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Abstract—Energy usage in LTE base stations are driven
by spectral efficiency and traffic. To predict the energy
usage these parameters must be forecasted. In this work
we analyse hourly measurements collected from more
than 12000 base station cells spread across more than
3700 base stations over the course of one month. We
show that the two parameters are very weakly correlated,
and therefore we investigated them separately. Further,
we evaluated the possible gains for advanced prediction
methods using a large scale search for individually fitted
time series (SARIMA models) for each base station. In
total, we examined and evaluated approximately 31000
time series models from an identified group of 4 million
potential models. We found that the spectral efficiency
measurements can be represented fairly well with time
series models, with only an average 6.5% relative error.
The time series models have to be individually adapted for
each base station as the unsupervised clustering showed
that each cluster’s members have a wide variety of best
fitted models. However, for traffic the time series models
have relative high prediction errors, and we believe there
is a potential for new methods to improve the forecasts.

I. INTRODUCTION

Although mobile broadband traffic is an integrated
part of society, there are few available data sets for
research. This is due to either privacy concerns or the
operator’s commercial interests. The lack of large scale
empirical data sets imply that most models are tested
against small scale local measurements or simulations,
which neither may reflect the average real world condi-
tions.

Mobile broadband consumes more energy than ever,
and for 5G there is a focus on energy usage in addition
to increased throughput [1]. Energy models for LTE
[2] and 5G [3] base stations consist of fixed and load
dependent energy costs. The latter is driven by the
number of resource blocks used [4], which is a product
of both traffic and spectral efficiency. Forecasting of
resource usage is a natural aspect of optimal network
management. Thus, forecasting models need to address
traffic and spectral efficiency.

Closely related to forecasting is clustering. If clusters
exist, it could simplify forecasting as models could be
adapted to aggregated clusters rather than individual base
stations. One LTE measurement study found clusters in
the base stations’ traffic patterns [5]. Similar clustering
studies are yet to be done for spectral efficiency measure-
ments. In our study we investigated clustering of both
traffic and spectral efficiency.

There is a clear identified need for network-wide
studies of LTE base stations. In this paper we present
measurements from more than 4100 LTE bases stations,
gathered over the course of 9 months on an hourly basis.
The measurements constitute over 100 GB of data that
contain both values for spectral efficiency and traffic.

We make the following four contributions. First, we
present a new data set of LTE base station measurements
that is large both in number of base stations and duration
of the sampling period. The data set augments the
relative small set of LTE measurement studies. Second,
we show that spectral efficiency and traffic are very
weakly correlated. Energy models must therefore incor-
porate both aspects as one cannot be derived from the
other. Third, we found in this data set that clustering
had limited value both for the traffic and the spectral
efficiency measurements. Fourth, we provide an assess-
ment for the potential of more advanced forecasting
models both for traffic and for spectral efficiency. The
base stations are individually fitted with separate time
series and we derive the prediction errors for each base
station. The prediction errors are used to understand
the achievable improvements that other more advanced
forecasting methods, such as deep learning, can provide.

The paper is structured in the following way. First,
Section II presents relevant studies. Then, Section III
describes the measurements in detail. The clustering
approach is presented in Section IV and the time series
models are presented in Section V. Then, in Section VI
the time series models per base station within each clus-
ter are evaluated. Finally, Section VII presents lessons



learned and the potential for more advanced forecasting
models. The conclusion is also presented in this section.

II. PREVIOUS MEASUREMENT STUDIES

Specific LTE traffic studies are scarce. Alabaladejo et
al. derived a link layer model based on measurements
in Dublin City [6]. Huang et al. did an experimental
setup for testing web applications’ traffic and associated
energy usage over LTE [7]. The analyses were extended
by Foddis et al. focusing on application behaviour [8].
These studies have the problems of either being con-
trolled experiments or limited to a few base stations,
and may not reflect the average conditions in the real
world. Wang et al. presented one of the largest studies
on LTE traffic patterns by collecting traffic data from
more than 9000 base stations in Shanghai, China over the
course of one month [5]. The work was later extended by
Xu et al., adapting time series models to forecast traffic
[9]. Trace driven investigation of offloading from LTE
to other cellular technologies was published by Li et al.
based data from Shanghai Unicom [10].

