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Volterra processes appear in several applications ranging from turbulence to energy 
finance where they are used in the modelling of e.g. temperatures and wind and the 
related financial derivatives. Volterra processes are in general non-semimartingales 
and a theory of integration with respect to such processes is in fact not standard. In 
this work we suggest to construct an approximating sequence of Lévy driven Volterra 
processes, by perturbation of the kernel function. In this way, one can obtain an 
approximating sequence of semimartingales. Then we consider fractional integration 
with respect to Volterra processes as integrators and we study the corresponding 
approximations of the fractional integrals. We illustrate the approach presenting 
the specific study of the Gamma-Volterra processes. Examples and illustrations via 
simulation are given.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article 
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1. Introduction

We consider Volterra type processes driven by Lévy noise L(t), t ≥ 0, of the form:

Y (t) :=
t∫

0

g(t− s)dL(s), t ≥ 0, (1)

where g is a deterministic kernel. Such processes appear in many different applications including models for 
tumour growth, turbulence, and energy finance, see e.g. [3–5,31]. Processes of type (1) belong to the family 
of ambit fields as presented e.g. in [2] and include, as particular cases, the Lévy fractional Brownian motion 
given by the Riemann-Liouville integral, see [22]. The fractional Brownian motion is represented (modulo 
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a constant factor) by an integral of type (1) plus a suitable process with absolutely continuous trajectories, 
see [22, p. 424]. Compare also with the integral representation on (0, t] with the Molchan-Golosov kernel, 
see e.g. [19]. For fractional Lévy processes we can refer e.g. to [9,10,23] and references therein.

In general Volterra processes are not semimartingales, see [7]. We recall that semimartingales constitute 
the largest class of integrators for a stochastic integration theory (Itô-type integration) which is well-suited 
for applications where the adaptedness or the predictability with respect to a given information flow plays 
an important role. This is the case, for example, in mathematical finance where one needs integration to 
define e.g. the central concept of the value process of a self financing portfolio. Also, the numerical methods 
are flourishing in the case of semimartingale models. Without means of being exhaustive, we can refer, 
e.g., to classical books [12,20] and to more recent works that show that the area is in simmering activity 
[25,32,37,38]. Processes of type (1) have interesting stylized features, like the non-trivial time correlation 
structure, that well suits several contexts of modelling, such as in renewable energies. In energy finance the 
use of non-semimartingale models is well motivated. See e.g. [3, section 3.3] for a discussion.

In this paper we propose to approximate (1) by the process

Y ε(t) :=
t∫

0

gε(t− s)dL(s), (2)

where gε, with ε ∈ (0, 1), is a family of deterministic kernel functions approximating g, i.e. gε −→ g as 
ε → 0, in an appropriate sense. We are interested in the cases when gε guarantees that Y ε(t), t ≥ 0, is a 
semimartingale and we show that Y ε(t) approximates Y (t) in the sense of Lp-convergence.

Approximations of this type were first introduced in [33] and [34], and then used in [17], but only in the 
case where Y is a fractional Brownian motion. Our result extends substantially this first study and moves 
beyond.

In fact, the core of the present paper deals with the generalized Lebesgue-Stieltjes integrals with respect 
to the processes (1) and (2) as integrators. This is a form of pathwise integration defined via the fractional 
derivatives. For a survey, new results and conditions for integration with respect to Volterra type processes 
as integrators see [14]. In this study we suggest sufficient conditions to ensure that, for a given integrand 
X, the generalized Lebesgue-Stieltjes integrals with respect to Y ε and Y as integrators converge in L1:

T∫
0

X(s)dY ε(s) −→
T∫

0

X(s)dY (s), ε → 0. (3)

We remark that, if Y ε is a semimartingale and X is a predictable process (with respect to the same 
filtration), the generalized Lebesgue-Stieltjes integral corresponds to the Itô type integral. Hence, in the 
context of predictable integrands, the approximation (3) provides an approximation of a non-semimartingale 
by a semimartingale. We intend to exploit this feature in future research dealing with hedging in energy 
finance. Here we illustrate the use of the approximation in simulation with an example.

We illustrate the results in full detail in the case of

Y (t) :=
t∫

0

(t− s)βe−λ(t−s)dL(s), (4)

for β ∈ (−1/2, 1/2), λ ≥ 0. In this case g is, up to a constant, a Gamma kernel. For β ∈ (−1/2, 0), the 
integral (4) is obtained as an appropriate stochastic modification of the Riemann-Liouville fractional integral 
in which the factor e−λ(t−s) in the kernel has a dampening effect. The processes (4) appear explicitly in the 
modelling of turbulence and in the modelling of environmental risk factors in energy finance (e.g. wind), 
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see [6,36]. In the sequel we refer to (4) as Gamma-Volterra process. In view of the relevance of this family 
in applications, we shall detail the study of such processes.

The paper is organised as follows. The next section reviews knowledge about Volterra processes and 
introduces an approximation by perturbation of the kernel. Particularly interesting is the case when the 
Volterra process is not a semimartingale and it can be approximated by a semimartingale process. As illus-
tration, the Lévy driven Gamma-Volterra processes are studied along with their approximations. Section 3
deals with fractional integration and it is divided in two parts. In the first part we revise general facts 
and then we provide conditions to guarantee when a Volterra process is an appropriate integrator. This 
includes cases when the Volterra process is not a semimartingale. Examples are provided. In the second 
part of the section, exploiting the approximation introduced before, we suggest an approximation of the 
integral with respect to a Volterra process. Examples and full detailed conditions are provided in the case 
of a Gamma-Volterra process. Finally, a numerical example is given as direct application and illustration of 
the technique proposed.

2. Volterra processes and a semimartingale approximation

First of all we review the fundamental concepts to ensure the meaningful definition of Y in (1). We define 
the integration of a deterministic function with respect to the Lévy process L as in [14] by the approach 
proposed in [35] and further developed in [26].

Let (Ω, F , P) be a complete probability space and L = L(t), t ≥ 0, be a Lévy process with characteristic 
function represented in the following form (see e.g. [30]):

E

[
eixL(t)

]
= etψ(x), x ∈ R,

with

ψ(x) = iax− x2b

2 +
∫
R

{eixz − 1 − ixτ(z)}ν(dz),

where

τ(z) :=
{
z, |z| ≤ 1
z
|z| , |z| > 1,

a ∈ R, b ≥ 0, and ν is a Lévy measure on R, i.e. it is a σ-finite Borel measure satisfying
∫
R

(z2 ∧ 1)ν(dz) < ∞, ν({0}) = 0.

The triplet (a, b, ν) is called the characteristic triplet of the Lévy process L.

From the increments L((s, t]) := L(t) − L(s), s ≤ t of the Lévy process L, we obtain the random 
measure on B([0, ∞)) taking values in L0(Ω, F , P), see [26]. The random measure is still denoted by L. For 
any A ∈ B([0, ∞)) s.t. λ(A) < ∞, the random measure values L(A) are random variables with infinitely 
divisible distribution and Lévy-Khintchine characteristic function

E

[
eixL(A)

]
= eλ(A)ψ(x), x ∈ R.

Here λ denotes the Lebesgue measure on B(R).
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Definition 2.1.

(i) Let f =
∑J

j=1 fj1Aj
be a real-valued simple function on [0, T ], where the pairwise disjoint sets Aj ∈

B([0, T ]) belong to a partition of [0, T ]. Then, for any A ∈ B([0, T ]), we set

∫
A

fdL :=
J∑

j=1
fjL(A ∩Aj).

(ii) A measurable function f : ([0, T ], B([0, T ])) −→ (R, B(R)) is said to be L-integrable (on [0, T ]) if there 
exists a sequence {fn}n≥1 of simple functions as in (i) such that
(a) limn→∞ fn = f , λ-a.e.
(b) for any A ∈ B([0, T ]), the corresponding sequence {

∫
A
fndL}n≥1 converges in probability as n → ∞.

If f is L-integrable, the stochastic integral on A ∈ B([0, T ]) is defined by

∫
A

fdL := lim
n→∞

∫
A

fndL,

with convergence in probability.

The integral is well-defined, i.e. for any L-integrable function f : ([0, T ], B([0, T ])) −→ (R, B(R)), the 
integral does not depend on the choice of approximating sequence {fn}n≥1. Moreover, the integral 

∫
A
fdL

is also infinitely divisible with explicit characteristic function, see [26,35].

The following result characterizes the space of integrands. See e.g. Lemma 2.1 in [14].

Lemma 2.2.

(i) For p ≥ 2, any function f ∈ Lp([0, T ]) is L-integrable.
(ii) For p ∈ [1, 2) assume that L satisfies b = 0 and 

∫
|z|≤1 |z|pν(dz) < ∞. Then any function f ∈ Lp([0, T ])

is L-integrable.

