
GLM and GAM modelling
of life insurance data
Amanda Haugnes Rygg
Master’s Thesis, Spring 2019



This master’s thesis is submitted under the master’s programme Modelling
and Data Analysis, with programme option Statistics and Data Analysis, at
the Department of Mathematics, University of Oslo. The scope of the thesis
is 60 credits.

The front page depicts a section of the root system of the exceptional
Lie group E8, projected into the plane. Lie groups were invented by the
Norwegian mathematician Sophus Lie (1842–1899) to express symmetries in
differential equations and today they play a central role in various parts of
mathematics.



Abstract

As an employee you can have a variety of insurances through your em-
ployer, one of them being life insurance covering death due to non-
occupational illnesses. With such covers it is essential for the insurance
company to know which factors impact risk and through this be able to
predict the future risks for new policies. As companies enter and leave
the portfolio from year to year, it induces shifts in the insured population
and with that shifts in the observed death rates. This complicates the
modelling of the death rates. In this thesis, we consider Generalized
Linear Models (GLMs) and Generalized Additive Models (GAMs) for pre-
diction and smoothing of nonlinear death rate patterns. We will consider
different costumer properties for modelling and discuss differences and
similarities in smoothing and predictions done by GLMs and GAMs. We,
of course, find that death rates due to non-occupational illnesses increase
with age. We also find that the death rates decrease over time. We detect
significant differences in death rates of people working in companies with
different NACE-codes, also known as activity codes. This is a mandatory
statistical classification of the economic activities of a company, put down
and regulated by the European Union. Here one of the more surprising
discoveries is a higher death rate for women engaging in financial and
insurance activities, compared to women in other NACE-codes tested,
which usually require less education.
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CHAPTER 1

Introduction

As an employee you can have a variety of insurances through your employer,
one of them being life insurance. In Norway it is mandatory to have a work-
ers compensation insurance for all employees, regardless of whether they are
employed part-time or full-time. In a life insurance perspective, this insurance
only apply to occupational death. Most death incidents are however due to
non-occupational hazards or diseases. It is therefore common that businesses
buy extensions to the mandatory death insurance, so that non-occupational
deaths also are covered.

The sum payed out when a person dies varies greatly, depending on which
covers the company of the deceased have for their employees. Regardless of
which types of death a company choose to cover or how large death cover
amounts a company wants for their employees, it is essential for the insurance
company to have a good understanding of the risk involved for a potential
insurance policy. It is also essential to know which factors impact risk and
through this be able to predict the future risks for new policies. In this way
the insurer is able to price a given policy according to the risk behaviour of a
potential costumer, and the costumer is more likely to get a fair price, depending
on the risks the costumer carries.

IF Skadeforsikring NUF (IF) sells an extension to the workers compensation
insurance called death due to other illnesses (DOI), which covers death caused
by a non-occupational disease. The company has a large DOI portfolio with
small and large businesses leaving and entering the portfolio from year to year.
This causes great shifts in the insured population and with that, shifts in the
observed death rates. To truly know the risks of IF’s (or any other similar
insurers) future portfolio, it is therefore essential to know which properties of
the insured population that drive the risks up or down. Finding these properties
and using them in a wise way in modelling may however be challenging as the
shifts in death rates may form nonlinear patterns.

Modelling over nonlinear patterns can be done in multiple ways, in this
thesis we will look at two. We will look into IF’s DOI portfolio to get a better
understanding of which costumer properties impact the death rates in the
portfolio, and use Generalized Linear Models (GLMs) and Generalized Additive
Models (GAMs) to smooth the nonlinear death rate patterns in the observations.

In Chapter 2 we look at the historical development of IF’s portfolio. We also
give an explanation of the available data on costumer properties and look at
the differences in death rates given certain properties. In Chapter 3 we explain
how Poisson generalized linear models can be used to study the death rates and
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1. Introduction

fit such models using costumer properties which we believe best explains the
observed death rates.

In Chapter 4 we check if we have overdispersed data and see if we can find an
alternative to the Poisson GLM which better explains the observed variation in
death rates. In Chapter 5 we take a closer look on how smoothing of nonlinear
relations can be done by using splines. In Chapter 6 we check how splines can
be used on our data observations through GAMs to smooth the nonlinear death
rates.

As different type of models may give a different answer to which costumer
properties have the least and most impact, we discuss the similarities and
differences between the GLMs and GAMs fitted along with a conclusion on
what we have found in Chapter 7. In this last chapter we also give an overview
of the analysis done, discuss possible extension and further work.
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CHAPTER 2

Description of data

2.1 Data summary

All data used in this thesis has been provided to me by IF Skadeforsikring
NUF (IF). The data file used in this thesis was received 29.10.2018 and is not
open to the public. Historically IF has not always been structured the way it
is today. In the calendar year period 1989 to 1998 IF did not exist, and the
insurance was bought from what is now called Storebrand. Storebrand merged
with UNI, increasing their portfolio in 1991. IF was established in 1999, when
Storebrand merged with Swedish Skandia. IF taking hand of non-life insurance,
as a subsidiary company of Storebrand. In the period leading toward 2004
stocks of IF was sold to Finnish Sampo, and 01.01.2004 IF was fully owned by
Sampo. Storebrand kept most of the life insurance customers, and IF started
to rebuild their life insurance portfolio. These merges and splits are mentioned
because they may cause big shifts in the composition of the insured population
and thereby big shifts in the observations made.

The data set is collected from companies which were life insurance clients of
IF-insurance within the calendar year period of 1989 to 2018. Companies with a
life insurance policy insure their employees with a lump sum compensation paid
to the bereaved of the deceased employee if a death occurs before the age of 70
years old. In the case of no bereaved a compensation to pay for funeral costs is
payed out. In this thesis we will focus on those companies which have insured
their employees with a life insurance covering death due to other illnesses (DOI).
With a DOI policy a compensation is paid if the employee dies as a result of a
non-occupational disease before the age of 70.

The data observations of number of person years and deaths are organised
as unique combinations of gender, age, insurance year, what region of the
country the company of the insured was stationed in and the activity code of
the company, also known as NACE-codes. Person years is here the sum of the
duration, given as fractions of a year, in which people within that observation
was insured. All variables are described in further detail later. There is a total
of 783 749 observations in the data set, with number of person years ranging
from 0.01 to 547. Table 2.1 gives a brief summary of the data file.

Adjustments and cleaning of the original data set have been made. Data
which came from businesses outside Norway was removed. A decision to leave
out the calendar years 1989 and 1990 was made due to lack of data for the
periods. Calendar year 2018 is also left out due to the fact that data was
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2. Description of data

Table 2.1: Summary table of mean age, median age, total person years, deaths and death
rates for men and women in the data file.

gender age-range mean age median age number of per-
son years

number of
deaths

death rates

male 20-69 42.28 42 1 567 417 2937 0.00187
female 20-69 42.11 42 672 408 708 0.00105

received within the calendar year, therefore the data may not be representative
for the year as a whole. Hence we end up with data from the calendar year
period of 1991 to 2017. Businesses which had no county location registered
was given a county based on address when this was possible. When an address
matched multiple counties or company had multiple addresses, county was
reported as multiple. The original data set had an age range from 2 to 87
years old. This is a suspiciously wide range, especially in the lower end. In
Norway you cannot, by law, work under the age of 15. This means businesses
must have reported the wrong age of some employees or errors have occurred
somewhere in the system. Considering this, and the fact that there is little
data on insured population under the age of 20, this data is left out of the
analysis. Data is also left out for the people of 70 years old or older as they
are not covered by DOI. For 8 percent of the data observations the age of the
insured was not available. For these observations age was estimated by those
who provided the data, based on the age distribution in similar businesses and
counties. These data are treated as all the other data in the analysis, but we
will look into the possible effects they may have on our observations and look
into their characteristics.

Data trouble

The first version of the data for this thesis was received 09.03.2018. The data did,
however, have multiple errors causing three different versions to be delivered,
where the final data set was received 29.10.18. The final data set used in this
thesis has been checked multiple times and is thought to be of good quality.
The first data set was at first thought to be good, but as time went by and I
looked into the data I discovered otherwise. When analysing the data and fitting
models to the observations, weird patterns appeared. I therefore contacted IF,
who could confirm that the data I had been working with was wrong. There
are big differences between the first data set and the final data set received, so
already done tasks had to be redone and this caused quite a lot of extra work
within the time available for this thesis.

2.2 Data variables

Gender:

It is natural to split the data according to male and female as we know, from
many researches done before, that death rates vary between men and women.
Aggregating over all other variables and keeping gender fixed, as done in Table
2.1, we also see a tendency of this in our data, males having 1.8 times higher
total death rates than the females.

4



2.2. Data variables

Age:

Age of a person is defined as the age of the insured the day the contract was
signed. Likewise for death counts, age is the age of the person the day he or she
died. As we get older the chance of dying changes, age is therefore a natural
variable to include in this analysis. We use five-year or ten-year age groups in
this part of the thesis to avoid too many observations with no deaths registered.
Figure 2.1 shows an already known difference in death frequency between men
and women, men dying more frequently through the whole age span. Log of
death rates look approximately linear and death rates rise as age increase.

Figure 2.1: Observed variation in death rate given age group and gender. Each gender is
represented by a line: Blue = male, red = female. The plot is on log-scale.

Year:

The calendar year or the period within a calendar year in which a person was
insured is called the insurance year. Years are included as a variable as we know
life expectancy has gone up over the years, and that there may be shifts in death
rates for different age groups. Keeping insurance year fixed for different age
groups and aggregating over all other variables available, as in Figure 2.2, there
seems to be a tendency of decreasing death rates over the years. However, we
must consider the historical changes of the portfolio, such as those mentioned
in Section 2.1. The split between Storebrand and IF in 2004 make a clear
appearance in Figure 2.2 with no deaths registered in any of the age groups.
The number of people insured dropped massively in 2004, as can be seen in
Figure 2.3, and so also the number of deaths observed. The uncertainty for this
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2. Description of data

year is therefore higher than for other years as this is the year with the least
observations.

Figure 2.2: Observed variation in death rate given an age group over time. Each age group
is represented by a line in the graph: red = 20 to 29 years old, blue = 30 to 39 years old,
green = 40 to 49 years old, brown = 50 to 59 years old, black = 60 to 69 years old. When a
line is cut there is no deaths observed whitin the age group for the given year. The plot is on
log-scale.

From year to year it is normal to have changes in the insured population.
Whether the observed tendency in death rate decrease is due to improved health
over time or greater shifts in the insured population is therefore hard to tell. It
may also look weird that the 20-29 year olds tend to die more frequently for
some years than those of age 30-39. However the younger group, of age 20-29
year olds, has a bit higher percentage of males than the older group, of 30-39
years olds. It may also be caused by random variation, as the youngest group
has few insured people for some years. If not caused by random variation, the
difference may also be caused by other variables such as location or what type
of work the younger groups engage in.

As the insured population changes over time, we also know that the number
of insured people and the fraction of women insured most likely will vary over
time. This becomes clear when we keep gender and year fixed and aggregate
our data over all the other variables available, as in Figure 2.3. Also here the
split between Storebrand and IF can clearly be seen as a jump in fraction of
women and a drop in the number of people insured in the year 2004. The jump
in 2013 is due to a big insurance agreement with multiple municipalities. This
agreement lasted two years, causing the percentage of women and number of
insured to drop back down in 2015 when it was lost.
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2.2. Data variables

Figure 2.3: Variation in number of people insured and propotion of women in the portfolio
over time. Solid black line: number of people insured, reference on left axis. Dotted red line:
percentage of women in portfolio, reference on right axis.

Region:

What region of the country the business is located may affect the death rates of
the people working there due to differences in lifestyle, focus on human resources
and so on. When a company signs an insurance agreement, the company’s
address or county where it is located is registered. When a company is stationed
in multiple counties this variable is reported as multiple. As counties may be
too specific they were merged to country regions and the country regions again
merged to three greater country parts, as explained by Figure 2.4. Businesses
which originally had multiple counties was categorised in a fourth option, being
multiple.

Keeping regions fixed and aggregating over all other variables available, as
shown in Table 2.2, we see some variation in population structure and death
frequency between regions. The two regions with highest mean age, 1: Østlandet
and 3: Nord-Norge and Trøndelag, also have the highest death rates. A high
fraction of women should lead to a lower death rate, as we know women die
less frequent than the men. Looking at our regions however, this may not be
the most influential factor. Region 1: Østlandet has the second highest fraction
of women, after region 2: Vestlandet and Sørlandet, but has the highest death
rates. Age distribution may be more important than fraction of women in the
insured population. However this is not something we can tell for certain as
it may also be caused by activities the businesses in each region operate in or
other factors that the region variable may explain.
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2. Description of data

Figure 2.4: Map showing original classification of counties in which companies are registered
and how they were merged to three larger regions with a forth category for multiple county
registrations.

Table 2.2: Differences in mean age, proportion of women, person years, death counts and
death frequency in different country regions.

Country Region Mean
age

Fraction of
women

Person years Deaths Death rate

1: Østlandet 42.46 0.30 1438699.3 2604 0.00181
2: Vestlandet and Sørlandet 41.83 0.35 477162.4 556 0.00117
3: Nord-Norge and Trøndelag 42.23 0.19 49961.02 72 0.00144
4: Multiple 41.64 0.26 274001.99 413 0.00151

NACE-code:

When a company is established they register a NACE-code, also called an activity
code. This is a mandatory statistical classification of economic activities put
down and regulated by the European Union. To define the NACE-codes and
how they are built up, we have used the definition from the European Union
given in the manual from Eurostat 2008. Businesses are placed in the same
category of NACE when they engage in the same kind of economic activity.
Whether this activity is modern or traditional and where it is preformed, for
example, factory or household, does not matter.

NACE-codes have an hierarchical structure. First level is an alphabetical
code of letters A to U, specifying the business sections. All NACE-sections are
in IF’s DOI portfolio, except section T which is paid work in private households.
The second, third and fourth level of the NACE-code follow as a two-digit,
three-digit and four-digit numerical code specifying the division, group and
class of a business. For example, K.65.11 is life insurance, structure and build
up of this NACE-code is explained in Table 2.3.
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2.2. Data variables

Table 2.3: Explanation of NACE-code structure using life insurance as an example.

Section: K Financial and Insurance Activities
Division: K.65 Insurance, reinsurance and pension funding, except compulsory social security
Group: K.65.1 Insurance
Class: K.65.11 Life Insuranse

When IF’s system is not able to find the NACE-code of a company the
company is given NACE-code “XX.99 Business not mentioned in activity
register”. The activity code is included as a variable because it may catch up on
factors which may influence the death rates. These factors among other include
differences in lifestyle and education level. Aggregating over NACE-letters, the
business sections, as in Table 2.4, there are quite wide differences in death rates
between NACE-sections. As an example we see in Table 2.4 that NACE-section
S, has more than double the death rate of NACE-sections B and G. In Table
2.4 we have in chosen to only show NACE-sections with more than 170 deaths
in total.

Table 2.4: Differences in person years, death counts and death frequency in chosen NACE-
sections. NACE-sections shown are those with more than a totalt of 170 deaths in the data
set.

NACE-section Person years Deaths Death rate
B: Mining and quarrying 180380.19 258 0.0014
C: Manufacturing 390604.96 699 0.0018
F: Construction 114131.7 177 0.0016
G: Wholesale and retail trade; repair of motor vehicles

and motorcycles
295941.4 385 0.0013

H: Transportation and storage 112972.9 180 0.0016
J: Information and communication 182334.6 302 0.0017
K: Financial and Insurance Activities 200851.6 431 0.0022
S: Other service activities 169722.66 509 0.0030

The fraction of the portfolio consisting of people from a given NACE-section
varies over time. The three largest NACE-sections in terms of total time people
have been insured in IFs portfolio are:

C - Manufacturing (17.4% of total portfolio)
G - Wholesale and retail trade; repair of motor vehicles and motorcycles

(13.2% of total portfolio)
K - Financial and Insurance Activities (9.0% of total portfolio)

The three NACE-sections constitutes 39.6% of the total portfolio. This per-
centage varies from year to year however, due to companies changing insurer
from time to time. In 2005 the fraction in the portfolio that belonged to
NACE-sections C, G and K was at its lowest, at 22.6%. It was at its highest
in 2017 with 55.6% of the insured population working in the largest NACE-
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2. Description of data

sections. How these percentages varies over time for each of the three largest
NACE-sections are given in Figure 2.5.

Figure 2.5: Percentage of portfolio belonging to each of the three largest NACE-sections
over time. Each NACE-section is represented by a line. Red line: C - Manufacturing. Green
line: G - Wholesale and retail trade; repair of motor vehicles and motorcycles. Blue line: K -
Financial and Insurance Activities.

2.3 Characteristics and possible influence of data with
estimated age

As mentioned in section 2.1, around 8 percent of all the observations in our data
set have an estimated age variable, as the age of the insured was not available.
To get a grip on what effects this may have on our analysis we now want to
look into the characteristics of these observations.

Pulling out only those observations which have estimated age it becomes
clear that the estimates make our total portfolio a little older. In Table 2.1,
where we included all data available, the mean age of men was 42.28 and the
median age was 42. The median age stays the same when only looking at the
estimated ages, but the mean becomes slightly higher, with a mean age of 42.56.
For the female population the difference is clearer, where mean age increases
from 42.11 to 43.16 and the median age increase from 42 to 43 when looking at
the data with estimated age vs all data as a whole.

The total death rates for men and women in the data set is pulled down
by the observations with estimated age. The total death rate for men and
women for the data with estimated age are the same and equal 0.0006. The
difference in death rates between genders, observed in Figure 2.1 are almost
gone for these data. As seen in Figure 2.6 a), males tend to die slightly more
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than the females, but not as clear as before. In other words, the difference
between genders becomes smaller when we include all data.

Figure 2.6: a) Observed variation in death rate given age group and gender for data
observations with estimated age. Each gender is represented by a line: Blue = male, red =
female. Death rates are plotted on a log-scale. b) Percentage of women in the portfolio over
time for data observations with estimated age. c) Fraction of all observations which have
estimated age.

The fraction of age estimated observations vary from year to year. For
instance there is a major jump in percentage of women in the portfolio for data
with estimated age in the years 2013 and 2014, as seen in Figure 2.6 b). This
indicates that there is a higher percentage of the observations from women
that have estimated age for these years. This is also the case if we look at the
portfolio as a whole, where 11.5 percent of the women’s observations and 6.5
percent of the mens observations have estimated age.

If we look at the total portfolio over years the percentage, and thereby the
influence, of the observations with estimated age varies. As we can see in Figure
2.6 c), the percentage have been at its highest for the three last years at a
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2. Description of data

percentage close to 23 percent. If removing the data with estimated age we will
therefore have the biggest cut in observations for these years.
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CHAPTER 3

Generalized linear modelling

To model the mortality data described in Chapter 2 we will here use Generalized
Linear Models (GLMs). We assume that each death count is independent and
that the deaths counts have a Poisson distribution. Basic concepts of Poisson
regression, parameter estimation, model fitting and model selection will be
described.

3.1 Reasoning for choosing Poisson and basic consepts
of Poisson Regression

Reasoning

Aggregating our data to only include ten-year age groups, gender and year as
categorical variables we end up with 270 observations, being unique combinations
of the three variables in use. We here consider the age groups, calendar year
and gender as categorical variables.

The number of person years in each observation is large, with an average of
8296 person years. We think of the death counts as the sum of a large number
of Bernoulli trials, where the success parameter, here the probability of dying, is
small and the number of trials, person years, is large. The sum of successes from
Bernoulli trials has a Binomial distribution (Casella and Berger 2002, p. 89).
The probabilities in a Binomial distribution is again close to the probabilities in
a Poisson distribution when there is a large number of trials with small success
probabilities (Casella and Berger 2002, pp. 66–67). Hence it is reasonable to
consider the death counts as Poisson distributed in our case.

Specification of model set-up

Our response variable Xijk is the number of deaths for people of age group: i
= 20-29, 30-39,..., 60-69, gender: j = 0,1, 0 indicating male and 1 indicating
female, insured in year: k = 1991,..., 2017. The expected number of deaths
in each group will depend on nijk, the sum of person years within the group.
We would therefore like to model the rate per person year. Thus, Xijk ∼
poisson(λijk ·nijk), λijk being the chance of a death for a person that has been
insured for the whole year and nijk being the total person years in the group.
If not else is specified Agresti (2015, pp. 122,228-233) is used as reference in
this section.
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3. Generalized linear modelling

Using the canonical logarithmic link function ηijk = log(λijk) or equivalent
λijk = exp(ηijk) we get:

µijk = E(Xijk) = nijk · λijk = nijk · exp(ηijk) = exp{log(nijk) + ηijk} (3.1)

log(µijk) = log(nijk) + ηijk = log(nijk) + (zijk)Tβ (3.2)

Using the log link we see that log(nijk) is an additive known constant term in
the linear predictor, this will be used as an "offset" in our modelling. The vector
zijk contains values of the explanatory variables for each age group i, gender j
and year k combination. β is here a vector of our regression parameters, how
these are found is explained in the next subsection.

The probability mass function (pmf) of the Poisson distribution is defined
as (Casella and Berger 2002, p. 92):

P (Xijk = xijk) =
µ
xijk

ijk exp (−µijk)
xijk! (3.3)

Inserting the definition of µijk from equation (3.1) above, we get the Poisson
regression model:

P (Xijk = xijk) = exp{log(nijk) + ηijk}xijk exp(− exp{log(nijk) + ηijk})
xijk!

(3.4)

Parameter estimation

Fitting the Poisson pmf to our data requires estimation of regression parameters
β. This is done using the maximum likelihood (ML) method. The likelihood
function of the Poisson pmf can be expressed as (Zuur et al. 2009, p. 214);

L(x;µ) =
∏
ijk

P (Xijk = xijk) =
∏
ijk

µ
xijk

ijk exp (−µijk)
xijk! (3.5)

and depends on β via equation (3.2). The maximum likelihood estimates of
β are found by maximizing the likelihood function with respect to β. The
estimated variance-covariance matrix of the β estimates is found by taking
the inverse of the −Hessian matrix. Here the −Hessian matrix is found
by taking the log of the likelihood function and differentiate it twice. The
estimated variance-covariance matrix is used to obtain the standard errors of
the β estimates (Agresti 2015, pp. 137–139).

3.2 Models selection

There are multiple models which may fit our data. We however, just want one
model, the model that best describe the observed variation in the data set. We
will now discuss three different ways we can compare possible models and how
we choose our preferred model.
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3.2. Models selection

Selection criteria

We select a model by comparing deviances between our models using the
likelihood ratio test (LRT). For Poisson distributed data the deviance equals
(Zuur et al. 2009, p. 217);

D(x; µ̂) = 2{log[L(x;x)]− log[L(x; µ̂)]} = 2
n∑
i=1
{xi · log(xi

µ̂i
)− xi + µ̂i} (3.6)

where L(x;x) is the maximum of the likelihood of the saturated model and
L(x; µ̂) is the maximum of the likelihood of a given fitted model. Here n = the
number of grouped observations and p = the number of parameters.

Taking differences of deviances of nested models, where the parameter space
of the smaller model, model 0, is contained in the bigger model, model 1, the
terms involving the saturated model cancel out from the deviance equation. We
get a likelihood-ratio statistic;

D(x; µ̂0)−D(x; µ̂1) = 2{log[L(x; µ̂1)]− log[L(x; µ̂0)]}

which has an approximate chi-squared distribution with df = p1 - p0, assuming
that the smaller model holds (Agresti 2015, pp. 133–134). When testing the
nested models against each other the null hypothesis is that the smaller model
holds. By this we mean that the extra variables in the bigger model do not
significantly improve the fit of the model. If we get a p-value less than 0.05,
the null hypothesis is rejected and the bigger model is chosen as the adequate
model.

Models which are not nested, as the models fitted in chapter 6, can not be
compared using deviance differences and likelihood ratio testing. Two methods
which then may be used to compare and select models are Akaike information
criteria (AIC) and Bayesian information criteria (BIC). Fitting models using
maximum likelihood (ML) the methods allow for comparison between models
that are not nested, as long as they are fitted to the same data (Jong and Heller
2008, p. 63).