III. MEASUREMENT OVERVIEW

The measurements consist of hourly values averaged
over resource blocks. The sampling was done for 13008
mobile cells connected to 4153 eNodeBs during the
period of January 1st to September 31st 2015. The
eNodeBs are referred to as base stations since all cells
connected to the same eNodeB had the same coordinates.
All measurements came from LTE macro base stations
operated by the same telecom operator. The majority
(83%) of cells had a bandwidth of 15 MHz, while the rest
operated on 20 MHz. All the base stations were located
in the vicinity of Suzhou, Jiangsu, China. The number of
cells per base station ranged from 1-8 cells with a median
of 3 cells. The median height was 32 meters. The traffic
was measured as the average downlink traffic over the
Packet Data Convergence Protocol (PDCP) interface and
given in Mbps, while spectral efficiency was measured as
the share of different Channel Quality Indicator (CQI)
index values within each hour. For compatible values,
the CQI index was translated to its information bits per
symbol equivalent [11], and the weighted average value
was used.

Fig. 1 shows that average traffic per cell grew with
313%, while the number of new cells grew with 67%
during the same period. A trough in the average traffic
was observed in February, which is during the celebra-
tion of the Chinese New Year, one of the largest yearly
travelling periods in China1. The increase in number of
cells over the entire period suggests that the operator was
expanding its network. As measurements are aggregated
values per cell, the data set is alleviated from any
privacy issues as neither caller ID nor traffic content
were measured.

1https://blogs.wsj.com/chinarealtime/2014/01/27/
map-visualizes-chinese-new-year-migration/ visited 21.06.18

Fig. 1. Number of cells with measurements are given by the orange
line, while the green line denotes average traffic per cell with mea-
surements. The growth is calculated for the entire period. The trough
in traffic that is during the Chinese New Year is market with blue.

Fig. 2. The plot to the left shows the aggregated traffic for the selected
period. The other plot shows the aggregated traffic for weekdays
(Monday to Friday) and weekends (Saturday and Sunday) along with
the interval of values per hour.

A. Sample selection and observations

We focused our analysis on a four week sampling
during August (08.03.2015 - 08.30.2015) for the three
following reasons. First, other comparable studies [5, 9]
from areas in relative close geographical proximity had
investigated the selected time interval the previous year,
and by selecting a similar time frame the results would
be comparable. Second, limits in available data pro-
cessing capability allowed us to only work on a sub-
selection of the available data. Third, the selected period
was relative stable with relative low growth and few
measurements missing as seen in Fig. 1.

In Fig. 2, a recurring night-day traffic pattern can
be observed. The same pattern is seen in the spectral
efficiency plot in Fig. 3. In the same figure a weekly
pattern can be observed. Both plots show a difference
between weekdays and weekends, but not at the same
scale as found for traffic in [5]. The selected period
contained measurements from 12411 cells distributed on
3859 base stations.

B. Traffic and spectral efficiency

The spectral efficiency and the traffic had an average
traffic weighted correlation of 3.3% as given in Fig. 4.



Fig. 3. The plot to the left shows the mean information bits per radio
symbol for the selected period. The other plot shows the values for
weekdays (Monday to Friday) and weekends (Saturday and Sunday)
along with the interval of values per hour.

Fig. 4. The plot to the left is a histogram showing correlation between
measurements per cell. The right side plot shows the correlation per
cell along with the cumulative traffic carried by the respective cell
over the selected period. The orange lines show the limit of ±20%
correlation, while the dotted orange line shows the traffic weighted
average of 3.3%

The correlation was calculated per cell in the selected
period, and in most cells the two features are very
weakly correlated. There is a bias, as the measurements
were event based (measured only when resource blocks
were sent) and therefore only measured when there is
traffic. The two parameters might therefore be even less
correlated than the measurements show, as the available
spectrum efficiency might change even though traffic is
zero. The lack of correlation strengthens our initial claim
that spectral efficiency and traffic must be investigated
together to understand resource usage in the network. In
some cells, the spectral efficiency and traffic were highly
correlated, both negatively and positively, but these cells
represent only a small fraction of the cells as the traffic
weighted majority (82 %) had correlation within ± 20%.

