen functor, as introduced in [Definition 4.1.12] preserves
weak equivalences between cofibrant objects.

This is a minimal introduction, but we need to mention simplicial sets as an
example. Chapter 3 in Hovey’s book is a good reference [Hov99, pp. 73-100].

Example 4.1.8. As a Set-valued functor category, the category sSet is bicom-
plete. Simplicial sets is a model category due to Quillen |Qui67], where the
weak equivalences are the maps whose geometric realizations are weak homotopy
equivalences, the cofibrations are the degreewise injective maps and the fibrations
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Language of model categories

are the Kan fibrations. Recall that a map is a Kan fibration if and only if it has
the RLP with respect to all inclusions A¥[n] — A[n] of horns.

The model category sSet has particularly nice properties, some of which carry
over to nsSet. We will discuss these properties in

Note that the fact that the weak equivalences, cofibrations and fibrations are
subcategories has nothing to do with the limit axiom. Therefore, in hindsight
and for simplicity one could include in the the assumption that
they are subcategories, as Hovey does Def. 1.1.3, p. 3]. More importantly,
it is often useful to be able to refer to the structure of a model category.

Definition 4.1.9. A model structure on a category % is a collection of three
subcategories of ¥ named weak equivalences, fibrations and cofibrations such
that the two-out-of-three axiom, the retract axiom, the lifting axiom and the
factorization axiom are all satisfied.

Thus a model category is a bicomplete category equipped with a model structure.

The axioms of are quite strong — so strong that the sub-
categories of weak equivalences and fibrations determine the subcategory of
cofibrations Prop. 7.2.3 (1), p. 111] and that the weak equivalences and
cofibrations determine the fibrations Prop. 7.2.3 (3), p. 111]. In fact,
any two of the three classes of weak equivalences, fibrations and cofibrations
determine the third Prop. 7.2.7, p. 112].

The model structure on sSet described in is the standard
model structure on simplicial sets. The desire to be able to refer to the
structure of a model category does in this monograph primarily come from the
desire to lift the standard model structure on sSet, which we will do in[Chapter 0}
Moreover, a bicomplete category may be a model category in strictly more than
one way.

Example 4.1.10. Let n > 0. A map f of sSet is a weak equivalence if it is a
weak equivalence in the standard model structure. Let Sd™ denote the n-fold
iteration of the Kan subdivision Sd : sSet — sSet and Ez" the n-fold iteration
of the its adjoint Ex, sometimes referred to as Extension. A map p of sSet is
an Ez"-fibration if Ex"(p) is a Kan fibration. A map i is a Sd"-cofibration
if (i,p) is a lifting-extension pair for every Fa"-fibration p. These choices of
weak equivalences, fibrations and cofibrations form a model structure on the
category sSet Thm. 1.1 (1), p. 274]. It is referred to as the Sd"*-model
structure.

We will refer to the Sd?-model structure on sSet in [Chapter 6, The main
result in that chapter does not depend on the Sd?-model structure, however the
Sd?-model structure is part of the story that we tell.

4.1.3 Quillen pairs

There is a notion of morphism between model categories. To introduce it, recall
the precise definition of adjoint functors.
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4. Model categories

Definition 4.1.11. Let F : ¥ — Z be a functor. A functor U : ¥ — € is said
to be right adjoint to F if there is a natural bijection
v: 9(Fe,d) =N € (c,Ud).
Then we also say that F' is left adjoint to U and that
F:¢=92:U

is an adjunction. We always display the arrow of the left adjoint above or on
the left hand side of the arrow of the right adjoint.

The unit of the adjunction is the natural map 1. = ¢(idg.) to which ¢ takes
the identity idg. : F'c — Fec. Similarly, the counit of the adjunction is the
natural map €5 = ¢~ !(idyq) to which ¢ takes the identity idy 4.

Note that the unit and counit are such that the triangles

UF(Ud) = U(FUd)
Ud

idyd

and
c FU(Fe¢)

/Uf\

’ldFC

commute. Conversely, a natural bijection ¢ : Z(Fe,d) — €(c,Ud) can be
recovered from a pair of natural maps 7. : ¢ - UFc and ¢4 : FUd — d such
that the two triangles above commute. We can let (F,U) or (F,U, ¢) denote the
adjunction depending on whether we will make use of the natural bijection .
Two adjunctions
F:=92:U

and

G928V

can be composed, with their unit-counit pairs giving rise to a unit and a counit
of the composite adjunction (GF,UV) in an intuitive way. Sometimes we think
of an adjunction as a morphism going in the direction of the left adjoint. In that
case, we only display one arrow.

Adjunctions that respect the model structures in the following sense are
considered morphisms of model categories, although the model categories do not
themselves form a category.

Definition 4.1.12. Assume that .# and .4 are model categories and that we
have an adjunction
F:a=n:U.
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Language of model categories

We say that the adjunction is a Quillen pair if I’ preserves cofibrations and
trivial cofibrations. In this case we say that F' is a left Quillen functor and
that U is a right Quillen functor.

Note that F' preserves cofibrations and trivial cofibrations if and only if U
preserves fibrations and trivial fibrations [Hir03, Prop. 8.5.3, p. 153]. This
explains why [Definition 4.1.12]is written the way it is. One can think of a Quillen

pair as a morphism in the direction of the left adjoint so that we can let it be
denoted (F,U) : M — N .

As an example, for n > 0, the adjunction (Sd"™, Ex™) : sSet — sSet is a
Quillen pair Thm. 1.1 (2), p. 274] when its source has the standard
model structure and when its target has the Sd"™-model structure described
in For n = 0 the statement is just the trivial statement that
the identity adjunction is a Quillen pair when the source and target are both
equipped with the standard model structure. The Quillen pair (Sd", Ex™) is
even a Quillen equivalence Thm. 1.1 (2), p. 274]. See |Definition 4.1.13)
below.

The relationship between the homotopy categories of the source and target
of a Quillen pair is investigated by means of the following notion.

Definition 4.1.13. Suppose (F,U, ) : .# — A a Quillen pair. We say that
the Quillen pair (F,U, ¢) is a Quillen equivalence if f : FX — Y is a weak
equivalence in .4 if and only if ¢(f) : X — UY is a weak equivalence in .#
whenever X is a cofibrant object of .# and Y is a fibrant object of A".

4.1.4 The homotopy category

Homotopy theory predates model structures. Our intention here is mainly to
give an outline of a procedure to establish the homotopy category using a model
structure. We point out that a model structure guarantees that the homotopy
category is a category in the usual sense, or in other words that the maps between
two objects form a set when having formally inverted the subcategory of weak
equivalences. Furthermore, it is indicated how a model structure from the outset
yields some basic understanding of the maps of the localized category.

This subsection is meant to be benefit any reader that knows homotopy
theory, but that is unfamiliar with model categories. In order to establish nsSet
as a model category Quillen equivalent to sSet, which we do i we
will not actually need to discuss the homotopy categories of sSet and nsSet.
Hence the low level of detail. However, we will use most of the language from
this section and some of the basic results regarding model categories, including
|Proposition 4.1.22| below.

Now we display an outline of the construction of the homotopy category such
as it is defined in Hovey’s book Sec. 1.2, pp. 7-13]. For this purpose we
provide each model category .# with a choice of two functorial factorizations
(o, B) and (7,9) as described by the factorization axiom. In effect, we adopt
Hovey’s notion of model category Def. 1.1.4] for the remainder of this
section. Our reason for doing this is that it becomes simpler to introduce the
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4. Model categories

homotopy category and total derived functors when there are canonical fibrant
and cofibrant replacements.

Objects of a model category can be suitably replaced by cofibrant and/or
fibrant objects.

Definition 4.1.14. Suppose .# a model category. Let .#; (resp. M., M.y)
denote the full subcategory of .# whose objects are the fibrant (resp. cofibrant,
fibrant and cofibrant) objects.

For each object X of ., let gx = B( — X) be the trivial fibration from
the cofibrant replacement QX = s(gx) of X to the original object X. We
say that Q : # — #, is a cofibrant replacement functor. Similarly, we can
let rx = (X — %) be the trivial cofibration from the original object X to the
fibrant replacement RX = t(ry). We say that R : .# — .#; is a fibrant
replacement functor.

Note that the maps gx and rx are natural.

For the construction of the homotopy category, suppose ¢ a category with a
subcategory of weak equivalences . Form the free category F (¢, # ') on the
arrows of € and the reversals of the arrows of 7.

An object of (¢, # 1) is an object of ¢ and a morphism of F(€,# 1) is
a finite string (f1,..., fn) of composable arrows where f; is either an arrow of
% or the reversal w™! of an arrow w of #. The empty string at a particular
object is the identity and composition is concatenation of strings. Let Ho% be
the quotient of F(%,# ~!) by the relations id, = (id,.) for all objects ¢ of €,
(f.9) = (go f) for composable arrows f and g from ¢ and idy(,) = (w,w™!)
and idy(,,) = (w™!, w) for morphisms w from #'.

The construction Ho% is not necessarily a category, for Ho%é (¢, ') may
not be a set. However, one can prove that Ho(.Z.) is a category when .#
is a model category and hence that Ho.# is a category. This follows from a
standard alternative construction, which we outline below. See Sec. 1.2,
pp. 7-13] for more details.

Mimic the notion of homotopy of two parallel maps between spaces in the
following way.

Definition 4.1.15. Assume that .# is a model category. Take two maps B — X
in ., denoted f and g.

1. A cylinder object for B is a factorization of the fold map B U B Y. B
into a cofibration B LI B ™% B’ followed by a weak equivalence B’ = B.

N
2. A factorization of the diagonal map X — X x X into a weak equivalence

X 5 X’ followed by a fibration X’ PPl ¥« X isa path object for
X.

3. A left homotopy from f to g is a map H : B’ — X for some cylinder
object B’ for B such that Hig = f and Hi; = g. We say that f and g are
left homotopic, written f ~; g, if there is a left homotopy from f to g.
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4. A right homotopy from f to ¢g is a map K : B — X' for some path
object X’ such that pg K = f and p; K = g. We say that f and g are right
homotopic, written f ~, g, if there is a right homotopy from f to g.

5. We say that f and g are homotopic, written f ~ g, if they are both left
and right homotopic.

6. The map f is a homotopy equivalence if there is a map h : X — B
such that hf ~ idg and fh ~ idx.

Consider the behavior of the relations ~; and ~, when the the source or target
is not arbitrary.

Proposition 4.1.16. Suppose .# a model category. Consider two maps B — X
of ., denoted f and g.

1. If f~ygand h: X — Y, then hf ~; hg.
If X is fibrant, f ~; g and h: A — B, then fh ~; gh.

If B is cofibrant, then left homotopy is an equivalence relation on .Z (B, X).

Ll

If B is cofibrant and h : X — Y is a trivial fibration or a weak equivalence
of fibrant objects, then h induces an isomorphism

M(B,X)| ~1= M(B,Y)] ~ .

5. If B is cofibrant, then f ~; g implies f ~,. g. Furthermore, if X’ is a path
object for X, then there is a right homotopy K : B — X’ from f to g.

Any statement regarding model categories have dual statement. The results of
|Proposition 4.1.16| are no exceptions.

The reason that a statement regarding model categories have a dual statement
is that the axioms of [Definition 4.1.9]are self dual Rem. 1.1.7, p. 4], as we
now briefly explain. Note that the limit axiom is self dual. For if a category € is
complete, then the opposite category €°P is cocomplete and if € is cocomplete,
then @°P is complete. Thus %P is bicomplete if ¥ is.

Similarly, the other four axioms of are self dual, meaning
that if there is a model structure on some category %, then € °P has a model
structure in which f°P is a weak equivalence (resp. fibration, cofibration) if and
only if f is a weak equivalence (resp. cofibration, fibration). If .#Z is a model
category, then we let D.# denote the opposite category with the model structure
described above. Note that D?>.# = .#. Thus a statement regarding model
categories can be applied to D.Z and then yields a dual statement in ..

The following are two consequences of [Proposition 4.1.16|

Corollary 4.1.17. Suppose .# a model category, B a cofibrant object of .# and
X a fibrant object of .#. Then the left homotopy relation and the right homotopy
relation coincide and are equivalence relations on .# (B, X). Furthermore, if
f ~ g for maps B — X, denoted f and g, then there is a left homotopy
H: B — X from f to g using any cylinder object B’ for B.
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4. Model categories

Corollary 4.1.18. Suppose .# a model category. The homotopy relation on the
morphisms of .Z.s is an equivalence relation and is compatible with composition.

Corollary 4.1.18|says that .#.;/ ~ is a category.

The canonical functor .#.; — .5/ ~ inverts the homotopy equivalences
in 5. In fact, the canonical functor .#.;y — .5/ ~ inverts the weak
equivalences as the next result shows.

Proposition 4.1.19. Suppose .# a model category. Then a map of .Z.y is a
weak equivalence if and only if it is a homotopy equivalence.

This result concludes our outline of the standard construction of Z.5/ ~.

Next, we explain that .#.;/ ~ is merely an alternative construction of
Ho(A.5). The construction Ho(.#¢) has the universal property that if a
functor F': #.; — Z takes weak equivalences to isomorphisms, then it factors
uniquely through .#,.; — Ho(.#.s). Thus when one factors the canonical functor
Mep — Ho(M.y) through a unique map

.///Cf/ ~— HO(.///Cf),

one can argue that the unique map is in fact an isomorphism. Essentially, this
is the proof that Ho(.#,¢) is a category.

The construction Ho(.#.s) can be compared with the homotopy category
Ho .#. The commutative diagram

Ho(.4.)
/ \
Moy Ho(M.y) Ho.#t
\ . \ /
Mey] ~ Ho(A4y)

displays the isomorphism between the two alternative constructions of Ho(.y)
and furthermore the functors that are induced by the inclusions of the full
subcategories whose objects are the cofibrant, fibrant and cofibrant and fibrant
objects of .#. The fibrant and cofibrant replacement functors yield inverse
equivalences to these functors.

The following statement is the fundamental theorem regarding model cate-
gories.

Theorem 4.1.20. Suppose .# a model category. The inclusion Ay — A
induces an equivalence

Mep| ~= Ho(M.5) — Ho.l

of categories. The functor .# — Ho .4 identifies two maps whenever they are
left or right homotopic. Each map sent to an isomorphism by the latter functor
is a weak equivalence of .Z .
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Note that the theorem is stated with more details in Hovey’s book [Hov99
Thm. 1.2.10, p. 13].

4.1.5 Total derived functors

A Quillen pair (F\U) : 4 — A gives rise to an adjunction [Hov99, Sec. 1.3,
pp. 16-19] of the homotopy categories [Hov99, Sec. 1.2, pp. 7-13]. The total
left derived functor LF': Ho.# — Ho ./ is the composite

Ho.n 2% Ho(A.) 2ol Hoov

and the total right derived functor RU : Ho ./ — Ho ./ is the composite

Ho.v 228, Ho(A%) o8 Ho.n.

Here, the symbols @ and R denote the cofibrant and fibrant replacement functors
introduced earlier. In fact, a Quillen pair (F,U) is a Quillen equivalence if and
only if (LF, RU) is an adjoint equivalence of categories Prop. 1.3.13,
p. 19]. Note that it is the choice of functorial factorizations for each model
category that simplifies the theory compared with Hirschhorn’s treatment.

Historically, much of the interest in simplicial sets come from the possibility
to model spaces.

Example 4.1.21. Geometric realization is the left Quillen functor of a Quillen
equivalence with topological spaces, where the weak equivalences of topological
spaces are the weak homotopy equivalences and the fibrations are the Serre
fibrations. Recall that the singular functor is right adjoint to geometric realization.
If X is a space, then the set of n-simplices is the set of maps A" — X from
the standard n-simplex, which is the subspace of R™*! consisting of the points
n
(toy...tn) with t; >0,0<i<n,and > ¢, =1.
i=0

Chapter 3 in Hovey’s book is a reference for [Example 4.1.21 [Hov99, pp. 73-100].

In we shall make use of the following characterizations
Cor. 1.3.16, p. 21] of Quillen equivalences.

Proposition 4.1.22. Suppose (F,U) : # — A4 a Quillen pair. The following
three statements are equivalent.

1. The Quillen pair (F,U) is a Quillen equivalence.

2. a) The left Quillen functor F reflects weak equivalences between cofibrant
objects of .Z, meaning f : X — X' is a weak equivalence if F(f) is a
weak equivalence whenever X and X’ are cofibrant, and

b) for every fibrant object Y of .4, the composite

FQuy 29, puy 2y

is a weak equivalence of /.
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4. Model categories

3. a) The right Quillen functor U reflects weak equivalences between fibrant
objects of .4, meaning g : Y — Y’ is a weak equivalence if U(g) is a
weak equivalence whenever Y and Y’ are fibrant, and

b) for every cofibrant object X of .#, the map

U(rrx)
—

X X UFX URFX

is a weak equivalence of .Z .

The characterizations above are by some considered the most useful tool to check
whether a Quillen pair is a Quillen equivalence. We will use [Proposition 4.1.22]

in [Section 6.9
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Chapter 5

Technical aspects of non-singular
simplicial sets

To work with long sequences is an essential part of the machinery of model
structures. In we will simply explain how this is the case and
furthermore, we will point out that to understand sequences in the category
sSet, it is enough to understand sequences in nsSet. This knowledge is used in

A convenient way of thinking of a simplicial set is that it is glued together
from its building blocks, the simplices. In other words, a simplicial set is a
colimit over its simplices. For this reason, we will in [Section 5.2] point out that a

similar and more refined viewpoint is possible for non-singular simplicial sets.

We do take the viewpoint that a simplicial set is a colimit over its simplices
in[Section 6.4] However, the reader may skip after reading [Section 5.1]
and jump to [Chapter 6] This is because the refinement presented in
is not used in Nevertheless, fits into the storyline by
appearing in or more specifically in

5.1 Filtered colimits in nsSet

Recall from [Definition 2.1.2] the notion of sequence in a cocomplete category.

A sequence is an example of a functor from a small filtered category. This is
because a non-empty ordinal is an example of a (small) filtered category. There
is a standard result that makes filtered categories appealing. It says that filtered
colimits commute with finite limits. We will use this result in which
is the most technical part of our procedure to establish nsSet as a model category.

Definition 5.1.1. A category J is filtered if it contains at least one object and
satisfies the following two conditions.

1. For any two objects j and j’ there is a third object k& and morphisms j — &
and j' — k.
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5. Technical aspects of non-singular simplicial sets

2. For any two parallell morphisms u,v : ¢ — j there is an object k together
with a morphism w : j — k that makes the diamond-shaped diagram

u J Sw
AN
) k
7
e
x ‘//w
J
commute.

To take advantage of sequences in sSet, we will present which
says that the inclusion U : nsSet — sSet preserves filtered colimits. In[Chapter 6]

we will use [Cemima 5.1.2 several times.

In particular, there is a technique by Quillen [Qui67] called the small object
argument Prop. 10.5.16, p. 198]. It enables the construction of functorial
factorizations in a cocomplete category ¢. Namely, the factorizations ought to
be as a cofibration followed by a trivial fibration or into a trivial cofibration
followed by a fibration in order to confirm the Factorization axiom.

For the factorization technique to work, one lets A be an object in ¥ that is of
technical importance and asks that the covariant hom functor €' (A, —) behaves
reasonably with respect to sequences. If it does, then one says, loosely, that A is
small. We will state precisely the nature of said behavior in There,
we will present a smallness result for non-singular simplicial sets as part of the
argument to establish nsSet as a model category. We will use in
this situation as well.

As promised, we present the following result.

Lemma 5.1.2. The inclusion U : nsSet — sSet preserves filtered colimits.

Proof. We will prove the claim of in the following way. Given a
functor F : J — sSet where J is a small filtered category that is such that F(j)
is non-singular for each object j in J, we will argue that the colimit of F is
non-singuar.

Let Z be the colimit of F'. As colimits in sSet are taken in each degree, we
can assume that

Zn = |_| F(j)n/ ~
jeJ
where ~ is the equivalence relation generated by a binary relation ~ defined by
Fi)oax~a' eF(y)e u:j—j : (Flu)lx) =2

The binary relation ~ is reflexive and transitive, but not necessarily symmetric.

Suppose z € Z,, not embedded. We will prove that z is degenerate. It will
thus follow that Z is non-singular. As z is not embedded there are k,I € [n]
with k& < [ such that ze, = z¢;.
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Filtered colimits in nsSet

Suppose j. an object of J such that z is in the image of F(j.), — Z,,
meaning that there is a © € F(j.), such that the map sends z +— z. If z is
degenerate, then z is. We will consider the case when z is non-degenerate.

Responsible for the assumption that xey ~ xe; is a diagram

Jz
Jo jq
\ \

jl Jg—1
N

where each of the morphisms can go in either direction and that induces a
diagram
l?(jZ)O
/ ~
F(j0)o F(jq)o
\ |
F(j1)o F(jg-1)o
\ /

that connects ze;, with ze;.
Next, we use that J is a filtered category and a standard argument. By

condition 1 of [Definition 5.1.1} there is some object j.o together with morphisms

j» — j.0 and jg — j.o0. In the case when the morphism between j, and jj is a
morphism j, — jg, then by condition 2 of we can choose the
object 7.0 and the morphisms above such that the morphism j, — j.o is equal
to the composite j, — jo — j.0. The case when j, is instead the target and j,
the source of the morphism between them, is similar.

Similarly to the procedure in the previous paragraph, we can find objects
Jz1s -+ - Jq- and morphisms as indicated in the diagram

Jz Jo Jk Jz
NN NS

Jz0 Jo1 J(k—1)k Jk=

that make the triangles that appear commute. If we continue in this way, namely

alternating between invoking the first and the second condition of [Definition 5.1.1
then we get a commutative diagram

Iz Jo .. - Ik 7=
NN N/
J(k—=1)k Jkz

NN TN

N

J
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in J.
Choose an object 5/ and a morphism j — j' such that the composites

jzﬁjzoﬁ"'ﬁjﬁj,

and
Jz = Jkz == j =

are equal. Let y be the image of x under the composite
F(jz) = F(jz0) = - = F(j) = F(j).

Consequently, we have the equality yer = ye;. This implies that y is degenerate
because F'(j') is non-singular by assumption. The image of y under F(j') — Z
is z, so z is degenerate. This concludes our argument that Z is non-singular. H

5.2 How to build a non-singular simplicial set

Any non-singular simplicial set is a colimit over its non-degenerate simplices in
the same way that a simplicial set is a colimit over its simplices. This type of
viewpoint has proven useful in sSet, so we present a proof of a similar statement
for nsSet as we are about to establish a model structure on the latter category.
Various simplex categories for a simplicial set X appear in the literature.
A common variant is the category A | X defined thus. Its objects are the
representing maps Z of simplices of X. Given simplices x and y, say of degree n
and m, respectively, then the morphisms y — & are the commutative triangles

Alm] ——2— Afn)
N

which is the same as saying that y = za.
By design, the simplicial set X is itself the colimit of the composite

AiX—>A1>sSet,

denoted T x. A reference is Lemma 3.1.3. in Hovey’s book p. 75]. Here,
the functor T is the Yoneda embedding and A | X — A is the forgetful functor
that sends a representing map & : A[n] — X to the ordinal [n], following Chapter
4 in . Viewing X as a colimit over its simplices is a useful technical tool
when dealing with simplicial sets.

When X is non-singular, it turns out that X is even a colimit over its non-
degenerate simplices. Let Y’ be the restriction of Tx to the full subcategory
A’ | X of A | X whose objects are the representing maps of the non-degenerate
simplices.

Proposition 5.2.1. Let X be a simplicial set. If X is non-singular, then it is the
colimit (in sSet) of Y.
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This result is known among users of the category of non-singular simplicial sets.
It is presented without proof in Lemma 3.1.4, p. 76], but without any
assumption on the simplicial set X. In that case the statement is wrong, but
this is commented on and corrected in the corresponding erratum, which is part
of the book’s online resources.

Hovey’s erratum uses the name reqular simplicial set for the term non-singular
simplicial set. This may be an unfortunate choice as the name regular simplicial
set seems established as a simplicial set such that each non-degenerate n-simplex
is attached along its n-th face, for each n > 0. At least, the latter meaning is
implied in [FP90]. There, the word regular is seen in connection with regularity
of CW-complexes.

Towards proving the proposition, we have the following interesting result.

Lemma 5.2.2. Let X be a non-singular simplicial set. The inclusion
A LX SALX
has a retraction.

Proof. We explain that the rule Z — zf defines a retraction r of the inclusion 4.

On morphisms ¥ ﬂ) Z, where y and x are of degree m and n, respectively,

we define 7 thus. Suppose y* and 2% of degree k and [, respectively. Now we need
a choice of a section of the degenerate part z° of each object Z of A | X. The
choice does not matter for our purposes, although there are systematic choices of
sections of degeneracy operators, for example the maximal section (—)*
p. 136].

Next, we expand the diagram above to

AlK] All]
(v (z")*
1l Alm] = Aln] |1

P
(K] Al
A

where we have displayed our choices of sections to the degenerate parts. The
diagram gives rise to the morphism

A i

z’oao(y’)*

Afk] —222W 0 A
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from ﬁ to E, which can be denoted r(z,«). The triangle commutes, so
p=a"oao ()

must be a face operator as yﬁ is non-degenerate.

Different choices of sections of the degenerate parts could perhaps lead to
different morphisms y# — %, but not if X is non-singular. In that case, the
simplex y! is a face of 2 in a unique way. Moreover, the rule of sending the given

N b N
morphism y M> z to yt M x! respects composition when X is non-singular

for the same reason. In other words, we get a retraction
reALX AL X
of the inclusion i. |

In we discuss various simplex categories and their relations.
provides an example of such a relation.

We are ready to prove the proposition. The proof consists of a recognition
that the relationship between A | X and A’ | X is improved over the general
case when X is non-singular.

Proof of [Proposition 5.2.1 Let r be the retraction of

i A X ALX
from [Cemma 5.2.21

Notice that there is a map & — ir(z), defined as the commutative triangle

Afn] — = S A[l)
N

in the case when z is of degree n and when z! is of degree [. The diagram

commutes if the top square commutes. Furthermore, the top square of (5.1))
commutes as zf is a monomorphism. Thus the map Z — ir(Z) is in fact natural.
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How to build a non-singular simplicial set

That X is the colimit of Y x is the same as saying that the cocone Tx = X
that arises from the definition of A | X is universal. The symbol X denotes
the the functor A | X — sSet that sends each object to X and each morphism
to the identity 1x. We refer to X as the constant diagram at X. Sometimes
this language and notation is convenient.

The notation and terminology of the previous paragraph is more or less taken
from Section 2.6 in May’s book on algebraic topology . There, the notion
of (co)cone is of course present to describe (co)limits, although the term (co)cone
is not used. (Co)limits are, however, referred to as universal (co)cones in [Bor94].

Note that the unit of the adjunction

rALX2A | X

yields a natural transformation Yx = Yx oir. Recall that r is a retraction
of i. Let X’ denote the colimit of Y’. To prove [Proposition 5.2.1|is to prove
universality of the cocone Y’y = X that arises from the universal cocone
TX = X.

Combine the universal cocone Y x = X with i to obtain a triangle

T/X:>K

where the dashed natural transformation appears because X' is the colimit of
'+ = Tx oi. We will prove that the canonical map X’ — X is an isomorphism.
In turn, we get the diagram

TX:>TTXOT:X

L\

which means that we now have a composite X — X’ — X. Here, we have used
the natural transformation Tx = Yx oir = Y’y or that arises from the unit of

(r,i).
The composite
Tx(z) = Yyor(z) —» X(z)

is precisely the composite
, _
INDEEYNE'
if z is of degree n and z! is of degree I. In other words, the cocone
Tx =Tgor=X
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is actually the universal one. Finally, by applying ¢ once more, we obtain

where the two cocones with apex X’ are universal. Thus arises a commutative
diagram
1

/\
X’ X X’ X
\_/

1

showing that X’ — X is an isomorphism as announced. |
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Chapter 6

Homotopy theory of non-singular
simplicial sets

Abstract

A simplicial set is said to be non-singular if its non-degenerate simplices
are embedded. Let sSet denote the category of simplicial sets. We
prove that the full subcategory nsSet whose objects are the non-singular
simplicial sets admits a model structure such that nsSet becomes is Quillen
equivalent to sSet equipped with the standard model structure due to
Quillen [Qui67]. The model structure on nsSet is right-induced from
sSet and it makes nsSet a proper cofibrantly generated model category.
Together with Thomason’s model structure on small categories
and Raptis’ model structure on posets these form a square-shaped
diagram of Quillen equivalent model categories in which the subsquare of
right adjoints commutes.

6.1 Introduction

This paper concerns the diagram

= sSet (6.1)

Al L el

PoSet = _ nsSet
N

which will be properly explained in For now it suffices to say the
following.

The diagram consists of adjunctions between categories, where sSet
is the category of simplicial sets, where Cat is the category of small categories,
where PoSet is the full subcategory of Cat whose objects are the partially
ordered sets (posets) and where nsSet is the category of non-singular simplicial
sets. The (full) inclusion U : nsSet — sSet admits a right adjoint functor
[WJR13| Rem. 2.2.12], which is known as desingularization and denoted D.

Due to the preexisting literature, all of the categories that appear in ,
except nsSet, are model categories. Furthermore, all of the adjunctions that
appear, except (D,U) and (¢, N), are Quillen equivalences. The aim of this
paper is to establish a model structure on nsSet such that (D,U) and (g, N)
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6. Homotopy theory of non-singular simplicial sets

are Quillen equivalences. This is essentially a reformulation of [Theorem 6.1.

below, which is our main result.

For a justification of the model structure on nsSet that we here suggest, see
the highlight that is and its implication which says
that the unit of the adjunction (DSd?, Ex2U) is a weak equivalence.

Given a simplicial set X, there is — according to the Yoneda lemma — a
natural bijection  + Z from the set X,, of n-simplices to the set sSet(A[n], X)
of simplicial maps from the standard n-simplex A[n] to X.

Definition 6.1.1. Let X be a simplicial set. The map & that corresponds to a
simplex x of X under the natural bijection

X, = sSet(Aln], X)

given by x +— Z is the representing map of z. A simplex is embedded if its
representing map is degreewise injective.

The terminology of [Definition 6.1.1] makes sense of the notion of non-singular

simplicial set. Here, we follow the terminology of Waldhausen, Jahren and
Rognes Def. 1.2.2, p. 14].

In the diagram, the functor Sd : sSet — sSet is the Kan subdivision
p. 147] and Ex denotes its right adjoint Prop. 4.2.10], which is sometimes
referred to as extension p. 212]. The symbol Sd*, for k > 0, simply
denotes the k-fold iteration of Sd, so in particular the symbol Sd? means the
composite of Sd with itself. Similarly, the symbol Ex? denotes the functor that
performs extension twice.

There is a standard model structure on sSet due to Quillen [Qui67] in which
the weak equivalences are the maps whose geometric realizations are (weak)
homotopy equivalences, the fibrations are the Kan fibrations and the cofibrations
are the degreewise injective maps. Regarding the terminology of the theory model
categories, we follow Hirschhorn’s book , but we also refer to Hovey’s
book , which differs only slightly from the former. The differences are
explained whenever relevant.

In the passage between the categories sSet and nsSet, there is a homotopical
issue, namely that desingularization does not in general preserve the homotopy
type, though every simplicial set is cofibrant in the standard model structure.
We will discuss the issue in Nevertheless, we will prove the following
result.