Hence for all t, under the conditions of Lemma 2.2, we have that the integral (1) is well defined for 
L-integrable functions g(t − ·) on [0, t]. The proper definition of Y is a standing assumption in this work.

Depending on the properties of the kernel function g, the Volterra process may or may not be a semi-
martingale. The semimartingale property of various subclasses of Volterra type processes is studied in e.g. 
[7–9,21]. Hereafter, we fix the natural filtration F = {Ft, t ≥ 0} generated by the Lévy process L with the 
characteristic triplet (a, b, ν) on (Ω, F , P) and we state the necessary and sufficient conditions to guarantee 
that the Volterra process Y in (1) is a semimartingale. See [7], Theorem 3.1 and Corollary 3.5.

Theorem 2.3. Assume that L(t), t ≥ 0, is of unbounded variation. Then Y is an F-semimartingale if and 
only if g = g(u), u ≥ 0, is absolutely continuous on R+ with a density g′ such that

t∫
0

|g′(u)|2du < ∞, t ≥ 0,

when b > 0, and satisfies
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t∫
0

∫
[−1,1]

|zg′(u)|2 ∧ |zg′(u)|ν(dz)du < ∞, t > 0, (5)

when b = 0.
Assume that L(t), t ≥ 0, is of bounded variation. Then Y (t), t ≥ 0, is an F-semimartingale if and only 

if it is of bounded variation, which is equivalent to requesting that g is of bounded variation.

Example 2.4 (Semimartingale property of Gamma-Volterra processes). Consider the Gamma-Volterra pro-
cess (4):

Y (t) :=
t∫

0

(t− s)βe−λ(t−s)dL(s), t ≥ 0,

with β 	= 0, λ ≥ 0. From direct application of the theorem above we see that if L is a Brownian motion or 
a Lévy process with b > 0, then Y is a F-semimartingale if and only if β > 1/2. If L is a Lévy process with 
no Brownian component, i.e. b = 0, then Y is well-defined and an F-semimartingale if and only if one of the 
following conditions is satisfied (see [7], Corollary 3.5):

(i) β > 1/2,
(ii) β = 1/2 and 

∫
[−1,1] z

2| log |z||ν(dz) < ∞,
(iii) β ∈ (0, 1/2) and 

∫
[−1,1] z

1/(1−β)ν(dz) < ∞.

The following result is a moment estimate for the Lévy driven Volterra processes, see Theorem 2.2 and 
Remark 2.2 in [14]. This is obtained under the technical assumption that ν is symmetric. We shall make 
this assumption in our present work.

Theorem 2.5. Let L = L(t), t ≥ 0, be a Lévy process with symmetric Lévy measure ν. We have the following 
two statements:

(a) For a Lévy process with characteristic triplet (a, 0, ν) such that 
∫
R
|z|pν(dz) < ∞ for some p ≥ 1, we 

assume that for t ≥ 0, g(t, ·) ∈ Lp([0, t]). Then g(t, ·) is L−integrable and we have the estimate:

E

∣∣∣∣∣∣
t∫

0

g(t, s)dL(s)

∣∣∣∣∣∣
p

≤ C1

⎛
⎝|a|p‖g(t, ·)‖pL1[0,t] + ‖g(t, ·)‖pLp[0,t]

∫
R

|z|pν(dz)

⎞
⎠ .

(b) For a Lévy process with characteristic triplet (a, b, ν) such that 
∫
R
|z|pν(dz) < ∞ for some p ≥ 2, we 

assume that for t ≥ 0, g(t, ·) ∈ Lp([0, t]). Then g(t, ·) is L−integrable and we have the estimate:

E

∣∣∣∣∣∣
t∫

0

g(t, s)dL(s)

∣∣∣∣∣∣
p

≤ C2

(
|a|p‖g(t, ·)‖pL1[0,t] + bp/2‖g(t, ·)‖pL2[0,t]

+ ‖g(t, ·)‖pLp[0,t]

∫
R

|z|pν(dz)
)
.

The constants C1, C2 do not depend on g.
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Notice that, in the present work, all constants in the estimates are denoted by C. Their dependence on 
the parameters can be explicitly given when relevant. Their specific form is deduced from the context.

Remark. Recall that a Lévy process with characteristic triplet (0, b, ν) is a square-integrable martingale if 
and only if, for some p ≥ 2,

∫
|z|≥1

|z|p ν(dz) < ∞ and
∫

|z|≥1

z ν(dz) = 0.

Then, considering the assumptions of Theorem 2.5 in this case, if the Lévy process L has symmetric Lévy 
measure ν and 

∫
R
|z|p ν(dz) < ∞ for some p ≥ 2, this Lévy process is a square-integrable martingale with 

〈L〉t = t (b +
∫
R
z2 ν(dz)), t ≥ 0. In this case we could also consider Itô stochastic integration of predictable 

stochastic processes g(t − ·) and find estimates of the moments based on the Burkholder-Davis-Gundy and 
Bichteler-Jacod types inequalities. See e.g. Lemma 5.1 in [18]. However, we shall not consider such processes 
in the framework of the present work. We remark that other similar estimates can be found by means of 
Rosenthal inequalities in the case of Poisson stochastic integrals, which are optimal in the sense that an Itô 
isomorphism is obtained, see [16].

For later use, we consider the following result.

Lemma 2.6. Let L be a Lévy process with characteristic triplet (a, b, ν), where ν is symmetric and ∫
R
|z|p ν(dz) < ∞ for some p ≥ 1, if b = 0, or some p ≥ 2, if b > 0. Then g(t − δ− ·)1(0,t−δ)(·) ∈ Lp([0, t]), 

for all δ ∈ (0, t), and the integrals

Y (t− δ) =
t−δ∫
0

g(t− δ − s)dL(s), δ ∈ (0, t),

are well defined. Assume that limδ↓0 g(t − δ− ·) exists with convergence in Lp([0, t]) and denote by g(t− − ·)
the limit and the corresponding function defined for a.e. s by a subsequence. Then the integral

Y (t−) :=
t∫

0

g(t− − s)dL(s)

is well-defined. Furthermore, limδ↓0 Y (t − δ) exists with convergence in Lp(Ω) (and in probability) and 
Y (t−) = limδ↓0 Y (t − δ).

Proof. Since g(t − δ − ·)1(0,t−δ)(·) ∈ Lp([0, t]), by convergence, also g(t− − ·) ∈ Lp([0, t]), then the corre-
sponding integrals Y (t − δ) and Y (t−) are well-defined by Lemma 2.2. We prove the last assertion. It is 
enough to show that the sequence (Y (t − δ))δ admits a limit in Lp(Ω).
Applying the estimates of Theorem 2.5 we can see that, for δ, ρ > 0 small enough,

E|Y (t− δ) − Y (t− ρ)|p =

= E

∣∣∣
t∫

0

[g(t− δ − s)1(0,t−δ)(s) − g(t− ρ− s)1(0,t−ρ)(s)]dL(s)
∣∣∣p

≤ Ca,b,ν‖g(t− δ − ·)1(0,t−δ) − g(t− ρ− ·)1(0,t−ρ)‖pLp[0,t]

−→ 0, for δ, ρ → 0.
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Thus the sequence (Y (t − δ))δ is Cauchy in Lp(Ω). Analogously, we see that

E|Y (t− δ) − Y (t−)|p = E

∣∣∣
t∫

0

[g(t− δ − s)1(0,t−δ)(s) − g(t− − s)]dL(s)
∣∣∣p

≤ C̃a,b,ν‖g(t− δ − ·)1(0,t−δ) − g(t− − ·)‖pLp[0,t]

−→ 0, for δ → 0. �
Hereafter we study an approximation for the Volterra process Y = Y (t), t ≥ 0, derived by perturbation 

of the kernel function. Let gε, ε ∈ (0, 1), be a family of deterministic L-integrable kernels and define the 
corresponding family of Volterra processes Y ε = Y ε(t), t ≥ 0, by

Y ε(t) =
t∫

0

gε(t− s)dL(s), t ≥ 0. (6)

Theorem 2.7. Let L = L(t), t ≥ 0, be a Lévy process with symmetric Lévy measure. Consider one of the 
following situations:

(a) The Lévy process has characteristic triplet (a, 0, ν) and 
∫
R
|z|pν(dz) < ∞ for some p ≥ 1.

(b) The Lévy process has characteristic triplet (a, b, ν) and 
∫
R
|z|pν(dz) < ∞ for some p ≥ 2.

