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Abstract

Background: A median, segmented, annelid nerve cord has repeatedly been compared to the arthropod and
vertebrate nerve cords and became the most used textbook representation of the annelid nervous system. Recent
phylogenomic analyses, however, challenge the hypothesis that a subepidermal rope-ladder-like ventral nerve cord
(VNC) composed of a paired serial chain of ganglia and somata-free connectives represents either a plesiomorphic
or a typical condition in annelids.

Results: Using a comparative approach by combining phylogenomic analyses with morphological methods
(immunohistochemistry and CLSM, histology and TEM), we compiled a comprehensive dataset to reconstruct the
evolution of the annelid VNC. Our phylogenomic analyses generally support previous topologies. However, the so
far hard-to-place Apistobranchidae and Psammodrilidae are now incorporated among the basally branching
annelids with high support. Based on this topology we reconstruct an intraepidermal VNC as the ancestral state in
Annelida. Thus, a subepidermal ladder-like nerve cord clearly represents a derived condition.

Conclusions: Based on the presented data, a ladder-like appearance of the ventral nerve cord evolved repeatedly,
and independently of the transition from an intraepidermal to a subepidermal cord during annelid evolution. Our
investigations thereby propose an alternative set of neuroanatomical characteristics for the last common ancestor

of Annelida or perhaps even Spiralia.
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Background

A rope-ladder-like organization of the ventral nerve cord
(VNC) has often been regarded to represent the ances-
tral condition of annelids [1-6]. According to this
traditional view, the VNC in Annelida consists of a chain
of paired ganglia containing the neuronal somata, linked
longitudinally by parallel somata-free connectives and
transversely by segmental commissures. The organization,
development and cell types of the annelid mid-ventral
cord are best investigated in the annelid model organisms
Capitella teleta Blake, Grassle & Eckelbarger, 2009,
Helobdella robusta Shankland, Bissen & Weisblat, 1992
and Platynereis dumerilii (Audouin & Milne Edwards,
1834) [7-14]. Gene expression studies in these annelids
inspired wide reaching comparisons of the annelid VNC
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to that of arthropods and vertebrates (e.g., [15-17]).
Nonetheless, the annelid VNC shows a great diversity in
number and position of neurite bundles and localization
either within or beneath the epidermis [1, 18-20].
Accordingly, the hypothesis that the ladder-like VNC
is ancestral was often questioned [20-23] and chal-
lenged repeatedly, e.g., by a hypothesis regarding a
pentaneuralian arrangement of the neurite bundles in
the annelid VNC as ancestral [1, 18, 24] and by the
finding of an unpaired mid-ventral nerve cord in numer-
ous taxa [14, 20, 23, 25-27]. Recent, well-supported
phylogenomic analyses [28-32] revealed that previous
profound investigations into annelid neuroanatomy unfor-
tunately focussed on representatives of derived annelid
subgroups, now united as Pleistoannelida [1, 18, 20].
However, investigations of several taxa placed outside this
main clade are underrepresented so far. For instance,
Magelonidae and Oweniidae together (as Palaeoannelida)
represent the sister taxon of all other annelids [33].
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Subsequently, Chaetopteridae and a clade comprising
Sipuncula and Amphinomida branched off. Comparative
neuroanatomical investigations focussing on these
non-pleistoannelid taxa are still limited [33-37]. More-
over, several groups that were so far difficult to place in
the annelid tree but were sometimes also considered
as possibly early-branching, namely Apistobranchidae
and Psammodrilidae, were neither included into re-
cent phylogenomic or morphological studies [28-30,
32, 38, 39] nor examined in detail concerning their
neuroanatomy [40-42].

In order to understand the VNC evolution in Annelida
we investigated this character complex within these so
far neglected non-pleistoannelidan taxa. Therefore, we
examined the trunk nervous system of 19 taxa with
focus on the position of the VNC within or outside the
epidermis, the arrangement and immunoreactivity of
neurite bundles within the VNC, the appearance of
additional neurites such as giant fibers as well as shape,
arrangement and location of neuronal somata along the
VNC. Further special attention was given to presence or
absence of somata-free connectives and commissures
along the entire VNC. Moreover, we updated previous
phylogenomic datasets with the hitherto neglected
groups Apistobranchidae and Psammodrilidae. Combin-
ing these transcriptomic analyses with immunohisto-
chemistry and confocal laser scanning microscopy
(CLSM), histological Azan staining and transmission
electron microscopy (TEM), we compiled an updated
phylogenomic tree and a comprehensive neuroanatom-
ical dataset. Our results provide the background for a
better understanding of the nervous system evolution
within Annelida and Spiralia in general.

Methods

Collection and fixation of specimens

We collected fresh specimens of several species for our
study, representing 14 annelid families: 10 species solely
for RNA extraction and subsequent transcriptomic ana-
lyses and 24 species for morphological investigations. For
further details, please refer to Additional file 1: Table S1.
Divergent collection and fixation details are specified were
required and references are given below.

Transcriptome library construction and Illumina sequencing
RNA extraction and library construction were conducted
as described in detail in Weigert et al. [29]. Newly
constructed libraries, as well as several libraries only
shallowly covered in previous analyses [29], were
sequenced on an Illumina HiSeq 2500 100 bp
paired-end. Base calling was performed with freeIBIS
[43], adaptor and primer sequences were removed, low
complexity reads and false paired indices were discarded.
Raw data of all libraries were trimmed by applying a
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filter of Phred 15. Data for additional taxa were obtained
from NCBI (National Center for Biotechnology Informa-
tion (NCBI) run by the National Institutes of Health)
(see Additional file 2: Table S2). Libraries were assem-
bled de novo using either the CLC Genomics Work-
bench 5.1 (CLC bio, Arhus, Denmark) or Trinity [44].

Phylogenomic analyses

A list of all taxa used and the source of data is given in
Additional file 2: Table S2. Orthology prediction was per-
formed using HaMStR [45]. The applied core-orthologs
set comprises 1,253 orthologous genes downloaded from
the Inparanoid database [46]. Capitella teleta, Helobdella
robusta, Lottia gigantea, Schistosoma mansoni, Daphnia
pulex, Apis mellifera, and Caenorhabditis elegans served
as primer-taxa. Redundant sequences were eliminated
using a custom Perl script [29].

