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Chapter 1

Introduction

Algebraic geometry is the study of solution sets of systems of polynomial equa-
tions. These sets, known as algebraic varieties, can be highly complicated, and
are most of the time impossible to describe explicitly. However, in applications it
is often sufficient to know more qualitative information about an algebraic variety,
such as its dimension, or its degree. For this reason, a major part of algebraic
geometry has been devoted to defining and studying geometric and algebraic
invariants of algebraic varieties, and to develop algorithms for computing them.
These invariants are thus used as tools to classify and distinguish varieties, but
they are also interesting objects in their own right. In this thesis, we study
geometric and algebraic invariants of varieties that admit special structures (e.g.,
torus actions), that allow us to study them via combinatorial methods.

The thesis consists of five papers, which can be roughly divided into two
parts by theme. Paper I and Paper II study polar degrees and degrees of dual
varieties of projectively embedded toric varieties. The main topics of Paper III,
Paper IV and Paper V are divisors and algebraic cycles on varieties having a
torus action. The unifying concept in all of these papers is that of a toric variety,
or, more generally, an algebraic torus acting on a variety.

1.1 Toric varieties

Given a set S of polynomials in variables x1, . . . , xn, the associated variety Z
is a subset of affine n-space An. Here An naturally sits as an open set inside
projective space Pn, which is intuitively obtained by adding “points at infinity”
to An; one for each line through the origin. The closure of Z inside Pn is thus a
subvariety of projective space, or, in other words, a projective variety. For several
reasons, it will be more convenient to work with projective varieties rather than
subvarieties of affine space. For instance, every subvariety of a projective variety
is compact, which makes many formulas easier to define and evaluate. Another
basic example of this is given by intersections: in the projective plane any two
distinct lines intersect in a point, whereas in the affine plane, the same is true,
but with the awkward exception when the lines are parallel. Thus adding the
‘points at infinity’ yields a more harmonious and elegant intersection theory. In
this thesis we will be mostly interested in studying projective varieties.

The standard way to define projective n-space Pn is as the set of lines through
the origin of Euclidean (n + 1)-space An+1. This is equivalent to saying that
Pn is the quotient of An+1 \ {0} modulo the action of the non-zero elements of
the ground field, k∗ (we assume k is algebraically closed of characteristic 0), by
scaling a vector by any number. Subvarieties of projective space correspond to
zero-sets of polynomials in the n + 1 coordinate variables of An+1 which are
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1. Introduction

invariant under the action of k∗, in other words to homogeneous polynomials.
The natural generalization of this construction is that of a normal toric variety,
which is a quotient of an open set in affine space Am, modulo an action of the
torus (k∗)ρ. This is Cox’s quotient construction [Cox95], which implies that
closed subvarieties of X are zero sets of polynomials in m variables which are
invariant under the (k∗)ρ-action. For this reason, toric varieties are natural
generalizations of projective space. One of the main advantages of working
with toric varieties is that they admit rich combinatorial structures, enabling us
to use a wide variety of tools from combinatorics to compute and study their
invariants. This makes toric geometry into an important subfield of algebraic
geometry, since it is often a source of interesting (counter)examples and explicit
illustrations of general theory.

The study of toric varieties goes back to Demazure [Dem70], who introduced
them to investigate subgroups of the Cremona group of birational automorphisms
of Pn; the automorphism group of a smooth toric variety is a subgroup of
the Cremona group. Shortly afterwards, toric varieties (then known as torus
embeddings) appeared in the work of multiple people; Appendix A of [CLS11]
gives an extensive historical account of the subject. Around 1990 three textbooks,
which are still standard references on toric geometry today, appeared, by Fulton
[Ful93], Gelfand, Kapranov and Zelevinsky [GKZ94] and Oda [Oda88]. In an
influential 1994 paper [Bat94], Batyrev showed that one can construct interesting
examples of Calabi-Yau varieties as hypersurfaces in certain toric varieties as well
as construct their mirror partners which are hypersurfaces in other toric varieties.
This led to a surge of interest in toric geometry from theoretical physicists, who
were interested in mirror symmetry. Over the last 20 years the interest in toric
geometry has only increased, and it is now a small subfield of its own within
algebraic geometry. The most comprehensive text on the subject is the book
by Cox, Little and Schenck [CLS11]; it will be cited extensively throughout this
thesis.

By definition a toric variety X is an irreducible algebraic variety which
contains the algebraic torus T as an open dense subset, such that the action of
T on itself extends to an action of T on X. To X one can associate certain sheaf
cohomology groups, which will be representations of T . Hence they will split
into sums of irreducible, one-dimensional, representations, given by characters
m ∈M ' Zn. For this reason lattice polytopes arise naturally from the study of
toric varieties: The convex hull of the set of characters m giving the splitting type
of the global sections of a line bundle on a complete X form a convex rational
polytope. Moreover, if the line bundle satisfy certain positivity properties (see
Section 1.6), many properties of this polytope correspond to properties of the
toric variety.

All of the varieties we study are in some sense related to toric varieties. Our
main tool will be combinatorics, which we use to study lattice polytopes as well
as related combinatorial objects that arise from toric varieties.

2



Toric varieties

1.1.1 Equations of toric varieties

Algebraic varieties are zero-sets of polynomials. From this perspective a toric
variety correspond to particularly simple equations: They are all (in some
coordinate system) binomials, in other words, polynomials of the form

xm1
1 · · ·xmss − xms+1

s+1 · · ·xmnn .

It is, in fact, possible to define a toric variety as a variety whose ideal is a prime
binomial ideal. However, studying the equations themselves are not usually the
most illuminating method to learn about the variety. We will see that for toric
varieties the combinatorial structure extracted from the monomials appearing
in the equations captures many algebraic and geometric properties of the toric
variety.

Example 1.1.1. Let X be the blowup of P2 at a point. Then X can be embedded
in P4 using the linear system of quadrics passing through the point. The defining
equations in P4 = Proj k[x0, x1, x2, x3, x4] are

x0x2 − x2
1, x1x3 − x0x4, x2x3 − x1x4.

Because they are all binomials, X is a toric variety.

1.1.2 Non-normal toric varieties

There are different definitions of toric varieties in the literature, depending on
whether one requires the toric variety to be normal or not. In the most general
setting, one can define an affine toric variety as the spectrum of a semigroup
algebra k[S], for a subsemigroup S of M . Thus, generators of the semigroup
correspond to generators of the algebra, and relations between the semigroup
generators correspond to relations in the algebra. Any affine toric variety is the
spectrum of such a semigroup algebra [GKZ94, Ch. 5, Proposition 2.4].

In the preceding paragraph we constructed a toric variety in terms of genera-
tors and relations. For projective toric varieties one may alternatively construct
a toric variety parametrically. Let A = {a1, ..., as} be a finite set of lattice points
in M and denote by χai the character T → k∗, corresponding to ai. Then, we
can define an embedded toric variety XA in Ps−1, via mapping the torus using
the elements of A and taking the Zariski closure:

T → Ps−1

t 7→ (χa1(t) : χa2(t) : · · · : χas(t))

There is a natural action by the torus T on the variety XA. To A we can
associate the polytope P = Conv(A), the convex hull of the points in A. Many
combinatorial properties of P correspond to properties of XA. For instance, the
T -orbits of XA are in bijection with the faces of P .

3



1. Introduction

Example 1.1.2. Let A = {0, 1, 2, 3} ⊂ Z. Then P is a line segment of length 3.
The corresponding variety is given by the closure of the image of the map

t 7→ (1 : t : t2 : t3),

which is the twisted cubic curve.
Let A′ = {0, 2, 3} ⊂ Z. Then XA′ ⊂ P2 is the closure of the image of the

map
t 7→ (1 : t2 : t3).

This is the rational cuspidal curve y3 = xz2, which is not normal.

In Paper II we will study polar and dual degrees of (possibly non-normal)
projective toric varieties of codimension two.

1.1.3 Normal toric varieties

In the above definitions we did not require a toric variety to be normal. However,
in the more recent literature on the subject one often requires that it is; notably
this is done in the books by Oda [Oda88], Fulton [Ful93] and Cox-Little-Schenck
[CLS11]. In combinatorial terms, assuming normality means that we require
the semigroup of an affine toric variety to be saturated. Being saturated means
that the semigroup coincides with the intersection of the lattice points in its
positive linear span with the lattice L generated by the semigroup. The positive
linear span of the semigroup form a rational polyhedral cone, from which it
is possible to recover the saturated semigroup. Thus any normal affine toric
variety correspond to a convex rational polyhedral cone in L⊗Q [GKZ94, Ch.5,
Proposition 2.8].

Example 1.1.3. Affine n-space An is an affine toric variety given by the cone
generated by the standard basis vectors e1, ..., en of the lattice M .

A general toric variety is defined by a collection of affine toric varieties together
with the data of how they are glued together. To a cone in M ⊗ Q we can
associate the dual cone in the dual vector space N ⊗Q, where N = Hom(M,Z).
Passing to the dual space is convenient for recording the gluing information:
The toric variety associated with the intersection of two cones in N ⊗Q is the
intersection of the two toric varieties associated to the individual cones. Thus
we can record the gluing data in the combinatorial notion of a fan which is a
collection of cones in N ⊗ Q closed under intersections and taking faces. If,
on the other hand, one starts with a full-dimensional lattice polytope, one can
obtain an abstract toric variety by taking the inner normal fan of the polytope.
Therefore, both fans and lattice polytopes are closely linked to the study of toric
varieties. Many properties of the associated varieties are in fact expressible in
terms of the combinatorics of the fan and/or the polytope.

Example 1.1.4. Let P be the polytope in Figure 1.1. A computation shows that
the associated XP∩M is the blowup of P2 in a point from Example 1.1.1. The fan
that defines this toric variety is also shown in Figure 1.1. The direction of its rays
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Projective duality

Figure 1.1: Polytope and fan defining blowup of P2 at a point.

are the normals to the facets of the polytope. Its cones are in dimension-reversing
bijection to the faces of P as well as in bijection to torus invariant subvarieties
of XP∩M .

The assumption that any toric variety is, by definition, normal will implicitly
be made in Paper III, Paper IV and Paper V.

1.2 Projective duality

The first and second paper in the thesis are related to a classical construction
in algebraic geometry, namely that of projective duality, which dates back to
the early 1800s. We here present a brief introduction to this subject based on
[GKZ94, Chapter 1]. Given projective n-space Pn with coordinates x0, ..., xn, we
can construct the dual projective space (Pn)∨ of hyperplanes in Pn. A hyperplane
H in Pn is described by an equation

a0x0 + a1x1 + ...+ anxn = 0.

The associated point in (Pn)∨ is the point with coordinates (a0 : a1 : ... : an).
This gives (Pn)∨ the structure of a projective n-space. More generally a linear
space L in Pn corresponds to a linear space in (Pn)∨ of dimension codimL− 1.
This is a duality in the sense that the dual of (Pn)∨ is identified with the
projective space we started with. The duality preserves incidences of linear
spaces. For instance, when n = 2 the intersection of two lines in P2 is a point p.
Inside (P2)∨ the two lines correspond to points x, y and the dual of the point
p is exactly the line connecting x and y. One way in which projective duality
is useful is that for any statement on incidences of linear spaces in Pn we get a
dual statement in (Pn)∨.