Then, for any t, we have the convergence in Lp(Ω):

‖Y ε(t) − Y (t)‖Lp(Ω) −→ 0, as ε → 0, (7)

whenever g(t − ·), gε(t − ·) ∈ Lp[0, t] such that

‖gε(t− ·) − g(t− ·)‖Lp[0,t] −→ 0, as ε → 0. (8)

If (8) is uniform on t ∈ [0, T ] (T < ∞), then (7) would be uniform on t ∈ [0, T ] as well.

Proof. Fix t ≥ 0. Consider case (a). By Theorem 2.5(a) there exists some C > 0 such that

E |Y ε(t) − Y (t)|p = E

∣∣∣∣∣∣
t∫

0

gε(t− s) − g(t− s)dL(s)

∣∣∣∣∣∣
p

≤ C
(
|a|p‖gε(t− ·) − g(t− ·)‖pL1[0,t]

+ ‖gε(t− ·) − g(t− ·)‖pLp[0,t]

∫
R

|z|pν(dz)
)
−→ 0,

as ε → 0. Similarly, for the convergence in (b) we apply Theorem 2.5(b) and there exists some C > 0 such 
that

E |Y ε(t) − Y (t)|p = E

∣∣∣∣∣∣
t∫

0

gε(t− s) − g(t− s)dL(s)

∣∣∣∣∣∣
p

≤ C
(
|a|p‖gε(t− ·) − g(t− ·)‖p
L1[0,t]
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+ bp/2‖gε(t− ·) − g(t− ·)‖pL2[0,t]

+ ‖gε(t− ·) − g(t− ·)‖pLp[0,t]

∫
R

|z|pν(dz)
)
−→ 0,

as ε → 0. �
In the following example we specify under which assumptions we can approximate the Gamma-Volterra 

process in (4) with a semimartingale, using Theorem 2.7.

Example 2.8 (Approximation of Gamma-Volterra processes). Let Y (t), t ≥ 0, be the Gamma-Volterra 
process in (4) with driving noise L, a Lévy process with the characteristic triplet (a, 0, ν), where ν is a 
symmetric measure such that 

∫
R
|z|pν(dz) < ∞, for some p ≥ 1. Fix t. From Lemma 2.2 we have that (4)

is well defined whenever g(t − ·) ∈ Lp[0, t]. That is

t∫
0

(t− s)βpe−λp(t−s)ds ≤
t∫

0

(t− s)βpds < ∞,

whenever βp + 1 > 0. We shall consider two cases:

(a) λ ≥ 0, β ∈ (−1, 0) and βp + 1 > 0, i.e. p ∈ [1, 1/|β|);
(b) λ ≥ 0, β > 0;

Concerning the approximating process Y ε in (6), we define

gε(u) := (u + ε)βe−λ(u+ε), u ∈ (0, t], ε ∈ (0, 1 ∧ t).

Correspondingly, we have

Y ε(t) :=
t∫

0

gε(t− s)dL(s), t ≥ 0.

These processes are well-defined and, applying Theorem 2.3, we can see that Y ε are semimartingales, since 
gε are absolutely continuous on R+ and (gε)′ is bounded on [0, t] for 0 ≤ t < ∞.

We can also see that gε(t − ·) − g(t − ·) ∈ Lp[0, t] since gε is bounded. Hereafter we give an estimate of 
this difference and we distinguish the cases in which β is positive or negative.

(a) We consider the case β ∈ (−1, 0) and p ∈ [1, 1/|β|).
The kernel s −→ g(t − s) is singular at s = t and continuously differentiable, strictly increasing and convex 
on the interval [0, t). Hence, we have the following inequality for s ∈ [0, t):

g(t− s + ε) − g(t− s) ≤ ε sup
θ∈(0,1)

|g′(t− s + θε)| ≤ ε|g′(t− s)|. (9)

This yields

|gε(t− s) − g(t− s)|p ≤ εp

(t− s)p|β|
[ |β|
(t− s) + λ

]p

≤ 2pεp λp

(t− s)p|β|
+ 2pεp

[ |β|
(t− s)

]p
,
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where we have used the fact that, for a, b ≥ 0 and p ≥ 1:

(a + b)p ≤ (2 max(a, b))p ≤ (2a)p + (2b)p. (10)

Moreover, also the following crude inequality holds for s ∈ [0, t):

∣∣∣(t− s + ε)βe−λ(t−s+ε) − (t− s)βe−λ(t−s)
∣∣∣p ≤ (t− s)βpe−λ(t−s)p (11)

≤ (t− s)βp.

Hence, we obtain the following estimate:

t∫
0

|gε(t− s) − g(t− s)|pds

=
t−ε∫
0

|gε(t− s) − g(t− s)|pds +
t∫

t−ε

|gε(t− s) − g(t− s)|pds

≤ εp
(2λ)p

1 − p|β|
[
t1−p|β| − ε1−p|β|

]
+ εp

(2|β|)p
1 − (|β| + 1)p

[
t1−(|β|+1)p − ε1−(|β|+1)p

]

+ ε1−|β|p

1 − |β|p ≤ ε1−|β|pC(λ, β, p, t) −→ 0, ε → 0,

for the given parameters.

(b) Now assume β > 0.
The function g(t − ·) is zero at s = t and it is continuously differentiable on (0, t). For s ∈ (0, t), we have 
that

|g(t− s + ε) − g(t− s)|p ≤ |e−λ(t−s)(e−λε(t− s + ε)β − (t− s)β)|p

≤ 2p|(t− s + ε)β − (t− s)β |p + 2p(t− s)βp|e−λε − 1|p

≤ 2pεpβp sup
θ∈(0,1)

(t− s + εθ)(β−1)p + 2p(t− s)βp|e−λε − 1|p.

We have to distinguish two cases. If β ≥ 1, then we have

t∫
0

|gε(t− s) − g(t− s)|pds

≤ (2εβ)p
t∫

0

(t− s + ε)(β−1)pds + 2p|e−λε − 1|p
t∫

0

(t− s)βpds

≤ (2εβ)p

1 + (β − 1)p
[
(t + ε)1+(β−1)p − ε1+(β−1)p] + 2p|e−λε − 1|p

t∫
0

(t− s)βpds

≤ εpC(λ, β, p, t) −→ 0, ε → 0.
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If β ∈ (0, 1), then

t∫
0

|gε(t− s) − g(t− s)|pds

≤ (2εβ)p
t−ε∫
0

(t− s)(β−1)pds + 2p|e−λε − 1|p
t−ε∫
0

(t− s)βpds

+
t∫

t−ε

(t− s + ε)βpds

= (2εβ)p

1 + (β − 1)p
[
t1+(β−1)p − ε1+(β−1)p] + 2p|e−λε − 1|p

1 + βp

[
t1+βp − ε1+βp

]

+ ε1+βp

1 + βp

≤ εmin(p,1+βp)C(λ, β, p, t) −→ 0, ε → 0.

The estimates are uniform on t ∈ [0, T ] (T < ∞).

Example 2.9. Here we consider Y to be the Gamma-Volterra process in (4) with Lévy driver L associated 
to the characteristic triplet (a, b, ν), with b > 0 and a symmetric measure ν such that 

∫
R
|z|pν(dz) < ∞, for 

some p. In this case Lemma 2.2 guarantees that (4) is well defined if, for all t ≥ 0, g(t − ·) ∈ Lp[0, t] with 
p ≥ 2.
This is guaranteed if we have one of the following cases:

(a) λ ≥ 0, β ∈ (−1/2, 0) and p ∈ [2, 1/|β|);
(b) λ ≥ 0, β > 0.

Referring to Theorem 2.7, the same analysis of Example 2.8 leads to the convergence of Y (t)ε −→ Y (t) in 
Lp(Ω) in both cases.

We remark that Example 2.8 and Example 2.9 extend in a non-trivial way the work of Thao and Nguyen 
[34], see Theorem 1, and also Thao [33], see Theorem 2.3, where an approximation of fractional Brownian 
motion is considered.

3. Pathwise Volterra integrals and their approximation

Now that Y is well characterized, we proceed by reviewing stochastic integration with respect to Y as 
integrator.

Naturally, in the case when Y is a semimartingale and the integrand X is predictable, integration can 
be carried out via Itô-type calculus with respect to the random measure generated by Y . See e.g. [11] and 
[13]. In [1] (see also [15]) a stochastic integral with respect to Y has been constructed by means of the 
Malliavin calculus with respect to the Brownian motion and the centred Poisson random measure. This 
approach does not consider the Lévy driving noise as a whole, but treats the Gaussian and the centred
Poisson random measure separately, and it is well-set when the kernel g is not degenerate at 0. Also [10]
proposes a Skorohod-type integral based on the S-transform for a pure jump centred L.

