1	This paper has now been published in Global Change Biology.
2	Please cite as:
3	
4	Lefevre, S., McKenzie, D. J. and Nilsson, G. E. (2018). In modelling effects of global warming,
5	invalid assumptions lead to unrealistic projections. <i>Global Change Biology</i> 24, 553-556.
6	
7	
8 9	In modelling effects of global warming, invalid assumptions lead to unrealistic projections
10	
11	Running head: GOLT projects unrealistic fish shrinkage
12	
13	Sjannie Lefevre ¹ *, David J. McKenzie ² and Göran E. Nilsson ¹
14	
15 16	¹ Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway
17 18	² Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Montpellier, France
19	
20	*Corresponding author:
21	Sjannie Lefevre
22	Department of Biosciences, University of Oslo
23	Blindernveien 31, Postbox 1066 Blindern
24	0316 Oslo, Norway
25	Telephone: +4748364745
26	Email: sjannie.lefevre@imbv.uio.no

- 28 Keywords: *scaling; fish; warming; climate change; growth; metabolism; oxygen uptake;*
- *modelling*

31 Paper type: Letter to the Editor

In a recent Opinion paper, Pauly and Cheung (2017) argue against the criticisms we raised
(Lefevre *et al.*, 2017) about the Gill-Oxygen Limitation Theory (GOLT) and its application in
modelling. Rather than providing point-by-point responses to their arguments we highlight
some key issues that, in our opinion, disqualify GOLT as a mechanistic basis for model
projections about the future size of fishes.

Pauly and Cheung (2017) contend that if gill surface area scaled to body mass with an 37 exponent larger than 2/3, this would cause gill growth to outstrip body growth, such that 38 39 fishes 'run out of space' in their head, precluding any further gill or body growth. This could only be the case, however, if it is assumed that gill surface area grows by increasing all length 40 measures equally (Fig. 1a, Supplementary Information Table S1). This is entirely disproved 41 by existing data, perfectly illustrated by the carp, where gill mass and surface areas have been 42 measured over a wide range of body masses (Oikawa & Itazawa 1984; 1985). Carp gill 43 surface area scales to body mass with an exponent of 0.79 (Fig. 1c,d), while gill volume 44 scales with an exponent of 0.84 (Fig. 1e). That is, the gills of carp occupy a decreasing 45 proportion of space in the head as the body grows (Fig. 1f), despite the fact that their surface 46 area grows with an exponent larger than 2/3. If carp needed a larger gill surface area, there 47 48 would be no geometrical constraint hindering it - new lamellae in a growing gill are not added where oxygen depleted water flows (Fig. 1b). Pauly and Cheung seem to suggest that when 49 50 the gill surface area grows, it will eventually deplete the water of oxygen and more surface area would be useless. However, an increase in body and gill size will of course coincide with 51 a proportional increase in water and oxygen movement, so a doubling of surface area 52 effectively doubles capacity for oxygen uptake. This is aided by the counter-current principle 53 of gill blood flow, where blood leaving the gill lamellae meets inflowing water with the 54 highest oxygen content (e.g. Nilsson, 2010). We know of no experimental evidence showing 55 that large gills and large fishes are less effective at oxygenating blood. That is, a fundamental 56

pillar of the GOLT - that geometrical constraints hinder the gills and their surface area from
growing at the same pace as the fish body - is not supported by existing data and knowledge.

Pauly and Cheung (2017) have made new calculations where they use mass exponents for gill 59 surface area (d_G) from 0.6 in 'small' fish to 0.9 in 'large' fish, rather than the 0.7 they 60 61 previously used (Cheung et al., 2011; 2013). They find that allowing gill area to grow faster with body mass will cause fishes to be even smaller in a warmer future (Fig. 2a,b). This goes 62 against the basic assumption of GOLT, that growth is oxygen-limited, and also makes little 63 64 sense physiologically. This unrealistic outcome is, in fact, simply a result of the current maximum weight (W_{∞}) being one of few real-world parameters in the model (the others being 65 the species-specific growth parameter K and temperature). The value of W_{∞} dictates the ratio 66 between the constants, H for anabolism and k for catabolism, in the von Bertalanffy equation 67 $(dW/dt = H \cdot W^{dG} - k \cdot W^{b} \leftrightarrow H/k = W_{\infty}^{b}/W_{\infty}^{dG}$; see Supplementary Information p. 3 for 68 derivation). Thus in the original paper (Cheung et al., 2013), with W_{∞} in g, the H/k ratio 69 resolved as 1.66 in the smallest species to 101.6 in the largest species, although there is no 70 biological foundation for such a spread in the ratio. If we test their model with more realistic 71 72 values (Fig. 2c-d), by setting almost equal scaling exponents for anabolism and catabolism, 73 the predicted effect of temperature becomes totally unrealistic, suggesting a 98-99% drop in fish body mass with a 1°C increase in temperature, while a 2°C increase will cause fishes to 74 75 be 100% smaller (Supplementary Information Table S2 and S3). If the exponents are set as equal, which based on scientific evidence is probably the case in real fishes, W_{∞} can never be 76 predicted from the GOLT (or von Bertalanffy) model, as anabolism will always be larger than 77 catabolism (Fig. 2e). Thus, with real-world data the model breaks down and cannot determine 78 W_{∞} of fishes now or in any future. The most parsimonious explanation for these unrealistic 79 predictions is that the current observed W_{∞} is in fact not determined by limitations in oxygen 80 supply; hence it cannot reliably be used to predict the future W_{∞} using the von Bertalanffy 81