We can extend the notion of duality to arbitrary subvarieties X inside
projective space by defining X∨ as the closure of the set of hyperplanes which
contain the tangent space to a smooth point x ∈ X. This is a duality in the sense
that the dual of X∨ inside (Pn)∨ is equal to X. Thus for a plane curve C the
dual curve C∨ ⊂ (P2)∨ is the closure of the set of tangent lines to C at smooth
points. Invariants and singularities of C∨ determine interesting invariants of C
itself. For instance if the dual curve has a simple node at a point p corresponding

5
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`∨

C∨C

`

1
`∨

C∨
C

`

1
Figure 1.2: A bitangent and an inflectional line corresponding to a node and a
cusp of the dual curve.

to the tangent line Lp of C, then the line Lp is actually a double tangent to C.
Similarly, if C∨ has a simple cusp at p, then Lp is an inflectional line of C. In
other words the tangent line Lp intersects C to order three. Formulas relating
invariants of C and C∨ are called Plücker formulas, after Julius Plücker. An
example is the following:

Theorem 1.2.1. Assume that C is an irreducible plane curve of degree d with κ
cusps and δ simple nodes but no other singularities. Then the degree of the dual
curve C∨ is d(d− 1)− 3κ− 2δ.

This is an example of how geometric invariants of a variety correspond to
other invariants of the dual variety. By the duality theorem there is also the
converse statement: If one knows the degree and singularities of the dual curve
C∨, then one can compute the degree and number of double tangents and
inflectional tangents of C.

1.2.1 Polar varieties

A notion which is closely related to dual varieties is that of a polar variety.
Given an embedded projective variety X ⊂ Pn of dimension r, we can associate
polar varieties Mk, for any integer k such that 0 ≤ k ≤ r. Mk is defined as the
subvariety of X which is the closure of the locus consisting of smooth points x
whose tangent space intersect a fixed general linear subspace of Pn of dimension
n− r + k − 2 non-transversally. The classes of the polar varieties in the Chow
ring of X are called polar classes (these do not depend on the choice of the
general linear subspaces) and their degrees are called polar degrees. Polar degrees
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A-discriminants

carry information about invariants of X related to tangency. For example, if C
is a plane curve, the first polar degree is the number of tangents to C passing
through a general point. Moreover, the top non-zero polar degree is equal to the
degree of the dual variety. In her PhD thesis Piene gave several Plücker type
formulas relating polar degrees of varieties to geometric invariants [Pie78]. In
general, certain signed sums of the polar degrees do not depend on the projective
embedding on X, but give fundamental invariants of the underlying abstract
variety. This was discovered by Todd and Severi, who used it to define what has
later become known as the Chern class of X [Pie15].

The following optimization problem arises in several applications of algebraic
geometry and is related to polar degrees: Given an algebraic variety X ⊂ An and
u ∈ An, minimize the Euclidean distance function d(x, u), under the constraint
that x ∈ X. For a general choice of u, the number of critical points of d(x, u)
is independent of u and this number is called the Euclidean distance degree
of X. If X is defined by a homogeneous ideal, then by [Dra+16, Theorem
5.4] the Euclidean distance degree equals the sum of all the polar degrees of
the associated projective variety X̃ ⊂ Pn−1. Therefore polar degrees are also
important in applications of algebraic geometry.

In this thesis we will study polar degrees and degrees of dual varieties of toric
varieties of small dimension and of small codimension. For toric varieties these
degrees can be determined from the combinatorial structure defining the toric
variety, as will be described in Paper I and Paper II.

1.3 A-discriminants

The most comprehensive work on duals of toric varieties was done by Gelfand,
Kapranov and Zelevinsky [GKZ94], who used them as a tool to study what
they call A-discriminants. The classical discriminant of a polynomial p(x) is a
polynomial in the coefficients of p which vanishes exactly when p has a double root.
The most famous example is the discriminant ∆p of the quadratic polynomial in
one variable,

p(x) = ax2 + bx+ c,

which is given by
∆p = b2 − 4ac.

For a cubic polynomial in one variable,

q(x) = ax3 + bx2 + cx+ d,

the discriminant is more complicated [GKZ94, p. 1]:

∆q = b2c2 − 4b3d− 4ac3 − 27a2d2 + 18abcd.

Generalizing these examples, Gelfand, Kapranov and Zelevinsky define the
A-discriminant as follows:

7



1. Introduction

Definition 1.3.1. Let A be a finite set of monomials in d variables, and let kA
be the set of all polynomials whose monomials belong to A. The A-discriminant
∆A is a polynomial in the coefficients of f ∈ kA that vanishes whenever f has a
multiple root (x1, ..., xd), where all xi 6= 0.

The polynomial ∆A, assuming it exists, may have very large degree and
many monomials. Therefore, computing it is usually difficult. However, it is still
possible to study geometric and combinatorial properties of the hypersurface: It
turns out that ∆A is the projective dual X∨A of the projective toric variety XA,
defined above, using the same set of monomials A [GKZ94, Ch. 9, Proposition
1.1]. As we have seen before, geometric properties of a variety often correspond to
other geometric properties of its projective dual. Hence, we can learn about the
A-discriminant by instead studying the toric variety XA. From this perspective
we also expect ∆A to exist for most sets A; the existence of ∆A is equivalent to
the projective dual of X being a hypersurface and we know from general theory
on projective duality that for most varieties the projective dual is a hypersurface.

If XA is a smooth toric variety, we can compute the degree of the A-
discriminant as follows: We denote by P the convex hull of the lattice points
A. For each face Q of P there is a lattice M(Q) of dimension equal to dimQ,
generated by all lattice points in Q. We denote by VolQ the normalized volume
function on M(Q)R, so that the standard simplex has volume 1. This volume
function equals (dimQ)! times the Euclidean volume function. Then by [GKZ94,
Ch. 9, Theorem 2.8]

deg ∆A =
∑
Q�P

(−1)codimQ(dimQ+ 1) VolQ(Q).

This formula illustrates the usefulness of the combinatorial structure of a toric
variety. Indeed, all of the terms in the above sums are invariants of the defining
lattice polytope P , and are therefore easily computable. For more general
varieties we cannot expect the existence of such simple formulas.

Matsui and Takeuchi generalized the above formula to arbitrary (possibly
non-normal) toric varieties XA [MT11, Corollary 1.6]:

deg ∆A =
∑
Q�P

(−1)codimQ(dimQ+ 1) Eu(Q) VolQ(Q).

Here Eu is the local Euler obstruction function, which for a toric variety is
constant on any T–orbit. Eu is an integer-valued function which, in some sense,
measures how singular a point is. For smooth points its value is always 1, but it
can take any integer value for singular points. Matsui and Takeuchi also gave
combinatorial formulas for the local Euler obstruction for toric varieties [MT11,
Section 4] as well as for related invariants [MT11, Theorem 1.4], which enabled
Helmer and Sturmfels to prove combinatorial expressions for all the degrees
of the polar varieties of XA [HS18, Theorem 1.2]. Many of these formulas are
algorithmic and recursive in nature.
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Summary of the first and second paper

1.4 Summary of the first and second paper

In the first half of the thesis we are interested in computing degrees of dual
and polar varieties of toric varieties of small dimension and small codimension.
In particular, this also implies that we give formulas for degrees of certain
corresponding A-discriminants.

We use the recursive formulas by Matsui–Takeuchi, and later those by Helmer–
Sturmfels, to compute these invariants in special cases where one can expect to
obtain simple formulas.

Paper I The first paper continues the work done in my master thesis [Nød15].
The goal of the paper is to compute the local Euler obstruction and degree
of the dual variety of a toric variety. The formulas for these numbers
appearing in the literature are algorithmic and recursive in nature, thus
primarily interesting from a computational viewpoint. By restricting to
the case of varieties of dimension two and three, we are able to give more
explicit algorithms and formulas to effectively compute these numbers.
Specializing to examples of weighted projective planes and threefolds,
we are in some situations able to find closed-form expressions for these
numbers. Moreover, when looking at the case of threefolds with isolated
singularities we prove that Eu(x) ≥ 1, for any x. We also provide an
example of a singular weighted projective threefold for which the local
Euler obstruction is constantly equal to 1, thus disproving a conjecture
by Matsui and Takeuchi. We use the formulas to give new proofs of some
well-known results on which varieties are defective, in other words, when
the corresponding dual variety has codimension larger than one.
We also provide several examples where we compute the local Euler ob-
struction for any point on the variety as well as the degree of the dual
variety.

Paper II In the second paper we compute the polar degrees and the Euclidean
distance degree of toric varieties of codimension two. This paper is joint
work with Martin Helmer, and the idea for the paper was suggested to us
by Bernd Sturmfels. While in the first paper I was able to obtain formulas
for varieties of low dimension, in this paper we instead study (possibly
non-normal) toric varieties of arbitrary dimension, but of codimension two.
To do this we utilize the notion of Gale duality, which is a convenient
way of switching between the parametric representation of a toric variety
and a description in terms of equations. A codimension two toric variety
can be parametrically represented by a (n− 2)× n matrix A. The Gale
dual B will be a 2× n matrix B from which the equations of XA can be
deduced. We translate the formulas for the local Euler obstruction and
polar degrees, given in terms of the A-matrix, into formulas in terms of the
combinatorial structure of the rows of B. Since they live in Z2, we end up
with significantly simpler formulas. We borrow many ideas from, and are

9



1. Introduction

heavily inspired by, the paper of Dickenstein and Sturmfels on elimination
theory for codimension two toric varieties [DS02].
The motivation of this paper was partly computational. The fact that we
may compute all invariants in Z2 instead of in Zn speeds up all compu-
tations significantly. We give several examples of computing invariants,
and compare the speed of computation to that of using the A-matrix
representation. Additionally, Martin Helmer wrote a Macaulay2 package
implementing the formulas, which is available on his website [Hel].

Remark 1.4.1. Both of the papers above are already published in journals. The
versions here are almost identical, with the exception that some spelling and
typographic errors have been corrected. A few places we have also attempted to
made the exposition clearer.

1.5 T -varieties

In the second half of the thesis we study divisors and algebraic cycles on a variety
with a torus action as well as positivity properties of these. Toric varieties still
play a vital role, since the varieties we study are defined or described in terms of
toric geometry.

A T -variety X is a variety with an effective action of an algebraic torus T .
Toric varieties are therefore examples of T -varieties, however we now allow X
and T to have different dimensions. We define the complexity of X to be the
difference dimX−dimT . Altmann and Hausen, and later also Süss, developed a
quasi-combinatorial framework for studying T -varieties, in analogy with the case
for toric varieties [AH06], [AHS08]. Given a T -varietyX, one can define a rational
quotient Y = X/T of dimension equal to the complexity of the T -action. By
studying the quotient Y and the fibers of the quotient map, which are (possibly
non-reduced, non-irreducible) toric varieties, one can deduce many properties
of X. As a consequence, studying a T-variety of complexity c and dimension
n+ c is about as complicated as studying any variety of dimension c, together
with a collection of toric varieties of dimension n. This heuristic motivates one
to consider T -varieties of low complexity, in particular of complexity one.

The general framework describes an affine T -variety in terms of a polyhedral
divisor D on the quotient Y . This is an analogy to a Weil divisor on Y , only the
coefficients are now polyhedra instead of integers. From the polyhedral divisor
one can define a sheaf of algebras on Y , and the associated T -variety is the
spectrum of the global sections of this sheaf. All affine T -varieties arise from
this construction [AH06, Theorem 3.4].

As in the case of toric varieties, where a non-affine toric variety corresponds
to a fan giving an affine cover, together with the information about how they
are glued together, there exists a similar construction describing any T -variety
in terms of an affine cover. This is the notion of a divisorial fan, which is a
collection of polyhedral divisors satisfying certain compatibility conditions. Any
T -variety arises from a divisorial fan [AHS08, Theorem 5.6].
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Figure 1.3: Polyhedral divisors defining P(TP2).

There is a slightly simpler classification of complexity one T -varieties, due to
Ilten and Süss [IS11]. Instead of describing the T -variety in terms of polyhedral
divisors, one can record polyhedral subdivisions giving the fibers of the rational
quotient map as well as which subvarieties one needs to blow up to resolve the
rational quotient map.