Theorem 6.1.2. Equip sSet with the standard model structure. There is a
proper, cofibrantly generated model structure on nsSet such that f is a weak
equivalence (resp. fibration) if and only if Ex2U(f) is a weak equivalence (resp.
fibration), and such that

DSd? : sSet = nsSet : Ex?U

is a Quillen equivalence.

This theorem is our main result. Note that Ez?U(f) is a weak equivalence
if and only if U(f) is a weak equivalence, as Fx preserves and reflects weak
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equivalences [FP90}, Cor. 4.6.21]. Moreover, we will in [Section 6.10| argue that

each adjunction that appears in is a Quillen equivalence.

Notice that non-singular simplicial sets is an intermediate between ordered
simplicial complexes and simplicial sets in the following sense. In an ordered
simplicial complex, the vertices of every simplex are pairwise distinct. Moreover,
every simplex is uniquely determined by its vertices. In a non-singular simplicial
set, the vertices of every non-degenerate simplex are pairwise distinct. However,
a simplex is not necessarily uniquely determined by its vertices. In an arbitrary
simplicial set, the vertices of a non-degenerate simplex are not necessarily pairwise
distinct.

Moreover, nsSet as a category is strictly between ordered simplicial complexes
and sSet. This is automatic from the definition of nsSet as a full subcategory of
sSet, because every simplicial set associated with an ordered simplicial complex
is non-singular. Making nsSet a model category puts the homotopy theory of
ordered simplicial complexes more directly into the modern context of model
categories.

An advantage of non-singular simplicial sets over simplicial sets is that the
former have a natural PL structure described in Sec. 3.4, p. 126—
127]. The key to this fact is the compatibility between the Kan subdivision
of simplicial sets and the barycentric subdivision of simplicial complexes. The
former performed on a non-singular simplicial set is (associated with) an ordered
simplicial complex. See the explanation on page 36 in the book by Waldhausen,
Jahren and Rognes and Lemmas 2.2.10. and 2.2.11. p. 38 in
the same book. The category nsSet plays an important role there. Compared
with ordered simplicial complexes, the category of non-singular simplicial sets
has colimits that are somewhat more meaningful in the sense that more of the
colimits are preserved by geometric realization.

In we properly introduce the diagram ‘ explains
our chosen method for establishing the model structure on nsSet.

Sections[6.4] throughout [6.7]concern the proof of [Proposition 6.7.14] which says
that nsSet is a cofibrantly generated model category and that (DSd?, Ez2U)
is a Quillen pair. Towards a proof of this, begins by discussing
the intution behind and its connection to regular neighborhood
theory. On that note, we introduce the important notion of Strgm map whose

properties are discussed in [Section 6.6} The Strgm maps form a class of auxiliary
morphisms, which is used as a tool to establish the announced model structure
on nsSet. handles important technicalities in that it shows how
desingularization behaves when applied to certain pushouts. In
we verify that the criteria laid out in are indeed satisfied so that
|Proposition 6.7.14| holds.

We discuss cofibrations in and state and prove [Proposition 6.8.5]
which is the axiom of propriety. The sole purpose of [Section 6.9]is to prove
that (DSd?, Ez2U) is a Quillen equivalence, which is stated as [Proposition 6.9.4}
then immediately follows.

Finally, in we fullfill our promise that every adjunction in the
diagram is a Quillen equivalence.
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6. Homotopy theory of non-singular simplicial sets

6.2 Preexisting model structures

We will explain the aspects of the diagram that were not explained in

If the inclusion of a full subcategory has a left adjoint, then we will refer to
the subcategory as a reflective subcategory. Note that the terminology is not
standard. Although the fullness assumption seems more common today than
before, Mac Lane’s notion , for example, does not include fullness as
an assumption in his definition. Nor do Addmek and Rosicky include
fullness as an assumption in their notion.

6.2.1 Simplicial sets

We view a simplicial set as a functor A°? — Set where A is the category of
finite ordinals and A°P its opposite. The objects of A are the totally ordered
sets

n={0<1<---<n}

n > 0, and its morphisms are the order-preserving functions a : [m] — [n],
meaning «(i) < «(j) whenever i < j. We refer to the morphisms as operators.
This is because they operate (to the right) on the simplices of a simplicial set.
We will write X,, = X([n]) for brevity whenever X is a simplicial set. The
symbol sSet denotes the category of simplicial sets and natural transformations.
To a large extent we follow the notation from Chapter 4 of Fritsch and Piccinini’s
book “Cellular Structures in Topology” on the topic of simplicial sets.
Throughout this paper, we will use the following symbols.

Notation 6.2.1. The elements of the set
I ={0Aln] — A[n] | n > 0}

of inclusions of boundaries into the standard simplices are prototypes of the
cofibrations in sSet equipped with the standard model structure. Similarly, the
elements of the set

J={A*n] = An] |0<k <n>0}

of inclusions of horns into the standard simplices are prototypes of the trivial
cofibrations.

6.2.2 Passage between simplicial sets and non-singular
simplicial sets

Notice that a product of non-singular simplicial sets is again non-singular, and
that a simplicial subset of a non-singular simplicial set is again non-singular
[WJR13, Rem. 2.2.12]. These facts give rise rise to the construction of desingu-

larization.
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Definition 6.2.2. Remark 2.2.12. in [WJR13| p. 39] Let X be a simplicial set.
The desingularization of X, denoted DX, is the image of the map

given by © — (f(x))s, where the product is indexed over the quotient maps
f+ X — Y with non-singular target Y.

The construction DX is functorial and the degreewise surjective map that comes
with it is seen to be a natural map nx : X — UDX [WJR13| Rem. 2.2.12].

From the construction in , it follows that any map X Ly
whose target Y is non-singular factors through X — DX Rem. 2.2.12].
This is because any degreewise surjective map whose source is X and whose
target is non-singular can be canonically identified with a quotient map. On
the other hand, the factorization is unique because the degreewise surjective
maps are precisely the epics of sSet. In fact, the natural map nx is the unit
of a unit-counit pair (nx,€a) Rem. 2.2.12]. This is also stated as

In the language suggested above, the category of non-singular simplicial sets
is a reflective subcategory of the category of simplicial sets. Hirschhorn takes
as an assumption on his notion of model category that the underlying category
is bicomplete Def. 7.1.3, p. 109], so we do too. We say that a category
is bicomplete if it is complete and cocomplete. A consequence of the fact
that nsSet is a reflective subcategory of sSet is that nsSet is bicomplete. An
explanation of this fact is provided by

6.2.3 Thomason’s model structure

The symbol N denotes the nerve functor p. 106]. Tt takes a small category
% to the simplicial set whose set of n-simplices, for each n > 0, is the set of
functors [n] — . According to G. Segal p. 105], the nerve construction
appears at least implicitly in the work of Grothendieck. It is well known that N is
fully faithful and that it has a left adjoint ¢ : sSet — Clat, called categorification.
The fact can be extracted from , according to R. Fritsch and D. M. Latch
[FL81} p. 147].

Due to Thomason, we can give equip Cat with a right-induced cofibrantly
generated model category such that (¢Sd?, Ex?N) is a Quillen equivalence
[Tho80] whose source is sSet with the standard model structure due to Quillen.
Cisinski have made a correction to Thomason’s erroneous argument that Cat is
proper so that there is one more adjective that one can use.

6.2.4 Raptis’ model structure

A poset is a small category such that each hom set consists of at most one
element and such that there are no isomorphisms but the identities. Notice that
a set equipped with a reflexive, antisymmetric and transitive binary relation <
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6. Homotopy theory of non-singular simplicial sets

can intuitively be viewed as a poset by letting there be a morphism x — y if
and only if z < y.

We let U : PoSet — Cat be the inclusion and p its right adjoint. The easiest
way to obtain p is probably to consider the category of preorders, which is
strictly between C'at and PoSet. A small category % is a preorder if each hom
set €(c, ) has at most one element. Let PreOrd denote the full subcategory
of C'at whose objects are the preorders. It is not hard to see that each of the
inclusions of the composite

PoSet — PreOrd — Cat

has a left adjoint. In other words, the category of posets is a reflective subcategory
of Cat.
Raptis has restricted Thomason’s model structure to the category of posets

so that (p,U) is a Quillen equivalence |[Rap10].

6.2.5 Passage between non-singular simplicial sets and posets

Overload the symbol N so that it also refers to the corestriction to nsSet of
the restriction of N : Cat — sSet to the subcategory PoSet. By this we simply
mean the following. If G : 8 — &/ is a functor between categories, then the
image of F', denoted Im F', is the smallest subcategory of the target % that
contains any object and any morphism that is hit by G. If ¢ is a subcategory
of &7 that contains Im F', then we say that the induced functor # — ¥ is the
corestriction of G to %.

Define ¢ = pcU. As U : nsSet — sSet is a full inclusion it follows that ¢
is left adjoint to N : PoSet — nsSet. To verify the latter statement, let G in

be the composite
PoSet % Cat X5 sSet

and let ¥ = nsSet.

Lemma 6.2.3. Any corestriction G of a right adjoint G : & — & to a full
subcategory ¢ of its target &/ admits a left adjoint. Moreover, a restriction to
@ of a choice F' of a left adjoint to G is left adjoint to G.

Proof. Let U denote the inclusion ¥ — 7. The counit ¢, : FG(b) — b of the
adjunction
F:od=%:G

is already a natural map (FU)G(b) — b as FG = F(UG) = (FU)G. We let &,
denote this map. If c is an object of €, then we have the unit 9y : U(c) —
GF(U(c)). As GF(U(c)) = (UG)F(U(c)) = U(GFU(c)) there is a unique map
fle : ¢ = GFU(c) such that ny () = U(i). It is straight forward to check that
the natural maps 7. and €, satisfy the compatibility criteria of a unit and a
counit. ]

By design, then, the square of right adjoints in (6.1)) commutes precisely, meaning
NoU=UoN.
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6.2.6 Jardine’s subdivision model structures

J. F. Jardine has established a model structure on sSet that he calls the
Sd?-model structure. It is defined in such a manner that (Sd?, Ex?) is a Quillen
equivalence [Jar13] Thm. 1.1., p. 274] and that (¢, N) is a Quillen equivalence
JarlSL Thm. 3.1., p. 286]. The weak equivalences of the Sd?-model structure
are the same as the standard ones.

The fibrations and cofibrations of the Sd?-model structure are defined thus.
A map p of sSet is an Ex?-fibration if Ez?(p) is a Kan fibration. To define
the cofibrations, we might as well introduce the following standard terminology
at this point.

Definition 6.2.4. Given a solid arrow commutative square

A——=X

1
il 7 e
/

B——=Y

in some category, we say that a dashed map B — X is a lifting if it makes the
whole diagram commute. In this case we say that (i,p) is a lifting-extension
pair, that i has the left lifting property (LLP) with respect to p and that p
has the right lifting property (RLP) with respect to i.

A map i of sSet is a Sd?-cofibration if (i,p) is a lifting-extension pair for
each Ex?-fibration p. Because Ex preserves Kan fibrations [FP90, Lem. 4.6.15,
p. 213], the Sd?-model structure is shifted in the sense that the weak equivalences
are the same and that there are more fibrations and less cofibrations.

6.3 Strategy to establish the model structure

We find ourselves in a similar situation as that of Thomason. Prior to his article
there was a homotopy theory of small categories for which Quillen’s
paper is a reference. It is thought of as inherited from topological spaces
via the classifying space. The nerve induces an equivalence of the homotopy
categories, yet its left adjoint ¢ : sSet — Cat does not induce an (inverse)
equivalence.

After the recent development of his time, Thomason discovered that the
geometrically favorable construction c¢Sd? preserves homotopy type and
managed to put a model structure on small categories that makes it Quillen
equivalent to simplicial sets, with ¢Sd? as the left Quillen functor. Fritsch and
Latch present a contemporary view of the historical development and
explain how surprising the result was.

Similarly, there exists a homotopy theory of ordered simplicial complexes
thought of as inherited from simplicial sets. The category of ordered simplicial
complexes is slightly smaller than nsSet. The inclusion U : nsSet — sSet is full
by definition and has a left adjoint called desingularization, as we explained in
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6. Homotopy theory of non-singular simplicial sets

We will display examples of the behavior of desingularization in
Section 6.4

There are two main differences between our situation and that of Thomason,
namely that we can build on his work and that desingularization is in some sense
more difficult to work with.

Categorification ¢ : sSet — Cat has the following rather elementary descrip-
tion. For X a simplicial set, let the the set of objects obj(¢X) of ¢X be the
set X of O-simplices. The morphisms are freely generated by the set X; of
1-simplices with z € X viewed as a morphism zd; — xdg, and then imposing a
composition relation xd; = xdg o xds, for all 2-simplices x € Xo. Here, d; is the
elementary face operator that omits the index j.

On the other hand, desingularization has the two descriptions given in
[Definition 6.2.2] and [Theorem 2.1.3] In general, these can be more difficult
to work with. We will essentially be using the latter description, albeit a
modification.

The strategy we shall use to obtain the model structure on nsSet is essentially
the lifting method that Thomason uses, except that it has become
standardized. It is summarized in the following theorem, credited to D. M. Kan.
The language we use is that of Theorem 11.3.2 in Hirschhorn’s textbook
p. 214].

Theorem 6.3.1 (D.M. Kan). Suppose there is an adjunction
F:tl=N:G

where . is a cofibrantly generated model category with I as the set of generating
cofibrations and J as the set of generating trivial cofibrations. Furthermore,
assume that .4 is a bicomplete category. If

1. (First lifting condition) each of the sets FI and F.J permits the small
object argument, and

2. (Second lifting condition) G takes relative F.J-cell complexes to weak
equivalences,

then .4 is a cofibrantly generated model category where the weak equivalences
of 4 are the morphisms f such that Gf is a weak equivalences, and where
FI and FJ are the generating cofibrations and generating trivial cofibrations,
respectively. Moreover, (F, G) becomes a Quillen pair.

Formalities ensure that a morphism f in .4 is a fibration in the lifted model

structure if and only if Gf is a fibration. The language of [Theorem 6.3.1]is fairly
standard, but it will be interpreted or explained to a suitable extent when we
get to the relevant part.

We will make use of [Theorem 6.3.1] in order to establish the model structure
by considering the case when

(F,G) = (DSd?, Ez*U)
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Homotopical behavior of desingularization

and when sSet has the standard model structure.

Recall [Notation 6.2.1] In our case, I serves as a set of generating cofibrations
for sSet and J serves as a set of generating trivial cofibrations for sSet. The
method of lifting the standard model structure on sSet to nsSet is justified
by the fact that U(f) is a weak equivalence if and only if Ex?U(f) is a weak
equivalence.

The key to verifying the second lifting condition is the notion Strgm map,
introduced in [Definition 6.4.14] Strgm maps have good technical properties,
as shown by [Proposition 6.6.2] and good homotopical properties, as shown by

At the same time, the class of Strgm maps contains the sets
DSd?(I) and DSd?(J), which [Corollary 6.4.16| shows.

6.4 Homotopical behavior of desingularization

In this section, we display examples of the behavior of desingularization. Specif-
ically, we display the results of desingularizing a few models of spheres. In
we explain that the two-fold Kan subdivision Sd? performed be-
fore desingularization ensures that the homotopy type is not altered. This is
analogous to Thomason’s situation . Note that performing the Kan
subdivision once before desingularization is not enough.

Forming the colimit of a diagram in nsSet can be done by forgetting that
the involved simplicial sets are non-singular, forming the colimit in sSet instead,
and finally applying desingularization.

Consider some of the usual models for spheres. It is not hard to realize that

D(Al[n]/0A[n]) = A[0]
for every n > 0. Not much harder is it to see that
DSd(Aln]/0A[n]) =2 A[1]

for every n > 1. Thus in these cases, desingularization does not preserve
homotopy type. Note that the case n = 1 is special as Sd(A[1]/0A[1]) is two
copies of A[1] glued together along their boundaries. Hence, this simplicial set
is already non-singular. So desingularization trivially preserves homotopy type
in this case.

The 2-sphere can be modeled by X = Sd?(A[2]/0A[2]). This is because the
Kan subdivision preserves colimits Cor. 4.2.11] and degreewise injective
maps Cor. 4.2.9]. Hence, the simplicial set Sd?(9A[2]) can be considered
the boundary of Sd?(A[2]) and the simplicial set X is the result of collapsing
this boundary. is meant to indicate that DX is the suspension of a
1-sphere, modelled by a 12-gon, which we have formulated as [Proposition 2.4.4]
In other words, desingularization preserves the homotopy type in this case. One
might attribute the behavior to properties of the inclusion

Sd?(0A[2]) — Sd*(A[2])
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6. Homotopy theory of non-singular simplicial sets

Figure 6.1: Desingularizing the double subdivision of the standard 2-simplex
with collapsed boundary.

of the boundary. [Definition 6.4.14] [Corollary 6.4.16| and [Lemma 6.6.3| will make
this claim precise. The intuition is that the two-fold subdivision creates a
sufficiently nice neighborhood around the boundary.

Here we transfer Thomason’s insights [Tho80, Prop. 4.3], which most likely
come from regular neighborhood theory, to our setting. Regular neighborhood

theory is treated in the sources [RS72, §3] and [Hud69| §IT].

The functor DSd takes the instance

daf2)joar : SA(A[2]/0A2]) = A[2]/0A[2]

of the last vertex map, which is in general a weak equivalence, to a map whose
source is a model of the 2-sphere and whose target is contractible. Hence, we
get the following result.

Lemma 6.4.1. Let sSet have the standard model structure due to Quillen. There
is no model structure on nsSet such that DSd is a left Quillen functor.

Proof. Any simplicial set is cofibrant in the standard model structure on sSet
due to Quillen. This is because the cofibrations are precisely the degreewise
injective maps. See Proposition 3.2.2. in Hovey’s book [Hov99| for a reference.

By Ken Brown’s lemma Lem. 1.1.12, p. 6] a left Quillen functor
takes each weak equivalence between cofibrant objects to a weak equivalence.
However, DSd(da2)/0a[2]) is not a weak equivalence. Thus DSd is not a left
Quillen functor. |
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Moreover, the diagram

DSd(A[2]) =< DSd2(9A[2]) —= DSd2(A[0])

DSd(A[2])) <—— DSd(OA[2]) ——= DSA(A[0])

indicates that the map DSd(0A[2]) — DSd(A[2]) is most likely a non-candidate
for a cofibration whenever nsSet is a left proper model category.
below justifies this educated guess.

We recall the axiom of propriety, which is desirable in a model category.
Consider a commutative square

x—t.z
Y —W

g

in some category. If the square is cartesian, then we say that f is the base
change of g along j. If it is cocartesian, then we say that g is the cobase
change of f along .

Definition 6.4.2. Consider a model category. We say that the model category
is right proper if weak equivalences are preserved under taking base change
along fibrations. Consider a model category. We say that the model category
is left proper if weak equivalences are preserved under taking cobase change
along cofibrations. If a model category is both right proper and left proper, then
we say that it is proper.

Note that sSet with the standard model structure is proper [Hir03, Thm. 13.1.13,
p. 242].
There is a glueing lemma that says that if we have a commutative diagram

B<——A——C

S

in a left proper model category such that at least one map in each row is a
cofibration and such that all the vertical maps are weak equivalences, then the
canonical map

Bu,s,CSYux Z

of pushouts is a weak equivalence. A reference for the dual of this result is
Proposition 13.3.9 in Hirschhorn’s book pp. 246-247]. Note that a more
common glueing lemma demands that A — B and X — Y be cofibrations and
not simply that at least one map in each row be a cofibration.

The former of the two versions of the glueing lemma yields the following
result.
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6. Homotopy theory of non-singular simplicial sets

Lemma 6.4.3. Assume that nsSet is given a model structure such that it is a
left proper model category whose weak equivalences are those maps f such that
|Uf| is a (weak) homotopy equivalence. Then neither of the two maps

DSA(OA[2]) — DSA(A[2])

and

DSA(OA[2]) — DSd(A[0])

is a cofibration or neither of the two maps
DSd*(0A[2]) — DSd*(A[2])

and
DSdz(ﬁA[ﬂ) — DSd2(A[O})

is a cofibration.

Lemma 6.4.3 justifies the educated guess that DSd(0A[2]) — DSd(A[2]) is

most likely not a cofibration, though it does not imply that the map is not a
cofibration.

Before we can state the nature of these properties we need a few definitions.
Let €7 : [0] — [n] be the vertex operator given by 0 — j. Usually, we omit
the upper index.

Definition 6.4.4. Let X be a simplicial set, and A a simplicial subset. We say
that A is full if it has the property that any simplex of X is a simplex of A
provided its vertices are in A.

Definition 6.4.5. Suppose X a simplicial set. Let A be a full simplicial subset
of X. We say that A is an eden (resp. abyss) in X if it has the property that
any l-simplex = of X whose first (resp. zeroth) vertex ze; (resp. wegp) is in A4, is
itself is a simplex of A.
We wish to compare the new notions with analogous notions in the Cat, partly
because the intuition is more readily available in C'at than in sSet.

Consider the notions of sieve and cosieve.

Definition 6.4.6. Suppose % a small category. Let 2 be a subcategory of €.
We will say that Z is a (co)sieve in € if whenever we have a morphism ¢ — ¢
whose target (source) is an object of &, then the morphism is itself a morphism

of 9.

Intuitively, a sieve is a place to which there is no entry and a cosieve is a place
from which there is no escape. The notion of sieve corresponds to the notion of
eden and the notion of cosieve corresponds to the notion of abyss. In PoSet, the
notion of sieve is equivalent to the notion of ideal when a poset is thought of as
a set equipped with a reflexive, antisymmetric and transitive binary operation.

Note the following relationship between the notions of sieve and eden and
between cosieve and abyss.

Lemma 6.4.7. The nerve of a sieve (resp. cosieve) is an eden (resp. abyss).
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Homotopical behavior of desingularization

Furthermore, note the following characterization.

Lemma 6.4.8. A simplicial subset A of a simplicial set X is an eden in X if and
only if any simplex whose last vertex is in A is also a simplex of A. Similarly,
the simplicial subset A is an abyss in X if and only if any simplex whose zeroth
vertex is in A is also a simplex of A.

below provides another characterization that is more useful.
Performing desingularization is messy in general. However, there are useful

situations in which the process is predictable. Such as when one desingularizes a

quotient X /A of a non-singular simplicial set X by an eden A. [Proposition 6.5.4]

will make this precise. Understanding the behavior of D towards quotients of

the kind we mentioned is vital to our discussion of the properties of Strgm maps.
The new notions are of the following categorical nature.

Lemma 6.4.9. A simplicial subset A of a simplicial set X is an eden (resp. abyss)
if and only if there is a map x : X — A[1] such that the square

A—— A0

l leo (resp. Neq)

X — All]
is cartesian. Here,
g0 : [0] = [1] (resp. &1 : [0] — [1])

is the vertex operator given by
0+ 0 (resp. 0 — 1).

We refer to x as the characteristic map of A as an eden (resp. abyss) in
B.

The proof of this lemma is straight-forward, and is left out.

Part of the interest in the notion of eden is that the Kan subdivision creates
edens from arbitrary simplicial subsets, which we state as below.
First, we remind the reader how to define the Kan subdivision.

Consider a simplicial set X and the poset X* of non-degenerate simplices.
There is a morphism y — « from y to x if y is a face of . The operation
of taking a simplicial set X to X* defines a functor (—)* : sSet — PoSet. A
map f : X — Y induces the map f! : X% — Y* given by sending = to the
non-degenerate part f(z)* of f(z).

Lemma 6.4.10. Let X be a simplicial set and let A be a simplicial subset of X.
Then A? is a sieve in X*.

This observation will be used in the proof of [Lemma 6.4.15] below.

Definition 6.4.11. We refer to the endofunctor of simplicial sets defined on
objects by BX = N(X¥) as the Barratt nerve.
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6. Homotopy theory of non-singular simplicial sets

Note that this terminology is not standard. We follow Def. 2.2.3, p. 35],
but Fritsch and Piccinini call B the star functor Exercise 4.6.33, p. 219].
The Kan subdivision is the left Kan extension of B along the Yoneda em-
bedding T : A — sSet. Loosely, the Kan subdivision is the best way to adapt
barycentric subdivision to simplicial sets.

We can elaborate the previous paragraph. The simplex category of X,
denoted A | X, is the small category whose objects are the representing maps =
of simplices of X and whose morphisms y — x are the commutative diagrams

Alm] —=— Aln]

X

whenever y is of degree m and z is of degree n. Note that we simplify the
notation slightly by writing « in place of Na, where « : [m] — [n] must by
definition be an operator such that y = za.

One can view the Kan subdivision of X as

Sd X = colim(B o Yx),

where Tx : A | X — sSet is the composite of Yoneda embedding [n] RN Aln]
with the forgetful functor (x,n) — [n]. A simplicial map f: X — Y gives rise
to a functor A | f such that Tx =Ty o A | f. In particular, the identity is a
natural transformation

TX:>TyOA¢f.

From this arises the map Sd(f): Sd X — SdY in an intuitive way.
Combining the diagram B o Ty with its colimit SdY gives rise to a cocone
on BoTy oA | f with apex SdY and thus a map

colim(BoYTy oA | f) — SdY.

The identity natural transformation Tx = YTy o A | f gives rise to a natural
transformation

BoYx=BoYyoAl/f,

which must be the identity as well. Thus the map above with target SdY can
be considered to have Sd X as its source. The map itself is denoted Sd(f).
We can take the viewpoint that

X = colim(TX)

Lem. 4.2.1 (ii), p. 141]. In other words, the cocone T x = X, meaning
the natural transformation from Y x to the constant diagram that takes every
object to X, is universal. Combining this with B yields a cocone Bo Y x = BX
with apex BX. It gives rise to a canonical map bx : Sd X — BX.

Lemma 6.4.12. The canonical map bx : Sd X — BX is natural, degreewise
surjective and an isomorphism if and only if X is non-singular.
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Proof. The naturality is automatic when bx comes from the viewpoint that
Sd is the left Kan extension of B along the Yoneda embedding. See
Lem. 2.2.10, p. 38] for the statement and proof that bx is degreewise surjective.
See Lem. 2.2.11, p. 38] for the statement and proof that bx is an
isomorphism if and only if X is non-singular. |

We will make use of the comparison map by in the proof of the crucial result

stated as

As promised, the Kan subdivision creates sieves.

Lemma 6.4.13. Let X be a simplicial set and A a simplicial subset. Then Sd A
is an eden in Sd X.

Proof of Lemma[6.4.13 Let i : A — X be the inclusion. We will construct a
natural transformation

BoTyx £ Alll,

which gives rise to a map x : Sd X — A[l]. Next, we will verify that Sd A — A[0]
is a base change of y along Neg.
Given an object T : A[n] — X of A | X we define

¥z : B(Aln]) — Afl]

by letting it be the nerve of A[n]* — [1] given by sending an object u of A[n]*
to 0 if zp is a simplex of A, and to 1 otherwise.
We verify that the triangle

B(Na) A[l]

commutes whenever « is such that y = xa. To this end, take some face operator
p € A[m]* with target [m]. The order-preserving function (Na)* sends u to the
face operator (ayu)f. We can write yu as a degeneracy

yp = zap = x(op)* (ap)’

of x(ayu)¥. This means that yu is a simplex of A if and only if z(au)? is a simplex
of A. In other words, the underlying triangle of posets commutes. Thus vz is
natural, as claimed.

As a result of the previous paragraph we now have the composite natural
transformation

BoTx = SdX = A[l]

between functors A | X — sSet. This composite induces a composite of natural
transformations between functors A | A — sSet, through precomposition with
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6. Homotopy theory of non-singular simplicial sets

A | i. By the design of 1, the latter factors through Neg : A[0] — A[1]. This
way we obtain a commutative square

BoYXoA li===A[0

[0]
-
[

Sd X — 1
of natural transformations and thus a candidate x : Sd X — A[1] for a char-
acteristic map. It remains to verify that, if given a solid arrow commutative
diagram

N
SdA—— A0]

Sd(l)l iNEQ

then there exists a dashed map Z — Sd A that makes the whole diagram
commute. There is at most one such map Z — Sd A as Sd(i) is degreewise
injective. Because A[0] is a terminal object it is enough to verify that f factors
through Sd(i). As Sd(i) is degreewise injective it suffices to verify that the image
of f is contained in the image of Sd(7).

Suppose z a g-simplex of Z. By the commutativity of the solid arrow diagram,
we get that

Negog(z) = x o £(2).

We argue that f(z) € Sd(X), is in the image of Sd(i),.

The simplex f(z) is the image of some element ¢ : [¢] — A[n]* € Tx ()
such that ¢(q) is the identity. Write ¢; = ¢(j) for 0 < j < ¢q. Because x o f(z)
is in the image of Ney, it follows that x¢; is a simplex of A for each j with
0 < j <gq. In particular, the simplex xp, is a simplex of A. The face operator
g is the identity, so x = zyp, is itself a simplex of A. Thus f(z) is in the image
of Sd(i). |

Now we know that a simplicial subset of a simplicial set can always be turned
into an eden by applying the Kan subdivision.
The following term is central.

Definition 6.4.14. A map k : A — B in nsSet is referred to as a Strgm map
if the following conditions hold.

1. The map k is a degreewise injective map whose image is an eden in B.

2. There is an abyss W in B such that & can be factored as i : A — W
followed by the inclusion j : W — B.
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Homotopical behavior of desingularization

3. The map i is a section of some map r : W — A.

4. The simplicial set W is deformable rel A to A in W, namely there exists a
simplicial homotopy € : W x A[1] — W such that the diagrams

w
. l ir
0

W x A[l] I 74 pri €

Notice that the image of k is an eden in W.

The class of Strgm maps is not a category as a composite of Strgm maps is
not necessarily a Strgm map. This is because the two simplicial homotopies as
described in [Definition 6.4.14] that come with two composable Strgm maps do
not necessarily give rise to a new simplicial homotopy that satisfies the fourth
condition of Compare with class of pseudo-Dwyer maps ,
which does form a subcategory of Cat.

A bit of history may be of interest to the reader. The class of Strgm maps
fills the same role in establishing nsSet as a model category (Quillen equivalent
to sSet) as the class of Dwyer maps in Thomason’s paper [Tho80], where Cat is
established as a model category (Quillen equivalent to sSet). However, a mistake
in Thomason’s proof intially left the axiom of propriety unproven.

After having established the model structure, Thomason asserted that the
Dwyer maps were closed under retracts. As any cofibration was a retract of
a Dwyer map, Thomason concluded that any cofibration was a Dwyer map.
Therefore, as the nerve functor N took a cocartesian square in Cat with at
least one leg Dwyer to a homotopy cocartesian square in sSet, it would follow
that Cat is left proper. However, the Dwyer maps are not closed under retracts
[Cis99).

This mistake was not a fatal mistake, as it turned out. Cisinski was able
to correct the proof of the axiom of propriety by weakening the definition of
the term Dwyer map and thus creating a new notion that he gave the ad hoc
name pseudo-Dwyer map. Perhaps the new notion is better referred to under the
name Cisinski map. The notion of Cisinski map may have been borrowed from
A. Strgm as it is an analogue to one of his characterizations Thm. 2 (ii),
p. 12] of the cofibrations for the Strgm model structure on topological spaces
[Str72]. It is the model structure whose weak equivalences are the homotopy
equivalences and whose fibrations are the Hurewicz fibrations.