If p is the number of estimated parameters in the model and L(x, µ̂) is the
ML value of the likelihood function, AIC is in general defined as (Jong and
Heller 2008, p. 62):

AIC = −2(log(L(x, µ̂))− p)

AIC judges which model is expected to have the sample fit close to the true
model fit and gives a penalty based on the number of parameters in use. The
lower the AIC the better the model. Comparing possible models for our data
the preferred model is the one which has the lowest AIC (Jong and Heller 2008,
p. 63).

AIC tend to prefer bigger models. We therefore also look at the Bayesian
information criteria (BIC), which looks a lot like AIC, but gives a greater
penalty for adding parameters. BIC is in general defined as (Jong and Heller
2008, p. 62):

BIC = −2 log(L(x, µ̂)) + log(number of observations) · p

Here, p is the number of estimated parameters in the model and L(x, µ̂) is the
ML value of the likelihood function. As in the AIC case, the model with the
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3. Generalized linear modelling

lowest BIC-score is the preferred model. When the number of observations
is large, as the case will be when we include more variables, the BIC tend to
select models which may be too simple (Jong and Heller 2008, p. 63). When
models are nested, model choice will mainly be based on deviance comparison
and LRT. When the p-value of the LRT is close to the 0.05 threshold however,
or we compare non-nested models, we will look at the AIC-score to choose a
model. When the AIC-scores are similar, we will check significance of variable
effects and use BIC to decide between models.

3.3 Fitting and comparing models

We first tried fitting a joint model for both genders. The joint model did
however become really messy and difficult to interpret. To get a better overlook
of the data and what happened when a model was fitted, the data set was split
into two new sets, one for each gender with 135 observations each. A saturated
model was then fitted for each data set separately in R using the glm function.
The saturated models were specified in the following way:

> Saturated.model = glm(deaths ∼ offset(log(personYears)) +

ageGroup*year , family=poisson, data = subset for given gender)

Male - Model fitting

We first look at the data for males and fit a saturated model to the data, as
explained above. Trying to remove the whole interaction effect between year
and age group, as done in model M2m, is rejected by the likelihood ratio test,
see Table 3.1 for details. We therefore need to look at alternative ways to reduce
the number of parameters.

When we look closer into the model summary of the saturated model, year
stick out as a variable which has a lot of noise in the interaction estimates. It
is also few observations within some of the age groups for certain years. We
therefore create a new variable, Ygroup, which groups together three and three
years eg. Y1991, Y1992, Y1993 −→ Y1991−1993, hence we get 9 year categories
from the original 27.

Table 3.1: Deviance table showing model summaries and hypothesis testing of models fitted
on male data with a total of 135 observations. Main components for variables are Agroup:
age group and Y: year. Ygroup is a categorical year variable where three and three years are
merged together. ∆ = deviance and p = number of parameters.

model variables 2 · log likelihood p ∆ Null hypothesis p-value
LRT

M0m Agroup+Y +
Agroup:Y

-539,8 135 - - -

M1m Agroup+Y +
Agroup:Ygroup

-623.7 63 83.77 Y1991 = Y1992 = Y1993; ...
;Y2015 = Y2016 = Y2017

:−2 log
L(M1m)
L(M0m)

0.1619

M2m Agroup+Ygroup -703.0 31 163.11 Agroup:Y=0 :−2 log
L(M2m)
L(M0m)

0.0002
***
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3.3. Fitting and comparing models

A new model, M1m, is fitted to the male data set using Ygroup in the
interaction effects. When comparing the deviances of male models M0m and
M1m, as seen in Table 3.1, M1m is chosen as the adequate model.

Male - Deviance residual diagnostics

To check model fit we would like to look at the residuals of the model. There
exists several types of residuals for GLMs, we will however just look at one type
for now, deviance residuals, which is the default residuals used by R in GLM
modelling.

The deviance residuals are elements of the unexplained variation by the
fitted model. For Poisson distributed data the deviance residuals are given by
(Zuur et al. 2009, pp. 229-230):

Deviance residual =
√
dijk · sign(xijk − µ̂ijk) (3.7)

where,
dijk = 2{xijk · log(xijk

µ̂ijk
)− xijk + µ̂ijk}

The deviance of a model is the sum of dijk, which we recognize from equation
(3.6). The residuals should be random and normally distributed, have a constant
variance and zero mean (Agresti 2015, pp. 56–57).

We check for normality and randomness by plotting the fitted values against
the residuals, as well as making a quantile-quantile (QQ) plot of the residuals
from our chosen model. Looking at the plot of fitted values, Figure 3.1 a), the
residuals of model M1m looks random, with an approximately equal proportion
of positive and negative residuals spread around zero for all fitted values.
Looking at our QQ-plot in Figure 3.1 b), the majority of the residuals lie close
to the line, indicating that the residuals of our model is close to having a normal
distribution (Agresti 2015, pp. 101–103).

Figure 3.1: Residual diagnostic plots of model M1m. a) Deviance residuals plotted over
fitted values. Trend line of residuals is given as a black line in the plot. b) QQ-plot of deviance
residuals.

Residuals may also form patterns over given variables. We therefore check
if the residuals look random over the variables used in the model. Looking at
the residuals over age groups, in the top panel of Figure 3.2, the median of the
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3. Generalized linear modelling

residuals seems to be centred around zero in each group. This also seem to be
the case when looking at the medians of residuals in given year groups, in the
bottom panel of the same figure. Looking at the middle panel however, which
is the residuals within each year, the medians of the residuals are less centred.
The way the medians shift up and down do however not have a clear pattern
and look random. All in all the residuals of the model seem to meet the model
assumptions to a pleasent degree and M1m is chosen as an adequate model for
the male data set observations.

Figure 3.2: Residual diagnostic plots of model M1m, deviance residuals are plotted against
variables used in the model. Top panel: residuals over age groups. Middle panel: residuals over
years. Bottom panel: residuals over year groups. Reference levels for each of the categorical
variables are given to the far left in the corresponding variabel-panels.

Female - Model fitting

We now want to find an adequate model for the female population. Trying to
remove the whole interaction effect between year and age group from the full
model, as done in model M2f , is as in the male case, rejected by the likelihood
ratio test, see Table 3.2 for details. We therefore do the same here as we did for
the males, where we try to use grouped years as variables for the interaction
effects, redcuing the number of parameters.

Comparing the female models M0f and M1f , as in Table 3.2, the simpler
model is not preferred by the likelihood ratio test. The p-value is however not
far from the 0.05 threshold. We therefore still choose M1f as a preferred model
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3.3. Fitting and comparing models

Table 3.2: Deviance table showing model summaries and hypothesis testing of models fitted
on female data with a total of 135 observations . Main components for variables are Agroup:
age group and Y: year. Ygroup is a categorical year variable where three and three years are
merged together. ∆ = deviance and p = number of parameters.

model variables 2 · log likelihood p ∆ Null hypothesis p-value
LRT

M0f Agroup+Y +
Agroup:Y

-354.8 135 - - -

M1f Agroup+Y+
Agroup:Ygroup

-451.0 63 96.25 Y1991 = Y1992 = Y1993; ...
;Y2015 = Y2016 = Y2017

:−2 log
L(M1f )
L(M0f )

0.0297 *

M2f Agroup+Y -510.6 31 155.77 Agroup:Y=0: −2 log
L(M2f )
L(M0f )

0.0008
***

as we believe variables later added may explain the variation observed over the
years for females within the different age groups.

Female - Deviance residual diagnostics

We use the same type of residuals for the female model, as we did for the
male. To check for randomness in the deviance residuals of model M1f , we plot
the residuals over fitted values, as in Figure 3.3 a). The residuals form some
bands in the lower left end of the plot. This is however due to a small number
of deaths, and not to such degree that it is of concern. The trendline of the
residuals also show that they are centred just below zero and have a close to
flat slope over the fitted values.

Checking the distribution of the residuals through our QQ-plot, in Figure 3.3
b), the residuals look approximately normal. There is a slight bump around zero
and an indication of a light tail in the higher end of our theoretical quantiles.
The majority of the residuals do however lie close to the line, indicating that
the residuals of the model are close to having a normal distribution.

Figure 3.3: Residual diagnostic plots of model M1f . a) Deviance residuals plotted over
fitted values. Trend line of residuals is given as a black line in the plot. b) QQ-plot of deviance
residuals.
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3. Generalized linear modelling

We check if residuals look random over the variables used in the model
in the same way as we did for the males. Looking at the residuals over both
age groups and year groups, in the top and bottom panels of Figure 3.4, the
medians of the residuals seem to be centred around zero in each group. Looking
at residuals over years, in the middle panel of the same figure, we see the same
tendency as we did for the male model residuals. The medians of the residuals
fluctuate up and down from year to year, but there is no clear pattern in how
they do so. The model seems to meet the model assumptions to a pleasant
degree and is therefore considered an adequate model for the female data set
observations.

Figure 3.4: Residual diagnostic plots of model M1f , deviance residuals are plotted against
variables used in the model. Top panel: residuals over age groups. Middle panel: residuals over
years. Bottom panel: residuals over year groups. Reference levels for each of the categorical
variables are given to the far left in the corresponding variabel-panels.

3.4 Check and interpretation of chosen models

Prediction of death rates in each group is calculated by inserting the maximum
likelihood estimates of models M1m and M1f into equation (3.1) (Agresti 2015,
pp. 28–29). We now want to check if the predictions made are satisfactory, and
that they match what we observed in Section 2.2.
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Check of estimates

Looking at the predictions made for male and female over age, as in Figure
3.5, we see that the difference earlier observed between the genders in Figure
2.1 still is intact. The plot is made by aggregating over the predicted number
of deaths in each group in our data instead of the observed number of deaths,
which we did in Figure 2.1. Aggregating over all variables except gender in our
predicted values the male death rate is 0.00187 and the female death rate is
0.00105. This is the same as we saw in our data summary, in Table 2.1, which
means the overal difference between genders for predicted death rates is the
same as for the observed death rates.

Figure 3.5: Predicted death rates by models M1m and M1f for males and females in given
age groups. Each gender is represented by a line: Blue = male, red = female. Predictions are
plotted on a log-scale.

Over the insurance years in our observations made in Section 2.2, we said
that the group of 20-29 year olds may die more frequent than the group of 30-39
year olds due to the fact that the youngest group has a higher proportion of
males. This hypothesis is partly true. For our female predictions the youngest
group has the lowest death rate through most of the time span. For the male
predictions however, this is not the case. Therefore when we aggregate our
predictions keeping only age group and years fixed, as in Figure 3.6, the youngest
group still tend to have a higher death rate up till the last eight years, meaning
there must be another factor or random variation causing the higher death rates
in the youngest age group.

The major drop in death rates in year 2004 which we observed in Figure
2.2, also appear in the prediction plot, Figure 3.6. The clear appearance of year
2004 may indicate that our models may not be smoothed enough over years.
We do however know that the models now in use is true to the real data, in that
there is no observed deaths in 2004. The models also seem to do predictions
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3. Generalized linear modelling

matching what we earlier observed over years. Predictions have more defined
differences between the age groups and smoother lines over years than what
the observations have, which is something we want. We therefore keep models
M1m and M1f as adequate models.

Figure 3.6: Predicted death rates over time in given age groups by model M1m and M1f .
Predictions were made using the covaraite values in the male and female data sets which
M1m and M1f were fitted to. The predictions were then indluded in the data sets and the
data from both models were aggregated together keeping year and age group fixed. Each
age group is represented by a line in the graph: red = 20 to 29 years old, blue = 30 to 39
years old, green = 40 to 49 years old, brown = 50 to 59 years old, black = 60 to 69 years old.
Predictions are plotted on a log-scale.

3.5 NACE-section effects

In the previous section we looked at models with grouped age, year and grouped
years as variables. We now want to see what effects NACE-sections may have
to the death rates and include this as a variable. We will not look at all
the NACE-sections at once, but will for this thesis focus on the three largest
NACE-sections in the data set. We will look at:

C - Manufacturing (699 deaths - Male: 613 and female: 86)
K - Financial and Insurance Activities (431 deaths - Male: 302 and female: 129)
G - Wholesale and retail trade; repair of motor vehicles and motorcycles.

(385 deaths - Male: 312 and female: 73)
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3.5. NACE-section effects

Observations

Before we start with a more detailed modelling we will have a look at some
summaries of the data observations. To look at the observed deaths rates we use
the age groups of ten and ten years. We have done so to get a better overview of
the trends between NACE-sections, as we know there are few observed deaths
for each individual age when we include more variables. Over years we have
used groups of three calendar years, as we will use this as a variable when later
fitting models and it makes it easier to see the possible differences in trends
between NACE-sections. Grouping the data observations in this way yields 135
observations (5 age groups x 9 year groups x 3 NACE-sections) for each gender.

Starting with the male observations, Figure 3.7, there are indications of
differences between the NACE-sections, both over age and year. In the left panel
of Figure 3.7 it looks like NACE-sections G and C have quite parallel trends
over age, G having lower death rates than C over the whole age span. We see
the same over the year span in the right panel of Figure 3.7. NACE-section G
here has lower death rates than C for most year groups, except from 2003-2005
where we know there is little exposure. NACE-section K has a steeper curve
over the age span than the two other sections, with one of the lowest death
rates for the youngest group and the highest death rate for the oldest group.
Over the year span NACE-section K has a curve shape differing from the curve
shape of the other two sections.

Figure 3.7: Observed male death rates over age (left panel) and year (right panel) in
different NACE-sections, each section is represented by a line. Red line: NACE-section C -
Manufacturing, green line: NACE-section G - Wholesale and retail trade; repair of motor
vehicles and motorcycles, blue line: NACE-section K - Financial and Insurance Activities.
Observations are plotted on a log-scale.

For the female observations we have different tendencies in trends between
NACE-sections than what we had for the males. Over age, Figure 3.8 a),
NACE-sections K and C look close to parallell. NACE-section G has low death
rates for the two youngest age groups, but from age group 40-49 onwards the
section has a death rate almost identical to NACE-section C. Over years, Figure
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3.8 b), we see some of the same tendencies as we did over age. NACE-section K
has a death rate higher than NACE-section C for most years, and NACE-section
G has death rates close to the death rates of NACE-section C.

Figure 3.8: Observed female death rates over age (left panel) and year (right panel) in
different NACE-sections, each section is represented by a line. Red line: NACE-section C -
Manufacturing, green line: NACE-section G - Wholesale and retail trade; repair of motor
vehicles and motorcycles, blue line: NACE-section K - Financial and Insurance Activities.
Observations are plotted on a log-scale.

Before we start fitting models we change the categorical age variable to
a numeric variable with age ranging from 20 to 69. Which means that the
models will have a linear term in age. We do however keep the categorical
three years span variable, Ygroup, explained in the previous section and the
categorical NACE-section variable. Aggregating our data with the three largest
NACE-sections, grouped years and single age observations should leave us with
1350 observations for each gender (3 NACE-sections x 50 ages x 9 year groups).
We do however not have exposures for each variable combination and end up
with a male data set of 1349 observations and a female data set with 1347
observations1.

Male - Model fitting and model selection

We fit models using forward selection, first specifying a model with the three
main effects as:

> M1.nace.m = glm(deaths ∼ offset(log(personYears)) +

age + yearGroup + NaceMain , family=poisson, data = subset for males)

1 Variable combinations with no exposure:
- Male of age 69 working in NACE-sections G insured at some point between 2003-2005.
- Female of age 69 working in NACE-section G insured at some point between 1997-1999.
- Female of age 69 working in NACE-section G insured at some point between 2003-2005.
- Female of age 20 working in NACE-section K insured at some point between 2006-2008.
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3.5. NACE-section effects

We then choose which interaction to add to the model using the add1() com-
mand in R, specified as:

> add1(M1.nace.m, scope= ∼age*yearGroup*NaceMain, test="LRT")

The function returns a list of all the first order interaction effects, the de-
viance and AIC of a model when an interaction effect is added, and the p-value
for the LRT of the interaction effect. The interaction effect indicated as most
significant, by having the lowest p-value for the LRT, is the interaction between
year group and NACE-section. We therefore add this interaction to our model.
We then run a new add1() command with our new model, and continue doing
so till we have the full model;

> M5.nace.m = glm(deaths ∼ offset(log(personYears)) +

age*yearGroup*NaceMain, family=poisson, data = subset for males)

including all main effects, all first order interactions and the second order
interaction between all included variables. Summaries of all the fitted male
models are given in Table 3.3. Comparing deviances through LRT, we see in
Table 3.3 that there are clear significant improvements in deviance up to model
M3.nace.m. When we check wheter we should add the interaction between age
and year group, in model M4.nace.m, however the choice of model is not as clear.
The p-value of the LRT is 0.0457, close to the 0.5 threshold and the AIC-score
of models M3.nace.m and M4.nace.m are almost the same 2. The BIC-score do
not prefer either of the two as the best model, comparing BIC-scores of the two
models however M3.nace.m comes out as the preferred model.

Table 3.3: Deviance table showing model summaries and hypothesis testing of models
fitted on male data with a totall of 1349 observations. Main components for variables are A:
linear numeric age, N: NACE-section and Ygroup: three and three years grouped together (as
explained in section 3.3). ∆ = deviance and p = number of parameters.

model variables 2 · log likelihood p ∆ Null hypothesis p-value
LRT

AIC BIC

M1.nace.m A + Ygroup + N -2589.2 12 1191.74 - - 2613 2676

M2.nace.m A + Ygroup+ N
+ Ygroup:N

-2553.7 28 1156.22 Ygroup:N=0: −2 log
L(M1.nace.m)
L(M2.nace.m)

0.0034 ** 2610 2756

M3.nace.m A + Ygroup +
N + Ygroup:N +
A:N

-2543.2 30 1145.70 A:N=0: −2 log
L(M2.nace.m)
L(M3.nace.m)

0.0052 ** 2603 2759

M4.nace.m A + Ygroup +
N + Ygroup:N +
A:N + A:Ygroup

-2527.4 38 1129.92 A:Ygroup=0: −2 log
L(M3.nace.m)
L(M4.nace.m)

0.0457 * 2603 2801

M5.nace.m A + Ygroup +
N + Ygroup:N +
A:N + A:Ygroup

+ A:Ygroup:N

-2516.5 54 1119.05 A:Ygroup:N=0: −2 log
L(M4.nace.m)
L(M5.nace.m)

0.8174 2625 2906

Predictions over age and year of model M3.nace.m are given in Figure 3.9.
Predictions are made for each NACE-section using the predict.glm() function
in R, here using NACE-section C as an example, through;

2Rounded of they are the same. Unrounded AICs; M3.nace.m: 2603.185 and M4.nace.m:
2603.409
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> pred.age.c = predict.glm(model, newdata = data.frame(personYears=1,

age=20:69, NaceMain="C", yearGroup="1997-1999"), type= "response")

> pred.year.c = predict.glm(model, newdata = data.frame(personYears=1,

age=50, NaceMain="C", yearGroup=year.groups), type= "response")

We fix the year group to 1997− 1999 when making predictions over age and fix
age at 50 when making predictions over year groups. This is done in order to see
the effects of each variable in the models and avoid shifts in curves which may
be caused by differences in distribution of age or year within NACE-sections.
The default output from predict.glm() is predictions on the scale of the
linear predictors, we therefore use type="response" to get predicted death
rates (R Core Team 2017). We could also have gotten the death rates by using
type="link", which is the default and then take exp(resulting predictions), as
we are working with the Poisson distribution and the default output therefore
is log(death rates).

From Figure 3.9 it is clear that a model with none or just one interaction
effect whould have been insufficient, to represent the trends observed in Figure
3.7. It looks like our chosen model, M3.nace.m, makes predictions representative
for the observations we made earlier. We do not get the shifting patterns from
one age group to the next, as we observed in Figure 3.7, because we use a
linear numeric age variable. This is most clear comparing the observations and
predictions for the younger population of the portfolio, under the age of 40. We
will try to solve this in Section 6.6 by using a smoothed version of age.

Figure 3.9: Predicted death rates over age (left panel) and year (right panel) of model
M3.nace.m. Predictions over age are made with fixed year period: 1997-1999. Predicitons over
year are made with fixed age: 50. Each NACE-section is represented by a line in each plot.
Red line: NACE-section C - Manufacturing, green line: NACE-section G - Wholesale and
retail trade; repair of motor vehicles and motorcycles, blue line: NACE-section K - Financial
and Insurance Activities. Predictions are plotted on a log-scale.

Despite the already addressed differences in slope over given ages the predic-
tion curves over age have a recognizable shape. NACE-section K has a steeper
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slope than the two other sections and NACE-sections C and G have almost
parallel lines over age. Prediction curves over year have a recognizable pattern
for all NACE-sections. NACE-section K does however have death rates closer to
the two other sections in the predictions, than what we saw in the observations.
This may be due to an older polulation in NACE-section K, causing higher
death rates in the observations than in the predictions, where we have fixed the
age at 50 for all NACE-sections.

Male - Deviance residual diagnostics

As with the models in the previous section we want to check that our chosen
model has deviance residuals that look random. Earlier we also checked if the
residuals had an approximate normal distribution. We will also look at this
now, but we cannot expect approximate normality as we have few deaths for
many observations. This is due to the increase in number of groups in the data
set and hence we have made each group smaller.

Looking at the deviance residuals of model M3.nace.m over the fitted values,
Figure 3.10 a), we have bands of residuals in the plot. This is due to the small
number of deaths in the observation. The lowest band of residuals belong to
observations with zero deaths, the second band belong to the observations with
one death and so on. It is therefore difficult to judge the plot by looking at
the residuals alone. The trend line in the same plot however show that the
residuals are centred just below zero and have a close to zero slope over the
fitted value span, hence there is no clear trend in the residuals. The histogram
of our residuals, in Figure 3.10 b), shows that the residuals have a higher peak
and are a bit right skewed compared to what they would have been if they were
normally distributed. Again, this may be due to a small number of observed
deaths in our data groups.

Figure 3.10: a) Deviance residuals of model M3.nace.m plotted over fitted values. Trend
line of residuals is given as a black line in the plot. b) Histogram of the deviance residuals of
model M3.nace.m with a normal distribution line drawn on top.

We want to check that our residuals do not make patterns over the variables
included in the model. In the top panel of Figure 3.11 we check the deviance
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residuals over age. We have many residuals and it can therefore be difficult
to tell if there is a trend or not based on the residuals alone. The trend line
of the residuals is however flat over the age span and centred just below zero,
meaning there is no clear trends in the residuals over age. The residuals also
look good over year groups and NACE-sections, middle and bottom panel of
Figure 3.11. The residuals are centred around zero and have no clear patterns
over either of the categorical variables.

Figure 3.11: Residual diagnostic plots of model M3.nace.m, deviance residuals are plotted
against variables used in the model. Top panel: residuals over age with a trend line drawn on
top. Middle panel: residuals over year groups. Bottom panel: residuals over NACE-sections.

Female - Model fitting and model selection

We fit models in the same way as we did for the males, using add1(). Trying
to add interactions however, none of the interaction variables have effects that
are significantly different from zero. Starting with a full model and dropping
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3.5. NACE-section effects

variables through drop1(), we end up with the same result, a model with main
effects only. Table 3.4 show two of the models fitted to the female data set.
Here model M2.nace.f is the model with the most significant interaction effect
added. It is clear however from the LRT, AIC and BIC that the model with
main effects only is the preferred model.

Table 3.4: Deviance table showing model summaries and hypothesis testing of models fitted
on female data with a total of 1347 observations. Main components for variables are A:
linear numeric age, N: NACE-section and Ygroup: three and three years grouped together (as
explained in section 3.3). ∆ = deviance and p = number of parameters.

model variables 2 · log likelihood p ∆ Null hypothesis p-value
LRT

AIC BIC

M1.nace.f A + Ygroup + N -1190.0 12 716.53 - - 1214 1276

M2.nace.f A + Ygroup+ N
+ A:N

-1187.8 14 714.39 A:N=0: −2 log
L(M1.nace.f)
L(M2.nace.f)

0.34 1216 1289

Death rate predictions over age and year by model M1.nace.f, from Table 3.4,
are given in Figure 3.12. Prediction plots are made in the same way as the male
predictions, by fixing year group to 1997− 1999 when making predictions over
age and fixing age at 50 when making predictions over year groups. We here
recognize some of the trends we saw earlier in our observations. NACE-sections
C and G have almost identical death ratepredictions over both age and year
groups.

Figure 3.12: Predicted death rates over age (left panel) and year (right panel) of model
M1.nace.f. Predictions over age are made with fixed year period: 1997-1999. Predicitons over
year are made with fixed age: 50. Each NACE-section is represented by a line in each plot.
Red line: NACE-section C - Manufacturing, green line: NACE-section G - Wholesale and
retail trade; repair of motor vehicles and motorcycles, blue line: NACE-section K - Financial
and Insurance Activities. Predictions are plotted on a log-scale.