Alignments for each orthologous gene were generated
separately using MAFFT [47] and alignment masking
was performed with REAP [48]. All masked single gene
alignments were concatenated into a supermatrix using
a custom Perl script. To reduce potential problems of
missing data we compiled two data matrices using the
program MARE [49] with weighing parameters of a =
15 and a=2, resulting in two differently densely
covered supermatrices. We used partition finding and
model testing as implemented in IQ-TREE [50] for both
supermatrices, subsequently analysed under the Max-
imum Likelihood optimality criterion as implemented in
the same program. Bootstrap support was estimated
from 1000 pseudoreplicates.

Azan staining, histological sections and 3D-reconstruction
Adult specimens were fixed (see Additional file 1: Table S1
for species details), stained and analyzed as described in
Beckers et al. [51]. Thus, the specimens were fixed
overnight in Bouin’s fixative modified after
Dubosque-Basil, dehydrated in an ethanol series and
incubated in methylbenzoat and butanol. Afterwards
the samples were pre-incubated in Histoplast (Thermo
Scientific, Dreieich, Germany) and embedded in
Paraplast (McCormick Scientific, Richmond, USA).
5 um thick sections were made using a Reichert-Jung
Autocut 2050 microtome (Leica, Wetzlar, Germany)
and transferred to albumen-glycerin coated glass slides.
Sections were stained with Carmaulaun, differentiated
with sodium phosphotungstate (5%), washed in distilled
water, stained in aniline blue orange G and subse-
quently embedded with Malinol (Waldeck, Miinster,
Germany). In Azan staining, the neuropil of the ner-
vous system stains gray, the nuclei of cell somata stain
red, the extracellular matrix stains blue and the muscu-
lature stains orange [51]. Each section was digitalized at
40x magnification using a slide scanner (Olympus
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dotslide (2.2 Olympus, Hamburg) and aligned using
IMOD [52] and imodalign (http://www.q-terra.de/bio-
welt/3drekon/guides/imod_first_aid.pdf). 3D reconstruc-
tions were performed with Fiji (1.45b) [53], trakem [54]
and Amira (4.0).

Ultra-thin sections and transmission electron microscopy
(TEM)

For electron microscopy animals were either fixed in
1.25% glutaraldehyde buffered in 0.05 M phosphate buf-
fer containing 0.3 M NaCl for 1 h, rinsed several times
in the same buffer and postfixed in 1% OsO, buffered in
the same manner (for Owenia fusiformis, Magelona mir-
abilis, Spiochaetopterus costarum, Chaetopterus variope-
datus and Psammodrilus balanoglossoides), in 2.5%
glutaraldehyde/0.1 M sodium cacodylate/0.24 M NaCl
and subsequently post-fixed in 1% OsO4/0.1 M sodium
cacodylate/0.24 M NaCl (for Apistobranchus tullbergi)
or in a phosphate-buffered mixture of sucrose, picric
acid, glutaraldehyde and paraformaldehyde (SPAFG),
according to Ermak and Eakin [55], for 2.5 h at 4 °C and
rinsed in 0.075 M phosphate buffer adjusted to seawater
with sucrose (7 changes, 2 h) (for Eurythoe complanata
and Paramphimone sp.). In the latter case specimens
were post-fixed in 1% OsO, in the same phosphate buf-
fer for 1 h at 4 °C, otherwise the specimens were stained
for 30 min in 2% OsO4/1.5% potassium ferricyanide/
0.1 M sodium cacodylate followed by incubation in 2%
aqueous uranyl acetate for 30 min. Dehydration of the
samples was performed gradually in a graded ethanol or
an ascending acetone series and then with propylene
oxide. All steps were conducted at room temperature.
Following embedding (using the TAAB Araldite 502/812
kit or Epon-Araldite 812 kit), ultrathin sections (70 nm)
were cut with a Leica Ultracut E, UC6 or UC7 and
counterstained with 2% uranyl acetate and lead citrate.
Images were acquired on JEOL 1011, Zeiss EM 902A,
Zeiss EM 10CR, Zeiss Lyra or Zeiss Libra 120 transmis-
sion electron microscopes equipped with an Olympus
MORADA or a 4 K TRS (Moorenweis, Germany) cam-
era. Figures were adjusted to 8-bit grey scaling with the
Analysis software package. All final panels were prepared
using Adobe (San Jose, CA, USA) Photoshop CC and Il-
lustrator CC.

Immunohistochemistry, CLSM and image processing

Although the specificities of the employed antibodies
have all been established in numerous invertebrates, we
cannot fully exclude that a given antiserum may bind to
a related antigen in the investigated specimens. We
hence refer to observed labelled profiles as exhibiting
antigen-like immunoreactivity (-LIR). For subsequent
staining, at least five specimens of each taxon where
used (see electronic Additional file 1: Table S1 for
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details). Antibody staining was preceded by tissue per-
meabilisation for at least 1 h in 0.1 M PBS containing
0.1% NaNj3 and 0.1% TritonX-100 (PTA), suited by block-
ing in block-PTA (6% normal goat serum (Sigma-Aldrich,
St. Louis, MO, USA) in PTA) for 2—4 h or overnight. The
primary antibodies, polyclonal rabbit anti-serotonin
(INCSTAR, Stillwater, USA, dilution 1:500), polyclonal
rabbit anti-FMRFamide (Acris Antibodies GmbH,
Herford, Germany, dilution 1:500) and monoclonal mouse
anti-acetylated a-tubulin (clone 6-11B-1, Sigma-Aldrich,
St. Louis, USA, dilution 1:500) were applied for 48-72 h
in block-PTA. Afterwards, specimens were rinsed in
block-PTA for 3 x 2 h and incubated subsequently with
secondary fluorochrome conjugated antibodies (goat
anti-rabbit Alexa Fluor 488) in block-PTA for 24—48 h. At
last, the samples were washed three times in 0.1 M PBS
(without NaN3). Subsequently the samples were mounted
between two cover slips using 90% glycerol/ 10% 10x PBS
containing DABCO or Vectashield Mounting Medium
(Vector Laboratories, Burlingame, USA) (for Apistobran-
chus). Negative controls were obtained by omitting the
primary antibody in order to check for antibody specificity
and vyielded no fluorescence signal. Specimens were ana-
lyzed with the confocal laser-scanning microscope Leica
TCS STED (Leica Microsystems, Wetzlar, Germany).
Confocal image stacks were processed with Leica AS AF
v2.3.5 (Leica Microsystems). The final panels were
designed using Adobe (San Jose, CA, USA) Photoshop CC
and Illustrator CC.

