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Abstract

The continuous-time version of Kyle (1985)) developed by Back (1992)) is here studied. In Back’s
model there is asymmetric information in the market in the sense that there is an insider having infor-
mation on the real value of the asset. We extend this model by assuming that the fundamental value
evolves with time and that it is announced at a future random time. First we consider the case when
the release time of information is predictable to the insider and then when it is not.

The goal of the paper is to study the structure of equilibrium, which is described by the optimal
insider strategy and the competitive market prices given by the market makers. We provide necessary
and sufficient conditions for the optimal insider strategy under general dynamics for the asset demands.
Moreover, we study the behavior of the price pressure and the market efficiency. In particular we
find that when the random time is not predictable, there can be equilibrium without market efficiency.
Furthermore, for the two cases of release time and for classes of pricing rules, we provide a characterization
of the equilibrium.
Key words: Market microstructure, equilibrium, insider trading, stochastic control, semimartingales,
enlargement of filtrations.
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1 Introduction

Models of financial markets with the presence of an insider or informational asymmetries are largely studied
in the literature with different approaches and perspectives.

A conspicuous part of this literature proposes models with stock prices fixed exogenously, i.e., the insider does
not affect the stock price dynamics and the privileged information is a functional of the stock price process,
i.e. the final value, the maximum, etc. The aim of these studies is often to find the optimal strategy of the
insider and, in some cases, provide an evaluation on how much better the insider performs in the market
using the larger information at his disposal, compared with a trader using only market information. In this
direction we find, e.g. Karatzas & Pikovsky (1996), Amendiger et al. (1998), Grorud & Pontier (1998, 2001,
2005), Imkeller et al. (2001), Corcuera et al. (2004), Biagini & Øksendal (2005, 2006), Kohatsu-Higa (2007),
Di Nunno et al. (2006, 2011), Draouil & Øksendal (2016), Enrst et al. (2017). In some cases, the impact of
the insider strategy affects the stock price dynamics in the sense that these dynamics are dependent on the
insider strategy itself; see, e.g., Di Nunno et al. (2008).

As pointed by Danilova (2010), in an equilibrium situation market prices are determined by the demand of
the market participants. So, in such a situation, the privileged information cannot be a functional of the
stock price process because this implies the knowledge of the future demand and this is unrealistic. Then
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the privileged information is exogenous. This can be the value of the fundamental price, or some signal of
it, or the time of the announcement of the fundamental value, which evolves independently of the demand.

The original model is due to Kyle (1985). He considers three kinds of actors in the market: market makers,
uninformed traders and one insider who knows the fundamental or liquidation value of an asset at certain
fixed released time. In the model, there is also a price function establishing the relation between the market
prices and the total demand. Kyle works in the discrete time setting and with noises given by Gaussian
random walks. Back (1992) extends the previous work to the continuous time case. These are seminal papers
which paved the way to various generalisations and extensions. To mention some, see Wu (1999) extending
Back (1992) and also Back & Pedersen (1998), who consider a dynamic fundamental price and Gaussian
noises with time varying volatility; Cho (2003), who considers pricing functions depending on the path of
the demand process and studies what happens when the informed trader is risk-averse; Lasserre (2004), who
considers a multivariate setting; Aase et al. (2012a), (2012b) and Campi et al. (2011) who put emphasis in
filtering techniques to find the equilibrium problem; Campi & Çetin (2007), who consider a defaultable bond
instead of a stock as in the Kyle-Back model and also consider the default time as privileged information;
Danilova (2010), who deals with non-regular pricing rules; Corcuera et al. (2010), where the presence of
jumps and a drift in the aggregate demand of the liquidity traders is analised; Caldentey & Stacchetti (2010)
who take a random release time into account; and Campi et al. (2013), who consider again a defaultable
bond, but this time the privileged information is represented by some dynamic signal related with the default
time. The here mentioned paper constitute a still incomplete list, even including the references therein, as
the field is in simmering activity.

In the present work we propose a unified framework to study equilibrium, able to capture most of the different
situations and contexts that have been presented in the literature. Specifically, we consider that the insider
has access to an exogenous information flow, which includes the knowledge of some signal related to the
fundamental value of the asset. The fundamental value is actually going to be released at a random time,
which is a stopping time for the insider. We consider two situations, first when the release time is predictable
for the insider and then when this is not.

Our framework is capturing a large number of previous extensions of Kyle (1985) as it is illustrated by the
several examples presented. Excluded from our framework are the insider risk-aversion attitudes considered
in some previous works and the multivariate setting, as in Lasserre (2004) even thought both aspects can be
treated in a technical but direct extension of our framework and methodology . Also our present framework
is dealing with a price pressure λ that is a deterministic function. This does not allow to include the case
of Back and Baruch (2004), where λ depends on the market price of the stock, and Collin-Dufresne and Fos
(2016), where λ depends on the random volatility of the noise in the market. Extending our framework to
the case of λ stochastic is possible, but is matter of future research.

The main focus of the present paper is to study properties of the equilibrium. Given a set of admissible
triplets of insider’s strategies, pricing rules, and price pressure, conditions for the equilibrium are given by
those admissible triplets for which the insider’s strategy is optimal and the pricing rule is rational. We also
show how these properties can be used for finding the equilibrium.

The framework presents the interplay of agents having different roles and asymmetric information. The mar-
ket makers set rational market prices, which are assumed to be a function of time and the aggregate demand
for the asset. For such given pricing rule, the insider optimizes his position to maximize his expected wealth.
In our work we consider a very general insider’s information flow, a random release time of information,
and very general dynamics for the aggregate demand, i.e. a predictable semi-martingale. To the best of our
knowledge it is the first time that these three features are considered together at this level of generality.

In this framework we study the necessary and sufficient conditions for an insider’s strategy to be optimal in
terms of the properties that the pricing rule and the information flows should have.

Moreover, we study market efficiency and we can see a role of the insider in the market in this respect. If
the insider can predict the release time, then the market is actually efficient. This shows a certain beneficial
effect of the presence of an insider in the market. On the other side we can see that in the case when the
release time is not predictable for the insider, then the market is not efficient in general and we can also
show that an equilibrium is still possible if the sensitivity of the prices decreases in time according to the
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survival probability of the announcement. In other words, the prices become more stable as the release time
approaches.

Finally, in the two cases of predictable and non predictable time of information release and for classes of
pricing rules, we can provide necessary and sufficient conditions to characterize the equilibrium for classes
of pricing rules.

To conclude we include various examples in which we illustrate how the present framework covers many
relevant examples present in the literature and opens for the study of new situations. In the examples
we provide specific demand dynamics and value processes. In this cases then the analysis can proceed
to a further stage and we show how our results, coupled with the mathematical tools of enlargement of
filtrations or filtering techniques, allow to actually find explicitly the insider’s optimal strategy. Several of
these examples are treated in the literature. Here we show how it is possible to approach the study in a
unified framework.

The paper is structured as follows. In the next section we describe the model that gives rise to the stock
prices. We discuss the insider’s optimal strategies for a given pricing rule and we define the concept of
admissibility for pricing rules and insider strategies. In Section 3 we specifically study the case when the
release time is predictable for the insider, while in Section 4 the case when the release time is not predictable.
In Section 5 we show how to apply the previous results to find the equilibrium in our general framework.

2 The model and equilibrium

We consider a market with two assets, a stock and a bank account with interest rate r equal to zero for the
sake of simplicity. With abuse of terminology we will just write “prices” even though they are sometimes
“discounted prices”. The trading is continuous in time over the period [0,∞) and it is order driven. There
is a (possibly random) release time τ < ∞ a.s., when the fundamental value of the stock is revealed. The
fundamental value process represents the actual value of the asset, which would be known only if all the
information was public. The fundamental value process is denoted by V .

We shall denote the market price of the stock at time t by Pt. This represents the market evaluation of the
asset. Just after the revelation time the price of the stock coincides with the fundamental value. Then we
consider Pt defined only on t ≤ τ . It is possible that Pt 6= Vt for t ≤ τ . We stop our studies at this (random)
time of release τ , which is reasonable to assume finite.

We assume that all the random variables and processes mentioned are defined in the same complete filtered
probability space (Ω,F ,H,P) where the filtration H is complete and right-continuous.

There are three kinds of traders. A large number of liquidity traders, who trade for liquidity or hedging
reasons, an informed trader or insider, who observe all the random processes H-adapted, in particular she
has information about the firm and can deduce its fundamental value, and the market makers, who set the
market price according to the total aggregate demand and clear the market.

2.1 The agents and the equilibrium

As we say above, at time t, the insider information is given by Ht and H = (Ht)t≥0. The filtration H is
the reference filtration so, if there is no possibility of confusion, we shall omit H in the notation. If other
filtration is used, then this will be specified. In some cases we shall assume that the firm value V is depending
on some adapted signal process η, but we do not specify any exact functional relationship between V and η
and we refer instead to the various examples provided in the sequel.

We assume that V is a càdlàg martingale (if not otherwise specified) such that σ2
V (t) :=

d[V,V ]ct
dt is well defined

(where [V, V ]c indicates the continuous part of the quadratic variation of V ).

Hereafter we describe in detail the three types of agents involved in this market model, namely their role,
their demand process and their information.
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Let Z be the aggregate demand process of the liquidity traders. We recall that these are a large number
of traders motivated by liquidity or hedging reasons. They are perceived as constituting noise in the market,
thus also called noise traders. We assume that Z is a continuous martingale, with Z0 = 0, independent of
η and V , such that σ2

Z(t) := d[Z,Z]t
dt is well defined. We do not consider the presence of jumps or a drift

in Z, this was analysed in Corcuera et al. (2010) and it was shown that there is not equilibrium when we
introduce jumps in Z and that the presence of a drift, in the risk neutral case, produces similar equilibrium
situations. Therefore the liquidity traders observe the market prices and the release time of information, as
any other trader in the market, but their investment or trading attitude is not strategic.

Market makers clear the market giving the market prices. They rely on the information given by the total
aggregate demand Y , which they observe. Specifically, Y := X + Z, where X denotes the insider demand
process. X is naturally a predictable process and we assume that it is a càdlàg semimartingale with X0 = 0.
Just like the noise traders, the market makers instantly know about the time of release of information when
that occurs. Hence, their information flow is: F = (Ft)t≥0, where Ft = σ̄(Ys, τ ∧ s, 0 ≤ s ≤ t). Here σ̄
denotes the σ-field corresponding to the usual augmentation of the natural filtration (see Revuz & Yor 1999,
Ch. I, Def. 4.13 and the paragraphs following this definition). That is, e.g.,

σ̄(Ys, τ ∧ s, 0 ≤ s ≤ t) :=
⋂
r>t

(σ(Ys, τ ∧ s, 0 ≤ s ≤ r) ∪N ) , (2.1)

where N is the family of P-null sets in F , and (σ(Ys, τ ∧ s, 0 ≤ s ≤ r))r≥0 is the natural filtration generated
by Y and τ ∧ s.