The trend we saw in the observations, Figure 3.8, with lower death rates for
the two youngest age groups in NACE-section G are gone in the predictions
of the model. As in the male case, this is most likely due to the fact that we
have the same slope for all ages, not using a categorical variable, but a linear
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numeric one. It may also be due to differences in time insured, as we see a
tendency of decreasing death rates over time. It may also be due to random
variations, which is highly likely, as we have a small number of observations for
the younger female population and the interaction effect bewteen NACE-section
and age was insignificantly different from zero. NACE-section K have parallel
death rate predictions to the two other NACE-sections over both age- and year,
but with higher death rates than the other two. We get the parallel lines as we
do not have interaction effects in our model. In all NACE-sections death rates
increase with age, and decrease with years.

Female - Deviance residual diagnostics

In the female data set we have even fewer death observations in each group
than what we had for the males. We will therefore most likely have residuals
that are further away from having a normal distribution than the male deviance
residuals. The histogram of the deviance residuals, Figure 3.14 a), show that
this is the case. The residuals have a much higher peak than that of a normal
distribution, are right skewed and have a heavier upper tail. In Figure 3.14 a)
we check for randomness in the residuals. As in the male case, we get bands
of residuals in the plot, due to a small numbers of deaths. The trend line is
however flat and the residuals are centred just below zero, there is therefore no
trends of concern.

Figure 3.13: a) Deviance residuals of model M1.nace.f plotted over fitted values. Trendline
of residuals is given as a black line in the plot. b) Histogram of the deviance residuals of
model M1.nace.f with a normal distribution line drawn on top.

The deviance residuals plotted against variables used in model M1.nace.f,
Figure 3.14, show no patterns of concern. The residuals are centred just below
zero for all variables, and the trend line over age is flat.
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3.5. NACE-section effects

Figure 3.14: Residual diagnostic plots of model M1.nace.f, deviance residuals are plotted
against variables used in the model. Top panel: residuals over age with a trend line drawn on
top. Middle panel: residuals over year groups. Bottom panel: residuals over NACE-sections.
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CHAPTER 4

Alternative model distributions

In the previous chapter, we assumed that death counts are Poisson distributed.
Assuming this, we also assume that the variance in death counts is the same as
the mean death count when the number of person years is the same for a given
group of people. In practice however, this is not always the case. Death counts
may have greater variation than that predicted by the Poisson distribution, i.e,
we may have overdispersion. Our estimates made by the Poisson models are
still consistent, but the standard errors of the estimates get too small (Agresti
2015, p. 248). We will now discuss how we can check if we have overdispersed
data and look at two alternative models to the Poisson model which takes
overdispersion into account.

4.1 Poisson dispersion test

Overdispersion commonly occur in two different ways (Zuur et al. 2009, p. 224).
Firstly, it may occur due to the fact that we have left out some important
explanatory variables or that the variables causing variation are unmeasurable.
Secondly the observations may be correlated or clustered. We may also actually
have real overdispersion. In this section we test for overdispersion by doing
dispersion tests on the original data.

We let oijk be the number of non-aggregated data observations with age
i = 20-29,...,60-69, with gender: j = 0,1, insured in year: k = 1991,...,2017.
Then, given counts of death x1, ..., xoijk

we consider testing the null hypothesis
that these counts are Poisson distributed with common µijk versus the alter-
native hypothesis that they have different rates µijk1 , ..., µijkoijk

. The Poisson
dispersion test is defined as (Rice 2007, p. 348);

D =
oijk∑
o=1

(xijko − xijk)2

xijk
for i =20-29,...,60-69, j =0,1 and k =1991,...2017.

(4.1)
where xijk is the sample mean. D has an approximate chi-squared distribution
with df = oijk − 1 degrees of freedom under the null hypothesis (Rice 2007,
p. 349). We reject this hypothesis if D > χ2

oijk−1,0.95.
To test the hypothesis on our data, we have chosen to look at non-aggregated

data within given age ranges in the year 1998. We have chosen 1998 as this
year lack few exposures1 and is one of the years with the highest number of

1In the non-aggregated data we do not have exposures for all possible variable combinations.
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deaths. As the number of person years for each observation varies, we split the
test in such a way that person years are approximately equal, as seen in Table
4.1. The results of the tests in each exposure range, for males of age 50-59 can
be found in the samle table.

Table 4.1: Summary table of Poisson Dispersion Test done on males in the age group 50-59
in year 1998. D is the test statistic defined in equation (4.1). df is the degrees of freedom for
each test statistic.

Exposure mean variance D df p-value
Person years = 1 0.0012 0.0012 2528 2530 0.508

1< Person years <2 0.0187 0.0237 475 374 0.000 ***
Person years = 2 0.0029 0.0058 1370 685 0.000 ***

2< Person years ≤3 0.0046 0.0046 431 432 0.505
3< Person years ≤4 0.0087 0.0087 228 229 0.506
4< Person years ≤5 0.0157 0.0156 125 126 0.508
5< Person years ≤6 0.0345 0.0337 84 86 0.541

In most of the exposure groups in Table 4.1, there is no clear evidence of
overdispersion. In two of the exposure groups however, the Poisson Dispersion
Test (PDT) is marked as significant. We have performed the PDT for all age
groups in both the male and female population, again in the year 1998. We
have 5 age groups and 7 exposure groups, which leaves us with a total of 70
age and exposure groups, 35 for each gender. We do however end up with a
total of 43 tests to use, as we have age-exposure combinations with no observed
deaths2. Only considering PDT’s with observed deaths, a total of 3 out of 43
test are marked as significant (in addition to the two significant PDT’s shown
in Table 4.1; males of age 20-29 in exposure group; Person years = 1), all tests
are attached in Appendix B, page 103 and 104. To sum up the tests carried
out, there is no clear evidence of overdispersion in the data for the majority
of our observations, at least not in the year 1998. We could however have
overdispersion for some of our data or for other years. We will therefore use
two more methods to find out if the data is overdispersed or not.

4.2 The Quasi-Likelihood method

We group the data according to age groups: i = 20-29,...,60-69, gender: j =
0,1, year: k = 1991,...,2017 and NACE-sections: l = A,B,...,S,U,X. Why will be
explained later in this section. Grouping data in this way should leave us with a
total of 2835 observations for each gender (5 age groups x 27 years x 21 NACE-
sections). We do however not have exposures for each variable combination,
yielding 2729 observations in the male data set and 2691 observations in the
female data set3.

We do not give a full overview of which exposures are missing here. When exposures are
missing and models are fitted to given data however, an overview of missing exposures have
been attached. Throughout we treat missing exposures as missing completely at random.

27 group combinations with no deaths in the male data and 20 group combinations
with no deaths in the female data. See Appendix B, page 103 and 104 to see which group
combinations lack death observations.

3Overview of missing data can be found in Appendix B, page 101 - 102
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With data grouped as explained above, the mean - variance relation of each
exponential family response can be expressed as var(Xijkl) = φ · V (µijkl)(Jong
and Heller 2008, p. 94). For a Poisson response we have φ = 1 and V (µijkl) =
µijkl. If φ > 1 however, which is the case when we have overdispersion, the
function for var(Xijkl) above does not correspond to a Poisson distribution, nor
an exponential family response (Jong and Heller 2008, p. 94). As a consequence
the likelihood and therefore the maximum likelihood estimates cannot be found
by using the methods of the previous chapter, as we no longer have an actual
probability distribution to base the calculations on. As a solution we instead
maximize the quasi-likelihood (QL).

Instead of assuming a particular distribution, the QL only assume a mean-
variance relation for the distribution of Xijkl (Agresti 2015, p. 268). In the next
subsection, Jong and Heller (2008, Section 6.3) is used as reference if not else is
specified.

Parameter estimation

For a model with link function g(µijkl) = ηijkl, the quasi-likelihood estimate
β̂ is found in the same way as for an ordinary GLM, by solving the following
equation with respect to β:

u(β) =
∑
ijkl

{(
dµijkl
dβ

)T (xijkl − µijkl)
V ∗(µijkl)

}
= 0 (4.2)

The prior definition of V (µijkl) is here replaced by V ∗(µijkl) = φ ·V (µijkl). We
get the same estimates as in an ordinary GLM, as the dispersion parameter φ
drops out of the equation. At the same time we take the empirical variablility
into account as the the standard errors will be inflated by including φ.

For a Poisson model, we get the middle part of equation (4.2) by using
the definition of µijkl given in equation (3.1) and taking the derivative of
xijkl log(µijkl) − µijkl with respect to β. The quasi-likelihood function for a
Quasi-Poisson model is therefore defined as;

Q(β) =
∑
ijkl

{xijkl log(µijkl)− µijkl} (4.3)

Maximized with respect to β, through equation (4.2), the QL gives identical
regression parameter estimates to those from the usual Poisson regression. The
standard errors will however be different as they are multiplied by a factor of√
φ.
We will be fitting Quasi-Poisson models in R, which estimates the size of

the dispersion parameter by using the Pearson residuals. The Pearson residuals
are the raw residuals, xo − µ̂o, devided by the the estimated standard deviation
of X,

√
V (µ̂ijkl) (McCullagh and Nelder 1989, p. 37). Remembering what we

have discussed earlier in this section we have V (µ̂ijkl) = µ̂ijkl for a Poisson
response. Our Pearson residuals can therefore be defined as:

rpero
= xo − µ̂o√

µ̂
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4. Alternative model distributions

With the Pearson residuals in place, the size of the dispersion parameter, φ, is
estimated by (Zuur et al. 2009, p. 233);

φ =
O∑
o=1

r2
pero

O − p

where O equal the total number of observations, p is the number of regression
parameters and rper is the Pearson residuals. The quasi-likelihood estimation
is the same as maximum likelihood estimation when φ = 1.

Comparing Poisson models with Quasi-Poisson models

The fitted estimates from a Quasi-Poisson model is the same as for a Poisson
model. What varies is the standard errors of the estimates. We fit Poisson and
Quasi-Poisson models to our male and female data, using the same variables as
in Section 3.3. This time however, we fit the models on data sets aggregated as
explained earlier in this section, so that we have NACE-section as an additional
variable in the data sets, which is not included in the modelling.

We do this as it makes it easier to see variations and differences, both within
and between groups in the data sets. It leads to more observations within each
group of gender-age-year combination. The total number of observations is, as
mentioned earlier, 2729 for males and 2691 for females. The combination classes
of covariates used in the modelling, age and year is however much less (135: 5
age groups x 27 years). Hence, the µijkls will not depend on the NACE-sections
(l)4.

As we know from earlier in this section, the Quasi-likelihood equals the
likelihood when the dispersion parameter φ = 1. If the parameter is close to one
there is no evidence of overdispersion. If the parameter is much greater than 1
however, we have evidence of overdispersion. If the parameter is much less than
1, we have clustering (Zuur et al. 2009, p. 225). For our fitted Quasi-Poisson
models we get the following φ values:

qpM0m: φ = 1.006
qpM1m: φ = 1.095
qpM0f : φ = 1.150
qpM1f : φ = 1.396

The model names correspond to variables included in the Poisson models
in Table 4.2, page 39. Models names with a m at the end are fitted on male
data, model names with a f at the end are fitted on female data. We get
somewhat different results for the two genders. The tests suggest that the
male population is closer to Poisson distributed death counts than the females,
neither of the genders is however far off. As a rule of thumb a φ larger than 1.5
indicates that something must be done in order to correct for the overdipersion
(Zuur et al. 2009, p. 226). Here this is not the case and Poisson distributed
models may still be considered adequate.

4For each of the 21 NACE-sections this means that µijk1 = µijk2 = . . . = µijk21. The
number of summands in the likelihoods and quasi-likelihoods, will depend on the NACE-
sections as they increase the number of observations.
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4.3 The Negative Binomial distribution

There are a few different ways of defining the Negative Binomial (NB) distribu-
tion. We will use one of the most common definitions, where we make a NB
model as a Gamma mixture of Poisson.

Specification of model set-up

We use the same grouping of data as in Section 4.2, with two data sets, one for
each gender (j), with age group (i), year (k) and NACE-section (l) as available
variables. Given that mean Mijkl = m, we assume that Xijkl is Poisson
distributed. In addition we regard Mijkl as a gamma distributed countinous
random variable with density function (Jong and Heller 2008, p. 28);

g(m) = m−1

Γ(v) (m · v
µijkl

)v exp(−m · v
µijkl

) (4.4)

where g(m) = 0 for m < 0 and v is a shape parameter. The unconditional
probability function of Xijkl is then defined as (Jong and Heller 2008, p. 32);

P (Xijkl = xijkl) =
∫ ∞

0
P (Xijkl = xijkl |Mijkl = m) · g(m)dm

with P (Xijkl = xijkl | Mijkl = m) equal to P (Xijkl = xijkl) in equation (3.3)
when grouping of data is the same as in Section 3.1. Solving this integral and
substituting κ = 1/v yields the Negative Binomial pdf (Jong and Heller 2008,
pp. 32–33);

f(xijkl) = Γ(xijkl + 1/κ)
xijkl!Γ(1/κ)

(
1

1 + κµijkl

)1/κ(
κµijkl

1 + κµijkl

)xijkl

(4.5)

with E(Xijkl) = µijkl and var(Xijkl) = µijkl(1 +κµijkl) (Jong and Heller 2008,
p. 25). We get a more flexible alternative to the Poisson distribution. κ is a
dispersion parameter, controlling the deviation from the Poisson distribution
by adjusting the variance independently from the mean. As κ→ 0, f(xijkl)→
Poisson, in other words, the Poisson distribution is a special case of the NB
distribution where κ = 0 (Agresti 2015, p. 248). A Poisson model is therefore
a nested model of a NB model when fitted to the same data. Defining µijkl,
using the same link function as in equation (3.1);

µijkl = E(Xijkl) = exp{log(nijkl) + ηijkl}

and inserting the definition into equation (4.5) yields the Negative Binomial
regression model.

Parameter estimation

Estimation of regression parameters β and κ is done in the same way as we
did in Section 3.1, by using the maximum likelihood method. The likelihood
function of the Negative Binomial pmf can be expressed as;

L(x, µ) =
∏
ijkl

f(xijkl) (4.6)
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with f(xijkl) equal (4.5). As in the Poisson case, the likelihood depends on β
through (3.2)5. The values of β and κ which maximize the likelihood function
are chosen as regression parameters in our models. Standard errors of the
estimates are obtained in the same way as explained in Section 3.1.

Comparing Poisson models with Negative Binomial models

Despite dealing with two different distributions, we can compare our Poisson
and NB models in the same way as we compared models in Section 3.2, by
taking the difference in deviances, and carry out a LRT. We can do this because,
as mentioned earlier in this section, Poisson is a special case of NB, and hence
the models are nested. What is different for the LRT when comparing Negative
Binomial and Poisson models is the distribution of the test statistic. The
statistic has mass of 0.5 at zero, and a half-χ2

1 distribution above zero (Agresti
2015, p. 250). This is because κ ≥ 0, which means that κ = 0 is at the boundary
of the parameter space (Jong and Heller 2008, p. 91). When carrying out the
test, testing if κ = 0, we must therefore half the p-value we would get from the
usual LRT. The null-hypothesis is that the Poisson model holds, if we get a
p-value below 0.05 we reject the hypothesis and Poisson models are no longer
considered having an adequate fit. This would indicate dispersion in our data.

We fit Negative Binomial models to our male and female data, again with
NACE-section as a variable in the data sets, which is not used as a covariate
in the models. This, as in the Quasi-Poisson models, means that the value of
µijkl will be independent of NACE-sections (l)6. Comparing Negative Binomial
models with Poisson models for our male and female data sets respectively,
we get quite different results for the two genders. This time however, we get
the opposite suggestion regarding which gender is closest to having Poisson
distributed death rates, than what we got in Section 4.2.

In Table 4.2 we see that the Negative Binomial model is preferred by the
likelihood ratio test for the male models, with a significant p-value. For the
bigger male NB model, nbM0m, the p-value is not that far of the 0.05 threshold.
For det smaller male model, nbM0m, the p-value is small and clearly in favour
of the NB model. For the models fitted on female data however, the Poisson
model is preferred in both cases and we get κ close to zero in both NB models.
We get a split in terms of which distribution is preferred for the two data sets.

4.4 Conclusion on distribution

Even though some of the results above may indicate mild overdispersion com-
pared to Poisson, the main picture from the PDTs and the alternative models
based on quasi-likelihood the Negative Binomial distribution, is that there is
no clear sign of overdispersion. We therefore conclude that it is all right to
proceed with the assumption that the number of deaths are Poisson distributed.
One reason why there are no clear signs of overdispersion in our data may be
that there is a change in the companies insured form year to year. The tests

5given that grouping of data is the same as in Chapter 3.
6The number of observations used to calculate the likelihood, (4.6), will depend on the

NACE-sections as they increase the total number of observations.
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Table 4.2: Deviance tables showing model summaries and hypothesis testing of Poisson-
and Negative Binomial models. Main terms for variables are Agroup: age group and Y: year.
Ygroup is a categorical year variable where three and three years are merged together. ∆ =
deviance and p = number of parameters. κ is the dispersion parameter described in Section
4.3. Male models are fitted on a data set with 2729 observarions. Female models are fitted on
a data set with 2691 observarions.

Male models
model variables 2 · log likelihood ∆ p κ Null hypothesis p-value

LRT

pM0m Agroup+Y +
Agroup:Y

-4049.4 1727.94 135 - - -

nbM0m Agroup+Y +
Agroup:Y

-4046.1 1665.67 136 0.0218 κ = 0 :−2 log
L(M0m)
L(nbM0m)

0.034 *

pM1m Agroup+Y+
Agroup:Ygroup

-4133.2 1811.71 63 - - -

nbM1m Agroup+Y+
Agroup:Ygroup

-4124.5 1707.83 64 0.0369 κ = 0 :−2 log
L(M1m)
L(nbM1m)

0.002 ***

Female models
model variables 2 · log likelihood ∆ p κ Null hypothesis p-value

LRT

pM0f Agroup+Y +
Agroup:Y

-2052.0 1093.81 135 - - -

nbM0f Agroup+Y +
Agroup:Y

-2052.2 1092.73 136 0.0018 κ = 0 :−2 log
L(M0f )
L(nbM0f )

0.50

pM1f Agroup+Y+
Agroup:Ygroup

-2148.3 1190.07 63 - - -

nbM1f Agroup+Y+
Agroup:Ygroup

-2148.5 1187.16 64 0.0044 κ = 0 :−2 log
L(M1f )
L(nbM1f )

0.50

carried out in this chapter may have looked different if we had the same group
of people being observed over longer time spans.
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CHAPTER 5

Smoothing nonlinear relations

So far we have fitted models to our data using Generalized Linear Models
(GLMs). But patterns may not always be linear, or one good linear fit for
the whole data set may be hard to find. We now want to look at models that
assume less about the effects the covariates have on the µi’s than the parametric
models do. One way of doing this is by fitting Generalized Additive Models
(GAMs) of the form:

µ(z1, z2) = exp{α+ f1(z1) + f2(z2)} (5.1)

when vi have two numeric covariates like age and year. These types of models
are based on smoothing with splines fj , α is as earlier an intercept. Before we
look deeper into how we can use splines through GAMs on our data, in Chapter
6, we will use this chapter to explain what splines are and how smoothing can
be done for numeric observations with one covariate.

5.1 Splines

A linear spline is a continuous function within a chosen interval, formed by
linear segments which are connected (Hastie, Tibshirani, and Friedman 2009,
p.141). Each point where the segments connect is called a knot of the spline. We
have made an example of this in Figure 5.1 a). Here a linear spline is fitted to
constructed data1 within the interval z ∈ [0, 6]. This spline has two inner knots
at z = 3, z = 4 and two boundary knots at z = 0 and z = 6. The segments
between knots can also be polynomials (Hastie, Tibshirani, and Friedman 2009,
p.141), as in Figure 5.1 b). Here the fitted splines have, as the first spline, knots
at z = 0, 3, 4, 6. A spline made up of segments that are quadratic polynomials,
as the green line in Figure 5.1 b), is said to have order 3. This means that it is
made up of segments that are polynomials of degree 2, that it has 1 derivative,
and it is continuous at the knots. A spline made up of segments that are cubic
polynomials, as the red line in Figure 5.1 b) is said to have order 4. This means
that it is made up of segments that are polynomials of degree 3, and that it
has 2 derivatives, ensuring continuity. A spline of order 1 corresponds to using
step functions.

In general we say that a spline has order K. This means that the spline is
formed by connecting polynomial segments of degree K − 1, that it has K − 2

1Code used du construct data can be found in Appendix A, p.93
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Figure 5.1: Example of splines fitted on constructed data plotted as points. a) Linear spline
segments drawn as a blue line with two inner knots at z=3 and z=4. b) Two polynomial
spline segments with inner knots at z=3 and z=4. Two polyniomials of different degrees are
fitted to the data. Green line = quadratic polynomial, red line = cubic polynomial. Both
figures have boundary knots at z=0 and z=6 marked by dotted vertical lines.

derivatives at the knots and it is continous (Hastie, Tibshirani, and Friedman
2009, p.144). By carefully choosing the number of knots, and their location we
can control the shape of the spline. We can allow for flexibility when trends
change quick and avoid overfitting when the trends have little change. The
challenge is to choose the location and number of knots in such way that we
manage to balance smoothing and overfitting.

We divide the domain of our covariate z into contiguous intervals, splitted
by the knots, and represent f(z) by a separate polynomial in each interval.
This way we obtain a piecewise polynomial function (Hastie, Tibshirani, and
Friedman 2009, p.139);

f(z) =
M∑
m=1

βmBm(z) (5.2)

where M is the number of basis functions in a given type of spline. The number
of knots limits the number of basis functions, M . We will now look into an
example using B-splines.

5.2 B-splines example

To define B-splines we have, if not else is specified, used Hastie, Tibshirani, and
Friedman (2009, pp. 186–187) as reference. B-splines are defined according to
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given knots ξ1 ≤ ξ2 ≤ . . . ≤ ξN+1 ≤ ξN+2 with inner knots at z = ξ2, . . . , z =
ξN+1 and boundary knots at z = ξ1 and z = ξN+2. Out of these we make an
augmented knot sequence τ1 ≤ τ2 ≤ . . . ≤ τN+2K . Here N equals the number
of inner knots and K equals the order which we want our final splines to have.
The augmented knot sequence is made by repeating the boundary knots ξ1 and
ξN+2 K times each, and then shift the starting point to the first value of ξ1.
This is done in order to have enough evaluation points for the B-splines, up to
the desired final order K. The B-splines are defined recursively for every j, first
defined by the j’th B-spline of order 1, in the following way;

Bj,1(z) =
{

1 if τj ≤ z < τj+1
0 else (5.3)

where z is a given input variable. If τj ≤ z = τj+1 then Bj,1 = 0 and if
τj ≤ z = τj+1 = · · · = τj+m then Bj,m = 0. For 1 < k ≤ K;

Bj,k(z) = Wj,k(z)Bj,k−1(z) + (1−Wj+1,k(z))Bj+1,k−1(z) (5.4)

where;

Wj,k(z) =
{

(z − τj)/(τj+k−1 − τj) if τj < τj+k−1
0 else (5.5)

We call Bj,k(z) the j’th B-spline of order k and it is a polynomial of degree k−1.
An example showing how B-splines are calculated can be found in Appendix A,
p.93. We there calculate B-splines that are quadriatic polynomials with knots
in z = 0, 3, 4, 6, which is the same as the basis of the fit for the green line in
Figure 5.1 b). We will now look at how a function fit, using B-splines as basis
functions, change when the number of knots used in the B-spline basis differs.