In this paper we consider a pathwise-type of integration with respect to Y as introduced in [14] in the 
lines of [39–41]. This is based on fractional calculus, see [29] for a detailed background.
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3.1. Generalized Lebesgue-Stieltjes integrals with respect to Volterra processes

First we recall some definitions from fractional calculus, that we are going to use to define the integral 
of our interest.

3.1.1. Elements of fractional calculus
For a deterministic real-valued function f ∈ L1(a, b) (−∞ < a < b < ∞), the Riemann-Liouville left-

and right-sided fractional integrals1 of order α > 0 are defined by

Iα
a+f(x) := 1

Γ(α)

x∫
a

f(y)(x− y)α−1dy,

and

Iα
b−f(x) := 1

Γ(α)

b∫
x

f(y)(y − x)α−1dy,

respectively, if the integrals converge for a.a. x ∈ (a, b). Here Γ denotes the Gamma function. The fractional 
integrals above are well-defined for all f ∈ Lq(a, b) if 1 ≤ q < 1

α .

If f ∈ Lq(a, b) and g ∈ Lp(a, b) for p, q ≥ 1 : 1
p + 1

q ≤ 1 + α and 1
p + 1

q = 1 + α if p, q > 1, then the 
integration by parts

b∫
a

g(x)Iαa+f(x)dx =
b∫

a

f(x)Iαb−g(x)dx

holds. This motivates the introduction of the fractional derivatives as a form of inverse operator to the 
fractional integral. For this we work with a class of functions for which these concepts are well defined. For 
q ≥ 1, let Iα

a+(Lq) be the set of functions f : (a, b) −→ R for which there exists ϕ ∈ Lq(a, b) such that 
f = Iα

a+ϕ. It can be shown that the function ϕ is unique in Lq(a, b) (see [24] Lemma 1.1.2 and comments). 
Also, if q > 1, f ∈ Iαa+(Lq) if and only if f ∈ Lq(a, b) and there is Lq-convergence for δ ↓ 0 of the function

x−δ∫
a

f(x) − f(y)
(x− y)α+1 dy, x ∈ (a, b),

(where f(y) = 0 for y /∈ [a, b]). The conditions are sufficient if q = 1. Analogously, set Iα
b−(Lq) to be the set 

of functions f for which there exists ϕ ∈ Lq(a, b) such that f = Iα
b−ϕ. For q > 1 we have that f ∈ Iαb−(Lq)

if and only if f ∈ Lq(a, b) and there is Lq-convergence for δ ↓ 0 of the function

b∫
x+δ

f(x) − f(y)
(y − x)α+1 dy, x ∈ (a, b).

Again the conditions are sufficient if q = 1.

1 In the definitions in [39–41] there is a (−1)α term, originally used by Liouville. The interest in those papers is mostly about 
harmonic calculus, while in a different context we decided to omit such term.
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Furthermore, for α ∈ (0, 1) and all f ∈ Iα
a+(Lq), the function ϕ coincides a.e. with the Riemann-Liouville 

left-sided fractional derivative defined as the inverse operator of Iα
a+ . Namely, ϕ is a.e. equal to

Dα
a+f(x) = d

dx
I1−α
a+ f(x), x ∈ (a, b).

Correspondingly, for f ∈ Iαb−(Lq), we have the right-sided fractional derivative

Dα
b−f(x) = − d

dx
I1−α
b− f(x), x ∈ (a, b).

In these cases the Riemann-Liouville fractional derivatives admit the respective Weyl representations:

Dα
a+f(x) = 1

Γ(1 − α)

⎛
⎝ f(x)

(x− a)α + α

x∫
a

f(x) − f(y)
(x− y)α+1 dy

⎞
⎠1(a,b)(x),

Dα
b−f(x) = 1

Γ(1 − α)

⎛
⎝ f(x)

(b− x)α + α

b∫
x

f(x) − f(y)
(y − x)α+1 dy

⎞
⎠1(a,b)(x).

The convergence of the integrals is in Lq, if q > 1, and it is pointwise a.e., if q = 1. We recall that, for all 
α ∈ (0, 1), for all f ∈ C1(a, b), the derivatives Dα

a+f and Dα
b−f exist and are in Lq(a, b) for 1 ≤ q < 1

α .

Let f, g : [a, b] → R. Assume that the limits

f(t+) := lim
δ↘0

f(t + δ), g(t−) := lim
δ↘0

g(t− δ),

exist for a ≤ t ≤ b and denote

fa+(x) := 1(a,b)(x)
(
f(x) − f(a+)

)
,

gb−(x) := 1(a,b)(x)
(
g(b−) − g(x)

)
.

Definition 3.1. Assume that fa+ ∈ Iα
a+(Lq) and gb− ∈ I1−α

b− (Lp) for some p−1 + q−1 ≤ 1, and 0 < α < 1. 
The generalized fractional Lebesgue-Stieltjes integral of f with respect to g is defined by

b∫
a

f(x)dg(x) :=
b∫

a

Dα
a+fa+(x)D1−α

b− gb−(x)dx + f(a+)(g(b−) − g(a+)).

Naturally, the conditions fa+ ∈ Iα
a+(Lq) and gb− ∈ I1−α

b− (Lp) mean that Dα
a+fa+ ∈ Lq(a, b) and 

D1−α
b− gb− ∈ Lp(a, b). Hence the integral on the right-hand side is well-defined. It can be shown that the 

definition of the integral does not depend on α, see [39, Proposition 2.1].
Moreover, for 1 ≤ q < 1

α , we have that fa+ ∈ Iα
a+(Lq) if and only if f ∈ Iα

a+(Lq) and f(a+) exists. Then 
the generalized Lebesgue-Stieltjes integral admits a simplified representation as

b∫
a

f(x)dg(x) :=
b∫

a

Dα
a+f(x)D1−α

b− gb−(x)dx.

Motivated by the above considerations, the following definition can be given, see [14].
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Definition 3.2. Two real-valued measurable stochastic processes X = X(t), t ≥ 0, and Y = Y (t), t ≥ 0, are 
fractionally α-connected for some t and for some α ∈ (0, 1), if the generalized Lebesgue-Stieltjes integral

t∫
0

X(s)dY (s) :=
t∫

0

(Dα
0+X) (s)

(
D1−α

t− Yt−
)
(s)ds, (12)

exists P-a.s.

From fractional calculus we recall that the integral above exists and does not depend on α whenever 
X ∈ Iα

0+(Lq) and Yt− ∈ I1−α
t− (Lp) P-a.s. Here the random variables Y (t−) are well-defined, see Lemma 2.6. 

In general, we know that the integral above exists if Dα
0+X ∈ Lq(0, t) and D1−α

t− Yt− ∈ Lp(0, t), P-a.s. for 
some p−1 + q−1 = 1. Then the following definitions appear naturally.

On the time horizon [0, T ] (T < ∞), for p, q ∈ [1, ∞) : p−1 + q−1 = 1 and 0 < α < 1, define the sets of 
stochastic integrands X = X(t), t ∈ [0, T ]:

D+
q (α, T ) :=

{
X :

T∫
0

| (Dα
0+X) (s)|qds < ∞ a.s.

}
,

D+
∞(α, T ) :=

{
X : sup

0≤s≤T
| (Dα

0+X) (s)| < ∞ a.s.
}
,

and integrators Y = Y (t), t ∈ [0, T ]:

D−
p (α, T ) :=

{
Y :

t∫
0

|
(
D1−α

t− Yt−
)
(s)|pds < ∞ a.s., t ∈ [0, T ]

}
,

D−
∞(α, T ) :=

{
Y : sup

0≤s≤t
|
(
D1−α

t− Yt−
)
(s)| < ∞ a.s., t ∈ [0, T ]

}
.

It is easy to see that the couples (X, Y ) ∈ D+
1 (α, T ) × D−

∞(α, T ), (X, Y ) ∈ D+
∞(α, T ) × D−

1 (α, T ), and 
(X, Y ) ∈ D+

q (α, T ) ×D−
p (α, T ) are fractionally α-connected for all t ∈ [0, T ]. Then we say that the elements 

in D−
p (α, T ) are the appropriate (p, α)−integrators, p ∈ [1, ∞], for the elements in D+

q (α, T ), q = p
p−1 , with 

the conventions that 1
0 = ∞ and ∞∞ = 1.