Example 1.5.1. The projectivization of the tangent bundle TP2 on P2 is a 3-
dimensional complexity one T -variety. The rational quotient Y is the projective
line. The general fiber of the quotient morphism is the degree six Del Pezzo
surface. The structure of the special fibers, of which there are three, are given
by the polyhedral subdivisions shown in Figure 1.3. The polyhedral divisors
of maximal dimension, D1, · · · ,D6, are labelled in the figure. We see that
each special fiber is isomorphic to the union of two Hirzebruch surfaces H1,
intersecting in a projective line. TP2 is also an example of a toric vector bundle,
studied in Paper IV and Paper V.

In Paper III we study algebraic cycles on complexity one T -varieties. The key
idea is that, as for toric varieties, any cycle is numerically/rationally equivalent
(see the next section for definitions of these notions) to a T -invariant cycle, and
these can be described in terms of combinatorics.

1.6 Cycles on varieties

A lot of information about a variety X is encoded in the set of all subvarieties
of X. The appropriate place to study these is using the Chow groups of X: For
any integer k between 0 and dimX we can associate the group Ak(X), which is
the group Zk(X) freely generated by subvarieties of X of dimension k, modulo
relations Rk(X) coming from principal divisors on subvarieties of dimension
k+ 1. Elements of Zk(X) which are equivalent under this relation are said to be
rationally equivalent. The structure of the Chow groups Ak(X) are fundamental
invariants of the variety X, however they are in general very hard to compute.
We remark that all invariants defined from Chow groups are intrinsic to the
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variety X, in the sense that they only depend on the isomorphism class of X,
and not on the particular projective embedding of X. This is in contrast with
the cases of polar and dual degrees.

The cycles studied the most are those of codimension one, called divi-
sors. A divisor D is called very ample if it induces a closed embedding
X → P(H0(X,O(D))). D is called ample if some positive multiple kD is
very ample. An important reason why divisors provide information about X is
that the (very) ample divisors that exist on X tell us how it is possible to embed
X in projective space.

Since Chow groups can be very large and complicated, one often consid-
ers smaller quotient groups instead, by imposing coarser equivalence relations.
We will here consider the numerical groups Nk(X), in which two cycles are
regarded as equivalent if they have the same intersection with all subvarieties
of complimentary dimension. This is a finitely generated free abelian group.
Frequently we wish to take the tensor product with R to obtain Nk(X)R, which
is a finite-dimensional real vector space. The structure of a real vector space
enables us to define various cones of cycles inside Nk(X)R. A key example is the
cone of effective k-cycles,

Effk(X) = {
∑

aiZi ∈ Nk(X)R|ai ≥ 0, Zi is a subvariety of X},

as well as the closure Eff(X), the pseudoeffective cone of k-cycles.
An important result in the study of ample line bundles is Kleiman’s criterion,

which states that D is ample if and only if D ·C > 0, where C is any element of
the pseudoeffective cone of curves Eff1(X). This implies that ampleness is in
fact a property of numerical classes of divisors and it motivates the definition
of D being nef if D · C ≥ 0 for any C ∈ Eff1(X). In other words a nef divisor
is a limit of ample divisors. One can define other similar properties (known as
positivity properties) of divisors such as being semi-ample, big, movable and so
on; as well as corresponding cones of divisors. These cones are fundamental
in the study of the birational geometry of X. Their study and the relation to
birational geometry is what is known as Mori theory or the Minimal Model
Program.

1.6.1 Cycles on toric varieties

For a normal toric variety XΣ, associated to the fan Σ, the Chow groups were
explicitly described by Fulton and Sturmfels [FS97]. For any cone τ ∈ Σ we let
M(τ) be defined as τ⊥ ∩M , which is a sublattice of M of dimension codim σ.
Then there is an exact sequence⊕

dim τ=n−k−1
M(τ)→

⊕
dimσ=n−k

Z→ Ak(XΣ)→ 0.

The maps can be explicitly written down in terms of the defining fan Σ. The
intuition is that by using the action of the torus T on an arbitrary subvariety Z
of XΣ, we can obtain a sum of subvarieties rationally equivalent to Z, whose
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components are also invariant under the torus action. Since the only invariant
subvarieties are closures of T -orbits, we get that subvarieties corresponding to
cones of dimension n − k generate Ak(X). Moreover, exactness of the above
sequence implies that all relations between the generators come from relations
on invariant subvarieties.

There are characterizations of when a divisor on a toric variety is nef or
ample. By the exact sequence describing divisors on a toric variety, we see that
any divisor D is equivalent to a sum of T -invariant divisors. Alternatively, it
is possible to write the divisor in terms of local defining data, and from this
obtain an associated support function φD : N ⊗Q→ Q which is a continuous,
piecewise linear function, linear on every cone σ ∈ Σ. A classical result on toric
varieties states that a divisor D is nef (ample) if and only if the support function
φD is (strictly) convex [Ful93, p.68].

On a related note, the theory of A-discriminants discussed above is also
related to positivity of divisors on the associated toric variety. It turns out that
the Newton polytope of the discriminant is what is known as the secondary
polytope, which is another polytope associated to A. It describes the set of all
coherent subdivsions of the polytope Conv(A), and it is also intimately related
to the birational geometry of XA, its cones of cycles and to birational maps to
other toric varieties, as described in chapter 14 and 15 of [CLS11].

For cycles of higher codimension than one, properties of cones of cycles are
not well understood. There are few general theorems, and few examples where
one can compute the cones explicitly.

1.7 Summary of the third paper

Paper III In the third paper we study algebraic cycles on T -varieties of complexity
one. We prove that the pseudoeffective cones Effk(X) of effective cycles on
a complexity one T -variety X are always rational polyhedral, generated by
classes of invariant subvarieties. This is proved by replacing the class of any
effective subvariety by a sum of invariant effective subvarieties, using the
T -action as well as proving that there are only finitely many such classes.
The generating classes can be found explicitly from the combinatorial data
defining X.

We also give a presentation of the Chow groups Ak(X), in terms of genera-
tors and relations, generalizing the above sequence for toric varieties. From
the theorem on pseudoeffective cones, we obtain a finite set of generators.
Moreover, using theory on T -invariant Chow groups, we are able to com-
pute all relations between these generators, obtaining an exact sequence
describing Ak(X).

Finally, we provide several examples to illustrate how the exact sequence
can be used to compute Chow groups of a complexity one T -variety.
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1.8 Toric vector bundles

The final class of varieties we study are toric vector bundles and their projec-
tivizations. A toric vector bundle E is a vector bundle on a toric variety such
that the T -action extends to an action on the geometric vector bundle, and so
that the action is linear on each fiber. If E has rank r, the projectivization P(E)
is a T -variety of complexity at most r−1 (if the bundle splits as a direct sum the
complexity will be lower). In particular, projectivizations of rank two bundles
are examples of complexity one T -varieties.

There is a different take on toric vector bundles which often proves to be
fruitful. Through the work of Kaneyama [Kan75] and Klyachko [Kly89] there
is a classification of toric vector bundles in terms of combinatorics and linear
algebra. This classification has been used to study toric vector bundles from
many different perspectives, for example in the work of Payne [Pay08] [Pay09],
Hering-Mustata-Payne [HMP10], González-Hering-Payne-Süss [Gon+12] and Di
Rocco-Jabbusch-Smith [DJS18].

We will use the classification theorem of toric vector bundles by Klyachko,
which goes as follows. Fix a normal toric variety corresponding to a fan Σ and let
E be a toric vector bundle of rank r on XΣ. We denote by E ' kr the fiber over
the identity of the torus. Then E corresponds to filtrations of E, one for every
ray of Σ, satisfying a certain compatibility condition. The structure of these
filtrations is equivalent to the fact that any toric vector bundle on an affine toric
variety splits a sum of line bundles. Furthermore, Klyachko showed that there is
an equivalence of categories: any equivariant map of toric vector bundles E → F
corresponds to a linear map of vector spaces E → F , respecting the filtrations.

The starting point for our work on toric vector bundles is the paper by Di
Rocco, Jabbusch and Smith [DJS18], describing in greater detail a generating
set for the global sections H0(XΣ, E). For a line bundle L on a toric variety it is
well-known that there is an associated polytope P such that

H0(XΣ,L) '
⊕

u∈P∩M
kχu.

Similarly, to a toric vector bundle Di Rocco, Jabbusch and Smith associate a
collection of polytopes, called the parliament of polytopes, whose lattice points
correspond to generators of H0(XΣ, E). In contrast to the line bundle case these
generators are not necessarily linearly independent. The polytopes are indexed
by an associated matroid M(E), whose structure corresponds to the relations
between the various global sections of E .

Example 1.8.1. In Example 1.5.1 we introduced the projectivization of the
tangent bundle on P2 as an example of a complexity one T -variety. Now we will
describe it as a toric vector bundle.
P2 is described as a toric variety by the complete fan with rays with primitive

lattice generators equal to ρ0 = (−1,−1), ρ1 = (1, 0), ρ2 = (0, 1). The filtrations
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P1P0

P2

Figure 1.4: The 3 polytopes of the parliament of TP2 .

are given by [Kly89, Example 2.3.5]

Eρi(j) =


E if j ≤ 0
ρi if j = 1
0 if 1 < j

.

The matroidM(TP2) will in this case have ground set {ρ0, ρ1, ρ2}. The polytopes
giving the global sections can be seen in Figure 1.4.

We observe that there are 9 lattice points in the parliament, counted with
multiplicity. We also see that the lattice point 0 is present in all three polytopes.
The span of the vectors indexing the polytopes is only two-dimensional, which
means that the three sections corresponding to 0 are not linearly independent.
Therefore H0(P2, TP2) has dimension 8. Figure 1.4 is actually a way of visualizing
the well-known Euler-sequence

0→ OP2 →
2⊕
i=0
OP2(1)→ TP2 → 0.

The goal of our work on toric vector bundles was to use the description of
parliaments of polytopes to study positivity of line bundles on the projectivization
P(E). For instance, if E is an ample vector bundle, which by definition means
that OP(E)(1) is an ample line bundle on P(E), we may ask: For which k is
the line bundle OP(E)(k) + KP(E) globally generated or very ample? Fujita
conjectured that k ≥ dimP(E) + 1 is always sufficient for global generation
and that k ≥ dimP(E) + 2 is sufficient for very ampleness. For bundles of
rank two Fujita’s conjecture on global generation was proved by Altmann and
Ilten [AI17] using techniques on T -varieties. Unfortunately we were not able
to achieve a proof (or counterexample) to Fujita’s conjecture for toric vector
bundles. However in the process of working on this problem, we were able
to prove several auxiliary results on toric vector bundles, that we think are
interesting in themselves.

We believe that fully understanding the positivity of toric vector bundles is a
hard problem: It requires us to understand sections of symmetric powers of the
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bundles. This is as complicated as studying effective divisors on any iterated
blow-up of projective space in linear spaces, which is well-known to be difficult.

1.8.1 Moduli of toric vector bundles

A moduli space is a space whose points correspond to geometric objects of a
certain type; in other words a space parametrizing the isomorphism classes of
certain geometric objects. Payne constructed a moduli space Mc of toric vector
bundles with fixed equivariant Chern class c [Pay08]. Fixing the equivariant
Chern class is equivalent to fixing the steps at which the Klyachko filtrations
change as well as restricting how different subspaces in the filtrations can intersect.
Using this, Payne showed that Mc is realized as a locally closed subscheme of a
product of partial flag varieties. Moreover, he proved that if you consider the
disjoint union of all moduli schemes of rank three toric vector bundles over all
quasi-affine toric varieties, then this space will satisfy what Vakil called Murphy’s
law [Vak06]: any singularity type defined over Z arises on one of these spaces,
which implies that these spaces can have all sorts of strange singularities.