Character definition

Ten morphological characters were defined as primary
homologies in order to reconstruct the ancestral states
of the annelid ventral nerve cord. All characters are de-
fined as binary and their codings and relevant references
shown in the data matrix of Fig. 6. Codings are based on
the newly generated data unless references are provided
in Fig. 6. Figure 5 represents a mapping of these
morphological characters and the resulting ancestral
state reconstructions on a simplified topology based on
our molecular analyses. Inapplicable character codings
are applied to characters 3 and 7-9 for taxa coded as
absent in characters 2 and 6, respectively. However,
inapplicable codings are treated as missing data in our
ancestral character reconstruction, which is why all char-
acter states were reconstructed for all taxa in Fig. 5 even
though characters 3, 7-9 for some extant taxa may have
to be technically considered as inapplicable.

Character 1: Intraepidermal position of the ventral nerve cord
The ventral nerve cord of Annelida can be located
within the epidermis (= intraepidermal, state: 1) or out-
side the epidermis (= subepidermal, state: 0). Intraepi-
dermal cords are embedded within epidermal tissue and
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surrounded by epidermal cells. The basal lamina delimits
the epidermis (including the ventral nerve cord) from
the remaining non-epidermal tissue.

Character 2: Clusters of somata along the ventral nerve cord

Somata of the ventral nerve cord can be clustered (=
present, state: 1) or non-clustered (= absent, state: 0).
Non-clustered somata don’t show any sign of aggrega-
tion, are evenly distributed along the nerve cord, and a
neuropil is present along the entire nerve cord.

Character 3: Somata between clusters along the ventral
nerve cord

If the somata along the ventral nerve cord are clustered
according to character 2, single somata can still appear
between these clusters (= present, state: 1). The latter
somata are not part of the cluster, but belong to the
ventral nerve cord. If somata between the clusters are
absent (= absent, state: 0), these inter-clustal parts of the
ventral nerve cord are called somata-free connectives. If
the somata in character 2 were scored as non-clustered,
they would here be scored as inapplicable.

Character 4: Segmentally arranged commissures along the
ventral nerve cord

The commissures along the ventral nerve cord, intercon-
necting both parallel cords, can be arranged in a quite
random series not following a strict seriality (= absent,
state: 0) or in a strict segmental pattern (= present, state:
1), congruent to the serial repetition of other structures.
In both cases faint and prominent commissures are
counted with the same weight.

Character 5: Different morphotypes of somata along the
ventral nerve cord

The somata forming the ventral nerve cord can be mono-
morphic (= absent, state: 0) or polymorphic (= present,
state: 1).

Character 6: Giant fibers in the ventral nerve cord

Within the ventral nerve cord giant fibers can be absent
(state: 0) or present (state: 1). These fibers are character-
ized by their larger diameter in comparison to other
neurites forming the ventral nerve cord and run along
the entire length of the ventral nerve cord.

Character 7: Ventral position of giant fibers within the
ventral nerve cord

Giant fibers within the ventral nerve cord can be exclu-
sively located in a ventral position (= present, state: 1),
or they can have another localization (= absent, state: 0).
If giant fibers are lacking, the character is coded as
inapplicable.
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Character 8: Number of giant fibers in the ventral nerve
cord more than 2

Giant fibers can be present as a pair (= absent, state: 0)
or be numerous (= present, state: 1). If giant fibers are
lacking, the character is coded as inapplicable.

Character 9: Fusion of giant fibers in the ventral nerve cord
Giant fibers in the ventral nerve cord can be separate
(= absent, state: 0) or partly fused (= present, state: 1)
throughout the trunk. If giant fibers are lacking, the
character is coded as inapplicable.

Character 10: Additional longitudinal neural bundles
originating in the brain

In close proximity to the ventral nerve cord additional
longitudinal neurites can be present (state: 1) or absent
(state: 0). Notably, these additional longitudinal neurites
arise from the brain and do not branch off from the
ventral nerve cord.

Ancestral state reconstruction

Ancestral states for separate characters of the ventral
nerve cord were reconstructed in Mesquite v. 3.10 [56].
In a first analysis a parsimony approach with characters
treated as unordered was used. A second analysis was
carried out using a maximum likelihood reconstruction
showing proportional likelihoods under the Mkl model
with branch lengths scored as equal. Both reconstruc-
tions were based on a simplified topology of the MAR-
El.5-tree (Fig. 1), the wunderlying topology was
predefined by hand and potential annelid sister groups
were not included due to the unresolved annelid sister
group. Results of both analyses were highly similar and
only the maximum parsimony reconstruction is shown
in the main text. A summary, where these MP recon-
structions are mapped on a simplified topology of Fig. 1,
is shown in Fig. 5, and the actual ancestral state recon-
structions (for both methods and each character) are
provided as Additional file 3: Figure S4 (MP reconstruc-
tion) and Additional file 4: Figure S5 (ML reconstruc-
tion). Reconstruction of the characters on the MARE
2.0-tree (Additional file 5: Figure S3) was not shown, but
the only discrepancy found (character 6) was discussed
in the text.

To test for the influence of potential annelid sister
groups on the ancestral state reconstruction, MP
analyses were also performed with either Mollusca,
Nemertea, Phoronida or Brachiopoda as potential anne-
lid sister groups. The detailed results are given in the
Additional file 6: Figure S6 (for Mollusca), Additional file 7:
Figure S7 (for Nemertea), Additional file 8: Figure S8
(for Phoronida) and Additional file 9: Figure S9 (for
Brachiopoda).
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Results and discussion

Molecular analyses

Two supermatrices were used for phylogenetic analysis,
which differed in the number of included gene parti-
tions. Using the weighting parameter o = 2 resulted in a
matrix containing 404 of the original 1,253 gene parti-
tions, comprising 128,186 amino acid positions for the
40 analyzed taxa (MARE2 dataset). Applying the less
strict weighting parameter o = 1.5 kept 490 partitions for
the final supermatrix (MARELS5 dataset), comprising
159,297 amino acid positions. With 90.1% (MARE2) and