equation. There is simply no scientific evidence or known mechanism to support the claim by
Cheung and Pauly (2017) that "*fish with a higher d_G tend to have a lower ratio of the anabolic to catabolic rate constant, suggesting that the fish would spend relatively more energy for catabolic activities than anabolic activities*". This claim is based on the fact that,
when using the von Bertalanffy equation, the H/k ratio is forced to fit a certain observed
maximum size.

Pauly and Cheung (2017) reaffirm their belief that the oxygen demand of maintenance 88 89 metabolism is dictated by denaturation of proteins and that it is therefore constant relative to body mass because it 'occurs in all cells'. We must stress that this idea is not supported by 90 scientific evidence. As we explained (Lefevre et al., 2017), all evidence indicates that 91 maintenance oxygen demand decreases with mass (b-1 = -0.13) in essentially the same 92 manner as maximum capacity for oxygen supply (d-1 = -0.12). When it comes to the 93 exponent b (for maintenance metabolism or 'catabolism'), von Bertalanffy (1957) contended 94 that using b < 1 would have little impact on the model, while Pauly and Cheung (2017) 95 suggest that "the shrinkage of body size under warming may be lower with b < 1". Our 96 97 calculations based on GOLT (Fig. 2d-f, Supplementary Information Table S2 and S3), however, indicates the opposite: reducing b and hence bringing the exponents closer to each 98 other actually results in an exaggerated effect of even a very minor increase in temperature, 99 100 regardless of the value of the input parameters W_{∞} and K (Supplementary Information Table S2 and S3). 101

Finally, Cheung and Pauly (2017) dismiss the fact that the existence of extremely large
tropical fishes goes against GOLT, arguing that sunfish and large groupers are very sluggish.
They do not consider marlins, which are very large and anything but sluggish, and which
prefer warm tropical surface waters (see Lefevre et al., 2017). Their comment about whale
sharks spending much time in the cold is also inaccurate; depth and temperature loggers

107 rev	veal that	whale	sharks	prefer	warm	water	and,	if they	dive	into	cold	waters,	they	y
---------	-----------	-------	--------	--------	------	-------	------	---------	------	------	------	---------	------	---

- subsequently remain near the surface to warm up (Thums *et al.*, 2013).
- 109 We urge our colleagues to accept that the GOLT is not a valid explanation for why some
- 110 fishes may become smaller as the world warms. We must develop new models, based upon
- sound physiological principles, to project how such a phenomenon may affect fish
- 112 populations in the future.

113 Supplementary Information

- 114 Supplementary Information is available online at
- 115 http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1365-2486.

116 **Conflicts of Interest**

117 The authors declare that no conflict of interests exists.

118 **References**

- 119 Cheung WWL, Dunne J, Sarmiento JL, Pauly D (2011) Integrating ecophysiology and
- 120 plankton dynamics into projected maximum fisheries catch potential under climate
- 121 change in the Northeast Atlantic. ICES Journal of Marine Science: Journal du Conseil,122 68, 1008-1018.
- 123 Cheung WWL, Sarmiento JL, Dunne J et al. (2013) Shrinking of fishes exacerbates impacts
- 124 of global ocean changes on marine ecosystems. Nature Climate Change, 3, 254-258.
- 125 Cheung WWL, Pauly D (2017) Projecting the shrinking fish body size under ocean warming:
- 126 tuna as an illustrative example (http://www.nereusprogram.org/wp-
- 127 content/uploads/2017/08/Short-notes-on-body-size-calculation.pdf).

