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Abstract 
Automated detection of pitch in polyphonic music remains a difficult 
challenge. Implementation of perceptive/cognitive models have been 
so far less successful than engineering methods.  
We present a model that is neither based on a machine-learning 
training on a given set of samples, nor explicitly relying on stylistic 
rules. Instead, the methodology consists in conceiving a set of rules 
as simple and general as possible while offering satisfying results for 
the chosen corpus of music. We present a new method for harmonic 
summation that penalizes harmonic series that are sparse, in 
particular when odd partials are absent, as it would indicate that the 
actual harmonic series is a multiple of the given pitch candidate. 
Besides, a multiple of a fundamental can be selected as pitch in 
addition to the fundamental itself if its attack phase is sufficiently 
distinctive. For that purpose, we introduce a concept of pitch percept 
that persists over the whole extent of the note, and that serves as a 
reference for the detection of higher pitches at harmonic intervals.  
The proposed method enables to obtain transcriptions of relatively 
good quality, with a low ratio of false positives and false negatives. 
The construction of the model is under refinement. We are applying 
this method to the analysis of recordings of Norwegian folk music, 
containing a large part of Hardanger fiddle pieces and a cappella 
singing.  
By attempting to design computer models based on general rules as 
simple as possible rather than on machine learning, while resulting in 
a behavior in terms of pitch detection that comes closer to human 
capabilities, we hypothesize that the underlying mechanisms thus 
modelled might suggest general computational capabilities that could 
be found in cognitive models as well. In the same time, an 
improvement of the model based on expertise in music perception 
and cognition is desired.  

Cognitive models of pitch perception 
Cognitive modelling of pitch perception remains an open 

and controversial issue (McDermott & Oxenham, 2008). The 
perception of the fundamental frequency (or F0) of a given 
pitch is explained using various competing–and 
complementing–mechanisms. The cochlea operates a spatial 
(or tonotopic) decomposition of sound along frequencies at 
each successive instant. But at the same time a precise pitch 
estimation requires the study of the time waveform for each 
individual critical frequency in that tonotopic decomposition. 
Because each critical frequency is actually the center of a 
frequency band–with increasing bandwidth as frequency 
increases–the first harmonics of a given pitch will be properly 
resolved while higher harmonics will interact with each other 
in frequency bands and will not be resolved. Those 
mechanisms have not been fully understood yet (Oxenham, 
2012). Another mechanism possibly helping pitch perception 
relates to the phase locking of individual auditory nerves. 
There is evidence for cortical neurons beyond primary 

auditory cortex that are tuned to pitch (Bendor & Wang, 2006; 
McDermott & Oxenham, 2008). 

Extensive studies have attempted to understand how 
multiple pitches could be perceptually combined to form 
chords and voices. The knowledge brought by these works is 
not sufficiently detailed to be directly translated into 
computational models. 

In fact, the mere core mechanism of single note perception 
does not seem to be sufficiently understood in a cognitive 
point of view to allow computational modelling. For the 
simple case of individual sound event, this could be conceived 
as a simple detection based on detection of attack, onset and 
decay in the temporal representation of the energy of the 
signal. But when considering complex polyphonies, the notes 
detection seems to depend mainly on pitch perception, 
probably through a tracking of F0 over time and a detection of 
attack and decay along each F0 separately. 

Computational models of pitch extraction 
Computational approaches for pitch extraction can be 

decomposed into several types. 

Machine learning approaches 
The most dominant type of approach currently giving the 

best results is based on machine learning: the learning system 
is trained on particular audio recordings for which the 
corresponding transcriptions are given as well. “Learning”, 
here, means that the program automatically optimizes the 
inference algorithm so that it predicts the correct transcription 
when given as input its corresponding audio recording. This 
approach is dependent on the transcriptions provided during 
the learning phase. The resulting algorithm does not 
generalize well on audio examples that have very different 
musical characteristics. If we consider for instance the 
transcription of fiddle music, a proper training would require 
to provide as learning examples detailed transcriptions. And if 
we aim to get detailed transcriptions showing the pitch 
fluctuation within each note, we would have to provide such 
example transcriptions beforehand. 