90.6% (MAREL.5), the completeness of the matrix is
similar for both data sets and clearly improved com-
pared to the unreduced supermatrix (24.2%). Maximum
Likelihood analyses using a partition scheme and models
as optimized by IQ-TREE [50] resulted in two slightly
different topologies (Fig. 1, Additional file 5: Figure S3).
Consistent with previous analyses [28, 29, 32], both
data sets yielded a monophyletic Annelida, which can be
broadly classified into Pleistoannelida (comprising
Sedentaria and Errantia) as well as a number of basally
branching lineages (see Fig. 1). As in previous analyses
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(see [32]), Sipuncula + Amphinomida are recovered as
sister taxon to Pleistoannelida. Interestingly, we find
Apistobranchidae and Psammodrilidae together with
Chaetopteridae in a well-supported (100% bootstrap)
clade among the basally branching lineages. Accordingly,
the clade is herein named ‘Chaetopteriformia’ due to the
well-supported placement of Apistobranchidae and
Psammodrilidae together with Chaetopteridae. ‘Formia’
is derived from ‘forma; which means ‘shape; and follows
previous naming for groups of annelid families such as
Aphroditiformia, Cirratuliformia, Terebelliformia (see
e.g., [29]). The naming is so far node-based and further
morphological investigations (including the herein pre-
sented data) will help to provide a proper description
and test for morphological apomorphies of this group in
the future. Apistobranchidae and Psammodrilidae had
not been included in previous phylogenomic analyses of
annelid relationships and previous morphological inves-
tigations suggested them being positioned within
Sedentaria mainly based on the structure of the palps,
coelomic cavities or chaetal characters [57—60]. Due to
the lack of detailed morphological investigations,
morphological characters supporting the clade Chaetop-
teriformia are missing so far. Nevertheless, characters
such as the arrangement of muscle bundles in the body
wall, the presence and shape of internal chaetae or the
partitioning of the trunk (heteronomous segmentation)
should be analyzed in detail in future studies as they are
candidates for putative morphological synapomorphies
supporting the monophyly of Chaetopteriformia (see
also [57] for review). In our analysis Psammodrilidae
represent the sister taxon of Chaetopteridae, but the
bootstrap support for this hypothesis is rather weak
(bootstrap 72 & 78%, respectively). Nevertheless, the
clade Chaetopteriformia and its position as sister
group of (Sipuncula + Amphinomida) + Pleistoannelida
(Errantia + Sedentaria) is maximally supported (Fig. 1,
Additional file 5: Figure S3).

The two analyses only differ with respect to the sister
taxon of all other annelids. In the MAREL.5 analyses
(which contains more characters) Magelonidae and
Oweniidae form the clade Palaeoannelida [32], which
constitutes the sister group of all remaining annelids
(see Fig. 1). This result is consistent with previous phylo-
genomic studies [29, 31, 61]. In contrast, in the MARE2
analysis, Oweniidae and Magelonidae branch off
successively in the ML tree (Additional file 5: Figure S3).
However, in the bootstrap analysis the support for this lat-
ter topology is low, whereas the alternative hypothesis
Palaeoannelida received higher support (bootstrap 84%).
Therefore, we focused on the topology recovered by the
MARELS5 analysis for reconstructing the evolution of the
VNC (Fig. 5), but discuss the few discrepancies found
from the reconstructions performed on the MARE2-tree.
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Architecture of the VNC in early branching annelid taxa
In the following we refer to Richter et al. [62] regarding
the terminology of neuroanatomical characters. Differing
definitions are stated appropriately. Neuroanatomical
characteristics of the VNC were observed in whole
mounts of at least 5-10 adult specimens per species via
immunohistochemistry and verified using histological
series of sections and TEM in representative trunk
regions. In particular, the position of the VNC in relation
to the epidermal extracellular matrix (ECM), the
arrangement and location of neurite bundles within the
VNC and their respective immunoreactivity as well as
the morphology and arrangement of neuronal somata in
the VNC and the occurrence of somata-free areas were
scored. Although different species per family were inves-
tigated and the coverage of morphological diversity
within a family was given priority, it has to be kept in
mind that the taxon sampling represents only a subset
of the diversity within the respective families.

Our study revealed an intraepidermal VNC for all inves-
tigated species of Oweniidae (Figs. 2a, b, e), Magelonidae
(Figs. 2g, h), Apistobranchidae (Figs. 3a, b), Psammodrili-
dae (Figs. 3f, h) and Chaetopteridae (Figs. 4a-c). These
findings are concordant with previous investigations
[33, 36, 42, 63, 64]. In species of Amphinomidae, the
anterior part of the ventral cord is intraepidermal
(Fig. 4g), whereas the posterior part is located subepi-
dermally within the musculature (Fig. 4h, i), but still
surrounded by a continuous ECM connected with the
epidermal ECM (Fig. 4i).

Organization of the VNC in Palaeoannelida
Immunostainings against serotonin (5-HT) and FMRFa-
mide as well as histological serial sections with subse-
quent 3D-reconstruction reveal a paired VNC within the
first chaetiger in adult Oweniidae (Figs. 2a, d, f), whereas
both neurite bundles form an unpaired mid-ventral
cord containing a single neuropil in trunk chaetigers
(Figs. 2b, d, f). Nevertheless, a bilaterally organized
pair of neurite bundles showing certain immunoreactivity
is detectable within this unpaired cord (Figs. 2d, f). An
additional median neurite bundle is absent (Fig. 2b).
5-HT-LIR is present throughout the entire VNC
(Figs. 2d, f). Notably, the somata are monomorphic
(based on immunohistochemistry, histology and
TEM), and scattered randomly along the ventral cord.
The latter somata do not form distinct clusters - a re-
sult also supported by DAPI staining (Fig. 2f, inset)
and histology (Fig. 2c). However, developmental stud-
ies in Owenia fusiformis reveal seriality of repeated
5-HT-LIR somata (Fig. 2d) [37] and investigations in
adult Galathowenia oculata exhibit posterior somata
clusters showing selective immunoreactivity [36].
Nevertheless, the latter results are not in contrast to
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Magelonidae

Fig. 2 The VNC of Oweniidae and Magelonidae. Cross-sections (a, b, e, g, h) and ventral view (c, d, f, i-k) of VNC in Owenia fusiformis (a-e),
Myriochele heeri (f), Myriowenia sp. (b, inset), Magelona mirabilis (g, h, k) and Magelona filiformis (1, j). Anterior is up (c, d, f, k) and left (I, j). Azan
staining (a, b, g), TEM (e, h), anti-5-HT (d, f, i), anti-tubulin (j) and DAPI (f, inset) staining, and 3D-reconstruction (c, k). (a, b) The VNC (vnc) in
Oweniidae is situated within the epidermis. Giant fibers (gf) are reported for Myriowenia (inset). (c) Oweniids show a medullary arrangement of
somata (so) and neuropil (ne) along the ventral cord, but no somata-free areas. (d) Juvenile oweniids exhibit serial clusters. (e) The ventral nerve
cord (vnc) lies within the epidermis (ep). A basal lamina (bl) is present. (f) anti-5-HT and DAPI staining reveals a ventral nerve cord (vnc) with
continuous appearing immunoreactive somata and lack of somata-free areas along the (vnc). (g) In magelonids the (vnc) is comprised of two
anterior parallel cords and a posterior fused (vnc). (h) The (vnc) is intraepidermal and giant fibers (gf) are present. (i) The arrangement of somata
can be regarded as being irregular. Commissures are present (arrowheads). (j) Anti-tubulin staining reveals parallel neurite bundles forming the
(vnc) in the trunk. Commissures (co) are assembled along the medullary (vnc). (k) 3D-reconstructions verify the fusion of neurite bundles in the
trunk of magelonids. bl, basal lamina; bn, branching nerve; cc, circumesophageal connective; co, commissure; cu, cuticle; ep, epidermis; gf, giant
fibers; in, intestine; In, longitudinal nerve; mu, muscle; ne, neuropil; pa, parapodia; so, somata; vnc, VNC. Scale bars = 100 um (a, b, d, 1, j, f), 50 um
(b (inset), g), 10 um (e) and 2.5 um (h)