1.9 Summary of the fourth paper

Paper IV In the fourth paper we prove that the moduli space of rank three toric
vector bundles on smooth projective toric varieties satisfies Murphy’s law.
This answers a question posed by Payne [Pay08, Remark 4.4]. The proof
is achieved by constructing a class of smooth projective toric varieties and
rank 3 Chern classes on them, such that any incidence scheme between
points and lines in P2 arises as someMc. Then the result follows by Mnëv’s
universality theorem [Mnë88].
An implication of our result is that there exist toric vector bundles on
smooth projective toric varieties which are definable in characteristic p,
but which cannot be lifted to characteristic 0.

1.10 Cox rings

To a normal projective variety X we may associate the Cox ring Cox(X), also
known as the total coordinate ring of X. This is the ring consisting of all sections
of all line bundles on X, thus Cox(X) is the ring

Cox(X) = ⊕L∈Cl(X)H
0(X,L),

where Cl(X) is the divisor class group. See [Arz+15] for more details. If X is
Q-factorial, then finite generation of the Cox ring is equivalent to being what
Hu and Keel called a Mori Dream Space [HK00]. Being a Mori Dream Space
has many implications for the birational geometry of X, for instance that the
pseudoeffective cones of curves and divisors are rational polyhedral. Even simple
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examples may not be Mori Dream Spaces however, though both toric varieties
and rational complexity one T -varieties are.

For a toric variety the Cox ring is as simple as it can be: It is a polynomial
ring. This leads to the description of a toric variety alluded to earlier, as a
quotient of an affine space modulo some action of a torus. The affine space is the
spectrum of the Cox ring, and the torus is the torus T = Hom(An−1(X), k∗).
where dimX = n. Thus, subvarieties of X are defined by the vanishing of
polynomials in the Cox ring which are invariant under the action of T , and
coherent sheaves on X correspond to Pic(X)-graded Cox(X)-modules.

1.11 Summary of the fifth paper

Paper V In the fifth paper we present various results on positivity of toric vector
bundles. We study the Cox ring of a projectivized toric vector bundle E .
We give a criterion for it to be finitely generated and derive a presentation
for its Cox ring, both are related to the structure of the matroids M(SkE)
of symmetric powers SkE . This is also related to the Cox ring of a certain
iterated blow-up of projective space in linear spaces coming from the
matroid. Many of the results on Cox rings were already known using
techniques from the theory of T -varieties [Gon+12]. However, the upside
to our proof is that it uses the Klyachko data directly, thus yielding a
better understanding of the interplay between Klyachko-filtrations, the
symmetric powers SkE and their associated matroids M(SkE).
We provide a criterion for a toric vector bundle to be big, in terms of the
parliament of symmetric powers of the bundle. We also give some other
positivity results and examples of toric vector bundles with particular
properties. A general theme to our results in this paper is that properties
which behave nicely for line bundles, are significantly more complicated
for vector bundles. In particular we provide counterexamples to several
statements that one might suspect to be natural generalizations of results
on toric line bundles.
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I

Abstract

We use Matsui and Takeuchi’s formula for toric A-discriminants to give
algorithms for computing local Euler obstructions and dual degrees of toric
surfaces and 3-folds. In particular, we consider weighted projective spaces.
As an application we give counterexamples to a conjecture by Matsui and
Takeuchi. As another application we recover the well-known fact that the
only defective normal toric surfaces are cones.

Contents

I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 23
I.2 The local Euler obstruction . . . . . . . . . . . . . . . . . . 25
I.3 The local Euler obstruction of toric varieties . . . . . . . . 26
I.4 Weighted projective spaces . . . . . . . . . . . . . . . . . . 29
I.5 The surface case . . . . . . . . . . . . . . . . . . . . . . . . 30
I.6 3-folds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
I.7 Dual defective varieties . . . . . . . . . . . . . . . . . . . . 45
I.A Computations . . . . . . . . . . . . . . . . . . . . . . . . . 49
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

I.1 Introduction

The local Euler obstruction was used by MacPherson [Mac74] in his construction
of Chern classes for singular varieties. For a variety X the local Euler obstruction
is a constructible function Eu : X → Z which takes the value 1 at smooth points
of X. It is related to the Chern–Mather class and to the Chern–Schwartz–
MacPherson class of X (see Remark I.2.1).
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I. Local Euler obstructions of toric varieties

Several equivalent definitions of the local Euler obstruction have been given,
such as Kashiwara’s definition of the local characteristic for a germ of an
irreducible analytic space [Kas73]. The first algebraic formula was given by
González-Sprinberg and Verdier [Gon81]. Matsui and Takeuchi use a topological
definition [MT11], which defines the local Euler obstruction of X inductively
using the Whitney stratification of X. They use this definition to prove a formula
for the local Euler obstruction on a (not necessarily normal) toric variety X. In
this article we will apply this formula to compute the local Euler obstructions of
toric varieties of dimension ≤ 3.

For a normal toric surface X, we have that X is smooth if and only if
Eu(X) = 1X [MT11, Cor 5.7]. [MT11] conjecture that the corresponding
statement should also hold for a higher dimensional normal and projective toric
variety. As an application we present counterexamples to this conjecture.

A motivation for studying Euler obstructions comes from formulas for the
degrees of dual varieties. Given a projective variety variety X ⊂ PN , its dual
variety X∨ ⊂ PN∨ is the closure of the set of hyperplanes H ∈ PN∨ such that
there exists a smooth point x ∈ X with TxX ⊂ H. Generally X∨ will be a
hypersurface in PN∨. Finding its equation is usually very difficult, but there
are results which give the degree. Gelfand, Kapranov and Zelevinsky [GKZ94]
proved a combinatorial formula for the degree of the dual variety of an embedded
smooth toric variety. Matsui and Takeuchi generalized this formula to singular
toric varieties, by weighting the terms by the local Euler obstruction. We will
use this to describe algorithms to compute the degree of the dual variety of some
toric varieties, in particular weighted projective spaces of dimension ≤ 3.

There has been recent interest in the local Euler obstruction. Aluffi studied
Chern–Mather and Chern–Schwartz–MacPherson classes in [Alu16]. Helmer
and Sturmfels studied polar degrees and the local Euler obstruction in [HS18]
related to the problem of finding the Euclidean distance degree of a variety.
This problem is closely related to the contents of the current paper, since the
Euclidean distance degree is expressible in terms of polar degrees, which in turn
is expressible in terms of Matsui and Takeuchi’s formulas involving the local
Euler obstruction. In particular Helmer and Sturmfels study codimension one
toric varieties [HS18, Thm 3.7], and also they briefly study surfaces.

In Section 2 we define the local Euler obstruction. We recall some basic facts
about toric varieties.

In Section 3 we present Matsui and Takeuchi’s method for computing the
local Euler obstruction of toric varieties and the degree of dual varieties.

In Section 4 we introduce our main examples of study, the weighted projective
spaces. We describe them via toric geometry.

In Section 5 we follow Chapter 5 of [Mor11] and apply the theory to toric
surfaces. This relates to Hirzebruch–Jung continued fractions and the minimal
resolution of singularities. We then do explicit computations for weighted
projective planes.

In Section 6 we consider the local Euler obstruction of toric 3-folds. We
prove that for a toric 3-fold XP∩M with isolated singularities, the local Euler
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The local Euler obstruction

obstruction is always greater than or equal to 1. We find counterexamples to a
conjecture by Matsui and Takeuchi [MT11, p.2063].

In Section 7 we apply the above to describe which toric surfaces are dual
defective, and to say something about which 3-dimensional weighted projective
spaces are dual defective.

In the appendix we collect some computations of the local Euler obstruction
and degrees of dual varieties for some weighted projective spaces.

I.2 The local Euler obstruction

Given a complex projective variety X of dimension d, consider the (generalized)
Grassmann variety Grassd(Ω1

X) representing locally free rank d quotients of
Ω1
X . The Nash blowup X̃ of X is the closure of the image of the morphism

Xsm → Grassd(Ω1
X), sending a smooth point to its tangent space. Let π : X̃ → X

denote the projection. The Nash sheaf Ω̃ is the restriction to X̃ of the tautological
rank d sheaf on Grassd(Ω1

X). There is a surjection π∗Ω1
X → Ω̃, and the Nash

blowup is universal with respect to birational morphisms f : Y → X such that
there is a locally free sheaf F of rank d on Y and a surjection f∗Ω1

X → F . Let
T̃ denote the dual of Ω̃.

The local Euler obstruction of a point x ∈ X is the integer

Eu(x) =
∫
π−1(x)

c(T̃ |π−1(x)) ∩ s(π−1(x), X̃).

On the smooth locus of a variety the local Euler obstruction takes the value 1.
It is a local invariant, thus we can compute it on an open affine cover.

This is the usual algebraic definition, used by amongst others [Ful98, Ex.
4.2.9]. When the ambient variety is clear we will simply write Eu for the local
Euler obstruction, however if there are different ambient varieties we sometimes
write EuX for the local Euler obstruction on X.

Remark I.2.1. The Chern–Mather class cM (X) of a variety X is defined by

cM (X) = π∗(c(T̃ ) ∩ [X̃]).

There is an isomorphism T from cycles onX to constructible functions onX given
by
∑
ni[Vi](p) 7→

∑
ni EuVi(p). Letting c∗ be cM ◦ T−1, we have that c∗ is the

unique natural transformation from constructible functions on X to the homology
of X such that on a non-singular X we have that cSM (X) is the Poincare dual
of the total Chern class of X [Mac74, Thm 1]. The Chern-Schwartz-MacPherson
class cSM (X) is defined as c∗(1X).

I.2.1 Definitions and notation for toric varieties

We shall use the notation and definitions from [CLS11] for toric varieties. Let
T be the torus (C∗)n and let M denote its character lattice Hom(T,C∗) ' Zn.
The dual HomZ(M,Z) of M we denote by N . Any normal toric variety is of the
form XΣ for a fan Σ ⊂ NR, and has the open affine cover {Uσ|σ ∈ Σ}.
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I. Local Euler obstructions of toric varieties

We will sometimes be interested in toric varieties which are not normal: For a
finite set of lattice points A ⊂M , we can associate the toric variety XA ⊂ P#A−1

by mapping the torus via the characters corresponding to the lattice points in A
and taking the Zariski closure. These varieties are not necessarily normal.

For a subset S ⊂ MR we denote by Conv(S) the convex hull of the points
of S. Setting P = Conv(A), we get a (possibly different) embedding XP∩M ⊂
P#P∩M−1. The variety XA is also the image of the projection from P#P∩M−1

to P#A−1 given by forgetting the coordinates corresponding to P ∩M \A.
To a lattice polytope P we can also associate the normal toric variety XP

which equals XkP∩M for any k ∈ N such that kP is very ample (this is equivalent
to a certain divisor on XkP∩M being very ample), thus it is independent of any
specific embedding and not necessarily isomorphic to XP∩M . We have that XP

is isomorphic to XΣP , the toric variety associated to the normal fan ΣP ⊂ NR
of P.

If the polytope P is itself very ample, we will sometimes, by abuse of notation,
identify the abstract variety XP with the embedded variety XP∩M . For instance
all 2-dimensional polytopes are very ample.

I.3 The local Euler obstruction of toric varieties

Consider a toric variety XA associated to a finite set A in M ' Zn. We will use
the formula for the local Euler obstruction of toric varieties proved in [MT11, Ch.
4]. It is proved using an equivalent topological definition of the Euler obstruction,
defined by induction on the codimension of the strata of a Whitney stratification
of the variety.