129	under climate change need to be based on valid physiological mechanisms. Global
130	change biology, 23 , 3449-3459.
131	Oikawa S, Itazawa Y (1984) Relative Growth of Organs and Parts of the Carp, Cyprinus
132	carpio, with Special Reference to the Metabolism-Size Relationship. Copeia, 1984,
133	800-803.
134	Oikawa S, Itazawa Y (1985) Gill and Body Surface Areas of the Carp in relation to Body
135	Mass, With Special Reference To The Metabolism-Size Relationship. Journal of
136	Experimental Biology, 117, 14.
137	Pauly D, Cheung WWL (2017) Sound physiological knowledge and principles in modeling
138	shrinking of fishes under climate change. Global Change Biology.
139	Nilsson GE (2010) Respiratory Physiology of Vertebrates: Life With and Without Oxygen.
140	Cambridge University Press.
141	Thums M, Meekan M, Stevens J, Wilson S, Polovina J (2013) Evidence for behavioural
142	thermoregulation by the world's largest fish. Journal of the Royal Society Interface, 10,
143	20120477.
144	Von Bertalanffy L (1957) Quantitative laws in metabolism and growth. Quarterly review of
145	Biology, 217-231.

Lefevre S, Mckenzie DJ, Nilsson GE (2017) Models projecting the fate of fish populations

Fig. 1: Isometric vs 'hyper-allometric' growth of gill surface area in relation to body 146 mass. In panel (a) it is hypothetically assumed that all dimensions of the gill grows 147 isometrically, and therefore all one-dimensional measures (lengths, widths, heights) increase 148 with an exponent of 1/3, hence the number of lamellae per length of filament (as well as 149 number of filaments per length of gill arch) will have to decrease with 1/3, and the surface 150 area of each lamellae can increase with only 2/3. Panel (b) shows the situation supported by 151 152 existing morphometric evidence (Lefevre et al., 2017), where the thickness of the lamellae, 153 and therefore distance between, and thus the number of lamellae per length of filament, can remain constant regardless of body mass, hence the total number of lamellae can be increased 154 155 when the fish grows. Note also that other 'hyper-allometric' scaling exponents [defined by 156 Pauly and Cheung (2017) as anywhere between 2/3 and 1] can be obtained by changing other parameters in addition to the lamellae number and thickness, such as the length of the 157 filament and height and length of the lamellae – this is in fact how fish adjust their respiratory 158 surface area to their needs. The isometric growth of the gills in (a) leads to a scaling exponent 159 for the total gill surface area with body mass of 2/3, while the growth of the gills in (b) have a 160 scaling exponent for the surface area of 1 (c) or a constant gill surface area relative to body 161 162 mass (d). In both scenarios, however, the total gill volume (mass) will increase in direct 163 proportion to body mass (e) and thus occupy the same amount of space in relation to body mass (f). That is, 'hyper-allometric' growth of the gills does not cause them to take up more 164 and more relative space. A large body of evidence shows that gill surface area in fishes scales 165 166 in relation to body mass in direct proportion to their oxygen needs (basal and maximal), which scales with an exponent between 2/3 and 1 [average 0.86-0.87 (Lefevre et al., 2017)], 167 as here exemplified by the carp [data from Oikawa & Itazawa (1984; 1985)]. Further details 168 on the calculations are presented in Supplementary Information Table S1. 169

170

Fig. 2: Models for anabolism and catabolism in small-spotted catshark as a function of 171 body mass, revealing unrealistic consequences of GOLT-based models. The graphs show 172 weight-specific anabolism ($H \cdot W^{dG}/W$; solid lines) and catabolism ($k \cdot W^{b}/W$; dashed lines) at 173 current temperature (dark / black and blue) and current temperature +1°C (bright / purple and 174 orange), based on von Bertalanffy's equation ($dW/dT = H \cdot W^{dG} - k \cdot W^{b}$). In (a), anabolism and 175 catabolism have been calculated with the original exponents used by Cheung et al. (2013), d_G 176 = 0.7 and b = 1, respectively. In (b), anabolism and catabolism has been calculated with the 177 exponents now used by Pauly and Cheung (2017) for fish larger than 60cm, $d_G = 0.9$ and b =178 1, respectively. Similar to their new calculations for tuna, a 1°C increase in temperature leads 179 180 to a 35% reduction in maximum body mass (W_{∞}) of small-spotted catshark, as opposed to the 181 13% in (a). To obtain the same current W_{∞} when d_G increases from 0.7 to 0.9, H/k has to be reduced. In (c), d_G has been increased from 0.9 to 0.961 to reflect the actual measured scaling 182 exponent for gill surface area of small-spotted catshark [from Wegner, 2016 (Fish Physiology 183 Vol 34A, Chapter 3, pp. 101-151)], while b has been maintained at 1. A 1°C increase in 184 temperature now leads to a 65% reduction in W_{∞} , illustrating that the decreasing difference 185 between the exponents is exacerbating the effect of elevated temperature. In (d), the 186 exponents are even closer to each other, d_G being 0.96 and b being 0.97, which results in a 99% 187 188 reduction in W_∞ with just 1°C increase in temperature. Clearly an unrealistic outcome of the model, even more so since experimental evidence suggest that real world d_{G} and b are indeed 189 very close to each other (Lefevre et al., 2017). In (e) the exponents are equal, 0.96, in which 190 191 case anabolism and catabolism decrease at the same rate, and hence never becomes equal and growth never zero, as the two lines never cross. In this case W_∞ cannot be determined from 192 von Bertalanffy's equation [as $W_{\infty} = (H/k)^{1/(0.96-0.96)} = (H/k)^{1/0}$, which is not defined 193 mathematically]. Lastly, in (e) the exponent b has been set to 0.951 while d_G is kept at 0.961. 194 In this case anabolism decrease slightly slower than catabolism, and W_{∞} likewise cannot be 195