Hereafter we formulate the concept of two processes being fractionally α-connected in terms of expec-
tations. This is a direct consequence of Theorem 2.5. We define new classes of integrands and integrator 
processes with conditions that are easier to verify and which are included in the previously given classes. 
We define the sets:

ED−
p (α, T ) :=

{
Y :

t∫
0

E|
(
D1−α

t− Yt−
)
(s)|pds < ∞ , t ∈ [0, T ]

}
⊂ D−

p (α, T ),

ED−
∞(α, T ) :=

{
Y : sup

0≤s≤t
E|

(
D1−α

t− Yt−
)
(s)| < ∞ , t ∈ [0, T ]

}
⊂ D−

∞(α, T ),

and

ED+
q (α, T ) :=

{
X :

T∫
E| (Dα

0+X) (s)|qds < ∞
}
⊂ D+

q (α, T ),

0
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ED+
∞(α, T ) :=

{
X : sup

0≤s≤T
E| (Dα

0+X) (s)| < ∞
}
⊂ D+

∞(α, T ).

Again, we say that the elements in ED−
p (α, T ) are the appropriate (p, α)−integrators, p ∈ [1, ∞], for the 

elements in ED+
q (α, T ), q = p

p−1 .

Remark. It is easy to see that for the couples (X, Y ) ∈ ED+
q (α, T ) × ED−

p (α, T ), the generalized Lebesgue-
Stieltjes integral (12) exists both P-a.s. and in L1(P).

Remark (Relationship with other types of stochastic integration). The definition of generalised Lebesgue-
Stieltjes integral (Definition 3.1) can be extended, see [41] Definition 4.4, which is motivated by Lemma 4.1 
and Lemma 4.2 in the same reference. This leads to the Definition 4.7 of stochastic integral in [41], which 
also extends the forward integral introduced in [28] Section 1.

All these stochastic integrals coincide with the Itô integral whenever the integrator is a semimartingale, 
the integrand is an adapted càglàd process, and the convergences are uniformly on compacts in probability 
(ucp). See [28] Proposition 1.1, [41] Proposition 4.9, [40] Section 5. This result also applies to the stochastic 
integral of Definition 3.2 in the present paper. In fact two functionally α-connected processes are integrable 
as per [41] Definition 4.7.

3.1.2. A Lévy driven Volterra process as integrator
We now review the case of Lévy driven Volterra processes (1) as integrators. The following result relies 

on the estimate of Theorem 2.5 (b). See [14] Section 5.

Theorem 3.3. Let Y = Y (t) =
∫ t

0 g(t − s)dL(s), t ∈ [0, T ], be a Volterra process where L = L(t), t ≥ 0 is a 
Lévy process with the characteristic triplet (a, b, ν), for b ≥ 0, and ν a symmetric Lévy measure such that ∫
R
|z|pν(dz) < ∞ for some p with p ≥ 1 if b = 0 or p ≥ 2 if b > 0. Moreover, for this value of p, assume 

that g = g(t − ·) ∈ Lp[0, t] for any t ∈ [0, T ] and the following set of conditions for some α ∈ (0, 1):
Assumptions (Dp)

(i)
∫ t

0 (t − s)αp−p
(∫ t

s
|g(t− v)|pdv

)
ds < ∞,

(ii)
∫ t

0 (t − s)αp−p
(∫ s

0 |g(t− v) − g(s− v)|pdv
)
ds < ∞,

(iii)
∫ t

0
∫ t

s
(u − s)αp−2p (∫ u

s
|g(u− v)|pdv

)
duds < ∞,

(iv)
∫ t

0
∫ t

s
(u − s)αp−2p (∫ s

0 |g(u− v) − g(s− v)|pdv
)
duds < ∞.

Then Y ∈ ED−
p (α, T ), so, Y is an appropriate (p, α)-integrator for any X ∈ D+

q (α, T ) with q−1 + p−1 = 1.

Example 3.4 (The Gamma-Volterra process Y as an appropriate (p, α)-integrator). In this example, we find 
the conditions on the parameters α, p depending on β, λ so that the Gamma-Volterra process Y in (4) is 
an appropriate (p, α)-integrator. From Lemma 2.2 and Example 2.8 we already know that Y is well defined 
if β > 0 and if β ∈ (−1, 0) with 1 + βp > 0. We consider a Lévy driving noise with characteristic triplet 
(a, 0, ν). The case (a, b, ν) with b > 0 is treated similarly, cf. Example 2.9.

Recall the set of conditions on the kernel function g in Theorem 3.3. We go through the list, and find 
conditions on the parameters α, β and p in order for (i)-(iv) of (Dp) to be satisfied.

(i) The innermost integral in (i) can be estimated by the following:

t∫
s

∣∣∣(t− v)βe−λ(t−v)
∣∣∣p dv ≤

t∫
s

(t− v)βpdv = (t− s)1+βp

1 + βp
,
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where the integral is well defined since 1 + βp > 0. We calculate the outer integral of (i), and find an 
estimate:

t∫
0

(t− s)αp−p

⎛
⎝ t∫

s

|g(t− v)|pdv

⎞
⎠ ds ≤

t∫
0

(t− s)αp−p (t− s)1+βp

1 + βp
ds

= 1
1 + βp

t∫
0

(t− s)1+(α+β−1)pds

= t2+(α+β−1)p

(1 + βp)(2 + (α + β − 1)p) ,

where the integral is well defined when 2 + (α + β − 1)p > 0.
(ii) We need to separate the cases in which β is positive or negative.

For β > 0, by (10), we have that

∣∣∣(t− v)βe−λ(t−v) − (s− v)βe−λ(s−v)
∣∣∣p ≤ 2p(t− v)βpe−λ(s−v)p (13)

≤ 2p(t− v)βp.

Hence we can estimate the integral in (ii) as follows:

t∫
0

(t− s)αp−p

⎛
⎝ s∫

0

|g(t− v) − g(s− v)|pdv

⎞
⎠ ds

≤
t∫

0

2p(t− s)αp−p

⎛
⎝ s∫

0

(t− v)βpdv

⎞
⎠ ds

=
t∫

0

2p

1 + βp

(
(t− s)αp−p+1+βp − (t− s)αp−p t1+βp

)
ds.

The integral above is finite for 1 + αp − p > 0.
For β < 0 we have that

∣∣∣(t− v)βe−λ(t−v) − (s− v)βe−λ(s−v)
∣∣∣p ≤ (s− v)βp. (14)

Then we have the following estimate for the integral in (ii):

t∫
0

(t− s)αp−p

⎛
⎝ s∫

0

|g(t− v) − g(s− v)|pdv

⎞
⎠ ds

≤
t∫

0

(t− s)αp−p

⎛
⎝ s∫

0

(s− v)βpdv

⎞
⎠ ds.

The innermost integral is finite as 1 + βp > 0 and increasing in s. Then the estimate above is finite for 
1 + αp − p > 0.
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(iii) The innermost integrals of (i) and (iii) are the same with the only attention to be given to the range 
of integration, so:

u∫
s

∣∣∣(u− v)βe−λ(u−v)
∣∣∣p dv ≤ (u− s)1+βp

1 + βp
,

which is well-defined as 1 + βp > 0. The second layer of integrals is then dominated by

t∫
s

(u− s)αp−2p
(

(u− s)1+βp

1 + βp

)
du = 1

1 + βp

t∫
s

(u− s)1+p(α+β−2)du,

which is finite whenever 2 + (α+ β − 2)p > 0. The outermost integral of (iii) is then also clearly finite.
(iv) Similar to the study of (ii) here we also have to separate the cases β ∈ (−1, 0) and β > 0. Moreover, 

our estimates need to be sharper than before.
For β < 0, we go through the integral:

t∫
0

t∫
s

(u− s)αp−2p

⎛
⎝ s∫

0

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds (15)

= A1 + A2 + B

by splitting the integration range in an opportune way. We start by considering

A1 :=
t/2∫
0

2s∫
s

(u− s)αp−2p

⎛
⎝ 2s−u∫

0

|g(u− v) − g(s− v)|pdv

+
s∫

2s−u

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds.

By application of (9) with (u − s) in the place of ε, we observe that

|g(u− v) − g(s− v)|p ≤ (u− s)p|g′(s− v)|p ≤ (u− s)pβp(s− v)(β−1)p.

Thus we have

A1 ≤
t/2∫
0

2s∫
s

(u− s)αp−2p

⎛
⎝ 2s−u∫

0

|β|p(u− s)p(s− v)(β−1)pdv

+
s∫

2s−u

(s− v)βpdv

⎞
⎠ duds

=
t/2∫
0

2s∫
s

(
|β|p(u− s)αp−p

1 + (β − 1)p (s1+(β−1)p − (u− s)1+(β−1)p)

+(u− s)1+βp+αp−2p)
duds
1 + βp
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=
t/2∫
0

C(β, α, p) s2+αp+βp−2pds.