the herein presented observations; they, illustrate the Taken together, ganglia as defined by Richter et al.
developmental complexity on the one hand, but also [62] were not observed.

the necessity of a multi-methodological approach on In Magelonidae, immunohistochemistry reveals a
the other hand, as well as the importance of future paired VNC consisting of prominent neurite bundles
analyses of larval and juvenile stages in Oweniidae. and paired neuropils in thoracic chaetigerous segments
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Fig. 3 The VNC of Apistobranchidae and Psammodrilidae. Cross-sections (a, b, f, h), ventral (c-e, i) and lateral view (g) of the ventral cord in
Apistobranchus tullbergi (@-d), Psammodrilus balanoglossoides (f, h, i) and Psammodrilus curinigallettii (e, g). Anterior is up (c, i) and left (d, e, g).
Azan staining (a, f), TEM (b, h), anti-FMRFamide (d), anti-5-HT (e, g), and DAPI (g, inset) staining, and 3D-reconstruction (c, i). (@) The (vnc) in
Apistobranchidae is intraepidermal. Giant fibers are absent. (b) Ultrastructural data verify a position of the (vnc) within the epidermis (ep). A basal
lamina (bl) is present. (c) Apistobranchidae show a medullary arrangement of somata (so) and neuropil (ne). Somata-free areas are absent.
Commissures (co) show a serial arrangement. (d) FMRFamide-immunoreactivity reveals the presence of two neurite bundles within the (vnc).
Faint commissures (co) are visible. The location of the commissures (co) is marked with purple dots. () Anti-5-HT staining of the (vnc) in
Psammodrilidae reveals presence of clustered somata (yellow arrowheads) and segmentally arranged commissures (co). (g) The (vnc) is
intraepidermal. (g) Lateral view of the (vnc) verifies presence of immunoreactive somata clusters (yellow arrowheads). DAPI staining supports the
anti-5-HT staining. (h) Ultrastructural investigations support the intraepidermal localization of the (vnc). The musculature (mu) is situated in
subepidermal position. (i) A 3-D reconstruction in Psammodrilidae reveals the presence of clustered somata (so) along the (vnc). Segmentally
arranged commissures (co) are present. bl, basal lamina; cc, circumesophageal connective; co, commissure; ep, epidermis; mu, muscle; ne,
neuropil; pa, parapodia; so, somata; vnc, ventral nerve cord. Scale bars = 50 um (a, e-g), 10 um (b), 100 um (d) and 2.5 um (h)

(Figs. 2i, j) and a fused ventral cord in the trunk of adults  on the species both ventral neurite bundles may fuse be-
(Fig. 2k). An unpaired bundle of median neurites de- tween the ninth and tenth chaetiger (Fig. 2k). Neverthe-
scribed previously [65] could not be observed. Depending  less, neurites showing certain immunoreactivity still form
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Amphinomidae

Fig. 4 The VNC of Chaetopteridae and Amphinomidae. Cross-sections (a-c, g-i), ventral (d-f, j, k) and dorsal view (d, inset) of the ventral cord in
Spiochaetopterus costarum (a-c), Chaetopterus variopedatus (d), Phyllochaetopterus sp. (e, f), Eurythoe complanata (g, h, j, k) and Paramphimone sp.
(i). Anterior is up (e, f, j), right (d) and left (k). Azan staining (a, b, g, h), TEM (¢, i), anti-5-HT (e, f) and anti-tubulin (j) staining, and 3D-
reconstruction (d, k). (@, b) The (vnc) in Chaetopteridae is intraepidermal. Giant fibers are absent. (c) Ultrastructural data verify the intraepidermal
position of the (vnc). (d) 3-D reconstruction of the posterior (vnc) reveals medullary arranged somata and segmental arrangement of the main
commissures (o). (e) 5-HT labeling shows two parallel neurite bundles in the anterior (vnc). The esophageal nerves (en) are visible. (f) 5-HT
labeling shows two parallel neurite bundles in the posterior (vnc) and segmentally and non-segmentally arranged commissures (co, also marked
by yellow arrowheads). Somata aggregations are marked by yellow brackets. (g) The anterior (vnc) in Amphinomidae is intraepidermal. (h) The
posterior (vnc) is located subepidermally, outside the epidermis (ep). A basal lamina (bl) interconnecting the (vnc) and the (ep) is present. (i)
Ultrastructural data of the posterior (vnc) verify the presence of a basal lamina (bl) interconnecting epidermis (ep) and (vnc). (j) Anti-tubulin
staining of the anterior (vnc) reveals the presence of branching nerves (bn), longitudinal nerves (In) next to the (vnc) and commissures (co). (k)
3-D reconstruction supports the presence of hemiganglia containing the somata (so) and somata-free connectives. bl, basal lamina; bn, branching
nerve; co, commissure; ep, epidermis; in, intestine; In, longitudinal nerve; mu, muscle; ne, neuropil; so, somata; vnc, ventral nerve cord. Scale bars
=100 um (@, b, e-h, j), 5 um (c), and 2.5 um (j)
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paired neurite bundles. 5-HT-LIR (FMRFamide-LIR) is
detectable throughout the ventral cord and — together
with histology - revealed a non-serial arrangement of
somata in the trunk. Somata-free connectives are absent
(Fig. 2j, k). Irregularly arranged commissures not following
a strict segmental pattern are present (Figs. 2j), and any
seriality is missing.