Nowadays machine learning is implemented using neural 
networks and notably using deep learning techniques. Despite 
the name, “neural networks” are not supposed here to provide 
an actual cognitive modelling of pitch perception, since 
humans generally do not learn to perceive pitch based on 
supervised training. 

Template-based models 
Another method consists in recording individual notes 

played along the whole range of pitches under consideration 



and for various types of instruments. Those notes are then 
retrieved automatically on the audio recording to be analyzed, 
through a mathematical decomposition. Evidently, this 
engineering approach is not supposed to mimic human 
cognition. One major practical limitation is that the approach 
will not work properly for instruments with very different 
timbre that those prerecorded or with larger pitch range. 

Cognitive computational models 
The aforementioned cognitive models of pitch perception 

have been translated into detailed computational models 
(Medis & Hewitt, 1991). It has also been shown that some 
simplification can be carried out without degrading the 
general quality of the model (at least in the particular domain 
of application under consideration), while allowing to solve 
complex problems that the more detailed models were not 
able to tackle yet. The particular step of periodicity analysis of 
the critical bands, was not much explained in music cognition. 
In many reference works, this analysis has been modeled 
using autocorrelation function. But alternative models such as 
comb filter have been proposed as well. One of the most 
advanced computational models for pitch extraction based on 
cognitive theories has been proposed by Klapuri (2006a). 
Because pitch perception models so far focus mainly on single 
F0 extraction, additional engineering-based methods are 
developed to enable multipitch extraction, mainly based on 
time-domain cancellation. 

Other approaches 
Klapuri (2006b) has proposed another model, which offers 

significant improvements and has become a reference in 
Music Information Retrieval (MIR). Interestingly enough, this 
model does not follow cognitive theories as closely as before 
(such as tonotopic decomposition followed by autocorrelation 
function, as discussed above) but instead develop engineering-
based strategies. This seems to indicate that current cognitive 
understanding of pitch perception is not mature enough to be 
directly implemented into a state of the art computational 
model. In many recent approaches, periodicity analysis is 
based on frequency spectrum representation, computed for 
instance using the Fourier Transform. This is the case in the 
subsequent work by Klapuri (2006b). Moreover, this approach 
is funded on the concept of harmonic summation, that we will 
discuss further in the next section. 

Most current MIR approaches for pitch detection, 
including Klapuri’s, search for F0s for each successive instant 
(or time frame more precisely) independently. The F0s 
detected frame by frame are then tracked over time in a 
second step, in order to form pitch contour based on time and 
frequency continuity, using heuristics based on auditory 
streaming cues or additional musical knowledge. 

Still an open problem 
Despite the significant advance in multipitch estimation, 

this task remains one of the main challenges in the MIR field, 
which needs to address many difficulties, such as masking, 
overlapping tones, mixture of harmonic and non-harmonic 
sources and the fact that the number of sources might be 
unknown (Schedl, Gómez & Urbano, 2014). Even on simple 
polyphonies, the performance obtained by multipitch 
estimation methods reaches moderate note accuracy for 

relatively simple music material, such as quartet, woodwind 
quintet recordings, and rendered MIDI, with a maximum 
polyphony of 5 notes (MIREX, 2016). 

One way to compensate the limitations of current 
approaches in multi-pitch extraction is through the addition of 
music language models, which represent sequences of notes 
and other music cues based on knowledge from music theory 
or from constraints automatically derived from symbolic 
music data. Such approach would however not generalize well 
to various kinds of music genres and cultures, unless the 
models are updated accordingly. Besides, in a cognitive point 
of view, if listeners are able to detect the pitches without 
necessarily knowing that particular genre of music, we would 
surmise that a computational model should work 
independently on the stylistic rules.  

Proposed model 

Spectrum representation 
Similar to many MIR methods, we first represent the audio 

signal in the frequency domain (or spectrum) using the 
Fourier Transform. By decomposing the audio signal into 
short parts (frames) and computing the spectrum 
representation for each frame successive, we obtain a bi-
dimensional diagram, where the horizontal axis is the 
temporal evolution of the audio signal, and the vertical axis 
the different frequencies found in each frame. An example is 
shown in Figure 1. This spatial representation is similar (in 
terms of axes dimensions) to the representation of the pitch 
curves shown in Figure 2. 