This integral is finite when 2 + (α + β − 2)p > 0. Then, using (14), we consider

A2 :=
t/2∫
0

t∫
2s

(u− s)αp−2p

⎛
⎝ s∫

0

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds

≤
t/2∫
0

( t∫
2s

(u− s)αp−2pdu
)( s∫

0

(s− v)βpdv
)
ds

=
t/2∫
0

s1+βp

1 + βp

( t∫
2s

(u− s)αp−2pdu
)
ds

=
t/2∫
0

s1+βp

(1 + βp)(1 + αp− 2p) ((t− s)1+αp−2p − s1+αp−2p)ds,

which is finite for 2 + αp − 2p > 0. The last summand in (15) is given by

B :=
t∫

t/2

t∫
s

(u− s)αp−2p

⎛
⎝ s∫

0

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds.

By using the same estimates as for A2, we get that B is finite for 2 + αp − 2p > 0.
For β > 0, as in case (b) in Example 2.8, we obtain the following inequality:

|g(u− v) − g(s− v)|p ≤ 2p(u− s)pβp sup
θ∈(0,1)

(s− v + θ(u− s))(β−1)p

+ 2p(s− v)βp|e−λ(u−s) − 1|p,

and again we have to distinguish two cases. If β ≥ 1, then we have

t∫
0

t∫
s

(u− s)αp−2p

⎛
⎝ s∫

0

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds

≤
t∫

0

t∫
s

(u− s)αp−2p
(2p(u− s)pβp

1 + (β − 1)p (u1+(β−1)p − (u− s)1+(β−1)p)

+2pλp(u− s)p

1 + βp
s1+βp

)
duds

≤ C(λ, β, p, t)
t∫

0

t∫
s

(u− s)αp−pduds.

Then the integral is finite for 1 + αp − p > 0. If 0 < β < 1, we have
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t∫
0

t∫
s

(u− s)αp−2p

⎛
⎝ s∫

0

|g(u− v) − g(s− v)|pdv

⎞
⎠ duds

≤
t∫

0

t∫
s

(u− s)αp−2p
(2p(u− s)pβp

1 + (β − 1)p s
1+(β−1)p

+2pλp(u− s)p

1 + βp
s1+βp

)
duds

≤ C(λ, β, p, t)
t∫

0

t∫
s

(u− s)αp−pduds,

which is finite for 1 + αp − p > 0 and 1 + (β − 1)p > 0.

Summarising, the following conditions on the parameters are sufficient for the Gamma-Volterra process (4)
to be a (p, α)-integrator:

• β ≥ 1, 1 + (α− 1)p > 0
• β ∈ (0, 1), 1 + (α− 1)p > 0, 1 + (β − 1)p > 0
• β ∈ (−1, 0), 2 + (α + β − 2)p > 0.

3.2. Approximation of integrals with Volterra drivers

We are now ready to study the approximation of integrals with respect to Volterra processes by integrals 
driven by semimartingales. Further on we will consider again the example of the Gamma-Volterra process 
in (4).

Theorem 3.5. Let L = L(t), t ≥ 0 be a Lévy process with the characteristic triplet (a, b, ν), for a ∈ R, b ≥ 0, 
and ν a symmetric measure such that 

∫
R
|z|pν(dz) < ∞ for some p with p ≥ 1 if b = 0 or p ≥ 2 if b > 0. Let 

the kernel functions g = g(t −·) and gε = gε(t −·) belong to Lp[0, t] for any t ∈ [0, T ]. Assume that g(t−−·)
and gε(t− − ·) are well-defined and in Lp([0, t]) and assume that g, gε also satisfy the set of conditions (Dp)
for some α ∈ (0, 1) together with the following:
Assumptions (Cp). For ε → 0,

(i)
T∫

0

T∫
s

|gε(T− − v) − g(T− − v)|p
(T − s)p−αp

dvds → 0

(ii)
T∫

0

s∫
0

|(gε(T− − v) − g(T− − v)) − (gε(s− v) − g(s− v))|p
(T − s)p−αp

dvds → 0

(iii)
T∫

0

T∫
s

u∫
s

|gε(u− v) − g(u− v)|p
(u− s)2p−αp

dvduds → 0

(iv)
T∫

0

T∫
s

s∫
0

|(gε(u− v) − g(u− v)) − (gε(s− v) − g(s− v))|p
(u− s)2p−αp

dvduds → 0

Define the Volterra processes
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Y := Y (s) =
t∫

0

g(s− v)dL(v), s ∈ [0, T ],

and

Y ε := Y ε(s) =
t∫

0

gε(s− v)dL(v), s ∈ [0, T ].

Then, for any stochastic process X ∈ ED+
q (α, T ) where p−1 + q−1 = 1, we have the convergence

T∫
0

X(s)dY ε(s) −→
T∫

0

X(s)dY (s), as ε → 0,

in L1(Ω) of the generalised Lebesgue-Stieltjes integrals.

Proof. In the given setting for the processes Y, Y ε and X, the generalised Lebesgue-Stieltjes integrals 
are well-defined P-a.s. and in L1(Ω). See also Lemma 2.6 for the definition of g(t− − ·), gε(t− − ·) and 
Y (t−), Y ε(t−). By linearity of the operators involved and the use of the Hölder inequality, we estimate the 
L1(Ω) difference of the integrals as follows:

E

∣∣∣∣∣
T∫

0

X(s)dY ε(s) −
T∫

0

X(s)dY (s)

∣∣∣∣∣
≤

T∫
0

‖(Dα
0+X)(s)‖Lq(Ω)‖(D1−α

T− (Y ε − Y )T−)(s)‖Lp(Ω)ds (16)

≤

⎛
⎝ T∫

0

‖(Dα
0+X)(s)‖qLq(Ω)ds

⎞
⎠

1
q
⎛
⎝ T∫

0

‖(D1−α
T− (Y ε − Y )T−)(s)‖pLp(Ω)ds

⎞
⎠

1
p

.

Hence the statement is proved if

T∫
0

E
[∣∣(D1−α

T− (Y ε − Y )T−)(s)
∣∣p]ds −→ 0, ε ↓ 0. (17)

Define ḡε := gε − g and

Ȳ ε := Y ε − Y =
T∫

0

ḡε(s− v)dL(v), s ≥ 0.

From Ȳ ε
T−(s) :=

(
Ȳ ε(T−) − Ȳ ε(s)

)
1(0,T )(s), we can see that, if Ȳ ε

T− ∈ I1−α
T− (Lp), the fractional derivative 

is well-defined and admits representation

(D1−α
T− Ȳ ε

T−)(s) =(−1)1−α [ Ȳ ε(T−) − Ȳ ε(s)
1−α

(18)
Γ(α) (T − s)
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+ (1 − α)
T∫
s

Ȳ ε(s) − Ȳ ε(u)
(u− s)2−α

du
]
1(0,T )(s),

which can then be substituted into (17). Observe that, for y ≤ x, we have

Ȳ ε(x) − Ȳ ε(y) =
x∫

y

ḡε(x− v)dL(v) +
y∫

0

[ḡε(x− v) − ḡε(y − v)]dL(v).

Hence, from the moment estimates of Theorem 2.5, we obtain

T∫
0

T∫
s

E[|Ȳ ε(s) − Ȳ ε(u)|p]
(u− s)(2−α)p duds ≤ C1

[ T∫
0

T∫
s

‖ḡε(u− ·)‖pLp(s,u]

(u− s)(2−α)p duds

+
T∫

0

T∫
s

‖ḡε(u− ·) − ḡε(s− ·)‖pLp(0,s]

(u− s)(2−α)p duds
]

(19)

which vanishes as ε ↓ 0, thanks to (Dp)(iii)-(iv) and (Cp)(iii)-(iv). Similarly, we can see that (Dp)(i)-(ii)
and (Cp)(i)-(ii) ensure the convergence

T∫
0

E[|Ȳ ε(T−) − Ȳ ε(s)|p]
(T − s)(1−α)p ds ≤ C2

[ T∫
0

‖ḡε(T− − ·)‖pLp(s,T ]

(T − s)(1−α)p ds

+
T∫

0

‖ḡε(T− − ·) − ḡε(s− ·)‖pLp(0,s]

(T − s)(1−α)p ds
]
−→ 0, ε ↓ 0. (20)

Naturally, (19)-(20) guarantee (17). To conclude the proof, we verify that Ȳ ε
T− ∈ I1−α

T− (Lp). For p ≥ 1, this 
is ensured when Ȳ ε

T− ∈ Lp([0, T ]) P-a.s. and the processes

Aδ(s) :=
T∫

s+δ

Ȳ ε(s) − Ȳ ε(u)
(u− s)(2−α) du, s ∈ [0, T ],

converges in Lp([0, T ]), P-a.s. for δ ↓ 0. We verify these two requirements. First we see that we have that 
Ȳ ε
T− ∈ Lp(Ω × [0, T ]) from the estimates of Theorem 2.5. By dominated convergence we can see that Aδ

converges to A0 in Lp([0, T ]). In fact, for all δ small, we have

|Aδ(s) −A0(s)|p =
∣∣∣

s+δ∫
s

Ȳ ε(s) − Ȳ ε(u)
(u− s)(2−α) du

∣∣∣p

≤
T∫
s

|Ȳ ε(s) − Ȳ ε(u)|p
(u− s)(2−α)p du =: B(s)

P-a.s. and the bound B ∈ Lp(Ω × [0, T ]) (see (19)). By this the proof is complete. �
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Example 3.6 (Approximation of the integrals with respect to Gamma-Volterra processes). For illustration, 
we consider the process (4) with λ = 0, in the kernel function, that is g(t − s) = (t − s)β . To treat the case 
λ > 0, we need similar inequalities as in Example 3.4.