Using the definition of least squares and the piecewise polynomial definition
(5.2), with B-splines as basis functions for a given knot sequence, we can fit
a function over z for our constructed data2. We assume that all zi values
are unique due to the way the data observations in this thesis are organized
and we know this is the case for our constructed data. We will from now on
only consider B-splines of order 4, hence cubic polynomials, as we will build
further on to these later in this thesis. The least squares are defined as (Hastie,
Tibshirani, and Friedman 2009, p.30);

RSS(β) =
I∑
i=1
{yi − f(zi)}2 =

I∑
i=1
{yi −

M∑
m=1

βmBm(zi)}2 (5.6)

where Bm is the m’th B-spline of order 4, I is the number of observations
and M is the total number of B-spline basis functions. The number of basis
functions for cubic B-splines is given by M = K +N , where K is the desired
order of our splines and N is the number of inner knots. We can write (5.6) in
matrix form as (Hastie, Tibshirani, and Friedman 2009, p. 45):

RSS(β) = (y −Bβ)T (y −Bβ) = yTy − 2βTBTy + βTBTBβ (5.7)

Here B is an I ×M matrix of M B-spline basis functions evaluated at I values
of z, for M < I. Hence is {B}im = Bm(zi). We then find the least square

2see Appendix A, p.93 for code used to construct data. This is the same data as mentioned
earlier in this chapter. When mentioning constructed data, this is the data we refer to.
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5. Smoothing nonlinear relations

estimate β̂ by differentiating (5.7) with respect to β and setting the resulting
derivative equal to zero:

dRSS(β)
dβ

= −2BTy + 2BTBβ (5.8)

dRSS(β)
dβ

= 0 =⇒ β̂ = (BTB)−1
BTy (5.9)

We get the fitted vector of spline values f̂ as a linear transformation of y, using
the result found for the least square minimizer β̂:

f̂ = Bβ̂ = B(BTB)−1
BTy = Hy (5.10)

The number of parameters in the fit, hence the number of βms, equals the
number of basis functions M . This is the same as the rank of H, also known
as the hat matrix in statistics. As H is a projection matrix its rank is equal to
its trace, the sum of the diagonal elements of the matrix (Agresti 2015, p. 35).
In other words we have trace(H) = rank(H) = M which equals the number
of parameters used to fit a given function.

We fit four different functions to the constructed data with cubic B-spline
basis functions using Equations (5.7) to (5.10). The only difference between
the fits are the number of knots used in the basis functions. Function fits are
given for 1,2,5 and 12 knots respectively. We see in Figure 5.2, that the more
knots the basis function has, the more the fitted function fluctuates and follows
the data. This is due to the fact that we get more parameters in the fitted
function, the more knots we have. From what we have discussed above we know
that K +N = M = trace(H) = rank(H). In our example it means that the
function estimates, which are of order 4, with 1,2,5 and 12 inner knots get 5,6,9
and 16 parameters respectively. Choosing which fit is the preferred is not as
clear here as for the fits we previously have looked at, as the functions no longer
are nested. We want a function that fit the data well, at the same time as we
do not want overfitting. We will discuss methods of dealing with this in Section
5.4.

5.3 Natural B-splines

A variant of polynomial B-splines are natural B-splines, we have used Hastie
and Tibshirani (1990, p. 24) as reference to define these. Natural B-splines
are, as the B-splines, defined as piecewise polynomials. They are however only
defined as polynomials of odd degree. We will only look into natural cubic
B-splines, as we will use this later in our thesis. The natural cubic B-splines
are cubic splines which use B-splines as basis functions and have two additional
constraints beyond the boundary knots: f ′′′(z) = f ′′(z) = 0. This makes the
splines linear outside the boundary knots and less flexible at the boundaries.
This is something we want, as polynomial splines have volatile fits near the
boundaries of the data which makes predictions unreliable. The constraints
in each boundary region reduce the dimension of the space, and hence the
number of splines calculated from M = K+N = 4 +N , which we had for cubic
B-splines, to M = 2 + N for natural cubic B-splines (Hastie and Tibshirani
1990, pp. 24–25). Here N is the number of inner knots. We are not going to
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5.3. Natural B-splines

Figure 5.2: Plot of predictions made by function fitted to constructed data. All functions
have B-splines of order 4 and boundary knots at z = 0 and z = 6. What differs between
functions is the number of inner knots. Each fitted function is represented by a line. Blue:
function with one inner knot in z = 3. Green: function with two inner knots in z = 3, 4.
Black: function with five inner knots in z = 1, 3, 3.5, 4, 5. Red: function with twelve inner
knots in z = 0.1, 0.6, 1.1, . . . , 5.1, 5.6. Points in plot, the constructed data, is the same as in
Figure 5.1.

look at the specific functions used to calculate natural cubic B-splines. We
will however look at an example showing what the differences between cubic
B-splines and natural cubic B-splines may look like.

We calculate cubic B-splines (BS) and natural cubic B-splines (NS), with
12 inner knots each, using the following functions in R:

> z = seq(-2,8,0.1)

> BS = bs(z,knots=seq(0.1,5.9,0.5),intercept=T, Boundary.knots=c(0,6))

> NS = ns(z,knots=seq(0.1,5.9,0.5),intercept=T, Boundary.knots=c(0,6))

This gives us a [101 × 16] BS matrix and a [101 × 14] NS matrix, with a
column for each spline and a row for each value z. We then plot each column
of the two matrices over z ∈ [−2, 8] as in Figure 5.3 a) and b). For the cubic
B-splines in Figure 5.3 a), we see that we get 4 lines in each boundary region
which goes to extreme values, it is these tendencies we want to reduce by using
natural cubic B-splines in Figure 5.3 b). We clearly see that the cubic B-splines
in Figure 5.3 a) goes to extreme values outside the boundary knots quicker
than the natural cubic B-splines in Figure 5.3 b). Hence the natural cubic
B-splines are more stable than the cubic B-splines in these regions. Within
the boundary, the natural cubic B-splines are the same as the cubic B-splines
for all values, except from the first four and last four cubic B-splines near the
boundary knots. Hence we get more stable splines outside the boundary knots,
without much change within the boundaries. This is also reflected when the
fitted functions using BS and NS as basis functions are extrapolated outside the
region z ∈ [0, 6], in Figure 5.4. The curve that use the BS basis drops rapidly
in the upper boundary region, whereas the model that use the NS basis keeps
a positive linear trend. Within the boundary knots the fitted curves look the
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5. Smoothing nonlinear relations

same.

Figure 5.3: Spline exampes with boundary knots in z = 0 and z = 6 marked by grey
vertical lines, and twelve inner knots at z = 0.1, 0.6, . . . , 5.1, 5.6. a) Cubic B-splines plotted
over z ∈ [−2, 8], each spline is represented by a line in the plot. b) Natural cubic B-splines
plotted over z ∈ [−2, 8], each spline is represented by a line in the plot.

5.4 Natural cubic smoothing splines.

A natural cubic smoothing spline is a natural cubic B-spline with a knot in every
uniqe value of zi, which means we end up with I − 2 interior knots, where I
equals the number of uniqe observations (Hastie and Tibshirani 1990, p. 27). It
can be shown, that among all functions f(z) with two continous derivatives, the
natural cubic smoothing spline is the unique function which minimize (Hastie
and Tibshirani 1990, p. 27):

I∑
i=1
{yi − f(zi)}2 + λ

∫
{f ′′(z)}2dz (5.11)

Hence it arise as the solution to an optimization problem. We recognize the first
part of (5.11) from the definition of least squares given in (5.6). It measures
the closeness to the data. The second part of (5.11) penalize curvature in the
function for a given constant λ. As with (5.6), we can write (5.11) in matrix
form as (Hastie, Tibshirani, and Friedman 2009, p. 152):

(y −Nβ)T (y −Nβ) + λβTΩβ (5.12)
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5.4. Natural cubic smoothing splines.

Figure 5.4: Fit of functions on constructed data, using splines from Figure 5.3 as basis
functions. The constructed data is shown as points in the plot, over z ∈ [−2, 8]. Each type
of spline basis function fit is represented by a line. Red: function with cubic B-spline from
Figure 5.3 a) as basis function. Dotted blue: Function with natural cubic B-spline from
Figure 5.3 b) as basis function.

The first part of this equation we recognize from (5.7). We have replaced
the matrix of B-spline basis functions B[I×(4+N)] which we had for the cubic
B-splines, Section 5.2, with N . This is an [I × I] matrix with columns for each
natural spline basis, as we get M = 2 + N = 2 + (I − 2) = I basis functions
using a knot in every observation. The second part of 5.12 we get from;∫

{f ′′(z)}2dz =
∫
{

I∑
m=1

βmN
′′
m(z)}2dz

=
I∑

m=1

I∑
t=1

βmβt

∫
N ′′m(z)N ′′t (z)dz = βTΩNβ (5.13)

where {ΩN}mt =
∫
N ′′m(z)N ′′t (z)dz (Hastie, Tibshirani, and Friedman 2009,

p. 152). The solution to the minimization is found in the same way as in (5.9).
By differentiating (5.12) with respect to β;

d

dβ
{(y −Nβ)T (y −Nβ) +λβTΩβ} = −2NTy+ 2NTNβ+ 2λΩβ (5.14)

setting the derivative equal to zero and solving for β gives:

β̂ = (NTN + λΩN )−1NTy
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5. Smoothing nonlinear relations

We then get the vector of fitted values through (Hastie, Tibshirani, and Friedman
2009, p. 153):

f̂ = Nβ̂ = N(NTN + λΩN )−1NTy = Sλy (5.15)

We get the linear operatior Sλ, known as the smoother matrix. It is similar to
the hat matrixH in that it is positive semidefinite and symmetric. It is however
not indempotent and has rank I = M = 2 +N instead of rank M = 4 +N . In
Section 5.2 we found the number of parameters in a fit, and hence the degrees of
freedom by taking the trace of H. By analogy the effective degrees of freedom
of a smooting spline is defined as dfλ = trace(Sλ) for a given λ (Hastie and
Tibshirani 1990, p. 52).

Effects of changing lambda

Till now we have only mentioned λ as a given constant when our smoother
matrix is calculated. The smoothing parameter λ establishes a tradeoff in (5.11)
between fit to the data and smoothness of the function. We will now look at how
different values of λ affects how curves are fitted to given observations through
some examples. In R we fit three curves for λ = 0.001, 0.01, 0.1 respectively to
our constructed data through;

> smooth.splines(y, lambda = given.value, all.knots = T)

and plot the results, as in Figure 5.5. The curves show that the smaller
the lambda, the greater the curvature. The smoothing parameter can take any
value λ ∈ (0,∞) (Hastie, Tibshirani, and Friedman 2009, p. 151). As λ→∞
the fit goes to a straight line, as any curvature in the function is endlessly
penalized. Looking at the other end of the scale however, where λ → 0, we
no longer care about curvature and the fitted function can be any function
interpolating the data.

As the smoother matrix is calculated for a given value of λ we know that λ
will affect the trace of the matrix, and hence the effective number of parameters
used to fit a curve. For our fitted curves with λ = 0.001, λ = 0.01 and λ = 0.1,
we get dfλ=0.001 = 6.62, dfλ=0.01 = 4.16 and dfλ=0.1 = 2.78. The greater the
lambda the smaller the degrees of freedom. We get the same results taking the
trace of the resulting Sλ matrices3. As dfλ = trace(Sλ) is monotone in λ, the
relationship can be inverted, fixing df in the model specifications to specify the
amount of smoothing (Hastie, Tibshirani, and Friedman 2009, p. 158). This
gives a more uniform way of dealing with comparison of different smoothing
methods and is especially useful in generalized additive models, which we will
look at in Chapter 6.

Choosing the optimal lambda

We have now seen the effect that different λ values may have on a fit, we do
however not know which λ is the best and how we find the optimal λ. Hence,
we still want to find the optimal amount of smoothing, as in Section 5.2, but
instead of changing the number of knots we put a knot in each uniqe observation

3An example showing this can be found in Appendix A, p. 96
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5.4. Natural cubic smoothing splines.

Figure 5.5: Curve fits on constructed data given different values of lambda. Each fit for a
given lambda is represented by a line. Green: λ = 0.1, blue: λ = 0.01, red: λ = 0.001.

and try to find the optimal value of λ. To get the best fitted smoothers R uses
generalised cross-validation (GCV), but before we go on to explain what this is
we look at ordinary cross-validation (OCV)

The OCV-score, or the cross-validation sum of squares, is defined as (Hastie
and Tibshirani 1990, p. 43):

CV(λ) = 1
I

I∑
i=1
{Yi − f̂ [−i]

λ (zi)}2 (5.16)

Here all observations except from observation i are used to calculate the fit,
f̂

[−i]
λ (zi), at zi, leaving I−1 observations to calculate each fit. The notation [−i]
indicates this and mimics the use of test- and training samples for predictions
(Hastie and Tibshirani 1990, p. 43). It can be shown that (5.16) equals (Hastie
and Tibshirani 1990, p. 48):

CV(λ) = 1
I

I∑
i=1

{
yi − f̂λ(zi)
1− Sii(λ)

}2

(5.17)

In this second definition the i’th observation is included when fitting f̂ . Sii
is the i’th diagonal element of the smoothing matrix Sλ and f̂λ(zi) is the
optimized fitted value for observation zi for a given value of λ. We will not
go into explaining why (5.16) equals (5.17), but those curious to look deeper
into it are referred to Hastie and Tibshirani (1990, pp. 46–48). To find the
optimal λ the OCV-score (5.17) is computed for a range of suitable λ-values.
The λ that minimizes the value of (5.17) is then chosen. OCV has a tendency
of undersmoothing, this tendency is reduced in GCV (Hastie, Tibshirani, and

49



5. Smoothing nonlinear relations

Friedman 2009, p. 245). GCV is therefore often preferred and is the default
function used when fitting smoothing parameters in R.

The GCV approximation of OCV is defined as (Hastie and Tibshirani 1990,
p. 49):

GCV(λ) = 1
I

I∑
i

{
yi − f̂λ(zi)

1− trace(Sλ)/I

}2

(5.18)

The diagonal elements of the smoothing matrix, Sii(λ), in (5.17) have in (5.18)
been replaced by the mean of the diagonal elements. GCV follows the same
procedure as OCV to find the optimal λ value, by calculating a score for a range
of different λ-values and then choose the value that minimize the GCV-score.
We have shown this procedure over chosen values of λ and the corresponding
effective degrees of freedom (edf) for our constructed data in Figure 5.6. Here,
going from left to right in both plots, we se that the GCV-score decreases up
to certain values of lambda and edf before the trends turn and the GCV-score
increase. The minimum GCV-score for the fits we try here is GCV = 56.11. The
preferred lambda and corresponding edf are those which are at the minimum
value of the GCV-score. In this case this is λ = 0.001517, corresponding to
edf = 6.05, marked as green points in the plots4.

Figure 5.6: GCV-score plotted against λ (left panel) and edf, the effective degrees of freedom
(right panel). Minimum value of the GCV trace with corresponding λ and edf values are
marked by a vertical dashed line and a green point in both plots.

We let R go through the same procedure as we did above using smooth.spline(z).
This gives us edf = 6.06, with corresponding λ = 0.001539. Fitting a curve
through the constructed data, smoothed over z with this default fit yields the
fitted line in Figure 5.7.

We have now looked at splines for a numeric response, hence in the context
of the classic linear regression domain. In our case however, we have a Poisson
distributed response. In the next chapter we will look at how this can be
handled with splines.

4Code for the plots can be found in Appendix A, p. 98
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5.4. Natural cubic smoothing splines.

Figure 5.7: Default smoothed fitted function, smoothed over z for our constructed data.
The data set has 61 observations, with observations in z ∈ [0, 6] shown as points in the plot.
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CHAPTER 6

Generalized additive modelling

Till now, we have discussed smoothing in a classical regression setting. In the
GLM setting, Chapter 3, however we used Poisson regression. Considering
our data, we would like to transfer what we have discussed about splines to
a Poisson regression domain to see how splines can be used to smooth our
numerical variables in Generalised Additive Models (GAMs). GAMs is an
extension of GLMs using transformations of the input variables, creating a new
space to fit linear models (Hastie, Tibshirani, and Friedman 2009, p. 139). We
want to fit functions in the form (5.1), where fj(zj) are smoothing splines.

6.1 Model set-up and model optimization

In Poisson regression we do not use the residual sum of squares (5.6) to measure
goodness of fit. Instead the log-likelihood is used. A small residuals sum
of squares corresponds to a large log-likelihood value. The greater the log-
likelihood value the closer is the model fit to the data observations. Considering
a case with only one input variable z, the Poisson log-likelihood can be defined
as:

l(x, µ) =
I∑
i=1
{xi log(µi)−µi− log(xi!)} =

I∑
i=1
{xif(zi)− exp{f(zi)}− log(xi!)}

This is achieved by taking the log of the likelihood defined in (3.5) and defining
log{µ(z)} = f(z), which implies µ(z) = exp{f(z)} (Hastie, Tibshirani, and
Friedman 2009, p. 161). Hence, µi depends on zi. The penalized log-likelihood
corresponding to the penalized RRS, (5.11), is then constructed as (Hastie and
Tibshirani 1990, p. 149):

lpen(f, λ) =
I∑
i=1
{xif(zi)− exp{f(zi)} − log(xi!)} −

1
2λ
∫
{f ′′(z)}2dz

As with the penalized RSS, it can be shown for a given value of λ that the
function f which maximize lpen(f, λ) is a natural cubic spline with knots at
each value of z (Hastie, Tibshirani, and Friedman 2009, p. 162). This means
that we can represent f , as we did in (5.13), by f(z) =

∑I
m=1 βmNm(z).

To optimize λ we use gam from the mgcv package in R. For linear regression
with numeric data the GCV-score, explained in Section 5.4, may be calculated in
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6. Generalized additive modelling

order to find the optimal λ. For the Poisson distribution however the Unbiased
Risk Estimator (UBRE) is calculated for a number of different λ values and the
λ minimizing the UBRE-score is chosen. The UBRE-score is in general defined
as (Wood 2018d);

GCVUBRE = Dλ

I
+ 2 · s · edfλ

I
− s (6.1)

where the number of observations equals I, D is the deviance of the model,
edf is the effective degrees of freedom and s is a scale parameter. In Poisson
regression s = 1 and the deviance is

∑
{yi log(yi/µi)− (yi − µi)}. The UBRE

score is only used when the scale parameter is known (Wood 2018d) and is
effectively just AIC rescaled. AIC can be defined as 1:

AIC = −2 · l(x, µ̂λ) + 2 · edfλ

The deviance of a model is, as discussed in Section 3.2, defined as:

Dλ = 2 · l(x, x)− 2 · l(x, µ̂λ)

We can rewrite the definition of GCVUBRE (with s = 1) to show the connection
between the UBRE-score and AIC-score as:

(GCVUBRE + 1) · I = Dλ + 2 · edfλ
= 2 · l(x, x)− 2 · l(x, µ̂λ) + 2 · edfλ
= 2 · l(x, x) + AIC (6.2)

The smaller the UBRE-score the smaller the AIC, as the rest of the components
in (6.2) do not depend on the model. Hence, the λ that gives the smallest
UBRE-score will also give the smallest AIC-score.

Assuming Poisson distributed death counts the GAM Poisson regression
model looks like the GLM Poisson regression model (3.4) when grouping of
data is the same. The definition of ηi is what makes the difference in the types
of modelling. In the GLM case, (3.2), now with only one numeric covariate and
offset log(ni), we have:

log(µi) = log(ni) + ηi = log(ni) + ziβ

In the GAM case however, we have;

log(µi) = log(ni) + ηi = log(ni) + f(zi) (6.3)

where f(zi) is a smoothing spline fitted over the numeric variable. Hence, the
shape of the model is defined through a smoothed version of our numeric variables
instead of the numeric variable itself, or a categorical variable constructed from
the numeric variable, as we did with age groups and year groups in Section 3.1.

In (6.3) it is common to include a constant term, α, so that the model
becomes:

log(E[deathsi]) = α+ log(ni) + f(zi)
1Explained in Section 3.2, p.15, here with number of parameters p replaced by the effective

number of parameters edfλ.
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Working with functions rather than the variables themselves however introduce
an identifiability problem: the function f is only estimable up to an additive
constant (Wood 2017, p. 175). For example, we can subtract a constant from α
and simultaneously add it to f without changing the predictions of our model.
For the model to be well-defined we need to solve this identifiability problem.
It can be solved by introducing the sum-to-zero constraint (Wood 2017, p. 175),
for the function f so that:

I∑
i=1

f(zi) = 0

The only effect of this constraint is that it sets the mean value of the function
to zero by shifting it vertically. Hence, the function still has the same shape
and penalty value as before the constraint was implied.

6.2 Model diagnostics

To specify our GAMs we use the gam function from the mgcv package in R.
As a reference Wood (2017, Chapter 4) is used throughout this section. We
will illustrate how the gam function works, by an example using our own data.
Aggregating all our observations, only keeping gender and age fixed, we get two
data sets, one for each gender, with 50 observations each representing age 20 to
69. We fit one model for each of these data sets through:

> library(mgvc)

> default.male = gam(deaths ∼ s(age), offset = log(personYears),

family ="poisson", data = male.subset)

> default.female = gam(deaths ∼ s(age), offset = log(personYears),

family ="poisson", data = female.subset)

This fits the generalized additive model;

log(E[deathsi]) = α+ log(ni) + f(agei)

where deathsi ∼ Poisson and the smoothing function f is specified by s( ). By
default the amount of smoothness on variable age is obtained by minimizing (6.1)
with respect to λ. The models have dfλ = 4.98 for the male model and dfλ = 3.82
for the female, hence a total edfmale model = 5.98 and edffemale model = 4.82. We
add one to get the total edf due to the sum to zero constraint and the constant
intercept term α. Thinking back to what we saw in the previous chapter, a
higher dfλ means less smoothing. In this case it means that the model fitted to
the female data is smoothed more, hence has a greater λ giving the punishment
for curvature in the fitted function (5.11) more weight, than in the male model
case.

We have plotted the observations and the fitted values along with the
smoothed functions fitted to both data sets in Figure 6.1. Left panel shows
estimated deaths for the original data vs. what actually has been observed.
The straighter the line, the closer the estimated values are to the observed
values. The middle and right panels of this figure show the estimated effects of
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the smoothing terms as solid curves, with 95% confidence limits 2 marked as
shaded regions. The fitted smoothing line effects are, as explained in the last
section, constrained to sum to zero (Wood 2017, p. 183). The partial residuals
are plotted as points in the middle and right panels of Figure 6.1. For a smooth
term the partial residuals are the residuals that would be obtained if we kept all
other estimates fixed and dropped the term of concern (Wood 2018a). Hence it
is the smooth term pluss the model residuals. If the model fits well, the partial
residuals should be evenly scattered along the curve they belong to. In our case
the residuals seem to do so to a pleasant degree.

Figure 6.1: Left panel: Actual number of deaths observed plotted against predicted number
of deaths. Predictions are made by default age-smoothed GAMs, fitted on male (blue) data
and female (pink) data. Middle panel: Estimated smoothing curve for age in the female data
set (solid line). The pink shade around the solid line is the 95% confidence interval. Right
panel: Estimated smoothing curve for age in the male data set (solid line). The blue shade
around the solid line is the 95% confidence interval. The black points in the middle and right
panels of the figure are the partial residuals.

If we plot predicted death rates using these default smoothed models, along
with the observed death rates for males and females, we get Figure 6.2. This
figure has a recognisable pattern from what we observed in figures 2.1 and 3.5.
The predictions and confidence intervals are made using predict.gam(), a
function which work in the same way as predict.glm(), explained in Section
3.5, but for GAMs (Wood 2018e). We get the predictions and the upper and
lower confidence intervals as follows, using the male population as an example:

> pred.age.m = predict.gam(model, newdata=data.frame(personYears = 1,

age=20:69), se.fit=TRUE, type="link")

se.fit=TRUE allows us to get the standard error estimates of the predictions
(Wood 2018e). Both predictions and standard errors are returned on the scale
of the linear predictor. We create our confidence interval limits on the linear
predictor scale through:

2The confidence intervals are strictly Bayesian credible intervals, we will not look further
into these, but those curious are referred to Wood (2017, Section 6.10). The intervals are
given by default running plot(GAMmodel) in R.
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> upper = pred.age.m$fit + (2 ∗ pred.age.m$se.fit)
> lower = pred.age.m$fit − (2 ∗ pred.age.m$se.fit)

The resulting predictions, upper and lower confidence limits are then plotted
on a log-scale by taking exp(pred), exp(upper) and exp(lower) and specifying
log = "y" in the plot() function to get the plot on a log-scale.

Figure 6.2: Predicted death rates (solid lines) by models default-smoothed for age, fitted
on male (blue) and female (pink) data respectively. Data observations are drawn as points in
the plot. The 95% confidence intervals are drawn for each model fit as shades around the
model fit line, blue: male model confidence interval, pink: female model confidence interval.