Cisinski argues that N takes a cocartesian square in Clat with at least one
leg Cisinski to a homotopy cocartesian square in sSet . Thus Thomason’s
argument that C'at is left proper goes through when Dwyer maps are replaced

Ax Al =25 W x Al

comimute.
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6. Homotopy theory of non-singular simplicial sets

by Cisinski maps. Cisinski takes the correction one step further and points
out that Cisinski maps are closed under cobase change and under taking com-
positions of Ny-sequences . Indeed, Raptis points out that both Dwyer
maps and Cisinski maps are closed under (transfinite) compositions
Prop. 2.4. (a), p. 216]. Thus, using Thomason’s original technique, Thomason’s
model structure on Clat can be established by means of the term Cisinski map
alone, although the notion of Dwyer map plays a role in Thomason’s discussion
regarding cofibrant objects Lemma 5.6. (4),p. 323].

Crucially, the sets DSd?(I) and DSd?(J) are contained in the class of Strgm
maps, as we will now argue.

Lemma 6.4.15. Let k£ : A — X be an inclusion of a simplicial subset A into a
non-singular simplicial set X. If A is an eden in X, then B(k) is a Strgm map.

Proof. Let W be the subposet of X! whose objects are precisely the non-
degenerate simplices of X that have a face in A. As A is an eden it follows
that there is a greatest face in A of any given element of W. If w € W, we let
r(w) denote this unique face. Because X is non-singular it follows that r(w) is
non-degenerate, hence an object of A*. Moreover, we get a functor r: W — Af.
It is a retraction of the corestriction i of k* : A* — X* to W.

By the functor (—)* creates sieves. Therefore, we get that
At is a sieve in X*. By the definition of W it follows that it is a cosieve in X*.
Furthermore, says that BA = N(A") is an eden in BX = N(X¥)
and that NW is an abyss in BX.

If w € W, then there is a morphism ir(w) — w by the definition of r. The
rest of the argument is standard. Namely, because W is a poset it is true that
ir(w) — w is automatically natural. This natural morphism from ir to the
identity can be viewed as a functor W x [1] — W, which in turn gives rise
to a simplicial homotopy NW x A[l] — NW from Nio Nr to the identity
as N preserves limits and in particular products. The simplicial homotopy is
stationary on N(A*) because it is identified with the nerve of W x [1] — W,
which is stationary on A% in an intuitive, analogous sense. This concludes the
proof that B(k) is a Strgm map. |

Corollary 6.4.16. Let Y be a simplicial set such that SdY is non-singular and
let X be a simplicial subset of Y. If k: X — Y is the inclusion, then Sd?(k) is
Strom.

Proof. According to [Lemma 6.4.13] we have that Sd X is an eden in SdY. By

Lemma 6.4.15| we now know that BSd(k) is Strom. The naturality of bsg x
means that we can identify BSd(k) with Sd?(k) via the diagram

Sd? X 54X BSd X

Sd(Sd(k))l iB(Sd(k))
S?Y —=> BSAY

SdyY
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as Sd X and SdY are non-singular. This is because the natural map from
the Kan subdivision to the Barratt nerve is an isomorphism when the original
simplicial set is non-singular Lem. 2.2.11, p. 38]. Hence, the map
Sd?(k) is a Strgm map. [ |

In particular, if & in [Corollary 6.4.16|is one of the inclusions dA[n] — A[n] or
one of the inclusions A’[n] — A[n], then we see that Sd?(k) is a Strgm map.

6.5 On higher and lower planes of existence

[Corollary 6.4.16| has shown us that the sets DSd?(I) and DSd?(J) are both
contained in the class of Strgm maps. This class of maps will serve as an auxiliary
class of maps that aids us in establishing the model structure.

To form a pushout in nsSet one can first form the pushout in sSet and then
desingularize it. The desingularization process destroys the homotopy type in
general, but it turns out that the homotopy type is preserved when the pushout
in sSet is taken along a Strgm map. This result is stated as The
important formal property of Strgm maps is that they are preserved under taking
cobase change, which is stated as [Proposition 6.6.2] To prove both of these
results, the most work intensive task is to establish [Proposition 6.5.4) which we
will focus on in this section. It helps us control the homotopical behavior of
desingularization in important cases.

As a preliminary step towards proving that Strgm maps are preserved under
cobase change, we have the following basic result.

Lemma 6.5.1. If the square
C

T>X|_|AC

is cocartesian in sSet and ¢ embeds A as an eden (resp. abyss) in X then j
embeds C' as an eden (resp. abyss) in X L4 C.

Proof. We do the case when A is an eden. Notice that no part of the proof prefers
the case when A is an eden over the case when A is an abyss. Alternatively,
use the notion of the opposite Def. 2.2.19, p. 42] of a simplial set to
conclude that the result also holds in the case when A is an abyss.

Note that we can factor f: A — C as a degreewise surjective map followed
by a degreewise injective map, so we can prove the lemma by proving that it
holds in the two cases when f is degreewise surjective or degreewise injective.

First, we do the case when f is degreewise surjective. Suppose y some simplex
of X U4 C whose last vertex is in the image of j. We will prove that y is in the
image of g. Here, we use the elementary characterization from
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There is at most one simplex x such that y = g(z). Suppose there is one. As
f is surjective in degree 0, there is a O-simplex v of A such that

yen = jo f(v) = goi(v)

by the assumption that ye,, is in the image of j. As ¢ embeds A as an eden in
X, there is a simplex a of A such that = i(a). Then we can define ¢ = f(a).
The given simplex y is the image under j of c. It follows that j embeds C' as an
eden in X Ly C.

Finally, we do the case when f is degreewise injective. Suppose y some
simplex of X L4 C whose last vertex is in the image of j. We will prove that y
is in the image of g.

There is at most one simplex z such that y = g(z). Suppose there is one.
The vertex ye,, is then uniquely the image under g of ze,,, in addition to being
uniquely the image under j of some O-simplex w of C. Hence, there is some
unique O-simplex v of A whose images under f and i are w and ze,,, respectively.
Hence, there is some simplex a of A with = i(a) by the assumption that ¢
embeds A as an eden in X. Thus y is the image under j of ¢ = f(a). It follows
that j embeds C as an eden in X Lig C. [ |

In addition to we will state some basic properties of cartesian

squares.

The properties stated in[Lemma 6.5.2 below are here collectively referred to as
the two-out-of-three property for cartesian squares. See for example I11.4 Exercise

8 (b) in [Mac98] for a reference to the first two statements of [Lemma 6.5.2| below.
All three statements of [Lemma 6.5.2| appear in Lemma 2.4 of [CP06| p. 57] for

the case ¥ = sSet as Chachdlski, Pitsch and Scherer work in that category.

Lemma 6.5.2 (Two-out-of-three property for cartesian squares). Suppose
A C E
B D F

a diagram in some category €.

—_— > —

1. The outer square is cartesian if both the left hand and the right hand
square are cartesian squares.

2. Likewise, the left hand square is cartesian if the right hand and outer
squares are cartesian.

3. If the outer and left hand squares are cartesian, then the right hand square
is cartesian if the morphism B — D has a section.
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Proof. Consider the third statement, meaning the case when the left hand and
outer squares are cartesian and k has a section, consider the diagram

X ¢
AN
N Y
AN
1( A j
A C E
N g
B k D l F
\_/

in %, where we assume that hoe =10.
We will prove the existence and uniqueness of a map v : X — C such that
e=joyand § =gon.
First we prove existence. Because the outer square is cartesian and because
s is a section of k, the two maps € and s o § give rise to a map a : X — A such
that
e=(joi)oa (6.2)

and
sod=foa. (6.3)

Define v = i o . Then ([6.2) is the first half of what we need to verify. For the
second half, observe that & composed with each side of (6.3)) yields

0 = (kos)od
= ko(sod)
— ko(foa)

(kof)oa

= (goi)oa

go(ioa)
= g°7

which is the second half of the verification of the existence of ~.
Finally, we prove uniqueness of 7. Take two maps X — C, denoted v and +/,
such that the equations

0 = govy
§ = goy
€ = joy
e = joy

hold. Then the two maps s o § and ~y give rise to a canonical map «: X — A as
the left hand square is cartesian. Similarly, the two maps so ¢ and 7/ give rise
to a canonical map o : X — A. Next, we can take advantage of the assumption
that the outer square is cartesian. This shows that o = o’/. Then the equations

. . / !
Y=t1to0ox =100 =7

yield the desired uniqueness. |
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Note that the assumption that B — D is an epimorphism is enough for the third
statement of to hold for for some categories ¥. This is trivially
true when ¥ = Set is the category of sets and functions, for the epimorphisms
are in that case the surjective functions, which are in turn the functions that
have a section.

Corollary 6.5.3. Suppose

a diagram in the category sSet. If the outer and left hand squares are cartesian,
then the right hand square is cartesian if B — D is degreewise surjective.

Proof. The corollary follows from the third statement of in the
following way. The category sSet is the category of functors A°? — Set and
natural transformations between them. As a Set-valued functor category, the
category sSet is bicomplete. In a functor category, limits and colimits are formed
pointwise. In other words, we can apply [Lemma 6.5.2]in the case when ¢ = Set,
in a given degree n as B, — D, is surjective by assumption. The right hand
square in degree n is thus cartesian. We can conclude that the right hand square
of the given diagram is cartesian in sSet |

Note that shows that the assumption that B — D is an epimor-
phism is sufficient in the case when ¢ = sSet in above.

We are interested in triples (X, A, V') where X is a simplicial set, where A
is a non-singular eden in X and where V is a non-singular abyss in X. We are
particularly interested in two cases. The first is when A is contained in V' as
this is part of the definition of the term Strgm map. Secondly, we are interested
in the case when AqgU V) = Xo and Ag NV = 0. In this section, we will only
consider the second case, however the first case plays a role in the next section.

Notice that if x : X — A[1] is the characteristic map of A as an eden in
X, then x is actually also the characteristic map of V' as an abyss in X. This
is because we are concerned with the special case when Ag UV = Xy and
Ao NV = 0. Therefore, given an n- simplex 2 of X we can consider the diagram

A[k7777>A*>A[0
l Ve

Aln] —2—> X — > A[1] (6.4)
T e

An—k—1- - =V —= A[0]

-
where we have taken the base changes of x o z along Neg and Neq, respectively.
Here, we allow —1 < k <n and use the convention A[—1] = (). The vertex ze;
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is a simplex of A if j < k and a simplex of V if j > k. The diagram above also
illustrates the intuition from which says that a simplex can leave an
eden or enter an abyss, but that a simplex can neither enter an eden nor leave
an abyss.

Now, consider the case when x is non-degenerate. If k = —1, then z is a
simplex of V', which means that it is embedded in V' as V is non-singular. Then
x is also embedded in X, of course. If k = n, then z is a simplex of A, which
means that it is embedded as A is non-singular. Taking the contrapositive, we
get that k£ # —1 and that k # n if = is not embedded. In particular, it follows
that n > 0 if z is not embedded. But if n = 1, then z is embedded in the case
when k& = 0. This is because Ay and V} are disjoint and because the vertex xeg
is a O-simplex of A and because ze; is a 0-simplex of V. So in fact,

—14k#n>1 (6.5)

when z is non-degenerate and non-embedded.

For the statement of [Proposition 6.5.4] note that we intend to replace the
triple (X, A, V) with the triple (X/A, A[0], V) where X is non-singular. In other
words, we specialize quite a lot.

Proposition 6.5.4. Let X be non-singular and A an eden in X. Furthermore,
consider the cocartesian square

A—To Al0]

X/

in sSet. If V is the full simplicial subset of X whose 0-simplices are the ones
that are not in A, then the composite

v4 x4 x/AL px/A),
denoted J, is an embedding of V' as an abyss in D(X/A).

Notice that V' is an abyss in X as A is an eden. It is even true that V is an
abyss in X/A. If the latter statement is not clear at this time, it will be early
in the proof. Thus the triple (X/A4, A[0], V) is indeed a specialization from the
previous paragraphs.

Recall from the fact that nsSet is a reflective subcategory of sSet that one can
make the square from [Proposition 6.5.4] cocartesian in nsSet by desingularizing
the pushout X/A. Let 7 denote the composite of the canonical map X/A MN
D(X/A) with 2. Let j= foj.

The triple (X, A[0], V) is a form of world order, where the eden A[0] can be
thought of as a higher plane of existence and the abyss V' as a lower plane. A
simplex of X /A is thought of as living in this world in the manner explained by

the diagram (6.4]) and the conditions of (6.5]).

We will make use of the following terminology.
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Definition 6.5.5. If \ is an ordinal, then a A-sequence in a cocomplete category
% is a cocontinous functor X : A — %, written as

x10] x . x (8]

B < A. The canonical map
X0 colimﬂ<>\X[’3]

is the composition of the A-sequence. A sequence is a A-sequence for some
ordinal \.

For sequences, we sometimes use the same letters that at other times denote

simplicial sets. However, we use the brackets in the notation to avoid confusion

with skeleton filtrations. This is because X™, n > 0, denotes the n-skeleton of a

simplicial set X. Also recall that we have taken X,,, n > 0, to mean the set of

n-simplices of a simplicial set X. Both of the two latter notations are standard.
Next, we prove the proposition.

Proof of [Proposition 6.5.4] We will desingularize the simplicial set X/A in an
iterative manner. Each non-embedded non-degenerate simplex of X/A will be
made degenerate.

The method we use is similar to how G. Lewis Jr. makes a k-space compactly
generated by identifying two points whenever they cannot be separated by open
sets p. 158].

Our method is also a modification of Moreover, the simplicial
set X/A is quite special as it is formed by collapsing an eden within a non-

singular simplicial set. This makes it viable to deal with one non-embedded
non-degenerate simplex at a time. Doing this seems to maximize the transparency
of the process so that it becomes easy to realize that V stays an abyss during the
process. This is the reason we modify the theory in [Section 2.3|and [Section 2.5
instead of applying the general result that is Recall that V is
defined as the full simplicial subset of X whose 0-simplices are the ones that are
not in A.

The canonical map 7 is by [Lemma 6.5.1] an embedding of A[0] as a eden,

which says precisely that the first quadrant of the diagram

A A[0] A0]

U e

B VNG|

i

R ()

R

is cartesian. This yields the canonical map Y. In addition, we have formed the
cartesian square in the fourth quadrant, which yields the map V — V'. Next,
we will argue that the latter map is an isomorphism.
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We start by proving that V' — V' is degreewise surjective. The outer part of
the lower half is cartesian and so is the fourth quadrant. By [Lemma 6.5.2]it then
follows that the third quadrant is also cartesian. Hence, the map V — V' is a
base change of the degreewise surjective map f. Limits in sSet are computed in
each degree, and in the category of sets, a base change of a surjective map is
again surjective. We can conclude that V, — Vq’ is surjective for each ¢ > 0.

Next, we argue that V — V' is degreewise injective. Consider the diagram

V<——0——= A[0]

R

X ~— A——All]

which gives rise to a canonical map V' L A[0] — X/A between pushouts in SSet.
As A is an eden in X and by the definition of V', the images of ¢ and j are
disjoint. Hence, the map between pushouts is degreewise injective. In particular,
the composite 7 is degreewise injective, implying that V' — V"’ is. In other words,
the canonical map V' =, V' is an isomorphism.

We are ready to begin the iterative desingularization of X/A. Let p° be the

canonical degreewise surjective map X/A BEZEN D(X/A) and write

DUY(X/A) = X/A.

Here, we use brackets, because we intend to describe a sequence. This is to make
the notation reflect that of
Furthermore, write
0 =
j =
X = X

S|

Assume that we for some ordinal v > 0 have a 7-sequence of commutative
diagrams

Vv A[0]
for 8 <~ where...
1. ...the two squares are cartesian, where. ..
2. ...p" is degreewise surjective for each 8 < v and where. ..
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.8
3. ...each map Dl°l(X/A) I, plsl (X/A),0 < a < B <7, is also degree-

wise surjective.

By the phrase y-sequence of commutative diagrams used above we mean a functor
from the ordinal - to the category of functors whose source is the category

|

<z
\

<N
Gq— O <

P

and whose target is sSet. Thus compatibility of all the maps above is implicit in
the hypothesis. We will refer to the commutative diagram with index § as the
B-th stage of the (iterative) desingularization process, and even to DIPl(X/A)
under the same name.

If a simplicial set is not non-singular, then we say that it is singular. Together
with the y-sequence, assume that for each ordinal § < y such that DI®I(X/A) is
singular, we have a simplex 2% of X such that f*#(2?) is a non-embedded non-
degenerate simplex of DIPI(X/A). Suppose z® # 2 whenever a # (. Assume
that for each ordinal 3 such that 3+ 1 < «, we have that the simplex f%#+1(z#)
of DIPFU(X/A) is degenerate. This data will later be used in proving that the
iterative desingularizing process does indeed come to a halt.

If DII(X/A) is singular, then let 27 be a simplex of X/A whose image under
f%7 is a non-embedded non-degenerate simplex. Suppose 3 < «. Notice that
x? # x7 as the commutative diagram

X/A - DII(X/A)
Jianl
fO,B fﬁ,'v
DW](X/A) e D[5+1](X/A)

shows. Namely, we have that
7970 12 (@)

is degenerate whereas f%7(z7) is not. Note that this argument concerns both
the case when v is a limit ordinal and the case when + is a successor ordinal. In
the latter case, the map f8T17 in the diagram above is potentially the identity,
which is ok.

If 7 is a limit ordinal, then we form the colimit of the v-sequence of commu-
tative diagrams. Because colimits in a functor category are computed pointwise
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[Mac98, Section V.3], the colimit is a diagram

AJ0] —— A[0]

D(X/A) <2 ~ ph (X/A) —= A[1]
~ T Ney

] A0]

where D(X/A) is the colimit of the y-sequence

f/%/i-%—l

M(X/A) f0_1> -~-—>D[5](X/A) AN

where 0 < § and + 1 < «. Because the colimit of commutative diagrams is
filtered, both of the squares are cartesian as filtered colimits commute with finite
limits Section IX.2]. The canonical map p? is automatically degreewise
surjective as each map p®, B < 7, is degreewise surjective. Also it follows that
f&7 is degreewise surjective for oo < 7.

Now comes the real work. That is, we look at the case when v =+ 1 is a
successor ordinal. If DIPl(X/A) is non-singular, then we simply copy the -th
stage and give the copy the index 5 + 1. The map to the latter from the g-th
diagram then consists of identities. Otherwise, if DI?l(X/A) is singular, then
write y = %7 (7). Assume that y is of degree n. Note that we are about to
make y degenerate and that S may be a limit ordinal. So the following text both
finishes the limit ordinal case and takes care of the successor ordinal case of our
iteration.

We can take the base change of x? o4 along Neg and Ney, respectively, and
get the diagram

N N —— N
W
Aln] ——— DPI(X/A) —— A[1] (6.6)
jBT €1
L

similar to (6.4) with the conditions of (6.5). Thus the vertices yey, ..., yer are
in the image of i’ and the vertices yeg41, ..., ye, are in the image of ;7.
Because the source of i” is A[0], we have

yeoz...:ygk_

This means that the simplex p”(y) of D(X/A) can be written p®(y) = wp, where
p: [n] = [n — k] is the degeneracy operator given by 0,. ..,k — 0. Therefore, to
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make y degenerate by pushing out along p is be a step towards desingularizing
DIFI(X/A). We will shortly argue that this step is non-trivial, meaning that
k > 0. In fact, the step is optimal.

Note that the composite

Al & DI¥(x/4) X5 A
%

is induced by the operator [n] — [1] given by

0,...,k—0

and
k+1,...,n— 1.

This operator can be factored as o o p where o : [n — k] — [1] is given by 0 — 0
and sending all elements greater than 0 to 1.

The remarks of the two previous paragraphs give rise to the (5 + 1)-th stage.
Consider the diagram

where we have formed a cobase change
A8 pBl(X/A) — DI (X/A)

along p. Here, we have let A[n — k] — D(X/A) be the map that sends the
identity [n — k] — [n — k] to p”(y)u, where p : [n — k] — [n] is the section of p
given by 0 — 0. The map A[n — k] — D(X/A) sends p : [n] = [n — k] to

@’ (W)n)p = (wp)p)p = (wipp))p = wp = p*(y).

Thus the solid diagram above commutes and we obtain canonical dashed maps
P11 and pP*! as indicated. The observation that p® o factors through Np is
essentially a special case of [Proposition 2.3.4}

The map f#P*+1 is degreewise surjective as it is a cobase change of the
degreewise surjective map Np. By the choice of p, the map f?#*1! is a bijection
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in degree 0 as the effect of taking the pushout along p is trivial in degree 0.
Furthermore, the map p?*! is degreewise surjective as p? is. This shows that
the second and third of the three conditions associated with the (8 + 1)-th stage
are satisfied. However, the first remains to be verified.

Pushing out along Np is not even useful unless k > 0, for in that case the
map f?P*! is an isomorphism. Moreover, we will, beginning with the next
paragraph, argue that the vertices yegy1, ..., ye, are pairwise distinct. As y
is non-embedded it will then follow that k& > 0. Notice that by the choice of p,
the vertices of z are pairwise distinct if the vertices yeg41, ..., ye, are pairwise
distinct. Thus it will follow that the simplex z of DIP+1(X/A) is embedded.
In other words, to push out along p is an optimal step in the desingularization
process.

We prove that the vertices yegy1, ..., ye, are pairwise distinct. First, note
that the left hand square in the diagram
s

&DW(X/A) All]

)f p e

1% A0]

X

idy

is cartesian as both the outer and right hand squares are cartesian. As the map
f%P o f is degreewise surjective, we can take the representing map A[n] — X of
some simplex § of X that f%% o f sends to y and draw the diagram

Aln] )f DIFl(X/A)
Afn—k—1]—- - — - - -V v 1%

where we have pulled the representing map of § back along j.

Note that the simplex 7 is non-degenerate as y is. Because X is non-singular,
it follows that the representing map of gy is degreewise injective. Therefore,
its base change A[n —k — 1] — V along j is degreewise injective. The outer
square is cartesian as the left hand and right hand squares are cartesian. Hence,
the composite of the two degreewise injective maps j% and Aln —k—1] = V
represents the k-th back face of y. Recall that 77 is degreewise injective as it by
assumption embeds V as an abyss in DI?l(X/A). This concludes our argument
that the vertices yex41,...,ye, are pairwise distinct. Recall that this implies
that the simplex z is embedded.
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To form the diagram at the (8 + 1)-th stage of the sequence we define
B = fBBHL 6B and jB+! = fAA+1 6 j8. This means that

7= pﬂ 0if = (p B+1 o fﬂ B-i-l) 0if = pftt (fB,B-H oz’B) BH1 o jP+1

p =D
and that
5 — pB ojB (p B+1 fB ﬁ+1) OJ p6+1 (fﬁ,/3+1 oj ) = p,BJrl 03*3*17

which shows that we get a diagram

A[0] A[0]

/ L

D(X/A) <~ pB+il(x/4) —X
\ T Neq
1% AJ0]

together with a morphism from the S-th stage. It remains to argue that the two
squares on the right are cartesian.
We can form pullbacks C' and V' to obtain the diagram

Al0] - = = == = — — - e A[0]
| |
fﬁ sB+1 ﬁ+1
DF(X/A) ————— DIPHI(X/A) —— A[]]
| |
Ve mm— - = — - =V’ A[0]

in which we by [Cemma 6.5.2] get that the second and third quadrant are cartesian.
The category sSet has the property that a base change of a degreewise surjective
map is again degreewise surjective. Consequently, the base changes A[0] — C
and V' — V' of f##*+1 must be degreewise surjective. Then A[0] — C' is trivially

an isomorphism. In other words, the map i#*! is the base change of Neg along
B+1
X7

It remains to argue that V' — V' is degreewise injective. For this it suffices
to argue that the composite

8 B.B+1
v 25 DBl (x/A) L pla+l(x/4)
is degreewise injective. Take m-simplices v and w in V and suppose
f67,6'+1 ojﬁ('u) — fB,B+1 oj’B(w).
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We will prove that v = w. As j# is degreewise injective it is enough to prove
that j%(v) = 7% (w). We can at least say that both of the simplices 7% (v) and
7% (w) are in the i 1mage of the representlng map ¥ or that j°(v) = j°(w).

If the simplices j”(v) and j° (w) are in the image of ¥, then there are operators

Qyy iy = [Mm] — [n]

such that ya, = j%(v) and ya,, = j®(w). By our hypothesis we then know that

(ZoNp)oNa, = (fFt1og)oNa,
= fﬁﬁJrl (yONav)
= [P0 (jF o)
= fPFtlo (j% o w)
— f5=5+1o(yoNaw)
= (f77*1og)oNay,

= (ZoNp)o Nay,.
Given the fact that z is embedded, the equation above implies
NpoNay, = Npo Nay, = pay = paiy,.

Recall that, by definition, the degeneracy operator p is injective on the subset
{k+1,...,n} of its source.

Because ya, = jB( ) is in the image of j#, it follows that the image of a, is
contained in {k +1,. n} Recall the definition of k from the diagram (6.6)).
Similarly, because yo,, = j°(w) is in the image of j”, it follows that the image
of a,, is contained in {k + 1,...,n}. The fact that p is injective on this subset
combined with the equation pa, = pay, yields o, = ay,. This concludes the
verification that j#+1 is base change of Ne; along x#*! and thus the construction
of the (5 + 1)-th stage.

It remains to argue that the iterative desingularization process eventually
halts. We will use the indices z?, 5 > 0, defined above.

Let A be a cardinal that is strictly greater than the cardinality of (X/A)*.
Define S as the set consisting of those z¥ with 3 < A. This is a subset of (X/A)*.
Then we can consider the injective function S — A 4 1 defined by 2? — 3. If
a < f3, then z® is defined if 2° is. In other words, « is in the image of S — A +1
if 8 is. By the choice of A, there is no surjective extension

of S — A+1to (X/A)!. In other words, S — A+ 1 cannot possibly be surjective.
Hence, the element X is not in the image of the latter function. By the definition
of S it follows that 2 is not defined, so the set S contains all simplices of X/A
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6. Homotopy theory of non-singular simplicial sets

with a designation z”. This shows that DI*(X/A) is non-singular, so the method
we use in order to desingularize X/A does indeed come to a halt.

As a result we get that p* : DN (X/A) =, D(X/A) is an isomorphism. Now,
the simplicial set DN(X/A) belongs to a diagram that displays V' embedded as
an abyss in DY (X/A). By design, the composite

v 2 DN (x/A4) 7 D(x/A)

is a factorization of the canonical map j: V — D(X/A), so this finishes our
proof of |[Proposition 6.5.4} |

6.6 Properties of Strom maps

In this section, we will prove that the class of Strgm maps is closed under
cobase change (in nsSet), stated as [Proposition 6.6.2] Based on this result, we
establish [Lemma 6.6.3 which says that to take a pushout along a Strgm map is a
homotopically well behaved operation. The latter will be the key to establishing
the model structure on nsSet and to the relationship with the model category
of simplicial sets.

First, consider the following lemma.

Lemma 6.6.1. Suppose k : A — B the inclusion of an eden A in a non-singular
simplicial set B and that f: A — C is some map in nsSet. Assume that there
is an abyss W in B that contains A. Let ¢ denote the inclusion A — W and let
j denote the inclusion W — B. Then the canonical map

Bl D(W LA C) = D(BL4C)

is an isomorphism.

The proof of [Lemma 6.6.1]is an adaptation of Thomason’s argument on page
315 in his article [Tho80] whose purpose is analogous.

Proof of Let V denote the full simplicial subset of B whose 0-
simplices are those that are not simplices of A. Then V is an abyss in B.

Consider the square

Vaw —Ww
|4 B

in sSet. The simplicial set V NW is an abyss in both V' and W. Due to these
facts and the fact that B = V U W, it follows that the square is cocartesian. We
put it next to the diagram . Then we get a canonical isomorphism

B Uy D(Wl_lA C) =V Ulyaw D(WUA C)

between pushouts in sSet.
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We know from [Proposition 6.5.4] that the canonical map

VAW — D(W/A)

is an abyss, hence

VAW — D(W U, C)

is degreewise injective. Therefore, the simplicial set V Uyaw D(W Uy C) is
the pushout in sSet of a diagram in which all objects are non-singular and
where both legs are degreewise injective, which means that the pushout is itself
non-singular. By the universal property of desingularization, it follows that the
canonical map

By D(W U4 C) = D(B U4 C)

is an isomorphism. |

Next, we combine [Lemma 6.6.1] with [Proposition 6.5.4] to establish
tion 6.6.2)

In the proof of below, we will refer to the full strength of
|Proposition 6.6.2] and not just that Strgm maps are closed under taking cobase
change. Hence the slightly awkward formulation of [Proposition 6.6.2}

Proposition 6.6.2. The class of Strgm maps is closed under taking cobase change
(in nsSet). Moreover, if k: A — B is a Strgm map with factorization

and if the diagram

k W»D(WHAC) i

in nsSet displays k as the cobase change of k along some map f: A — C and
as the cobase change of i along f, then

ALwidB

is a factorization of k as a Strgm map.
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Proof. Consider the commutative diagram

A—t.c A[0]
k vLL w ui:,s‘(w fA C\ D({V/A) o
[ ~

BBy C— By D(W U, C) = D(B Uy C) — D(B/A)

\/

NBuUC

in sSet, where we have used the naturality of W U4 C — D(W U4 C). Because
we simplify notation many places, for instance by removing redundant U’s, the
terms natural and naturality may seem out of place. Nevertheless, it is the
category-theoretical notion that is understood. Notice that the cobase change
k= jotof kin nsSet is present in the diagram, diagonally.

|Deﬁnition 6.4.14| has four conditions that the map k must satisfy. We will
start by confirming the third, which is that there is a retraction

f:D(WLlA(;')—)C

of 7. This is immediate from the existence of the retraction r : W — A of i as
we see in the diagram

in nsSet where we make use of the universal property of D(W L 4 C) as a pushout.
This concludes our verification of the third condition of [Definition 6.4.14l

For the fourth condition of [Definition 6.4.14l one should be convinced that
the functor

— x A[l] : nsSet — nsSet

preserves pushouts, which it does according to Hence, the
simplicial homotopy rel A denoted € that comes with the Strgm map k gives rise
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to a corresponding simplicial homotopy € via the diagram

fx1

A x A[1] C x All]
pri
ix1 ix1 \C
(nog)x1 (6.8)
W x A[l] : D(W U4 C) x All] 3
x ~
w D(W U, C)

nog
in nsSet. We can expand the diagram by considering the diagram

!

1074 : A

C
-

Wx ALl << A x ALl 2% ¢ x A

C

i f
in nsSet. It gives rise to a diagram

D(W La C)

D(W Ua C) x All] —<= D(W U4 C)

|

D(W Lla C)

in which the composite € o 7 is the identity. Using the universal property of
D(W Uy C), one can check that the upper diagonal map

D(W LA C) — D(W Lis )

is 07, Thus € is a deformation of D(W L4, C) to C. That the deformation is rel
C is immediate from the diagram that defines ¢, namely . This concludes
our verification of the fourth condition of [Definition 6.4.14]

We are about to take care of the first and the second condition of [Defini]
To this end, note that below says that the canonical

map

Bl D(W U, C) S D(BL4 C)

is an isomorphism. This implies that the map j is identified with a map that is
a cobase change in sSet of the abyss j. Thus 7 is an abyss. In other words, the

second condition of [Definition 6.4.14] holds.
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In particular, the map 7 is degreewise injective. Hence, the map k is degreewise
injective, for it is the composite joi. Recall that the map 7 is degreewise injective
as it is a section of 7.