From the economic point of view, due to the competition among market makers, the market prices (Pt)t≥0

are rational, or competitive, in the sense that

Pt = E(Vt|Ft), 0 ≤ t ≤ τ. (2.2)

In our model, consistent with the original idea of Kyle (1985) and later literature, we suppose that market
makers give market prices through a pricing rule, which consists of a formula that here takes the form:

Pt = H(t, ξt), t ≥ 0, (2.3)

where the deterministic function H is C1,2 and, for all t ≥ 0, H(t, ·) is strictly increasing and where

ξt :=

∫ t

0

λ(s)dYs, (2.4)

with the deterministic function λ strictly positive and integrable with respect to Y . In this paper we call λ
the price pressure. Observe that

Ft = σ̄(Ps, τ ∧ s, 0 ≤ s ≤ t) ⊆ Ht, (2.5)

for all t and therefore, since V is an H-martingale, equality (2.2) implies that P is an F-martingale. Further-
more, from the assumptions on Y and λ, we observe that ξ is a càdlàg H-semimartingale. Hence, applying
the Itô formula to (2.3), we can see that P is also an H-semimartingale.

Definition 2.1 (Pricing rule). Let H denote the class of pairs (H,λ) described above. An element of H is
called a pricing rule.

The insider or informed trader will have some knowledge about the (random) release time of information
τ , which is in general assumed finite and it is a H-stopping time. We shall consider the two following cases
from the insider perspective:

(i) τ is predictable, i.e. there is an increasing sequence of stopping times (τn) such that a.s., τn < τ and
limn τn = τ . In this case, we assume τ bounded.

(ii) τ is not predictable. In this case, we assume τ to have probability density with respect to the Lebesgue
measure and to be independent of V,Z, and P .
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Remark 2.1. In this equilibrium model the random time τ and the processes V and Z are exogenously given.
The modelling assumptions above state in what terms the insider relates to these.

The informed trader is assumed risk-neutral and she aims at maximizing her expected final wealth. LetW be
the wealth process corresponding to insider’s portfolio X. To illustrate the relationship among the processes
V, P,X, and W we first consider a multi-period model where trades are made at times i = 1, 2, . . . N,
and where τ = N is random. If at time i − 1, there is an order to buy Xi − Xi−1 shares, its cost will
be Pi(Xi − Xi−1), so, there is a change in the bank account given by −Pi(Xi − Xi−1). Then the total
(cumulated) change at τ = N is −

∑N
i=1 Pi(Xi −Xi−1), and due to the fact that at the release time τ = N

the price of the asset becomes the fundamental one, there is the extra income: XNVN . So, the total wealth
Wτ at τ is

Wτ = −
N∑
i=1

Pi(Xi −Xi−1) +XNVN

= −
N∑
i=1

Pi−1(Xi −Xi−1)−
N∑
i=1

(Pi − Pi−1)(Xi −Xi−1) +XNVN . (2.6)

Consider now the continuous time setting where we have the processes X,P, and V, and we take N trading
periods, where N is random and the trading times are: 0 ≤ t1 ≤ t2 ≤ ... ≤ tN = τ, then we have

Wτ = −
N∑
i=1

Pti−1
(Xti −Xti−1

)−
N∑
i=1

(Pti − Pti−1
)(Xti −Xti−1

) +XtNVtN , (2.7)

so, if the time between trades goes to zero, we will have

Wτ = XτVτ −
∫ τ

0

Pt−dXt − [P,X]τ

=

∫ τ

0

Xt−dVt +

∫ τ

0

Vt−dXt + [V,X]τ −
∫ τ

0

Pt−dXt − [P,X]τ

=

∫ τ

0

(Vt− − Pt−) dXt +

∫ τ

0

Xt−dVt + [V,X]τ − [P,X]τ , (2.8)

where (here and throughout the whole article) Pt− = lims↑t Ps a.s and we have X0 = 0. Having assumed
that X is a H-predictable càdlàg semimartingale we can give meaning to the stochastic integrals above in
the framework of Itô stochastic integration.

In the next subsection we discuss the characterization of an insider’s optimal strategy in equilibrium. For
this we shall consider an insider’s demand process X that is optimal in the sense that it maximizes

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt− −H(t, ξt−))dXt +

∫ τ

0

Xt−dVt + [V,X]τ − [P,X]τ

)
, (2.9)

for a pricing rule (H,λ) ∈ H. However for technical and modelling reasons, we require additional properties
to the triplet (H,λ,X).

Here and in the sequel ∂iH , ∂ijH denote the first and second derivatives with respect to the ith, ith and
jjh variables, respectively.

Definition 2.2 (Admissibility). We say that (H,λ,X) is an admissible triplet, if the process X (which may
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also be X ≡ 0) and the price function (H,λ) ∈ H satisfy:

(A1) Xt = Mt +At +

∫ t

0

θsds, for all t ≥ 0, where M is a continuous H-martingale, A a bounded variation

H-predictable process, with At =
∑

0<s≤t

(Xs −Xs−) , and θ a càdlàg H-adapted process,

(A2) E
((∫ τ

0

(∂2H(s, ξs))
2

+ (H(s, ξs))
2

+ V 2
s

)(
σ2
Z(s)ds+ σ2

M (s)ds
))

<∞, where σ2
M (s) :=

d[M,M ]s
ds

,

(A3) E
(∫ τ

0

(∂2H(s, ξs) +H(s, ξs) + Vs) |θs|ds
)
<∞,

(A4) E

(
τ∑
0

∂2H(s, ξs−)|∆Xs|

)
<∞,∆Xs := Xs −Xs−,

(A5) E
(∫ τ

0

(
H−1(τ, ·)(Vs−)

)2
+ |Zs|2 + |Xs−|2)d[V, V ]s

)
<∞,

(A6) E
(∫ τ

0

λ(s)|∂22H(s, ξs)|
(
σ2
M (s) + |σM,Z(s)|

)
)ds

)
<∞,where σM,Z(s) :=

d[M,Z]s
ds

.

Remark 2.2. Note that, since X is a càdlàg predictable process, given (A1) above, its martingale part is
predictable, then it cannot have jumps, see Corollary 2.31 in Jacod and Shiryaev (1987). Similarly, we have
chosen Z to be a continuous martingale before.

Definition 2.3 (Optimality). Let (H,λ,X) be an admissible triplet, the strategy X is called optimal with
respect to (H,λ) if it maximizes J(X) (2.9).

Definition 2.4 (Equilibrium). An admissible triplet (H,λ,X) is an equilibrium if we have both that

1. given X, the pricing rule (H,λ) is such that the price process P· := H(·, ξ·) is rational (2.2)

2. given (H,λ), the strategy X is optimal.

Remark 2.3. Notice that the processes V,Z and the random variable τ are fixed exogenously in our model,
while we find an equilibrium endogeneously. The equilibrium is obtained among admissible triplets (H,λ,X)
by first fixing (H,λ) and looking for the optimal X and later choosing (H,λ) such that prices are rational.

2.2 The optimality condition

In this last part of the section we provide necessary conditions for the insider’s demand in an admissible
triplet (H,λ,X) to be optimal. In our model the insider information advantage can be relevant up to the time
τ of information release about the fundamental value of the stock. Then, hereafter, we consider two kinds of
stopping times: τ bounded, or τ finite but independent of (V, P, Z). In both cases, by the assumptions that
V is a martingale and X a predictable càdlàg semimartingale satisfying (A5), we have that E(

∫ τ
0
XtdVt) = 0.

In fact, we can argue that, if τ is bounded, we can apply Doob’s Optional Sampling Theorem and, if τ is
finite but independent of (V, P, Z) (and consequently of X), we have that

E
(∫ τ

0

Xt−dVt

)
= E

(
E
(∫ τ

0

Xs−dVs

∣∣∣∣ τ)) = E
(
E
(∫ t

0

Xs−dVs

)∣∣∣∣
t=τ

)
= 0. (2.10)

Hence, (2.9) reduces to

J(X) := E (Wτ ) = E
(∫ τ

0

(Vt− −H(t, ξt−))dXt + [V,X]τ − [P,X]τ

)
. (2.11)
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We now present a series of observations. First, note that∫ τ

0

(Vt− −H(t, ξt−))dXt + [V,X]τ − [P,X]τ =

∫ τ−

0

(Vt− −H(t, ξt−))dXt + [V,X]τ− − [P,X]τ−

+ (Vτ −H(τ, ξτ )) ∆Xτ .

Then suppose that X is optimal and we modify only the last jump of this strategy by taking (1 + εγ)∆Xτ ,
with γ an Hτ−-measurable and bounded random variable and ε > 0 small enough. We recall that Hτ− :=
H0 ∨ σ(A ∩ (τ > t) : A ∈ Ht, t ≥ 0) (see, e.g., Revuz and Yor (1999), page 46). Denote X(ε) this new
strategy.

Then, since ∆Xτ is bounded (see (A1) in Definition 2.2), we can see that

0 =
d

dε
J(X(ε))

∣∣∣
ε=0

= E
(
γ
(

(Vτ −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
))

, (2.12)

so we obtain
E
(

(Vτ −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
∣∣∣Hτ−) = 0. (2.13)

Now we modify the strategy X by taking an H-adapted càdlàg process β such that X+ε
∫
βsds is admissible,

with ε > 0 small enough.

We have

0 =
d

dε
J(X + ε

∫
βsds)

∣∣∣∣
ε=0

=
d

dε
E
(∫ τ

0

(Vt− −H(t,

∫ t−

0

λ(s)(dXs + εβsds+ dZs)))(dXt + εβtdt)

)∣∣∣∣
ε=0

− d

dε
E
(

[V,X + ε

∫
βsds]τ − [H(·,

∫
λ(s)(dXs + εβsds+ dZs), X + ε

∫
βsds]τ

)∣∣∣∣
ε=0

= E
(∫ τ

0

(Vt− −H(t, ξt))βtdt

)
− E

(∫ τ

0

∂2H(t, ξt−)

(∫ t

0

λ(s)β(s)ds

)
dXt

)
− E

([
∂2H(·, ξ)

(∫
λ(s)β(s)ds

)
, X

]
τ

)
= E

(∫ τ

0

(
(Vt −H(t, ξt))− λ(t)

∫ τ

t∧τ
∂2H(s, ξs−)dXs

)
βtdt

)
− E

(∫ τ

0

(∫ t

0

λ(s)β(s)ds

)
d [∂2H(·, ξ), X]t

)
= E

(∫ τ

0

(
(Vt −H(t, ξt))− λ(t)

(∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ), X]

τ
t

))
βtdt

)
, (2.14)

where [·, ·]τt := [·, ·]τ− [·, ·]t. Since we can take βt = αu1(u,u+h](t), with an Hu-measurable and bounded αu,
we have

E

(∫ u+h

u

[
E
(
1[0,τ ](t) (Vt −H(t, ξt))

∣∣Ht)− λ(t)E
( ∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ), X]

τ
t∧τ

∣∣∣∣Ht)]dt
∣∣∣∣∣Hu

)
= 0

and this means that the process Ξt, t ≥ 0:

Ξt :=

∫ t

0

[
E
(
1[0,τ ]Vu|Hu

)
−E
(
1[0,τ ](u)H(u, ξu)|Hu

)
−λ(u)E

(∫ τ

u∧τ
∂2H(s, ξs−)dXs+[∂2H(·, ξ), X]

τ
u∧τ |Hu

)]
du

(2.15)
is a continuous H-martingale with bounded variation. In particular this implies that, for a.a. t ≥ 0,

E
(
1[0,τ ](t)Vt

∣∣Ht)−E
(
1[0,τ ](t)H(t, ξt)

∣∣Ht)−λ(t)E
(∫ τ

t∧τ
∂2H(s, ξs−)dXs + [∂2H(·, ξ), X]

τ
t∧τ |Ht

)
= 0, a.s.