As before, we consider a Lévy driving noise with characteristic triplet (0, 0, ν) with ν symmetric and 
such that 

∫
R
|z|pν(dz) < ∞ for some p. The parameters β, p, α satisfy the conditions of Example 2.8 and 

Example 3.4. These guarantee the validity of assumptions (Dp). We now go through the requirements of 
(Cp) with gε(t − s) := (t − s + ε)β , s ∈ [0, t].

(i) Using the same approach and inequalities as in Example 2.8, we split the inner integral. Again we 
separate the cases depending on β. Taking β < 0 we obtain

T∫
s

|gε(T− − v) − g(T−−v)|pdv ≤
T−ε∫
s

εp|β|p(T − v)(β−1)pdv

+
T∫

T−ε

(T − v)βpdv

= |β|pεp
1 + (β − 1)p ((T − s)1+(β−1)p − ε1+(β−1)p)

+ ε1+βp

1 + βp
.

The next layer of the integrals yields:

T∫
0

(T − s)αp−p

T∫
s

|gε(T − v) − g(T − v)|pdvds

≤
T∫

0

|β|pεp
1 + (β − 1)p (T − s)1+(α+β−2)p

+
( 1

1 + βp
− |β|p

1 + (β − 1)p

)
ε1+βp(T − s)αp−pds,

which converges to zero if 2 + (α + β − 2)p > 0.
The same estimate can be applied for 0 < β < 1. In this case we find the same condition as above. 
As far as the case β > 1 is concerned, similar reasonings as in Example 2.8 can be done, leading to 
convergence if 1 + (α− 1)p > 0. These conditions are the same as in Example 3.4.

(ii) Consider β < 0. Observe that ḡε(x) := (x + ε)β − xβ is negative and increasing, hence

|ḡε(T − v) − ḡε(s− v)| = |ḡε(s− v)|.

Then we have

T∫
0

s∫
0

|(gε(T− − v) − g(T− − v)) − (gε(s− v) − g(s− v))|p
(T − s)p−αp

dvds

≤
T∫
(T − s)αp−p

s∫ ∣∣(s + ε− v)β − (s− v)β
∣∣p dvds
0 0
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≤
T∫

0

(T − s)αp−p

( s−ε∫
0

|β|pεp(s− v)(β−1)pdv +
s∫

s−ε

(s− v)βpdv
)
ds

≤
T∫

0

(T − s)αp−p

(
|β|pεp

1 + (β − 1)p (s1+(β−1)p − ε1+(β−1)p)

+ 1
1 + βp

ε1+βp

)
ds,

where we have applied the same argument as in Example 2.8 based on (9) and (11). Here we require 
that 2 + (β − 1)p > 0 and 1 + αp − p > 0.
With similar arguments, in the case β > 0 it can be shown that the required conditions are 1 +αp −p > 0, 
if β > 1, and 1 + (β − 1)p > 0, 1 + (α− 1)p > 0, if β ∈ (0, 1). These conditions are already guaranteed 
by those in Example 3.4.

(iii) Let β < 0. For ε small we split the integrals and apply (9), (11), then we obtain

T∫
0

T∫
s

(u− s)αp−2p
u∫

s

|gε(u− v) − g(u− v)|pdvduds

≤
T∫

0

s+ε∫
s

(u− s)αp−2p
u∫

s

(u− v)βpdvduds

+
T∫

0

T∫
s+ε

(u− s)αp−2p

( u−ε∫
s

εp|β|p(u− v)(β−1)pdv

+
u∫

u−ε

(u− v)βpdv
)
duds

=
T∫

0

s+ε∫
s

(u− s)1+βp+αp−2p

1 + βp
duds

+
T∫

0

T∫
s+ε

(u− s)αp−2p

(
εp|β|p

1 + (β − 1)p (u− s)1+(β−1)p

+
( 1

1 + βp
− |β|p

1 + (β − 1)p

) ε1+βp

1 + βp

)
duds

=
T∫

0

(
C1(β, α, p)ε2+βp+αp−2p

+ C2(β, α, p)εp((T − s)2+βp+αp−3p − ε2+βp+αp−3p)

+ C3(β, α, p)ε1+βp((T − s)1+αp−2p − ε1+αp−2p)
)
ds.

Taking into account the study in Example 3.4, we see that the convergence of the expression above is 
given when 3 + (α + β − 3)p > 0.
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Let β > 0. By application of the monotonicity of ḡε = gε − g and (9), we can see that the convergence 
is obtained when 2 + αp − 2p > 0.

(iv) Let β < 0. We split the integration range in disjoint intervals and study them separately, in a similar 
fashion as in Example 3.4:

T∫
0

T∫
s

s∫
0

|(gε(u− v) − g(u− v)) − (gε(s− v) − g(s− v))|p
(u− s)2p−αp

dvduds

≤
ε∫

0

( 2s∫
s

(u− s)αp−2p
s∫

0

∣∣(u− v)β − (s− v)β
∣∣p dvdu

+
T∫

2s

(u− s)αp−2p
s∫

0

∣∣(u− v)β − (s− v)β
∣∣p dvdu

)
ds

+
T∫
ε

( s+ε∫
s

(u− s)αp−2p
s∫

0

∣∣(u− v)β − (s− v)β
∣∣p dvdu

+
T∫

s+ε

(u− s)αp−2p
s∫

0

∣∣(s + ε− v)β − (s− v)β
∣∣p dvdu

)
ds

=: A1 + A2 + B1 + B2.

By application of (9), (11) we obtain

A1 =
ε∫

0

2s∫
s

(u− s)αp−2p
s∫

0

∣∣(u− v)β − (s− v)β
∣∣p dvduds

≤
ε∫

0

2s∫
s

(u− s)αp−2p

( 2s−u∫
0

|β|p(u− s)p(s− v)(β−1)pdv

+
s∫

2s−u

(s− v)βpdv
)
duds

≤
ε∫

0

2s∫
s

(
|β|p

1 + (β − 1)ps
1+(β−1)p(u− s)αp−p

+
( 1

1 + βp
− |β|p

1 + (β − 1)p

)
(u− s)1+βp+αp−2p

)
duds

=
ε∫

0

C(β, α, p)s2+βp+αp−2pds,

which converges to 0 if we require 2 + (α + β − 2)p > 0. The next summand is given by

A2 =
ε∫ T∫

(u− s)αp−2p
s∫ ∣∣(u− v)β − (s− v)β

∣∣p dvduds

0 2s 0



G. Di Nunno et al. / J. Math. Anal. Appl. 476 (2019) 120–148 143
≤
ε∫

0

T∫
2s

(u− s)αp−2p
s∫

0

(s− v)βpdvduds

=
ε∫

0

s1+βp

1 + βp

1
1 + αp− 2p

(
(T − s)1+αp−2p − s1+αp−2p

)
ds,

where the last integral converges if 3 + (α + β − 2)p > 0. We proceed to the next summand:

B1 =
T∫
ε

s+ε∫
s

(u− s)αp−2p
s∫

0

∣∣(u− v)β − (s− v)β
∣∣p dvduds

≤
T∫
ε

s+ε∫
s

(u− s)αp−2p

( 2s−u∫
0

|β|p(u− s)p(s− v)(β−1)pdv

+
s∫

2s−u

(s− v)βpdv
)
duds

≤
T∫
ε

s+ε∫
s

(
|β|p

1 + (β − 1)ps
1+(β−1)p(u− s)αp−p

+
( 1

1 + βp
− |β|p

1 + (β − 1)p

)
(u− s)1+βp+αp−2p

)
duds

=
T∫
ε

(
C1(β, α, p)ε1+αp−ps1+(β−1)p + C2(β, α, p)ε2+βp+αp−2p

)
ds.