Finally, we prove that the first condition of [Definition 6.4.14] holds. By
the cobase change k = 707 in sSet of k is an eden. Furthermore,
the characteristic map x : B C' — AJl] of C as an eden in Bl C gives rise
to a unique map

U D(BULC) — All]

such that x = Vonpgy,c via the universal property of desingularization. We will
argue that ¥ is the characteristic map of C' as an eden in D(B L4 C'), meaning
that k is the base change of Neg along .

Suppose we are given a simplicial set X and maps 5 : X — Bandv: X — C
such that

ko~ =ngu,copB. (6.9)

Consider the solid arrow diagram

Af0]

T

v
Bl_lACmD(BLlA C)HA[I]

in sSet. Notice from the equations

Negoh = Nso_ohoidc
= xok -
(\II OT}BI_IAC) O_k

\IJO (?BI_IACOk)

)

I
S|
o
=
o
-
U
Q

that the right hand square commutes.
We use that the outer square is cartesian to obtain a dashed map a: X — C
such that B
8 = ko«
hoy = (hoidg)oa.

The second equation is uninteresting, but the first combined with yields

~

];OVZWBUACOBZUBHACO(];OOC):(nBI_IACOIE’)OOK:kOOC-

Thus o =~ as k is degreewise injective. The degreewise injective maps are the
monomorphisms of sSet. This shows that the left hand square is cartesian.
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Because np ¢ is degreewise surjective it follows by that
the right hand square is cartesian. In other words, the map k is the base
change of Neg along W. This concludes our verification of the first condition of
Defnion GA1a -
The proof of |[Proposition 6.6.2] finishes the technical bulk of this article.

We conclude the section by establishing the following crucial homotopical

link between simplicial sets and non-singular simplicial sets. It is an adaptation
of the analogous result for Dwyer maps [Tho80, Prop. 4.3].

Lemma 6.6.3. Let £k : A — B be a Strgm map and f : A — C some map in
nsSet. If the square

A ! c

.

B——>D(UBUys UC)

is cocartesian in nsSet, then the square

vA—Y e

| |

UB——>UD(UB Uy UC)

is homotopy cocartesian in sSet.

Proof. We are pedantic in the formulation of the proposition in the hope that
the notation will make it clear which pushout belongs in which category. What
we will prove is that the canonical map

UBUya UC — UD(UB Uy, UC)

from the pushout in sSet of the diagram

uB & ua Yl ye

to the pushout in nsSet of the underlying diagram is a weak equivalence in sSet.
Now, we remove the redundant U’s from the notation and proceed.

Suppose k = j oi a factorization of k as a Strgm map. Assume that k= joi
is the cobase change in nsSet of k along f and that 7 is the cobase change in
nsSet of i along f. By |[Proposition 6.6.2] it follows that the right hand vertical
map in the diagram

B<tf a1 ¢
o
B<l—W —~DWU4C)
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in sSet is a weak equivalence. The diagram yields a factorization of
NBUAC - BUAC—)D(BLIAC)

as
BUsC = By D(W L, C) = D(BU, O).

Here, the first map is a weak equivalence by the glueing lemma
[Hir03, Prop. 13.3.9, p. 246]. Note that k and j are cofibrations in the standard
model structure on sSet as the cofibrations are the degreewise injective maps.

The second map is an isomorphism by [ |

6.7 Lifting conditions
In this section, we finally verify the lifting conditions stated in [Theorem 6.3.1]

in the case when
(F,G) = (DSd?, Ex*U)

and when sSet has the standard model structure. For this and the remaining
part of this paper we need some more notation and terminology.
First, the following standard notation is convenient.

Notation 6.7.1. If K is a class of maps in some category, then K — inj denotes
the class of maps p such that (4, p) is a lifting-extension pair for all members i
of K. Similarly, we let K — proj denote the class of maps 4 such that (i,p) is a
lifting extension pair for all members p of K. Let

K —cof = (K —inj) — proj.

Expressed another way, the K-cofibrations are the maps that have the LLP with
respect to the maps that have the RLP with respect to the members of K.

Whenever one uses Hirschhorn’s or Hovey’s notion of cofibrantly generated model
category, K-cof is the class of cofibrations if K is a set of generating cofibrations.
Similarly, K-cof is the class of trivial cofibrations if K is a set of generating
trivial cofibrations.

Suppose X a A-sequence for some A. If & is a class of maps in % and if
X — X[B+1 is a member of 2 whenever 8+ 1 < A, then we say that X is a
A-sequence of maps in 2. In such a case, consider a choice f of a composition
of X. We say that X is a presentation of f (as a composition of maps in
2) or that X presents f (as a composition of maps in 2).

Definition 6.7.2. Let K be a set of maps in a cocomplete category €. A relative
K-cell complex is a map that can be presented as a composition of maps in
the class of cobase changes of maps taken from the set K. The class of relative
K-cell complexes is denoted K-cell.

The class of relative K-cell complexes, denoted K-cell, is a subcategory of %,
but it is in fact far more flexible than that, as we now explain.
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Any given composition of cobase changes of coproducts of maps from K
is a relative K-cell complex [Hir03, Prop. 10.2.14]. Furthermore, any given
composition of relative K-cell complexes is again a relative K-cell complex

[Hir03, Prop. 10.2.15].

The members of K-cof are called K-cofibrations. Note that
K —cell C K —cof

according to the general theory Prop. 10.5.10]. The relative K-cell
complexes, typically, have more in common with the members of K than the
K-cofibrations have in common with memebers of K. This is because the
flexibility of K-cell tends to make properties of members of K carry over to
relative K-cell complexes, whereas the same properties can fail to carry over from
relative K-cell complexes to K-cofibrations. If, however, K is a set of generating
(resp. trivial) cofibrations for a model category, then the class K-cof of (resp.
trivial) cofibrations equals the class of retracts of relative K-cell complexes
Prop. 11.2.1, p. 211]. The set K is generally thought of as prototypes of
the (resp. trivial) cofibrations.

The following terminology will be convenient in the verification of the first

condition of [Theorem 6.3.11

Definition 6.7.3. A composition in nsSet of maps in the class of Strgm maps is
referred to as a composition of Strégm maps.

Note that if the members of a certain class have a common name, then we might

use that name along the lines of
Recall [Notation 6.2.1] The symbol J — inj refers to the class of fibrations in

sSet equipped with the standard model structure. Similarly, I — inj is the class
of trivial fibrations in sSet. Furthermore, I — cof is the class of cofibrations
and J — cof is the class of trivial cofibrations in sSet. The examples above are
immediate from Proposition 11.2.1 in Hirschhorn’s book p. 211].

Lemma 6.7.4. Each relative DSd?(I)-cell complex or relative DSd?(.J)-cell com-
plex is a composition of Strgm maps. In particular, every member of each of
these classes of relative cell complexes is degreewise injective when viewed as a
map in sSet.

Proof. The members of DSd*(I) and DSd?(J) are Strgm maps by [Corol
[lary 6.4.16] The class of Strgm maps is closed under taking cobase change
by [Proposition 6.6.2] Therefore, any relative D.Sd?(I)-cell complex or relative
DSd?(J)-cell complex is a composition of Strgm maps.

Let j be a composition of Strgm maps. Then U(j) is a composition in sSet
of degreewise injective maps, as U : nsSet — sSet preserves filtered colimits.
Hence U (j) is itself degreewise injective. |

With and the terminology we have so far, we are ready to verify
the second condition stated in [Theorem 6.5.11

The proof of [Proposition 6.7.5]is built on a technique taken from Thomason
, although more people deserve credit for the ideas that are involved, such
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as A. Strom who worked with characterizations of cofibrations in model structures
on topological spaces, and also people developing the theory of neighborhood
deformation retracts.

Proposition 6.7.5. Let f be a relative DSd?(J)-cell complex. Then U(f) is a
weak equivalence.

Proof. Suppose
A= Al Al o= AP~

% v / (6.10)

B = colimg)AlPl

a presentation of f. By [Lemma 6.7.4] the map f is a composition of Strgm maps.
The functor U preserves filtered colimits by [Lemma 5.1.2] so the A-sequence
U o A is a presentation of U f as a composition of inclusions of Strgm maps.

Suppose the diagram

UN —— U AW
U{/ I\l//

U AlB+1]

in sSet displays APl — AlPT1 the way it arises as a cobase change in nsSet
of some element A — A’ of the set DSd?(J). Here, the simplicial set A”
denotes the pushout in sSet, AP+ denotes the pushout in nsSet and the
map A" =5 UAPB+Y is the canonical map, which is a weak equivalence due to
Lemma 6.6.3

The cobase change UAP! — A” in sSet is a trivial cofibration as UA — UA’
is a trivial cofibration. Consequently, the inclusion UAP! =5 7 AP+ of the
cobase change in nsSet of A — A’ is a composite of two weak equivalences and
therefore itself a weak equivalence. Moreover, the map UAP! =5 U AP+ jg
degreewise injective as it is the result of applying U to a Strgm map. Thus we
see that it is a trivial cofibration in the model category sSet, or in other words
that it belongs to J-cof. The class J-cof is closed under taking compositions
Lem. 10.3.1]. Therefore U(f) is in J-cof and is in particular a weak
equivalence. |

[Proposition 6.7.5 essentially takes care of the second condition stated in
which leaves the first condition.

Before we verify the first lifting condition, we introduce a bit more terminology.
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Definition 6.7.6. A cardinal « is said to be regular if, whenever A is a set whose
cardinal is less than x and for every a € A there is a set S, whose cardinal is
less than r, then the cardinal of |, 4 Sq is less than &.

For example, the countable cardinal X is regular [Hir03, Ex. 10.1.12]. Infinite
successor cardinals are regular [Hir03, Prop. 10.1.14].

Definition 6.7.7. Assume that % is a cocomplete category, 2 a subcategory,
A an object and k a cardinal. We say that A is xk-small relative to 7 if
we, for any given regular cardinal A > k, have that the covariant hom functor
C(A,—): € — Set preserves the colimit of any given \-sequence

X0l xWB

in ¢ such that X¥ — X#+1 is a map of 2 whenever 4 1 < X\. We say that
A is small relative to Z if it is k-small relative to & for some k.

We state the following example concerning the category sSet.

Example 6.7.8. If X is a simplicial set and & is the first infinite cardinal that is
greater than the cardinal of the set X* of non-degenerate simplices, then X is
k-small relative to the subcategory of degreewise injective maps.

A reference for the fact presented in [Example 6.7.8)is Ex. 10.4.4 from [Hir03]
pp. 194].

The following remark may be in order.

Remark 6.7.9. No argument for Hirschhorn’s smallness result Ex. 10.4.4]
is presented in his book. A similar statement can be formulated by combining
Lemmas 3.1.1 and 3.1.2 in Hovey’s book pp. 74], or rather be extracted
from the (sketches of) proofs of those lemmas. However, note that there is a
slight difference in how Hirschhorn and Hovey defines smallness.

For comparison of Hovey’s and Hirschhorn’s notions of smallness, see Def. 2.1.3
in Hovey’s book p. 29] and Def. 10.4.1 in Hirschhorn’s book
p. 194].

The smallness result as stated by Hirschhorn appears weaker than Hovey’s.
Hirschhorn only claims that simplicial sets are small relative to the subcategory
of degreewise injective maps. Hovey sketches a proof of the stronger statement
that simplicial sets are small (relative to the category sSet itself). It seems likely
that Hovey’s sketch can be adapted to Hirschhorn’s notion of smallness.

As explained, we follow Hirschhorn’s treatment of the subject of model categories,
including his notion of smallness.

As a consequence of we get the following result in our setting.

Lemma 6.7.10. If A is a non-singular simplicial set and & is the first infinite
cardinal that is greater than the cardinal of the set A% of non-degenerate simplices,
then A is k-small relative to the subcategory of maps f such that U(f) is
degreewise injective.
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Proof. Suppose A > k regular. Let X : A — nsSet be a A-sequence of maps
whose inclusions are degreewise injective. Consider the universal cocone

xo] x 1] o x 8]

T,

colimg < X 7]

on X. The cocone

yxol — L pyxl uxel o

S~ b

U(colimg<yX171)

on UoX is universal as the inclusion U : nsSet — sSet, according to|Lemma 5.1.2]
preserves filtered colimits. We get the diagram

sSet(UA, UX sSet(UA, UX )

wﬁwset (UA, U)V

sSet(UA,U colzm5<)\X[ﬁ]

(6.12)
in the category of sets, where the canonical function is a bijection because U A
is k-small relative to the subcategory of degreewise injective maps.
We have the equalities

sSet(UA, UXP) = nsSet(A, X0,
for each 8 with 0 < § < A, and
5Set(UA,U(colimpx X)) = nsSet(A, colimg -, X 71),

as U is a full inclusion. The diagram is with these replacements a diagram
in the category of sets that arises from the diagram in nsSet, so the
non-singular simplicial set A must be x-small relative to the subcategory of maps
whose inclusions are degreewise injective. |

is more or less what we will use to verify the second condition
stated in [Theorem 6.3.1] whose language is as follows.

Definition 6.7.11. If K is a set of maps in some cocomplete category, then K
permits the small object argument if the sources of the elements of K are
small relative to K-cell.
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The terminology presented in [Definition 6.7.11]is part of Hirschhorn’s notion of
cofibrantly generated Def. 11.1.2], which is a property of model categories.

Note that Hirschhorn’s notion may differ from Hovey’s Def. 2.1.17] as
the two authors’ notions of smallness differ slightly. Compare Hovey’s definition
Def. 2.1.3] with Hirschhorn’s Def. 10.4.1].

We say that a simplicial set is finite if it is generated by finitely many
simplices. A simplicial set is finite if and only if it has finitely many non-
degenerate simplices.

Lemma 6.7.12. Each finite non-singular simplicial set is Rp-small relative to the
subcategory of maps f such that U(f) is degreewise injective.

Proof. Let A be a finite non-singular simplicial set. Then X is the first infinite
cardinal greater than the cardinality of the set A* of non-degenerate simplices.

Due to [Lemma 6.7.10] the simplicial set A is thus Np-small relative to the
subcategory of maps f such that U(f) is degreewise injective. |

Lemma 6.7.13. Each of the sets DSd?(I) and DSd?(J) permits the small object
argument.

Proof. Recall the natural map by : Sd X — BX from |[Lemma 6.4.12] For each
n > 0, the simplicial set

BSd(0A[n]) = Sd*(0A[n]) = DSd*(0A[n])

is the nerve of the poset Sd(0A[n])* of non-degenerate simplices of Sd(dA[n]).
This poset is finite, so its nerve has finitely many non-degenerate simplices.
Similarly, for each expression 0 < k < n > 0, the simplicial set

BSd(A*[n]) = Sd*(A¥[n]) = DSd?(A*[n])

is the nerve of the poset Sd(A*[n])* of non-degenerate simplices of Sd(A*[n]).
This poset is finite, so its nerve has finitely many non-degenerate simplices.

By |[Lemma 6.7.12} the non-singular simplicial set DSd?(dA[n]) is Rg-small
relative to the subcategory of maps f such that U(f) is degreewise injective. For
every relative DSd?(I)-cell complex f, the map U(f) is degreewise injective, by
Similarly, the non-singular simplicial set DSd?(A*[n]) is Rp-small
relative to DSd?(.J)-cell. [ |

Finally, confirms the first condition stated in the lifting theorem.
The work done so far yields the announced right-induced model structure on

nsSet.

Proposition 6.7.14. Equip sSet with the standard model structure. There is a
cofibrantly generated model structure on nsSet with DSd?(I) (resp. DSd?(.J))
serving as a set of generating (resp. trivial) cofibrations. When nsSet is equipped
with this model structure, the adjunction (DSd?, Ez?U) is a Quillen pair.
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6. Homotopy theory of non-singular simplicial sets

Proof. We will apply [Theorem 6.3.1|to (F,G) = (DSd?, Ex2U). First, note that
nsSet is bicomplete, by Now, consider the two conditions stated

in the theorem.

The first condition holds by As Ex preserves and reflects
weak equivalences, it follows from [Proposition 6.7.5that the second condition

also holds. | |

6.8 On cofibrations

The cofibrations in the cofibrantly generated model category nsSet form the
class DSd?(I)-cof Prop. 11.2.1 (1)]. In this section, we will briefly discuss
the DSd?(I)-cofibrations and establish the important axiom of propriety, which
in this case amounts to arguing that weak equivalences are preserved under
cobase change along DSd?(I)-cofibrations.

Notice that there is no change in the initial and terminal objects, compared
with sSet.

Lemma 6.8.1. The empty simplicial set () is the only initial object in the category
nsSet. Similarly, the standard O-simplex A[0] a terminal object in nsSet.

Proof. The empty simplicial set @ is the colimit of the empty diagram in sSet. It
is a non-singular simplicial set, so it is also the colimit of the underlying diagram
in nsSet. Thus () is initial in nsSet.

Similarly, the standard 0-simplex A[0] is a limit of the empty diagram in
sSet. Then A[0] is also the limit of the underlying diagram in nsSet as this
reflective subcategory inherits limits from sSet. Thus we can take A[0] to be a
terminal object of nsSet. |

Furthermore, the following property of cofibrations is worth pointing out at this
stage, although it is immediate from [Lemma 6.7.4}

Lemma 6.8.2. Any cofibration of nsSet is a retract of a composition of Strgm
maps.

In particular, any cofibration is degreewise injective.

Proof of[Lemma 6.8.3. The cofibrations are precisely the retracts of the relative
DSd?(I)-cell complexes [Hir03, Prop. 11.2.1. (1), p. 211]. From [Lemma 6.7.4] we

know that the relative DSd?(I)-cell complexes are compositions of Strgm maps,
which are degreewise injective. |

Regrettably, does not provide a characterization of the cofibrations
of nsSet.

The following result concerns the classes DSd?(I)-cell and DSd?(J)-cell and
is a strengthening of

Lemma 6.8.3. Let : : A — B be a composition of Strgm maps. Suppose
f:A— C amap in nsSet. Then the canonical map

B|_|AC—>D(B|_JAC)

114



On cofibrations

is a weak equivalence.

In previous sections, there were only one notion of weak equivalence, namely the
weak equivalences in sSet. However, now that nsSet is established as a model
category there are really two notions of weak equivalence — one in each model
category.

To avoid confusion, one might want to write the canonical map of
as

UBUya UC — UD(UB Uy UC).

On the other hand, because a map in nsSet is a weak equivalence if and only
if the result of applying U to it is a weak equivalence, it is not necessary to be
so pedantic. We simply remind the reader that we have a convention that the
notation B L4 C always refers to a pushout in sSet, and not in nsSet. This is
because the symbol D(B LU C) is readily available to denote the pushout in
nsSet of the underlying diagram.

Proof of [Lemina 6.8.3 Suppose i has the presentation

A= Al Al e AlBl

S LT

B = colimg< Al

which by definition includes the assumption that each map APl — AP+
B+ 1<\ is a Strem map.

Again, because the inclusion U : nsSet — sSet preserves filtered colimits,
the A-sequence U o A is a presentation of U(i) as a composition of inclusions of
Strgm maps.

Next, consider the diagram

in sSet from which the canonical map arises. Notice that it is the colimit of the
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A-sequence of diagrams

D(Am] L A10) C)

in sSet.
For the purposes of an argument by induction, consider the diagram

A Y o O —— AW Uy C —— AP Uy € — - -
iN lw l (6.13)
D(A[O] g0 C) = D(Am Uy C) = D(A[Q] Uy C) = -+
in sSet, which gives rise to
BlUsC — D(BUyC),

as we have established. Notice that the horizontal maps in the upper part of the
diagram are degreewise injective. We now explain that the horizontal maps in
the lower part are also degreewise injective.

Each map APl — AP+

0<8, B+1<A,
is a Strgm map. Because the square

A8 o D(A[B] U 01 C)

| |

AlB+1] D(A[B+1] Um0 O)
in nsSet is cocartesian, each map

D(A[ﬁ] Ug C) — D(A[[H_l] Um0 C)

is also a Strem map by [Proposition 6.6.2] and thus degreewise injective.
Assume that an ordinal v < A is such that

AP U C = D(A[ﬁ] L 4f0) C)

for any 8 < 7.
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In the case when + is a limit ordinal, then the map
AP0 € — DAPT U0 ©)

arises as a map of colimits, from a truncated version of . In that truncated
version, all the vertical maps are weak equivalences.

Next, we intend to use Kan’s fibrant replacement functor Ez> on the
truncated version of (6.13). See pp. 215-217] or p. 182-188]. The
construction Fx° is the result of iterating the right adjoint Ex : sSet — sSet
of the Kan subdivision. The functor Ex can be defined thus

Ex(X), = sSet(Sd(A[n]), X).

Kan’s fibrant replacement preserves degreewise injective maps, filtered colimits
and comes with a natural (degreewise injective) weak equivalence e : X —»
Ez> X, implying that the functor also preserves weak equivalences.

Applying Ex° to the trunctated version of yields a diagram of fibrant
simplicial sets (Kan sets) where the horizontal maps are degreewise injective
and where the vertical maps are weak equivalences. The simplicial homotopy
groups respects the colimit of a sequence whenever the maps of the sequence are
degreewise injective. It follows that

AN U C = D(AM Uy C)

is a weak equivalence.
In the case when v = 8 + 1 is a successor ordinal, we consider the diagram

A0S o

I

| p—— 1) U0 C —— D(A[ﬁ] Uy O)

| |

AP o AT 1 C = AP 1 D(A[ﬂ] Uy O)

EN

D(A[B'H] U410 C)

in sSet. Here,

Al U C = D(A[B] Uy C)

is a weak equivalence by the induction hypothesis. The dashed map is a weak

equivalence by

Because the map

A[ﬁ] L 4101 C — A[ﬁ—H] U 4101 C
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6. Homotopy theory of non-singular simplicial sets

is degreewise injective, the map
ABH g 0 S ABH e DAV L ©)
is a weak equivalence as sSet is left proper. Therefore, the composite
AP 4 € = D(APH L, 0 ©)

is a weak equivalence.

Thus far we know that the vertical maps of (6.13) are all weak equivalences.
If we use Kan’s fibrant replacement Ex> again, then we get that

BuUyu(C= COlimﬁ<)\A[5] L 40) c5 colim5<,\D(A[B} U 4101 C) = D(B La C)

is a weak equivalence. |

Note that the lemma we have just proven has implications for both relative
DSd?(I)-cell complexes and relative DSd?(J)-cell complexes as these are all
compositions of Strgm maps.

A result related to is the following, which implies that nsSet is
left proper.

Lemma 6.8.4. Let i : A — B be a cofbration in nsSet. Suppose f: A — C a
map in nsSet. Then the canonical map

nBuActBl_lAC—)D(BLlAC)

is a weak equivalence.

Proof. The model category nsSet is cofibrantly generated by [Proposition 6.7.14]
and thus we can factor i = ¢j as a relative DSd?(I)-cell complex j : A — X
followed by a trivial fibration ¢ : X — B. Thus (i, q) is a lifting-extension pair,
so we can lift in the square

o x

1
s s
2 e
s

'R

<0

to write 7 as a retract of j. This is what is known as the retract argument [Hir03|
Prop. 7.2.2, p. 110].
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Next, we use the construction above to draw the diagram

C

B——=BUsC——=D(BU4sC)

q |~

BHBHACHD(BUAC)

in sSet. We will expand this diagram to display np,,c as a retract of the weak
equivalence nx, -

Form the pushout X U4 C in sSet and then use the naturality of np,c to
expand the diagram above to the diagram

A f

’ \
! \ / ‘L / !
XLlAC)

C

X XUAC Tlquc
q ~
B BUAC MBUAC D(Bl_lAC)

in which nxy,¢ is a weak equivalence by [Lemma 6.8.3|as j is a composition of
Strgm maps.
From this point, we can use that

XUAchUB(BUAC)

to obtain a canonical map ¢ : X Uy C — B Uy C between pushouts. By its
origin, it has the property that 1 = gosand foq=gGog.

Finally, the naturality of nx,,c and the functorality of desingularization
finishes our argument that np_, ¢ is a retract of the weak equivalence nxy,c-
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6. Homotopy theory of non-singular simplicial sets

Then by the retract axiom for model categories, it follows that the former is a
weak equivalence as the latter is. |

lets us deduce that nsSet is proper.
Proposition 6.8.5. The model category nsSet is proper.

Proof. The model category nsSet is automatically right proper as sSet with the
standard model structure is proper Thm. 13.1.13, p. 242]. We prove that
nsSet is left proper and thus proper.

Let i : A — B be a cofibration in nsSet. Suppose f : A — C a weak
equivalence in nsSet. We will prove that the cobase change of f along i is a
weak equivalence. Consider the diagram

A—L ¢
1\L ) T j
B——=BUyC

g D(BLIAC)

in sSet. The map
NBUAC * Bl C —>D(B|_|AO)

is a weak equivalence in sSet as 7 is a cofibration in nsSet. This is by

Lemma 6.8.4

The map i is degreewise injective by and hence a cofibration
in sSet. Therefore, by propriety of sSet it follows that f is a weak equivalence
in sSet. Thus the composite g is a weak equivalence in sSet. It is the cobase
change in nsSet of f along i. Thus nsSet is left proper, as was announced. H

Note that left propriety implies that we have a glueing lemma in the model
category nsSet Prop. 13.3.9, p. 246].

We conclude this section by making a remark concerning the status of the
work on characterizing the cofibrations and cofibrant objects in nsSet.

Remark 6.8.6. It does not seem likely that every composition of Strom maps is a
cofibration. However, the converse may be true. According to the general theory,
the DSd?(I)-cofibrations are precisely the retracts of the relative DSd?(I)-cell
complexes Cor. 10.5.23, p. 200].

The author has conjectured that every cofibrant non-singular simplicial set
that is the nerve of a small category is even the nerve of a poset. This is
analogous to Thomason’s result that every cofibrant category is a poset
Prop. 5.7]. The justification for this conjecture includes empirical evidence and
is explained in

On the other hand, May, Stephan and Zakharevich p. 13] has found a
six-element poset in the model structure on PoSet due to Raptis that is
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not cofibrant. Let P denote this poset. Because the right adjoint of the functor
q : PoSet — nsSet is fully faithful, the counit ¢N P =, Pisan isomorphism.
As q is a left Quillen functor, the poset ¢/N P is cofibrant if NP is, so NP cannot
be cofibrant in nsSet.

Bruckner and Pegel have found several classes of posets that are cofibrant
in the model structure on PoSet due to Raptis . Hence, to claim that
the nerve of any element taken from any of Bruckner’s and Pegel’s classes are
cofibrant in nsSet does not contradict the current knowledge of Raptis’ model
category.

6.9 A homotopy inverse of the inclusion

In this section, we prove that the Quillen pair (DSd?, Ex?U) is indeed a Quillen
equivalence. This is stated as|Proposition 6.9.4] below. In other words, towards

the end of this section, we have sufficient knowledge to establish

which is our main result.
Intuitively, the first step towards establishing the Quillen equivalence is the
following result.

Proposition 6.9.1. Let X be a simplicial set. The unit Sd? X — UDSd? X of
the adjunction

D
sSet = nsSet
U

is a weak equivalence.
Proof. Consider the skeleton filtration
X0 x5 X"

of X, given by successively attaching the non-degenerate k-simplices to the
(k — 1)-skeleton, k > 0. Note that Sd? X™ can be built from Sd? X"~ ! as
the Kan subdivision preserves colimits and degreewise injective maps
Prop. 4.6.3 (i), p. 200].

By naturality, the unit Sd? X — UDSd? X arises as a map between sequential
colimits from the diagram

Sd? X0 —— Sa? X! Sd? X" ——— - ..
UDSd?* X° ——=UDSd* X' ——~ ... —=UDSd* X" —— - --

in sSet. This is because D is a left adjoint and because U : nsSet — sSet

preserves filtered colimits by
If Sd?> X" — UDSd? X" is a weak equivalence for each n > 0, then Sd?> X —

UDSd? X is a weak equivalence. Now, the map
Sd*> X° = UDSd? X°
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6. Homotopy theory of non-singular simplicial sets

is an isomorphism for every X, because every O-dimensional simplicial set is
non-singular.

Suppose n > 0 is such that Sd?> X"~ — UDSd? X"~ ! is a weak equivalence.
Hence, the diagram

S& (U, ex: Aln]) =<—— S (U, e x: OA[]) —— Sd> X!

/= I G
UDSA (|, s Aln)) < UDSA(| |, y: 9A[n]) —~ UDSd? X"

in sSet yields a factorization

~

Sd?> X" = 7 - UDSd* X"
of the unit Sd?> X™ — UDSd? X" as a map between the pushouts Sd? X" and
Z in sSet followed by a canonical map Z — UDSd? X™.
By the glueing lemma, the map Sd?> X" = Z is a weak equivalence as the
two left hand horizontal maps of are degreewise injective.
The map
Sd*( | | oA[n]) = Sd*( | | Aln])

zGXfL xEXg

is a Strom map by [Corollary 6.4.16, By [Lemma 6.6.3] it therefore follows that
Z = UDSd? X™ is a weak equivalence. |

Thus we obtain the fact that the homotopy type is preserved when we apply
desingularization to the double Kan subdivision of some simplicial set.

Our second step is to move from considering the adjunction (D, U) to con-
sidering the adjunction (DSd?, Ez?U).
Lemma 6.9.2. The unit nx : X — Ex2UDSd?X is in general a weak equiva-
lence.

will follow from the bulk of the proof of [Proposition 6.7.5 In the
language of Fritsch and Latch |[FL81|, the construction DSd? is a homotopy
inverse for the inclusion U : nsSet — sSet.

Proof of [Lemma 6.9.2 The unit of (DSd?, Ez*U) is that of the composite ad-

junction

Sd? D
sSet sSet nsSet
Ex? U

and is therefore itself the composite
X "= Ex?(Sd? X) —— Ex*>(UD(Sd? X)) (6.15)
where the first map is known to be a weak equivalence. To see that the latter

statement is true, it is enough to realize that the unit X — ExSd X of (5d, Ex)
is a weak equivalence.
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Adjoint p. 213] to the last vertex map dy : Sd X = X is a natural
weak equivalence ex : X — Ex X Lem. 4.6.20]. The unit of (Sd, Ex) is
adjoint to the identity Sd X — Sd X. Moreover, the unit of (Sd, Fx) fits into
the commutative triangle

ExSdX
s
X = Ex X
ex

as we see from the commutative square

sSet(Sd X, Sd X) — sSet(X, EzSd X)
sSet(id,dX)i \LsSet(id,E’m(dX))

sSet(Sd X, X) ——— sSet(X, Ex X)

in which dx is sent to ex under the lower horizontal map by definition and in
which the identity is sent to the unit of (Sd, Fxz) under the upper horizontal
map. The latter square implies that ex can be obtained by postcomposing the
unit with Fz(dx). The two-out-of-three property implies that the unit is a weak
equivalence.

The second map of the composite is the result of applying Ex? to the
unit

Sd*X S UDSd* X,

which is a weak equivalence by [Proposition 6.9.1] Now, the functor Fx? preserves
weak equivalences. This shows that the composite (6.15)) is a weak equivalence.
|

Having proven that the unit of the Quillen pair (DSd?, Ex?U) is a weak equiva-
lence is in fact enough, in our case, to prove that the Quillen pair is indeed a
Quillen equivalence.

We have so far followed Hirschhorn’s terminology throughout this article.
However, to prove [Proposition 6.9.4] we will use a result in Hovey’s book.
Hirschhorn’s and Hovey’s definitions of the term Quillen equivalence are identical
to the following.