We can carry out residual diagnostics for GAM in the same way as we
did for GLM. The residuals should, as for GLM, be random, have a normal
distribution3, constant variance and zero mean. We check these assumption by
plotting diagnostic plots of the deviance residuals, defined as (3.7)4 in figures
6.3 and 6.4.

For the male model residuals, Figure 6.3, the residuals look random over
both the fitted values, in panel b), and the age variable, in panel d). Looking at
the QQ-plot and histogram of the residuals, panels a) and c) in the same figure,
the residuals have a distribution which look close to normal in the QQ-plot, but
not as close in the histogram. There are some peaks in the histogram, in the
outer residuals regions (at residuals equal −2 and 1), that would not have been
there with a perfectly normal distribution. The residuals do however meet the
model assumptions to a pleasant degree.

In the female model case, Figure 6.4, the residuals look random over the age
variable in panel d). There is however tendencies of a trend over the fitted values,
panel b), when the fitted values are above 15. Looking at the QQ-plot and

3The residuals have a close to normal distribution only when µ̂i is of reasonably large
value (McCullagh and Nelder 1989, p. 38)

4Given that grouping of data is the same
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6. Generalized additive modelling

Figure 6.3: Residual diagnostic plots of male model default-smoothed for age. a) QQ-plot
of deviance residuals. b) Deviance residuals plotted over fitted values. Trend line of residuals
is given as a black line in the plot. c) Histogram of deviance residuals with a normal line
plotted on top. d) Deviance residuals plotted over age with a trend line given as a black line
in the plot.

Figure 6.4: Residual diagnostic plots of female model default-smoothed for age. a) QQ-plot
of deviance residuals. b) Deviance residuals plotted over fitted values. Trend line of residuals
is given as a black line in the plot. c) Histogram of deviance residuals with a normal line
plotted on top. d) Deviance residuals plotted over age with a trend line given as a black line
in the plot.
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histogram of the residuals, panels a) and c) in the same figure, the distribution
of the residuals have a bit longer tail than what we would expect from a normal
distribution. The residuals of the female model do not look as good as the
residuals of the male model. This is however reasonable, as the µ̂i’s are greater
across the age span for the male population. It is room for improvement in
both models. We now go on to look at possible improvements of the models
adding and smoothing over additional numerical variables.

6.3 Adding main effects

So far we have only looked at GAMs with one covariate. In this section however,
we add year as a covariate, both in the data set and in the models. Aggregating
our data keeping age, year and gender fixed we get two data sets, one for male
and one for female, with 1350 observations each. Unless other is specified, Wood
(2017, Section 4.3) is used as reference in this section.

We now want to fit models of the form

log(E[deathsi]) = α+ log(ni) + f1(agei) + f2(yeari) (6.4)

with i = 1, ..., I and I equals the number of observations. Each function f1
and f2 is in the form we have discussed earlier, f(z) =

∑M
m βmNm(z), with

parameters βm and basis functions Nm for m = 1, ...,M , where M equal the
number of basis functions. Each function is under the sum-to-zero constraint, as
explained in Section 6.1, to avoid identifiability problems between the intercept
and either of the functions or between the f1 and f2.

With this constraint in place we can find an optimal fit for each gender
through a procedure called backfitting. To do so for a Poisson regression model,
the backfitting procedure is used to maximize the penalized log-likelihood
in combination with a likelihood maximizer. We will not do any further
explanations regarding how this is done, but those interested are referred to
Hastie, Tibshirani, and Friedman (2009, p.299–300).

6.4 Model selection criteria and model selection

Deciding on which model that fit our data best when we fit multiple models, is
not as clear here as before. We can not use deviance comparison and LRT as
the models are not nested. We may however, as mentioned in Section 3.2 use
AIC and BIC to compare our models. Dealing with models containing splines
we have to make small adjustments to the traditional definition of AIC and
BIC given in Section 3.2 (Wood 2017, pp. 301–304);

AIC = − 2(log(L(x, µ̂))− edfλ)
BIC = − 2 log(L(x, µ̂)) + log(number of observations) · edfλ

where the number of parameters p is replaced by edf, the effective degrees of
freedom, or the effective number of parameters. This is done as the coefficients,
as explained in Section 6.1, are fitted using penalized likelihood. In order to
account for the penalized estimates we therefore use edf in the penalty terms of
the definitions (Wood 2017, p. 301). The way we judge the AIC- and BIC-score
is however the same as before. Comparing models fitted to the same data, the
lower the score the better the model fit.
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Male model selection

The models fitted to the male data set in this section is given in Table 6.1.
Comparing AIC and BIC values it is clear that a model with age or year as only
covariate is insuffisient, as the model with both smoothed age and smoothed
year has the lowest UBRE-, AIC- and BIC-score. The edf of a model fitted
with one covariate is, as mentioned earlier, the trace of the smoothing matrix
Sλ. The total edf of a GAM with more than one smoothed term is found by
summing the degrees of freedom in each smoothing term and add one for the
intercept (Wood 2017, p. 252).

Table 6.1: Table showing model summaries of GAMs fitted on male data with age and year
as available variables. Variables are numerical and called A: age and Y: year. s(variable)
means that smoothing splines are used on the variable. edf is the effective degrees of freedom
in the model. UBRE, AIC and BIC colums give the corresponding test-scores for each model.
Models are fitted on a data set with a total of 1350 observations.

model variables edf UBRE AIC BIC

m.a.mod s(A) 5.98 0.40 4139 4170

m.y.mod s(Y) 9.39 2.82 7413 7462

m.ay.mod s(A)+ s(Y) 14.14 0.06 3682 3756

The left panel of Figure 6.5 shows the observed number of deaths versus the
fitted number of deaths for the male data set. The fit looks quite good up till
around 12 deaths. There seem to be some factors or variations which lead to
the model not predicting the highest death numbers. We will not look at the
residual diagnostic plots of the model, as this is not the focus in this section,
those curious however can find them in Appendix B, p.59, Figure B.1, panels a)
to e).

Results of our smoothing procedure on the male data set, middle panel
Figure 6.5, show less smoothing over age when year is included than with just
age alone, with dfλage = 5.13 now, compared to dfλage = 4.98 which we have
for the simpler model in both the previous section and this section. It is also
clear from the right panel of Figure 6.5 that different degree of smoothing is
required over age and year, as year is less smoothed with dfλyear

= 8.01. Hence,
we have a more wiggly tendency across the year span, than we have for the age
span. Except from the younger population, under 35, the death trend looks
linear and the higher the age the higher the death rate. Over the year span we
see a decreasing death rate going from the first years in the 1990’s to 2017.

Female model selection

The models fitted to the female data set in this section are given in Table
6.2. As in the male case, it is clear that a model with only smoothed age or
smoothed year is insuffisient. The difference is however not as clear as in the
male model case, as the UBRE-, AIC- and BIC-score of the models are closer
for the female models than they were for the male models.

The left panel of Figure 6.6 show observed number of deaths versus predicted
number of deaths in the female data set. The fit here does not look as good as
it did for the male model, as we have more points falling out from the trend
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Figure 6.5: Left panel: Actual number of deaths observed plotted against predicted number
of deaths. Predictions are made by a default age- and year-smoothed GAM, fitted on male
data. Middle panel: Estimated smoothing curve for age in the male data set (solid line).
Right panel: Estimated smoothing curve for year in the male data set (solid line). The blue
shades around the solid lines in the middle and right panel of the figure is the 95% confidence
intervals of the smoothed curves.

Table 6.2: Table showing model summaries of GAMs fitted on female data with age and
year as available variables. Variables are numerical and called A: age and Y: year. s(variable)
means that smoothing splines are used on the variable. edf is the effective degrees of freedom
in the model. UBRE, AIC and BIC colums give the corresponding test-scores for each model.
Models are fitted on a data set with a total of 1350 observations.

model variables edf UBRE AIC BIC

f.a.mod s(A) 4.84 -0.15 2149 2174

f.y.mod s(Y) 3.21 0.34 2815 2832

f.ay.mod s(A)+ s(Y) 13.25 -0.20 2083 2152

line and they fall out at an earlier stage of the death count span. We will not
look at the residual diagnostic plots of this model either but those curious can
find them in Appendix B, p.59, Figure B.1, panels f) to j).

Results of our smoothing procedures in the female data, middle panel Figure
6.6, show a bit more smoothing over age when year is included than with just
age alone. We now have dfλage = 3.57, when both age and year is included,
compared to dfλage = 3.82 which we had for the simpler model with age only
in the previous section. As in the male model case, it is also clear from the
right panel of Figure 6.6 that different degree of smoothing is required over
age and year, as year is less smoothed with dfλyear

= 8.68. We have a more
wiggly tendency across the year span in the female case, than what we had for
males. We do however still see a decrease in death rates over years. Over age
we see the same tendency as we did for the males, the higher the age the higher
the death rate. The smoothed curve does however look non-linear for the older
population, 60+, rather than for the youngest population, which was the male
case.
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Figure 6.6: Left panel: Actual number of deaths observed plotted against predicted number
of deaths. Predictions are made by a default age- and year-smoothed GAM, fitted on female
data. Middle panel: Estimated smoothing curve for age in the female data set (solid line).
Right panel: Estimated smoothing curve for year in the female data set (solid line). The pink
shades around the solid lines in the middle and right panel of the figure is the 95% confidence
intervals of the smoothed curves.

6.5 Adding interaction effects

We now have two main effects in our models, one for age and one for year.
What is not included however is the possible interaction between age and year.
We therefore also want to check the relevance of the interaction term, and fit a
model of the form:

log(E[deathsi]) = α+ log(ni) + f1(agei) + f2(yeari) + f3(agei, yeari) (6.5)

The interaction function, f3, is under the sum-to-zero constraint which means
that

∑
f3(agei, yeari) = 0 (Hastie and Tibshirani 1990, p. 266).

The interaction term function f3(agei,yeari) can be fitted using isotropic
smooths or tensor product smooths. Isotropic product smooths are defined
through s(age,year) in R. Isotropic smooths is a good choice when smoothing
two variables where we expect the same degree of smoothness over the covariate
axes and when the covariates naturally are on the same scale (Wood 2017,
p. 334). However, we have age and year as covariates and saw different degree
of smoothing across them in the previous section. We also saw in Section 2.2
that the portfolio development and death rate variation look different across
the two covariate spans. Isotropic smooth is therefore not preferred. Instead
we use tensor product smooths interactions which allows different degrees of
smoothing in different directions (Wood 2017, p. 227).

Tensor product smooths of multiple variables are built up from the smooths
of fewer variables. We will explain this by showing an example using our
own variables. The example is a recreation of an example in Wood (2017,
Section 5.6.1) on the same topic. Assume we can represent smooth functions
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for age and year by low rank basis functions through:

f1(age) =
I∑
i=1

βiNi(age) and f2(year) =
J∑
j=1

βjNj(year)

We now want a function f3 which depends on both age and year. To achieve
this we want to combine f1 and f2 in such way that we get a function which
varies smoothly over both variables. We first allow the parameters of f1 to vary
smoothly with year:

βi(year) =
J∑
j=1

βijNj(year)

Inserting this new definition of the parameters of f1 back to the definition of f1
gives us f3:

f3(age, year) =
I∑
i=1

J∑
j=1

βijNj(year)Ni(age)

This method can also be used to smooth over more than two variables following
the same method as above.

In R we will define the tensor product smooths through functions ti() and
te(). Function ti() produce an interaction effect with any lower interactions
and main effects excluded (Wood 2018b). Hence, assuming that the lower terms
are included in the model specifications. Function te() on the other hand
produces a full tensor product smooth (Wood 2018b). Fitting models as (6.5)
the models using ti() and te() both fit full models with interaction terms,
the fit will however not be the same. This is due to the fact that they do not
have the same penalty structure, where models using ti() have extra separate
penalties of the basis representing the main effects (Wood 2017, p. 335), f1(age)
+ f2(year). We will use ti() for ANOVA decomposition of our models to check
significance of interaction terms, then if the interaction term is significant we
may fit a new model using te().

We build on to the male and female models in the previous section, one
model for each gender specified as:

> model = gam(deaths ∼ s(age) + s(year) + ti(age,year),

offset=log(personYears),family=poisson,data=subset for given gender)

in R. Summaries for the fitted male and female models are given in row 1
and 4 of Table 6.3 respectively. We want to check if the interaction effect is
significant for each gender. We can do this using anova(model) in R (Wood
2017, pp. 335–336). For the male model we get a p-value equal 5.96 · 10−09

for the interaction term, indicating that the interaction term is needed. That
being said, the p-values for regression splines with estimated edf, as we do
in this thesis through UBRE, can be misleading due to neglected uncertainty
associated with estimation of λ (Zuur et al. 2009, p. 67). It is mentioned by
Zuur et al. (2009, p. 67) that smoothers with p-values under 0.001 and above 0.2
can be trusted, but that extra considerations should be taken if the p-value is
close to, or within the uncertain interval of half the 0.05 threshold. The p-value
of 5.96 · 10−09 is in this case well outside this interval. Comparing UBRE-,
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AIC- and BIC-values of model m.ay.ten.mod, Table 6.3, with model m.ay.mod,
Table 6.1, it is also clear that the model with the interaction effect included is
preferred for the male data.

For the female data the choice of model is not as clear. The anova function
returns a p-value equal 0.0711 for the interaction effect, which is within the
uncertainty interval of the p-values. The AIC-score of model f.ay.ten.mod,
Table 6.3 suggest that this model should be chosen over f.ay.mod, Table 6.2.
The BIC-score, in the same tables for the same models, suggest the opposite
however, preferring the model with no interaction effect. The residual plots of
the female models look very similar5, so it is difficult to choose a model based
on residual looks.

Table 6.3: Table showing model summaries of GAMs fitted on male and female data
with age and year as available variables. Variables are numerical and called A: age and Y:
year. s(variable) means that smoothing splines are used on the variable. ti(variable) and
te(variable) means the ti() or te() function explained in the text is used on the variales.
edf is the effective degrees of freedom in the model. UBRE, AIC and BIC colums give the
corresponding test-scores for each model. Models are fitted on a data sets with a total of
1350 observations each. Model name starting with m means model is fitted on male data.
Model name starting with f means model is fitted on female data.

model variables edf UBRE AIC BIC

m.ay.ten.mod s(A)+ s(Y)+ti(A,Y) 23.42 0.02 3630 3752

m.ten.mod te(A,Y) 17.41 0.03 3641 3732

f.ay.ten.mod s(A)+ s(Y)+ti(A,Y) 21.19 -0.21 2076 2186

f.ten.mod te(A,Y) 13.86 -0.20 2087 2160

Plotting the observed number of deaths over the fitted number of deaths
by model f.ay.ten.mod for females, left panel Figure 6.7, there are no major
changes to what we saw for the simpler model f.ay.mod, left panel Figure 6.6.
This may suggest that the interaction term not contributes much to the fit of
the model. What is different between the models, is the degree of smoothing
over age and year. The model with interaction effect, f.ay.ten.mod, smooth less
over age and more over year, than the model with no interaction term. The
degree of smoothing for the main effects are read of the y-axis labels of middle
and left panels in figures 6.6 and 6.7.

We also fit single tensor product smooths to the female and male data sets
to see how smoothing over age and year at the same time affects the degree
of smoothing and fit of the models. We specify the tensor product models for
each gender through:

> model = gam(deaths ∼ te(age,year), offset=log(personYears),

family=poisson, data=subset for given gender)

in R. Model summaries are given in Table 6.3, rows 2 and 4 for male and
female respectively. What is clear is that there is much more smoothing in these
models. The edf of the male model has gone down from 23.42 to 17.41 and the

5See Appendix B, Figure B.1 panels f) to j) p.105 and Figure B.3 p.106 for residual
diagnostic plots.
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Figure 6.7: Left panel: Actual number of deaths observed plotted against predicted number
of deaths. Predictions are made by GAM, f.ay.ten.mod, default-smoothed over age, year
and the interaction of age and year. The model was fitted on female data. Middle panel:
Estimated smoothing curve for age in the female data set (solid line). Right panel: Estimated
smoothing curve for year in the female data set (solid line). The pink shades around the
solid lines in the middle and right panel of the figure is the 95% confidence intervals of the
smoothed curves.

female model has gone down from edf = 21.19 to edf=13.86. The penalty of
"wigglyness" is in other words greater for the models specified through te()
than for ti(), even though they both model:

log(E[deathsi]) = α+ log(ni) + f1(agei) + f2(yeari) + f3(agei, yeari)

The greater penalty on curvature is also clear when looking at the fits of the
interaction models fitted through ti() versus the models fitted through te().

Starting with the male model fits, Figure 6.8, it is hard to tell which fit is
better. We can say on one hand that the left panel of Figure 6.8 look more
realistic and that the model in the right panel of the same figure is too smoothed.
On the other hand we can say that the left panel of Figure 6.8 is to sensitive to
changes, specially over the year span, and that we believe the model in the right
panel is a more stable model. The residual diagnostic plots of the two models
look almost identical, basing the choice of model on these plots is therefore
difficult 6.

For the female model fits, Figure 6.9, it is easier to prefer the more smoothed
model, hence the single tensor product model f.ten.mod. Comparing left and
right panel of Figure 6.9, the wiggly pattern over years is smoothed away
all together in f.ten.mod, making a more stable predictions over years than
f.ay.ten.mod. As in the male case, the residual diagnostic plots look the same for
the two models, choosing a model based on residual looks is therefore difficult 7.

6See Appendix B, Figure B.2 p.106 and Figure B.4 p.107 for residual diagnostic plots.
7See Appendix B, Figure B.3 p.106 and Figure B.5 p.107 for residual diagnostic plots.
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Figure 6.8: Death rate predictions of male models with smoothed interaction terms over
age and year, plotted on the scale of the linear predictor (log-scale). a) Predictions of model
m.ay.ten.mod, model with smoothed main terms pluss smoothed interaction. b) Predictions
of model m.ten.mod, model with a single tensor product smoother.

Figure 6.9: Death rate predictions of female models with smoothed interaction terms over
age and year, plotted on the scale of the linear predictor (log-scale). a) Predictions of model
f.ay.ten.mod, model with smoothed main terms pluss smoothed interaction. b) Predictions of
model f.ten.mod, model with a single tensor product smoother.
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6.6 NACE-section effects

In Section 3.5 we looked at the effect of adding NACE-section to our GLMs
with age as a numeric variable and year as categorical year groups. In Section
3.5 the NACE-section effects turned out to be significant for the death rates
of both males and females. In the male model case we got a more complex
model, than in the female case, with interaction between NACE-section and
year groups, as well as between NACE-section and age. We did however see
that we lost some trends over the age span using a numeric age and that there
were room for improvements in terms of smoothing over years. Using smoothed
age and year, as we do in this section, we will most likely capture more of the
variations that exist over the age and year span, as we allow for change in slope
across the variable spans. The question is then if NACE-sections still have an
effect.

We here, as in the previous section, treat age and year as numeric variables.
In addition we add a categorical variable which is NACE-section. We will look
at the same NACE-sections here as we did in Section 3.5. As a reminder, these
sections are:

C - Manufacturing (699 deaths - Male: 613 and Female: 86)
K - Financial and Insurance Activities (431 deaths - Male: 302 and Female: 129)
G - Wholesale and retail trade; repair of motor vehicles and motorcycles.

(385 deaths - Male: 312 and Female: 73)

Grouping the data with single years, single ages and these three NACE-sections
should give us two data sets with 4050 observations for each gender (3 NACE-
sections x 50 ages x 27 years). As in Section 3.5 however, we do not have
exposures in each observation group. We have 4017 observations for the male
population and 3995 observations for the female population8.

Smoothing function comparisons

To look at the differences and similarities between NACE-sections we first split
each data set made for male and female in three. This gives us six data sets, one
per gender within each NACE-section. We then fit six models in the following
way:

> model = gam(deaths ∼ s(age) + s(year),offset=log(personYears),

family=poisson,data=subset for given gender-NACE-combination)

This corresponds to a model with interaction between NACE-section and
smoothed age, and an interaction between NACE-section and smoothed year.
Predictions and confidence intervals are made in the same way as in the last sec-
tion, through predict.glm(). Using males in NACE-section C as an example:

> pred.year.c = predict.gam(model, newdata=data.frame(personYears=1,

age=50, year=1991:2017), se.fit=TRUE, type="link")

> pred.age.c = predict.gam(model, newdata=data.frame(personYears=1,

8Total number of missing exposures in each NACE-section; C: 15, K:53, G:20. See Appendix
B page 108 and 109 for missing male and female variable combinations respectively.
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age=20:60, year=1997), se.fit=TRUE, type="link")

We get the confidence interval limits for each of the two predictions in the same
way as we did in the previous section, by adding and subtracting 2-times the
standard errors from the predictions and taking exp of the results. Doing so for
each NACE-section in the male data sets and plotting predictions on a log-scale
with shaded confidence intervals, we get Figure 6.10.

Figure 6.10: Death rate predictions and confidence intervals of models default-smoothed
over age (left panel) and year (right panel). Models are fitted on three sets of male data,
one set for each NACE-section. Each NACE-section is represented by a solid line with
shaded 95% confidence intervals in each plot. Red: NACE-section C - manufacturing, green:
NACE-section G - Wholesale and retail trade; repair of motor vehicles and motorcycles, blue:
K - Financial and Insurance Activities. Predictions over age are made by fixing year at 1997
and predictions over years are bade by fixing age at 50. Both plots are on a log-scale.

Comparing the predictions of Figure 6.10 with what we observed in Figure
3.7 we have a recognizable pattern over both age and year. If we also compare
the predictions of Figure 6.10 with the predictions made by the preferred male
GLM in Section 3.5, M3.nace.m, from Figure 3.9 we get a better representation
of the observations using a smoothed versions of age and year, rather than
linear numeric age and categorical year groups.

In the left panel of Figure 6.10 we see that the degree of smoothing vary
between the NACE-sections. NACE-section G is smoothed the most with
dfλage

= 2.65, followed by NACE-sections C and K with dfλage
= 3.46 and

dfλage
= 3.53 respectively. If we look at the right panel of Figure 6.10 we

get the same order of NACE-sections considering which has the highest and
lowest degree of smoothing. The difference between the NACE-section which
is smoothed the most, G, and smoothed the least, K, is however greater over
year, than what it was for age. NACE-section G has a smoothed function equal
a straight line with dfλyear

= 1 over years, where as NACE-section K has a
much more fluctuating fitted curve with dfλyear

= 5.02. NACE-section C is also
smoothed to a great extent, with a smoothed function close to a straight line,
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with dfλyear
= 1.61.

The confidence intervals of the NACE-sections over both age and year are
to a great extent overlapping. This does however not mean that the differences
between them are insignificant. What we can say is that NACE-section K for
the male population has a confidence interval for its predictions which is the
furthest away from the two other sections.

We make the same prediction plots for the female data set, with predictions
plotted on a log-scale and shaded confidence intervals in Figure 6.11. If we
compare these predictions with the observations we made in Figure 3.8 we have
recognizable patterns in our predictions. NACE-section K has higher death
rates than the two other sections. The smoothed functions of NACE-sections C
and G follow close trends over years, but have different shapes over age. The
little dip in death rates for from the youngest population to those of age 30-39
in NACE-section C, seen in the observations, are still visible in the prediction
plot. For NACE-section G however the corresponding dip is gone. This however
builds up the hypothesis made in Section 3.5, that the dip in the observed death
rates was due to random variation.

Figure 6.11: Death rate predictions and confidence intervals of models default-smoothed
over age (left panel) and year (right panel). Models are fitted on three sets of female data,
one set for each NACE-section. Each NACE-section is represented by a solid line with
shaded 95% confidence intervals in each plot. Red: NACE-section C - manufacturing, green:
NACE-section G - Wholesale and retail trade; repair of motor vehicles and motorcycles, blue:
K - Financial and Insurance Activities. Predictions over age are made by fixing year at 1997
and predictions over years are bade by fixing age at 50. Both plots are on a log-scale.