(2.16)
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Since τ is an H-stopping time, then for a.a. t and for a.a. ω ∈ {τ ≥ t}, or equivalently a.s. on the stochastic
interval [[0, τ ]] , we can write

Vt −H(t, ξt)− λ(t)E
(∫ τ

t

∂2H(s, ξs)d
−Xs

∣∣∣∣Ht) = 0, (2.17)

where we have used a shorthand notation by means of d−Xs as the backward integral in the sense of Revuz
and Yor (1999) (see page 144), here extended to semimartingales with jumps. As a summary we have the
following necessary condition, which is instrumental for identifying insider’s optimal strategies.

Theorem 2.1. An admissible triple (H,λ,X) such that X is optimal for the insider satisfies the equations:

E
(

(Vτ −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
∣∣∣Hτ−) = 0. (2.18)

Vt −H(t, ξt)− λ(t)E
(∫ τ

t

∂2H(s, ξs)d
−Xs

∣∣∣∣Ht) = 0. (2.19)

a.s. on [[0, τ ]].

In the sequel we study two different cases of knowledge of τ from the insider’s perspective. First the case in
which the insider can predict the time τ of release of information about the firm value, then we study the
case when τ is not predictable.

3 Case when τ is predictable to the insider

In this section we consider the case when the insider can predict the release time of information τ . Namely,
there is an increasing sequence of stopping times (τn) such that a.s., τn < τ and limn τn = τ . Moreover, we
assume that τ is bounded. These are standing assumptions throughout this section.

We observe that a particular case in this section is when τ is known to the insider at time t = 0, that is τ is
H0-measurable.

3.1 Necessary conditions for the equilibrium

Our first observation is that optimal strategies lead the market price to the fundamental one, which means
that the market is efficient. In fact we have the following proposition.

Proposition 3.1. If (H,λ,X) is admissible with X optimal, then the optimal strategy X has no jump at τ
and the market is efficient, i.e.

Vτ− = H(τ, ξτ−) = H(τ, ξτ ) = Pτ a.s. (3.1)

Proof. By the assumptions (A1) and (A2) in Definition 2.2, equation (2.19) can be rewritten by using the
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announcing sequence (τn)n≥0:

Vτn −H(τn, ξτn)− λ(τn)E
(∫ τ

τn∧τ
∂2H(s, ξs)d

−Xs

∣∣∣∣Hτn) (3.2)

= Vτn −H(τn, ξτn)− λ(τn)E
(∫ τ

τn

∂2H(s, ξs)d
−Xs

∣∣∣∣Hτn)
= Vτn −H(τn, ξτn)− λ(τn)E

(∫ τ

τn

∂2H(s, ξs)θs|Hτn
)

ds

− λ(τn)E

(
τ∑
τn

∂2H(s, ξs)∆Xs

∣∣∣∣∣Hτn
)

− λ(τn)E
(∫ τ

τn

λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣Hτn)
= 0 a.s. on [[0, τ ]]. (3.3)

Now by assumption (A3) in Definition 2.2 and Corollary (2.4) in Revuz & Yor (1999), we have that

lim
τn↑τ

E
(∫ τ

τn

∂2H(s, ξs)|θs|ds
∣∣∣∣Hτn) = 0. (3.4)

Analogously we also have that

lim
τn↑τ

λ(τn)E
(∫ τ

τn

λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣Hτn) = 0 a.s., (3.5)

whereas

lim
τn↑τ

λ(τn)E

(
τ∑
τn

∂2H(s, ξs)∆Xs

∣∣∣∣∣Hτn
)

= λ(τ)∂2H(τ, ξτ )∆Xτ . (3.6)

Consequently
Vτ− −H(τ, ξτ−)− λ(τ)∂2H(τ, ξτ )∆Xτ = 0 a.s. (3.7)

Now, since V is a martingale and τ is predictable, then E(Vτ |Hτ−) = Vτ− (see Jacod and Shiryaev (1987),
Lemma 2.27). (We recall that Fτ− := F0 ∨ σ(A ∩ (τ > t) : A ∈ Ft, t ≥ 0), see, e.g., Revuz and Yor (1999),
page 46). Moreover, since X is H-predictable, Z is continuous (and consequently ξ is predictable), we have

E
(

(H(τ, ξτ )) ∆Xτ + λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2
∣∣∣Hτ−) = H(τ, ξτ )∆Xτ + λ(τ)∂2H(τ, ξτ ) (∆Xτ )

2
. (3.8)

Therefore equation (2.18) gives

(Vτ− −H(τ, ξτ )) ∆Xτ − λ(τ)∂2H(τ, ξτ ) (∆Xτ )
2

= 0 a.s. (3.9)

If it was ∆Xτ 6= 0, then we would have that

Vτ− −H(τ, ξτ )− λ(τ)∂2H(τ, ξτ )∆Xτ = 0. (3.10)

However, comparing the above equation with (3.7) we have that H(τ, ξτ ) = H(τ, ξτ−), which actually
contradicts ∆Xτ 6= 0, being H strictly increasing in the second variable. Then this shows that an optimal
strategy X has no jump at τ and that Vτ− = H(τ, ξτ−) = H(τ, ξτ ), see by (3.7).

Remark 3.1. In Aase et al. (2012a) it was already observed that market efficiency is a consequence of the
optimality of the insider’s strategy. Here we obtain an extension of this result for a more general behaviour
of the fundamental value and of the demand process of the noise traders.
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Remark 3.2. This efficiency situation is also the case in Campi and Çetin (2007). In our notation they have
the signal η = τ̄ , with τ̄ known by the insider and representing the default time of a bond with face value
1, the fundamental value Vt = 1{τ̄>1}, and the release time is τ = τ̄ ∧ 1. So, τ is H0-measurable and it is
bounded. Then, they obtain

1{τ̄>1} −H(τ̄ ∧ 1, ξτ̄∧1) = 0 a.s.

Within this study, the authors also assume that τ̄ is the first passage time of a standard Brownian motion
independent of Z.

Remark 3.3. If we take the fundamental value Vt ≡ V and the deterministic fixed release time τ ≡ 1, then
we retrieve Back’s framework (1992). There it is shown that market prices converge to V when t→ 1.

Hereafter we consider necessary conditions for an admissible triplet (H,λ,X) to be an equilibrium. These
conditions show the synergy between the optimal insider strategy and the pricing rule in an equilibrium
state. Note that one cannot use these conditions to (uniquely) identify a pricing rule. The choice of pricing
rules is not unique. In the next subsection we will provide both necessary and sufficient conditions for the
equilibrium in a wide class of pricing rules. Before that we have the following result. Here we assume that
the process V is quasi-left continuous.

Proposition 3.2. Consider an admissible triple (H,λ,X), with λ ∈ C1. If (H,λ,X) is an equilibrium, we
have

(i) H(τ, ξτ ) = Vτ a.s.,

(ii)
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)

(
σ2
Y (t)− 2σM,Y (t)

)
= 0 a.s. on [[0, τ)),

(iii) ∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)E
(
σ2
Z(t)− σ2

M (t)|Ft
)

= 0 a.s. on [[0, τ)).

Proof. (i) It is just Proposition 3.1 together with the fact that V is quasi-left continuous and that τ is a
predictable time. We prove (ii) and (iii). By using Itô formula on H(t,ξt)

λ(t) , with (A2) in Definition 2.2
applied, we have

E
(∫ τ

t∧τ

1

λ(s)
∂2H(s, ξs−)dξs

∣∣∣∣Ht) = E
(
H(τ, ξτ )

λ(τ)

∣∣∣∣Ht)− H(t ∧ τ, ξt∧τ )

λ(t ∧ τ)

− E
(∫ τ

t∧τ

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)σ2

Y (s)

)
ds

∣∣∣∣Ht)

− E

 ∑
t∧τ≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs−)∆Xs

)∣∣∣∣∣∣Ht
 ,

where σ2
Y (s) :=

d[Y,Y ]cs
ds . Since X is optimal given (H,λ), by the equation (2.19) and (i) we can write for all

t ≥ 0.

0 = Vt∧τ − λ(t)E
(

Vτ
λ(τ)

∣∣∣∣Ht)
+ λ(t) E

(∫ τ

t∧τ

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)σ2

Y (s)

)
ds

∣∣∣∣Ht)

+ λ(t)E

 ∑
t∧τ≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

)∣∣∣∣∣∣Ht


− λ(t)E
(∫ τ

t∧τ
λ(s)∂22H(s, ξs)(σ

2
M (s) + σZ,M (s))ds

∣∣∣∣Ht) .
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Hence, we have

0 =
Vt∧τ
λ(t)

− E
(

Vτ
λ(τ)

∣∣∣∣Ht)
+ E

((∫ τ

t∧τ
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht)

+ E

 ∑
t∧τ≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

)∣∣∣∣∣∣Ht
 , (3.11)

where σM,Y (t) := d[M,Y ]t
dt = σ2

M (t)+σM,Z(t). We study the summands in the previous expression. By taking
infinitesimal increments over time, we can identify the bounded variation and the martingale parts. In fact,
for the first term we have

d

(
Vt∧τ
λ(t)

− E
(

Vτ
λ(τ)

∣∣∣∣Ht)) = − λ
′(t)

λ2(t)
Vt∧τdt+

dVt∧τ
λ(t)

− dE
(

Vτ
λ(τ)

∣∣∣∣Ht) .
If we define,

Mt := E
(∫ τ

0

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht) , t ≥ 0,

we can see thatM is an H-martingale and then we have

dE
(∫ τ

t∧τ

(
− λ
′(s)

λ2(s)
H(s, ξs) +

∂1H(s, ξs)

λ(s)
+

1

2
∂22H(s, ξs)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht)
= 1[0,τ ](t)

(
λ′(t)

λ2(t)
H(t, ξt)−

∂1H(t, ξt)

λ(t)
− 1

2
∂22H(t, ξt)λ(t)(σ2

Y (t)− 2σM,Y (t))

)
dt+ dMt

for the second term. Analogously the for the third summand we have

dE

 ∑
t∧τ≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

)∣∣∣∣∣∣Ht
 = −1[0,τ ](t)

∆H(t, ξt)− ∂2H(t, ξt)∆ξt
λ(t)

+ dLt,

with

Lt := E

 ∑
0≤s≤τ

(
∆H(s, ξs)

λ(s)
− ∂2H(s, ξs)∆Xs

)∣∣∣∣∣∣Ht
 .