IV. UNSUPERVISED CLUSTERING

Researchers have found that base stations can be
categorized based on traffic patterns [5]. These patterns
describe the base stations’ environment, such as resi-
dential and office areas. Therefore we investigated if
it was possible to cluster the base stations based on
traffic behaviour. Since Fig. 4 showed that the traffic
and the spectral efficiency were very weakly correlated,
the clustering was done separately in both dimensions.
The measurements were preprocessed, enabling the use

of agglomerative hierarchical clustering. The clustering
extracted the generic patterns, making it possible to
bundle together the base stations that have similarities
in their measurements.

A. Data preprocessing for clustering

The measured traffic xit is given per base station
i ∈ I per time t ∈ T with Xi =: [xit t ∈ T ]
denoting the time series of each base station. As seen in
Fig. 1, some hours on certain dates lack measurements.
These missing values, xintit , were interpolated as given by
Eq. (1). With the apparent 24 hour cyclic pattern, shown
both in Fig. 2 and Fig. 3, the interpolated values were
based on four measurements. The four measurements
were the hours before and after the missing value, along
with the measured values the day before and after. The
interpolation was done only on measurements leaving
out any approximated values. Hence, two consecutive
missing values are both interpolated based only on three
values.

xintit =xi(t−24) + xi(t−1) + xi(t+1) + xi(t+24)

∀t ∈ T , i ∈ I
(1)

B. Agglomerative hierarchical clustering

Each time series was normalized with z-score as in
(2) for equal comparison, giving zit. This allows for
clustering on the relative traffic pattern instead of the
absolute one. σ(Xi) is the variation, and µ(Xi) is the
mean of the time series. Feature scaling was also tested,
but did not lead to meaningful clustering.

zit =
xit − µ(Xi)

σ(Xi)
∀t ∈ T , i ∈ I (2)

All the base stations with missing values after interpo-
lation were removed so that the distance measures could
be calculated equally for all base stations. This resulted
in that 2.12% of the base stations were discarded,
leaving a total of 3777 base stations to be clustered.
Agglomerative hierarchical clustering was used to cluster
the base stations both on the traffic and the spectral effi-
ciency measurements. A similar approach have provided
good results in previous work on traffic clustering [5].
Euclidean distance was used as a distance metric, but
other Minkowski metrics such as Manhattan was also
tested, without resulting in meaningful clustering. This
suggests that the base stations follow the same overall
pattern, as the Euclidean distance punishes deviation on a
single value stricter than the Manhattan distance. Several
linking methods were tested, such as nearest, average
and farthest linking. Only the latter lead to meaningful
clustering. The same approach was used for the spectrum
efficiency measurements. This resulted in removal of
2.25% of the sample’s base stations, clustering a total
of 3772 base stations.

To evaluate the cluster size, both the Davies-Bouldin
Index (DBI) and the Silhouette Index (SI) were used
[12]. Both evaluation criteria measure the relative differ-
ence between the intra- and inter-distance of the clusters,



Fig. 5. The lexical order for optimal cluster size for the traffic and
the spectral efficiency. The lexical order is the sum of the relative
positions of both DBI and SI. The orange vertical line denotes the
optimal cluster size.

Fig. 6. The various sub-clusters for traffic and spectral efficiency.
All the base stations in each row belong to the same traffic cluster
(Clusters 1 to 3 from the top to bottom), while all the base stations in
the same column are in the same spectral efficiency cluster (Clusters 1
to 3 from left to right). Only mean values of base stations in a cluster
are plotted. The cluster’s size and its size’s relative share of the total
number of base stations are stated for each sub-cluster.

but in a different manner [12]. We used the combined
lexical order of the two criteria to determine the optimal
cluster size as shown in Fig. 5. As can be seen, the
optimal cluster size is three clusters for traffic, while
for spectral efficiency both three and five clusters are
equally good candidates. As it is better to work with
fewer categories, three clusters were chosen for spectral
efficiency.