Definition 6.9.3. Suppose F': .# = 4 : G a Quillen pair with

o: N(FX,Y) S #(X,GY)

the natural bijection that comes with the underlying adjunction (F,G) of cate-
gories. We say that (F,G) is a Quillen equivalence if f: FX — Y is a weak
equivalence in .4 if and only if ¢(f) : X — GY is a weak equivalence in .#
whenever X is a cofibrant object of .# and Y is a fibrant object of 4.
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6. Homotopy theory of non-singular simplicial sets

Moreover, this definition is independent of any choice of functorial factorizations
and any choice of fibrant and cofibrant replacement functors.

A canonical choice of fibrant and cofibrant replacement functors are implicitly
part of the model structure in Hovey’s notion of model category Def. 1.1.3,
p. 3], whereas the opposite is true in Hirschhorn’s notion [Hir03| Def. 7.1.3, p. 109].
Namely, Hirschhorn assumes the existence of two functorial factorizations, one
as a cofibration followed by a trivial fibration and another as a trivial cofibration
followed by a fibration. However, Hovey makes such a choice of functorial
factorizations part of the model structure. Thus arises canonical fibrant and
cofibrant replacement functors. To think of (DSd?, Ex?U) as a Quillen pair
according to Hovey, we must then make a choice of functorial factorizations for
each of the model categories sSet and nsSet.

Now, [Theorem 6.3.1]is the lifting theorem Thm. 11.3.2], which applies
the recognition theorem [Hir03, Thm. 11.3.1] whose proof uses the small object
argument in the form [Hir03, Prop. 10.5.16]. From the latter result, which
is more or less a standard formulation, we can read off that the small object
argument establishes two functorial factorizations on nsSet, one into a relative
DSd?(I)-cell complex followed by a D.Sd?(I)-injective, and another into a relative
DSd?(J)-cell complex followed by a DSd?(J)-injective. We choose these to serve
as part of the model structure on nsSet according to Hovey’s notion. Clearly,
we follow the same procedure with regards to the sets I and J of maps in sSet.

When choices of functorial factorizations have been made, there is a canonical
fibrant replacement functor R in nsSet that arises from the factorization

A RA — A0

of the terminal map, for each non-singular A, as a relative D.Sd?(J)-cell complex
74 followed by a fibration RA — AJ0]. In other words, the non-singular simplicial
set A is replaced by a fibrant non-singular simplicial set RA, with a natural map
r 4 from the original to its replacement.

The choices of functorial factorizations can simply be forgotten after the
proof of [Proposition 6.9.4] Because the term Quillen equivalence is defined the
same way by both Hirschhorn and Hovey and because this definition has no
reference to fibrant or cofibrant replacements, the pair (DSd?, E2?) will be a
Quillen equivalence according to Hirschhorn if it is according to Hovey.

Finally, we obtain the last piece used to establish which is

the main result.

Proposition 6.9.4. The Quillen pair
DSd? : sSet = nsSet : Ex*U
is a Quillen equivalence.

Proof. The pair (DSd?, Ex?U) is a Quillen equivalence [Hov99, Cor. 1.3.16] if
and only if E22U reflects weak equivalences between fibrant objects and the
composite

51;2 T 2
X % pa2upsarx Z2esex), poarppgax
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is a weak equivalence for every cofibrant X. Here,
Tpsaz x : DSd* X = RDSd* X

is the natural relative DSd?(.J)-cell complex that comes with the fibrant replace-
ment R.

As the model structure on nsSet is lifted along the right adjoint Ex2U, this
functor reflects weak equivalences without an assumption on either the source or
the target. For the same reason, the functor E22U preserves weak equivalences.
Any object in sSet is cofibrant. Nevertheless, it follows that [Proposition 6.9.4]
holds if the following result holds, which it does. |

Proof of [Theorem 6.1.9 First, by [Proposition 6.7.14} the category nsSet is a
cofibrantly generated model category and (DSd?, Ex?U) is a Quillen pair when

sSet is equipped with the standard model structure due to Quillen. Second,
the model category nsSet satisfies the axiom of propriety according to
Finally, [Proposition 6.9.4] says that the pair (DSd?, E2*U) is a
Quillen equivalence. |

6.10 Relating the model categories

In this section, we complete the diagram of adjunctions in the sense
explained in the introduction. Namely, we promised that the diagram would
consist exclusively of model categories and Quillen equivalences.

Verifing that (D,U) is a Quillen equivalence when sSet has the Sd?-model
structure of Jardine, is not hard. We state this result as Similarly,
we can verify that (¢, N) is a Quillen equivalence when PoSet has the model
structure of Raptis. This we state as

First, we establish the relationship with posets.

Lemma 6.10.1. If PoSet has Raptis’ model structure [Rap10|] and nsSet has the
model structure suggested in [Theorem 6.1.2 then (¢, N) is a Quillen equivalence.

Proof. A set of generating cofibrations in Thomason’s model category Cat
is ¢Sd?(I) and a set of generating trivial cofibrations is ¢Sd?(.J), as Raptis
points out in his overview and slight modernization of Thomason’s work
Thm. 2.2, p. 215].

Raptis’ cofibrantly generated model structure on PoSet is restricted from
Cat in the sense that the weak equivalences of PoSet are the weak equivalences
of C'at whose source and target are both posets, and similarly for the cofibrations
and the fibrations Thm. 2.6 ,p. 217]. The sets pcSd?(I) and peSd?(J)
can be taken to be a set of generating cofibrations and a set of generating trivial
cofibrations in PoSet as well, respectively Thm. 2.6, p. 217].

Consider applying the functor

q : nsSet — PoSet
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to the class DSd?(I)—cof of cofibrations in nsSet. The functor ¢ is in[Section 6.1
defined as ¢ = pcU. Due to the equality N oU = U o N of the two composites
of right adjoints and by the uniqueness of the left adjoint, we get a natural

isomorphism pc X =N gD X. Thus we get the equality in the expression
q(DSd*(I) — cof) C qDSd*(I) — cof = pcSd*(I) — cof

where the inclusion comes from a general rule stated as Lemma 2.1.8 in [Hov99
p. 30]. Hence, the left adjoint ¢ preserves cofibrations. Similarly, by replacing I
by J, we see that ¢ preserves the trivial cofibrations. This finishes our verification
that ¢ is a left Quillen functor and hence that (¢, V) is a Quillen pair.

The composite of (p,U) and (¢Sd?, Ex?>N) is a Quillen equivalence. Further-
more, the composite of (¢, N) and (DSd?, ExU) is a Quillen pair. By Corollary
1.3.14 in [Hov99, p. 20], the latter composite is a Quillen equivalence if and
only if the former is. Now, consider the two Quillen pairs (¢, N), (DSd?, Ex2U)
together with their composite. By we know that two of these three
Quillen pairs are Quillen equivalences. Hence, the third is a Quillen equivalence
by Corollary 1.3.15. in Hovey’s book p. 21]. [ |

Finally, we establish the relationship with Jardine’s Sd?-model structure on
simplicial sets.

Lemma 6.10.2. Let the category sSet have J. F. Jardine’s Sd?-structure from
[Jar13| p. 274]. Then (D,U) is a Quillen equivalence.

Proof. As in the proof of [Lemma 6.10.1) we need only prove that (D,U) is a

Quillen pair. Then, by the two out of three-property for Quillen equivalences, it
will follow that (D, U) is a Quillen equivalences as (Sd?, Ez?) is a Quillen equiv-
alence according to J. F. Jardine Thm. 1.1., p. 274] and as (DSd?, E2*U)
is a Quillen equivalence according to

We verify that U is a right Quillen functor by verifying that it preserves
fibrations and trivial fibrations. Then (D, U) will be a Quillen pair. First, if f
is a fibration in nsSet, then Ex?U f is a Kan fibration, by definition. Thus U f
is an Ex?-fibration by definition.

Second, if f is a trivial fibration in nsSet, then f is by definition both a weak
equivalence in nsSet and a fibration in nsSet. Thus U f is an Ex?-fibration by
the previous paragraph. Furthermore, the map Ex2U f is a weak equivalence
by definition. As Ex preserves and reflects weak equivalences, it follows that
Uf is a weak equivalence. Recall that the weak equivalences in the standard
model structure and the Sd2-model structure are the same. Hence, Uf is a
trivial Ex2-fibration. This concludes our verification that U is a right Quillen
functor. |
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Chapter 7

Optimal triangulation of regular
simplicial sets

Abstract

The Barratt nerve, denoted B, is the endofunctor that takes a simplicial
set to the nerve of the poset of its non-degenerate simplices. The ordered
simplicial complex B.Sd X, namely the Barratt nerve of the Kan subdivision
Sd X, is a triangulation of the original simplicial set X in the sense
that there is a natural map BSd X — X whose geometric realization is
homotopic to some homeomorphism. This is a refinement to the result
that any simplicial set can be triangulated.

A simplicial set is said to be regular if each of its non-degenerate
simplices is embedded along its n-th face. That BSd X — X is a triangu-
lation of X is a consequence of the fact that the Kan subdivision makes
simplicial sets regular and that BX is a triangulation of X whenever X
is regular. In this paper, we argue that B, interpreted as a functor from
regular to non-singular simplicial sets, is not just any triangulation, but in
fact the best. We mean this in the sense that B is the left Kan extension
of barycentric subdivision along the Yoneda embedding.

7.1 Introduction

Not every CW complex can be triangulated , but simplicial sets can.
The latter fact is largely due to Barratt 7 but a correct proof was first
given by Fritsch and Puppe in . One can prove it by arguing that all
regular CW complexes are trianguable, that regular simplicial sets give rise to
regular CW complexes and that the geometric realization of the last vertex map
dx :SdX —- X §7], from the Kan subdivision Sd X of X §7,
is homotopic to a homeomorphism. Fritsch and Piccinini [FP90, pp. 208-209]
tell the whole story in detail.
By a regular simplicial set, we mean the following.

Definition 7.1.1. Let X be a simplicial set and suppose y a non-degenerate
simplex, say of dimension n. The simplicial subset of X generated by yd,, is
denoted Y’. We can then consider the diagram

An—-1]—Y’

il |

Aln] —= Aln] Uap—1 Y’
\SX
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7. Optimal triangulation of regular simplicial sets

in sSet in which the upper left hand square is cocartesian. We say that y is
regular |[FP90, p. 208] if the canonical map from the pushout is degreewise
injective.

We say that a simplicial set is regular if its non-degenerate simplices are regular.

There is a refinement to the result that all simplicial sets can be triangulated,
as explained by Fritsch and Piccinini [FP90, Ex. 5-8, pp. 219-220]. The trian-
gulation of a given regular CW-complex described in Theorem 3.4.1 in ,
which is the barycentric subdivision when the CW-complex is the geometric
realization of a simplicial complex, can be adapted to the setting of simplicial
sets. The adaptation is an endofunctor B : sSet — sSet of simplicial sets, which
is in [WJR13| p. 35] referred to as the Barratt nerve.

Let N : Cat — sSet be the fully faithful nerve functor from small categories
to simplicial sets. Let X* be the partially ordered set (poset) of non-degenerate
simplices of X with y <z when y is a face of z. In general, a poset (P, <) can
be thought of as a small category in the following way. Let the objects be the
elements of P and let there be a morphism p — p’ whenever p < p’. The full
subcategory of Cat whose objects are the ones that arise from posets, we denote
PoSet. The poset X* is in some sense the smallest simplex category of X. The
simplicial set BX = NX! is the Barratt nerve of X.

There is a canonical map

bx : SdX — BX

as explained in p. 37]. It is natural and expresses the viewpoint that
Sd is the left Kan extension of barycentric subdivision of standard simplices
along the Yoneda embedding X.3 (10)]. By this viewpoint, even the
Kan subdivision performs barycentric subdivision on standard simplices
X.3 Cor. 3] as the Yoneda embedding is in particular fully faithful. Moreover,
the map by is degreewise surjective in general Lem. 2.2.10, p. 38] and
an isomorphism if and only if X is non-singular Lem. 2.2.11, p. 38].

The Yoneda lemma puts the n-simplices z, n > 0, of a simplicial set X in a
natural bijective correspondence x +— = with the simplicial maps z : A[n] — X.
Here, A[n] denotes the standard n-simplex. We refer to = as the representing
map of the simplex z.

Definition 7.1.2. A simplicial set is non-singular if the representing map of
each of its non-degenerate simplex is degreewise injective. Otherwise it is said
to be singular.

The inclusion U of the full subcategory nsSet of non-singular simplicial sets
admits a left adjoint D : sSet — nsSet, which is called desingularization [WJR13|
Rem. 2.2.12)].

The map bx factors through the unit ngsx : SdX — UD(SdX) of the
adjunction (D, U). This gives rise to a degreewise surjective map

tx : DSdX — BX
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that is a bijection in degree 0. As ngqx is degreewise surjective, we obtain a
natural transformation ¢ between functors sSet — nsSet. Our main result is
the following.

Theorem 7.1.3. The natural map tx : DSd X — BX is an isomorphism when-
ever X is regular.

We will begin the proof of our main result in
A notion referred to as the reduced mapping cylinder [WJR13| §2.4] appears
in the proof of Let ¢ : P — R be an order-preserving function

between posets. The nerve
M(Np)=N(P x[1]Up R)
of the pushout in the category of posets of the diagram

P—% SR

i (7.1)
Px 1

is known as the (backwards) reduced mapping cylinder of Ny
Def. 2.4.4]. If we think of posets as small categories as above and use the
nerve to yield a diagram in sSet, then we obtain the pushout T'(Ny) known as
the (backwards) topological mapping cylinder together with a cylinder

reduction map [WJR13| Def. 2.4.5]
cr: T(Np) = M(Ng).

In [WJR13, §2.4] the reduced mapping cylinder is introduced in full generality,
meaning for an arbitrary simplicial map and not just for the nerve of an order-
preserving function between posets. We refer to that source for the general
construction.

The cylinder reduction map gives rise to a canonical map

der : DT(Nyp) — M(Ny)

from the desingularized toplogical mapping cylinder. eorem 7.1.3|relies upon
the following result, as we explain in

Theorem 7.1.4. Let X be a regular simplicial set. For each n > 0 and each
n-simplex y, the canonical map

der : DT(B() = M(B(7))

is an isomorphism.

This result does not seem to follow easily from the theory of [WJR13, §§2.4-2.5],
although it can essentially be deduced from [WJR13, Cor. 2.5.7] that der is
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7. Optimal triangulation of regular simplicial sets

degreewise surjective and although der is easily seen to be a bijection in degree
0.

[Theorem 7.1.4lis a refinement to one of the statements of Lemma 2.5.6 of
p. 71]. In[Section 7.11] we discuss a result related to[Theorem 7.1.4] but
whose proof is easier. Namely, [Proposition 7.7.1|says that the desingularization of
the cone on NP is the reduced mapping cylinder of the unique map NP — A[0],
for every poset P.

The intuition behind [Theorem 7.1.3]is as follows. One can look at X = SdY
for Y some slightly singular example such as when Y is the result of collapsing
some (n — 1)-dimensional face of a standard n-simplex. Another example is the
model Y = A[n]/0A[n] of the n-sphere for 0 <n < 2. Whenn =0 and n =1,
it is clear that ¢ty is an isomorphism. However, an argument is required for the
case when n = 2. These computations are done in Simple, but
representative examples point in the same direction, namely that ¢x seems to
be an isomorphism whenever X is the Kan subdivision of some simplicial set Y.

If one is tempted to ask whether ¢x is an isomorphism whenever X is a Kan
subdivision, then it is no great leap to ask whether tx is an isomorphism for
every regular simplicial set X. The book “Spaces of PL manifolds and categories
of simple maps” Rem. 2.2.12, p. 40] asks precisely this question. Our
main result is thus an affirmative answer. There is a close relationship between
regular simplicial sets and the simplicial sets that are Kan subdivisions. In fact,
the Kan subdivision of every simplicial set is regular Prop. 4.6.10, p. 208].

In we discuss consequences of our main result. We explain how
[Theorem 7.1.3] follows from [Theorem 7.1.4] in[Section 7.3] It seems fitting that we
refer forward to the various parts of the proof of [I'heorem 7.1.4] from [Section 7.3|
instead of from this introduction, so this is what we will do. Each section of this

paper that follows is essentially part of the proof of

and of except The latter presents [Proposition 7.7.1}
which is a result on cones. It can be viewed as related to [Theorem 7.1.41

7.2 Applications
In this section, we discuss consequences of

Interpret B as a functor sSet — nsSet. On the one hand we have the
triangulation BSd : sSet — nsSet of simplicial sets that may seem ad hoc, but
that is concrete. On the other hand, we have the functor DSd? with the same
source and target as BSd. It is somewhat cryptic as there is no other description
of D than the one we gave in However, the functor DSd? has good
formal properties. implies that the natural map

tsqx : DSd® X =5 BSd X

is an isomorphism.

The functor I = BSd is already a homotopically good way of making sim-
plicial sets non-singular. It is known from §2.5] as the improvement
functor and plays a role in that book. When we say that the improvement
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functor is a triangulation, we mean that there is a natural map UIX 25 X
whose geometric realization is homotopic to a homeomorphism from the ordered
simplicial complex [UTX| to the CW complex | X|. The map sx is particularly
well behaved when X is a finite simplicial set, meaning that X is generated
by finitely many simplices.

Actually, the functor D.Sd? is also a homotopically relevant construction. By
it can be made into a left Quillen functor of a Quillen equivalence
when sSet is equipped with the standard model structure due to Quillen [Qui67].

Hence, merges two preexisting theories into one.

Definition 7.2.1. Let X and Y be finite simplicial sets and let f : X — Y
be a simplicial map. We say that f is simple if the point inverse |f|~*(p) is
contractible for any p € |Y|.

The map sx is simple when X is finite. For a thorough discussion of the
construction I and the map sx, see sections 2.2, 2.3, 2.5 and 3.4 of .

Let A denote the category whose objects are the totally ordered sets [n],
n > 0, and whose morphisms [m] — [n] are the functions a such that a(i) <
a(j) whenever i < j. We refer to the morphisms as operators. Suppose
T : A — nsSet the functor that takes [n] to the barycentric subdivision A’[n]
of the standard n-simplex. Furthermore, we let T : A — rsSet be the Yoneda
embedding [n] — A[n], corestricted to the full subcategory rsSet of sSet whose
objects are the regular simplicial sets. Then Sd is the left Kan extension of UT
along UY.

Two related consequences of [Theorem 7.1.3|are [Corollary 7.2.2] and [Corol§

below.

Corollary 7.2.2. The improvement functor I : sSet — nsSet is the left Kan
extension of DSAUT along UY.

Proof. Because Sd is the left Kan extension of UT along UY and because DSd
has a right adjoint, it follows that DSd? = DSd o Sd is the left Kan extension
of DSd o UT along UY X.5 Thm. 1]. The result now follows from
I heorem 7.1.3 |

With regards to second corollary, which is the proof is short and
straight forward. However, it refers to relatively basic results that, although

known, do not seem readily available in the literature. Therefore, we present
these basic results here.

We begin with the following two results, which say that a product of regular
simplicial sets is regular and that a simplicial subset of a regular simplicial set is
again regular. An argument is presented for the former of the two.

Lemma 7.2.3. Let X be a regular simplicial set and A some simplicial subset.
Then A is regular.

Proposition 7.2.4. Let

X =[x

jeJ
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be a product of regular simplicial sets X, j € J. Then X is regular.

Proof of [Proposition_7.2.4. Suppose y € X}. For each j € J, let Yj’ be the
image of the composite

Then we obtain the diagram

A[n— 1] %—Y}'

(7.2)

in sSet, in which the canonical map from the pushout A[n]LUa(,—1) Y] is degree-
wise injective as X; is regular.
The diagrams (7.2]) can be combined into the diagram

Aln —1] HjEJ Yj/

I

Aln] ——[Ljes (Aln] Uapn-11 Y))

that can be expanded to

Aln — 1] Y’ HjeJ

!

if we factor

Aln —1] HY’

jed

as a degreewise surjective map A[n — 1] — Y followed by an inclusion.
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Notice that Y is identified with the simplicial subset of X that is generated
by yd,. It follows that y is a regular simplex if the map

A[n] UA[n—1] Y - X

is degreewise injective. This is true if the composite

Aln] Uapn-1 Y = Al]Uap-y (JTY)) = [ (Aln] Uap-1 Y7)
JjeJ JjeJ

is degreewise injective.

Assume that w and w’ are different simplices of Aln] U An-1] Y’ of the same
degree, say of degree ¢ > 0. We will prove that w — e and w’ — €’ are sent
to different simplices e and €’ in [[;c ; (A[n] Uap,—1) Y;). There are three cases.
The simplices w and w’ can both be in the image of Y’ — Aln|Uap—1 Y’ Tt is
also possible that neither of them are. By symmetry, the third possibility is that
w is in the image of Y/ — A[n] I_IA[n_l] Y’ and that w’ is not.

Suppose z — w and 2’ — w’ for some ¢- simplices z and 2’ of Y. Then
Y — HJEJ Y! maps z — ¢ and 2’ — ¢’ where ¢ and ¢’ are different as this map
is an inclusmn Finally, the map

1Y =[] ARl uap-y Y))

jed jed

is degreewise injective as each simplicial set Yj’ , j € J, is regular. There-
fore, we get that ¢ — e and ¢ +— ¢ for different simplices e and €' in
[Tjes (ARl Uap-1 Y)).

If neither w nor w’ is in the image of Y" — A[n] Ua[p,—1) Y, then we assume
b+ w and b — w’ for g-simplices b and b’ of A[n]. Choose some j € J. The
composite

] = H n] Uapn—1) Yj) 22 Aln] Unfn—1) Y]
jed

sends b and b’ to different simplices in A[n] Uap,—1) Y] as neither b nor ¢’ is in
the image of N¢,,. Consequently, the first half of the composite maps b — e and
b+ ¢ for different simplices e and e’ in [[; ; (A[n] Uafn-1) Y;).

For the third case, assume that z — w for some simplex z in Y’ and that w’
is not in the image of Y" — A[n] Uap,—1) Y'. Then there is some simplex b in
A[n] such that b’ — w’. Choose some j € J. Consider the composites

An—1] =Y = J[v] =5 Y]
JjeJ

and _
_> H |—|A [n—1] Y ) p—J> A[n} I—'A[n—l] Y—jl'
jeJ
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The first is the upper horizontal map in the cocartesian square in the j-th
diagram . The second is its cobase change along N§,. As b is not in the
image of N4, it follows that the second of the two composites sends b’ to some
simplex in Y that is not in the image of Y/ — A[n] Uaj,—1) Y]. Because the
square

prj

HjeJ Yj/ Yj’

l |

[Lics (Aln] Uapn—1) Y}) —7> Aln] Uajn—1) Y]

prj

commutes, we see from 1) that the image under Y’/ — Hjei, Yj’ of z is sent
by [[;e;Y] = I1jes (Aln[Uap-1) Y;) to some e that is different from e’ where
V' e under Aln] — [, ; (Aln] Uap-1) Y))- |

The results [Lemma 7.2.3] and [Proposition 7.2.4] yields the regularization functor,
which is constructed thus.

Let rsSet denote the full subcategory of sSet whose objects are the regular
simplicial sets. Given a simplicial set X, index a product over the quotient maps
X — Y whose target Y is regular. The product has as its factors the targets Y.
We obtain a regular simplicial set RX defined as the image of

given by « — (f(z))y. We say that RX is the regularization of X. As the
epimorphisms of simplicial sets are precisely the degreewise surjective maps and
as every quotient map is degreewise surjective, the map X — RX is initial
among the maps whose source is X and whose target is regular.

The initial map becomes the unit of an adjunction in which R is left adjoint
to the inclusion U : rsSet — sSet. One can in other words construct R precisely
as D is constructed in Rem. 2.2.12], except that non-singular simplicial
sets is replaced with regular simplicial sets.

To prove [Corollary 7.2.6] we will also use the following basic result concerning
Kan extensions. Note that we recycle the symbol R for the purpose of stating

and proving

Lemma 7.2.5. Consider a diagram
98¢ & 0l o

where . is a small category and where & is cocomplete. Suppose the left Kan
extension LangiT of T along RK exists.
If R is fully faithful and admits a left adjoint functor L : 2 — %, then the
composite
LangT = LanggT o R

is the left Kan extension of T" along K.
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Here, we follow the notation of §X] closely as we will refer to results
from that section in the proof.

Unfortunately, it seems that the context of [Lemma 7.2.5] becomes clearest
when we temporarily let R denote the right adjoint indicated in the formulation
of the lemma, rather than regularization. Then R signifies right and L signifies

left. In this way, the case of [Lemma 7.2.5| stands out from case of [Mac98

X.5 Thm. 1]. However, the confusion should only be momentarily.
We are ready to prove the lemma.

Proof of[Lemma 7.2.5 Note that the left Kan extension LangT of T along K
exists because .# is small and because &/ is cocomplete §X.3 Cor. 2].
By Ex. X.4.3], the left Kan extension Lang(LangT) of LankT along
R exists as the left Kan extension LangriT exists. Moreover, we have that

Lang(LangT) = LangxT

by the same exercise.
We have natural transformations

ex : T = (LangT) o K

and
€r : LangT = Lang(LangT)o R
that come with the two of our three Kan extensions. Next, let dg be the inverse
of the map
(LangT)o LR = LangT

that arises from the counit of the pair (L, R). The counit €. : LRc 2, cis an
isomorphism as R is fully faithful [Mac98| §IV.3 Thm. 1].
There is a (unique) natural transformation

or: LangxT = (LangT)o L
such that the triangle on the left hand side in

(LCL’FARKT) oR
LangT orR : (7.4)

PP

(LangT) o LR = LangT

commutes. The right hand side triangle in was formed simply by letting o
be the composite. Because R is fully faithful, the natural transformation ep is
a natural isomorphism §X.3 Cor. 3]. This implies that o is a natural
isomorphism and hence that (LangxT) o R is the left Kan extension of 7" along
K. [ |
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With we have every result that we will use to establish our second

corollary of [Micorem 713

Similarly to the first corollary, we obtain the following.

Corollary 7.2.6. The composite

rsSet s sSet By nsSet
is a left Kan extension of T" along Y.

Proof. Let (R,U) be the pair consisting of regularization and the inclusion.
Because Sd is the left Kan extension of UT along UY, the functor SdU is
the left Kan extension of UT along Y by [Cemma 7.2.5] The functor DSdU is
the left Kan extension of T = DUT [Mac98| §1V.3 Thm. 1] along T | m
§X.5 Thm. 1]. Now our result follows from [Theorem 7.1.3]

7.3 Mapping cylinders

We aim to prove which says that natural map
tx : DSdX — BX

is an isomorphism when X is regular. In this section, we will explain how

follows from At the end of this section, we will

make forward references to the work of proving latter.
The skeleton filtration of an arbitrary simplicial set X gives rise to the
diagram

DSdX°——DSdX!' —— ... —=DSd X" ——>

B i l S

BX"Y BX! BX"

and if the vertical maps are all isomorphisms, then ¢x is. This is because tx
arises from as the canonical map between sequential colimits. Next, we
explain the latter statement.

Consider the nerve N : Cat — sSet and the inclusion U : PoSet — Cat.
We let the symbol N denote the corestriction to nsSet of the composite N o U,
also. Furthermore, we let U denote the inclusion U : nsSet — sSet. Then
N oU =U o N by definition.

The functor DSd is a left adjoint, so in particular it preserves X viewed as
the colimit of its skeleton filtration. Furthermore, the functor

(=)*: sSet — PoSet

is cocontinous, as we explain shortly.
If the inclusion of a full subcategory into the surrounding category has a left
adjoint, then we will refer to the subcategory as a reflective subcategory. We
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then refer to the left adjoint as a reflector. Relevant examples are the facts
that nsSet is a reflective subcategory of sSet and that PoSet is a reflective
subcategory of C'at. Note that the terminology is not standard. Although the
fullness assumption seems more common today than before, Mac Lane’s notion
[Mac98g], for example, does not include fullness as an assumption in his definition.

We will also make use of the dual notion. If the inclusion of a full subcategory
into the surrounding category has a right adjoint, then we will refer to the
subcategory as a coreflective subcategory. Knowing that a subcategory is
reflective or coreflective has a bearing on the formation of limits and colimits in
the subcategory, as we will point out when it becomes relevant.

The (full) inclusion U : PoSet — Cat admits a left adjoint p : Cat — PoSet,
so PoSet is a reflective subcategory of Cat. Furthermore, let ¢ : sSet — Cat be
left adjoint to N : Cat — sSet. Notice that the map ¢(bx) gives rise to the map

csdx U uBx 1 cUN(XE) D eNU(XE) L Ut

that sends the object corresponding to [z, (¢)] to the object x. The 0-simplex of
Sd X is here thought of as uniquely represented by a minimal pair (x, ) where x
is a non-degenerate simplex of X and where ¢ is the identity [n,] — [n.] where
ng is the degree of the simplex z. The natural map bx : Sd X — UBX sends
the 0-simplex represented by (z, () to the functor [0] — X* with 0+ x.

Lemma 7.3.1. The functor (—)* : sSet — PoSet preserves colimits.

Proof. The map ¢Sd X — UX?* is full and bijective on objects. If we apply
posetification p : Cat — PoSet to the natural map c¢SdY — UY* then we
get an isomorphism. This conclusion comes from knowing that p is a reflector.
Because pcSd is left adjoint to ExNU, where Ex is right adjoint to Sd, it follows
that (—)f preserves colimits. [ |

This concludes our argument that (—)* is cocontinous.

The map txo is an isomorphism as byo : Sd(X°) — B(X") is, say because
XY is non-singular. Note that the n-skeleton X™ can be built from X"~ ! by
successively attaching the non-degenerate n-simplices along their boundaries.
This building process may be transfinite.

Definition 7.3.2. Let 4 be a cocomplete category and A some ordinal. A
cocontinous functor Y : A — ¥ is a A-sequence in €. We often write the
A-sequence as

where Y18l = Y/(B3) for B < A\. The canonical map Y% — colims-, Y% is the
composition of Y. By a sequence we mean a A-sequence for some ordinal \.

When A < Xj is finite, then the composition of a A-sequence is simply the
composite of the maps in the sequence.

In the case when one admits A\ > R, like we do, one often uses the adjective
transfinite to indicate this as the term sequence usually refers to the notion of

139



7. Optimal triangulation of regular simplicial sets

Np-sequence. However, we usually admit A > Ny and prefer instead to point it
out if the sequence in question is a Np-sequence, whenever it is relevant.
The following highly flexible notion [Hir03|, Def. 10.2.1] will be useful.

Definition 7.3.3. Let n be some non-negative integer. If a map f: X — X' is
a composition of some sequence Y such that each map Y¥ — YIP+1 in the
sequence is a cobase change of the inclusion dA[n] — Aln|, then we say that f is
a relative {0A[n] — A[n]}-cell complex and we say that Y is a presentation
of f as a relative {OA[n] — A[n]}-cell complex.

If X is a simplicial set, then the inclusion X"~1 — X" is a relative {0A[n] —
Aln]}-cell complex. See Cor. 4.2.4 (ii)] and Prop. 10.2.14]. We
will use this fact in our problem reduction below, stated as

For the compatibility between sequences and colimits in the two categories
PoSet and nsSet, we will use the following result.

Lemma 7.3.4. The functor N : PoSet — nsSet preserves colimits of sequences.