Then the continuous and jump parts of the bounded variation part of (3.11) will be equal to zero. So

∆H(t, ξt)− ∂2H(t, ξt)∆ξt
λ(t)

= 0 a.s. on [[0, τ)) (3.12)

and

0 =
λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)(σ2

Y (t)− 2σM,Y (t)) a.s. on [[0, τ)), (3.13)

which gives (ii). Recall that (X,λ,H) is an equilibrium and that the prices are rational given X. So, by
taking conditional expectations with respect to Ft in (3.13), we have

0 =
λ′(t)

λ2(t)
(E(Vt|Ft)− E(H(t, ξt)|Ft)) +

∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)E

(
σ2
Y (t)− 2σM,Y (t)|Ft

)
=
∂1H(t, ξt)

λ(t)
+

1

2
∂22H(t, ξt)λ(t)

(
σ2
Y (t)− 2E (σM,Y (t)|Ft)

)
a.s. on [[0, τ)), (3.14)

because of the rationality of prices, which gives (iii).
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Proposition 3.3. Assume that (X,λ,H) with λ ∈ C1 is an equilibrium. If in addition the pricing rule
H(t, ·) is linear, for all t, or the optimal strategy X is absolutely continuous, then we have:
(i) Y is an F-local martingale;
(ii) If Vt 6= Pt a.s. (except for a set with dP⊗ dt zero measure) on [[0, τ)), then λ(t) = λ0 > 0.

Proof. (i) From (3.12) and (3.14) we have

dPt = dH(t, ξt) = λ(t)∂2H(t, ξt−)dYt,

and, since P is an F- martingale and λ(t)∂2H(t, y) > 0, we have that Y is an F-local martingale.
(ii) From (3.12) and (3.14) we have that

λ′(t)

λ2(t)
Vt −

λ′(t)

λ2(t)
H(t, ξt) = 0,

then Vt 6= H(t, ξt) implies that λ′(t) = 0.

Example 3.1. Consider the case τ ≡ 1, Vt ≡ V and such that log V ∼ N(m, v2), Z = σB where B is a
Brownian motion. Assume that the price functions are of the form

H(t, u) = exp

{
m+

v2

2
+
v

λ

1

σ(1− α)
u− 1

2

1 + α

1− α
v2t

}
, 0 < α < 1.

Note that
∂1H(t, u) = −1

2
H(t, u)

1 + α

1− α
v2

and
∂22H(t, u) = H(t, u)

( v
λ

)2 1

σ2(1− α)2
.

So we have
∂1H(t, u) +

1

2
∂22H(t, u)λ2σ2(1− α2) = 0.

We look for optimal strategies of the form

dXt = dMt + dθt,

where M is an H-martingale and such that [X,Z]t = −ασ2t, 0 ≤ t ≤ 1. Let Ȳ be the solution of

Ȳt = σ(1− α)Bt +

∫ t

0

Ȳ1 − Ȳs
1− s

ds,

where we take
Ȳ1 = σ(1− α)

log V −m
v

.

Then if we set

Xt = −σαBt +

∫ t

0

Ȳ1 − Ȳs
1− s

ds+ vσαt, 0 ≤ t ≤ 1,

we also have that
Y1 = Ȳ1 + vσα,

and
P1 = H(1, λY1) = exp

{
m+

v

σ(1− α)
Ȳ1

}
= V.

Then X satisfies the necessary conditions to be an equilibrium in the class of strategies with quadratic
variation equal to σ2α2t.
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3.2 Characterization of the equilibrium

In this subsection we shall give necessary and sufficient conditions to guarantee that (H,λ,X) is an equilib-
rium in the context of pricing rules (H,λ) ∈ H satisfying

0 = ∂1H(t, y) +
1

2
∂22H(t, y)λ(t)2σ2(t) a.a. t ≥ 0, y ∈ R, (3.15)

where σ2 is a deterministic and càdlàg function and 0 < σ2(t) ≤ σ2
Z(t) for a.a. t. Condition (3.15) specifies

a subclass of pricing rules (Definition 2.1) and thus of admissible strategies (Definition 2.2). Note that
condition (3.15) is close to condition (iii) in Proposition 3.2 (with σ2(t) = E

(
σ2
Z(t)− σ2

M (t)
∣∣Ft)), which

is a necessary condition for the equilibrium. Observe also that the pricing rules (H,λ) are deterministic,
by construction. Consequently, if we consider pricing rules satisfying (3.15), except for the linear pricing
rules, we need E

(
σ2
Z(t)− σ2

M (t)
∣∣Ft) = E

(
σ2
Z(t)− σ2

M (t)
)
. One possibility is that σ2

Z(t)− σ2
M (t) = σ2(t) is

deterministic in equilibrium. This is what we consider here. Note also that we do not enter into the study
of the case σ2 = σ2(t, y), which could be object for future research.

Moreover, if we consider pricing rules satisfying (3.15), by (iii) in Proposition 3.2, we obtain that, in the
equilibrium,

∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)(σ2
Z(t)− σ2

M (t)) = 0, (3.16)

now if ∂22H(t, y) 6= 0 and (3.15) holds, we have that σ2
Z(t)− σ2

M (t) = σ2(t). So, we will have equilibrium
only in the class of admissible strategies with σ2

M (t) = σ2
Z(t)− σ2(t).

Definition 3.1. Let C denote the class of those admissible strategies (Definition 2.2) such that

σ2
M (t) = σ2

Z(t)− σ2(t).

Theorem 3.1. Consider an admissible triple (H,λ,X) with (H,λ) satisfying (3.15) with ∂22H(t, y) 6= 0 for
all (t, y) ∈ R+ × R, λ(t) = λ0 > 0, and

∫ t
0
E
((
∂2H(s, λ0

∫ s
0
σ(u)dBu)

)2)
σ2(s)ds < ∞, for all t ≥ 0, where

B is a Brownian motion independent of τ . Then (H,λ,X) is an equilibrium, in the class C, if and only if
the following conditions hold:

(i) H(τ, ξτ ) = Vτ

(ii) Y = X + Z has no jumps

(iii) Yt + λ0

∫ t

0

∂22H(s, ξs)

∂2H(s, ξs)
(σM,Z(s) + σ2

M (s))ds, 0 ≤ t < ess sup τ, is an F-local martingale.

Proof. Assume (i)− (iii), we show that (H,λ,X) is an equilibrium. Consider a process ς such that

ςt := λ0

∫ t

0

σ(s)dBs.

where B is a Brownian motion independent of τ (possibly defined in an extension of (Ω,F ,P)). First if
H (t, y) is a solution of (3.15).

H (t, ςt) = H(0, 0) + λ0

∫ t

0

∂2H(s, ςs)σ(s)dBs,

then, by the hypothesis, (H (t, ςt))t≥0 is a martingale (w.r.t. its own filtration) and since ς has independent
increments and τ is bounded and independent of ς

H (t ∧ τ, y) = E (H (τ, ςτ )| ςt∧τ = y, τ) = E (H (τ, y + ςτ − ςt∧τ )| τ) .

Set now, for T ∈ [0,∞),

i(T, y, v) :=

∫ H−1(T,·)(v)

y

v −H(T, x)

λ0
dx
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and define
I(t, y, v) := E ( i (τ, y + ςτ − ςt∧τ , v)| τ) , t ≥ 0.

Note that I(t, y, v) is a random-field. We have that

∂2I(t, y, v) = E (∂2i(τ, y + ςτ − ςt∧τ , v)| τ)

= E
(
−v −H(τ, y + ςτ − ςt∧τ )

λ0

∣∣∣∣ τ) =
−v +H(t ∧ τ, y)

λ0
. (3.17)

We can take the derivative under the expectation sign because H(τ (ω) , ·) is monotone and E(H(τ, ςτ )|τ) <
∞. Then I(t, y, v) is well defined and

I(t, y, v) = E ( i (τ, y + ςτ − ςt∧τ , v)| τ)

= E( i(τ, ςτ , v)| ςt∧τ = y, τ),

then, fixed v, (I(t, ςt∧τ , v))t≥0 is a martingale (w.r.t. its own filtration), so

∂1I(t, ςt, v) +
1

2
∂22I(t, ςt, v)λ2

0σ
2(t) = 0, a.s. on [[0, τ ]]. (3.18)

Now, consider an admissible strategy X, by using Itô-Wentzell’s formula (see for instance Bank & Baum
(2004)), we have

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt−, Vt−)dVt +

∫ τ

0

∂1I(t, ξt, Vt)dt

+

∫ τ

0

∂2I(t, ξt−, Vt−)dξt +
1

2

∫ τ

0

∂22I(t, ξt, Vt)d[ξc, ξc]t

+

∫ τ

0

∂23I(t, ξt, Vt)d[ξc, V c]t +
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

+
∑

0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)∆ξt)

+
∑

0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt, Vt−)∆Vt)

By construction, ξ0 = 0 and dξt = λ0dYt. Now we have that

d[ξc, ξc]t = λ2
0d[Xc, Xc]t + 2λ2

0d[Xc, Z]t + λ2
0σ

2
Z(t)dt.

Also by (3.17) and the fact that V and Z are independent,

∂23I(t, ξt, Vt)d[ξc, V c]t = − 1

λ0
d[ξc, V c]t = −d[X,V ]t,

and the last equality is because since X is predictable and V a martingale X and V cannot jump at the
same time (see Corollary 2.31 in Jacod & Shiryaev (1987)). Then using (3.17) and (3.18), and the fact that
Z has not jumps, we get

I(τ, ξτ , Vτ ) = I(0, 0, V0) +

∫ τ

0

∂3I(t, ξt−, Vt−)dVt +

∫ τ

0

(Pt− − Vt−)(dXt + dZt)

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t − [X,V ]τ +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

+

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Z]t +

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− ∂2I(t, ξt−, Vt)λ0∆Xt)

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂2I(t, ξt, Vt−)∆Vt)
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Subtracting [P,X]τ from both sides and rearranging the terms, we obtain∫ τ

0

(Vt− − Pt−)dXt − [P,X]τ + [X,V ]τ −
(
I(0, 0, V0) +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

)
= −I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt−, Vt−)dVt +

∫ τ

0

(Pt − Vt)dZt

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t +

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Z]t

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂3I(t, ξt, Vt−)∆Vt)

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− ∂2I(t, ξt−, Vt)λ0∆Xt)− [P,X]τ . (3.19)

We have that
[P,X]τ = [P c, Xc]τ +

∑
0≤t≤τ

∆Pt∆Xt.

Then Itô’s formula for H shows that the continuous local martingale part of P is
∫
∂2H(t, ξt)dξ

c
t , so by using

(3.17), we obtain

[P c, Xc]τ =

[∫ ·
0

∂2H(t, ξt)dξ
c
t , X

c

]
τ

=

∫ τ

0

∂2H(t, ξt)d [ξc, Xc]t

=

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d [Xc, Xc]t +

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d [Xc, Z]t ,

and

λ0∂2I(t, ξt−, Vt)∆Xt + ∆Pt∆Xt = (Pt− − Vt)∆Xt + ∆Pt∆Xt

= (Pt − Vt)∆Xt = λ0∂2I(t, ξt, Vt)∆Xt.