Remark I.3.1. One can quite explicitly describe both the Nash blowup of a toric
variety, and its normalization as a toric variety, see [Ata+11],[GT14]. It would be
interesting to prove Matsui and Takeuchi’s formula for the local Euler obstruction
directly from the algebraic definition, for instance if one could describe the Nash
sheaf as a module over the Cox ring of XA.

Let P be the convex hull of A. We may assume this has dimension n. Then
P is a lattice polytope in M . For a toric variety XA there is a one-to-one
correspondence between faces of P and orbits of XA by [GKZ94, Prop. 1.9].
The local Euler obstruction is constant on each orbit, hence for a face ∆ � P
we can denote by Eu(∆) the common value of the local Euler obstruction on the
orbit corresponding to ∆. Matsui and Takeuchi describe the Euler obstruction
combinatorially by induction on the codimension of the faces of P .

For a face ∆ of P , let L(∆) be the smallest affine subspace in MR containing
∆. The dimension of L(∆) is equal to dim ∆. We can also associate a lattice to
∆: M∆ is the lattice generated by A ∩∆ in L(∆).

Given faces ∆α and ∆β of P such that ∆β � ∆α, we can associate a lattice
Mα,β := Mα ∩ L(∆β). We have that Mβ ⊆Mα,β , but they are not necessarily
equal (see Examples I.3.6 and I.3.7). They are however both of maximal rank in
L(∆β) which motivates the following definition:
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The local Euler obstruction of toric varieties

Figure I.1: The set A from Example I.3.6.

Definition I.3.2. Given faces ∆α and ∆β of P such that ∆β � ∆α, we define
the index i(∆α,∆β) to be [Mα,β : Mβ ].

For two faces ∆α and ∆β of P such that ∆β � ∆α we may, after a translation,
assume that 0 is a vertex of ∆β . We denote by Sα the semigroup generated by
A∩∆α inMα. Let Sα,β denote the image of Sα in the quotient latticeMα/Mα,β .

Definition I.3.3. Given faces ∆α and ∆β of P such that ∆β � ∆α, we define
the normalized relative subdiagram volume RSVZ(∆α∆β) of ∆α along ∆β by

RSVZ(∆α,∆β) = Vol(Sα,β \Θα,β),

where Θα,β is the convex hull of Sα,β ∩Mα/Mα,β \ {0} in (Mα/Mα,β)R. The
volume is normalized with respect to the (dim ∆α − dim ∆β)-dimensional lattice
Mα/Mα,β . If ∆α = ∆β we set RSVZ(∆α,∆β) = 1.

Corollary I.3.4. [MT11, Thm 4.7] The local Euler obstruction of XA is described
as follows: The value Eu(∆β) for a face ∆β of P is determined by induction on
the codimension of the faces of P by the following:

Eu(P ) = 1,

Eu(∆β) =
∑

∆β�∆α

(−1)dim ∆α−dim ∆β−1i(∆α,∆β) RSVZ(∆α,∆β) Eu(∆α).

Remark I.3.5. By [Pie16, Th. 2] the value of the local Euler obstruction at a
torus orbit is the coefficient of the orbit in the the Chern–Mather class of X, i.e.
cM (XA) =

∑
∆�Conv(A) Eu(∆)[∆].

Example I.3.6. Let A be the following lattice points in M ' Z2:[
0
0

] [
0
1

] [
1
1

] [
2
0

] [
2
1

]
.

Let e be the edge of P = Conv(A) generated by the vector (1, 0). Then MP,e is
the lattice Z(1, 0). However since (1, 0) /∈ A we have that the latticeMe = Z(2, 0).
Thus the index i(P, e) = 2.

In the example above we do not have that A equals M ∩ Conv(A). One
might suspect that this is the only way to get a nontrivial index, however the
following example show this to be wrong.
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I. Local Euler obstructions of toric varieties

Example I.3.7. Let Q be the 3-dimensional polytope in M ' Z4 with lattice
points 

0
0
0
0




1
0
0
0




0
1
0
0




1
1
2
0

 .
Assume Q is the facet of a 4-dimensional polytope P cut out by setting the last
coordinate equal to 0. Furthermore assume that P has enough lattice points so
that ZP = M . Then MP,Q = Z3, but MQ = Z2 ⊕ 2Z, so i(P,Q) = 2.

Next we state Matsui and Takeuchi’s formula for the degree of the dual
variety of a toric variety.

Proposition I.3.8. [MT11, Cor 1.6] Assume A is a finite subset of M ' Zn such
that X∨A is a hypersurface in PN∨. Setting P = Conv(A), we have

degX∨A =
∑
Q�P

(−1)codimQ(dimQ+ 1) Eu(Q) Vol(Q).

where Eu(Q) is the (constant) value of the local Euler obstruction on the torus
orbit associated to Q, and Vol(Q) is the normalized volume of Q with respect to
the sublattice spanned by lattice points of Q.

Remark I.3.9. By [MT11, Thm 1.4] X∨A is a hypersurface if and only if the
formula above yields a non-zero number.

If we take A to be all lattice points of a polytope, we can simplify some
calculations:

Lemma I.3.10. Assume A = Conv(A) ∩ M . If dim ∆α − dim ∆β = 1 then
RSVZ(∆α,∆β) = 1.

Proof. This follows almost by construction: The quotient lattice Mα/Mα,β will
be isomorphic to Z. Then Sα/∆β must be generated by either 1 or −1, thus it
follows RSVZ(∆α,∆β) = 1. �

Corollary I.3.11. Assume A = Conv(A) ∩M . For any (n− 1)-dimensional face
∆ � P we have Eu(∆) = i(P,∆).

We need the following well-known fact: Given set of linearly independent
vectors b1, ..., bn ∈M let

T (b1, ..., bn) = {
n∑
i=1

cibi|0 ≤ ci < 1} ⊆MR = M ⊗ R.

Lemma I.3.12. The vectors b1, ..., bn form a basis for the lattice M if and only
if T (b1, ..., bn) ∩M = {0} .

The following lemma will be useful when we study surfaces and 3-folds:
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Weighted projective spaces

Lemma I.3.13. If A is the set of lattice points of a convex lattice polytope of
dimension ≤ 3, then for any two faces ∆β � ∆α � P we have i(∆α,∆β) = 1.

Proof. Let d = dim ∆β . We check each value of d separately. We need to check
that Mα,β ⊂Mβ . We will do this by showing that MP,β ⊂Mβ . Again we fix 0
as a common vertex of ∆β and ∆α.

If d = 0 there is nothing to prove.
If d = 1 pick the first lattice point along the ray generated by ∆β , starting at

0. By construction of A this necessarily generates all lattice points of M which
are contained in L(∆β).

If d = 2 we do something similar: Pick a pair of primitive lattice points
v, w ∈ ∆β such that the only lattice points of M contained in the set Rv,w =
{av + bw|0 ≤ a, b ≤ 1, a+ b ≤ 1} are 0, v, w. We claim this can always be done.

Indeed, pick any primitive v′, w′. Then Rv′,w′ contains finitely many lattice
points. If there exists u ∈ Rv′,w′ , u 6= 0, v′, w′, we may without loss of general-
ity assume u is primitive, and consider Ru,v′ which have fewer lattice points.
Iterating this proves the claim.

Now we claim that v, w is a basis for M ∩ L(∆β). If not, then by Lemma
I.3.12 there is a lattice point p ∈ M such that p = av + bw with 0 ≤ a, b < 1.
By assumption a+ b > 1. But then v + w − p = v(1− a) + w(1− b) is a lattice
point in Rv,w different from 0, v, w which is a contradiction. �

Assuming the polytope P is very ample, we have that XP∩M ' XΣP . In
this case it will be convenient to be able to compute the local Euler obstruction
using the language of fans (for instance when we relate it to the resolution of
singularities for surfaces), so we describe how this is done.

We have the identification, for a vertex v of P , of Cv = Cone(P ∩M − v)
with a cone σ∨ ⊂ MR dual to a maximal cone σ in the normal fan ΣP . This
is compatible with face inclusions: If ∆α is a face of P containing v, there is
a corresponding face τα of σ. We then have RSVZ(∆α,∆β) = RSVZ(τ∨α , τ∨β )
where the last expression means:

Let M ′β = MR/L(τ∨β ) and let Kα,β be the image of τ∨α in M ′β . Then
RSV(τ∨α , τ∨β ) equals Vol(Kα,β \ Θα,β) where Θα,β is Conv(Kα,β ∩M ′β \ {0}),
and the volume is normalized with respect to the lattice M ′β ∩ L(Kα,β).

I.4 Weighted projective spaces

Our main examples in this paper are the weighted projective spaces(wps), which
are defined as follows:

Let q0, ..., qn ∈ N satisfy gcd(q0, ..., qn) = 1. Define P(q0, ..., qn) = (Cn+1 \
{0})/ ∼ where ∼ is the equivalence relation:

(a0, ...an) ∼ (b0, ..., bn)⇔ ai = λqibi for all i, for some λ ∈ C∗.

We call P(q0, ..., qn) the wps corresponding to q0, ..., qn. Observe that P(1, ..., 1) '
Pn. We can construct a wps as a toric variety by the following:
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I. Local Euler obstructions of toric varieties

Given natural numbers q0, ..., qn with gcd(q0, ..., qn) = 1, consider the quo-
tient lattice Zn+1 by the subgroup generated by (q0, ..., qn), and write N =
Zn+1/Z(q0, ..., qn). Let ui for i = 0, ..., n be the images in N of the standard
basis vectors of Zn+1. This means that in N we have the relation

q0u0 + ...+ qnun = 0.

Let Σ be the fan consisting of all cones generated by proper subsets of {u0, ..., un}.
Then XΣ = P(q0, ..., qn). By the quotient construction of toric varieties one gets
by [CLS11, Example 5.1.14] that XΣ is a geometric quotient, whose points agree
with the set-theoretic definition given above.

From [RT12] we can also describe the wps as embedded in projective space
via a polytope P giving P(q0, ..., qn) ' XP :

Given (q0, ..., qn) and M ∼= Zn+1, let δ = lcm(q0, ..., qn). Consider the n+ 1
points of MR ∼= Rn+1:

vi = (0, ..., δ
qi
, ...0), i = 0, ..., n.

Let ∆ be the convex hull of 0 and all vi. Intersecting ∆ with the hyperplane
H = {(x0, ..., xn)|

∑n
i=0 xiqi = δ}, we get a n-dimensional polytope P . Then

XP
∼= P(q0, ..., qn) and the associated divisor DP will be δ

q0
D0. This divisor is

very ample and its class generates Pic(P(q0, ..., qn)) ' Z. When we speak of the
degree of the dual variety of a weighted projective space, we will always mean
using the embedding given by DP .

There are characterizations of when P(q0, ..., qn) ' P(s0, ..., sn) in terms of
the weights, see for instance [RT12]. The upshot is that we can assume the
weights are reduced, i.e., that for all i gcd(q0, ..., qi, ...qn) = 1. We will always
make this assumption.

Following [Ian00, p. 5.15] we can describe the singular locus of the wps:
Recall that the fan Σ is the collection of cones Cone(uj |j ∈ J) for all proper
subsets J ⊂ {0, ..., n}. Set σj1,...,jk = Cone(uj1 , ..., ujk). Fixing one such cone
σj1,...,jk , let I = {i0, ..., in−k} = {0, ..., n} \ {j1, ..., jk}. Then we have:

Proposition I.4.1. [Nød15, Prop 2.1.7] P(q0, ..., qn) is nonsingular in codimen-
sion k if for all {j1, ..., jk}, the corresponding gcd(qi0 , ..., qin−k) = 1. In particu-
lar:

P(q0, ..., qn) is nonsingular in codimension 1 .
P(q0, ..., qn) has isolated singularities if and only if gcd(qi, qj) = 1 for all i, j.