The optimal identified clusters created a set of sub-
clusters as shown in Fig. 6. The sub-clusters were created
by combining the two clustering results of traffic and
spectral efficiency. Since time series were removed if
data could not be interpolated, the sub-clusters lack five
time series that could not be mapped back to clusters in
both dimensions.

V. TIME SERIES MODELS

A time series model family such as Seasonal Auto
Regressive Integrated Moving Average (SARIMA) has
proven to be effective on forecasting CQI values for
satellite based LTE [13] and terrestrial based LTE traffic
[9]. The first study was based on simulations while the
latter was done only for two base stations. Hence, it is
yet to be determined to what degree a SARIMA model
is applicable to different base stations.

A. Data preprocessing for SARIMA models

The time series of each base station has to be station-
ary in both variance and mean, in order for a model to
be fitted to the measurements and used for forecasting
[14]. The heteroscedasticity (variance in variance) was
removed with a BoxCox power transformation [14] as
shown in (3). The transformation requires that the time
series is strictly positive, and since some measurements
were zero, a small constant C was added to xit, such
that x∗it = xit+C. Xtrans

i is the power transformed time
series of Xi. The value of λi was found by maximum
likelihood estimation. Various approaches can be used to
set C, but we chose C=1 as it maps zero back to zero.

xtransit =

{
log(x∗it) if λi = 0
(x∗
it)
λi−1
λi

else

∀i ∈ I, t ∈ T
(3)

Power transformation may result stationarity of the
mean [14], but it must be tested. We used the Augmented
Dickey-Fuller test to determine if the mean was station-
ary. If the transformed time series was not stationary in
its mean, it was differenced. Based on the observations
in Section III differencing lags of 24 hours and 168 hours
(one week) were tried. The Autoregressive Correlation
Function (ACF) and Partial ACF (PACF) were used to
identify possible models of the moving average (MA)
and the autoregressive (AR) model parts of the ARIMA
share of SARIMA. The MA part is given by the ACF
lags, and the PACF gives the number of lags for the AR.
Also, in case of dampening behaviour in the ACF, the
time series differenced by one lag was also tested. The
SARIMA model is given in the form (p,d,q)x(P,D,Q,S),
where capital letter is the models equal seasonal part.
The p denotes the size of the AR model, q the size of
the MA model, d the number of lags the time series is
differenced, and S the season used. Refer to [14] for a
full description of the SARIMA model.

B. Searching and fitting candidate models

For a SARIMA model to be used for forecasting, the
AR part must be stationary, and the MA part must be
invertible [14]. Only models fulfilling these requirements
were accepted as candidate models. To limit the model
search, only permutations of the four largest values over
the 95% confidence level threshold for both MA and
AR, given by the corresponding ACF and PCF functions,
were investigated. Only seasonal differencing was used,
excluding seasonal AR and MA from the model. The
time series were differenced with three difference lags
[1,24,168], and within each lag the MA and AR parts
were adapted for 3-4 different lags, giving a total of
approximately 690 possible models per base station.
Only a small fraction of the time series models fulfilled
the described requirements, and a small set of models
in the range of 1-6 (on average 5) were rated based
on the Akaike Information Criterion (AIC). The best
rated model was used per base station. As data was



Fig. 7. The split of the various best fit models as percentile of total
number of base stations in the clusters.

Fig. 8. The split of the various best fit models as percentile of total
number of base stations in the clusters.

not interpolated, 9.7 % of the base stations that were
clustered were removed, so that 3407 base stations got
time series models fitted for the spectral efficiency.
Restrictions in available computational power and time,
limited the analyses to 2877 base stations for the traffic
dimension. This means that 90% of the base stations that
got a time series models fitted for spectral efficiency also
had a traffic time series fitted. In total, we identified over
4 million possible models and fitted over 31000 models
to the measurements.