determined, because the two curves would never cross each other, unless catabolism is larger

than anabolism initially, which is not possible in a biological sense [even if it is

198 mathematically, as $W_{\infty} = (H/k)^{1/(0.95-0.96)} = (H/k)^{1/-0.01}$]. Calculations are based on the equations

- and values used in an explanatory note written by Cheung and Pauly
- 200 (http://www.nereusprogram.org/wp-content/uploads/2017/08/Short-notes-on-body-size-
- 201 calculation.pdf), except that rather than calculating k as $K/(b-d_G)$ we have calculated k from
- 202 the predicted H/k ratio, to maintain H and k at comparable levels between the scenarios,
- though it does not affect the predicted W_{∞} (see Supplementary Information Table S2 and S3
- 204 for details and additional examples).

	isometric scaling	hyper-allometric scaling	common carp (Cyprinus carpio)
Mb	Mb	Mb	Mb
Larch	M _b ^{0.33}	Mb ^{0.33}	Mb ^{0.33}
Warch	M _b ^{0.33}	Mb ^{0.33}	Mb ^{0.152}
$V_{arch} = L_{arch} \cdot W_{arch}^2$	$M_{b}^{(0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(0.33+0.152+0.152)} = M_{b}^{0.634}$
L _{fil}	Mb ^{0.33}	Mb ^{0.33}	Mb ^{0.508} *
T _{fil}	Mb ^{0.33}	Mb ^{0.33}	Mb ^{0.183}
W _{fil}	Mb ^{0.33}	Mb ^{0.33}	Mb ^{0.183}
n _{fil}	Mb ^{-0.33}	Mb ^{-0.33}	M _b ^{-0.33}
$V_{\text{fil}} = n_{\text{fil}} \cdot L_{\text{arch}} \cdot L_{\text{fil}} \cdot W_{\text{fil}} \cdot T_{\text{fil}}$	$M_{b}^{(-0.33+0.33+0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(-0.33+0.33+0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(-0.33+0.33+0.508+0.183+0.183)} = M_{b}^{0.874}$
L _{lam}	Mb ^{0.33}	Mb ^{0.33}	Mb ^{0.183} **
H _{lam}	M _b ^{0.33}	M _b ^{0.33}	M _b ^{0.183}
T _{lam}	M _b ^{0.33}	Mb ⁰	Mb ^{0.08}
N _{lam}	Mb ^{-0.33}	M _b ⁰	Mb ^{-0.08} *
$V_{\text{lam}} = n_{\text{fil}} \cdot L_{\text{arch}} \cdot n_{\text{lam}} \cdot L_{\text{fil}} \cdot L_{\text{lam}} \cdot H_{\text{lam}} \cdot T_{\text{lam}}$	$M_{b}^{(-0.33+0.33-0.33+0.33+0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(-0.33+0.33-0.0+0.33+0.33+0.33+0.0)} = M_{b}^{1}$	$M_{b}^{(-0.33+0.33-0.08+0.508+0.183+0.183+0.08)} = M_{b}^{0.874}$
$S_{gill} = n_{fil} \cdot L_{arch} \cdot n_{lam} \cdot L_{fil} \cdot L_{lam} \cdot H_{lam}$	$M_{b}^{(-0.33+0.33-0.33+0.33+0.33+0.33)} = M_{b}^{0.66}$	$M_{b}^{(-0.33+0.33-0.0+0.33+0.33+0.33)} = M_{b}^{1}$	$M_{b}^{(-0.33+0.33-0.08+0.508+0.183+0.183)} = M_{b}^{0.794*}$
$V_{gill} = V_{arch} + V_{fil} + V_{lam}$	$M_{b}^{1} + M_{b}^{1} + M_{b}^{1} = 3M_{b}^{1}$	$M_b{}^1 + M_b{}^1 + M_b{}^1 = 3M_b{}^1$	Mb ^{0.844} ***