Comparing the predictions in Figure 6.11 with the predictions made by the
preferred GLM in Section 3.5, M1.nace.f, we again get a better representation
of the observed death rates with smoothed age and year variables instead of
numeric age and categorical year groups. The gain of using a smoother is most
clear over age, as we recognize the pattern of our observations easier in the
predictions. Over years it is not as clear, as the functions are smoothed close to
a straight line and the predictions are more similar to the predictions that were
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made by the GLM.
Given the same NACE-section, the female death rate predictions are smoothed

more than the male death rate predictions over both age and year. We also have
a different order of which NACE-sections have the least and most smoothed
death rate predictions in the female models, than what we had for the male
models. NACE-section K, which had the least smoothed functions in the male
models has the highest degree of smoothing for the female models with both
dfλage = 1 and dfλyear = 1. Over age, in the left panel of Figure 6.11, we see that
NACE-section C has the least smoothed function across age with dfλage

= 2.5
followed by NACE-section G with dfλage

= 1.23. Over years, in the right panel
of Figure 6.11, we see that the least smoothed function belongs to NACE-section
G with dfλyear

= 1.65 followed by NACE-section C with dfλyear
= 1.01. Hence

the two NACE-sections swap places in having the least or second least smoothed
functions depending on which smoothed variable we look at.

Model fitting - Interaction between categorical and numerical
variables in GAM

To see if the observed differences in smoothing effects are significantly different
across NACE-sections we fit GAMs in the same way as done earlier in this
chapter, using the gam function from the mgcv package in R. We start with
the simplest model with main effects only, here using the male model as example:

> gam.M1.nace.m = gam(deaths ∼ s(age) + s(year) + NaceMain,

offset=log(personYears), family=poisson, data=subset for males)

This model assumes that all NACE-sections have the same death-age-year
relationship, as there are no interactions between either of the covariates. The
only possible difference we may see across NACE-sections in this model are
therefore constant values. From what we saw in the previous section however,
the NACE-sections had smoothed curves of different shapes across the age and
year span. This was especially clear for NACE-section K in the male data set.

Interaction between numeric- and categorical variables in GAM is different
from the interaction we know from GLM (Zuur et al. 2009, p. 60). Adding an
"interaction" between NACE-sections and a numeric variable, say age, in GAM
can be specified in three different ways;

I): s(age,by=NaceMain)

II): s(age) + s(age, by=as.numeric(NaceMain=="K"))

III): s(age) + s(age, by=NaceMain)

as references for these methods Zuur et al. (2009, pp. 60–63) and Wood (2018c)
are used. Option I) fits an individual smoothing curve over age for each NACE-
section. Option II) fits a smoothing curve over age for all our data, hence it gives
the overall effect of age across all NACE-sections. Another smoother across
age is then fitted for NACE-section K using the by argument. It adjusts the
pattern over age for NACE-section K through as.numeric(NaceMain=="K")
which returns one if an observation is from NACE-section K and zero if its
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not9. Option III) does the same as option II) but adjusts the pattern of all
the NACE-sections, not only NACE-section K, adding interactions effects in
the order of the factor levels. Through option III) we can check if there is a
significant interaction between a numeric variable and NACE-sections in general,
the option also allow us to check if the interaction effect is the same across
NACE-sections, e.g. θK = θC = θG. Option II) allow us to check if we have one
NACE-sections which have an interaction effect significantly different from the
others, eg. θK 6= θC.

Male - Model fitting and model selection

Starting with the simplest model, only including main effects, as specified above,
we choose which interaction term to add next using AIC. We fit three different
models, each with one of the possible first order interaction effects;

> test.mod1 = gam(deaths ∼ s(age) + s(year) + NaceMain + ti(age,year),

offset=log(personYears), family=poisson, data=subset for males)

> test.mod2 = gam(deaths ∼ s(age) + s(year) + NaceMain + s(age,by=NaceMain),

offset=log(personYears), family=poisson, data=subset for males)

> test.mod3 = gam(deaths ∼ s(age) + s(year) + NaceMain + s(year,by=NaceMain),

offset=log(personYears), family=poisson, data=subset for males)

The model which returns the lowest AIC value, is test.mod1. We then check if
the interaction term is significant, using anova(test.mod1). The test returns a
p-value of 0.006, we therefore add the smoothed interaction between age and
year to our model and call the new model gam.M2.nace.m.

We decide which interaction term to add next following a similar procedure.
We make two test models adding s(age,by=NaceMain) and s(year,by=NaceMain)

in turn to model gam.M2.nace.m. The test model that gets the lowest AIC is
the model with interaction between year and NACE-section. The adjustment
over year, may however not be significant for all NACE-sections. An anova test
of the model as it is now may be misleadning, in terms of which NACE-section
interactions are significant and not, as it fits the interactions in the order of the
NACE-section factor levels10. We therefore fit test models adding adjustments
for one NACE-section at the time:

> test.mod1 = gam(deaths ∼ s(age) + s(year) + NaceMain + ti(age,year) +

s(year, by=as.numeric(NaceMain=="C")), offset=log(personYears),

family=poisson, data=subset for males)

> test.mod2 = gam(deaths ∼ s(age) + s(year) + NaceMain + ti(age,year) +

s(year, by=as.numeric(NaceMain=="G")), offset=log(personYears),

family=poisson, data=subset for males)

> test.mod3 = gam(deaths ∼ s(age) + s(year) + NaceMain + ti(age,year) +

s(year, by=as.numeric(NaceMain=="K")), offset=log(personYears),

family=poisson, data=subset for males)

9The function makes an indicator variable for observations from NACE-section K.
10Order of the NACE-sections as factor levels: C, G, K
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Testing the significance of the interaction effects by using anova on each of the
test models show that the most significant interaction is between year and NACE-
section K. The test model with this interaction is also the model with the lowest
AIC. We then test if the interactions between the two other NACE-sections and
year also should be added by adding s(age, by=as.numeric(NaceMain=="C"))

and s(age, by=as.numeric(NaceMain=="G")) in turn to test.mod3. Neither of
the interaction effects improves the AIC of the model and neither of them get
an anova-test indicating that they are significantly different from zero. Our
third male model, gam.M3.nace.m, therefore end up being;

> gam.M3.nace.m = gam(deaths ∼ s(age) + s(year) + NaceMain + ti(age,year) +

s(year, by=as.numeric(NaceMain=="K")), offset=log(personYears),

family=poisson, data=subset for males)

We then try to add the last first order interaction effect s(age,by=NaceMain),
this gives a model with a lower AIC than gam.M3.nace.m. We check if the
interaction between age and NACE-section is significant in all NACE-sections
following the same procedure as we did for the year and NACE-section in-
teractions. The only age and NACE-section interaction effect that is marked
as significant is with age and NACE-section K. Adding this interaction to
gam.M3.nace.m, yields our fourth model, gam.M4.nace.m.

With all significant first order interaction effects added, it only remains to
check if we have a second order interaction which will improve the fit of our
model. We only add a second order interaction effect between age, year and
NACE-section K, as we do not have first order interaction effects for the other
NACE-sections. Doing so, we get the model gam.M5.nace.m. The second order
interaction is however not significant and the AIC of gam.M5.nace.m is higher
than the AIC of gam.M4.nace.m. An overview and summary of the models
fitted are given in Table 6.4.

Table 6.4: Table showing model summaries of GAMs fitted on male data with age, year and
NACE-section as available variables. Age and Year are smoothed numerical variables and
called s(A) and s(Y) respectivelly. NACE-section is a categorical variable of three levels and
called N. The functions ti(multiple variables) means that the ti() function explained in the
text is used on the variables. p-val is the returned p-value from anova for the added covariate.
edf is the effective degrees of freedom in the model. UBRE, AIC and BIC columns give the
corresponding test-scores for each model. Models are fitted on a data set with a total of 4017
observations.

model variables p-val edf UBRE AIC BIC

gam.M1.nace.m s(A)+s(Y)+N - 12.23 -0.404 4297 4374

gam.M2.nace.m s(A)+s(Y)+N+ti(A,Y) 0.00686 19.94 -0.408 4283 4408

gam.M3.nace.m s(A)+s(Y)+N+ti(A,Y)+s(Y):(N=K) 0.00180 23.78 -0.411 4271 4420

gam.M4.nace.m s(A)+s(Y)+N+ti(A,Y)+s(Y):(N=K)+
s(A):(N=K)

0.03765 24.23 -0.411 4267 4419

gam.M5.nace.m s(A)+s(Y)+N+ti(A,Y)+s(Y):(N=K)+
s(A):(N=K)+ti(A,Y,N=K)

0.9543 25.21 -0.411 4269 4428

Comparing the fitted models, given in Table 6.4 the model with the lowest
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AIC is, as mentioned earlier in this section, gam.M4.nace.m. The last interaction
effect added does however have a p-value close to the 0.05 threshold. We have
earlier addressed the uncertainty regarding the p-values of GAM. An alternative
could therefore be to choose gam.M3.nace.m. The p-value of the last interaction
term added in gam.M3.nace.m is smaller and the difference in AIC between
model gam.M3.nace.m and gam.M4.nace.m is also small. The residuals of the
models look almost the same, basing model choice on residual diagsnostics is
therefore difficult11.

If we compare predictions of gam.M3.nace.m and gam.M4.nace.m, it is
easier to see the difference between the two. For NACE-sections C and G the
predictions are almost the same, with predictions of gam.M3.nace.m slightly
below the predictions of gam.M4.nace.m for most covariate values 12. For
NACE-section K however, Figure 6.12, we see a clear difference in predictions
over age. Model gam.M4.nace.m has a steeper curve over age than model
gam.M3.nace.m. Remembering what we observed in Figure 3.7 (Section 3.5)
the predictions of model gam.M4.nace.m give a better representation of of the
death-rate pattern over age, than the predictions of model gam.M3.nace.m.
Considering this, the fact that model gam.M4.nace.m has the lowest AIC-score
and the fact that the BIC-score also is in favour of gam.M4.nace.m, comparing
gam.M3.nace.m and gam.M4.nace.m, we chose gam.M4.nace.m as our preferred
model.

Figure 6.12: Death rate predictions with confidence intervals of default smoothed models,
gam.M3.nace.m (M3: Blue line and confidence interval) and gam.M4.nace.m (M4: Gray
stippled line and confidence interval), in NACE-section K - Financial and Insurance Activities.
Predicitons over age (left panel) are made by fixing year at 1997. Predictions over year are
made by fixing age at 50. The predictions are plotted on a log-scale.

11Residual diagnostic plots for model gam.M3.nace.m and gam.M4.nace.m are attached in
Appendix B, page 110

12Plot of predictions across age and year for both models in both NACE-sections are
attached in Appendix B, page 112
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Female - Model fitting and model selection

We fit models to the female data set in the same way as we did for the males,
starting with main effects of age, year and NACE-section. Fitting three test
models, each with one of the possible first order interaction effects, the model
with interaction between age and year is the only model with a better AIC-score
than the simplest model. We call this model gam.M2.nace.f. When we check
if the interaction effect between age and year is significant however, we get a
p-value of 0.1047, which indicates that the interaction effect is not significantly
different from zero. This is not surprising, considering what we saw in the
death observations of Figure 3.8 (Section 3.5) and the close to parallell death
rate predictions in Figure 6.11, seen earlier in this section. Table 6.5 gives a
summary of two of the models fitted to the female data.

Table 6.5: Table showing model summaries of GAMs fitted on female data with age, year
and NACE-section as available variables. Age and Year are smoothed numerical variables and
called s(A) and s(Y) respectivelly. NACE-section is a categorical variable of three levels and
called N. The functions ti(multiple variables) means that the ti() function explained in the
text is used on the variables. p-val is the returned p-value from anova for the added covariate.
edf is the effective degrees of freedom in the model. UBRE, AIC and BIC columns give the
corresponding test-scores for each model. Models are fitted on a data set with a total of 3995
observations.

model variables p-val edf UBRE AIC BIC

gam.M1.nace.f s(A)+s(Y)+N - 7.51 -0.699 1732 1780

gam.M2.nace.f s(A)+s(Y)+N+ti(A,Y) 0.1047 11.96 -0.699 1729 1804

Model gam.M2.nace.f has a better AIC-score than the simpler model,
gam.M1.nace.f. The interaction effect of model gam.M2.nace.f does however
have an unsignificant p-value and the BIC-score is in favour of the simpler
model. We therefore end up choosing the simplest model, gam.M1.nace.f, with
main effects only as our preferred model13.

Prediction interpretation

We have now chosen two GAMs which we believe represent the variation in
death rates well, one for each gender. To say something about the development
of predicted death rates over the variables in use, we will look at predictions
using covariate values equal to the minimum, maximum and middle observed
value of age and year within each NACE-section.

We make predictions over age for the years 1991, 2004 and 201714 within
each NACE-section using gam.M4.nace.m for males and gam.M1.nace.f for
females. Plotting these predictions yields Figure 6.13. Stippled lines in the
figure gives death rate predictions for the male population and solid lines the

13We do not look at the residual diagnostic plots here, they are however attached in
Appendix B, p.111

14These years are chosen as they are in the start, middle and end of the year variable span.
2004 is a special year with little data, the GAM does however smooth well over this year.
1991 and 2017 are in the boundaries of the parameter space, they do however still show the
development of predictions well and is therefore chosen.

74



6.6. NACE-section effects

corresponding for the female population. For all NACE-sections the difference
in death rates between genders are predicted to decrease with years.

The difference in predicted death rates between each of the chosen years
are greater for the male population than for the female population. This is
especially clear in NACE-section K, in the right panel of Figure 6.13. Death
rate predictions in NACE-section K over age in the year 1991 is much higher
than the corresponding predictions of the female population in the same year.
In year 2004 however the death rates over age for those above the age of 35 are
predicted to be close to similar for the two genders. When we look at the most
recent year which were available in our data set, 2017, the male population
in NACE-section K is predicted to have lower death rates than the female
population in the same NACE-section. In NACE-sections C and G the death
rates over age for the two genders are predicted to be closer in 2017 than they
were in 1991, but the female population still have the lowest death rates in the
two NACE-sections.

Figure 6.13: Predicted death rates for male and female over age for given years in the
three biggest NACE-sections. Predictions for females (solid lines) are made by model
gam.M1.nace.f. Prediction for males (stippled lines) are made by model gam.M4.nace.m.
Each year is represented by a color for each gender in each NACE-section. Darkest color:
1991, medium color: 2004, lightest color: 2017. Each NACE-section is given its own panel.
Left panel: C - Manufacturing. Middle panel: G - Wholesale and retail trade; repair of motor
vehicles and motorcycles. Right panel: K - Financial and Insurance Activities. All predictions
are plotted on a log-scale.

To get get the full picture of the death rate predictions we will also look at
the death rate predictions over years for our youngest, oldest and middle-aged
males and females. We make predictions over years for ages 20, 45 and 69
within each NACE-section using our chosen models for the male and female
population. Plotting these predictions yields Figure 6.14, again with stippled
lines for the male population and solid lines for the female population.

Comparing NACE-sections for the male population, the stippled lines of
Figure 6.14, which NACE-section that has the lowest and highest death rates
change differently over years for the different ages. This is of course due to
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the interaction effect between age and year included in the final male model,
gam.M4.nace.m. NACE-section G always has slightly lower death rates than
NACE-section C, as the only difference between these sections are a constant
value shifting the smoothed year curve down for NACE-section G. This is
because the only interaction term we included in our final model for NACE-
sections was with NACE-section K.

For the oldest men, age 69, NACE-section K is predicted to have the highest
death rate in 1991, after 2014 however NACE-section K has the lowest death
rate for the oldest men. For the middle-aged men, NACE-section K is predicted
to have the highest death rates till around year 2009 and the lowest death rates
compared to the other two NACE-sections after this. For the youngest men,
age 20, the shift where NACE-sectionK gets the lowest predicted death rates
happen even earlier, in year 2001.

Figure 6.14: Predicted death rates for male and female over year for given ages in the
three biggest NACE-sections. Predictions for females (solid lines) are made by model
gam.M1.nace.f. Prediction for males (stippled lines) are made by model gam.M4.nace.m.
Each age is represented by a color for each gender in each NACE-section. Darkest color: 69,
medium color: 45, lightest color: 20. Each NACE-section is given its own panel. Left panel:
C - Manufacturing. Middle panel: G - Wholesale and retail trade; repair of motor vehicles
and motorcycles. Right panel: K - Financial and Insurance Activities. All predictions are
plotted on a log-scale.

Comparing NACE-sections in the female population, solid lines of Figure
6.14, the NACE-sections keep the same order in terms of highest to lowest
death rates for each year, no surprise as we only have main terms in the female
model. NACE-section G and C are predicted to have close to identical death
rates, NACE-section G is however predicted to have slightly lower death rates.
NACE-section K is predicted to have the highest death rates for the female
population. Across all NACE-sections we see a decrease in death rate over years
for the female population.

In the right panel of Figure 6.13 we saw that the male population in NACE-
section K was predicted to have lower death rates than the female population
across all age groups in the year 2017. In the right panel of Figure 6.14, we see
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that it is predicted to happen at different in different years for people of different
age. Of the three ages plotted in Figure 6.13, the oldest and middle-aged men
in NACE-section K is predicted to have the same death rates as women in
2006. After this they are predicted to have lower death rates than the women
in NACE-section K. The youngest males in NACE-section K have lower death
rates than the youngest women in the same NACE-section from year 2013
onwards.
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CHAPTER 7

Summary and discussion

This last chapter gives an overview and discussion of what we have found
thorugh the analysis in the earlier chapters, explains challenges met along the
way and explain further work that may be done.

7.1 Differences in variables selected by GLM and GAM

When we fitted GLMs with age and year as available variables in Sections
3.3, it was easier to reduce the interaction effect for the male model, by using
grouped years, than in the corresponding female model. When we included
NACE-sections in Section 3.5 however, the interaction effect between age and
year for the female model was no longer significant. We ended up with a model
with main effects of age, year and NACE-section. This may indicate that the
variation at first believed to be caused by interaction effects between age and
year in the female population, actually is due to a change in the composition of
NACE-sections over time.

For the male GLMs, including NACE-sections also lead to a less significant
interaction between age and year groups, and it was the last first order interaction
term to be added in the possible models. We ended up choosing a model without
the interaction between age and year groups, but the choice was not as clear as
in the female case.

When we fitted GAMs with age and year as available variables, Section 6.5,
we got a somewhat different results from what we got for GLMs in terms of
which gender had the most significant interaction effect between age and year.
For the male population a model with interaction term was clearly preferred.
For the female population however the choice of model was not as easy, and
the model with an interaction effect was not as clearly preferred as in the GLM
case.

When we added NACE-sections to the GAMs however, we ended up with
main effects of smoothed age, smoothed year and NACE-sections for the female
population. This is the same as we saw for the GLMs, the interaction between
age and year is not significant for the female population when NACE-section
is added. For the male population however the interaction between age and
year was the most significant after NACE-sections was added. This differs from
what we saw when fitting male GLMs, because, as mentioned earlier in this
section, the age-year interaction was the least significant interaction effect out
of the possible first order interactions.
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7.2 Comparison of fitted GLMs and GAMs

In previous chapters we have discussed GLMs and GAMs separately, without
much comparison of estimated death rates between the different models. In
this section however we want to look at the similarities and differences between
GLMs and GAMs which use the same costumer properties, for example age
groups and smoothed numerical age. The variables used in the models are not
necessarily the same, but are meant to capture the same observed death rate
variations.

Age and year models

The first models we will compare are the GLMs M1m and M1f , from Section
3.3, and the GAMs m.asas.mod.ten and f.asas.mod.ten, from Section 6.5. As a
reminder the GLMs used categorical ten-year age groups and categorical single
years for the main effects in the model and categorical three-year year groups
for the interaction effect with age groups. In the GAMs we used smoothed age
and smoothed year for the main effects with a tensor product smoother for the
interaction between age and year.

We make GLM predictions over years for each age group 20-29,...,60-69
using predict.glm(), with model M1m for males and M1f for females. We
do the same for the GAMs, with predict.gam(), with model m.asas.mod.ten
for males and f.asas.mod.ten for females. The models do however not have
age groups as a variable. We therefore use ages 25,35,...,65, as they are in the
middle of each age group interval. Plotting these predictions yields Figure 7.1,
where points in the figure are GLM predictions and lines are GAM predictions.

For the male population, Figure 7.1 a), it almost look like the GLM pre-
dictions twirls around the GAM prediction lines. For most years there are
little differences in the death rates predicted by GLM and GAM. For year
2004 however, the GLM makes predictions close to zero, and they are therefore
missing in the plot. For the two youngest age groups, 20-29 and 30-39, it is
also easy to spot the difference between GLM and GAM predictions for the last
10 years. The predictions of the GLM is less stable, with greater differences
in predictions from year to year than the predictions of the GAM. The GLM
and GAM do however agree on less differences in death rates between the two
youngest groups, compared to the other age groups, and both GLM and GAM
predict higher death rates for those of age 20-29 than 30-39 at given years.

For the female population, Figure 7.1 b), it is easier to spot the differences
between GLM and GAM predictions. The variation in predicted death rates
are greater from year to year for the GLM than the GAM. As with the males,
the GLM death rate prediction is close to zero in year 2004, whereas the GAM
smooths over it, keeping a steady trend from year 2003 to 2005. It is not as
big, but we see the same kind of drop in death rates for the GLM predictions
in year 2009. In 2009 the GLM predicts lower death rates for age groups 20-29,
30-39 and 40-49 than the GAM predicts for age group 20-29. Both the GLM
and GAM have shifting death rates over years but the GAM predictions are
more stable than the GLM predictions.

If we make predictions using the same GLMs and GAMs as earlier in
this section, this time over age for given years, we get Figure 7.2. As the
previous figure, the points in the figure are GLM predictions and lines are GAM
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Figure 7.1: Predicted death rates for male, panel a), and female, panel b), over years by
GLM (points) and GAM (lines) for given age groups. Each age group is represented by a
color; red: 20-29, blue: 30-39, green: 40-49, brown: 50-59 and black: 60-69. GLM predictions
are made by model M1m for males and model M1f for females. GAM predictions are made
by model m.asas.mod.ten for males and f.asas.mod.ten for females. GAMs do not have age
groups as a variable, age = 25,35,...,65, is therefore used for predictions within each age group.
All predictions are plotted on a log-scale.

predictions. In the male predictions, Figure 7.2 a), we see that both GLM and
GAM predict lowered slopes for death rates over age from year 1991 to 2017.
The clearest difference in the male predictions is in year 1991, where the GAM
predicts a higher death rate than the GLM across all age groups.

In the female predictions, Figure 7.2 b), GLM and GAM have the least
difference between predictions in year 1991, hence the opposite of what we
saw in the male predictions. For year 2005 the predictions done by GLM and
GAM have greater differences, and for the age group 30-39 the GLM makes
predictions close to zero. In 2017 the GLM and GAM predictions look close for
most years, but for the age group 30-39 we get, as we did for 2005, predictions
close to zero. The GLM and GAM do however agree on a lowered slope for
death rates over age going forward in time. All inn all the GAMs seem to be
less sensitive to single observations and look more stable over both age and year
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than the GLMs.

Figure 7.2: Predicted death rates for male, panel a), and female, panel b), over age by GLM
(points) and GAM (lines) for given years. Each year is represented by a color; red: 1991, blue:
2005, green: 2017. GLM predictions are made by model M1m for males and model M1f for
females. GAM predictions are made by model m.asas.mod.ten for males and f.asas.mod.ten
for females. All predictions are plotted on a log-scale.

Age, year and NACE-section models

As with the models with age and year as variables, we will compare GLMs and
GAMs with age, year and NACE-section as covariates. In Section 3.5 we chose
model M1.nace.f for the female population and model M3.nace.m for the male
population. Model M1.nace.f has main effects only, with linear age, categorical
grouped years and NACE-sections as covariates. Model M3.nace.m has the
same main effects, but in addition has two first order interactions, one between
NACE-sections and year groups, and one between NACE-sections and age.

We will compare the predictions of these models with the prediction made
by GAMs gam.M1.nace.f and gam.M4.nace.m, fitted to female and male data
respectively in Section 6.6. Model gam.M1.nace.f is a model with smoothed
age, smoothed year and NACE-sections as covariates, it has main effects only,
just like the GLM M1.nace.f. Model gam.M4.nace.m has the same main
effects as gam.M1.nace.f, but in addition has three interaction effects. First
is an interaction effect between age and year, made by using a tensor product
smoother. The two other interaction effects are between NACE-section K and
smoothed year, and between NACE-section K and smoothed age.