VI. MODEL EVALUATION

As expected, for clusters based on the spectral ef-
ficiency, the majority of base stations were best fitted
with a model of 1 week (168 hours) season. This model
was the majority for Cluster 1. For the other clusters,
the ARIMA model of (1,1,1) was the dominating one.
The low presence of models with 24 hours season is
surprising as they would be expected based on the day-
night pattern seen in Fig. 3. As shown in Fig. 6, there
are also larger shifts in the growth throughout the period,
suggesting that it could be an explanatory feature.

Across all the clusters of traffic, the ARIMA model
of (1,1,1) with no season is the dominating model.
Fig. 8 shows the distribution of the model types. The
dominance of a single model type suggests that the traffic
patterns follow the same general structure, although they
are clustered in different clusters.

In-sample and out-of-sample predictions are two ways
to test a time series model. The latter tests how good the
model is at predicting, while the former tests how good

Fig. 9. The RSME against the mean for the spectral efficiency time
series models per cluster.

Fig. 10. The RSME against the mean for the traffic time series models
per cluster.

the model is at describing the historic measurements. We
started with an in-sample testing, leaving out-of-sample
for future work. We did an in-sample testing for the
last week in the period, comparing the root mean square
deviation (RMSE) with the mean, calculating the relative
prediction error. Fig. 9 presents this for the spectral
efficiency time series models, while Fig. 10 shows the
same calculations for the traffic time series models.

The individual fitted time series models provide a
good prediction for the spectral efficiency measurements,
with an average relative error of 6.5% (Fig. 9). As
shown on the right side of Fig. 9, there are some
variations in the 20% worst performing base stations
per cluster. Fig. 10 shows that the time series models
are poor models for the traffic measurements, with an
average relative prediction error of 142%. There are
large variations between the clusters, with Cluster 3
consistently underperforming compared to the other two.
The best relative prediction error is 39%, suggesting that
using time series models is a poor way to describe the
traffic behaviour.

VII. CONCLUSION AND FUTURE WORK

For spectral efficiency the forecasting potential is
limited as long as each base station is fitted with its
own individually time series model. The poor fit of
time series models to traffic patterns indicates that it
could be fruitful to pursue other methods. With the large
variations between the base stations, it is important that
other methods are validated over large data sets. The
overall spectral efficiency and traffic are very weakly



correlated, but for a small set of base station cells (18%),
the correlation is larger ±20%. The results and key
learnings can be summarized as:

1) The time series models describe the spectral effi-
ciency measurements in a good way. On average
only a 6.5% gain can be acquired with more
advanced models. Thus, the possible gain of using
other prediction methods is limited.

2) Time series models are not good at describing the
traffic, as the average relative error was 142% with
the best performing base station having a relative
error of 39%. Our findings are in line with results
in [9], where there were also large errors in the
predictions.

3) Within the spectral efficiency clusters there were
little commonality with the forecasting models of
each base station. For the traffic clusters, one time
series model type dominated all the clusters, but
the relative errors were too high too conclude on
the benefits of clustering.

4) We collected data from 3859 base stations, but
analysed only 3407 of them, discarding 12% of
the samples due to missing data. Therefore, it is
important that forecasting methods robustly handle
missing values.

As mentioned earlier the measurements include sub-
stantial growth, and represent a dynamic behaviour. As
previously discussed this was accounted for in the time
series analyses. One could argue that the measurements
are not stationary and therefore not a good representation
of the typical base station. We believe that our data is
actually a good representation since growth is expected,
both in number of cells and cell traffic2.

In our future work we will do out-of-sample pre-
dictions and test other methods for predicting traffic.
The clustering was only done for August. We intend
to investigate the cluster stability over longer time hori-
zons. This would provide valuable insights into the time
horizon for which measurements must be gathered to be
representative.
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