This spectral representation can be somewhat related to the 
basic principles of tonotopic decomposition, that is, 
decomposing the energy into frequencies. Another perceptive 
aspect that needs to be included in the spectrum representation 
is the frequency filtering operated by the outer ear, with an 
emphasis on frequencies around 3000 Hz (Terhardt, 1979). 
Figure 1 shows the result of this filtering, with most of the 
energy near 3000 Hz. It turns out that this frequency emphasis 
significantly improved the pitch detection performed in the 
subsequent steps, for instance when analyzing fiddle music (cf. 
next section). This illustrates the fact that the acoustic of 
fiddle instrument is tuned to human ears, for instance with 
respect to pitch clarity. 

Harmonic summation 
When representing a given pitch in the frequency domain, 

there is a peak of the frequency F0 of the fundamental and 
peaks as well at harmonic partials, whose frequencies are 
multiples of F0. A convenient method to detect F0s from the 
frequency domain is called harmonic summation: it consists in 
associating a score to each F0 by summing together the 
spectrum amplitudes at multiples of F0. For instance, for the 
frequency F0 = 440 Hz, we sum the spectrum amplitudes 
related to the frequencies 440, 880, 1320 Hz and so on. The 
highest scores would correspond to the F0s of the actual 
pitches in the signal. 

In previous works, the score associated to each F0 
candidate is computed through a simple summation of each 
partial magnitude. Klapuri (2006b) also follows this strategy, 
although using weighted summation. 



In our view, a simple summation, even weighted, does not 
sufficiently describe the way harmonic sequences of partials 
are perceived. We have developed a new strategy, where 
instead of considering each partial pi individually, we consider 
each partial in relation with its previous partial pi-1 or its two 
previous partials pi-1 and pi-2. If pi is an even harmonic, its 
contribution to the total score is computed by multiplying the 
spectrum magnitude at pi and pi-1. If pi is an odd harmonic, its 
contribution is computed by take the maximum between (1) 
multiplying the spectrum magnitude at pi and pi-1 and (2) 
multiplying the spectrum magnitude at pi and pi-2. For instance, 
a harmonic sequence where all odd harmonics of F0 are 
absent will give a score of 0, indicating that the actual pitch 
should rather be at 2*F0. This method penalizes harmonic 
series that are sparse, in particular when odd partials are 
absent, as it would indicate that the actual harmonic series is a 
multiple of the given pitch candidate. 

Pitch detection based on dynamic evolution of partials 
One major difficulty when detecting multiple pitches is 

that, mathematically speaking, any harmonic Fi of a given F0 
present in the signal could itself appear as a possible F0: its 
own harmonic series is a subset of the harmonic series of the 
lower F0. For instance, the pitch F1 at an octave above a 
given pitch F0 has an harmonic series that corresponds to the 
even partials of the harmonic series of F0. Evidently, all 
harmonics Fi of a given F0 are not themselves perceived as 
individual pitches. 

We may hypothesize that for a given harmonic Fi to be 
perceived as the fundamental of an additional pitch, 
superposed to the pitch at F0, its harmonic series being added 
to the harmonic series of F0, in the resulting harmonic series, 
the peaks corresponding to the series related to Fi should be 
higher. Klapuri (2006b) uses this hypothesis, and develops a 
method where each time a given F0 is found, its harmonic 
series is removed from the signal so that eventual harmonic 
series corresponding to other pitch at Fi can be detected as 
well. We also follow this hypothesis in our model, but instead 
of removing harmonic series for each pitch found in the signal, 
we search for predominant subseries in each given harmonic 
series. 

In our experiments, we came to the conclusion that this 
hypothesis is too strong and does not explain all conditions for 
the appearance of pitches at harmonic intervals above other 
pitches. We have found another more subtle characterization: 
a pitch Fi can appear at such harmonic interval above F0 if the 
harmonic series starting from Fi increases over time. So even 
if the harmonic series of Fi is not particularly dominant 
compared to the series starting from F0, if there is a 
significant increase over time of some of its components, this 
suggests the detection of pitch Fi. 