We start with the male models and make predictions in the same way as we
did for the simpler models earlier in this section. Plotting predictions over years
for each of the three NACE-sections for males of given ages, yields Figure 7.3.
As in earlier figures of this section the points in the plot are GLM predictions
and lines are GAM predictions. The GLMs do not have single years as covariates
in the models, instead they have grouped years. We have therefore put the GLM
predictions in the year which is in the middle of the year group, for example,
the predictions in year group 1991-1993 is drawn in year 1992 in the prediction
plots.

Comparing predictions across NACE-sections, both the GLM and the GAM
have higher death rates for NACE-section K than the two other NACE-sections
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Figure 7.3: Predicted death rates for males of given age in given NACE-sections. Predictions
are plotted on a log-scale over years by GLM (points) and GAM (lines). Each age is represented
by a color; red: 25, blue: 35, green: 45, brown: 55 and black: 65. GLM predictions are
made by model M3.nace.m and GAM predictions are made by model gam.M4.nace.m. Each
NACE-section is given a panel in the figure. Panel a): NACE-section C - Manufacturing, panel
b): NACE-section G - Wholesale and retail trade; repair of motor vehicles and motorcycles,
panel c): NACE-section K - Financial and Insurance Activities. As the GLMs do not have
single years as covariates in the models but instead have grouped years, we have put the
predictions in the year which is in the middle of the group, eg. 1991-1993 → 1992.

throughout most of the year span. They also agree on a faster decreasing death
rate trend over years for NACE-section K than the two other NACE-sections.
As for the simpler models, the GLM predictions in each NACE-section have
greater differences from year to year, than the GAM.

An improvement in smoothed death rate predictions over years for GLMs
when using grouped years only, and not single years in combination with grouped
years as in the previous section, is clear. We get death rate predictions in year
2004 which are much closer to the predictions in other years. The predictions
in year 2004 does however still stick out from the other predictions, especially
in NACE-sections C and K.

For all NACE-sections the GAM predicts less difference in death rates
between males of age 25 and males of age 35 than the GLM. In NACE-sections
C and G, from year 1998 to 2007, the GAM even predicts a higher death rate
for males of age 25 than males of age 35. For most of the tested ages, in all
NACE-sections, the predictions done by the GLM twirls around the prediction
lines of the GAM. For the youngest males however the GAM predicts death
rates for those of age 25 that are around the same level as the GLM predictions
for those of age 35.

If we instead look at male GLM and GAM predictions over age for each
NACE-section, Figure 7.4, we see that the higher predicted death rates for
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the youngest group in Figure 7.3, may be due to the dip in death rates from
age 20 to around 30 in all NACE-sections, predicted by the GAM in 2005.
This dip straightens out and turns more and more to a slower ascending curve
for the younger population in years moving away from 2005. We know 2005
was a special year, as it is the year after Storebrand and If split up. With a
linear age variable, as in the GLM here, we do not get this dip for 2005. We
do however also miss out on the slower ascending death rate curves for the
youngest population in other years.

The GLM and GAM predictions in Figure 7.4 both have greater differences
in death rates from year 2005 to 2017 across the age groups in NACE-section K,
than in the two other NACE-sections. The GAM predictions in NACE-sections
C and G have the same shape, there is however a subtle constant difference
between the two, where NACE-section C is predicted to have higher death rates
than NACE-section G.

For the male GLM we had interaction effects between NACE-sections and
year groups, as well as NACE-sections and age. Hence we may observe differences
in the development of predictions over age and year for all NACE-sections, not
just NACE-section K, which we do for the GAM predictions. The GLM predicts
less difference in death rates between each of the tested years in NACE-section
C than in the two other NACE-sections. In NACE-section C the death rates
are predicted to stay approximately the same from 2005 to 2017, whereas in
NACE-sections G and K the death rates over age are predicted to decrease.

Figure 7.4: Predicted death rates for males in given years in given NACE-sections. Pre-
dictions are plotted on a log-scale over age by GLM (stippled lines) and GAM (solid lines).
Each year is represented by a color; red: 1991, blue: 2005, green: 2017. GLM predictions are
made by model M3.nace.m and GAM predictions are made by model gam.M4.nace.m. Each
NACE-section is given a panel in the figure. Panel a): NACE-section C - Manufacturing, panel
b): NACE-section G - Wholesale and retail trade; repair of motor vehicles and motorcycles,
panel c): NACE-section K - Financial and Insurance Activities. As the GLMs do not have
single years as covariates, but use grouped years, we have used the corresponding year group
to make the predictions for each year; 1991: 1991-1993, 2005: 2003-2005, 2017: 2015-2017.
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7.2. Comparison of fitted GLMs and GAMs

For the female GLM and GAM we have chosen to only look at the prediction
plots of two NACE-sections, the reference section C and NACE-section K, the
section with the biggest difference from the reference. We will not look at
the prediction plots of NACE-section G, as the prediction plots look almost
identical to those of NACE-section C, they are however attached in Appendix
B, p.113 for those that want to take a closer look.

We make GLM and GAM predictions for the female population by using
M1.nace.f and gam.M1.nace.f respectively. This is done in the same way as
we did for the male population. Looking at the female predictions over both
age and year, Figure 7.5, we have less differences between the GLM and GAM
predictions for the female population, than what we had for males. We also
have smoother GLM predictions over years. The GLM predictions in year 2004
do not stand out as clear as they did in the male predictions.

Over age, Figure 7.5 a)-b), both the GLM and GAM predict higher death
rates for NACE-section K, than for the other NACE-sections1. For most ages
the GLM predictions twirls around the GAM prediction lines. For those of age
25 however, we see, as we did in the male predictions, that the GAM predictions
are higher than the GLM predictions.

If we look at the female GAM predictions over age at given years, Figure
7.5 c)-d), we have a slower ascending curve for the youngest, under 30, and the
oldest females, 60+, compared to those in the ages in between. It is also for
the youngest and oldest female population that we see the clearest difference in
GLM and GAM predictions. The GLM predicts almost identical death rates
in years 1991 and 2005. The GAM predictions however indicate a decrease
in death rates across age from 1991 to 2005. Both GLM and GAM predict a
decrease in death rate across age for the female population from year 2005 to
2017. Comparing NACE-sections for the female population, NACE-section K is
predicted to have the highest death rate for any given age at any given year
according to both GLM and GAM.

The GLMs and GAMs fitted in this thesis are overall both agreeing and
disagreeing in their predictions. What they do agree on is that death rates
should decrease with years, and that the fastest decreasing death rates are those
of males in NACE-section K. In which pace the death rates should decrease from
one year to the next however, the GLMs and GAMs disagree on. Independently
of age, gender and NACE-section GLMs on average predicts a 2.7% slower
decrease in death rates per year than the corresponding GAMs do2.

All GLMs and GAMs predict an increased death rate with increasing age,
and they agree that the steepest death rate curve over age is for males in
NACE-section K. They also agree that for the female population the highest
death rates over age are found in NACE-section K. Again the pace in which
the death rates changes differs between GLMs and GAMs. Independently of
year, gender and NACE-section the GLMs on average predicts a 2% higher
increase in death rates for a one year increase in age than the corresponding

1There is a subtle constant difference between NACE-section C and NACE-section G,
where NACE-section G has lower death rates. If NACE-section K has higher death rates
than NACE-section C, we therefore say that NACE-section K has higher death rates than
the other sections.

2This regards GLMs and GAMs with age, year and NACE-sections as covariates. Code
used and an explanation of how we found this difference is given in Appendix A, p.98
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GAM predictions do3.

Figure 7.5: Predicted death rates in given NACE-sections for females of given age, panels
a)-b), and given years, panels c)-d). Predictions are plotted on a log-scale by GLM (stippled
lines) and GAM (solid lines). Each age in panels a) and b) is represented by a color; red: 25,
blue: 35, green: 45, brown: 55 and black: 65. Each year in panels c) and d) is given colors;
red: 1991, blue: 2005, green: 2017. GLM predictions are made by model M1.nace.f and GAM
predictions are made by model gam.M1.nace.f. Each NACE-section is given a panel in the
figure. Panel a) and c): NACE-section C - Manufacturing, panel b) and d): NACE-section K
- Financial and Insurance Activities.

3We have used the same method to find the difference per age, as we did per year. See
Appendix A, p.98
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7.3 Overview of analysis

This thesis was intended to get a better understanding of which factors increase
and decrease the risks an insurance company takes when covering death compen-
sations for employees insured for death due to other illnesses. We also wanted
to find good methods of smoothing the non-linear patterns we saw in our death
rate observations, at the same time as we wanted to explain the variations we
observed.

In Chapter 2 we looked at the costumer properties which were available
in our data set. We split up the death rates according to different costumer
properties to see if we there were any differences in death rates over given
properties, which there were. We then considered some of these properties as
covariates in Poisson GLM in Chapter 3.

Throughout Chapter 3 we mostly based the choice of model on likelihood
ratio testing. For the bigger and more complex models however, involving NACE-
sections, we also looked at AIC and BIC when the p-value of the likelihood
ratio test (LRT) was close to the 0.05 threshold. If we instead would have based
the model choice purely on LRT we would have ended up with a more complex
model for the male population. For the female population however, the model
choice would have been the same, regardless of basing the model choice on
LRT, AIC or BIC. We have less data for the female population. Less data may
lead to less significance, as there is more room for random variation, so a less
complex model for the female population is not surprising.

In Chapter 4 we checked if we had overdispersed data and if a Quasi-Poisson
model or a Negative Binomial Distribution had a better fit than the models
with an assumption of Poisson distributed death. Some of the results we found
in the Chapter 4 may indicate mild overdispersion compared to Poisson, but the
main picture of the Poisson dispersion tests and the alternative models fitted
was that there were no clear signs of overdispersion. We therefore concluded
that we could continue with an assumption of Poisson distributed data.

In Chapter 5 we took a deeper look at an alternative way of smoothing
nonlinear patterns through splines. In Chapter 3 we tried to smooth out non-
linearities by categorisation of intervals of the numerical variables age and year.
This worked to some degree, but as the GLM predictions in Section 7.2 showed,
the models were still sensitive to single observations of low death rates, e.g
female death rate predictions in age group 30-39 Figure 7.2. In Chapter 5
we saw that splines was a good method of smoothing nonlinearities within a
parameter space, but that curves can be unstable at the edges of the parameter
space.

In Chapter 6 we used splines in GAMs fitted to our data. These models
gave a better representation of the observations than the corresponding GLMs.
The GAMs were also less sensitive to single observations of low death rates.
The problems we had with year 2004 in the GLM predictions, was not seen in
the GAM predictions.
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7.4 Discussion

Smoothing non-linear patterns in GLMs using categorical variables worked to
some extent, but it did not smooth out the most extreme observations, like year
2004. Using numerical age for the GLMs did smooth over the most extreme
observations, but we missed out on some of the observed trends for the youngest
and oldest population.

Having models with splines, give a good representation of the death rate
observations. We do however know that splines are unstable in the edges of the
parameter space. Outside of the variable span, splines turn to linear trends. For
the female population we have no interaction effects in the model, the splines
are also close to being linear over years. Going beyond our boundary year
2017 will therefore not make major changes to our predictions. For the male
population however the years leading up to year 2017 will have a big influence
on the death rates predicted for the years ahead in time.

We have made predictions from 2005 to 2025 for NACE-sections C and K
in Figure 7.6. The figure illustrates well the possible challenges with future
predictions using GAM. For the female model, with close to linear splines and
no interaction terms, Figure 7.6 b), there is no major changes in predictions
before and after 2017. In the male predictions however, Figure 7.6 a), the small
increase in death rate differencies between NACE-sections in the years leading
towards 2017, leads to huge differences in 2025. In NACE-section C, the solid
lines in Figure 7.6 a), we even get an increased death rate for all ages after
year 2017. Using GAMs for future predictions must therefore be done with
care, especially when dealing with models with interaction effects and little
smoothing. Predictions for a short time ahead is therefore preferred and to get
adequate predictions the models should be updated frequently.

Figure 7.6: Predicted death rates in NACE-section C (solid lines) and NACE-section K
(stippled lines) for males, panel a), and females, panel b), of given age over years. Predictions
are plotted on a log-scale and made by GAMs gam.M4.nace.m for males and gam.M1.nace.f
for females. Each age in both panels is represented by a color; red: 25, blue: 35, green: 45,
brown: 55 and black: 65. A vertical black line is drawn in the boundary year, 2017, in both
panels.
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Both GLM and GAM agreed that NACE-section K for women had the
highest death rate for a given age. This is a bit odd, considering that this
NACE-section involves jobs such as banking, fund management and insurance
pricing which often require higher education. Borgan (2009) states that people
with higher education have the lowest mortality and that the largest distance
to other occupations are found for men. We saw this for our most recent years
in the GAM predictions for males. For the female population however we have
higher death rates for NACE-section K than we have for the two other sections
C and G. These sections mostly involve jobs that require less education, such
as production and sale of food, drinks and textiles. Hypothetically we would
therefore think we would have lower death rates for NACE-section K than
NACE-sections C and G.

A reason that we have higher death rates for females in NACE-section K,
may be due to something known as the healthy workers effect. The people that
work have lower mortality than the average population due to the fact that
people, such as those with major disabilities or those that are really sick, are
being excluded from the job marked (Braut 2018). This may however lead to a
bias when comparing different occupations. The effect is clearest for jobs where
you need higher qualification and if we compare genders, the effect is more clear
for women than for men (Shah 2009).

Workers with less job motivation due to reasons such as health may change
jobs more frequently or retire earlier than others, they may also leave earlier
if they get a deadly illness. The people that are still at work in the same
jobs however then have a lower death rate compared to jobs where people do
not leave as easy. Occupations with low education requirements have had a
decreasing proportion of active population for every year after 19604, in the
occupations with higher education requirements however the proportion has
increased with years (Borgan 2009). Hence, the women in NACE-section K
may not die more frequently than the other women in general, but they may
have a higher proportion of people who die while still active in work.

7.5 Challenges and further work

Dealing with a big data set can lead you in many directions and when handling
it, things take time and can easily go wrong. Our original data set had 783749
observations. Making categorical variables out of numeric intervals or making
larger categorical groups, as we did for country region, therefore took a lot of
time. The data had to be aggregated to a smaller number of observations, both
due to running time and to get a better understanding of the data as a whole.

Despite aggregating the data, we had many residuals in our residual plots
and the plots got difficult to interpret. The low number of deaths in each group,
as we added more variables lead to residuals with a distribution which looked
less and less normal. This also made the model choices more difficult, as we
had a high number of residuals and the residual plots had little differences.

Throughout the thesis we considered missing exposures to be missing com-
pletely at random, meaning that the exposures are missing independently of
variables (Hastie, Tibshirani, and Friedman 2009, pp. 332–333). As the missing
exposure tables may indicate however, there are tendencies of some groups

4The article used as reference was published in 2009
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missing more exposures than others. We have, for example, seen that there are
more missing exposures for the youngest (< 25) and oldest population (60+)
than rest. With more time available it would therefore be interesting to look at
the assumption of data missing completely at random.

With more time I would also have liked to check the effect of adding more
NACE-sections as categorical variables. I would also have liked to check the
effect of fitting models to data without including the observations with estimated
age, to see if the model predictions would have been different. Adding country
region in which a company is stationed to see if it has a significant effect on the
death rates would also have been interesting to look at.
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APPENDIX A

Calculations

A.1 Constructed data in Chapter 5

In Chapter 5 we look at smoothing of nonlinear data using splines. Throughout
the chapter we use constructed data. This data was constructed in R using the
following code:

> z = seq(0,6,0.1)

> y = sin(z) + (z-2.5)ˆ3 + sqrt(z)/2 + cos(rnorm(length(z)))*10-

rnorm(length(z))*5 - I(z>4.5)*rnorm(length(z))*3+

I(z>2.5)*I(z<4.5)*(1-rnorm(length(z))*3)

y is used as data observations in all examples of Chapter 5.

A.2 B-spline calculation example

We will illustrate how B-splines are calculated by showing an example of
B-splines with two-internal knots and two boundary knots. Throughout this
example Hastie, Tibshirani, and Friedman (2009, p.186–187) is used as reference.
In this thesis we use B-splines of order 4, hence cubic polynomials going between
the knots. For simplicity however, we here show how to find B-splines up to
order 3 where we get 2. degree polynomials going between the knots.

Given knots (ξ1, ξ2, ξ3, ξ4) = (0, 3, 4, 6) we have N = 2 inner knots and 2
boundary knots. We want B-splines of order 3, hence polynomials of degree
2 between each of these knots. To achieve this the boundary knots must be
repeated 3 times. In general, wanting splines of order K, the boundary knots
must be repeated K times. In our example we get the augmented knot sequence,
(τ1, τ2, τ3, τ4, τ5, τ6, τ7, τ8) = (0, 0, 0, 3, 4, 6, 6, 6) which will give us 5 B-spline
functions of order 3. In general, the number of B-spline functions, M , is given
as M = K + N , where K is the order of the spline and N is the number of
inner knots.

We first calculates the splines of order k = 1. The number of B-splines
calculated for order k < K is equal to N + 2K − k. In our example it means
we end up with 2 + 6− 1 = 7 functions of order 1. We get 4 functions which,
by equation (5.3), are always equal to 0; B1,1(z), B2,1(z), B6,1(z) and B7,1(z)
as τj = τj+1 for these functions. We find B3,1(z), B4,1(z) and B5,1 by using
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equation (5.3):

B3,1 =
{

1 if 3 ≤ z < 4
0 else

B4,1 =
{

1 if 3 ≤ z < 4
0 else

B5,1 =
{

1 if 4 ≤ z < 6
0 else

We can then find the splines of order k = 2 by, using equation (5.4):

B1,2 = W1,2(z)B1,1(z) + (1 −W2,2(z))B2,1(z)
= 0

B2,2 = W2,2(z)B2,1(z) + (1 −W3,2(z))B3,1(z)

=
{

(3 − z)/3 if 0 ≤ z < 3
0 else

B3,2 = W3,2(z)B3,1(z) + (1 −W4,2(z))B4,1(z)

=

{
z/3 if 0 ≤ z < 3
4 − z if 3 ≤ z < 4
0 else

B4,2 = W4,2(z)B4,1(z) + (1 −W5,2(z))B5,1(z)

=

{
z − 3 if 3 ≤ z < 4
(6 − z)/2 if 4 ≤ z < 6
0 else

B5,2 = W5,2(z)B5,1(z) + (1 −W6,2(z))B6,1(z)

=
{

(z − 4)/2 if 4 ≤ z < 6
0 else

B6,2 = W6,2(z)B6,1(z) + (1 −W7,2(z))B7,1(z)
= 0

Then using Bj,2 for j = 1, ..., 6 we find our five 2. degree polynomials:

B1,3 = W1,3(z)B1,2(z) + (1 −W2,3(z))B2,2(z)

=
{

(3 − z)2/9 if 0 ≤ z < 3
0 else

B2,3 = W2,3(z)B2,2(z) + (1 −W3,3(z))B3,2(z)

=


−7z2+24z

36 if 0 ≤ z < 3
(4 − z)2/4 if 3 ≤ z < 4
0 else

B3,3 = W3,3(z)B3,2(z) + (1 −W4,3(z))B4,2(z)

=


z2/12 if 0 ≤ z < 3
−7z2+48z−72

12 if 3 ≤ z < 4
(6 − z)2/6 if 4 ≤ z ≤ 6
0 else
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B4,3 = W4,3(z)B4,2(z) + (1 −W5,3(z))B5,2(z)

=

 (z − 3)2/3 if 3 ≤ z < 4
−5z2+48z−108

12 if 4 ≤ z ≤ 6
0 else

B5,3 = W5,3(z)B5,2(z) + (1 −W6,3(z))B6,2(z)

=
{

(z − 4)2/4 if 4 ≤ z ≤ 6
0 else

Plots in Figure A.1 a) and b) show the splines of lower order, used to reach
the goal of B-splines of order 3, plot c) of the same figure. The B-splines of
Figure A.1 are plotted over z values ranging from 0 to 6 with steps of 0.1.

Figure A.1: B-spline exampe with boundary knots in z = 0 and z = 6, and two inner knots
at z = 3 and z = 4. a) B-splines of order 1, b) B-splines of order 2, linear and c) B-splines of
order 3, polynomial of degree 2. z has been given values from 0 to 6 with steps of 0.1

Running;
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> z= seq(0,6,0.1)

> BS = bs(z, knots=(3,4), degree =2, intercept = T)

> plot(z,BS[,1])

> lines(z,BS[,2])

> lines(z,BS[,3])

> lines(z,BS[,4])

> lines(z,BS[,5])

in R yields the same results as in Figure A.1 c), returning splines Bj,3 for
j = 1, ..., 5 in form of a matrix, where each spline corresponds to a column and
each row correspond to the value of the spline at a given value of z. Results
from R running BS = bs(z, knots=(3,4), degree =2, intercept = T)
along with results found by hand, can be seen in table A.1. When fitting models
it is normal to have the intercept outside the B-spline matrix. In these cases the
first column is removed, and the other columns stays the same. In other words
we end up with a B-spline matrix with K +N − 1 columns which including the
intercept gives K +N model parameters.

A.3 Trace of smoothing matrix equals degrees of freedom
in fitted curve.

In Section 5.4 we look at the effect of changing λ in natural cubic smoothing
splines. In this section we show how the curves in Section 5.4 was defined in
R. We also show two different methods that can be used to find the effective
degrees of freedom (edf) of a curve. We can find the edf by extracting curve
information from the data frame of a given curve, or we can take the trace of
the smoother matrix. Both methods should yield the same result.

We use the same values for z as earlier, hence z = 0.0, 0.1, ..., 5.9, 6.0 and y
is the constructed data given in Section A.1. Code below is used in R to check
that the trace of the smoother matrix is the same as degrees of freedom in a
curve fit. The function smoother.matrix is originally defined by Wood (2006).

smoother.matrix = function(z=z,y=y,lambda=lambda) {

S = matrix(nrow = length(z), ncol = length(z))

for(i in 1:length(z)) {

ym = rep_len(0, length(z)) ; ym[i] = 1

S[,i] = predict(smooth.spline(z, ym, lambda = lambda, cv=TRUE,

all.knots = TRUE), z)$y
}

return(S)

}

> lamb001 = smooth.spline(y, lambda =0.001 ,all.knots = T)

> lamb001$df
> 6.619974

> sum(diag(smoother.matrix(z,y,0.001)))

> 6.619974
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A.3. Trace of smoothing matrix equals degrees of freedom in fitted curve.

Table A.1: Results of B-spine calculations done by R using the bs( ) function
and results found by doing calculations by hand. Each column, except the first
in the table, correspond to a given B-spline and each row correspond to the
value of the B-spline for a given value of x. Splines whose names start with R
are R-results whilst those that have a name starting with H are results found
by hand.
x-value R.B1.3 H.B1.3 R.B2.3 H.B2.3 R.B3.3 H.B3.3 R.B4.3 H.B4.3 R.B5.3 H.B5.3

0.00 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
0.10 0.934444 0.934444 0.064722 0.064722 0.000833 0.000833 0.000000 0.000000 0.000000 0.000000
0.20 0.871111 0.871111 0.125556 0.125556 0.003333 0.003333 0.000000 0.000000 0.000000 0.000000
0.30 0.810000 0.810000 0.182500 0.182500 0.007500 0.007500 0.000000 0.000000 0.000000 0.000000
0.40 0.751111 0.751111 0.235556 0.235556 0.013333 0.013333 0.000000 0.000000 0.000000 0.000000
0.50 0.694444 0.694444 0.284722 0.284722 0.020833 0.020833 0.000000 0.000000 0.000000 0.000000
0.60 0.640000 0.640000 0.330000 0.330000 0.030000 0.030000 0.000000 0.000000 0.000000 0.000000
0.70 0.587778 0.587778 0.371389 0.371389 0.040833 0.040833 0.000000 0.000000 0.000000 0.000000
0.80 0.537778 0.537778 0.408889 0.408889 0.053333 0.053333 0.000000 0.000000 0.000000 0.000000
0.90 0.490000 0.490000 0.442500 0.442500 0.067500 0.067500 0.000000 0.000000 0.000000 0.000000
1.00 0.444444 0.444444 0.472222 0.472222 0.083333 0.083333 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
1.50 0.250000 0.250000 0.562500 0.562500 0.187500 0.187500 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
2.00 0.111111 0.111111 0.555556 0.555556 0.333333 0.333333 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
2.50 0.027778 0.027778 0.451389 0.451389 0.520833 0.520833 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
3.00 0.000000 0.000000 0.250000 0.250000 0.750000 0.750000 0.000000 0.000000 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
3.50 0.000000 0.000000 0.062500 0.062500 0.854167 0.854167 0.083333 0.083333 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
4.00 0.000000 0.000000 0.000000 0.000000 0.666667 0.666667 0.333333 0.333333 0.000000 0.000000

...
...