Substituting the above relationships in the right-hand side of the equation (3.19), it becomes

− I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt−, Vt−)dVt +

∫ τ

0

(Pt − Vt)dZt −
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− λ0∂2I(t, ξt, Vt)∆Xt)

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂3I(t, ξt, Vt−)∆Vt)

= −I(τ, ξτ , Vτ ) +

∫ τ−

0

∂3I(t, ξt−, Vt−)dVt +

∫ τ

0

(Pt − Vt)dZt

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂3I(t, ξt, Vt−)∆Vt)

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− λ0∂2I(t, ξt, Vt)∆Xt) . (3.20)

Recall the expected total wealth of an insider’s strategy (2.11). Then, taking the expectation in the right-
hand side of (3.19), or equivalently of (3.20), we show that the maximum is achieved at X. For this it is
important to note that ∂33I(t, y, v) does not depend on y and so ∂33I(t, ξt, Vt) does not depend of ξ. Then
I(0, 0, V0) + 1

2

∫ τ
0
∂33I(t, ξt, Vt)σ

2
V (t)dt has the same value for any insider’s strategy. The result follows from

the following points.
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1. (ii) guarantees that ∆Xt = 0.

2. The processes
∫ ·

0
∂3I(t, ξt, Vt)dVt and

∫ ·
0
(Pt − Vt)dZt are martingales by (A5) and (A2) in Definition

2.2, hence they have null expectation.

3. The term
∑

0≤t<τ (I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂2I(t, ξt, Vt−)∆Vt) does not depend on ξ:

I(t, ξt, Vt)− I(t, ξt, Vt−)− ∂2I(t, ξt, Vt−)∆Vt

=

∫ H−1(T,·)(Vt)

H−1(T,·)(Vt−)

Vt −H(T, x)

λ0
dx.

4. We know that λ0∂22I(τ, ξτ , Vτ ) = ∂2H(τ, ξτ ) > 0 and that λ0∂2I(τ, ξτ , Vτ ) = −Vτ +H(τ, ξτ ) so by (i)
we have a maximum value of −E[I(τ, ξτ , Vτ )] for our strategy X.

Assumption (iii) and (i) together with condition (A2) in Definition 2.2 guarantee the rationality of prices,
given X. In fact from (3.15)

dPt = λ0∂2H(t, ξt)dYt +
1

2
λ2

0

(
σ2
Y (t)− σ2(t)

)
∂22H(t, ξt)dt

and by (ii)

dPt = λ0∂2H(t, ξt)dYt + λ2
0

(
σ2
M (t) + σM,Z(t)

)
∂22H(t, ξt)dt

= λ0∂2H(t, ξt)

(
dYt + λ0

(
σ2
M (t) + σM,Z(t)

) ∂22H(t, ξt)

∂2H(t, ξt)
dt

)
so, P is an F-local martingale and, by condition (A2) in Definition 2.2, it is an F-martingale. Then from (i),
and on the set {t ≤ τ} we have

E (H(τ, ξτ )| Ft) = E (Vτ | Ft) = E (E (Vτ |Ht)| Ft) = E (Vt| Ft) .

Conversely, assume that (H,λ,X) is an equilibrium. We show that (i)− (iii) hold true. First note that (i)
is a necesssary condition for equilibrium by (i) in Proposition 3.2. Now, from the computations above we
can see that ∂22I = ∂2H

λ0
> 0 (convexity) implies that

I(t, x+ h, v)− I(t, x, v)− ∂2I(t, x, v)h ≤ 0, for any h.

So, ∑
0≤t≤τ

(I(t, ξt− + λ0∆Xt, Vt)− I(t, ξt−, Vt)− ∂2I(t, ξt, Vt)λ0∆Xt) ≤ 0.

Since X is optimal, then ∆Xt = 0. So (ii) is a necessary condition for equilibrium. Finally, from the Itô
formula, we have that

dYt + λ0

(
σ2
M (t) + σM,Z(t)

) ∂22H(t, ξt)

∂2H(t, ξt)
dt =

dPt
λ0∂2H(t, ξt)

.

Since prices are rational, given X, then we see that (iii) holds true.

Remark 3.4. Notice that (3.20) is true for strategies in the class C since for strategies in this class we have

−1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t +

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt = 0.

However given a strategy X in the class C, there is always an absolutely continuous strategy strictly better,
in the sense that the final optimal wealth is higher. In fact we can approximateX by an absolutely continuous
process, say X̃, and then

− 1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t +

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

<
1

2

∫ τ

0

∂22I(t, ξ̃t, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt,
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by the continuity ∂22I. This proves that if σ2
Z(t) − σ2(t) > 0 class C is suboptimal. These results are in

agreement with that of Theorem 2 and Lemma 2 in Back (1992). However equation (14) in Theorem 2,
Back (1992), is obtained under the restrictive assumption that the quadratic variation of the total aggregate
demand is equal to that of the noise traders. This results in forcing the continuous part of the insider’s
strategies not to have a continuous martingale part, as it is shown in Lemma 2, Back (1992), which uses
equation (14) in Theorem 2, Back (1992), in its proof.
Remark 3.5. We have seen that there is not a substantial difference when we introduce jumps in the funda-
mental value V , so we assume for simplicity that V is continuous in the following.

For the linear pricing rules case or (3.15) with σ2
Z(t) = σ2(t) for t ≥ 0, we have an equilibrium in the class

of all admissible strategies:

Theorem 3.2. Consider an admissible triple (H,λ,X) with (H,λ) satisfying (3.15) with ∂22H(t, y) = 0 for
all (t, y) ∈ R+ × R, or pricing rules satisfying (3.15) with σ2

Z(t) = σ2(t) for t ≥ 0, and λ(t) = λ0 for t ≥ 0.
Assume that V is a continuous martingale. Then (H,λ,X) is an equilibrium if and only if the following
conditions hold:

(i) H(τ, ξτ ) = Vτ

(ii) σM (t) = 0 , 0 ≤ t < ess sup τ

(iii) Y = X + Z has no jumps
(iv) Yt, 0 ≤ t ≤ ess sup τ, is an F-local martingale

Proof. Let (H,λ,X) be an equilibrium. First note that if H is linear and λ(t) = λ0, point (ii) in Proposition
3.2 does not imply any condition on σM . Secondly,

dPt = λ0∂2H(t, ξt)dYt,

so we have (iv). Thirdly, by (3.17), ∂22I(t, ξt, Vt) = C(t) > 0 (deterministic). So, in the linear case, the term

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt,

in the equality (3.19), does not depend on the insider’s strategy, and obviously neither when σ2
Z = σ2. Then

we can pass the term to the left-hand side of (3.19) and

I(0, 0, V0) +
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V dt+

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

becomes a true bound for the insider’s wealth. We have that∫ τ

0

(Vt − Pt−)dXt − [P,X]τ + [X,V ]τ

−
(
I(0, 0, V0) +

1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V dt+

1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0

(
σ2
Z(t)− σ2(t)

)
dt

)
= −I(τ, ξτ , Vτ ) +

∫ τ

0

∂3I(t, ξt−, Vt)dVt +

∫ τ

0

(Pt − Vt)dZt

− 1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t +

∑
0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt, Vt)λ0∆Xt) .

Now, the arguments in the proof of the previous theorem apply and we obtain (i) and (iii) . Finally, since

−1

2

∫ τ

0

∂22I(t, ξt, Vt)λ
2
0d[Xc, Xc]t ≤ 0,

its maximum value is achieved if and only if [Xc, Xc] ≡ 0 and we conclude (ii). The converse is directly
obtained from the previous theorem.
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4 Case when τ is not predictable to the insider

In this section we consider the case when the insider cannot predict the time τ of release of information.
We also assume that the (finite) stopping time τ is independent of the rest of observable random objects
(V, P, Z, ...) that is

Ht = Gt ∨ σ (τ ∧ s, 0 ≤ s ≤ t),

with Gt independent of τ, that P(τ > t) > 0 for all 0 ≤ t < T ∈ R̄+ and that τ has a density with respect
to the Lebesgue measure. For the sake of simplicity we also assume that V is a continuous martingale. All
these are standing assumptions for this section.

Proposition 4.1. Consider an admissible triple (H,λ,X) with λ ∈ C1 and limT̄↑T
P(τ>T̄)
λ(T̄ )

=: c < ∞. If
(H,λ,X) is an equilibrium, we have:

(i) lim
T̄↑T

H(T̄ , ξT̄ ) = lim
T̄↑T

VT̄ a.s. on [[0, τ)).

(ii) ∂t

(
P (τ > t)

λ(t)

)
(Vt −H(t, ξt))−

P(τ > t)

λ(t)
∂1H(t, ξt)−

1

2
∂22H(t, ξt)P (τ > t)λ(t)(σ2

Y (t)− 2σM,Y (t)) = 0,

(iii) ∂1H(t, ξt) +
1

2
∂22H(t, ξt)λ

2(t)E
(
σ2
Z(t)− σ2

M (t)|Ft
)

= 0 a.s. on [[0, τ)).

Proof. Going back to Theorem 2.1, we can see that equation (2.19) can be written as:

1[0,τ ](t) (Vt −H(t, ξt))− λ(t)E(

∫ T

t

1[0,τ ](s)
(
∂2H(s, ξs)d

−Xs

)
|Ht) = 0 t ≥ 0, a.s.

We recall that the optimal total demand X for the insider satisfies (A1) - (A6) in Definition 2.2. Then we
have

0 = 1[0,τ ](t) (Vt −H(t, ξt))− λ(t)E

(∫ T

t

1[0,τ ](s)
(
∂2H(s, ξs)d

−Xs

)∣∣∣∣∣Ht
)

= 1[0,τ ](t) (Vt −H(t, ξt))− λ(t)E

(∫ T

t

1[0,τ ](s)∂2H(s, ξs)θsds

∣∣∣∣∣Ht
)

− λ(t)E

(
T∑
t

1[0,τ ](s)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)

− λ(t)E

(∫ T

t

1[0,τ ](s)λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣∣Ht
)

= 1[0,τ ](t) (Vt −H(t, ξt))− λ(t)E

(∫ T

t

P(τ > s|Ht)∂2H(s, ξs)θsds

∣∣∣∣∣Ht
)
1[0,τ ](t)

− λ(t)E

(
T∑
t

P(τ > s|Ht)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)
1[0,τ ](t)

− λ(t)E

(∫ T

t

P(τ > s|Ht)λ(s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣∣Ht
)
1[0,τ ](t).

Where in the third equality we apply conditional Fubini (see for instance Theorem 1.1.7 in Applebaum
2004) and the independence of τ with respect to Gt. Observe that, for s > t,

P(τ > s|Ht) = P(τ > s|τ > t)1[0,τ ](t) =
P(τ > s)

P(τ > t)
1[0,τ ](t). (4.1)
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Hence, substituting in the previous expression, we have

0 = 1[0,τ ](t) (Vt −H(t, ξt))−
λ(t)

P(τ > t)
E

(∫ T

t

P(τ > s)∂2H(s, ξs)θsds

∣∣∣∣∣Ht
)
1[0,τ ](t)

− λ(t)

P(τ > t)
E

(
T∑
t

P(τ > s)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)
1[0,τ ](t)

− λ(t)

P(τ > t)
E

(∫ T

t

λ(s)P(τ > s)∂22H(s, ξs)(σ
2
M (s) + σZ,M (s))ds

∣∣∣∣∣Ht
)
1[0,τ ](t) t ≥ 0. a.s. (4.2)

First of all we note that, by assumption (A3) in Definition 2.2, and Corollary (2.4) in Revuz & Yor (1999)
we have that

lim
t↑T

E

(∫ T

t

P(τ > s)∂2H(s, ξs)|θs|ds

∣∣∣∣∣Ht
)

= 0 a.s.