Its convergence is given if 2 + (α + β − 2)p > 0. Then considering the last piece we get

B2 =
T∫
ε

T∫
s+ε

(u− s)αp−2p
s∫

0

∣∣(s + ε− v)β − (s− v)β
∣∣p dvduds

≤
T∫
ε

T∫
s+ε

(u− s)αp−2p

( s−ε∫
0

|β|pεp(s− v)(β−1)pdv

+
s∫

s−ε

(s− v)βpdv
)
duds

≤
T∫
ε

T∫
s+ε

(u− s)αp−2p

(
|β|pεp

1 + (β − 1)ps
1+(β−1)p

+
( 1

1 + βp
− |β|p

1 + (β − 1)p

)
ε1+βp

)
duds

=
T∫ (

|β|pεp
1 + (β − 1)ps

1+(β−1)p +
( 1

1 + βp
− |β|p

1 + (β − 1)p

)
ε1+βp

)

ε
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1
1 + αp− 2p

(
(T − s)1+αp−2p − ε1+αp−2p

)
ds.

If 2 + (α + β − 2)p > 0, we have convergence of the last integral.
For β positive, with similar reasoning as above, we find that convergence is guaranteed when 2 + (α−
2)p > 0, 1 + (β − 1)p > 0, when 0 < β < 1, and 1 + αp − p > 0, when β > 1.

Summarising, for the driving Lévy process L with characteristic triplet (0, 0, ν) and symmetric measure ν
such that 

∫
R
|z|pν(dz) < ∞, we have considered the integrals 

∫ T

0 X(t)dY ε(t) with Y ε(t) =
∫ T

0 (t −s +ε)βdL(s)
and the integral 

∫ T

0 X(t)dY (t) with Y (t) =
∫ T

0 (t − s)βdL(s), see Definition 3.2. Then we have shown that 
there is convergence of the integrals in L1(Ω), according to Theorem 3.5, if one of the following conditions 
is satisfied:

• β > 1, α ∈ (0, 1), p ≥ 1, 2 + (α− 2)p > 0
• β ∈ (0, 1), α ∈ (0, 1), p ≥ 1, 2 + (α− 2)p > 0, 1 + (β − 1)p > 0
• β ∈ (−1, 0), α ∈ (0, 1), p ≥ 1, 3 + (α + β − 3)p > 0.

We conclude this section with a numerical example of a Gamma-Volterra process as integrator driven 
by a pure jump Lévy process with infinite activity. The parameters are taken according to the sufficient 
conditions found in Example 3.4 and Example 3.6. We illustrate the use of the approximation result for 
simulation purposes. Approximating the non-semimartingale by the corresponding semimartingale as per 
Theorem 3.5, we can then exploit the connection of the fractional integral with the Itô integral that we have 
remarked earlier.

Example 3.7 (Numerical example of the approximation of an integral with Volterra driver). In light of 
Example 3.6, for illustration, set the parameters in (4) to be λ = 0, β = −1/16 and p = 9/8, i.e.

Y (t) =
t∫

0

(t− s)−1/16 dL(s),

and let L be a symmetric tempered stable Lévy process with Lévy measure ν(dz) = C e−γ|z|

|z|1+αL
dz (αL <

2, γ > 0). As illustration, choose γ = 10, αL = 1/2. Then we see that the p-th moment of the Lévy measure 
is finite

∫
R

|z|pν(dz) = 2C
∞∫
0

z(p−αL)−1e−γzdz < ∞,

since we can obtain the Gamma function by a change of variable and also p − αL > 0.
From Example 2.4 we know that Y is not a semimartingale. From Example 3.4, taking α = 2/5, q = 9, 

we know that Y is an appropriate (p, α)−integrator for any X ∈ ED+
q (α, T ), and that g and gε satisfy the 

convergence conditions of Theorem 3.5, respectively. The fact that Y ε is a semimartingale is deduced from 
(5) in Theorem 2.3: For all ε > 0,

t∫
0

∫
[−1,1]

|z(gε)′(s)|2 ∧ |z(gε)′(s)|ν(dz)ds

= |β|
t∫ ∫

|z(s + ε)β−1|2 ∧ |z(s + ε)β−1|ν(dz)ds

0 [−1,1]
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≤ |β|ε2(β−1)t

∫
[−1,1]

|z|2 ∧ |z|ν(dz)

≤ |β|ε2(β−1)T

∫
[−1,1]

|z|2ν(dz) < ∞.

Thus from Example 3.6, for these values of the parameters, we have the convergence 
∫
XdY ε −→

∫
XdY

in L1(Ω).

To complete the example, we consider two integrands. First we take X(t) = t. We see that X ∈ ED+
q (α, T ), 

in fact

T∫
0

E| (Dα
0+X) (s)|qds =

T∫
0

E

∣∣∣∣∣∣
X(s)
sα

+ α

s∫
0

X(s) −X(u)
(s− u)1+α

du

∣∣∣∣∣∣
q

ds

=
T∫

0

∣∣∣∣s1−α + α
s1−α

1 − α

∣∣∣∣
q

ds

=
T∫

0

(
1 + α

1 − α

)
sq(1−α)ds < ∞.

The second integrand is given by X(t) = B(t), where B(t) is a Brownian motion. In this case the fractional 
derivative is Gaussian and, to show that X ∈ ED+

q (α, T ), we first find the second moment:

E| (Dα
0+B) (s)|2 = E[B2(s)]

s2α + α2
s∫

0

s∫
0

E[(B(s) −B(v))(B(s) −B(u))]
(s− v)1+α(s− u)1+α

dudv

+ 2α
s∫

0

E[B(s)(B(s) −B(v))]
sα(s− v)1+α

dv

= I1 + I2 + I3.

We see that I1 = s1−2α, while

I2 = α2
s∫

0

( v∫
0

1
(s− v)α(s− u)1+α

du +
s∫

v

1
(s− v)1+α(s− u)α du

)
dv

= α2
s∫

0

( 1
(s− v)α

((s− v)−α − s−α)
α

+ 1
(s− v)1+α

(s− v)1−α

1 − α

)
dv

= α2
s∫

0

( 1
α(1 − α) (s− v)−2αdv − s−α

α
(s− v)−α

)
dv

= 2α2

(1 − α)(1 − 2α)s
1−2α.
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Fig. 1. The graph on the left shows a simulated path of the tempered stable process L, while on the right a path the Gamma-Volterra 
process Y ε.

Fig. 2. A path the simulated fractional integral with X(t) = t.

Similarly I3 = 2α
1−αs

1−2α. Hence we find that

T∫
0

E| (Dα
0+B) (s)|qds =

T∫
0

2 q
2 Γ( q+1

2 )√
π

C(α)
q
2 s(1−2α) q

2 ds < ∞,

and X ∈ ED+
q (α, T ).

Fig. 1, Fig. 2 and Fig. 3 present a simulation of the processes described above: L, Y ε, and 
∫
XdY ε, with 

gε(t − s) = (t + ε − s)−1/16 and ε = 10−10. For the simulation of a sample path of the tempered stable Lévy 
process in Fig. 1 we used the series representation by Rosiński [27]. The simulation of the Volterra process 
Y ε is then obtained by means of a classical numerical integration with an Euler scheme, see e.g. [20], by 
using the sample path of L.
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Fig. 3. On the left a simulated path of the Brownian motion B. On the right the simulated fractional integral with X(t) = B(t).

Using the same approach we also simulated the integrals in the case of X(t) = t in Fig. 2 and X(t) = B(t)
in Fig. 3. In particular, since the integrands are clearly adapted and càglàd, the integral 

∫
XdY ε, ε > 0, 

is well defined as an Itô integral. This is exploited in our simulation, which is again obtain by numerical 
integration, with the same value for ε. Theorem 3.5 will then guarantee that the simulations convergence in 
L1 to the pathwise fractional integral 

∫
XdY , approximated in this way by Itô integrals.

4. Conclusion

In the framework of fractional integrals, we have studied an approximation of the fractional stochastic 
integral 

∫
XdY for non-semimartingale integrators Y by a sequence of integrals (

∫
XdY ε)ε with semimartin-

gale integrators Y ε. No filtration structure is needed on the integrand X for the definition of the integral or 
for the convergence. However, in the case when X is an adapted, càglàd process the integral 

∫
XdY ε agrees 

with the usual Itô-integral, thus 
∫
XdY can be approximated by a sequence of Itô-integrals. As illustration 

we have specialised our results to the case of Gamma-Volterra processes driven by Lévy processes, which 
is a family of models largely used in applications and of recent attention in energy finance and biological 
modelling. We have shown how the approximation procedures proposed is used for computational purposes 
by examples.
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