Proof. The functor U : PoSet — Cat preserves colimits of sequences
p. 216]. So does N : Cat — sSet, as is well known. By the
inclusion U : nsSet — sSet also preserves colimits of sequences. Because nsSet
is a reflective subcategory of sSet, the counit of the adjunction (D,U) is in
general an isomorphism. As N oU = U o N, it follows that NV : PoSet — nsSet
preserves colimits of sequences. |

Remember the non-standard notion of sequence from [Definition 7.9.2}

By the naturality of ¢x, because (—)* is cocontinous by |Lemma 7.3. 1| and
because N preserves colimits of sequences by [Lemma 7.3.4] it follows that ¢x
arises from as a map of sequential colimits. Thus t x is an isomorphism if
txn» is an isomorphism for each n > 0.

For our first problem reduction we will also need the following terms, which
have a connection with properties of the Barratt nerve.

Definition 7.3.5. Suppose Z a small category. Let & be a subcategory of Z.
We will say that <7 is a (co)sieve in # if whenever we have a morphism b — o/

whose target (source) is an object of <7, then the morphism is itself a morphism
of &

Lemma 7.3.6. The natural map tx : DSd X — BX is an isomorphism whenever
X is regular if it is an isomorphism for each regular X that is generated by a
single simplex.

Proof. We will use a double induction. Suppose n > 0 such that tx is an
isomorphism whenever the dimension of X is strictly lower than n. This will be
our outer induction hypothesis. It is satisfied for n = 1.

As our inner induction hypothesis, suppose A > 0 an ordinal such that a
regular simplicial set X has the property that ¢tx is an isomorphism whenever
the inclusion X”~! — X can be presented by some y-sequence
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with v < X as a relative {0A[n] — A[n]}-cell complex. The hypothesis is satisfied
for A = 1 by the outer induction hypothesis.

Suppose X a regular simplicial set such that the inclusion X”~! — X can
be presented by some A-sequence Y : A — sSet a relative {OA[n] — A[n]}-cell
complex.

The case when A is a limit ordinal is handled by the same argument as the
one concerning .

Consider the case when A = 8 + 1 is a successor ordinal. Then Y¥! is
the colimit of a B-sequence, so ty s is an isomorphism by the inner induction
hypothesis. We shift notation and write X’ = Y% and X = Y8+, Thus we
study an attaching

X = Aln] UsA[n) XI,

meaning the regular simplicial set X is built from X’ by attaching some non-
degenerate n-simplex .

In general, the Barratt nerve behaves badly when applied to pushouts, so
we choose a different decomposition of X that the Barratt nerve respects. The
decomposition that we have in mind, which is used for the same purpose in the
proof of Prop. 2.5.8], does not depend on regularity, although X is
regular.

Let Y denote the simplicial subset of X that is generated by x, or in other
words, the image of its representing map = : A[n] — X. If we take the pullback
Y’ along the inclusion X’ — X, then we get a diagram

OAl] — = X

that gives rise to a factorization
X =Y LIy X/ — X

of the identity. Furthermore, the map Y Ly X’ — X is degreewise injective.
Hence the simplicial set X can be viewed as the pushout Y Uy X'.
Inductively, we can assume that ty, is an isomorphism, so we have the
diagram
DSdY =<—— DSdY' ——= DSd X'

tyi ty/lﬁ tX/\Lu

BY <—BY —~ BX'

141



7. Optimal triangulation of regular simplicial sets

giving rise to a map between pushouts in nsSet that tx factors through, by
naturality. In fact, the Barratt nerve preserves the pushout Y Ly, X’ as we
explain in the next paragraph.

The sharp functor (—)* : sSet — PoSet is cocontinous by [Lemma 7.3.1} so

XP =Y Uy (X4

Moreover, (—)* turns degreewise injective maps into sieves by [Lemma 6.4.10

This means that the square

U((Y)H) —=U((X"))

l |

Uy U(X*)

is cocartesian in Cat p. 315]. It is readily checked that the latter
cocartesian square is preserved by N : Cat — sSet p. 315]. Thus the
Barratt nerve B : sSet — sSet preserves the pushout X =Y Ly, X'. It follows
that tx is an isomorphism if ¢y is.

Note that Y is generated by an n-simplex, by definition. We shift back to
the previous notation Y1¥! = X’ and Y#+1] = X. Namely, we have proven
that ty(s+1) is an isomorphism given that ty-s is, and given the assumption of

that tx is an isomorphism whenever X is regular and generated
by a single simplex. This concludes the inner induction.

Let X be some regular simplicial set of dimension n, meaning X = X". It
follows from the outer induction hypothesis that ¢tx»-1 is an isomorphism. By
the inner induction, we know that ¢x» is an isomorphism. It follows from the
considerations concerning that tx is an isomorphism for every regular
simplicial set X given the assumption of [Lemma 7.3.6] Namely, the combination
of [Lemma 7.3.1|and [Lemma 7.3.4|shows that ¢ x arises as a map between colimits
of sequences from . [ |

The purpose of reducing the proof that ¢x is an isomorphism for regular X
to the case when X is generated by a single simplex is that we can then take
advantage of a technique due to Thomason . This technique will reduce
our problem further to its technical core, similar to how the use of mapping
cylinders can be used in problem reduction. In fact, mapping cylinders is a
special case and they show up in our argument.

The following definition of Thomason’s has been adjusted to suit our
needs, but in the restricted context of posets it is equivalent to the original one.

Definition 7.3.7 (Thomason). Let k£ : P — @ be a functor between posets P
and Q). We will say that k is a Dwyer map if it embeds P as a sieve in ) and
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if there is a factorization

\ / (7.6)

w

such that j a cosieve and such that ¢ embeds P is a coreflective subcategory of
w.

That P is a coreflective subcategory is to say that ¢ admits a right adjoint
r: W — P. The unit a — ri(a) is then an isomorphism in the poset W, which
implies that it is an identity as there is no isomorphism in a poset, except the
identities. In other words, r is automatically a retraction. In turn, we get that
the counit €, is the identity for w = i(a).

By [Lemma 7.3.6| we are left with proving [Proposition 7.3.9| below, in order

to deduce [Theorem 7.1.3] [Proposition 7.3.9| can be proven from [Theorem 7.1.4]

by induction on the degree of the non-degenerate simplex that generates X.
The induction step is handled by the following lemma, which reduces our

problem to a problem involving mapping cylinders, namely

Lemma 7.3.8. Suppose X a regular simplicial set that is generated by a non-
degenerate n-simplex z. Let y = x§,,. Then X is decomposed by a cocartesian
square

An—1] 2>y

4

Aln] X

-
in sSet. Assume that ty is an isomorphism.
Denote P = A[n — 1]* and Q = A[n]*. The map (Nd,)* has a factorization
P — W — @ that satisfies the condition of being a Dwyer map. The pushouts
W Up Y#and Q Up Y* in Cat are a posets, so N(W Up Y*#) and N(Q Up Y*)
are non-singular. Furthermore, ...
1. ...the map tx : DSd X — BX is an isomorphism if the canonical map
D(NQUyp N(Y*)) = N(QUp YF)
is an isomorphism. Finally, ...
2. ...the map D(NQ Uyp N(Y*)) = N(Q Up Y?*) is an isomorphism if
D(NW Unp N(Y®) = N(W Up YF)

is an isomorphism.
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7. Optimal triangulation of regular simplicial sets

Figure 7.1: Nerve of the cosieve W

The proof of [Lemma 7.3.8]is deferred to

What is the announced connection with mapping cylinders? We now explain
this. The structure of (Nd,)* : P — @Q as a Dwyer map that we refer to in
Lemma 7.3.8is the factorization

N(5,)*

S

W =Px|

in which v is defined as follows. The function v sends the pair
(p: [m] = [n—1],0)

to the composite
[m] £ [n— 1] 2% [n],

and the pair (p : [m] — [n — 1],1) to the face operator
[m+1] — [n]

given by j +— pu(j) for 0 <j<mand m+ 1+ n.

Notice that there is only one object of @) that is not in the image of 1, namely
the n-th vertex e, : [0] — [n]. illustrates the simplicial subset NW of
NQ@Q = B(Aln]) in the case when n = 2.

The pushout Q Lip Y* in Cat is by the paragraph above taken along a Dwyer
map, which implies that it is a poset Lem. 5.6.4]. Furthermore, the
pushout W Lip Y¥ in Cat is a poset, say because it is taken along a rather trivial
Dwyer map. Because PoSet is a reflective subcategory of Cat it follows that
W Up Y* can be considered a pushout in PoSet of the underlying diagram.
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Because W = P x [1], the pushout
T(B(y)) = NW Uyp N(YF)
in sSet is the (backwards) topological mapping cylinder of B(y). Similarly,
M(By)) = N(W Up YF)

is the (backwards) reduced mapping cylinder [WJR13, pp. 56-68], which was
defined in Note that the canonical map

NW Uyp N(Y*?) = N(W Up YF),

is a guise of the cylinder reduction map cr : T(B(y)) — M(B(y)).
Next, consider the case when X is generated by a single simplex. With the
recognition made in the paragraph above, we are ready to discuss this case.

Proposition 7.3.9. Let X be a regular simplicial set that is generated by a single
simplex. Then tx is an isomorphism.

Proof. We will prove this by induction. Assume that n > 0 is such that ¢y is an
isomorphism for any regular X that is generated by a non-degenerate simplex of
degree k < n.

For the base step, one can note that the hypothesis holds for n = 1 because
0-dimensional simplicial sets are non-singular.

For the induction step, we assume that X is as described in [Lemma 7.3.8
and aim to prove that tx is an isomorphism. Notice that Y is generated by
the non-degenerate part of y, which is of degree n — 1. This means that the
assumption that ¢y is an isomorphism, is justified.

emma 7.3.8]says that it suffices to prove that the map

D(NW Uyxp N(Y#)) = N(W Up Y?)

from Part 2 is an isomorphism. In the text preceding this proof we saw that the
latter map is a guise of the canonical map

der : DT(B(y)) — M(B(y))

whose source is the desingularized (backwards) topological mapping cylinder.
By [Theorem 7.1.4] the map der is an isomorphism as Y is regular.

thus implies that tx is an isomorphism. This concludes the

induction step. |

Note that [Proposition 7.3.9| relies upon

Now, recall We are ready to reduce [Theorem 7.1.3] to [Theo]
fem 7T

Proof of[Theorem 7.1.5 By |Proposmon 7.3.9 the assumption ofm

is satisfied. Thus we obtain [Theorem 7.1.3
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Next, we keep our promise to explain the structure of the rest of this article.

Like the reader presumably have done so far, he preferably continues to read
the sections in order, although there is a small detour in

After which takes care of the deferred proof of we
focus on whose proof is rather technical. The work of proving
[Theorem 7.1.4] is divided into three tasks.

First, in we explain that
der : DT(B(y)) — M(By))

is a bijection in degree 0. This is a more or less formal argument involving
not much more than the definition of the category sSet as a set-valued functor
category and the nerve functor.

Second, in we show that dcr is degreewise surjective. This is
not trivial, however the answer is in our case more or less to be found in the
pre-existing literature.

Third, in[Section 7.10[ we do the part that seems hard to deduce from the
literature, namely to prove that der is degreewise injective in degrees above 0.
To do this, however, we separate out a few results in sections [7.6] and [7.9]

Finally, in we deduce from the work of the three
sections [7.5] [7.8] and [7-10]

The reader may consider on cones as optional, as it is not really
part of the storyline. On the other hand, it may yield insights into the idea
behind the material in This is because the result presented in
is a precursor. In addition, the reader may prefer our approach to
the result stated as [Proposition 7.7.1| over any known proof.

7.4 Reduction

This section is devoted to the proof of In the following proof we
consider pushouts in four categories, namely the four objects in the commutative

square

Cat — N sSet
UT TU

PoSet — nsSet

of categories and functors.

Proof of[Lemma 7.3.§ Part 1. To factor the map tx in a useful way one can
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first factor bx : Sd X — BX by means of the diagram

Sd(N6,)

Sd(Aln])

Sd(Afn — 1))

where we have written the pushout X’ = NQ Uyp N(Y*#) in sSet of the lower
square in the cube in for brevity. The pushout Q Lip Y is in Cat.

The functor (—)* : sSet — PoSet is cocontinous by The
pushout Q Up Y* in Cat is a poset \ Lem. 5.6.4] as P — @ is a Dwyer
map. Because PoSet is a reflective subcategory of Cat it then follows that the
canonical map

QupY! = xt
is an isomorphism.

Naturality of dgqx yields the diagram

SdX —%~ DSd(X)

in which the diagonal map [ of the lower square arises due to the universal
property of desingularization. It makes the upper left triangle of the lower square
commute. Then the lower right triangle of the lower square commutes, also.
This means we have a factorization of

bx =kof=lodx of=1oD(f)odsax
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7. Optimal triangulation of regular simplicial sets

through dx. The map tx is unique, so it follows that we get the useful factor-
ization

of the map tx. The map [ is what we get when precomposing the canonical map
DX' - N(QupY?H
with the nerve of the canonical isomorphism
QupY! = XE,

Thus we see that [ is an isomorphism if DX’ — N(QUp Y*) is. We will see that
D(f) is an isomorphism, for formal reasons.

The map D(f) is the canonical map between pushouts of nsSet as f is, by
the universal property. It can be factored by applying the cocontinous functor
D to the diagram

Sd(A[n — 1]) Sdy

[
Qu
n
=
4
=
n
ISH
b

1R

b DSd(A[n — 1)) y DSdY g

o DSd(A[n]) TX” f
B(A[n - 1)) _ | BY
T~ W
B(Al[n]) X’

in sSet. The map D(g) is an isomorphism because it is the canonical map
between pushouts in nsSet and because its source DSd X and target DX" are
the most obvious ways of forming the pushout of the same diagram.

Recall from the formulation of the lemma that the map ¢y is assumed to
be an isomorphism. It follows that D(h) is an isomorphism, hence D(f) is an
isomorphism. Hence, tx will be an isomorphism if DX’ — N(Q Up Y*) is. W

We will conclude this section with the proof of Part 2 of

The factorization P -% W 2 @ is through a cylinder W = P x [1]. This
coincidence means that we are dealing with mapping cylinders, although they
play no explicit part in the rest of this section. What is relevant here, in the

proof of Part 2 of is the somewhat more general phenomenon of
taking pushouts along the nerve of a Dwyer map.

As mapping cylinders are important technical tools it is an interesting problem
in its own right to find interesting conditions under which the desingularized

topological mapping cylinder is the reduced one. The work of is a
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contribution to this end. When dealing with mapping cylinders of the nerve of a
map between posets, Dwyer maps are always lurking in the background.

We are ready to prove Part 2 of and thus completing the proof.

Proof of Part 2. The result follows immediately from
[Eion 7471 when we let

joi = (]\7(571)ﬁ
¢ = @

In particular, R = Y. |

Note that [Proposition 7.4.1] slightly generalizes Part 2 of but keeps
the notation.

The next proposition is proven, essentially by using a technique by Thomason
[Tho80, p. 316] in his proof of Proposition 4.3 [Proposition 7.4.1}

Proposition 7.4.1. Let

NP NR
NQ— NQUyp NR

be a cocartesian square in sSet where P, Q and R are posets and where P — @Q
is a Dwyer map with factorization P — W — Q. Then the map

D(NQ Unp NR) — N(Q Up R)
is an isomorphism if
D(NW Uxp NR) — N(W Up R)

is an isomorphism.

By stating [Proposition 7.4.1, we have freed ourselves of the specific objects
involved in [Lemma 7.3.81

To tie together the studies of the two maps of [Proposition 7.4.1] we consider
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the diagram

v
NW —— NW Uyp NR
\ ‘ ¢ \77\
Ni N(W Up R) D(NW Unp NR) o)
NQ NQUyp NR _
N(QLlpR) NQHNV[/D(NWUNPNR)

\\\ ;
n Y
¢ D(NQUyp NR)

in sSet. We take (|7.9) as a naming scheme for the maps that play a role in the
argument. Note that ¢ is the map

der : DT(Ng) — M(Nyp)

in the case when W = P x [1] and when the map i : P — W is the map
p = (p,0).

Proof of |Proposition 7.4.1 By |i:emma 7.4.2|, the map f is a cobase change in
sSet of (. This means that f is epic if ¢ is. The epics of sSet are precisely
the degreewise surjective maps. Furthermore, a cobase change in sSet of a
degreewise injective map is again degreewise injective. This way we get that f is
an isomorphism if ¢ is. |

Notice that [Proposition 7.4.1| relies upon the following.

Lemma 7.4.2. The map C is a cobase change in sSet of (.

Proof. We will prove that é is the cobase change in sSet of ¢ along
D(NW Uyp NR) — D(NQ Uxp NR).

It suffices to prove that

NW — N(W Up R)

Nji l (7.10)

NQ—— N(QUp R)
is cocartesian in sSet and that ¢ is an isomorphism.
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Let V be the full subposet of Q whose objects are those that are not in P.
Then V is a cosieve in @ as P is sieve. The square (7.10) fits into the bigger
diagram

NW

N

NVANW = N(V W) N(W Up R)
A (7.11)
NQ
Nv/ N(QUp R)

where the cosieve V' in () makes an appearance.
The maps VNW — V and VW — W are cosieves, so it follows that @)
can be decomposed as a pushout

Q=VUiuyrw W

in Cat. Observe that VNW — W Up R is also a cosieve. It follows that
N : Cat — sSet preserves the pushouts Q and

QUp REV Uynw (W Up R).

From the diagram (7.11)) we now see that (7.10) is cocartesian. From (7.9)) we
verify that ( is the cobase change in sSet of  along

D(NWHNP NR) — NQ Unw D(NW Unp NR)

It remains to argue that £ is an isomorphism.
The nerve of the cosieve

VW —WupR

factors through
NVANW — D(ZVVVUNPZ\/vR)7

so the latter is degreewise injective. Therefore
NQ Uyw D(NW Unp NR) = NV UNnvANW D(NW Unp NR)

is non-singular.
The map
n: NQUyp NR — D(NQ Unp NR)

is degreewise surjective, therefore £ is. As the source of £ is non-singular, the
map is an isomorphism. |
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7.5 Degree zero

We make use of the following result. Let Cat denote the category of small
categories.

Lemma 7.5.1. Let F': J — Cat be a functor whose source is a small category.
Let .Z be the colimit of F'. If X is the colimit of the composite diagram

JE cat & sSet,
then the canonical map X — N.Z is a bijection in degree 0.

Proof. Let O denote the functor Cat — Set that takes a small category to the
set of its objects. Recall that O has a right adjoint, namely the functor that
takes a set S to the indiscrete category IS. This is the category whose set of
objects is precisely S and that is such that each hom set is a singleton.

We also use the functor

sSet = Fun(A°P, Set) RSNy
that sends a simplicial set to the set of its O-simplices. There is a natural bijection
0% =5 (N€)o,

that takes an element ¢ of the set O% of objects of a small category & to the
simplex [0] = € with 0 +— c.

Because O is cocontinous, we get a canonical function O.Z — Xg. As colimits
in sSet are formed degreewise it follows that this function is a bijection. There
is also a canonical function O.¥¢ — (N.£)g, which by naturality must be the
mentioned bijection. The induced map Xog — (N.Z), fits into a triangle

o

0z

(NZ)o

e

Xo
that commutes by the universal property of the colimit O%. Hence, our claim
that X — N_Z is a bijection in degree 0 is true. |

IR

An application of the previous lemma is the following example.

Example 7.5.2. Let ' : J — PoSet be a diagram
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where k is a Dwyer map. As PoSet is a reflective subcategory of Cat, it follows
that U : PoSet — Cat preserves the pushout of F” [Tho80, Lem. 5.6.4]. If
Q Up R is the colimit of F' = U o F’, then [Lemma 7.5.1| says that the canonical
map

NQUNPNR—)N(QUPR)

is a bijection in degree 0.
In particular, if k is the special Dwyer map

k=io: P—Px[1]=Q,

then the reduction map
cr: T(Np) = M(Ny)

is in general a bijection in degree 0.

7.6 Tricategorical comparison

Often, one compares pushouts taken in several different subcategories. For
example, in this article, we are interested in the commutative triangle

T(Ng) ———= DT(Ny)

S s (7.12)

M(Ny)

that factors the cylinder reduction map through the canonical degreewise sur-
jective map 1 whose target is the desingularization of the topological mapping
cylinder.

To study der is for many purposes to study 7 and cr. There is a condition on

nr(ng)  T(Ny) = DT(No)

that will ensure that der is degreewise injective.

Definition 7.6.1. Whenever x and 2’ are simplices of the same degree of some
simplicial set, we will say that they are siblings if z¢; = 2’¢; for all j.

Our motivating example for the next result is f = np(ny), g = der and h = cr.

Proposition 7.6.2. Suppose we have a commutative diagram

U

X—Y

N

7
in sSet in which f is degreewise surjective and

ho:XQ—)ZO

153



7. Optimal triangulation of regular simplicial sets

is injective. Furthermore, assume that Y is non-singular and that Z is the nerve
of some poset. The simplicial map g is injective in a given degree ¢ > 0 if and
only if

f@) = (')
whenever x and 2’ are embedded siblings of degree q.

Before we prove the proposition, we remind the reader of some standard piece of
terminology.

Recall the Eilenberg-Zilber lemma Thm. 4.2.3], which says that each
simplex x of each simplicial set is uniquely a degeneration z = zf2” of a non-
degenerate simplex. The non-degenerate simplex z? is the non-degenerate
part of z and 2° is the degenerate part.

Proof of |Proposition 7.6.4 The “only if” part will not be needed, but we state
it to emphasize that the conditions are equivalent under the hypothesis of the
lemma. This part uses that the diagram commutes and that Z is the nerve of a
poset.

Suppose g is injective in degree ¢ and that x and 2’ are siblings of degree q.
Then

h(.??)&j = h(l‘&j) = h(l‘lfj) = h(x’)aj

for each j, so h(x) and h(z') are siblings. This implies that h(z) = h(a') as Z is
the nerve of a poset. Because the diagram commutes and because g is injective
in degree ¢, it follows that f(x) = f(2/).

To prove the “if” part, we will use every condition of the hypothesis of the
lemma, except that Z is the nerve of a poset. First, observe that g¢ is injective
as hg is injective and as fj is surjective and hence a bijection.

Suppose f satisfies the described condition and that y; and ys are simplices
of Y, of degree ¢, such that

9(y1) = g(y2). (7.13)

We prove that y; = y2, which will imply that g is injective in degree q. This we
do by proving that the non-degenerate parts and the degenerate parts of y; and
Yo are equal, respectively.

The two decompositions

9(y1) = g(y1) (1)

b b b b
g(y) = 9Wiy}) = guh)yl = 9(h)ia(h) v}

are one and the same due to the uniqueness part of the Eilenberg-Zilber lemma.
As usual, then, we have the equations

gy = g(yh)F (7.14)

g(y)” = g(h) v} (7.15)

However, because Y is non-singular, the non-degenerate simplex y§ is embedded,
which is the same as saying that its vertices are pairwise distinct. Because g
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is injective in degree 0 it follows that g(yﬁ) = g(ybrj is embedded and thus

non-degenerate. This implies that (7.14]) turns into

g(y)* = g(yh). (7.16)

That g(y?) is non-degenerate also implies that the degeneracy operator g(y?)" is
the identity, meaning ([7.15|) turns into

9()” = 3. (7.17)
The reasoning we applied to y; is equally valid for ys, so
9(y2)" = g(yh) (7.18)
9(y2)” = v5. (7.19)
Due to the assumption the combination of and yields
9(yh) = 9(55) (7.20)

by the uniqueness part of the Eilenberg-Zilber lemma, again. For the same

reason, the combination of (7.17)) and (7.19)) yields
v =5 (7.21)

Thus we get that the degenerate part of y; is equal to the degenerate part of ys.
It remains to prove that y; and ys have the same non-degenerate part.

Suppose y§ = f(x1) and yg = f(22). Such simplices x1 and zq exist as f is
degreewise surjective, and they are embedded in X as yg and yg are embedded
in Y. Due to we know that h(zq1) = h(zsz), hence

h(z1g5) = h(x1)e; = h(x2)e; = h(x2¢e;)

for each j. As h is injective in degree 0 it follows that x; and zo are siblings.
Finally, as f sends embedded siblings to the same simplex, we get

yh = f(a1) = fla2) = vh (7.22)

Now we also know that the non-degenerate part of y; is equal to the non-
degenerate part of ys.

The equations ([7.21]) and ([7.22)) together imply that y; = ya, so it follows
that ¢ is injective in degree q. |

7.7 Concerning cones

There is an interesting result concerning mapping cylinders that is related to
Theorem 7.1.4] namely [Proposition 7.7.1| below.
A possible proof of [Proposition 7.7.1] was an inspiration for

so this section should also give the reader insight into the idea behind the proof

of and the proof by induction presented in
The result says the following.
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Proposition 7.7.1. Let P be some poset. Then the canonical map der in the
diagram

NP — 2 AJ0]

T

NP x A[l] —= DT(N¢)

der

M(Ny)

in nsSet is an isomorphism.

In words, [Proposition 7.7.1] says that the desingularization of the cone on NP is
the reduced mapping cylinder of the unique map NP — A[0].

Proof of|Proposition 7.7.1 We will argue that der is degreewise surjective, that
it is a bijection in degree 0 and finally that it is injective in degrees above 0.

Let k denote ig : P — P x [1] as in [Example 7.5.2] Then k is canonically
identified with ig : NP — NP x A[l]. Let ¢ denote the cobase change (in the
category of posets) of ¢ along k and let k denote the cobase change of k along
. The map k is a special kind of Dwyer map. Furthermore, let r: P x [1] — P
be the projection onto the first factor.

First, the map

er : T(Ng) = M(Nyp)

is degreewise surjective in this special case, as we now explain. This immediately
implies that dcr is degreewise surjective.
If z : [q — P x [1] Up [0] is some simplex in

M(Neg) = N(P x [1]Up [0]),

then there is some integer j with —1 < j < ¢ that has the property that z(7) is
in the image of k for ¢ < j and that z(7) is not in the image of k for ¢ > j. There
is a ¢g-simplex z’ of T(N) whose image under cr is z. It is defined thus.

If 7 = ¢, then we can simply define x’ as a degeneracy of the unique 0-simplex
that is in the image of A[0] — T'(N¢). Else if j < ¢, then we may for each i > j
define x(7) as the uniqe element of P x [1] that @ sends to z(7). Suppose

¢(p,1) = 2(j +1).

For each i < j, we define (i) = (p,1). Let 2’ be the image of x under
NP x A[l] = T(N¢). It follows that cr(z’) = z. This finishes the argument
that cr is degreewise surjective, and therefore that dcr is. Keep in mind that cr
and der fit into the commutative triangle (7.12)).

By the map cr is a bijection in degree 0, which by
implies that der is. It remains to verify that der is injective in degrees above 0.

For the argument that der is degreewise injective in degrees above 0, we will
apply [Proposition 7.6.2to (7.12).
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Surjectivity of the cylinder reduction

Consider embedded siblings 2’ and y’ of T'(N), say of degree ¢ > 0, whose
zeroth common vertex is in the image of A[0] — T'(N¢) and whose ¢-th common
vertex is not. This is the only non-trivial case. Let x and vy, respectively, be the
unique simplices in NP x A[1] whose image under NP x A[l] — T(N) is «’
and 3. Because the target of ¢ has only one element, we see from that
n(z') =n(y').

2(0) = = = > kr(z(1)) <= - - y(0)

7

I
'
2(1) I y()

z(q) = y(q)

(7.23)

By [Proposition 7.6.2] it follows that der is injective in degree g. This finishes
the proof that der is injective in degrees above 0 and hence an isomorphism. M

7.8 Surjectivity of the cylinder reduction
Not every cylinder reduction map
cr: T(Np) = M(Ny)

is degreewise surjective. It can happen that the dimension of the reduced mapping
cylinder is strictly higher than the dimension of the topological mapping cylinder.

Example 7.8.1. Let ¢ : P — R be the functor between posets defined as follows.

Its source is the poset
P={b+a—c}

and its target is the poset
R={d -V = }.

The functor is given on objects by ¢(a) = d’, ¢(b) =V and p(c) = ¢.

The (backwards) topological mapping cylinder T'(N¢) is evidently of di-
mension 2. However, the (backwards) reduced mapping cylinder M (N) is by
definition the nerve of the pushout of the diagram

P—* R

]

P x [1]
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in PoSet. Thus the reduced mapping cylinder is seen to be of dimension 3, so
the cylinder reduction map is not surjective in degree 3.

Note that, in [Example 7.8.1} the image of ¢, meaning the smallest subcategory
of R containing each object and each morphism hit by ¢, is not a sieve in R.

This is because the morphism ' — ¢’ is not in the image of ¢, though the object
d is.

To take care of the surjectivity statement of we will adapt
Lemma 2.5.6 from [WJR13, p. 71] to our needs. Recall from [Definition 7.2.1| the

notion of simple maps. Note that a simple map is degreewise surjective. Simple
maps are discussed in Chapter 2 of pp. 29-97] and play a role in that
book.

Let f: X — Y be a simplicial map whose source X is a finite simplicial
set. We say that f is simple onto its image if the induced map X — f(X) is
simple.

Lemma 7.8.2. (Lemma 2.5.6 of [WJR13| p. 71]) Let X be a regular simplicial
set. For each n > 0 and for each n-simplex y, the map

B(y) : B(Aln]) - BX

induced by the representing map y is simple onto its image.

Note that if Y is the image of the representing map y of some simplex y, then
BY is the image of B(y) [WJR13| Lem. 2.4.20, p. 67].

In the rather lengthy proof of which we display below, the
following term from [WJR13, Def. 2.4.7] is an ingredient.

Definition 7.8.3. Let X and Y be finite simplicial sets. A map f: X — Y is
a simplicial homotopy equivalence over the target if there is a section
s:Y — X of f and a simplicial homotopy H between s o f and the identity
X — X such that the square

X x Al 2> X

Pﬁl I
X———Y

f

commutes.

Note that the homotopy H provides a contraction of each point inverse of | f|,
so f is simple. There are several related notions that could fill the term of
[Definition 7.8.3| [WJR13], p. 60] with meaning.

We are ready to prove the lemma.

Proof of[Lemma 7.8.34 The proof is borrowed from the corresponding part of
the proof of Lemma 2.5.6 from [WJR13| p. 71]. The only difference is that the
notion of op-regularity is replaced with regularity.
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Notice that it is enough to consider the representing maps of non-degenerate
simplices. If y is a simplex of X, say of degree n, then we can factor B(y) as

BAR) 2N pam) 29, px

where k denotes the degree of i and where B(Ny”) is simple as it is a simplicial
homotopy equivalence over the target.

Assume that n > 0 is an integer such that the representing map of each
non-degenerate simplex of X, of degree strictly less than n, is simple onto its
image. Assume that y is a non-degenerate simplex of degree n. We will prove
that B(y) is simple onto its image.

Let z = yd, so that the image Y of § is a pushout A[n] Uaj,—1) Z, where Z
is the image of z : A[n — 1] = X. Here, A[n] is attached to Z along its n-th
face, meaning along the map NJ,,.

By the induction hypothesis, the map

B(2): B(A[n— 1)) —» BX

is simple onto its image as the degree of 2 is at most n — 1. The simplicial
subset BZ of BX is the image of the Barratt nerve of the representing map of z

[WJR13, Lem. 2.4.20].