Table S1: Scaling of gill morphology parameters under assumptions of isometry, 'hyper-allometry', or the actual values for common carp, used in Fig. 1.

 M_{b} , body mass. L, lengths. W, widths. V, total volumes. n, numbers per length. H, heights. T, thicknesses. S, surface areas. Note that the only difference (shaded areas) between isometric scaling and hyper-allometric scaling is that the thickness of the lamella and hence the number of lamellae per length of filament is kept constant under the latter. *Scaling exponents actually measured by Oikawa & Itazawa (1985). **Scaling exponent for the surface area was measured to be 0.366, and given that the surface area is calculated as $L_{lam} \cdot H_{lam}$ the scaling exponents for each measure would have to be 0.183, assuming symmetrical growth. The scaling exponent of L_{lam} is also reflected in the scaling exponent for W_{fil} and T_{fil} , as there is no reason to think that the filament would get wider or thicker than the lamellae as the fish grows bigger. Lastly, the fact that L_{fil} grows with an exponent of 0.508 (0.508-0.33=0.178 more than expected) affects the scaling exponent for W_{arch} , which has to be reduced accordingly (0.33-0.178=0.152) to make room for the filaments. ***This is the scaling exponent measured by Oikawa & Itazawa (1984).

Table S2: Effect of varying scaling exponents (d_G and b) on predicted maximum weight (W_{∞}) of a few different fish when k is set to 1.