Analogously E
(∑T

t P(τ > s)∂2H(s, ξs−)|∆Xs|
∣∣∣Ht) and E

( ∫ T
t
λ(s)P(τ > s)∂22H(s, ξs)(σ

2
M (s) +σZ,M (s))ds

∣∣∣Ht)
vanish for t ↑ T . Then, taking the limit in (4.2), we are left with

lim
t↑T

(Vt −H(t, ξt))P(τ > t)

λ(t)
1[0,τ ](t) = 0 a.s. (4.3)

This leads to (i). Moreover, applying the Itô’s formula to H(t,ξt)P(τ>t)
λ(t) , t ≤ T̄ , and studying the limit for

T̄ → T , we obtain

E

(∫ T

t

P (τ > s) ∂2H(s, ξs−)dXs

∣∣∣∣∣Ht
)

= lim
T̄↑T

E
(
H(T̄ , ξT̄ )P(τ > T̄ )

λ(T̄ )

∣∣∣∣Ht)− H(t, ξt)P(τ > t)

λ(t)

− E

(∫ T

t

(∂s

(
P (τ > s)

λ(s)

)
H(s, ξs) +

P (τ > s)

λ(s)
∂1H(s, ξs)

+
1

2
∂22H(s, ξs)P (τ > s)λ(s)σ2

Y (s))ds

∣∣∣∣Ht)
− E

(
T∑
t

P(τ > s)∆H(s, ξs)

λ(s)
− P(τ > s)∂2H(s, ξs−)∆Xs

∣∣∣∣∣Ht
)
. (4.4)

Moreover, by (4.3), we have

lim
T̄↑T

E

(
H(T̄ , ξT̄ )P

(
τ > T̄

)
λ(T̄ )

∣∣∣∣∣Ht
)
1[0,τ ](t) = lim

T̄↑T
E

(
VT̄P

(
τ > T̄

)
λ(T̄ )

∣∣∣∣∣Ht
)
1[0,τ ](t)

= 1[0,τ ](t)Vt lim
T̄↑T

P(τ > T̄ )

λ(T̄ )
= c1[0,τ ](t)Vt. (4.5)

By substituting (4.4) and (4.5) into (4.2), we obtain the equation

0 = 1[0,τ ](t)Vt

(
c− P (τ > t)

λ(t)

)
− 1[0,τ ](t)E

(∫ T

t

(
∂s

(
P(τ > s)

λ(s)

)
H(s, ξs)

+
P(τ > s)

λ(s)
∂1H(s, ξs) +

1

2
∂22H(s, ξs)P (τ > s)λ(s)(σ2

Y (s)− 2σM,Y (s))

)
ds

∣∣∣∣Ht)
− 1[0,τ ](t)E

(
T∑
t

P(τ > s)∆H(s, ξs)

λ(s)
− P(τ > s)∂2H(s, ξs)∆Xs

∣∣∣∣∣Ht
)
. (4.6)
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Proceeding in the same way as in the proof of Proposition 3.2 with the right-hand side of the equation
(4.6) and taking into account that

(
1[0,τ](t)

P(τ>t)

)
t≥0

is an H-martingale by (4.1) , we can identify the bounded

variation and martingale parts. This yields that

0 =

{
∂t

(
P (τ > t)

λ(t)

)
(Vt −H(t, ξt))+

−P(τ > t)

λ(t)
∂1H(t, ξt)−

1

2
∂22H(t, ξt)P (τ > t)λ(t)(σ2

Y (t)− 2σM,Y (t))

}
dt

−
(
P(τ > t)∆H(t, ξt)

λ(t)
− P(τ > t)

λ(t)
∂2H(t, ξt)∆Xt

)
,

a.s. on [[0, τ)). The above gives us (ii). Now since (H,λ,X) is a local equilibrium, then prices are rational.
By taking conditional expectations with respect to Ft, we obtain

0 =
P(τ > t)

λ(t)
∂1H(t, ξt) +

1

2
∂22H(t, ξt)P (τ > t)λ(t)

(
σ2
Y (t)− 2E(σM,Y (t)|Ft)

)
a.s. on [[0, τ)), because of rationality of prices. This leads to (iii).

The following result is then immediate.

Proposition 4.2. Consider an admissible triple (H,λ,X) with λ ∈ C1. Moreover, let H(t, ·) be linear, for
all t, or the strategy X be absolutely continuous. Then if (H,λ,X) is an equilibrium we have:

(i) Y is an F-local martingale (4.7)
(ii) If Vt 6= Pt, a.s. on [[0, τ)), then λ(t) = cP(τ > t) with c > 0 . (4.8)

Proof. The result derives from the proposition before with an argument similar to the one in Proposition
3.3.

Now we study sufficient conditions for having an equilibrium. We obtain a result in line with Theorem 3.1.

Theorem 4.1. Consider an admissible triple (H,λ,X) with (H,λ) satisfying

∂1H(t, y) +
1

2
∂22H(t, y)λ2(t)σ2(t) = 0, t ≥ 0, (4.9)

with

(a) σ2 deterministic and càdlàg and 0 < σ2(t) ≤ σ2
Z(t), for all t ≥ 0,

(b) ∂22H(t, y) 6= 0 for all (t, y) ∈ R+ × R, λ(t) = cP(τ > t), for all t (c > 0),

(c)
∫ T

0
E
((
∂2H(s,

∫ s
0
λ(u)σ(u)dBu)

)2)
λ2(s)σ2(s)ds <∞, where B is a Brownian motion independent of

τ .

The triple (H,λ,X) is an equilibrium, in the class C (Definition 3.1), if

(i) lim
T̄↑T

H(T̄ , ξT̄ ) = lim
T̄↑T

VT̄ , a.s.

(ii) Y = X + Z has no jumps,

(iii) Yt +

∫ t

0

λ(s)
∂22H(s, ξs)

∂2H(s, ξs)
(σM,Z(s) + σ2

M (s))ds, 0 ≤ t ≤ T, is an F-local martingale.

Proof. See Appendix.
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Remark 4.1. Note that condition (i) in the previous theorem is stronger than (i) in (4.1).

For linear pricing rules or pricing rules satisfying (4.9) with σ2
Z(t) = σ2(t), t ≥ 0, we have a result in the

class of all admissible strategies in line with Theorem 3.2.

Theorem 4.2. Consider an admissible triple (H,λ,X) with (H,λ) satisfying (4.9) with ∂22H(t, y) = 0 for
all (t, y) ∈ R+ × R or pricing rules satisfying (4.9) with σ2

Z(t) = σ2(t), t ≥ 0, and λ(t) = cP(τ > t), c > 0.
Then (H,λ,X) is an equilibrium if the following conditions hold:

(i) lim
T̄↑T

H(T̄ , ξT̄ ) = lim
T̄↑T

VT̄ a.s.

(ii) σM (t) = 0, 0 ≤ t ≤ T,
(iii) Y = X + Z has no jumps
(iv) Yt, 0 ≤ t ≤ T, is an F-local martingale.

Remark 4.2. Here we can draw analogous conclusions to the one in Cho (2003), where the author considers
a risk-averse insider (and a deterministic release time). Cho concludes that, in equilibrium, a risk-adverse
insider would do most of her trading early to avoid the risk that the prices get closer to the asset value,
and consequently the risk of a lower profit, unless the trading conditions become more favourable over time.
Similarly in our case, when the (risk-neutral) insider does not know the release time of information, she would
trade early in order to use her piece of information before the announcement time comes. This behaviour
would continue unless the price pressure (the factor lambda) decreases over time providing more favourable
trading conditions also at a later time. A similar conclusion is obtained also by Baruch (2002), who studies
the same problem about the effect of risk-aversion for the insider. In his study he assumes that the demand
of noise traders follows a Brownian motion with time varying instantaneous variance.

Example 4.1. We can consider the context of Caldentey & Stacchetti (2010) where the authors assume that
V and Z are arithmetic Brownian motion with variances σV and σZ , respectively, and that τ follows an
exponential distribution with scale parameter µ, independent of (V, P, Z) . Then, by Proposition 4.2, we have
that, for a.a. t and a.a. ω ∈ {t < τ},

Vt −H(t, ξt)− λ(t)E
(∫ ∞

t

e−µ(s−t)∂2H(s, ξs)dXs

∣∣∣∣Ht) = 0.

And to have an equilibrium, provided that Vt −H(t, ξt) 6= 0, we need λ(t) = λ0e
−µt.

5 Explicit insider’s optimal strategies

In this section we shall apply our results to explicitly find the insider’s optimal strategy in equilibrium. We
will show how our general framework serves different models known in the literature, which are presented
as different extensions of the Kyle-Back model, and opens for new more. In order to perform the explicit
computations we will use techniques both of enlargements of filtrations and of filtering.

To explain how enlargement of filtrations enters the topic we consider a total demand Y = Z + X in
equilibrium given by:

Yt = Zt +

∫ t

0

θ(Vu, Yu, 0 ≤ u ≤ s)ds, 0 ≤ t ≤ T. (5.1)

Here X is an absolutely continuous process with respect to the Lebesgue measure. We recall that Z is a
martingale independent of V . Let FY,V = (FY,Vt )t≥0 be the filtration FY,Vt := σ̄(Ys, Vs, 0 ≤ s ≤ t). Since
FY,Vt ⊆ Ht, for all t, and Z is adapted to FY,V , we see that Z is also an FY,V -martingale. On the other hand
Y is, in certain cases as in Proposition 3.3, Theorem 3.2, Proposition 4.2 and Theorem 4.2, a local martingale
when in equilibrium. Consequently (5.1) becomes the canonical decomposition of Y when we enlarge the
filtration FY with the process V. We are then into a problem of enlargement of filtrations. However, in our
problem Z is fixed in advance and we want to obtain Y as a function of Z, given V , so we look in fact for
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strong solutions of (5.1), whereas the results on enlargement of filtrations provide weak solutions. Then we
can call upon the Yamada-Watanabe’s theorem, when Z is Gaussian, to obtain strong solutions from weak
solutions. See, for instance, Theorem 1.5.4.4. in Jeanblanc et al. (2009).

The following various examples correspond to different models, which are all extensions of the Kyle-Back
model and where the results about enlargement of filtrations can be applied. We will not enter, however,
into the details on the derivation of a strong solution in the corresponding stochastic differential equations
appearing in equilibrium.
Example 5.1. (Aase et al. 2012a) Assume that τ = 1 and suppose that Z is given by

Zt =

∫ t

0

σsdWs

where σ is deterministic. In equilibrium, if the strategy of the insider is optimal V1 = H(1, Y1). Since H(1, ·)
can be chosen freely because it is the boundary condition of equation (3.15) and if V1 has a continuous
cumulative distribution function, we can assume without loss of generality that Y1 ≡N(0,

∫ 1

0
σ2
sds). It is

assumed that V1 (and consequently Y1) is independent of Z. Then by Jeulin (1980), page 51,

Yt = Zt +

∫ t

0

Y1 − Ys∫ 1

s
σ2
udu

σ2
sds,

has the same law as Z. Then

Xt =

∫ t

0

Y1 − Ys∫ 1

s
σ2
udu

σ2
sds

is the optimal strategy. As a particular case we find the study of Back (1992) where σ2
s ≡ σ2.