Thus for surfaces we will always have isolated singularities, but in larger
dimensions we might have larger singular locus, for instance P(2, 2, 3, 3) does not
have isolated singularities.

I.5 The surface case

In this section we will let A consist of all lattice points of a 2-dimensional lattice
polytope P . Recall that then we have XA = XP∩M ' XP ' XΣP and XA is
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The surface case

normal. From Proposition I.3.8 we have

degX∨P = 3 Vol(P )− 2E(P ) +
∑

v vertex ∈P
Eu(v),

where E(P ) is the sum of the normalized lengths of the edges of P . Thus we
need to compute the Euler obstruction of the singular vertices. By Lemma I.3.13
all indices i(∆α,∆β) are equal to 1.

By Corollary I.3.4 we get for a vertex v, letting e1, e2 be the edges of P
containing v:

Eu(v) = RSVZ(e1, v) Eu(e1) + RSVZ(e2, v) Eu(e2)− RSVZ(P, v),

By Lemma I.3.10, RSVZ(P, ei) = 1 and RSVZ(ei, v) = 1, while by Corollary
I.3.11, Eu(ei) = 1, for i = 1, 2. Thus we reduce calculations to:

Eu(v) = 2− RSVZ(P, v).

To calculate RSVZ(P, v) we get that MP /MP,v will equal M . Hence SP,v will be
the semigroup generated by the lattice points of the polytope P , after translating
P such that v is the origin. Then RSVZ(P, v) will be the area removed, if we
instead of P consider the convex hull of the points of (P \ {v}) ∩M .

Lemma I.5.1. For a 2-dimensional lattice polytope P and a vertex v we have

Eu(v) = 1− c,

where c is the number of internal lattice points of P which are boundary points
of Conv((P \ v) ∩M).

Proof. By the above discussion

Eu(v) = 2−Vol(P ) + Vol(Conv((P \ v) ∩M)).

(This formula is also found in [HS18, Corollary 3.2], [Mor11, Proposition
5.2.12],[Nød15, Proposition 1.11.7].) Let i be the number of interior lattice
points of P and b be the number of boundary lattice points. By Pick’s formula

Vol(P ) = 2i+ b− 2,

Vol(Conv((P \ v) ∩M)) = 2(i− c) + (b+ c− 1)− 2,

hence
Eu(v) = 2− (1 + c) = 1− c.

�

One can also describe the Euler obstruction in terms of a resolution of
singularities:
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P

Figure I.2: The polytope P = Conv((0, 0), (0, 2), (1, 3), (3, 0)). Removing the
vertex (1, 3) we get the right figure. Vol(P ) = 11 while the volume of the new
polytope is 8. Hence Eu(1, 3) = 2− 11 + 8 = −1.

Proposition I.5.2. [Gon82] Let p ∈ S be a normal cyclic surface singularity, and
X → S a minimal resolution of the singularity p with exceptional curves Ei.
Then

Eu(p) =
∑
i

(2 + Ei · Ei).

We will relate these two descriptions of the Euler obstruction.
One can describe resolutions of singularities for toric varieties in general (see

for instance [CLS11, Ch. 11.1]), and for surfaces the minimal resolution can be
made quite explicit (we follow descriptions in [Pop07] and [Dai06]). Now we
switch to the language of fans.

Given a rational number λ, we can consider the Hirzebruch–Jung (HJ)
continued fraction

λ = b1 −
1

b2 − 1
...− 1

br

,

which we will denote by [b1, ..., br]−.
Since this is a local computation, we do this cone by cone, so we assume σ

is a 2-dimensional cone. We include the proof of the following result, which is
well-known, because it shows how to construct the integers k and d:

Lemma I.5.3. Given any singular 2-dimensional cone σ, one can choose a basis
{e1, e2} for the lattice L such that in this basis σ = Cone(e1, ke1 + de2), where
d > k > 0 and gcd(d, k) = 1.

Proof. We can always choose a primitive generator u of an edge of σ as the first
basis vector of our lattice. Let (e1 = u, e′2) be a basis for the lattice. The other
facet of the cone will in this basis be generated by a vector w = ae1 + be′2. Now
let d = |b| and k = a mod d, where 0 < k < d.
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Then w = (a− k + k)e1 + sign(b)de′2 = ke1 + d(sign(b)e′2 + a−k
d e1). Thus we

see that in the new basis {e1, e2 = sign(b)e′2 + a−k
d e1}, w = ke1 + de2. �

Definition I.5.4. We say that a cone σ is of type (d, k) if it can be written as in
Proposition I.5.3 with parameters d, k.

Note also that some literature, notably [CLS11] and [Ful93], use a different
convention for a (d, k)-cone, so that some results sometimes appear a bit different.

Lemma I.5.5. [Dai06, Lemma 3.3] Assume σ∨ is a (d, k)-cone inMR with respect
to {e1, e2}. Then σ is a (d, d−k)-cone in NR with respect to the basis {e∗2, e∗1−e∗2}.

Construction I.5.6. [Pop07, Section 4] Set K(σ) = Conv(σ ∩ (N \ {0})). Let
P (σ) be the boundary of K(σ) and V (σ) the set of vertices. P (σ) is a connected
polygonal line with endpoints coinciding with the generators of σ.

Let the primitive generators of σ be v1, v2. Let A0 = v1. Define Ai, i ≥ 0 as
the sequence of lattice points as one goes along the compact edges of P (σ). This
is a finite sequence and the last point v2 is denoted by Ar+1.

By construction each pair (Ai, Ai+1) is a basis for N , since the triangle
formed by 0, Ai, Ai+1 has no other lattice points. Also the slopes of the set {Ai}
have to increase with increasing i, since Ai are on the boundary of a convex set.
Thus we have relations:

rAi−1 + sAi = Ai+1,

tAi + uAi+1 = Ai−1,

where r, s, t, u ∈ Z. This implies

(rt+ s)Ai + (ru− 1)Ai+1 = 0,

rt+ s = 0, ru = 1.

If r = u = 1 we get s = −t and

sAi +Ai−1 = Ai+1.

But this contradicts the increasing of the slopes. Thus we must have r = u = −1
and s = t, resulting in the relation

Ai−1 +Ai+1 = biAi.

By convexity we must have bi ≥ 2.

Proposition I.5.7. [Pop07, Prop. 4.3] By Construction I.5.6 for a (d, k)-cone σ,
we get that [b1..., br]− = d

d−k .

Example I.5.8. In Figure I.3 we see Construction I.5.6 for (d, k) = (8, 3). The
lattice points Ai are the following:

A0 =
[
1
0

]
, A1 =

[
1
1

]
, A2 =

[
1
2

]
, A3 =

[
2
5

]
, A4 =

[
3
8

]
.
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Figure I.3: Construction I.5.6 for (d,k)=(8,3).

The continued fraction d
d−k = 8

5 equals [2, 3, 2]−1. By Proposition I.5.7 this is
equivalent to the fact that

A0 +A2 = 2A1, A1 +A3 = 3A2, A2 +A4 = 2A3.

Given σ, construct the points Ai as in Construction I.5.6. Let σi =
Cone(OAi). Let Σ be the fan with 2-dimensional cones Cone(σi, σi−1) for
i = 0, ..., r. The identity map on the lattice N induces toric morphisms Uσi → Uσ
which glue to a morphism φ : XΣ → Uσ.

Proposition I.5.9. [Dai06, Thm. 3.20] The morphism φ is a minimal resolution
of singularities for Uσ with r exceptional components E1, ..., Er and E2

i = −bi.

By doing this cone by cone, one obtains a global resolution of singularities
by gluing the local constructions. Combining Proposition I.5.9 and Proposition
I.5.2 we obtain:

Corollary I.5.10. Given a (d, k)-cone in MR (equivalently a (d, d − k)-cone in
NR), let v be the torus fixed point of Uσ. Write

d

k
= b1 −

1
b2 − 1

...− 1
br

.

Then Eu(v) =
∑r
i=1(2− bi).
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We give our own proof of this in the toric case using the formula of Matsui
and Takeuchi, without referring to Proposition I.5.2. We need a technical lemma:

Lemma I.5.11. [Oda88, Lemma 1.22] Let dk = [b1, ..., br]− and d
d−k = [c1, ..., cs]−.

Then

s = 1 +
r∑
i=1

(bi − 2).

Proof of Corollary I.5.10. Given any normal toric surface, consider a vertex v.
We have that Eu(v) = 1− c where c is the number of internal lattice points of σ∨
which are boundary points of Conv((σ∨ \ {0}) ∩M). Writing d

d−k = [c1, ..., cs]−
we have by Construction I.5.6 and Proposition I.5.7 that c = s. By Lemma I.5.11
Eu(v) =

∑r
i=1(2− bi). �

Remark I.5.12. If the cone is smooth, it is isomorphic to Cone(e1, e2), if we
by convention set the corresponding continued fraction equal to [1]−, then all
formulas for the Euler-obstructions are true also for smooth cones.

Combining the above we obtain:

Proposition I.5.13. Assume P is a 2-dimensional lattice polytope. Construct
the minimal resolution of singularities of XΣP and let Ev,i be the exceptional
divisors for the singularities v. Let

δ = 3 Vol(P )− 2E(P ) +
∑

v vertex ∈P

∑
i

(2 + E2
v,i).

Then X∨P is a hypersurface if and only if δ is non–zero. Assuming X∨P is a
hypersurface, it has degree δ.

More explicitly, let σ1, ..., σr be the maximal cones of ΣP . Assume σi is a
(di, di − ki)-cone and write di

ki
= [bi,1, ..., bi,si ]−. Then

δ = 3 Vol(P )− 2E(P ) +
r∑
i=1

si∑
j=1

(2− bi,j).

We can classify which normal toric surfaces are smooth or Gorenstein using
the Euler obstruction.

Corollary I.5.14. [MT11, Cor. 5.7] For any point v in a normal toric surface
we have that v is smooth if and only if Eu(v) = 1.

Proof. This follows directly from Corollary I.5.10 and the fact that the bi in
Construction I.5.6 are always ≥ 2. �

Remark I.5.15. Let A be the lattice points from Example I.3.6[
0
0

] [
0
1

] [
1
1

] [
2
0

] [
2
1

]
.
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Let v denote the origin and e1, e2 the edges of Conv(A) containing v. Then we
have that Eu(v) = i(P, e1) + i(P, e2) − RSVZ(P, v) = 2 + 1 − 2 = 1, even if v
corresponds to a singular point of the non-normal variety XA.

Corollary I.5.16. A singular point on a normal toric surface has Euler-obstruction
0 if and only if the surface is Gorenstein in a neighbourhood of the point.

Proof. By [CLS11, Exc. 8.2.13] a singular affine toric surface Uσ is Gorenstein if
and only if σ is a (d, 1)-cone.

Let the singularity be given as a (d, k)-cone in NR. Let d
d−k = [b1, ..., br]. By

Corollary I.5.10 the Euler-obstruction is 0 if and only if all bi = 2. Now if the
singularity is Gorenstein, then k = 1, so d

d−k = d
d−1 . It is easy to check that the

HJ-fraction of d
d−1 is a chain of d− 1 2’s.

Conversely if the singularity has Euler-obstruction 0, then all bi’s are 2, but
by the above this implies that in MR it is a (d, d− 1)-cone, so it is a (d, 1)-cone
in NR. �

Remark I.5.17. For a surface X the degree of the dual variety given by an
embedding by the very ample line bundle L equals the Severi degree NL,1. For
a smooth surface one has from [KP99]

NL,1 = 3L2 + 2L ·KX + c2(X),

however in the singular case this does not hold. Now fix a toric surface XP .
Using Ehrhart theory and Riemann-Roch [CLS11, Prop. 10.5.6] we obtain that

DP ·DP = Vol(P ),

−DP ·KXΣP
= E(P ).