			-	•	-					-									
Species	L∞ (cm)ª	aª	b'ª	W_∞ (kg)	Tnow (K)	b	dG	ΔT	H/k	Н	h	g	H_1	k1	H ₂	k2	$W_{\infty 1}$	W∞2	ΔW_∞
yellowfin tuna	192	0.0216	2.98	139.2	299.15 ^b	1	0.67	1	5.18	5.18	1.8E+07	4.1E+11	5.18	1.00	5.45	1.09	139.2	123.8	-11.0
(Thunnus albacares)							0.90	1	1.64	1.64	5.6E+06	4.1E+11	1.64	1.00	1.72	1.09	139.2	94.3	-32.3
								2	1.64	1.64	5.6E+06	4.1E+11	1.64	1.00	1.81	1.19	139.2	64.0	-54.0
							0.95	1	1.28	1.28	4.4E+06	4.1E+11	1.28	1.00	1.35	1.09	139.2	63.8	-54.1
								2	1.28	1.28	4.4E+06	4.1E+11	1.28	1.00	1.41	1.19	139.2	29.4	-78.9
							0.99	1	1.05	1.05	3.6E+06	4.1E+11	1.05	1.00	1.10	1.09	139.2	2.8	-98.0
						0.91	0.90	1	1.05	1.05	3.6E+06	4.1E+11	1.05	1.00	1.10	1.09	139.2	2.8	-98.0
								2	1.05	1.05	3.6E+06	4.1E+11	1.05	1.00	1.16	1.19	139.2	0.059	-99.96
small-spotted catshark	100	0.0016	3.2	4.019	287.15 ^c	1	0.67	1	1.59	1.59	1.0E+07	1.3E+12	1.59	1.00	1.68	1.10	4.019	3.540	-11.9
(Scyliorhinus canicula)							0.90	1	1.15	1.15	7.4E+06	1.3E+12	1.15	1.00	1.21	1.10	4.019	2.633	-34.5
								2	1.15	1.15	7.4E+06	1.3E+12	1.15	1.00	1.28	1.21	4.019	1.730	-57.0
							0.96 ^d	1	1.06	1.06	6.8E+06	1.3E+12	1.06	1.00	1.12	1.10	4.019	1.396	-65.3
								2	1.06	1.06	6.8E+06	1.3E+12	1.06	1.00	1.18	1.21	4.019	0.488	-87.8
							0.99	1	1.01	1.01	6.5E+06	1.3E+12	1.01	1.00	1.07	1.10	4.019	0.058	-98.5
						0.97	0.96	1	1.01	1.01	6.5E+06	1.3E+12	1.01	1.00	1.07	1.10	4.019	0.058	-98.5
								2	1.01	1.01	6.5E+06	1.3E+12	1.01	1.00	1.13	1.21	4.019	0.00088	-99.98
sandbar shark	266	0.0058	3.3	582.8	296.15 ^c	1	0.67	1	8.35	8.35	3.3E+07	5.4E+11	8.35	1.00	8.79	1.10	582.8	517.3	-11.2
(Carcharhinus plumbeus)							0.90	1	1.89	1.89	7.5E+06	5.4E+11	1.89	1.00	1.99	1.10	582.8	391.6	-32.8
							0.90	2	1.89	1.89	7.5E+06	5.4E+11	1.89	1.00	2.09	1.20	582.8	263.8	-54.7
							0.74 ^d	1	5.24	5.24	2.1E+07	5.4E+11	5.24	1.00	5.51	1.10	582.8	500.2	-14.2
							0.74	2	5.24	5.24	2.1E+07	5.4E+11	5.24	1.00	5.80	1.20	582.8	429.6	-26.3
							0.99	1	1.07	1.07	4.2E+06	5.4E+11	1.07	1.00	1.12	1.10	582.8	10.9	-98.1
						0.75	0.74	1	1.07	1.07	4.2E+06	5.4E+11	1.07	1.00	1.12	1.10	582.8	10.9	-98.1
							0.74	2	1.07	1.07	4.2E+06	5.4E+11	1.07	1.00	1.18	1.20	582.8	0.210	-99.96
sablefish	120	0.0058	3.1	16.2	281.15 ^c	1	0.67	1	2.53	2.53	2.3E+07	2.3E+12	2.53	1.00	2.68	1.11	16.2	14.2	-12.4
(Anoplopoma fimbria)							0.90	1	1.32	1.32	1.2E+07	2.3E+12	1.32	1.00	1.40	1.11	16.2	10.4	-35.7
							0.90	2	1.32	1.32	1.2E+07	2.3E+12	1.32	1.00	1.48	1.22	16.2	6.7	-58.5
							0.83 ^e	1	1.61	1.61	1.4E+07	2.3E+12	1.61	1.00	1.70	1.11	16.2	12.5	-22.9
							0.83	2	1.61	1.61	1.4E+07	2.3E+12	1.61	1.00	1.80	1.22	16.2	9.6	-40.4
							0.99	1	1.03	1.03	9.2E+06	2.3E+12	1.03	1.00	1.09	1.11	16.2	0.2	-98.8
						0.84	0.83	1	1.03	1.03	9.2E+06	2.3E+12	1.03	1.00	1.09	1.11	16.2	0.1962	-98.8
							0.83	2	1.03	1.03	9.2E+06	2.3E+12	1.03	1.00	1.15	1.22	16.2	0.0025	-99.98

 L_{∞} , maximum observed length. a, length-weight constant. b', length-weight exponent. W_{∞} , asymptotic (maximum) body mass. T_{now} , current average/preferred temperature. ΔT , temperature rise. d_{G} , oxygen supply/gill surface area scaling exponent. b, oxygen demand/maintenance metabolism scaling exponent. H/k, ratio between the constant for anabolism (H) and catabolism (k). h, constant in Arrhenius equation for anabolic. g, constant in Arrhenius equation for catabolic reaction. H₁ and H₂, coefficients for anabolism. k₁ and k₂, coefficients for catabolism. W_{∞_1} and W_{∞_2} , current and predicted W_{∞} . Note that W_{∞_1} and W_{∞} are identical (as they should be). ΔW_{∞} , predicted change in W_{∞} as a result of a ΔT change in temperature. ^aCheung et al. 2013 (supplementary material). ^bPauly and Cheung, 2017 (explanatory note). ^cBased on averages from Encyclopedia of Life. ^dWegner, 2016 (Fish Physiology Vol 34A, Chapter 3, pp. 101-151). ^eFriedman et al., 2012 (Limnology and Oceanography, 57, 1701-1710). See below for equations.