Additionally, giant nerve fibers are present in all in-
vestigated magelonid species (Fig. 2h). Two parallel
giant fibers originate in the brain, encircle the mouth
and form a mid-ventral fiber, which runs along the
trunk ventral in the main cord (Fig. 2k). To which
extent the giant fibers are formed by one single or
multiple axons cannot be stated based on the current
dataset. However, giant fibers are lacking in most
oweniids (Figs. 2a, b), but are found in Myriowenia
sp. (Fig. 2b (inset)) where two parallel giant fibers
fuse posterior of the mouth (not shown) and run
along the entire trunk dorsal in the main nerve cord.

Parallel neurite bundles in Chaetopteriformia

In Chaetopteriformia two parallel ventral neurite
bundles are present in adult specimens (Figs. 3c, I; 4d).
Although these bundles were observed as being sepa-
rated anteriorly and converge in the posterior trunk, at
least in Chaetopteridae, they never form a single
mid-ventral neuropil. Serial clusters of monomorphic
somata with 5-HT- and FMRFamide-LIR are present,
but somata-free connectives are absent at least in Apis-
tobranchidae and Chaetopteridae - a fact supported by
histology (Figs. 3¢, d; 4d-f). Segmentally repeated com-
missures interconnect both cords in Apistobranchidae
(Figs. 3¢, d), whereas mainly segmental commissures as
well as randomly arranged ones were seen in Chaetopteri-
dae (Figs. 4d, f). In Psammodrilidae the commissures are
segmentally arranged (Figs. 3e, g, i). In contrast to previ-
ous descriptions [41], but based on a comparable and even
extended methodological approach, an unpaired midline
neuropil is not detectable. Both, Apistobranchidae and
Psammodrilidae, show a high degree of neuronal seri-
ality, with only a few additional somata between the
serial clusters of somata present in Psammodrilidae
(Figs. 3e, g, f). Nevertheless, the nerve cord is intrae-
pidermal in Chaetopteriformia.

Occurrence of subepidermal VNCs in Amphinomidae and
Sipuncula

In Amphinomidae, the trunk nervous system is repre-
sented by paired mid-ventral neurite bundles and add-
itional bilateral longitudinal neurite bundles [34]. In the
following, solely the median-most nerve fibers are
regarded as part of the ventral cord and the lateral longi-
tudinal ones, which are often described to belong to the
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peripheral nervous system, are not considered here.
Thus, tubulin-immunoreactivity showed two ventral
neurite bundles throughout the trunk (Fig. 4j). In anter-
ior histological sections these paired neurite bundles
form a (partly) fused mid-ventral cord in intraepidermal
position and separate neurite bundles were only visible
using immunohistochemistry (Fig. 4g). Posterior histo-
logical sections reveal two parallel neurite bundles form-
ing the subepidermal cord (Fig. 4h), which, however, is
still connected to the epidermis by a continuous ECM.
A median neurite bundle and giant fibers are absent
(Figs. 4g, h). The somata are clustered in certain parts of
the neuropil and form segmental (hemi-) ganglia (Fig. 4k)
in accordance with earlier descriptions [34], somata be-
tween the clusters and giant fibers are absent. On the
contrary, adult Sipuncula possess an unpaired medullary
ventral cord with subepidermal somata and neuropil
[66, 67] (see also Fig. 5). Giant fibers are absent.

A limited number of studies dealing with nervous
system development in Annelida (including Sipuncula)
shows that the subepidermal annelid VNC develops
from a larval intraepidermal ventral cord [21, 66, 68].
Our analyses (Figs. 5, 6) also support a partial transition
of the VNC from an intraepidermal towards a subepider-
mal position in the common stem lineage of Amphino-
midae and Sipuncula, and a complete transition of the
VNC towards a subepidermal position along the branch
leading to Sipuncula.

A shift towards a subepidermal localization could also
be observed in several Pleistoannelida (Fig. 5; see also
Fig. 7 for Sabellariidae). On the other hand, numerous
pleistoannelid groups, e.g., Polygordiidae [69], Tomop-
teridae (Fig. 7) or Siboglinidae [70, 71] and several other
taxa bear a medullary-like VNC in intraepidermal
position [20] (Fig. 5). However, many annelid groups are
poorly investigated and developmental studies are neces-
sary to back-up the findings observed in the adult
ventral cord.

Nervous system evolution within Annelida

Our analyses using the MAREL5 topology reconstruct
an intraepidermal position of the VNC equipped with
monomorphic somata to be the ancestral condition in
Annelida (Fig. 5). Whether medullary arranged somata
and non-segmental commissures were features of the
last common annelid ancestor cannot be reconstructed
unambiguously based on the current data and is highly
dependent on the potential annelid sister group (Fig. 5;
Additional file 6: Figure S6, Additional file 7: Figure S7,
Additional file 8: Figure S8, Additional file 9: Figure S9).
Nevertheless, the last common ancestor of Pleistoanne-
lida most likely also had an intraepidermal nerve cord,
but with somata clusters, intermediate somata and
different morphotypes of somata. Moreover, giant fibers
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Fig. 5 The VNC of Sabellariidae and Tomopteridae. Cross-sections (a, b, ) and dorsal (c) and ventral view (d, f) of the ventral cord in Sabellaria
alveolata (a-d) and Tomopteris helgolandica (e, f). Anterior is right (c, d, f). Azan staining (a, b, ), 3D-reconstruction (c, d) and anti-a-tubulin
staining (f). (a, b) The (vnc) in Sabellaria is situated in subepidermal position. The ventrally located giant fibers (gf) are visible throughout the
entire length of the animal and numerous segmentally arranged commissures (co) are present. The inset shows an outgoing parapodial nerve
(pn) branching of from the ventral nerve cord. (¢, d) 3Dreconstructions reveal the presence of serial somata (so), bearing ganglia and commissures (co).
(e) The (vnc) in Tomopteris is situated within the epidermis (ep) and consists of two distinct neurite bundles. (f) Immunohistochemistry reveals
presence a medullary-like arrangement of somata (so), segmentally arranged commissures (co) and branching nerves (bn). Somata-free connectives
are absent. bl, basal lamina; bn, branching nerve; co, commissure; em, esophageal musculature; ep, epidermis; df, giant fiber; ne, neuropil; pn,
parapodial nerve; so, somata; vng, ventral nerve cord. Scale bars = 200 um (a, b) and 100 um (e, f)

did not occur in the last common ancestor according to  least one member of the early branching Oweniidae (but
the reconstruction based on maximum parsimony not our coded O. fusiformis) and in all investigated
(nevertheless equivocal with ML ancestral state recon- Magelonidae, but lack of such neuronal structures in the
struction). However, the existence of giant fibers in at remaining early branching lineages, makes it difficult