In we displayed the simplicial set B(A[2]) and highlighted a copy of
B(A[1]) x A[1] as a simplicial subset. The figure holds the key to a decomposition

B(A[n]) = M(B(A[n — 1]) = A[0]) Up(am_1) B(AIn - 1]) x A[1]

as we now explain.
Recall the embedding ¢ : A[n — 1]* x [1] — A[n]* from the proof of
emma 7.3.8 Form the backwards reduced mapping cylinder

M(B(A[n —1]) = A[0])

of B(A[n — 1]) — AJ[0]. This mapping cylinder is the nerve of the pushout
P(A[n — 1) — [0]) of

Aln — 1]} ——[0]
|
Aln —1]* x [1]
where i takes p to (u,0). The cosieve
i1: Aln— 1" = Aln — 1) x [1]
gives rise to a cosieve

Aln —1)* = P(A[n — 1)F — [0]).
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Furthermore, we can define a map
w:Aln—1]* x [1] = A[n)?
by letting it send (u,0) to e, and (p : [m] — [n — 1],1) to the operator
[ + 1] — [n]

given by j — u(j) for 0 < j <m and m + 1 — n. From w arises the right hand
vertical map of the commutative square

Aln — 1 ——— P(A[n — 1]¥ — [0])

g |

Afn — 1]t x 1] NGE

which is cocartesian in the category of posets and even in the category of small
categories. Moreover, the nerve functor preserves it as a cocartesian square as the
legs are cosieves. This concludes the argument that B(A[n]) can be decomposed
as claimed.

Next, we display a suitable decomposition of BY. Form the backwards
mapping cylinder M (B(z)) of the Barratt nerve of the corestriction to Z of the
representing map of the simplex z. Here, we overload the symbol z. There is a
degreewise injective map

B(A[n—1)) % B(A[n — 1]) x A[l] - M(B(z)) = NP((2)?),
which is induced by
Aln— 18 25 Aln — 1) x [1] = P((2)Y).
As the simplicial set Y is regular, the composite
P(A[n— 1] — [0]) = Aln)f 25 v

is injective on objects and actually a cosieve.
Next, consider the pushout

Yi= A[’I’L]ii UA[n—1)t Z*.

Use the factorization of (N§,,)* into 1 o iy as before and obtain P((2)¥) — Y*
written as the cobase change of ¢ along A[n — 1]# x [1] — P((2)#). Combining
this with the decomposition of A[n]* obtained above, we get the cocartesian
square

Aln — 1)t —— P(An — 1]F — [0])

| l

P((2)f) —————=Y*
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which is also preserved by the nerve. Again, this is because both legs are cosieves.
The diagram

B(A[n —1]) x A[l] =2~ B(Aln — 1)) —= M(B(A[n — 1]) — A[0])

| - :

M(B(2)) B(Aln —1]) —= M(B(A[n —1]) — A[0])

is a thus a way of obtaining the map B(A[n]) — BY induced by B(y).
On the cone M (B(A[n —1]) — A[0]), the map B(y) is the identity. However,
on the cylinder B(A[n — 1]) x A[1l], the map B(y) is the composite

B(A[n — 1)) x A[1] = T(B(z)) — M(B(2)).

The first map of the composite above is the cobase change of the simple map
B(Zz) along ip. A point inverse of that map is either a point inverse under the
induced map

[B(A[n —1])| x [A[1]| = [B(A[n = 1])| = [T(B(2)| — |BZ],
which is a homeomorphism, or it can be considered a point inverse under
|B(z)| : |B(A[n —1])| — BZ.

Thus the first map of the composite is simple.
The second map is simple by the induction hypothesis and by Lemma 2.4.21.
[WJIR13| p. 67] as A[n — 1] and Z are of strictly lower dimension than n. W

Thus we obtain the technically important fact that for a regular simplicial set,
the Barratt nerve of each representing map is simple onto its image.

We use the following notion from [WJR13, Def. 2.4.9].

Definition 7.8.4. Let ¢ : P — R be a functor between finite posets P and R. If
the (backwards) cylinder reduction map

er: T(Ng) — M(Nyp)

corresponding to the simplicial map N is simple, then we say that Ny has
simple cylinder reduction.
The notion of is defined more generally for a simplicial map
f: X — Y whose source and target are both finite simplicial sets. However, we
do not need the full generality.

Consider the following result, which is essentially Corollary 2.5.7 from

[WJIR13, p. 71].

Proposition 7.8.5. Let X and Y be finite regular simplicial sets. Suppose
f: X — Y asimplicial map. Then B(f) has simple cylinder reduction.

Proof. By [Lemma 7.8.2] the map B(z) is simple onto its image for each z € X*.
Likewise for Y. Then B(f) has simple cylinder reduction [WJR13| Lem. 2.4.21].
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7. Optimal triangulation of regular simplicial sets

7.9 A deflation theorem

In this section, we will prove a basic yet useful result concerning regular simplicial
sets.
We begin with the following observation.

Lemma 7.9.1. Let y be a regular non-degenerate simplex, say of degree n, of
some simplicial set. Assume that yu and yv are faces of y such that the last
vertex of y is a vertex of one of them. If

(yr)* = (yv)F,

then p = v.

Proof. Let Y denote the simplicial subset that is generated by y and let Y’ be
generated by yd,. Then the canonical map

A[n] |—|A[n—1] Y’ i) Y

is an isomorphism as y is regular. We want to think of the simplices yu and yv
of Y as simplices of A[n] Liajp—17 Y.

Note that the isomorphism above implies that ye, # ye; for all j with
0 < 7 < n. By the assumption that the last vertex of y is a vertex of yu or of yv
we have that n is in the image of at least one of the face operators p and v. Say
that n is in the image of p. Then yu = (yu)¥, and yu is not in the image of

Y — A[n] UA[n-1] Y’

From (yu)* = (yv)*? it follows that (yv)* is not in the image of this map, hence
yv is not. As yv is the image of v under

Aln] — Aln] UAn—1] Y’

it follows that v is not in the image of N, hence n is in the image of v. This
means that yv = (yv)!. Now it follows that yu = yv, so  and v must have the
same source, say [k]. The function

Aln]y = (A[n] Uapn—1 Y )k
is injective on the complement of the image of (Nd,,)x, which implies

W=r.
|

Now, may be intuitively obvious. However, the next result may
not be obvious.

Consider a 2-simplex of some regular simplicial set such that the non-
degenerate parts of the first face and the second face are equal. Then the
2-simplex is degenerate. Moreover, its non-degenerate part is equal to the two
previously mentioned non-degenerate parts. In this sense, the 2-simplex is
deflated. One can say the following, in general.
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Proposition 7.9.2. Let X be a regular simplicial set and y a simplex, say of
degree n. Suppose [n] the union of the images of two face operators o and v and
that neither image is contained in the other. If

(yw)* = (yv)*,

then y is degenerate with non-degenerate part equal to the non-degenerate parts
of yu and yv.

Proof. Note that immediately implies that y is degenerate. Now,
define

a=yp
and take the unique factorization of
a=dfa
into a degeneracy operator o’ followed by a face operator af. Similarly, we write
y'v=p0=78"

Now, the union of the images of the face operators af and % is equal to their
common target as the pair (i, v) has this property.
The left hand side of the equation (yu)* = (yv)* can be written

W'y’ = (yafa’)t = (yfah)f
and the right hand side can be written
W)t = (B °)F = (6%

By [Lemma 7.9.1} it follows that of = 5%. As the union of the images of af and
(% is equal to their common target it follows that both of the face operators are
equal to the identity. This means that

(')t = (y)F = o

and the leftmost expression is equal to (yu)?. This concludes the proof. |

7.10 Zipping

The canonical map
der : DT(Ng) — M(Ny)

from the desingularized topological mapping cylinder to the reduced one is not
necessarily degreewise injective.
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Example 7.10.1. Let f : A[1] — A[1]/OA[1] be the canonical map whose source
is the standard 1-simplex and whose target is the simplicial set one gets by taking
the standard 1-simplex and then identifying the zeroth and the first vertex.

The desingularized (backwards) topological mapping cylinder DT(B(f)) has
two distinct non-degenerate 2-simplices that are siblings. Thus

der : DT(B(f)) — M(B(f))

is not injective in degree 2. In fact, der fails to be injective even in degree 1.
Note that A[1]/90A[1] is not regular.
Compare the following proposition with

Proposition 7.10.2. Let X be a regular simplicial set and r some simplex of X,
say of degree n. The canonical map

der : DT(B(T)) — M(B(r))

is injective in each positive degree.

The use of the letter r instead of the letter y as in is a shift in

notation that is meant to contribute to readability in the argument below. To

prove [Proposition 7.10.2) we will let ¢ = (7)* and apply [Proposition 7.6.2to the
diagram ([7.12)).

As before, we write P = A[n]*, R = X* and W = P x [1]. The reason we use
the letter W to denote P x [1] is that we at a later point will think of P x [1] as
embedded in Q = A[n + 1]¢ like in except that n is replaced by n + 1.

We study pushouts in sSet and nsSet of the diagram

Np =N NR

k_NiOJ/ (7.24)
NW
and we study the canonical map
n:T(f) = DT(f)

between them. The letter k£ is not needed in the same capacity as in .
Instead its meaning is explained by . The notation is thus close to the one
in the triangle (7.6]), though not exactly the same.

Notice that ig is a special Dwyer map. In particular, the category P is a
coreflective subcategory of W. Note that we use the language and notation of
mapping cylinders mainly because it is common in the literature and because
notation exists, although connection with mapping cylinders in §2.4]
is interesting. Nevertheless, for the purpose of this argument, what matters is
that 7 is a sieve and has a retraction that is a right adjoint, which in this case
is the projection W — P onto the first factor. Let k : NR — T'(f) denote the
cobase change in sSet of k along f and let f denote the cobase change in sSet
of f along k. We will handle two cases.
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We consider pairs (z/,y’) of embedded simplices 2’ and 3’ of T'(f) that are
siblings and that are of a fixed degree ¢ > 0. Notice that the relation being a
sibling of is an equivalence relation on the set of ¢g-simplices. In the following,
posets are viewed interchangeably as small categories and as a sets with a
binary relation < that is reflexive, antisymmetric and transitive. At a given
moment in the argument, we adopt whichever viewpoint has the most convenient
terminology.

The first case is when the common last vertex a’¢, = y'e, of the embedded
siblings 2’ and ¥/ is in the image of k. In that case, 2’ and v’ are in the image
of k as it is an elysium. Two g-simplices of NR whose images are z’ and v/,
respectively, must be siblings. Any two siblings in the nerve of a poset are equal,
so it follows that 2’ = g’ in this case. Thus n(z’) = n(y’), trivially.

The second case, namely when x’e, = y/'g, is not in the image of k, is highly
non-trivial. We will handle this situation by inductively replacing the pair of
siblings with another pair of siblings that are closer in a sense that we now make
precise. Our induction has the following hypothesis.

Suppose some integer p < ¢ is such that whenever two embedded siblings
and 3y of T'(f) whose common last vertex x’e, = ¢/, is not in the image of k,
then 2’ has a sibling 2z’ and 3’ has a sibling w’ with

3 3
—~
<y
—
I
s 3
—~
SERS
NI

satisfy ze; = we; for each non-negative integer j with p < j < ¢. The uniqueness
of z and w comes from the fact that fq is injective on the complement of (N P),
in (NW),. Note that 2’ and w’ are siblings as ' and y’ are.

Consider the event that p = —1. Then the simplices z and w of NW are
siblings. Therefore z = w as NW is the nerve of a poset. Hence 2z’ = w'.

For the base step, note that our induction hypothesis is satisfied for p = ¢ — 1.
We will verify this in the next paragraph. Notice that the induction moves in the
opposite direction, namely that the inductive step will verify that the hypothesis
is true for p — 1 whenever we know that it is true for p.

Recall that a simplex of T'(f) of any degree is exclusively and uniquely the
image of either a simplex of NR or a simplex of NW that is not in the image of
k. If " and ¢’ are embedded siblings whose last vertex x’e, = y'¢, is not in the
image of k, then the unique g-simplices = and y with

o = f(z)

y o= f
are such that neither xze, nor ye, is in the image of k. These two 0-simplices,
in other words, reside in the back end of the cylinder NW, which is the image
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of Nii. We think of the back end as the nerve of the full subcategory V of W
whose objects are those that are not in the image of ig. In other words, the back
end is the nerve of a cosieve, which is in this case the image of i;.

The composite

NV = NW L) = M(f)

is degreewise injective as it is the nerve of an injective map, hence

NV = Nw L 7(p)

is degreewise injective. It follows that xe, = ye,.

Now we do the inductive step. Take a pair (2',y") of embedded g¢-simplices
z’ and y’ of T'(f) that are siblings and whose common last vertex z'e, = y'e, is
not in the image of k. Take a sibling 2" of ' and a sibling w” of ¥ with

and such that the unique simplices z5 and wy of NW with

wl/

satisfy z0e; = wae; for each non-negative integer j with p < j <g.
In the case when

22Ep = W2Ep,

then we simply define

z = Z
= Z2

w/ — w//

w = wa,

and we are done.
Else if

20Ep F Wk,

then there is work to be done.

Because the map NV — NW ER T(f) is degreewise injective it follows that
Z9€p O Wae, resides in the front end of the cylinder NW, so z”¢, = 3¢, is in
the image of k. The set T'(f)o of O-simplices is the disjoint union of the image of
ko and the image under fy of the complement of the image of ko. In particular,
both z2¢;, and wae), reside in the front end of the cylinder, which is the image of
k.

For the next piece of argument, we shift focus somewhat and view zo and wo
as functors [¢] — W. Notice that, say the 0-simplex zoe; in NW corresponds to
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the object z2(j) in W for each j. Combine the two functors zo and ws to form
the solid arrow diagram

Z9 (0) wao (0)
zo(p—1) wa(p —1)
z2(p) - - - -~ > 22(p) Vwa(p) < — = = = = wa(p) (7.25)

z2(q) = w2(q)

in the category W. The diagram looks like a zipper. To realize this also
reveals the idea behind the proof of [Proposition 7.10.2] which is to show that
n(2’) and n(y’) are equal by performing a zipping in the category W.

Think of W as embedded in Q = A[n + 1]* as in except that n is
replaced by n + 1. The category @) has the property that whenever there is a
cocone on a diagram

a(a

oC

in @, then there is a universal such, or in other words a coproduct of ¢ and ¢'.
The coproduct in a poset of two objects is often referred to as the join of the
two objects. Frequently, the symbol V denotes the join operation so that the
join of ¢ and ¢’ is denoted q V ¢'.

The category W is obtained from @ by just removing the object €5 : [0] — [2]
given by 0 — 2 and each morphism whose source is €. It follows that the
category W inherits the property from ) that was described in the previous
paragraph, namely that the existence of a cocone implies the existence of a join.
Because P is a coreflective subcategory of W, the join in W of z5(p) and ws(p)
is an object of P.
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Notice that there are two obvious (¢ + 1)-simplices in NW that appear in

7 namely

22(0) = -+ = 22(p) = 22(p) Vw2(p) = 22(p+1) = - = 22(q)
denoted Z and

w2(0) = -+ = wa(p) — 22(p) V wa(p) = wa(p+1) = - = wa(q)

denoted w. We have an application in mind for them, which will become clear
shortly if it has not already.
Because P is a sieve in W, the subdiagram

Z9 (O) wo (O)

z2(p — -1)

\

20(p) —— 23(p) V wa(p) =<—— wa(p)

in W of the big diagram above is really a diagram in P, whereas the object
22(q) = wa(q) is not an object of P.

Notice that ¢(22(p)) = ¢(wa(p)) due to the fact that z” and w” are siblings,
which in particular implies that z”¢, = w”e,. This is because ¢ is defined as
¢ = (7)* where r is from [Proposition 7.10.2| If we can prove that

¢(22(p) V wz2(p)) = ¢(22(p)), (7.26)

which we can, then the two simplices Z and @ give rise to simplices in T'(f) that
become degenerate under desingularization (in a specific way).
Let z denote the simplex

22(0) = - = 22(p— 1) = 22(p) Vwa(p) = 22(p+ 1) = -+ = 22(q)

in NW and 2/ its image under f. When we verify it will follow that 2’
and 2" are siblings. By assumption, the simplex z” is a sibling of z’. It will thus
follow that z’ is a sibling of 2’ as being a sibling of is an equivalence relation.
Moreover, the image f(Z) has the property that

f()ep = f(B)epsa.

This means that fi (%) becomes degenerate under desingularization. More precisely,
we get that nf (%) splits off the degeneracy operator o,. In other words, the
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simplices 2’ and 2’ become identified under desingularization, meaning n(x’) =

().
Similarly, let w denote the simplex

w2(0) = -+ = wa(p— 1) = 22(p) Vwa(p) = walp+1) = - = waq)

in NW and w' its image under f. Then w’ and w” are siblings if holds.
By assumption, the simplex w” is a sibling of y’. It will thus follow that y’ is
a sibling of w’. We get that n(y’) = n(w’) as nf(w) splits off the elementary
degeneracy operator .

Note that the equations

hold by definition of z and w. This means that verifying finishes the
induction step in the case when 2o, # wae,.

We go on to verify . It could be that ws(p) is a face of z2(p), meaning
z2(p) Vwa(p) = #2(p). Similarly, it could be that z9(p) is a face of wa(p), meaning
22(p) V wa(p) = wa(p). In both cases, we trivially obtain (7.26)). Let us consider
the non-trivial case when neither one is a face of the other.

Notice that if ¢ and ¢’ are objects of @ = A[n + 1]* whose join q V ¢’ exists,
then the face operator q V¢ is the one whose image is the union of the images of
q and ¢'. This operation is inherited by the subcategory W of Q) as was pointed
out earlier. There are unique face operators p and v such that

22(p) = (22(p) Vwa(p))p
wa(p) = (22(p) Vwa(p))v.

The union of the images of p and v is equal to their common target. Also,
neither image is contained in the other because we now consider the non-trivial
case when neither of the simplices zo(p) and ws(p) is a face of the other.

Consider applying [Proposition 7.9.2in the case when y = 7(22(p) V w2 (p)).
Recall that ¢ = (7). We get that

©(22(p) V wa(p)) = o

by definition of ¢ and we can let u and v denote the face operators that applied
to 22(p) V wa(p) yield z2(p) and wa(p), respectively.
Furthermore,

p(22(p) = »((z (p)(\/wz(p)()

(7.27)
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and similarly ¢(w2(p)) = (yv)f. The equation (7.26) follows from
tion (9.2

From the verification of ((7.26]), it follows that the sibling 2’ of 2’ and the
sibling w’ of ¥’ are such that
(@) =
n(y) = n(w)

and such that the pair (z,w) of simplices z and w of NW with

I

7= f(2)
f

has the property that ze; = we; for each non-negative integer j with p—1 < j < gq.
This means that having verified (7.26]) finishes the induction step in the case
when 2o€, # wae,. Thus the map 7y () takes each pair of embedded siblings of
degree g to the same simplex.

As the integer ¢ > 0 was arbitrary, the conclusion holds for each positive
integer. Namely that np ) takes each pair of embedded siblings to the same
simplex. Recall that f = B(r). We are ready to prove [Proposition 7.10.2

Proof of |Proposition 7.10.2. We have just proven by induction on what we may
call the prozimity of a pair of siblings that np p(r)) takes each pair of embedded
siblings of degree ¢ to the same simplex, for each ¢ > 0. This is trivially true for
q = 0 as well, though irrelevant.

The simplicial set DT(B(7)) is non-singular, the simplicial set M (B(7)) is
the nerve of a poset and 1y p(7)) is degreewise surjective. Furthermore, the map

er: T(B(r) = M(r)

is injective in degree 0 by |Example 7.5.2] Thus [Proposition 7.6.2|is applicable to
(7.12]).
By [Proposition 7.6.2] the map

der : DT(B(r) — M(1))

is injective in each positive degree. |

7.11 Comparison of mapping cylinders

Recall from that we consider a regular simplicial set X and an

arbitrary simplex y of X, say of degree n. The theorem makes the claim that
der : DT(B(y)) — M(B(Y))
is an isomorphism, which we will now prove.

170



Comparison of mapping cylinders

Proof of [Theorem 7.1.J First, we argue that der is bijective in degree 0. Con-
sider in the case when the map ¢ : P — R is the map

() : Aln)f — X
and when P — (@ is the map
io : Aln]f — Aln]* x [1].
Then it follows directly from that the cylinder reduction map
T(B(y) = NQUxp NR = N(QUp R) = M(B(y))
is bijective in degree 0. As
nr) : T(B(y)) — DT (B(y))
is degreewise surjective it follows that
der - DT(B(y)) — M(B(y))

is bijective in degree 0. Recall that these three maps fit into the commutative

triangle ((7.12)).

Next, we argue that der is degreewise surjective. Let Y denote the image of
y: A[n] = X. Then BY is the image of B(y) [WJR13| Lem. 2.4.20]. Consider
the diagram

B(A[n]) Bff Bf(
B(A[n]) x All] —— DT —— DT(B()) (7.28)
\L \der idcr
B(A[n]) x All] —= M ——> M(B(7))

where T' denotes the topological mapping cylinder of the corestriction of B(y) to
its image BY and where M denotes the reduced mapping cylinder of the same
map.

It follows from [Proposition 7.8.5|that der : DT — M is degreewise surjective.
This is because both A[n] and Y™ are finite regular simplicial sets. We will explain
that

der : DT(B(y)) — M(B(y))

is the cobase change in sSet of DT — M along BY — BX. Thus we obtain the
desired result.
Note that
B(A[n]) x A[1] = DT

is the cobase change in nsSet of B(A[n]) — BY along
B(A[n]) — B(Aln]) x A[1].
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7. Optimal triangulation of regular simplicial sets

Furthermore, the map
B(A[n]) x A[l] — DT(B(y))
is the cobase change in nsSet of B(A[n|) — BX along
B(Al[n]) — B(A[n]) x A[1].

Consequently, the map
DT — DT(B(y))

is the cobase change in nsSet of BY — BX along BY — DT.
The map BY — M is degreewise injective, hence BY — DT is degreewise
injective. As nsSet is a reflective subcategory of sSet, it follows that the map

DT — DT(B(}))

is even the cobase change in sSet of BY — BX along BY — DT.
Next, consider the diagram

NGE Yt Xt

] s

AnJ? x [1] — A}t x [1] Uppge Y —— Al x [1] Uppye X*

in PoSet. Remember that B = NU(—)!. The cocontinous functor
(—)*: sSet — PoSet

turns degreewise injective maps into sieves. A cobase change in PoSet of a sieve
is again a sieve, so Y# — A[n]? x [1] Upp,: Y* is a sieve. The right hand square
of is a cocartesian square that is preserved under U : PoSet — Cat. This
is because both legs are sieves, which means that the pushout in Cat is a poset
and because PoSet is a reflective subcategory of Cat.

It is even true that M — M (B(y)) is the cobase change in sSet of BY — BX
along BY — M as N : Cat — sSet preserves a cocartesian square in Cat
whenever both legs are sieves.

As a result of the considerations above, we see from that

der : DT(B(y)) — M(B(y))

is the cobase change in sSet of DT — M along BY — BX, which is the desired
result.
Finally, the map
der : DT(B(y)) — M(B(y))

is degreewise injective in degrees above 0, for this is precisely what
o 702 sas.

The map der is thus seen to be bijective in degree 0, it is degreewise surjective
and it is injective in degrees above 0. This concludes the proof that der is an
isomorphism. |
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Comparison of mapping cylinders

The proof of was the last piece of the proof of our main result,
which is [Theorem 7.1.3
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Chapter 8

Cofibrant non-singular simplicial
sets

Usually, one wants to know more about a model structure than its existence.
Otherwise it may not be of much use. So far we at least know that the model
category of non-singular simplicial sets is cofibrantly generated and proper.

For example, one of the first questions concerning a model category is what
its cofibrant objects are. As the construction that establishes is
borrowed from Thomason , it makes sense to learn what we can from his
article. He proved that any cofibrant small category is a poset.

When looking at , a semi-analogous statement to Thomason’s result
seems to be the following.

Conjecture 8.0.1. Any cofibrant non-singular simplicial set that is (isomorphic
to) the nerve of a category is in fact (isomorphic to) the nerve of a poset.

We will try to justify calling this statement a conjecture during the span of this
chapter.

G. Raptis pointed out to the author that [Conjecture 8.0.1]is false without
the assumption that the cofibrant non-singular simplicial set is isomorphic to
the nerve of a category.

In we present constructions of various simplex categories. We
also make basic comparisons. The reason we do this is that the Barratt nerve is
defined in terms of the most drastically formed simplex category. We recommend
that the reader skips or skims through this section, and then returns to it if
needed.

In we explain how [Theorem 7.1.3]is evidence for [Conjecture 8.0.1]
Furthermore, we indicate why a study of simplex categories might be useful in
the work of characterizing the cofibrant non-singular simplicial sets.

In we explain why one could hope for [Conjecture 8.0.1| by
considering the first few stages of building a DSd?(I)-cell complex.

In we discuss some relevant examples. For instance, we display
obstructions of statements that one could make concerning the cofibrant non-
singular simplicial sets. We also display a few more ingredients in a possible
proof of [Conjecture 8.0.1| or other statements that one could make.

8.1 More on simplex categories

8.1.1 Four related simplex categories

Among reasonable simplex categories of a simplicial set X, the poset X* whose
objects are the non-degenerate simplices is arguably the category whose formation
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8. Cofibrant non-singular simplicial sets

is the most drastic as the non-degenerate simplices are the only objects and
as the category only remembers whether a non-degenerate simplex is a face of
another, but not how. The category ¢Sd X can also be viewed as a simplex
category. It shares its set of objects with X*, but there are more morphisms in
general. These two simplex categories seem relevant in trying to characterize the
cofibrant objects of nsSet. In the hope that can be proven with
the machinery that is used in this thesis we discuss two more simplex categories
in this chapter.

We have previously mentioned the simplex category A | X whose objects
are the representing maps = of simplices x of X and whose morphisms are the
commutative triangles

Alm] - Aln]
N

for y and x of degree m and n, respectively. In this chapter we are concerned
with the full subcategory A’ | X whose objects are the representing maps of
the non-degenerate simplices. In we proved that there is a close
relationship between A’ | X and its surrounding category A | X when X is
non-singular.

In contrast to X*#, the morphisms 4 — Z of the category A’ | X correspond to
all the ways in which y can be written as a face of y. Still, Sd X has strictly more
1-simplices than there are morphisms in A’ | X, for if z and y are non-degenerate
simplices of X with y = (xu)? # 2p, then the pair ((y, (u,)) uniquely represents
a 1-simplex of Sd X as the Kan subdivision has the Eilenberg-Zilber property.
Here, ¢ is the identity morphism whose target is shared with the face operator
i. This means that ¢Sd X has potentially more morphisms than A’ | X. In
this sense, the latter seems ungeometric compared to the former. However, we
will shortly display an example that shows that the identifications used when
constructing ¢Sd X can make ¢Sd X possess strictly fewer morphisms between
two objects than A’ | X. Therefore, these two simplex categories do not seem
directly comparable.

The Eilenberg-Zilber property of the Kan subdivision and the explicit de-
scription of the categorification functor ¢ yields an explicit description of ¢Sd X.
However, the description is not quite elementary. We can compare ¢Sd X with
X% in the sense that there is a full functor ¢Sd X — X*. An issue when working
with ¢Sd X is that it has an awkward, albeit explicit, description. We would
like a full functor from another simplex category with the same set of objects
and whose target is ¢Sd X. Preferably, this new simplex category would have an
elementary description, such as the descriptions of X* and A’ | X.

In an attempt to make a bigger simplex category than ¢Sd X that is com-
parable to the latter and that has an elementary description, we define SX
thus. Its objects are the non-degenerate simplices of X as before. In this case,
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More on simplex categories

however, we let the morphisms y — = be the pairs (z, 1) such that y = (zp)t.
This construction is the topic of the next subsection.

8.1.2 Construction of SX

Composition in SX is less obvious than in A’ | X. Suppose we are given

morphisms z (—> y and y — ’#) x. We assign letters to the degrees of the

simplices z, y and z and to the sources of the face operators p and v as in the
diagram

(yv)”

in sSet. At the top we have formed the pullback [m] of the underlying diagram in

A and then reapplied the nerve. The map 7 is then a face operator, and (zu)” is
a degeneracy operator. This is because a base change of an epimorphism in A is
again an epimorphism. The epimorphisms are precisely the degeneracy operators.
A base change in any category of a monomorphism is again a monomorphism.
The monomorphisms of A are precisely the monomorphisms.

If we apply the composite face operator u? to x, then we gﬁt\a simplex whose

non-degenerate part is z and whose degenerate part is (yv)’(zu)’, as is revealed
by the outer part of the big diagram. We define

(2, 1) o (y,v) = (z, uD).
Notice that (x,¢), where ¢ is the identity, takes the role as the identity z — x in
SX. It remains to verify associativity of the composition rule.
Note that the category A’ | X can be embedded as a subcategory of SX as
soon as we have verified that composition in SX is associative. For if
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8. Cofibrant non-singular simplicial sets

is a morphism of A’ | X, then y = xpu = (xp)f, so (x, ) is trivially a morphism
of SX.
(yv)

Composition in SX is compatible with composition in A’ | X, for if 2 ——5 y

and y M) x are morphisms of SX with z = yv and y = zu, then U = v as

(ac,u)b is the identity. Furthermore, we get that

~

TpUY = TPy = Yr = 2.

In other words, the category A’ | X becomes a subcategory of SX as soon as
we have verified associativity of the above composition rule.
Finally, we verify associativity of the composition rule for SX. Suppose we

have morphisms w (Z—£)> Z, z M y and y (z—“)> x. We will verify that

(z, 1) o ((y,v) 0 (2,€)) = ((z, 1) o (y,v)) © (2,8) (8.1)

which is the final piece of the argument that SX is a category.

The composition on the right hand side of (8.1)) is constructed by means of
the diagram

3
Alqg]
AN
AN
AN
\
Alr] = — = = = A[l]
. 3
/
2. r
Alp] i
(yv)
(28)
A[”Z]
LE)t
Al (26)

where ¢ is base change of ¢ along (yv)’ o @ and £ is base change of ¢ along
(yu)b. Recall that we form pullbacks in A when performing composition in SY
and then reapplying the nerve, which is/fu\lly faithful and continous. In turn,
we get that £ is base change of é along (zp)”. Finally, we get that 2o ¢ is base
change of v o & along (zp)".

Next, we use the knowledge from the previous paragraph to consider the
composition on the left hand side of . This composition is constructed by
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means of the diagram

Alr] Alq]
N g
%/

Alp] Alll~—— A[m]\ poé
Alk]

(26)

(mp)”

N '
- A[nx]

where the map Alg] — A[m] arises the nerve of a map between pullbacks in A.
From both the diagrams arises the morphism
w (@,ui€) z,
so it follows that (8.1)) holds. This concludes the verification that composition
in SY is associative.
Note that if X is non-singular and if (z, p) : y — « is any morphism of SX,

then zy = (zp)* as z must be embedded. Hence, zx must be embedded and
thus non-degenerate, so we get the following result.

Lemma 8.1.1. Let X be a simplicial set. The set of non-degenerate simplices
are the objects of a category whose morphisms y — x are the pairs (z, ) such
that y = (xu)?. There is a an embedding A’ | X — SX given by the rule z +
on objects. If X is non-singular, then this embedding is full.

Note that the category SX has more morphisms than A’ | X in general, for if
(x, 1) is a pair such that y = (zu)* and such that zp is degenerate, then (x, 1)
does not correspond to a morphism y — Z of A | X.