Asymptotic weight, W∞:	$W_{\infty} = a \cdot L_{\infty}^{b'}$ (Cheung and Pauly, 2017)
H/k derived from von Bertalanffy:	$dW/dt = H \cdot W^{dG} - k \cdot W^{b} \longleftrightarrow 0 = H \cdot W_{\infty}^{dG} - k \cdot W_{\infty}^{b} \longleftrightarrow H \cdot W_{\infty}^{dG} = k \cdot W_{\infty}^{b} \longleftrightarrow H/k = W_{\infty}^{b} / W_{\infty}^{dG} = W_{\infty}^{b-dG}$
Constant for anabolism, H:	$k = 1^* \rightarrow H = H/k \text{ and } H = W_{\infty}^{b-dG}$
Constant h:	H = $h \cdot e^{-j1/T}$, where j_1 is 4500 ^{**} (Pauly and Cheung, 2017, explanatory note) and T = T _{now}
	$H = h \cdot e^{-j 1/T} \longleftrightarrow h = H/e^{-j 1/T} \longleftrightarrow h = W_{\infty}^{b - dG}/e^{-j 1/T}$
Constant g:	g = k/e ^{-j2/T} where j_2 is 8000 ^{**} (Pauly and Cheung, 2017, explanatory note).
	$k = 1 \rightarrow g = 1/e^{-j2/T}$
Using T_{now} and $T_{now}+\Delta T$:	$H_1 = h \cdot e^{j1/T}$
	$H_2 = h \cdot e^{j1/T + \Delta T}$
	$k_1 = g \cdot e^{-j2/T}$ (in this case k_1 is just $k=1^*$)
	$k_2 = g \cdot e^{-j2/T + \Delta T}$
Current and predicted W_{∞} :	$H/k = W_{\infty}^{b-dG} \longleftrightarrow (H/k)^{1/(b-dG)} = (W_{\infty}^{b-dG})^{1/b-dG} \longleftrightarrow W_{\infty} = (H/k)^{1/(b-d_G)}, W_{\infty 1} = (H_1/k_1)^{1/(b-d_G)}, W_{\infty 2} = (H_2/k_2)^{1/(b-d_G)}$
Predicted change in W_{∞} , ΔW_{∞} :	$\Delta W_{\infty} = ((W_{\infty 2} - W_{\infty 1})/W_{\infty 1}) \cdot 100$

*We are aware that k is calculated as K/(1-d_G) by Pauly and Cheung, but it is unclear if it is the same as K/(b-d_G), given that the expression is a substitution in the integrated form of the von Bertalanffy equation, $W_t = W_{\infty} [1 - e^{-k(1-d_G)}(t-t_O)]^{1/(1-d_G)} = W_{\infty} [1 - e^{-k(t-t_O)}]^{1/(1-d_G)}$ (Cheung et al., 2011). Given that k is the constant for catabolism and hence maintenance metabolism, it would be strange if it was only affected by the scaling exponent for the gill area (d_G) and not by the scaling factor for maintenance metabolism (b). Given that we have derived $W_{\infty} = (H/k)^{1/(b-d_G)}$ from Bertalanffy, while Cheung has derived $W_{\infty} = (H/k)^{1/(1-d_G)}$ (see Cheung et al., 2011), it does seem that 1-d_G is simply b–d_G, at least in some of the equations. Calculating k using K/(b-d_G), nonetheless, gives the exact same results for predicted W_{∞} in the end (see Table S3 below), though k obviously varies much more as a result. In the end, the only thing that seems to affect the projections is the difference between b and d_G and the initial observed W_{∞} , so the conclusions remain the same: using evidence-based, physiologically relevant exponents leads to absurd shrinkage of fish with very small changes in temperature.