...
...

...
...

...
...

...
...

...
4.50 0.000000 0.000000 0.000000 0.000000 0.375000 0.375000 0.562500 0.562500 0.062500 0.062500

...
...

...
...

...
...

...
...

...
...

...
5.00 0.000000 0.000000 0.000000 0.000000 0.166667 0.166667 0.583333 0.583333 0.250000 0.250000
5.10 0.000000 0.000000 0.000000 0.000000 0.135000 0.135000 0.562500 0.562500 0.302500 0.302500
5.20 0.000000 0.000000 0.000000 0.000000 0.106667 0.106667 0.533333 0.533333 0.360000 0.360000
5.30 0.000000 0.000000 0.000000 0.000000 0.081667 0.081667 0.495833 0.495833 0.422500 0.422500
5.40 0.000000 0.000000 0.000000 0.000000 0.060000 0.060000 0.450000 0.450000 0.490000 0.490000
5.50 0.000000 0.000000 0.000000 0.000000 0.041667 0.041667 0.395833 0.395833 0.562500 0.562500
5.60 0.000000 0.000000 0.000000 0.000000 0.026667 0.026667 0.333333 0.333333 0.640000 0.640000
5.70 0.000000 0.000000 0.000000 0.000000 0.015000 0.015000 0.262500 0.262500 0.722500 0.722500
5.80 0.000000 0.000000 0.000000 0.000000 0.006667 0.006667 0.183333 0.183333 0.810000 0.810000
5.90 0.000000 0.000000 0.000000 0.000000 0.001667 0.001667 0.095833 0.095833 0.902500 0.902500
6.00 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.000000 1.000000

> lamb010 = smooth.spline(y, lambda =0.01 ,all.knots = T)

> lamb010$df
> 4.161761

> sum(diag(smoother.matrix(z,y,0.01)))

> 4.161761

> lamb100 = smooth.spline(y, lambda =0.1 ,all.knots = T)

> lamb100$df
> 2.780111

> sum(diag(smoother.matrix(z,y,0.1)))

> 2.780111
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A.4 GCV-trace

In Section 5.4 we explain how the optimal λ can be found for a natural cubic
smoothing spline through generalized cross-valiadation (GCV). In Figure 5.6,
p. 50, there are two plots showing the GCV-trace for corresponding λ- and
edf-values . The code to get the GCV-trace and make Figure 5.6 follows below.

> lambda = 1e-6

> gcv = numeric(length = 90)

> df = numeric(length = 90)

# Function for calculating GCV at different lambda values

> for (i in seq_along(gcv)) {

> m <- smooth.spline(x,y,lambda = lambda, all.knots = T)

> gcv[i] <- m$cv.crit
> df[i] = m$df
> lambda <- lambda * 1.1 }

# Gather results

> par(mfrow=c(1,2))

> res <- data.frame(lambda = 1e-6 * 1.1ˆ(0:89), gcv = gcv)

# Plot of results over lamda

> plot(res[which(res[,1] >= 0.00015),1], gcv[which(res[,1] >= 0.00015)],

ylim=c(56,57.5), xlim=c(0.00015,1e-6 * 1.1ˆ(89)), ylab = "GCV",

xlab= expression(lambda), pch=21, bg="azure3", cex=1.25)

> abline(v=res[which(gcv == min(gcv)),1], lty=2,col="azure4",lwd=2)

> points(res[which(gcv == min(gcv)),1],min(gcv),pch=21,col="darkgreen",

bg="green2",cex=1.25)

# Plot of results over effective degrees of freedom

> plot(df[which(res[,1] >= 0.00015)], gcv[which(res[,1] >= 0.00015)],

ylim=c(56,57.5), ylab = "GCV", xlab="edf", pch=21, bg="azure3", cex=1.25)

> abline(v=df[which(gcv == min(gcv))], lty=2,col="azure4",lwd=2)

> points(df[which(gcv == min(gcv))],min(gcv),pch=21,col="darkgreen",

bg="green2",cex=1.25)

> mtext("GCV trace over choice of lambda and edf in default-smoothed model.",

side = 3, line = -2, outer = TRUE,cex=1.2)

A.5 Mean prediction differences across age and year for
GLMs and GAMs

In Section 7.2 we say that GLMs, independent of age, gender and NACE-section,
on average predict a 2% slower decrease in death rates from one year to the next
compared with GAMs. We also say that the GLMs on average, independet of
model covariates, predict a 2.7% greater death rate increase from one age to the
next, compared with the corresponding GAM predictions. We here explain how
we found these differences by using females in NACE-section G as an example.
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For the female population, as we have main effects only in both the GLM and
GAM, we will get the same result for each NACE-section.

We find the mean percentage change in death rate across all ages and years
for females in in NACE-section G by using the following code, starting with
the GLM predictions:

## GLM predictions ##

# Make a matrix for storage of predictions of each age within each year group

> female.all.glm.pred.G = matrix(0,nrow=9,ncol=50)

> dim(female.all.glm.pred.G) = c(9,50)

> for (i in 1:50){

> female.all.glm.pred.G[,i]=exp(predict.glm(M1.nace.f, newdata=

> data.frame(age=ages[i],yearGroup=year.groups,duration=1,NaceMain="G")))

> }

# Make vectors for storage of mean predictions across age and year groups

> mean.per.age.years.glm.G = matrix(0,nrow=50,ncol=1)

> mean.per.year.ages.glm.G = matrix(0,nrow=9,ncol=1)

# Vector of mean predictions for each age across year groups

> for (i in 1:50){

> mean.per.age.years.glm.G[i] = mean(female.all.glm.pred.G[,i])}

# Vector of mean predictions for year group across ages

> for (i in 1:9){

> mean.per.year.ages.glm.G[i] = mean(female.all.glm.pred.G[i,])}

# Make vectors for storage of percentage change in mean predictions of age and year groups

> diff.glm.per.age.g.f = NULL

> diff.glm.per.year.g.f = NULL

# Vector of percentage difference in mean predictions per age

> for (i in 1:49){

> diff.glm.per.age.g.f[i] = mean.per.age.years.glm.G[i+1]/mean.per.age.years.glm.G[i]}

# Vector of percentage difference in mean predictions per year group

> for (i in 1:8){

> diff.glm.per.year.g.f[i] = mean.per.year.ages.glm.G[i+1]/mean.per.year.ages.glm.G[i]}

We get the GAM predictions, using a similar code, but we use predict.gam( )

instead predict.glm( ), we change the model from M1.nace.f to gam.M1.nace.f

and the yearGroup=year.groups is replaced by year=1991:2019. The for loops for
years are then changed to lengths of 27 (in the loop taking mean of predictions
across ages) and 26 (in the loop taking the difference in average predictions). Af-
ter running the code for both the GLM and GAM we find the difference through:

> female.diff.per.age = mean(diff.glm.per.age.g.f)/mean(diff.per.age.g.f)

> 1.015344

> female.diff.per.year = (1-(1-mean(diff.glm.per.year.g.f))/3)/mean(diff.per.year.g.f)

> 1.01384

We divide the GLM predictions by 3 for the differences over year. We do
this to get the change per year, as the calculations done is for every third
year. The result shows that the GLM death rate predictions on average per
age increase 1.015 = 1.5% faster than the predictions done by GAM. It also
shows that the GLM death rate predictions on average per years decrease
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1.014 = 1.4% slower than the predictions done by GAM. Doing the same for the
male population we can the differences in predictions within each NACE-section,
for each gender. We get the overall result by taking the average of the results
of each gender, of each NACE-section.

100



APPENDIX B

Figures and tables.

B.1 Tables of missing exposures in Chapter 4

In Section 4.2 and 4.3 we group data according to age group, gender, year and NACE-
section. This should leave us with a total of 2835 observations for each gender. This is
however not the case, as we miss exposures for some of the variable combinations. We
end up with a total of 2729 observations in the male data set and 2691 observations
for the female data set. Overview of missing exposures are given in Table B.1 for the
male population and in Table B.2 for the female population.

Table B.1: Overview of missing male exposures when grouping data by single years, NACE-
section and and ten-year age groups in Section 4.2. Total number of missing exposures for
the male population are 106.

Year Number of missing
exposures

1991 8
1992 5
1993 4
1994 4
1995 3
1996 1
1997 1
1999 5
2000 5
2001 5
2002 5
2003 6
2004 34
2005 5
2006 8
2007 1
2013 1
2017 5

Total 106

NACE-section Number of missing
exposures

A 1
B 1
D 5
E 6
I 1
N 1
O 53
P 6
Q 1
R 9
U 10
X 12

Total 106

Age group Number of missing
exposures

20-29 27
30-39 17
40-49 17
50-59 18
60-69 27

Total 106
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Table B.2: Overview of missing female exposures when grouping data by single years,
NACE-section and and ten-year age groups in Section 4.2. Total number of missing exposures
for the female population are 144.

Year Number of missing
exposures

1991 10
1992 8
1993 6
1994 5
1995 3
1996 1
1997 2
1998 2
1999 5
2000 6
2001 5
2002 6
2003 7
2004 40
2005 9
2006 8
2007 1
2008 2
2009 1
2010 2
2011 2
2012 1
2013 2
2014 2
2015 2
2016 1
2017 5

Total 144

NACE-section Number of missing
exposures

A 7
B 7
D 6
E 25
F 1
I 3
L 1
N 1
O 56
P 8
R 11
U 11
X 7

Total 144

Age group Number of missing
exposures

20-29 29
30-39 20
40-49 19
50-59 27
60-69 49

Total 144
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B.2 Tables of dispersion test carried out in Section 4.1

In Section 4.1 we explain how we can check for overdisepersed data by performing a
poisson dispersion test on non-aggregated data. We do this by making test groups with
age within a given range with approximately equal exposure ranges in the male and
female data sets. The test results, not given in Section 4.1, for the male population is
given in Table B.3. Test results for the female population is shown in Table B.4.

Table B.3: Summary tables of Poisson Dispersion Tests done on non-aggregated data for
males in given age groups, year 1998. D = the test statistic defined in equation (4.1), page 33.
df = the degrees of freedom for each test statistic. A line in the table-cell means no deaths
have been observed for the belonging group.

Age group: 20-29 years
Exposure mean variance D df p value

Person years = 1 0.0021 0.0035 2399 1440 0.000 ***
1< Person years <2 0.0012 0.0012 863 863 0.494
Person years = 2 0.0027 0.0027 366 366 0.490

2< Person years ≤3 0.0020 0.0020 509 509 0.492
3< Person years ≤4 0.0037 0.0037 270 270 0.489
4< Person years ≤5 0.0065 0.0065 152 152 0.485
5< Person years ≤6 0.0000 0.0000 - 113 -

Age group: 30-39 years
Exposure mean variance D df p value

Person years = 1 0.0000 0.0000 - 2690 -
1< Person years <2 0.0010 0.0010 954 954 0.494
Person years = 2 0.0000 0.0000 - 855 -

2< Person years ≤3 0.0025 0.0025 805 806 0.503
3< Person years ≤4 0.0000 0.0000 - 393 -
4< Person years ≤5 0.0044 0.0044 226 226 0.487
5< Person years ≤6 0.0065 0.0065 153 153 0.485

Age group: 40-49 years
Exposure mean variance D df p value

Person years = 1 0.0000 0.0000 - 3051 -
1< Person years <2 0.0096 0.0095 621 626 0.549
Person years = 2 0.0000 0.0000 - 822 -

2< Person years ≤3 0.0017 0.0017 585 585 0.492
3< Person years ≤4 0.0099 0.0099 299 301 0.522
4< Person years ≤5 0.0098 0.0098 202 203 0.507
5< Person years ≤6 0.0472 0.0454 121 126 0.609

Age group: 60-69 years
Exposure mean variance D df p value

Person years = 1 0.0009 0.0009 1077 1077 0.494
1< Person years <2 0.0465 0.0447 123 128 0.608
Person years = 2 0.0126 0.0125 235 237 0.525

2< Person years ≤3 0.0263 0.0258 148 151 0.554
3< Person years ≤4 0.0400 0.0389 72 74 0.544
4< Person years ≤5 0.0444 0.0434 43 44 0.514
5< Person years ≤6 0.0000 0.0000 - 31 -
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Table B.4: Summary tables of Poisson Dispersion Tests done on non-aggregated data for
females in given age groups, year 1998. D = the test statistic defined in equation (4.1), page
33. df = the degrees of freedom for each test statistic. A line in the table-cell means no
deaths have been observed for the belonging group. There are noe observed deaths of females
in year 1998 in age group 20-29, this age group is therefore not included in the table.

Age group: 30-39 years
Exposure mean variance D df p value

Person years = 1 0.0005 0.0005 1998 1998 0.496
1< Person years <2 0.0023 0.0023 436 436 0.491
Person years = 2 0.0000 0.0000 - 452 -

2< Person years ≤3 0.0000 0.0000 - 345 -
3< Person years ≤4 0.0057 0.0057 173 173 0.486
4< Person years ≤5 0.0000 0.0000 - 122 -
5< Person years ≤6 0.0000 0.0000 - 66 -

Age group: 40-49 years
Exposure mean variance D df p value

Person years = 1 0.0005 0.0005 1887 1887 0.496
1< Person years <2 0.0000 0.0000 - 261 -
Person years = 2 0.0000 0.0000 - 351 -

2< Person years ≤3 0.0037 0.0037 270 270 0.489
3< Person years ≤4 0.0000 0.0000 - 140 -
4< Person years ≤5 0.0175 0.0175 56 56 0.475
5< Person years ≤6 0.0196 0.0196 50 50 0.473

Age group: 50-59 years
Exposure mean variance D df p value

Person years = 1 0.0006 0.0006 1591 1591 0.495
1< Person years <2 0.0115 0.0114 172 173 0.507
Person years = 2 0.0114 0.0113 346 349 0.535

2< Person years ≤3 0.0048 0.0048 206 206 0.487
3< Person years ≤4 0.0118 0.0118 84 84 0.479
4< Person years ≤5 0.0000 0.0000 - 54 -
5< Person years ≤6 0.0270 0.0270 36 36 0.469

Age group: 60-69 years
Exposure mean variance D df p value

Person years = 1 0.0000 0.0000 - 552 -
1< Person years <2 0.0208 0.0208 47 47 0.473
Person years = 2 0.0090 0.0090 110 110 0.482

2< Person years ≤3 0.0000 0.0000 - 47 -
3< Person years ≤4 0.0000 0.0000 - 17 -
4< Person years ≤5 0.0000 0.0000 - 13 -
5< Person years ≤6 0.0000 0.0000 - 3 -

104



B.3. Residual diagnostic plots of models fitted in Section 6.4 and 6.5

B.3 Residual diagnostic plots of models fitted in Section
6.4 and 6.5

In Section 6.4 we fit GAMs with smoothed main effects for age and year. The
models are fitten on datasets of 1350 observations each, one data set per gender.
The resulting male model is called m.ay.mod and the resulting female model
is called f.ay.mod. The residual diagnostic plots of these models are given in
Figure B.1.

Figure B.1: Diagnostic plots of deviance residuals for the male and female models, m.ay.mod
and f.ay.mod, default smoothed over age and year in chapter 6.3, page 59. a) Male QQ-plot
of residuals, b) Male fitted values vs. residuals shown as points plotted with trendline, c)
Male histogram of residuals with a normal line plotted on top, d) Male residuals over age, e)
Male residuals over year, f)-j) same as a)-e) but for the female model.
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In Section 6.5 we added a smoothed interaction term between age and year, using a
tensor product smoother. The interaction effect was specified in the model by function
ti() in R. The resulting male and female models were called m.ay.ten.mod and model
f.ay.ten.mod respectively. The residual diagnostic plots of model m.ay.ten.mod is
given in Figure B.2. The residual diagnostic plots of model f.ay.ten.mod is given in
Figure B.3.

Figure B.2: Residual diagnostics and oberved vs. fitted values of GAM model m.ay.ten.mod,
model with smoothed interaction terms and smooted main effects splitted. a) QQ-plot of residuals,
b) Fitted values vs. residuals shown as points plotted with trendline, c) Histogram of residuals
with a normal line plotted on top, d) Residuals over age with trendline, e) Residuals over year
with red trendline, f) Observed deaths plotted against fitted deaths with trendline on top.

Figure B.3: Residual diagnostics for GAM model f.ay.ten.mod, model with smoothed interaction
terms and smooted main effects splitted. a) QQ-plot of residuals, b) Fitted values vs. residuals
shown as points plotted with trendline, c) Histogram of residuals with a normal line plotted on
top, d) Residuals over age with red trendline, e) Residuals over year with red trendline
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Models with smoothed interaction terms can also bw fitted through a single tensor
product smooth, using te() in R. We did this in Section 6.5 and called the resulting
models m.ten.mod for males and f.ten.mod for females, their residuals diagnostic plots
are given in Figure B.4 and Figure B.5 respectively.

Figure B.4: Residual diagnostics and observed vs. fitted values of GAM model m.ten.mod,
model with a single tensor product smooth. a) QQ-plot of residuals, b) Fitted values vs.
residuals shown as points plotted with trendline, c) Histogram of residuals with a normal
line plotted on top, d) Residuals over age with trendline, e) Residuals over year with red
trendline, f) Observed deaths plotted against fitted deaths with trendline on top.

Figure B.5: Residual diagnostics and observed vs. fitted values of GAM model f.ten.mod,
model with a single tensor product smooth. a) QQ-plot of residuals, b) Fitted values vs.
residuals shown as points plotted with trendline, c) Histogram of residuals with a normal
line plotted on top, d) Residuals over age with trendline, e) Residuals over year with red
trendline, f) Observed deaths plotted against fitted deaths with trendline on top.
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B.4 Tables of missing exposures in Section 6.6

In Section 6.6 we group data according to single years, single ages and the three
biggest NACE-sections (C, G and K). This should leave us with two data sets
with 4050 observations, one for males and one for females. We do however miss
exposures for some of the variable combinations. We end up with a male data
set of 4017 observations and a female data set of 3995 observations. Missing
exposures for males are given in Table B.5. Missing exposures for females are
given in Table B.6.

Table B.5: Missing male exposures for data used in Section 6.6

NACE-section Insurance year Age NACE-section Insurance year Age
C 1991 20 K 1991 23

C 2003 20 K 1991 24

C 2004 20 K 2006 24

C 2007 20 K 2007 24

K 1998 20 K 1991 25

K 2004 20 K 1998 25

K 2012 20 K 2005 25

K 2013 20 K 2006 25

K 1991 22 K 2008 25

K 1997 22 K 2010 25

K 2004 22 K 2012 25

K 2013 22 K 2013 25

K 2004 23 G 2003 69

K 2005 23 G 2004 69

K 2004 27 G 2005 69

K 1991 61 G 2006 69

K 1991 22
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Table B.6: Missing female exposures for data used in Section 6.6

NACE-section Insurance year Age NACE-section Insurance year Age
C 2004 21 K 2010 21

C 2004 25 K 1991 22

C 2004 28 K 1997 22

C 2004 63 K 1999 22

C 2004 65 K 2000 22

C 2004 66 K 2005 22

C 2004 67 K 2006 22

C 2004 68 K 2009 22

C 1995 69 K 2010 22

C 2003 69 K 2012 22

C 2004 69 K 2013 22

K 2004 20 G 2000 68

K 2005 20 G 2004 68

K 2006 20 G 2005 68

K 2007 20 G 2006 68

K 2008 20 G 1991 20

K 2013 20 G 1992 20

K 2004 21 G 1997 20

K 2013 21 G 1998 20

K 2008 22 G 1999 20

K 2005 23 G 2000 20

K 2004 25 G 2001 20

K 1991 20 G 2003 20

K 1991 21 G 2004 20

K 1996 21 G 2005 20

K 1998 21 G 2006 20

K 2005 21 G 2007 20

K 2006 21

B.5 Residual diagnostic plots of three of the models fitted
in Section 6.6

In Section 6.6 we fit multiple GAMs with smoothed age, smoothed year and
categorical NACE-section as main effects. For male model gam.M3.nace.m,
we also include a smoothed interaction effect between age and year, and a
smoothed interaction effect between year and NACE-section K. Male model
gam.M4.nace.m, has the same effects included in the model as gam.M3.nace.m,
but in addition have a smoothed effect between age and NACE-section K.
Choosing a male model in Section 6.6 we end up with gam.M3.nace.m and
gam.M4.nace.m as top two preferred models, and these are the models we have
to choose between in the end. Residual diagnostic plots of model gam.M3.nace.m
are given in Figure B.6. Residual diagnostic plots of model gam.M4.nace.m are
given in Figure B.7.
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Figure B.6: Deviance residual diagnostics of GAM model gam.M3.nace.m, fitted on a male
data set of 4017 observations. a) QQ-plot of residuals, b) Fitted values vs. residuals with
blue trend line, c) Histogram of residuals with a normal line plotted on top, d) Residuals
over age with blue trend line, e) Residuals over year with blue trendline, f) Residuals over
NACE-sections.

Figure B.7: Deviance residual diagnostics of GAM model gam.M4.nace.m, fitted on a male
data set of 4017 observations. a) QQ-plot of residuals, b) Fitted values vs. residuals with
blue trend line, c) Histogram of residuals with a normal line plotted on top, d) Residuals
over age with blue trend line, e) Residuals over year with blue trendline, f) Residuals over
NACE-sections.

When we fit GAMs for the female population in Section 6.6, none of the
interaction terms improve the fit of the model with main effects only, model
gam.M1.nace.f. This model is therefore chosen for the female population. The
residual dagnostic plots of model gam.M1.nace.f are given in Figure B.8.
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Figure B.8: Deviance residual diagnostics of GAM model gam.M1.nace.f, fitted on a female
data set of 3995 observations. a) QQ-plot of residuals, b) Fitted values vs. residuals with
red trend line, c) Histogram of residuals with a normal line plotted on top, d) Residuals
over age with red trend line, e) Residuals over year with red trendline, f) Residuals over
NACE-sections.
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B.6 Comparison of death rate predictions of top two male
models in Section 6.6

The death rate prediction plots of models gam.M3.nace.m and gam.M4.nace.m for
NACE-section K was given in 6.6. We did however not show the death rate prediction
plots for NACE-sections C and G, they were however mentioned, and are therefore
given in this section. The death rate prediction plots for NACE-section C are given in
Figure B.9. The death rate prediction plots for NACE-section G are given in Figure
B.10.

Figure B.9: Death rate predictions with confidence bands of default smoothed models,
gam.M3.nace.m (M3: Red line and confidence band) and gam.M4.nace.m (M4: Gray stippled
line and confidence band), in NACE-section C - manufacturing. Predicitons over age (left
panel) are made by fixing year at 1997. Predictions over year are made by fixing age at 50.
The models are fitted on a male data set with 4017 observations and the predictions are
plotted on a log-scale.

Figure B.10: Death rate predictions with confidence bands of default smoothed models,
gam.M3.nace.m (M3: Green line and confidence band) and gam.M4.nace.m (M4: Gray
stippled line and confidence band), in NACE-section G - Wholesale and retail trade; repair of
motor vehicles and motorcycles. Predicitons over age (left panel) are made by fixing year at
1997. Predictions over year are made by fixing age at 50. The models are fitted on a male
data set with 4017 observations and the predictions are plotted on a log-scale.
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B.7 Comparison of death rate predictions of GLM and
GAM in Section 7.2

In Section 7.2 we compare the death rate predictions made by GLM and GAM
within different NACE-sections. In the section we did however not show the
prediction plots for females in NACE-section G. We did this as the prediction
plots look a lot like the prediction plots for NACE-section C. The prediciton
plots are therefore given in this section, Figure B.11.

Figure B.11: Predicted death rates in NACE-section G (G - Wholesale and retail trade;
repair of motor vehicles and motorcycles) for females of given age, panel a), and given years,
panel b). Predictions are plotted on a log-scale by GLM (stippled lines) and GAM (solid
lines). Each age in panel a) is represented by a color; red: 25, blue: 35, green: 45, brown:
55 and black: 65. Each year in panel b) is given colors; red: 1991, blue: 2005, green: 2017.
GLM predictions are made by model M1.nace.f and GAM predictions are made by model
gam.M1.nace.f.
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