Example 5.2. (Campi & Çetin 2007) If we want both the total aggregate demand process Y to be a Brownian
motion that reaches the value −1 for the first time at time τ̄ , and the aggregate demand of the liquidity
traders Z to be also a Brownian motion, then by Example 3 in Jeulin and Yor (1985), page 306, we can take
the process Y to be

Yt = Zt +

∫ t

0

(
1

1 + Ys
− 1 + Ys

τ̄ − s

)
1[0,τ̄ ](s)ds.

So, in this case, we can refer to our framework by taking ηt ≡ τ̄ , Vt ≡ 1{τ̄>1} and the release time τ = τ̄ ∧ 1,
which is known to the insider at t = 0.
Example 5.3. Another interesting example is that of Campi et al. (2013). There, the authors consider a
defaultable stock. The default time is modeled as the first time that a Brownian motion, say B, hits the
barrier −1, as in the above Example 5.2. In this case the default time, τ̄ = inf{t ≥ 0, Bt = −1}, is not known
to the insider at t = 0, but it is a stopping time for every trader. Instead, the insider observes the process(
Br(t)

)
where r(t) is a deterministic, increasing function with r(t) > t for t ∈ (0, 1), r(0) = 0, and r(1) = 1.

This circumstance allows the insider to know in advance the default time. The horizon of the market is
t = 1. The authors also consider a payoff of the kind f(B1) in case of no default. Note that τ̄ = r(δ), where
δ = inf{0 ≤ t ≤ 1, Br(t) = −1} and δ = ∞ if the previous set is empty and then τ̄ > 1. Then, setting
this model in our framework, we have that the release time is τ = r(δ ∧ 1), the signal is ηt = Br(t) and the
fundamental value is

Vt = E(f(B1)1{δ>τ}|Br(t)).
Moreover the aggregate demand of noise traders Z follows a Brownian motion, sayW , so Z = W. In this case
τ is a predictable stopping time, so the price pressure λ is constant and the optimal strategy moves prices to
the fundamental one. To find the explicit form of an equilibrium strategy is not straightforward. However,
if δ ≤ s ≤ τ̄ (notice that then τ̄ = τ ≤ 1) an equilibrium strategy is obtained from a strong solution of

Ys = Ws +

∫ s

0

(
1

1 + Yu
− 1 + Yu

τ̄ − u

)
du,

as we deduce from Example 5.2 above. The difficult part is to see what happens for s < δ. This requires a
quite involved use of enlargement of filtrations and filtering techniques. See Campi et al. (2013b) for the
details.
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Another way of finding the equilibrium strategy is to consider first the rationality of prices and then to enter
in a filtering problem. This approach follows the following point of view: market makers observe Y with
dynamics

dYt = dZt + θ(Vs, Ys, 0 ≤ s ≤ t)dt,

while V is not observed. Then, the dynamics of mt := E(Vt|Ft) can be obtained in certain cases from the
filtering theory, see for instance Theorem 12.1 in Liptser and Shiryaev (1978). Now we can try to deduce
θ(Vs, Ys, 0 ≤ s ≤ t) from the equilibrium condition: Pt = mt.

In the following example we use the filtering approach to find the equilibrium strategy.
Example 5.4. (Caldentey & Stacchetti 2010) The context is as follows. The release time τ ∼ exp(µ) inde-
pendent of (V, P, Z) and

dVt = σv(t)dB
v
t , V0 ∼ N(P0,Σ0)

dZt = σz(t)dB
z
t , Z0 = 0,

where Bv and Bz are independent Brownian motions, independent of V0 as well, and σv(t) and σz(t) are
deterministic functions. If we look for strategies of the form

dXt = β(t)(Vt − Pt)dt,

with β(t) deterministic, we have that

dYt = β(t)(Vt − Pt)dt+ σz(t)dB
z
t .

Let mt := E(Vt|FYt ). By standard filtering results (see for instance Theorem 12.1 in Lipster and Shiryayev
(2001)) we have

dmt =
Σtβ(t)

σ2
z(t)

(dYt − β(t)(mt − Pt)dt),
d

dt
Σt = σ2

v(t)− (Σtβ(t))2

σ2
z(t)

,

where Σt is the filtering error. Now, since Pt = mt we have

Pt = P0 +

∫ t

0

λ(t)dYt

with λ(t) := Σtβ(t)
σ2
z(t) . Then

Σt = Σ0 +

∫ t

0

σ2
v(s)ds−

∫ t

0

σ2
z(s)λ2(s)ds, β(t) =

λ(t)σ2
z(t)

Σt
.

Note that in particular we obtain that

Yt = Zt +

∫ t

0

λ(s)σ2
z(s)

(
Vs −

∫ s
0
λ(u)dYu

)
Σs

ds,

is the canonical decomposition of the martingale Y in the filtration generated by (Z, V ). Now if we assume
σ2
z(t) = σ2

z , independent of t, and we take into account that in the equilibrium λ(t) = λ0e
−µt, we have that

Σt = Σ0 +

∫ t

0

σ2
v(s)ds− σ2

z

λ2
0

2µ
(1− e−2µt), β(t) =

σ2
zλ0e

−µt

Σt
.

However λ0 is not determined. We need an additional condition to fix λ0. According to Theorem 4.2 we have

lim
t→∞

Σt = 0.

In such a case

0 = Σ0 +

∫ ∞
0

σ2
v(s)ds− σ2

z

λ2
0

2µ
,
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and

λ0 =

√
2µ(Σ0 +

∫∞
0
σ2
v(s)ds)

σ2
z

.

Note that if σ2
v(t) = σ2

v there is no solution!

Example 5.5. (Caldentey & Stacchetti 2010, continued) Hereafter we can discuss other types of strategies X
in the same context of Example 5.4. For instance we can consider strategies involving a time T representing
the time when the insider releases all the information to the market. With this kind of strategies, according
with Proposition 4.2, the time T is such that the filtering error is

Σt = 0, for all t ≥ T.

Then Pt = Vt for t ≥ T . But this implies, for σ2
v(t) = σ2

v ,

0 = Σ0 + σ2
vT − σ2

z

λ2
0

2µ
(1− e−2µT )

= Σ0 + σ2
vT − σ2

z

λ2
T

2µ
(e2µT − 1).

Now if we assume a smooth transition from the absolutely continuous strategy to the unbounded variation
one, that is Σ̇t = 0, for all t ≥ T , then σ2

v − σ2
zλ

2(t) = 0 and λ(t) = λT = σv
σz

for all t ≥ T . Finally

dPt = λ(t)dYt = λ(t)dXt + λ(t)dZt = dVt, t ≥ T

so
dXt =

σz
σv

dVt − dZt,

and T is the solution of

Σ0 + σ2
vT =

σ2
v

2µ
(e2µT − 1).

This is exactly what Caldentey & Stacchetti (2010) obtain. It is important to remark that the authors obtain
a limit of optimal strategies when passing from the discrete time version of the model to the continuous one.
This limit strategy is such that there is an endogenously determined time T such that, if t ≤ T , then the
limit strategy is absolutely continuous with respect to the Lebesgue measure and, if t > T , the strategy is
not of bounded variation. In this case an insider’s optimal strategy, between times T and τ , would yield to
giving out the full information to the market by making the market prices match the fundamental value.
The authors claim that this limit strategy is not optimal for the continuous time model and that we need to
consider the discrete time model to realize about its existence. With respect to this point we remark that
this limit strategy can be obtained as a limit of strategies for the continuous time model when we restrict
the class of strategies to the set of those absolutely continuous and then we maximize the wealth. In fact, if
we have a sequence of strategies

(
X(n)

)
n≥1

, their corresponding wealth is given by

W (n)
τ = X(n)

τ V (n)
τ −

∫ τ

0

P
(n)
t− dX

(n)
t − [P (n), X(n)]τ .

Then, if we assume that (X(n), P (n), V (n))
u.c.p→
n→∞

(X,P, V ) we obtain that

X(n)
τ V (n)

τ −
∫ τ

0

P
(n)
t− dX

(n)
t

u.c.p→
n→∞

XτVτ −
∫ τ

0

Pt−dXt

but, in general,
[P (n), X(n)]τ 9 [P,X]τ .
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For instance, if X(n) is a bounded variation process, then X is not necessarily a bounded variation one.
Then the gain for this limit of strategies after T, on the set {τ > T}, is given by

VτXτ − VTXT −
∫ τ

T

Pt−dXt =

∫ τ

T

Xt−dVt +

∫ τ

T

Vt−dXt +

∫ τ

T

d[V,X]t −
∫ τ

T

Pt−dXt

=

∫ τ

T

(Vt− − Pt−) dXt +

∫ τ

T

d[V,X]t +

∫ τ

T

Xt−dVt.

Now if we take the conditional expectation, last term of the right-hand side cancels and we obtain that

E
(
VτXτ − VTXT −

∫ τ

T

Pt−dXt

∣∣∣∣HT) = E
(∫ τ

T

(Vt− − Pt−) dXt +

∫ τ

T

d[V,X]t

∣∣∣∣HT) .
Finally, since Vt− = Pt− , t > T for the limit strategy, in the conditions of Example 4.1, we obtain that there
is a profit after T given by

E
(∫ ∞

T

e
−µ(t−T )

d[V,X]t

∣∣∣∣HT) = σzσv

∫ ∞
T

e
−µ(t−T )

dt =
σzσv
µ

> 0.

Now we can justify the condition Σ̇T = 0. The expected wealth for the insider with this kind of strategies
is given by

J(X) = E

(∫ T∧τ

0

(Vt − Pt)θtdt

)
+ E

(∫ τ

T∧τ
d[V,X]t

)
= E

(∫ T∧τ

0

βt(Vt − Pt)2dt

)
+ E

(∫ τ

T∧τ
d[V,X]t

)

= E

(∫ T

0

1[0,τ ](t)βt(Vt − Pt)2dt

)
+ E

(∫ ∞
T

1[0,τ ](t)d[V,X]t

)
=

∫ T

0

P(τ > t)βtΣtdt+

∫ ∞
T

P(τ > t)
σ2
v

λt
dt

=

∫ T

0

e
−µt

βtΣtdt+ σ2
v

∫ ∞
T

e
−µt

λt
dt = σ2

z

∫ T

0

e
−µt

λtdt+ σ2
v

∫ ∞
T

e
−µt

λt
dt.

Then if we impose that T is optimal, we have the condition

σ2
ze

−µT
λT − σ2

v

e
−µT

λT
= 0,

that is
λT =

σv
σz
,

and this is equivalent to Σ̇T = 0. Note that other equilibria are possible by taking λt 6= λT when t > T.

Example 5.6. The previous example can be modified in a more realistic way by assuming that

Vt = V0 exp

{∫ t

0

σv(s)dB
v
s −

1

2

∫ t

0

σ2
v(s)ds

}
, log V0 = N(logP0 −

1

2
Σ0,Σ0).