**Together, j_1 and j_2 reflects a Q_{10} of 2.4, according to Cheung et al. (2011).

	'		•							• •	-7								
	L $_\infty$ (cm)	a _{L-W}	b _{L-W}	W_∞ (kg)	T _{now} (K)	К	b	d_G	ΔT	k	h	g	H_1	k1	H ₂	k ₂	$W_{\infty 1}$	W∞2	ΔW_∞
	192.4	0.02	2.98	139.2	299.2	0.37	1	0.67	1	1.11	2.0E+07	4.6E+11	5.75	1.11	6.05	1.21	139.2	123.8	-11.0
									2	1.11	2.0E+07	4.6E+11	5.75	1.11	6.36	1.33	139.2	110.3	-20.8
						_		0.90	1	3.7	2.1E+07	1.5E+12	6.06	3.70	6.37	4.04	139.2	94.3	-32.3
1	00-	~			∆T = 1°C	;			2	3.7	2.1E+07	1.5E+12	6.06	3.70	6.70	4.42	139.2	64.0	-54.0
	•••	\sim			∆T = 2°C	;		0.95	1	7.4	3.2E+07	3.0E+12	9.47	7.40	9.96	8.09	139.2	63.8	-54.1
ase	°°7 \	$\backslash \backslash$			_ ΔT = 3°C	;			2	7.4	3.2E+07	3.0E+12	9.47	7.40	10.47	8.84	139.2	29.4	-78.9
cre	60 -	\backslash		<u> </u>	- ∆T = 4°C	;		0.99	1	37	1.3E+08	1.5E+13	38.87	37.00	40.87	40.45	139.2	2.824	-98.0
° de		$\mathbf{\mathbf{\nabla}}$							2	37	1.3E+08	1.5E+13	38.87	37.00	42.96	44.19	139.2	0.059	-99.96
6)	40 -						0.9	0.57	1	1.11	2.0E+07	4.6E+11	5.75	1.11	6.05	1.21	139.2	123.8	-11.0
Ň	20								2	1.11	2.0E+07	4.6E+11	5.75	1.11	6.36	1.33	139.2	110.3	-20.8
7	207							0.80	1	3.7	2.1E+07	1.5E+12	6.06	3.70	6.37	4.04	139.2	94.3	-32.3
	o —								2	3.7	2.1E+07	1.5E+12	6.06	3.70	6.70	4.42	139.2	64.0	-54.0
	0.00 0	0.05 0.	10 0.15	5 0.20 0.	25 0.30			0.85	1	7.4	3.2E+07	3.0E+12	9.47	7.40	9.96	8.09	139.2	63.8	-54.1
		Diffe	erence be	etween b and	d _G				2	7.4	3.2E+07	3.0E+12	9.47	7.40	10.47	8.84	139.2	29.4	-78.9
								0.89	1	37	1.3E+08	1.5E+13	38.87	37.00	40.87	40.45	139.2	2.8	-98.0
									2	37	1.3E+08	1.5E+13	38.87	37.00	42.96	44.19	139.2	0.059	-99.96
						0.037	1	0.67	1	0.11	2.0E+06	4.6E+10	0.58	0.11	0.60	0.12	139.2	123.8	-11.0
									2	0.11	2.0E+06	4.6E+10	0.58	0.11	0.64	0.13	139.2	110.3	-20.8
								0.90	1	0.37	2.1E+06	1.5E+11	0.61	0.37	0.64	0.40	139.2	94.3	-32.3
									2	0.37	2.1E+06	1.5E+11	0.61	0.37	0.67	0.44	139.2	64.0	-54.0
								0.95	1	0.74	3.2E+06	3.0E+11	0.95	0.74	1.00	0.81	139.2	63.8	-54.1
									2	0.74	3.2E+06	3.0E+11	0.95	0.74	1.05	0.88	139.2	29.428	-78.9
								0.99	1	3.7	1.3E+07	1.5E+12	3.89	3.70	4.09	4.04	139.2	2.824	-98.0
									2	3.7	1.3E+07	1.5E+12	3.89	3.70	4.30	4.42	139.2	0.059	-99.96
							0.9	0.57	1	0.11	2.0E+06	4.6E+10	0.58	0.11	0.60	0.12	139.2	123.8	-11.0
									2	0.11	2.0E+06	4.6E+10	0.58	0.11	0.64	0.13	139.2	110.3	-20.8
								0.80	1	0.37	2.1E+06	1.5E+11	0.61	0.37	0.64	0.40	139.2	94.3	-32.3
									2	0.37	2.1E+06	1.5E+11	0.61	0.37	0.67	0.44	139.2	64.0	-54.0
								0.85	1	0.74	3.2E+06	3.0E+11	0.95	0.74	1.00	0.81	139.2	63.8	-54.1
									2	0.74	3.2E+06	3.0E+11	0.95	0.74	1.05	0.88	139.2	29.4	-78.9
								0.89	1	3.7	1.3E+07	1.5E+12	3.89	3.70	4.09	4.04	139.2	2.8	-98.0
									2	3.7	1.3E+07	1.5E+12	3.89	3.70	4.30	4.42	139.2	0.059	-99.96

Table S3: Effect of varying scaling exponents (d_G and b), temperature change (ΔT) and growth parameter (K) on predicted maximum weight (W_{∞}) of yellowfin tuna (*Thunnus albacares*) when k is calculated as $k = K/(b-d_G)$.

Parameters are defined as above in Table S2, but here, the constant for catabolism k, rather than being set at 1, is calculated as $K/(b-d_G)$. Consequently, k and H varies more, but this does not affect the predicted weights, and it is also evident that the growth parameter ultimately has no effect on the result (we have just set it arbitrarily to 1/10 of the original value). The predicted changes in W_{∞} are only affected by the difference between b and d_G (as illustrated in the insert figure), and it does not seem to matter, either, whether b is 1 or 0.9. Obviously, the change in temperature also has an effect.