Helm et al. Frontiers in Zoology (2018) 15:36

Page 12 of 17

character | Liwen | 2dseeot | 3 |eseomeiiy) st | gm, | T | e | e pasoions.
VNC theVNC | clustersin VNC | commissures |  somata VNC giant fibers fibers "‘t’" ".'“f":"':"'.’ EeTeehced
taxon (0)absent | (0)absent | (0)absent | (0)absent | (0)absent | (0)absent (0)absent | (0)absent (‘:')’;u;""" ""7;,";;:“'“
(1) present (1) present (1) present (1) present (1) present (1) present (1) present (2) present (1) aresent

O 0 0 = 0 0 0 - = = 0 |[81,82]
ot 0 - 0 0 : - - 52, 78]
Phoronis _ _ _ _ _ _ _ _ _ _
harmeri [76]
Novocrania _ _ _ _ ~ _ _ _ _ _ 771
Fine 0 = 0 0 0 - = = this study
mmms“" oelons 0 - 0 0 0 this study
‘:u"”bes'“mb ,.'""'"" 0 0 - - - this study
m’:;d’”“f : 0 - - - this study
m"”“’"’ 0 0 0 = = = this study
gmplnnam 0 0 0 0 0 = = = this study
Phascolosoma
] 0 0 - 0 0 0 = - - 0 [70]
Tomopteris _ - _ N
helgolandica 0 0 this study
Platynereis
dumerilii 0 0 0 0 [‘I ’ 20]
Polygordius _ _ _
appendiculatus 0 0 [66]
samellibrachia 0 - 0 0 - | 167,68
Sabellaria A

0 0 0 0 this study
Ery 0 0 0 - - - 0 n4
Enchytraeus
crypticus 0 0 0 0 [88]

Fig. 6 The morphological data matrix underlying the reconstruction of the ancestral state. Characters are coded as following: absent (0, white),
present (1, black) and inapplicable (—, grey). References are included where required. When no reference is given, the data were raised during this study
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with the current taxon sampling to reconstruct the evo-
lution of this character and the associated characters
definitely (Fig. 5). Furthermore, their characterization
mainly by diameter [72] and their variable location
relative to the VNC when comparing Paleo- to Pleis-
toannelida add to this problem. Nevertheless, presence
of such structures in members of Paleoannelida provides
some support in the ML ancestral state reconstruction
(Additional file 4: Figure S5) to the scenario that giant fi-
bers could belong to the annelid ground pattern. Due to
the occurrence of giant fibers in only one oweniid
species and the unresolved placement of the respective
taxon within the oweniid tree, a final statement regard-
ing the evolution of the giant fibers is hardly possible
based on the data available.

Based on our analyses, a transition of the VNC into a
ladder-like, cluster-bearing VNC with a subepidermal
position seem to have evolved independently in a few
lineages after the split of Pleistoannelida into Errantia
and Sedentaria. A ladder-like, cluster-bearing, subepider-
mal VNC therefore has to be considered the derived
condition within Annelida. The features of the VNC we
predict for the annelid ground pattern are therefore dif-
fering from the commonly accepted, strict subepidermal
ladder-like configuration (meaning somata only within
the paired ganglia, paired somata-free connectives and
segmentally arranged commissures). This strict configur-
ation has often been used to picture the ancestral

annelid ventral nervous system and was largely based on
the erroneous interpretation of the clitellate VNC as
being the best fitting model for representing the annelid
organization [1, 20]. Nevertheless, a ladder-like but
intraepidermal cord can be observed within Chaetopterifor-
mia (in Psammodrilidae and partly in Apistobranchidae) as
well as in several Pleistoannelida, and therefore it has
to be assumed that the transition into this ladder-like
condition occurred several times during annelid evo-
lution. These presumably multiple transitions into a
ladder-like appearance seem to show an evolution in-
dependent from the observed transition from an
intra- towards a subepidermal position of the cord.
Notably, the position of the VNC is correlated with the
arrangement of the body wall musculature. Generally, the
longitudinal musculature is arranged in 2—-3 pairs of bun-
dles, in the ventral midline often separated by the VNC
[73-75]. A body wall musculature consisting of inner lon-
gitudinal and dense outer circular muscle, as described
for, e.g., burrowing Arenicolidae or members of Clitellata,
was always thought to be part of the annelid ground pat-
tern but is only present in a limited number of taxa. In
addition, these are usually found in highly derived posi-
tions in the phylogenetic tree. Yet, such a body plan of
ground-dwelling annelids is now found to be highly de-
rived [21] and the subepidermal position of their ventral
nerve cord may either be a protective adaptation to the
mechanic stress during burrowing or related to the
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Fig. 7 Schematic overview of the neural anatomy concerning the VNC in selected non-annelid taxa, the basally branching annelids and
representatives of the Pleistoannelida. The shown topology is simplified and based on the MARE1.5 dataset. The figure represents a mapping of
the morphological characters (including the putative plesiomorphic characters for different taxa) and the ancestral state reconstructions onthe
simplified topology. The character states given at the nodes of the topology are based on ancestral state reconstruction using maximum
parsimony and the Mk1 model implemented in MESQUITE for the 10 characters specified for the VNC (electronic supplementary material $4-S5).
Note that the question mark for the position of outgroups is caused by uncertain phylogenetic placements of the latter. Characters mapped on
the topology are coded as following: absent (white), present (black) and inapplicable (grey). In cases when different character states were
calculated for one character, all states are shown. Naming of each character is given in the figure
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necessity of a well-developed system of circular muscle
fibers. Notably, in species with an intraepidermal
VNC, the ventral longitudinal muscle bundles are usu-
ally separated from each other by the VNC and true
circular musculature forming closed rings of fibers is
absent [74, 75].

A significant change in lifestyle, e.g., towards a more
actively burrowing behavior in sediments like soil as
depicted by numerous sedentary worms, or the exploit-
ation of new food sources as seen, e.g., in predatory
leeches, might have caused adaptive changes of the body
wall musculature to fulfill specific movements required
for this lifestyle. This might have triggered the necessity
of a better protection of the nervous system, which
caused a positional shift of the VNC. The latter or a
similar scenario might help to explain the positional
changes observable in the annelid VNC and is supported
by comparable hypotheses dealing with the evolutionary
transition of the brain in sediment-dwelling taxa towards
posterior caused by the burrowing lifestyle [75]. Never-
theless, detailed investigations are necessary to point out
the actual driving force for this major morphological
change during annelid and spiralian evolution.