Then we look for strategies of the form

dXt = β(t)

(
log Vt −

(
logPt −

1

2
Σt

))
dt,

with β(t) deterministic, and where Σt is the filtering error when we try to predict log Vt from Yt,

dYt = β(t)

(
log Vt −

(
logPt −

1

2
Σt

))
dt+ σz(t)dB

z
t ,

Then, since

d log Vt = σv(t)dB
v
t −

1

2
σ2
v(t)dt,
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if we mt := E(log Vt|FYt ), by the filtering results (see for instance Theorem 12.1 Lipster & Shiryayev 2001)
we have

dmt = −1

2
σ2
v(t)dt+

Σtβ(t)

σ2
z(t)

(
dYt − β(t)

(
mt −

(
logPt −

1

2
Σt

))
dt

)
,

d

dt
Σt = σ2

v(t)− (Σtβ(t))2

σ2
z(t)

.

Now, since

logPt = logE(Vt|FYt ) = mt +
1

2
Σt,

we have that

d logPt =
Σtβ(t)

σ2
z(t)

dYt −
1

2
σ2
v(t)dt+

1

2

(
σ2
v(t)− (Σtβ(t))2

σ2
z(t)

)
dt

=
Σtβ(t)

σ2
z(t)

dYt −
(Σtβ(t))2

σ2
z(t)

dt

Pt = P0 exp

(∫ t

0

λ(s)dYs −
1

2

∫ t

0

λ2(s)σ2
z(s)ds

)
with λ(t) := Σtβ(t)

σ2
z(t) . Then

Pt = H

(
t,

∫ t

0

λ(s)dYs

)
,

with

H(t, x) = P0 exp

{
x− 1

2

∫ t

0

λ2(s)σ2
z(s)ds

}
and satisfies (4.9) with σ = σz. Now, if we take λ(t) = λ0e

−µt we have that

Σt = Σ0 +

∫ t

0

σ2
v(s)ds− λ2

0

∫ t

0

σ2
z(s)e−2µsds, β(t) =

σ2
zλ0e

−µt

Σt
.

and according to Theorem 4.1 if we are in a equilibrium

lim
t→∞

Σt = 0.

In such a case

λ0 =

√
Σ0 +

∫∞
0
σ2
v(s)ds∫∞

0
σ2
z(s)e−2µsds

.

A Appendix

Proof. (Theorem 4.1) Assume (i)− (iii) hold true. We show that (H,λ,X) is an equilibrium. Define

ςt :=

∫ t

0

λ(s)σ(s)dBs.

where B is a Brownian motion independent of τ . First if H (t, y) is a solution of (4.9)

H (t, ςt) = H(0, 0) +

∫ t

0

∂2H(s, ςs)λ(s)σ(s)dBs

then, since
∫ T

0
E
(

(∂2H(s, ςs))
2
)
λ2(s)σ2(s)ds < ∞, (H (t, ςt))t≥0 is a martingale (w.r.t. its own filtration).

Then for T ∈ [0,∞] and t < T

H (t, y) = E (H (T, ςT )| ςt = y) = E (H (T, y + ςT − ςt))
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(This is well defined by condition
∫ T

0
E
(

(∂2H(s, ςs))
2
)
λ2(s)σ2(s)ds < ∞, limT̄↑T H

(
T̄ , ςT̄

)
= H (T, ςT ) in

L2). Set now,

i(T, y, v) :=

∫ H−1(T,·)(v)

y

v −H(T, x)

c
dx

with c = λ(t)
P(τ>t)and H

−1(T, ·)(v) := limT̄↑T H
−1(T̄ , ·)(v). Define

I(t, y, v) := E (i (T, y + ςT − ςt, v)) , t ≥ 0,

we have that

∂2I(t, y, v) = E (∂2i(T, y + ςT − ςt, v))

= E
(
−v −H(T, y + ςT − ςt)

c

)
= −v −H(t, y)

c
. (A.1)

We can take the derivative under the integral sign because H(T, ·) is monotone and E (H(T, ςT )) <∞. Then
I(t, y, v) is well defined and

I(t, y, v) = E (i (T, y + ςT − ςt, v))

= E ( i (T, ςT , v)| ςt = y) ,

and (I (t, ςt, v))t≥0 is a martingale (w.r.t. its own filtration), so

∂1I (t, ςt, v) +
1

2
∂22I (t, ςt, v)λ(t)2σ2(t) = 0. (A.2)

Now, consider any admissible strategy X, by using Itô’s formula, we have

I(T, ξT , VT ) = I(0, 0, V0) +

∫ T

0

∂3I(t, ξt, Vt)dVt +

∫ T

0

∂1I(t, ξt, Vt)dt

+

∫ T

0

∂2I(t, ξt−, Vt)dξt +
1

2

∫ T

0

∂22I(t, ξt, Vt)d[ξc, ξc]t

+

∫ T

0

∂23I(t, ξt, Vt)d[ξc, V ]t +
1

2

∫ T

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

+
∑

0≤t<T

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)∆ξt) .

By construction, ξ0 = 0, dξt = λ(t)dYt. Now we have that

d[ξc, ξc]t = λ(t)2d[Xc, Xc]t + 2λ(t)2d[Xc, Z]t + λ(t)2σ2
Z(t)dt.

Also by (A.1) and the fact that V and Z are independent,

∂23I(t, ξt, Vt)d[ξc, V ]t = −1

c
d[ξc, V ]t = −P(τ > t)d[X,V ]t,

then using (A.1) and (A.2), and the fact that Z has not jumps, we get

I(T, ξT , VT ) = I(0, 0, V0) +

∫ T

0

∂3I(t, ξt, Vt)dVt +

∫ T

0

P(τ > t)(Pt− − Vt)(dXt + dZt)

+
1

2

∫ T

0

∂22I(t, ξt, Vt)λ(t)2d[Xc, Xc]t −
∫ T

0

P(τ > t)d[X,V ]t +
1

2

∫ τ

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

+

∫ τ

0

∂22I(t, ξt, Vt)λ(t)2d[Xc, Z]t +
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ(t)2
(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t≤τ

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)λ(t)∆Xt) .

27



Subtracting
∫ T

0
P(τ > t)d[P,X]t from both sides and rearranging the terms, we obtain∫ T

0

P(τ > t)(Vt − Pt−)dXt −
∫ T

0

P(τ > t)d[P,X]t +

∫ T

0

P(τ > t)d[X,V ]t

−

(
I(0, 0, V0) +

1

2

∫ T

0

∂33I(t, ξt, Vt)σ
2
V (t)dt

)

= −I(T, ξT , VT ) +

∫ T

0

∂3I(t, ξt−, Vt)dVt +

∫ T

0

P(τ > t)(Pt − Vt)dZt

+
1

2

∫ T

0

∂22I(t, ξt, Vt)λ(t)2d[Xc, Xc]t +

∫ T

0

∂22I(t, ξt, Vt)λ(t)2d[Xc, Z]t

+
1

2

∫ T

0

∂22I(t, ξt, Vt)λ(t)2
(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t<T

(∆I(t, ξt, Vt)− ∂2I(t, ξt−, Vt)λ(t)∆Xt)−
∫ T

0

P(τ > t)d[P,X]t. (A.3)

We have that
P(τ > t)d[P,X]t = P(τ > t)d[P c, Xc]t + P(τ > t)∆Pt∆Xt.

Then Itô’s formula for H shows that the continuous local martingale part of P is
∫
∂2H(t, ξt)dξ

c
t , so by using

(A.1), we obtain

P(τ > t)d[P c, Xc]t =
λ(t)

c
∂2H(t, ξt)d [ξc, Xc]t

= ∂22I(t, ξt, Vt)λ(t)2d [Xc, Xc]t +

∫ τ

0

∂22I(t, ξt, Vt)λ(t)2d [Xc, Z]t ,

and

λ(t)∂2I(t, ξt−, Vt)∆Xt + P(τ > t)∆Pt∆Xt =
λ(t)

c
(Pt− − Vt)∆Xt +

λ(t)

c
∆Pt∆Xt

=
λ(t)

c
(Pt − Vt)∆Xt = λ(t)∂2I(t, ξt, Vt)∆Xt.

Substituting the above relationships in the right-hand side of the equation (A.3), and since we are in the
class C, it becomes

− I(T, ξT , VT ) +

∫ T

0

∂3I(t, ξt, Vt)dVt +

∫ T

0

P(τ > t)(Pt − Vt)dZt −
1

2

∫ T

0

∂22I(t, ξt, Vt)λ(t)2d[Xc, Xc]t

+
1

2

∫ τ

0

∂22I(t, ξt, Vt)λ(t)2
(
σ2
Z(t)− σ2(t)

)
dt

+
∑

0≤t≤τ

(I(t, ξt, Vt)− I(t, ξt−, Vt)− λ(t)∂2I(t, ξt, Vt)∆Xt)

= −I(T, ξT , VT ) +

∫ T

0

∂3I(t, ξt, Vt)dVt +

∫ T

0

P(τ > t)(Pt − Vt)dZt

+
∑

0≤t<T

(I(t, ξt, Vt)− I(t, ξt−, Vt)− λ(t)∂2I(t, ξt, Vt)∆Xt) .

Now, observe that ∂33I(t, y, v) does not depend on y and so ∂33I(t, ξt, Vt) does not depend of ξ. Then
I(0, 0, V0) + 1

2

∫ T
0
∂33I(t, ξt, Vt)σ

2
V (t)dt has values that does not depend on the strategy. Then on the left-

hand side of (A.3) only the term∫ T

0

P(τ > t)(Vt − Pt−)dXt −
∫ T

0

P(τ > t)d[P,X]t +

∫ T

0

P(τ > t)d[X,V ]t
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depends on the strategy and its expectation is just the value of (2.11). Then we show that, taken the
expectation, the right-hand side of (A.3) achieves its maximum value at X. The result follows from the
following points.

1. (ii) guarantees that ∆Xt = 0

2. The processes
∫ ·

0
∂3I(t, ξt, Vt)dVt and

∫ ·
0
(Pt−Vt)dZt are H-martingales by (A5) and (A2) in Definition

2.2, hence they have null expectation

3. We know that c∂22I(T̄ , ξT̄ , VT̄ ) = ∂2H(T̄ , ξT̄ ) > 0 and that c∂2I(T̄ , ξT̄ , VT̄ ) = −VT̄ + H(T̄ , ξT̄ ) so by
(i) we have a maximum value of −I(T, ξT , VT ) for our strategy.

Assumption (iii) and (i) together with condition (A2) in Definition 2.2 guarantee the rationality of prices,
given X. In fact from (4.9)

dPt = λ(t)∂2H(t, ξt)dYt +
1

2
λ(t)2

(
σ2
Y (t)− σ2(t)

)
∂22H(t, ξt)dt

and by (ii)

dPt = λ(t)∂2H(t, ξt)dYt + λ(t)2
(
σ2
M (t) + σM,Z(t)

)
∂22H(t, ξt)dt

= λ(t)∂2H(t, ξt)

(
dYt + λ(t)

(
σ2
M (t) + σM,Z(t)

) ∂22H(t, ξt)

∂2H(t, ξt)
dt

)
so, P is an F-local martingale and, by condition (A2) in Definition 2.2, it is an F-martingale. Then from (i),
and on the set {t ≤ τ} we have

E (H(T, ξT )| Ft) = E (VT | Ft) = E (E (VT |Ht)| Ft) = E (Vt| Ft) .
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