We can combine this with Corollary I.5.13 to obtain

NDP ,1 = degX∨P = 3D2
P + 2DP ·KXP +

∑
v

Eu(v),

= 3D2
P + 2DP ·KXP +

∑
v

∑
i

(2 + E2
v,i),

thus
∑
v Eu(v) acts as a sort of “corrected” version of c2 for singular surfaces.

Indeed, by Remark I.3.5
∑
v Eu(v) equals the degree of the second Chern-Mather

class cM2 (X) of the surface. One would have hoped that this correction could
work for higher Severi degrees NL,δ, however this seems not to be the case, see
for instance [AB13], [LO18], [Nød15, Ch. 4].

I.5.1 Weighted projective planes

We wish to apply the results of the previous section to the weighted projective
planes P(k,m, n) and the 2-dimensional polytope P defined as the convex hull
in R3 of the points v1 = (mn, 0, 0), v2 = (0, kn, 0) and v3 = (0, 0, km). Denote
by σ∨i the 2-dimensional cone generated by the edges of P emanating from vi
(the dual is chosen to remind us that the polytope is in M).
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Proposition I.5.18. Find minimal natural numbers a, b, c such that

m+ an ≡ 0 (mod k)
n+ bk ≡ 0 (mod m)
k + cm ≡ 0 (mod n)

Then σ∨1 is a (k, k− a)-cone, σ∨2 is a (m,m− b)-cone and σ3 is a (n, n− c)-cone.

Proof. We prove this for σ∨1 . σ∨1 is generated as a cone by the vectors u1 =
(−n, 0, k) and u2 = (−m, k, 0). Picking any a such thatm+an ≡ 0 (mod k) gives
a lattice point in the hyperplane kx+my + nz = kmn of the form v = (d, 1, a).
Picking a minimal and positive ensures that v is in P and moreover that k− a is
positive, which is needed for our convention of a (k, k−a)-cone. Then w = v−v1
and u1 is a basis for the lattice spanned by P . We have that u2 = −au1 + kw,
thus σ∨1 is a (k, k − a)-cone. �

Theorem I.5.19. Given P(k,m, n), find natural numbers a, b, c as in Proposition
I.5.18. Let k

k−a = [a1, ..., at]−, m
m−b = [b1, ..., bs]−, n

n−c = [c1, ..., cr]−.
Then degP(k,m, n)∨ equals

3kmn− 2(k + n+m) +
r∑
i=1

(2− ai) +
s∑
i=1

(2− bi) +
t∑
i=1

(2− ci).

Using Theorem I.5.19 it is easier to find closed formulas in special cases.

Corollary I.5.20. For k ≥ 1, degP(2k − 1, 2k, 2k + 1)∨ = 24k3 − 20k + 3.

Proof. We wish to find minimal a, b, c satisfying

2k + a(2k + 1) ≡ 0 (mod 2k − 1),
2k + 1 + b(2k − 1) ≡ 0 (mod 2k),

2k − 1 + c2k ≡ 0 (mod 2k + 1).

Some easy algebra shows that a, b, c must satisfy

2a ≡ −1 (mod 2k − 1),
b ≡ 1 (mod 2k),
c ≡ −2 (mod 2k + 1).

Resulting in a = k − 1, b = 1, c = 2k − 1. Now
2k − 1

2k − 1− (k − 1) = 2k − 1
k

= [2, k]−,

2k
2k − 1 = [2, ..., 2]−,

2k + 1
2k + 1− (2k − 1) = 2k + 1

2 = [k + 1, 2]−.

Combining these yields the formula. �
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Corollary I.5.21. degP(m,n,m+ n)∨ = 3mn(m+ n)− 5(m+ n) + 4 .

Corollary I.5.22. For odd m > 1,

degP(m− 2,m,m+ 2)∨ = 3m3 − 19m+ 3.

Corollary I.5.23. degP(m,n,m+ 2n)∨ = 6mn2 + 3m2n− 7n− 9
2m+ 5

2 .

Proof. Following Theorem I.5.19 we want minimal a, b, c such that

n+ a(m+ 2n) ≡ 0 (mod m),
mb+m+ 2n ≡ 0 (mod n),

m+ cn ≡ 0 (mod m+ 2n).

One sees that a = m−1
2 , b = n − 1, c = 2 (m has to be odd, if not then

gcd(m,m+ 2n) 6= 1). Now m+2n
m+2n−2 = 2− m+2n−4

m+2n−2 = 2− 1
m+2n−2
m+2n−4

= [2, ..., 2, 3]−

where the 3 is by induction, since 3
1 = [3]−. The Hirzebruch–Jung fraction

n
n−(n−1) = n

1 = [n]−. Also m
m−m−1

2
= m

m+1
2

= [2, m+1
2 ]−. Combining these yields

the formula. �

Example I.5.24. For sufficiently small examples, these calculations can be double-
checked using Macaulay2[GS]. According to Corollary I.5.21 degP(1, 2, 3)∨ = 7.
The lattice points of the polytope defining P(1, 2, 3) corresponds to monomials
1, s, s2, s3, t, st, t2. We run the following code:

R = ZZ/101[s,t,y1,y2,y3,y4,y5,y6,y7];
f=y1+y2*s+y3*s^2+y4*s^3+y5*t+y6*s*t+y7*t^2;
I=ideal{f,diff(s,f),diff(t,f)};
I =saturate(I,ideal{s*t});
J=eliminate(I,s);
K=eliminate(J,t);
degree K

This outputs the correct answer 7.

I.6 3-folds

Here we let A be the lattice points of a 3-dimensional lattice polytope P . We
have from Proposition I.3.8:

degX∨P∩M = 4 Vol(P )− 3
∑
f�P

Eu(f) Vol(f) + 2
∑
e�P

Eu(e) Vol(e)−
∑
v∈P

Eu(v),

where {f} is the collection of all facets of P , {e} the is collection of all edges of
P , and the last sum is over all vertices v of P .

Again we recall Lemma I.3.13 saying that for any two faces ∆α � ∆β � P
we have that i(∆α,∆β) = 1. Combining this with Corollary I.3.11 we see that
Eu(f) = 1 for any facet f of P .
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For an edge e of P we have by I.3.4 that

Eu(e) = −RSVZ(P, e) Eu(P )+
∑

e�f,dim f=2
RSVZ(f, e) Eu(fi) = −RSVZ(P, e)+fe,

where fe is the number of facets of P containing e.
By unraveling the definition of RSVZ we see that the term RSVZ(P, e) is

nothing but Vol(P \ Conv((P \ e) ∩M)), where M is the quotient M/Ze and
P , e are the images of P and e in M (Note that e is the origin of M and will
be a vertex of P ). But this we can calculate: Write the 2-dimensional cone
generated by P with apex e as a (d, k)-cone and write d

k = [b1, ..., br]−. Then
RSV(P, e) = 2 +

∑r
i=1(bi − 2) by the arguments in the surface case. Summing

up we get

Eu(e) = fe − 2 +
r∑
i=1

(2− bi).

For a vertex v of P we have

Eu(v) = Eu(P ) RSVZ(P, v)−
∑
i

Eu(fi) RSVZ(fi, v) +
∑
j

Eu(ej) RSVZ(ej , v)

= RSVZ(P, v)−
∑

v�f,dim f=2
RSVZ(f, v) +

∑
v�e,dim e=1

Eu(e).

Calculating most of these terms are easy, Eu(e) we did above, while similarly to
before RSVZ(f, v) = 2+

∑s
i=1(ci−2), where the cone spanned by f with apex v is

a (d, k)-cone with d
k = [c1, ..., cs]−. The remaining term RSVZ(P, v), however, is

problematic, we need to compute the 3-dimensional Vol(P \Conv((P \ v)∩M)).
There seems to be no known general method for doing this. However for
sufficiently small polytopes, computer programs capable of calculating convex
hulls and volumes can do this, for instance Macaulay2. Collecting the above we
get:

Algorithm I.6.1. To calculate the degree of the dual variety of a toric 3-fold
XP∩M , do the following:

(1) Calculate the volume V of P .

(2) Calculate the sum of the areas of facets of P , denoted A.

(3) For each edge e calculate the length of e, denoted L(e).

(4) For each edge e, let σe be the cone generated by P with apex e in M/eZ.
Write σe as a (d, k)-cone, and write d

k = [b1, ..., br]−. Then Eu(e) =
fe − 2 +

∑r
i=1(2− bi).

(5) For each vertex calculate RSVZ(P, v).

(6) For each pair consisting of a vertex v and a facet f containing it, write
the cone generated by edges of f emanating from v as a (df , kf )-cone and
write df

kf
= [cf,1, ..., cf,s]−. Then RSVZ(f, v) = 2 +

∑s
i=1(cf,i − 2).
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(7) For each vertex v calculate

Eu(v) = RSVZ(P, v)−
∑
f

[2 +
s∑
i=1

(cf,i − 2)] +
∑
e

Eu(e),

where the sums are over faces containing v.

Then degX∨P = 4V − 3A+ 2
∑
e Eu(e)L(e)−

∑
v Eu(v).

I.6.1 Weighted projective 3-folds

We will compute the local Euler obstruction and dual degree for weighted
projective spaces of the form P(1, k,m, n). We may assume gcd(k,m, n) = 1.

Set d = lcm(k,m, n), and let P be the convex hull inMR of v0 = (0, 0, 0), v1 =
( dk , 0, 0), v2 = (0, dm , 0), v3 = (0, 0, dn ). Then XP ' P(1, k,m, n).

Since every cone containing v0 is smooth, we only need to calculate for faces
containing v1, v2, v3. Thus we will do this for v1, the rest is obtained by cyclic
permutation.

Denoting gcd(a, b) by (a, b), the primitive vectors emanating from v1 are

e1 =

−1
0
0

 , e2 =

− n
(n,k)
0
k

(n,k)

 , e3 =

− m
(m,k)
k

(m,k)
0

 .

Let f1 = Cone(e2, e3), f2 = Cone(e1, e3), f3 = Cone(e1, e2).
Then f2 is a ( k

(n,k) , n
′)-cone where n′ ≡ n

(n,k) (mod k
(n,k) ).

f3 is a ( k
(m,k) ,m

′)-cone where m′ ≡ m
(m,k) (mod k

(m,k) ).
For f1 we first need to choose a basis for the lattice containing f1:

Lemma I.6.2. Pick a, c such that ak + cn = −m(n, k). Then the vectors

w =

 a
(n, k)
c

 , e2 =

− n
(n,k)
0
k

(n,k)

 ,

are a basis for the lattice Mf1 .

Proof. It is easily verified thatMf1 consists of all lattice points (x, y, z) satisfying

kx+my + nz = d,

hence w is a vector in Mf1 . We will apply Lemma I.3.12 to show that {w, e2} is
a basis for Mf1 .

First we claim that for any (a, b, c) in Mf1 we must have

b ≡ 0 (mod (n, k)).

Indeed,mb = d−ak−cn is congruent to 0 modulo (n, k), and since gcd(k,m, n) =
1 we must have b congruent to 0 modulo (n, k).