Finally, it would be interesting to know whether the construction SX is
functorial. If it is, then it may be of help in the work to characterize the
cofibrant objects.

Remark 8.1.2. A simplicial map f: X — X’ gives rise to a rule
2+ fla),

for objects together with a compatible rule for morphisms, also denoted S'f. We
now explain this.
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8. Cofibrant non-singular simplicial sets

Consider a morphism y &1 of SX. Denote y = f(y) and 2’ = f(x)*.
We will find a canonically constructed face operator such that the simplex we
get when applying it to f(z)? has f(y)* as its non-degenerate part.

We can decompose f(zp) into the two expressions

flap) = f@)n = f@) f(@)n=a'(f(@) w)(f(2)n)

and
faw))(zp) = fly)(zp)
= [y (azp)
= fY (zp)
= fWH W)Y (an)
Because

Fly) = FW) f (),
it is by the Eilenberg-Zilber lemma true that

If we use the Eilenberg-Zilber lemma once more, we get that ¢y’ is the non-
degenerate part of /(f(z)’u)?, so we get a compatible rule

(2, 1) L5 (@' (f(2) )"

on morphisms.

If f is the identity, then f(z) = z = z*. Therefore, in this case, the degeneracy
operator f(z)” is just the identity, meaning (f(x)°u)? = p. Also, we get that
f(z)¥ = 2 = 2 for non-degenerate z. This implies that the rule Sf is the
identity in this case. The question remains whether the equation

Sf((@, p) o (y,v)) = Sf((z, 1) o Sf((y,v))- (8.2)

holds? If so, the rule Sf defines a functor SX — SX'.

8.1.3 Construction of cSd X

The Kan subdivision Sd X of a simplicial set X has the following explicit
description.
By Aj : A — Set for ¢ a non-negative integer, we refer to the cosimplicial
set given by
Inl = Al = N(AR]),.

The set of g-simplices can be explicitly described as

Sd(X)g =X @A, = | | Xn x Al[n]y/ ~
n>0
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where we make the identification (za, ¢) ~ (z, ) for « € X,,. This is analogous
to a tensor product from an algebraic setting as a right action and a left action
cancel eachother out. Here,

© = (o,--,¥q)

is a (¢ + 1)-touple of face operators with

Im (o) € --- C Im (),

which is just a way of denoting an element of N(A[n]),.

We have that ¢ is a so-called interior point of A} if and only if ¢, is the
identity. The cosimplicial set A; satisfies the Eilenberg-Zilber property, which
implies that any g-simplex of the subdivision is represented uniquely by a minimal
pair (z,¢), meaning that 2 is non-degenerate and ¢ is interior.

For an arbitrary simplicial set Y, the category c¢Y is defined thus. Take
the (directed) graph G = (O, A) whose objects are the O-simplices O = Y; and
whose arrows are the 1-simplices A = Y;. The vertex operators ¢; : [0] — [1],
j = 0,1, define the source and target functions &fj,e7 : A — O, respectively. The
morphisms of the free category C(G) generated by the graph C(G) are the finite
strings

fi fn
Yo —7> Y1 — .. —7 Yn
with n > 0. If yo = 0 and y, = o, then the morphism belongs to the hom
set C(G)(o0,0"). Composition is concatenation of strings and the empty strings,
meaning strings of length n = 0, are the identities.
The categorification of Y is defined as the quotient

Y =C(GQ)/ ~
under the congruence defined by identifying
251 ~ 250 o 2(52

for 2-simplices z.

Notice that the congruence generated by ~ makes the degeneracy zog,
oo : [1] = [0], of any O-simplex 2 behave as the identity morphism x — z of ¢Y.
One verifies this by checking the following two cases.

The first case is when y € Y1 = A is an arrow of G with x = ¢(y). Then
the identification above in the case of the 2-simplex z = yoy ensures that the
triangle

ei(y)
S
x PR r = ¢e5(y)
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in ¢Y commutes. The equalities y = z0; and y = 2dp are immediate from the
fact that 6, and dy are sections of og : [2] — [1]. The third equality zog = 209
comes from the calculation

202 = (yoo)d2 = y(o0d2) = y(c000) = (ye0)o0 = T0y.
In other words, the string
z=eg(y) = €1(y)
of length 1 is identified with the string

rog

2% g = ci(y) L i)
of length 2. If y = f; for a morphism

f fn
y0—1>y1—>...—)yn

of C(G) denoted f, say of length n, then the concatenation (zoy, f) of xoy and
f is identified with f. This is because f is the concatenation of f; and the string

Y1 f—2>y1 —>...i>yn of length n — 1.
The second case is when y € Y7 = A is an arrow of G with x = £3(y). In this
case we let z = yoy, o1 : [2] = [1]. An analogous argument shows that the string

ea(y) L2 o = ei(y)

of length 1 is identified with the string

es(y) L et(y) =0 2 0

of length 2.
Now we can conclude that zoy behaves as the identity  — x. Such behavior
uniquely determines a morphism, so the empty string

z,

which is the identity @ — x of the free category C(G), must be identified with
the string © —2 2 under the congruence generated by ~ and it can therefore
be regarded as (a representative for) the identity of cY.

8.1.4 Comparison of ¢cSd X and SX

We consider ¢Y in the case when Y = Sd X and aim to define a comparison
map SX — ¢Sd X.

There is no question with regards to the objects. We let the object function
be the canonical bijection

y = [y, (en,)]-
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Here, n, denotes the degree of y and ¢[,, ) is the identity [n,] — [n,]. If

y o,
is a morphism of SX, then there are two cases.

In the case when p is the identity [n,] — [n.], then (x,p) is the identity
x — x. Therefore, we send (x, ut) to the morphism of ¢Sd X that is represented
by the empty string (z).

In the case when p is not the identity we send (x, u) to the morphism that is
represented by

[3;‘, (:u> L[”z])]'

We claim that these rules define a full functor.
First, note that we could simply send (x, ) to the morphism represented by

[, (14: ¢(n,)));

whether p is the identity or not. This is because both the empty string
x,

and
xroo
T —>
represents the identity x — x in ¢Sd X, as is true for any simplicial set Y, not

only for Y = Sd X.
)

We go on to prove that the given rule respects composition. Suppose z (x—ﬂ> x

is the composite in SX of morphisms y M) x and z M y. If we apply the

rule above to these we get the representatives
(x77r)
==z = [ (7 )]

(:E7 )
Yy —#> T = [$7 (M) L[nx])]

( 'rl/)
z y—> Yy = [ya (V7 [f[ny])]

of morphisms of ¢Sd X. Because
Im 7 CIm p,

it makes sense to define g = m and p1 = p. We let 2 = ¢[,,] be the identity
[ne] — [n] and ¢ = (@o,¢1,p2). The 2-simplex [z, ¢] of Sd X provides the
identification

[.’L‘, 90]61 ~ [.’L‘, 90]60 0 [.Z‘, 90]527
which ought to be a relevant one. Applying 01 and ¢ to [z, ¢] is straightforward
as the 1-simplices ¢d; and @dy of Aln,| are interior points of the cosimplicial
set A} : A — Set. We get that

[z, ¢]01 = [z, 001] = [z, (@5, (0)> 5, (1))] = [T, (¢0, p2)] = [T, (T, L[n,))]
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and

[, )00 = [z, pdo] = [, (0s50(0)s Pso(1))] = [, (p1:902)] = [, (11, L, )]s

which is simply by design of ¢. Our real task is to calculate the minimal
representative of [z, ¢]da.
The simplex ¢4y is equal to

o2 = (Ps,(0)> P5x(1)) = (P05 1) = (T, ).
Say that the sources of p, v and 7 are [k], [I] and [m], respectively. We can write
=gy = (pep)*.
The face operator 7 factors through p, meaning there is a dashed arrow in the

triangle

[m] —————— [n,]

that makes it commute. This factorization is unique, so the & appearing in the
diagram

N(yv)’

that defines the composite (z,7) must be equal to £ = £’. Here, the top square
is the nerve of a pullback in A.

Now we calculate the minimal representative of [z, ¢]dy. We get the following
series of identifications.

(@, (mp) = (2, (p&, /M[k))
(, ((HE)*, (uepw))h))
~ (x 7(§7L[k )
(@), (((2p) €, tin,))
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The face operator (((zu)’¢)* can simply be read off the upper square in the
diagram defining the composite (z,7), and it is v. Recall that any operator
factors uniquely as a degeneracy operator followed by a face operator. From the
diagram we get the factorization

(xp)¢ = vp

in which p is a degeneracy operator and v is a face operator.

The pair ((zp)?, (v, L[n,])) is the minimal representative of a 1-simplex that
represents the morphism of ¢Sd X to which our rule assigned the morphism
(y,v) of SX. As we explained above, the category ¢Sd X is defined as a quotient
of the free category C(G) of the graph

G =(0,A) = (Sd(X)o, Sd(X)1)

whose objects are the 0-simplices and whose arrows are the 1-simplices. The
congruence is defined in terms of 2-simplices, and the 2-simplex [z, ] provides
the identification

[557 (7Ta L[nz])} ~ [l‘, (Ma L[nx])} © [y7 (V’ L[ny})L

which shows functorality.

By the design of SX, the functor SX — ¢Sd X is a bijection on objects. It
is also full as we now clarify. Any morphism of ¢Sd X is represented by some
morphism of C'(G) where G = (Sd(X)o, Sd(X)1). The morphisms of the latter
are generated by the 1-simplices of the the Kan subdivision of X. Each such
generator is hit by a morphism of SX by its construction. Therefore, every
morphism of ¢Sd X is hit, so to sum up we now have the following result.

Lemma 8.1.3. The rule x — [z, ()] can be used to define a full functor SX —
c¢Sd X that is bijective on objects.

As a result we can now compare c¢Sd X to both the smaller simplex category X*
and the bigger simplex category SX.

The arrival of means that the map ¢Sd X — X* that we used
in can be seen as arising from the comparison maps SX — ¢Sd X
and SX — X% and creating a commutative triangle

SX cSd X

\\\\ ;/// (8.3)

U(X*®)

in Cat. Because of the elementary descriptions of SX and X* compared with
cSd X, which is a quotient of a free category generated by a graph, it is even
easier to analyze cSd X or ¢Sd X — U(X*) by means of (8.3) and the maps
SX — cSdX and SX — U(X?).

The map SX — U(X*) is full and bijective on objects by the definitions
and SX — U(X*) is designed to be full and bijective on objects. Thus we
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obtain the fact that ¢Sd X — U(X?) is full an bijective on objects. Because
PoSet is a reflective subcategory of C'at, the map pcSd X =, X! that we get by
applying posetification is automatically an isomorphism. We record the following
observation.

Lemma 8.1.4. The natural map cSd X — U(X?¥) is full and bijective on objects.

This line of thought is a more complicated way of explaining that

provides evidence for [Conjecture 8.0.1] compared with our argument
in Refer to [Proposition 8.2.2] and its proof. One can hope, however,

that the detour leads to something useful in an endeavor to characterize the
cofibrant objects in nsSet.

In [Remark 8.1.2] we ask whether the construction SX is functorial. If it is,

then it becomes interesting to know whether the map SX — ¢Sd X is natural.

Remark 8.1.5. If the construction SX is functorial, then there is a diagram

sSet

PoSet ~ nsSet

of functors and natural transformations, which might prove useful in studying
the cofibrant non-singular simplicial sets. The natural isomorphism pc = qD
arises because the square of right adjoints commutes. Thus pc and ¢D are left
adjoints of the same functor NoU = U o N.

For if f: X — X' is some simplicial map, then it is in general true that the
rules on objects in the square

SX ——=cSdX
|

Sfl J{chf
Y

SX' ——=cSd X’

makes the diagram commute. This is because the map ¢Sd f is simply Sd f in
degree 0 and because any simplex of degree 0 is non-degenerate, so we get that

(eSd f)([z, (1)] = [f(2), ()] = [f (@)%, ()],

which is where the lower horizontal map sends Sf(x) = f(x)*.
Observe that the rules on morphisms from [Remark 8.1.2] also make the
diagram commute. We verify this statement now. Applyng the rule Sf and then
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More on simplex categories

the functor SX’ — ¢Sd X’ to a morphism (z, 1) of SX, we get the morphism of
¢Sd X' that is represented by

@ (F@ ) g, )

On the other hand, if we apply the functor SX — ¢Sd X and then c¢Sd f, we get
the morphism represented by [f(x), (i, t[n,])]- The representative (f(z), (i, tn,]))
of this 1-simplex of Sd X can be made into a minimal representative thus.

@) (o))~ @ 1 (o)
= (@) (PP (@) i))
= (@ (@) )i, )

This concludes our verification that SX — ¢Sd X is natural if SX is a functorial
construction under the rules defined in [Remark S.1.2

8.1.5 Contrast

To more clearly contrast the four simplex categories X, ¢Sd X, A’ | X and SX
we will provide a couple of examples.
First, we summarize the work so far. It has given us the commutative diagram

SX

I\

AL X cSd X

L7

Xt

that displays the relationship between the four simplex categories that we have
discussed. The top left map is an embedding and the rest are full functors.
One can immediately think of all the full functors except the top right one as
identification maps.

Now contrast the four simplex categories. Actually it is obvious that X* and
cSd X are generally different, as is seen from the case when

X = A[1]/0A[1]

is the standard 1-simplex with a collapsed boundary. Then there are exactly
two non-degenerate simplices, one in degree 0, denoted y, and one in degree 1,
denoted z. The simplicial set Sd X has two distinct 1-simplices whose zeroeth
vertex is y and whose first vertex is x, and these give rise to different morphisms
of cSd X.

Next, we present an example that contrasts the biggest three of the four
simplex categories that we are concerned with.
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8. Cofibrant non-singular simplicial sets

Example 8.1.6. Consider the cocartesian square

Af] —— AJ0]
N&2 Y
A2l —— X

T

and the various simplex categories of the pushout X. The commutative triangles

for 7 = 0,1 are distinct morphisms y — . These are the only two morphisms
y—xin A" | X.

In contrast, the corresponding hom set of ¢Sd X is a singleton, for in addition
to the 1-simplices of Sd X that are represented uniquely by (z,(g¢,¢)) and
(z, (e1,¢)) there is the 1-simplex represented by (z, (d2,¢)). During the formation
of ¢Sd X from C(QG) the three arising (generating) morphisms are identified with
each other.

There are exactly three morphisms y — = in SX, namely the two morphisms
(x,e0) and (z,e1) that exist in A’ | X and in addition the pair (z, d3).

To sum up, there are three morphisms z — y in SX, there are two in A’ | X
and one in ¢Sd X.

By now we have a description of the relationship and the differences between
the four simplex categories that we have presented here.

We conclude this brief investigation into the relationships of the simplex
categories with the following remark.

Remark 8.1.7. Because the model structure on nsSet is constructed by means
of the two-fold Kan subdivision, it could be interesting to know how close

AL (SdX)— S(SdX)

is to being full, or in other words, an isomorphism. Alternatively, what properties
does the map have?

In this setting it may be worth remembering the result which
says that the inclusion A’ | X — A | X has a retraction in the case when X is
non-singular that is left adjoint to the inclusion.

A simplex y of Sd X is non-degenerate if and only if the minimal representative
(z,¢) of y is such that ¢; = ¢, implies ¢ = j. Say that y is of degree ¢ and that
x is of degree n. Suppose u : [p] — [g] is a face operator. We will prove that yu
is non-degenerate if y is, so assume that y is non-degenerate.

A representative of ypu is

(.’17, (‘pu(O)a B QO,LL(p))) = (1‘7 (%L(p)?ﬁo, B wu(p)’(/}p)) = (.’17, (Pu(p)w)
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where 1, is the identity, so ¢ is an interior point. Again, this equivalent to

(TPup), ¥) ~ ((xap#(p))ﬁ, (x‘pu(p))b@[’)'

The latter is minimal, so it is the unique minimal representative for yu. As ()
is monic one can argue that

Pu@)Vi = Pup) Vs

if and only if ¥; = ;. As (x,¢) is the unique minimal representative of a
non-degenerate simplex it follows that

Cu)Vi = Pup) Vs

if and only if 4 = j. Therefore, we get that v; = 1; if and only if i = j.
However, the simplex yu may still be degenerate, for it seems possible that

((5'39%(1)))'7%)ti = ((xsou(p))bwj)ti

even if ¢ £ j. So it would seem that we can construct an example X such that
the embedding A" | (Sd X) — S(Sd X) is not an isomorphism.

Now we have an idea of the relationship between the four simplex categories
described above.
If the construction SX is functorial, then a simplicial map X — Y gives rise
to a diagram
AL X SX
L 2
Xt

cSd X

l v l (84)
ALY —|—SY
SOY N

Yi<——cSdY

which can be used for comparison.

8.2 Evidence

In this section, we will explain how [Theorem 7.1.3]is evidence for[Conjecture 8.0.1}

Recall from that ¢ : nsSet — PoSet is defined as ¢ = pcU
and that it is left adjoint to the nerve functor N : PoSet — nsSet. See
for introduction of the functors that are involved in the definition of
q. From we recall the natural map tx : DSdX — BX between
functors sSet — nsSet. It arises from the natural degreewise surjective map
bx : Sd X — BX, which is an isomorphism if and only if X is a non-singular
simplicial set. See

As a first attack on the problem of characterizing the cofibrant non-singular
simplicial sets, we will towards the end of this section prove [Corollary 8.2.3
which says that tgq x is an isomorphism if [Conjecture 8.0.1] holds.
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8. Cofibrant non-singular simplicial sets

Notice that the map ¢(by) gives rise to the functor

eSdy “UL By M cUN(YE) s oNU (YY) 25 Uy (8.5)

that sends the object corresponding to [y, (¢)] to the object y. The 0-simplex of
SdY is here thought of as uniquely represented by a minimal pair (y,¢) where y
is a non-degenerate simplex of Y~ and where ¢ is the identity [n,] — [n,] where
n, is the degree of the simplex y. The natural map by : SdY — UBY sends
the 0-simplex represented by (y, (1)) to the functor [0] — Y* with 0+ y. The
functor ¢SdY — UY? is full and bijective on objects.

In the case when Y = Sd X for some simplicial set X, it follows that
the composite is an isomorphism as ¢Sd? X is a poset for any simplicial
set X. In turn, this is because any cofibrant small category is a poset
Proposition 5.7, p. 323] and because any simplicial set is cofibrant in the standard
model structure due to Quillen. In effect, we have calculated the poset cSd? X.

Lemma 8.2.1. Let X be a simplicial set. Then cSd? X = Sd(X)*.

This calculation of the poset cSd? X is not explicitly mentioned by Thomason
[ Tho80).

Proposition 8.2.2. For any X, the map
altx): qDSdX = ¢BX
is an isomorphism.

Proof. Consider the commutative diagram

cSd X clnsax) cUDSdX
C(bx) CUBX CU(tx)

Vid

CUN(X?)
Jia (8.6)

cNU(X*)

Cu(xt)
U(X*)

in which the map cU(tx) occurs. By applying p to this map, we obtain ¢(tx).
The diagram can be considered as a diagram of various simplex categories
of the simplicial set X. From it, we can conclude that ¢(tx) is an isomorphism.

The map bx is bijective in degree 0, which implies that ¢(bx) is bijective on
objects. As ngq x is surjective in degree 0, it follows that ¢(ngq x) is surjective on
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objects. Thus c¢U(tx) is bijective on objects. See for the construction
of ¢ and ¢Sd.

The functor e¢Sd X — U(X*) is full and c(bx) is surjective on objects.
Therefore ¢(bx) is full. Because ¢(bx) is full and because c¢(ngqx) is surjective
on objects, it follows that cU(tx) is full. As p is a reflector, we can thus conclude
that

pcUDSd X M pcUBX

is an isomorphism of posets. This finishes our proof of [Proposition 8.2.2] |

The reason for this strategy is the following testable consequence of
fure 80T

Corollary 8.2.3. If [Conjecture 8.0.1] holds, then

tsix : DSd* X — BSd X
is an isomorphism.

Proof of[Corollary 8.2.3. We consider the commutative square

NgDSd? x Y519 NuBsax
nDSdZXT %TUBSJX (8.7)
DSd* X BSd X
tsd x

as we want to argue that tg4 x is an isomorphism given that [Conjecture 8.0.1|
holds.

According to [Proposition 8.2.2} the map N¢(tsqx) is the nerve of an isomor-
phism. Furthermore, the map 7pgq x is an isomorphism as BSd X is the nerve
of a poset, by definition of the Barratt nerve.

If |Conjecture 8.0.1] holds, then there is a poset F'.X such that

N(FX) = DSd*X.
This is because DSd?, by [Theorem 6.1.2] is a left Quillen functor and thus

preserves cofibrant objects. Any object is cofibrant in the standard model
structure on sSet. Hence, the map npgg2 x is an isomorphism for the same
reason that npgqx is an isomorphism.

The commutative triangle

NgN(FX) —“~ N(¢N(FX))

W Nerx)

N(FX) N(FX)

id

immediately shows that npsqz x = Ny (rx) is degreewise injective. The counit
€rpx 1s an isomorphism by the general result that says the following. Any
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8. Cofibrant non-singular simplicial sets

component of the counit of an adjunction is an isomorphism if the right adjoint
is fully faithful. Thus we see that npgge2 x is also degreewise surjective, hence an
isomorphism. From we get that tgq x is an isomorphism. |

According to [Corollary 8.2.3] it is possible to test [Conjecture 8.0.1] by testing
whether tgq4 x is an isomorphism for (reasonable) choices of simplicial sets X.

Because bx : Sd X — BX is an isomorphism whenever X is non-singular and
because BX is the nerve of the poset X¥, it follows that Sd X is non-singular
whenever X is non-singular. It also follows that bsg x is an isomorphism whenever
X is a simplicial set with the property that Sd X is non-singular. Moreover, we
know from [Proposition 2.4.4]that tgq x is an isomorphism in the non-trivial case
when X = A[n]/0Aln], for 0 <n < 2.

The result that tgqa[n]/aa[n)) is an isomorphism for 0 < n < 2 could be
expanded to any non-negative integer n by using the non-original content of
or more specifically [Proposition 7.7.1} Anyhow, [Proposition 2.4.4] is
already noteworthy evidence for [Conjecture 8.0.1]

[Theorem 7.1.3 makes the stronger claim that ¢x is an isomorphism whenever
X is a regular simplicial set. The simplicial set Sd X is regular for every
simplicial set X :FP9()|7 Prop. 4.6.10]. Thus is stronger evidence
for [Conjecture 8.0.1] than [Proposition 2.4.4}

There is a final remark that can be made.

Remark 8.2.4. Note that, in the proof of [Proposition 8.2.2] we concluded that
the functor ¢Sd X — U(X¥) is full just by having superficial understanding of c.
Moreover, it is enough to know that ¢Sd X is a quotient of the (directed) graph
whose objects are the 0-simplices of Sd X and whose arrows are the 1-simplices.
To understand the identifications is not necessary. However, see

for an alternative explanation.

Although intimate knowledge of simplex categories such as ¢Sd X is not
strictly necessary to prove [Proposition 8.2.2 the structure of the simplex cat-
egories have a relevance. This could mean that a study of ¢Sd X and other
simplex categories that are related to ¢Sd X (and necessarily U (X)), for that
matter, is relevant to the problem of characterizing the cofibrant non-singular
simplicial sets. This is why we discussed the diagram .

The proof of [Proposition 8.2.2] does not refer to the construction of p :
Cat — PoSet as it was enough to know that PoSet is a reflective subcategory
of Cat. However, the proof could perhaps be varied slightly by knowing basic
properties of p. Such a variation could also lead to something useful in the work
to characterize the cofibrant non-singular simplicial sets.

A class of epics in Cat are those functors whose image is equal to the
target. These could perhaps play the role of degreewise surjective maps in the
formation of desingularization from Thus we could perhaps get
a description of p that is analogous to the one for D. Such a description ought
to be useful because ¢ = pcU and because there must be a close relationship
between the cofibrant objects in PoSet and those in nsSet.
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8.3 Further justification

In this section, we will provide further justification for [Conjecture 8.0.1} Let us
investigate the first few stages of building a DSd?(I)-cell complex X in nsSet,
which is by definition the target of some relative DSd?(I)-cell complex whose
source is the empty simplicial set. Recall from that we write

I ={0A[n] — Aln] | n > 0}.

Also, recall the notion of relative cell complex from

As an attempt to make a presentation of X, we define A° = (). There exists
a map DSd?(0A[ng]) — A° only if ng = 0, so the first stage would have been to
take a pushout

DSd(DA[0]) —= A°

|

DSd2(A[0]) —— Al

in nsSet. Then
DSd*(AJ0]) — A!

would have been an isomorphism, so in choosing a presentation of X we may
simply define A = DSd?(A[0]).
The second stage would have been to take a pushout

DSd?(9A[n,]) — Al

]

DSd(Alny]) — A2

where DSd?(0A[n;]) — A! would have been unique as A! is terminal. Hence it
would have been induced by the unique map 0A[n;] — A[0]. This means that
we may define the second building stage as

A% = DSA*(A[m]/0A[n1)).

With this choice, the canonical map A' — A2 is the one induced by the canonical
map

A[0] = Afn1]/0A[n4].

We have seen that the zeroth, the first and the second building stage of A is
the nerve of a poset. What about the third? It is a pushout

DSd?(9A[ny]) — A2

7

DSd?(Alny]) —= A3
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8. Cofibrant non-singular simplicial sets

but in this case it is harder to say something useful about the top horizontal
map. From [Proposition 6.6.2] we at least know that A% — A% is a Strgm map.

By [Theorem 713} we know that

A2 DSd?(Aln1]/0An1])
BSd(A[n,]/0An4])
N(Sd(Aln1]/9A[n])),

[l

which means that DSd?(0A[na]) — A? is the nerve of a unique functor
Sd(0A[n2))* — Sd(Aln]/0A[ny])*.

However, it is not clear that this map is the result of applying the functor (—)*
to some map
Sd(0A[ng]) = Sd(A[n1]/0An4]).

Therefore, although [Proposition 7.4.1|is applicable to the square , it is not
clear that the methods of [Theorem 7.1.4] can be modified to argue that A® is
the nerve of a poset.

What seems probable, though, when comparing our situation with the ar-
gument of Proposition 5.7 in Thomason’s article p. 323] is that
captures enough of the complexity of our problem that we may make a serious

attempt to prove Because of the assumptions of

it is noteworthy that the source of the map

Sd(0A[ns))* — Sd(Alny]/0A[n])? (8.9)

is a simplex category of a finite simplicial set and that its target is a simplex
category of a regular simplicial set. With these properties in mind one could
hope that A% is (isomorphic to) the nerve of a poset.

8.4 Obstructions

Proposition 5.7 in says that each cofibrant small category is a poset in
Thomason’s model structure on C'at. We have in mind the possibility of trying
to mimic the method in Thomason’s proof of this fact.

Note that a simplicial subset of the nerve of a poset is an ordered simplicial
complex, but not necessarily itself the nerve of a poset.

Example 8.4.1. The simplicial subset 0A[2] of A[2] is an ordered simplicial
complex, but not the nerve of a poset.

However, we have the following result.

Lemma 8.4.2. Let A be a non-singular simplicial set and assume that X is a
retract of A. If A is the nerve of a poset, then X is the nerve of a poset.

Proof. Remember that ¢ denotes the left adjoint of the nerve

N : PoSet — nsSet.
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Suppose A = NP. We can draw the commutative diagram

ﬂxi
()

nxl nNPl
Nq(i) Nq(r
NgX —— NgNP ——> NqgX

]\f(ep)lu
NP

where nx : X — N¢X is the unit of the adjunction. We get that nx is a retract
of nyp.

The composite N(ep) o nyp is the identity, so nyp is degreewise injective.
Because N is fully faithful, the counit ep is an isomorphism, which implies that
N(ep) is an isomorphism. Thus nyp is also degreewise surjective, hence an
isomorphism.

From the previous paragraph, we see that nx is an isomorphism. This implies
that X is isomorphic to the nerve of the poset ¢X. |

emma 8.4.2| has an immediate consequence.

Let X be a cofibrant non-singular simplicial set. Factor ) — X as a relative
DSd?(I)-cell complex () — A followed by a trivial fibration A — X. Then there
is a dashed lifting in the solid square

[

0

/1
%
X

S
id

N

so that we can write X as a retract of A. This implies that X is the nerve of a
poset if A is. The non-singular simplicial set A is a DSd?(I)-cell complex.

Of course, we cannot conclude that every DSd?(I)-cell complex is the nerve
of a poset. In fact, G. Raptis has pointed out to the author the non-singular

simplicial set C, recorded in [Example 8.4.3] of a cofibrant non-singular simplicial
set that is not the nerve of a small category.

Example 8.4.3. Because A[0] is cofibrant in sSet, in the standard model struc-
ture, it is also true that

A[0] = DSd*(A[0])
is cofibrant in nsSet. Furthermore, we can write Ne; as a retract of DSd?(Ne;)
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8. Cofibrant non-singular simplicial sets

by means of a diagram
AJ0] — DSd*(A[0]) —— A[0]
lNaj lDSdz(st) lej
All] —— DSd*(A[1]) —— A[1]

for j = 0,1. Thus we get that Ne; is a cofibration for j = 0,1. In particular, we
obtain the fact that A[1] is cofibrant in nsSet.
Next, consider the cocartesian square

NE[)

Af0] Y5 AL
ol
A[l] C

in sSet. The simplicial set C' is non-singular as both legs are degreewise injective,
so the square is even cocartesian in nsSet. As the class of cofibrations is stable
under cobase change, the non-singular simplicial set C'is then cofibrant. However,
it is not even the nerve of a small category.

Example 8.4.3| implies that not every DSd?(I)-cell complex is the nerve of a

poset.

For the purposes of studying the process of building DSd?(I)-cell complexes,
it is relevant to note that empty simplicial set is the nerve of the empty poset
(or the empty small category). Furthermore, the colimit of any given sequence
in PoSet is preserved by

U : PoSet — nsSet,

according to

Consider a possible building step, or in other words a diagram

NPT _NR
i_Nk\L li (8.10)
NQ 7> D(NQ Unp NR)

in nsSet with P, @ and R posets and k a Dwyer map. Consider the pushout.
Because of, say [Example 7.8.1] and [Example 7.10.1] it is certainly not true that
D(NQUxnp NR) is in general the nerve of a poset.

[Example 7.10.1] provides a desingularized topological mapping cylinder
DT(Ng) that is not even an ordered simplicial complex. However, note that
the target of this ¢ is the simplex category (A[1]/OA[1])* of the non-regular
simplicial set A[1]/0A[1]. Compare this situation with (8.8, in which the target
of can be interpreted as the simplex category Sd(A[n;]/0A[n;])* of the
regular simplicial set Sd(A[n;]/0A[n4]).
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provides a desingularized topological mapping cylinder
DT(Nyp) that is an ordered simplicial complex, but not the nerve of a poset.

Note that the image of ¢ is in this case not a sieve in the target. According

to [Lemma 6.4.10} the functor (—)* applied to a degreewise injective map yields

a sieve. Still, the map does not necessarily arise by applying (—)! to a
simplicial map. In this example, the canonical map

DT(Ny) 25 M(Ny)

from the pushout in nsSet to the nerve of the pushout in PoSet is degreewise
injective. A simplicial subset of an ordered simplicial complex is in general an
ordered simplicial complex, but a simplicial subset of the nerve of a poset is not

necessarily the nerve of a poset, as is seen from [Example 8.4.1]
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