Adopting this strategy requires to rethink the way pitches 
are detected. As aforementioned, in most approaches in MIR, 
pitches are detected for each successive frame separately; they 
are then combined into notes by tracking the F0s values over 
time in order to form pitch contour based on time and 
frequency continuity. The decision concerning the selection of 
F0s is made in the first step, for each successive frame 
separately. 

In our proposed model, F0s are still searched for in each 
successive frame, but once a F0 has been detected, a new 

pitch contour is created and further tracked in the subsequence 
frames. The pitch contour stores the dynamic evolution of the 
magnitude of each partial. This information can therefore been 
used to detect any pitch Fi at harmonic interval. 

The proposed model will be presented in more details in 
an upcoming paper and will be integrated into MIRtoolbox 
(Lartillot & Toiviainen, 2007) and the MiningSuite. 

Analysis of Hardanger fiddle music 
This approach has been specifically developed for the 

analysis of traditional Norwegian folk music played on the 
Hardanger fiddle. The Hardanger fiddle is slightly smaller 
than a regular violin, with a shorter neck and a flatter bridge, 
which allows to play more than two strings at the same time. 
In addition to the bowed strings, there are four or five 
sympathetic strings that run under the board. The sympathetic 
strings resonate when the bowed strings are played, 
contributing to the rich sound of this fiddle and also giving the 
music its characteristic drone. The fiddle playing is also 
extensively ornamented (Haugen, 2016). 

In the current state of this research, the algorithm has been 
tested on traditional Norwegian folk dances. Figure 2 shows 
the beginning of the analysis of a performance of the tune 
called Gibøens bruremarsj. 

The first results of this new model are promising. We can 
generally detect all the notes, even if they are repeated very 
quickly and played on several strings at the same time. We 
can also get a detailed dynamic envelope of each note, that 
could be used for further research about rhythm and attacks. 
The algorithm also output false positives and false negatives 
sometimes. 

Discussion 
As we have seen in the study of the state of the art in 

computational models for pitch extraction, the implementation 
of perceptual models describing as closely as possible the way 
pitch is perceived has not lead so far to particularly successful 
solutions for polyphonic music transcription. It is telling in 
this respect that the author of the most detailed computational 
implementation of psychological modelling of multi-pitch 
extraction has turned later to a more engineering approach. 
His engineering approach proved more successful, as it 
became a reference model in MIR. It seems that the cochlear 
model and in particular the filterbank decomposition proves 
somewhat problematic, as it leads to a significant distortion of 
the audio signal without clear advantages, compared to more 
simple engineering approaches, such as the use of Fourier 
transforms. We hope new advances in cognitive 
understanding (or works already published unknown to us) 
will offer new guidance for computational improvements. 

Nonetheless the strategies developed in computational 
approaches might suggest hypotheses concerning the 
cognitive modelling of pitch perception. In particular if a 
simple computational mechanism is shown to offer 
particularly good results in a large range of music styles, we 
may suppose that similar operations are performed in the 
auditory system. 

In that respect, we might wonder whether (or not) the 
concept of harmonic summation might have some cognitive 
validity. It seems computationally more simple and effective 
than selecting individual frequencies in the spectrum. One 



main objection would be that harmonic summation would not 
work in the same way for inharmonic sounds. However 
inharmonic sounds are usually associated with attacked sound, 
whose pitch might be detected using complementary 
mechanisms taking benefit of the attack phase. 

One particularity of our proposed model is that it 
introduces a concept of pitch percept that persists over the 
whole extent of the note, and that serves as a reference for the 
detection of higher pitches at harmonic intervals. The 
perceptual and cognitive implications of this notion of pitch 
percept need to be investigated. 
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Figure 1.  Frequency spectrum decomposition of the beginning of a performance of the tune called Gibøens bruremarsj played on 
Hardanger fiddle. Time in second is shown on the horizontal axis. Frequencies are decomposed along the vertical axis. The higher the 
magnitude, the brighter the colour. 

 
 

Figure 2.  Pitch extracted from the audio recording shown in Figure 1. Each note is represented by a black line, starting with a red 
cross and ending with a yellow cross. Time is shown on the horizontal axis and frequencies on the vertical axis. 