Considerations about nervous system evolution within
Spiralia

The evolution of the centralized nervous system within
Bilateria is still a highly discussed field, and even similar-
ities in terms of development and patterning of the
ventral nerve cord in Spiralia are questioned in recent
analyses — also due to lack of morphological data and
comparable characters of the ventral nerve cord in
various taxa [76—78].

Although our results support an intra- or basiepider-
mal VNC and show the equivocal probability of somata
occurring along the entire nerve cord as being the
plesiomorphic annelid condition, the origin of the latter
character state within Spiralia can hardly be recon-
structed since the sister group of annelids is still not
resolved [79, 80] (see also S6-S9 for ancestral state
reconstructions including the potential sister group).
Whereas either Nemertea or Mollusca were generally
considered the annelid sister taxon [81, 82], recent ana-
lyses reveal Brachiopoda and Phoronida as additional can-
didates [30, 80]. In the latter, adults lack a VNC [83, 84],
but the nervous tissue within the lophophore is well
developed and has an intraepidermal position as well.
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When using Brachiopoda/Phoronida as annelid sister
group in the ancestral state reconstruction (MP analysis),
the ground pattern of the annelid VNC includes an intrae-
pidermal position of the VNC, monomorphic somata, a
ventral position of giant fibers and additional longitudinal
neurite bundles. Nevertheless, presence of giant fibers in
general and more than two giant fibers is not supported
by the MP analysis (Additional file 3: Figure S4) (but their
absence/presence is traced equivocally in the ML analyses;
Additional file 4: Figure S5). Nemertea do not exhibit
distinct medio-ventral neurite bundles, but bear lat-
eral medullary neurite bundles without strict somata
clusters [85]. Both lateral neurite bundles are intraepi-
dermal in the supposedly early branching Carininidae
[51]. When using Nemertea as potential sister group
for Annelida, the MP ancestral state reconstruction
favors an intraepidermal position of the annelid VNC,
a ventral position of giant fibers and the presence of
additional longitudinal neurites as well. Somata clusters,
segmentally arranged commissures, different somata mor-
photypes and giant fibers in general might be absent in
the annelid ground plan based on the MP analysis
(Additional file 7: Figure S7). Mollusca show a consider-
able variation in nervous system organizations, but the
proposed mollusc ground pattern comprises a subepider-
mal nervous system out of four medullary cords, which
are laterally and ventro-laterally positioned [86—89]. An
inclusion of Mollusca into the analysis supports the lack
of somata clusters, serial commissures following a strict
segmental pattern of related structures and different
somata morphotypes, but an intraepidermal position is
questioned due to the subepidermal conditions of the
VNC in molluscs. (Additional file 6: Figure S6) Yet, a sub-
epidermal cord with distinctive somata clusters containing
segmentally arranged commissures and with somata-free
connectives in between is not depicted as the ancestral
annelid configuration in none of the previously mentioned
analyses (Fig. 5). Notably - as discussed above - such a
configuration is also lacking in the supposed annelid sister
groups [83-85, 88].

In numerous annelids the neurite bundles of the VNC
are located ventro-laterally in early developmental stages
(and in several lineages of interstitial or meiofaunal
annelids), but mid-ventrally in adults [20, 71, 90-92].
Regardless of the annelid sister group a positional shift
of the lateral neurite bundles towards the ventral midline
has to be assumed to have evolved in the stem lineage of
Annelida. According to our tree a similar transition
must be hypothesized for the position of the VNC in
Annelida. Here, the developmental shift of the anne-
lid VNC from an intra- into a subepidermal position
provides an explanation for the repeated evolutionary
transition of the VNC from the epidermis into
deeper layers.
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Conclusions

Taken together, our study illustrates the complexity
when it comes to evolutionary changes of organ system
morphologies, but also shows the importance of phylo-
genetic analyses to test alternative hypotheses, e.g. re-
garding the direction of evolution. Based on the
presented data an intraepidermal ventral nerve cord not
only exhibits a larval and juvenile character as described
previously for many annelid groups, but also reflects the
putative plesiomorphic annelid condition. Accordingly,
this condition is not (only) the result of paedomorphosis,
as it was supposed for various annelid groups. Further-
more, profound scenarios concerning the evolutionary
direction of changes in a respective organ system are
solely possible under consideration of a comprehensive
methodological approach, but also strongly limited by
insufficient comparable datasets. In case of the ventral
nerve cord in Annelida, further anatomical investiga-
tions are necessary to provide a better taxon sampling
and data acquisition especially within the pleistoannelid
groups. Only based on additional analyses open ques-
tions such as the evolution of giant fibers or the VNC
transition from intra- towards subepidermal within
Pleistoannelida can be resolved adequately. Thus the
current study thereby provides important starting points
for future investigations.

Additional files

Additional file 1: Table S1. Sampling sites and fixation/preservation
details. (DOCX 15 kb)

Additional file 2: Table S2. List of taxa used in the phylogenomic
study and accession number. Species and accession numbers in bold
were either newly sequenced or re-sequenced for deeper coverage in
the present study. (DOCX 14 kb)

Additional file 3: Figure S4. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using a parsimony model
with characters treated as unordered in MESQUITE v. 3.10. The character
state is color coded and shown on the respective branch. (TIF 27174 kb)

Additional file 4: Figure S5. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using the maximum
likelihood Mk1 model with branch lengths scored as equal in MESQUITE
v. 3.10. The character state is color coded and shown on the respective
branch. (TIF 27269 kb)

Additional file 5: Figure S3. Best maximum likelihood (ML) tree of the
RAXML analysis using the MARE2 data set of 40 taxa, including 404 gene
partitions comprising 128,186 amino acid positions. Only bootstrap values
above 50 are shown. (DOCX 250 kb)

Additional file 6: Figure S6. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using a parsimony model
with characters treated as unordered and Mollusca as outgroup in
MESQUITE v. 3.10. The character state is color coded and shown on the
respective branch. (TIF 28014 kb)

Additional file 7: Figure S7. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using a parsimony model
with characters treated as unordered and Nemertea as outgroup in
MESQUITE v. 3.10. The character state is color coded and shown on the
respective branch. (TIF 28001 kb)
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Additional file 8: Figure S8. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using a parsimony model
with characters treated as unordered and Phoronida as outgroup in
MESQUITE v. 3.10. The character state is color coded and shown on the
respective branch. (TIF 27990 kb)

Additional file 9: Figure S9. Ancestral state reconstructions for the
separate characters of the ventral nerve cord using a parsimony model
with characters treated as unordered and Brachiopoda as outgroup in
MESQUITE v. 3.10. The character state is color coded and shown on the
respective branch. (TIF 28020 kb)
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