Assume now that sw + te2, 0 ≤ s, t < 1 is a point in Mf1 . By the above
claim we must have s = 0. But then also t = 0, hence we are done. �
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It will be convenient to choose a particular basis corresponding to the pair
(a, c) from Lemma I.6.2, hence we require that c is the minimal non–negative
number satisfying ak+cn = −m(n, k), for some a. Dividing by (k, n)(k,m)(m,n)
and considering this (mod k

(n,k)(m,k) ) it is clear that this c satisfies c(n, k) < k.
Then since− m

(m,k)
k

(m,k)
0

 = − c

(m, k)

− n
(n,k)
0
k

(n,k)

+ k

(m, k)(n, k)

 a
(n, k)
c

 ,

and 0 < k − c(n, k) < k, f1 is a ( k
(m,k)(n,k) ,

k−c(n,k)
(m,k)(n,k) )-cone. From this we can

compute the terms RSVZ(fi, v1) using HJ-fractions.
For the Euler-obstruction of the edges, we have Eu(e1) = 1 since the cone

generated by the image of the two other vectors in Z3/e1Z is smooth.
To calculate Eu(e2), set a = n

(n,k) , b = k
(n,k) . Choose integers such that

ea+ fb = 1. Then the following will be a basis for Z3:

v1 =

0
1
1

 , v2 =

−fe
0

 , v3 =

−a0
b

 ,

Since e1 = bev1 + bv2 + ev3, the image in the quotient lattice Z3/e2 is (be, b).
Setting c = m

(m,k) , d = k
(m,k) , we have e2 = (fbd− bcd)v1 + (ad+ bc)v2 + (ce−

fd)v3. In the quotient this is (fbd− bce, ad+ bc).
Writing out the details and cancelling common factors (to get primitive

vectors) we get that the cone with apex 0 generated by the image of P is
Cone((fk − em, n+m), (e, 1)). Now since(

fk − em
n+m

)
= (n+m)

(
e
1

)
+ (n, k)

(
1
0

)
,

we get a ((n, k),m (mod (n, k)))−cone.
Similarly for Eu(e3) we get a ((m, k), n (mod (m, k)))-cone. Using this and

HJ-fractions we can compute the terms Eu(ei).

Example I.6.3. We will apply the above to P(1, 6, 10, 15). Then v0 = (0, 0, 0), v1 =
(5, 0, 0), v2 = (0, 3, 0), v3 = (0, 0, 2). We will do all the steps of Algorithm I.6.1.

We calculate that V (P ) = 30 and that A(P ) = 1 + 15 + 10 + 6 = 32.
Denote the edge connecting vi and vj by eij . Denote the facets containing

vi, vj , vk by fijk. Then

L(e01) = 5, L(e02) = 3, L(e03) = 2, L(e12) = 1, L(e1,3) = 1, L(e2,3) = 1.

Applying the discussion above we can further conclude the following

Eu(e0i) = 1 for i = 1, 2, 3,Eu(e12) = 0,Eu(e13) = −1,Eu(e23) = −3.
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We know that RSV(P, v0) = 1. Using Macaulay2 we calculate that

RSVZ(P, v1) = 4,RSVZ(P, v2) = 6,RSV(P, v2) = 7.

For a fixed vertex vi and a facet f containing it we will then write the cone
with apex vi generated by edges of the facet f as a (d, k)-cone.

vertex facet corresponding (d, k)
v1 f123 (1, 0)
v1 f012 (2, 1)
v1 f013 (3, 2)
v2 f123 (1, 0)
v2 f012 (2, 1)
v2 f023 (5, 3)
v3 f123 (1, 0)
v3 f013 (3, 1)
v3 f023 (5, 2)

Then we have that

Eu(v0) = 1,Eu(v1) = −1,Eu(v2) = −2,Eu(v3) = −2.

Thus we can in turn conclude that

degP(1, 6, 10, 15)∨ = 4 · 30− 3 · 32 + 2(5 + 3 + 2− 4)− (1− 1− 2− 2) = 40.

I.6.2 Isolated singularities

If we assume the variety XP∩M has only isolated singularities we know that
Eu(e) = 1 for every edge. Thus we can reduce to

degX∨P∩M = 4 Vol(P )− 3A(P ) + 2E(P )−
∑
v∈P

Eu(v),

where A(P ) is the sum of areas of facets of P , while E(P ) is the sum of lengths
of edges of P . For a singular point v associated to a vertex of P

Eu(v) = RSVZ(P, v)−
∑

v�f,dim f=2
RSVZ(f, v) + e, (I.1)

where e is the number of edges of P containing v.
We need a generalization of Pick’s formula to estimate the volume RSVZ(P, v).

To do this we make the following definitions:

Definition I.6.4. A piecewise linear lattice polygon (pllp) K is a union ∪ni=1Ki

of some facets of a 3-dimensional convex lattice polytope P which is contractible
and connected in codimension one, meaning that for any pair Ki,Kj there is
a chain Ki = Kl1 , ...,Kls = Kj such that Klr and Klr+1 has 1-dimensional
intersection, for 1 ≤ r ≤ s− 1.

A lattice point x in K is a boundary point if it is also contained in some
facet F of P which is not contained in K. If x is not a boundary lattice point,
then it is an internal lattice point.
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Proposition I.6.5 (Generalized Pick’s formula). For a pllp K = ∪ni=1Ki, let Ki

be contained in the plane Hi. Let Ai be the area of Ki, normalized with respect
to the lattice generated by lattice points in Hi. Then the normalized area of K,
defined as AK :=

∑n
i=1Ai, equals 2i+ b− 2, where b is the number of boundary

lattice points, and i is the number of internal lattice points.

Proof. We do induction on n. If n = 1 this is just the usual Pick’s formula in the
plane. Assume we have showed the proposition for n− 1, and let K = ∪ni=1Ki.
We have AK = AKn + AK′ where K ′ = ∪n−1

i=1 Ki. Without loss of generality
we may assume that we have chosen Kn such that K ′ is a pllp. Let i′, b′ be
the internal and boundary lattice points of K ′ respectively. By the inductive
hypothesis we have

AK′ = 2i′ + b′ − 2,

and by Pick’s formula in the plane we have

AKn = 2in + bn − 2,

where in, bn are internal and boundary lattice points of Kn. Now we have to
compute i and b. The boundary points of K ′ which intersect Kn either are
internal in K (call the number of such k) or remain boundary points in K (call
the number of such s). If we let l be the number of boundary points of Kn not
in any Ki, i 6= n, then we have

b = b′ − k + l,

i = i′ + in + k.

Then we get

2i+ b− 2 = 2i′ + 2in + 2k + b′ − k + l − 2 = AK′ + 2in + k + l.

Thus if we can show that bn−2 = k+l we are done. By construction bn = k+l+s,
hence we need to show that s = 2:

Consider the set S = P \K where P is the ambient polytope Conv(K). If S
is nonempty and not connected, then it is clear that K cannot be contractible.
Thus we have that S is connected. Then the boundary of K is S intersected with
K, which again has to be connected. Now if s > 2 we have that the boundary of
K intersected with Kn cannot be connected. But this implies that the boundary
of K ′ cannot be connected, which contradicts it being a pllp. �

When attempting to compute RSVZ(σ∨, v) for the vertex of a 3-dimensional
cone σ, there naturally arises a pllp : Let K be the union of the compact faces
of the convex hull of the set (σ∨ \ {v})∩M . It is a pllp whose ambient polytope
is the convex hull of K.

Proposition I.6.6. For an isolated singular point v on a toric 3-fold XP∩M we
always have Eu(v) ≥ 1.
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Proof. Consider the cone σ∨ generated by P with apex v. Let e be he number
of rays of σ∨ which is always ≥ 3. Let K be the pllp associated to σ∨. By
Construction I.5.6 we see that

∑
v�f,dim f=2 RSVZ(f, v) equals the number of

boundary points of K. By Pick’s formula the area of K is 2i+ b− 2 where i is
the number internal lattice points of K. Since RSVZ(P, v) ≥ AK = 2i+ b− 2
we get

Eu(v) = RSVZ(P, v) + e− b ≥ 2i+ b− 2 + 3− b = 2i+ 1 ≥ 1.

�

In Example I.6.3 we saw that this is not true for non-isolated singularities.
Observe also that by the proof the only way one can have Eu(v) = 1 is if there
are just 3 edges emanating from v.

Corollary I.6.7. For an isolated singular point v on a toric 3-fold XP∩M one
has Eu(v) = 1 if and only if (i) there are exactly 3 edges emanating from v, (ii)
the associated pllp K = ∪ni=1Ki has no internal lattice points, and (iii) for each
plane Hi containing Ki, the integer distance from Hi to the origin equals 1.

The integer distance of a point v and an integer plane H is the index of the
lattice generated by vectors joining v and all integer points of H, modulo the
lattice MP generated by lattice points of P . See [Kar13, Rmk. 14.8] for details.

We will again compute the local Euler obstruction for a 3-dimensional wps,
now with isolated singularities. This assumption simplifies some of the calcula-
tions. By Proposition I.4.1 P(1, k,m, n) has isolated singularities if and only if
gcd(m,n) = gcd(k, n) = gcd(k,m) = 1. In this case one can calculate that

Vol(P ) = k2m2n2,

A(P ) = kmn+ k2mn+ km2n+ kmn2,

E(P ) = k +m+ n+mn+ kn+ km.

All this is straightforward, except for the first term of A(P ), but this is [Nød16,
Prop 3.4] for a surface of weights (k,m, n).

The vertex v0 = (0, 0, 0) is smooth, thus Eu(v0) = 1. Since every vertex is
contained in 3 facets, we get for a vertex v

Eu(v) = RSVZ(P, v)− 3 +
∑

v�f,dim f=2
(2− cf,i).

For the vertex v1 = (mn, 0, 0), choose 0 < m′, n′, s < k such that

m′ ≡ m (mod k),
n′ ≡ n (mod k),

m+ sn ≡ 0 (mod k).

Then the 2-dimensional cones emanating from v1 are (k,m′), (k, n′), (k, k − s)-
cones. Using HJ-fractions one can then calculate Eu(v1). The rest of the vertices
are treated similarly.
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Example I.6.8. Consider P(1, 2, 3, 5). The polytope P has vertices v0 = (0, 0, 0), v1 =
(15, 0, 0), v2 = (0, 10, 0), v3 = (0, 0, 6). Using Macaulay2 we calculate that

RSVZ(P, v1) = 4,
RSVZ(P, v2) = 5,
RSVZ(P, v3) = 6.

The cones emanating from v1 are all (2, 1)-cones, thus all cf,1 = 2, hence
Eu(v1) = 4− 3 + 0 = 1.

For v2 we have (3, 2), (3, 2), (3, 1)-cones, giving HJ-fractions [2, 2]−, [2, 2]−, [3]−.
Hence Eu(v2) = 5− 3− 1 = 1.

For v3 we have (5, 2), (5, 3), (5, 4)-cones, giving HJ-fractions [3, 2]−, [2, 3]−,
[2, 2, 2, 2]−. Hence Eu(v2) = 6− 3− 1− 1 = 1. We then get:

degP(1, 2, 3, 5)∨ = 4 · 900− 3 · 330 + 2 · 41− 4 = 2688.

Remark I.6.9. This example is somewhat surprising, as it exhibits a variety
with isolated singularities which has Euler-obstruction constantly equal to 1.
Matsui and Takeuchi [MT11] shows that for normal and projective toric surfaces,
the Euler-obstruction is constantly equal to 1 if and only if the variety is
smooth. They conjectured the similar statement in higher dimensions. This is
a counterexample to that conjecture. There are also some other examples, see
Appendix I.A.

In the appendix we list some computations done in Macaulay2 for the local
Euler obstructions of weighted projective 3-folds. It isn’t easy to see a clear
pattern. This might be analogous to the computations of the Nash blow-up
of toric varieties in [Ata+11], which in principle could be be used to compute
the local Euler obstruction. The authors write “Almost every straightforward
conjecture one might make about the patterns in the Nash resolution seems to
be false.”

One would have hoped to be able to compute RSVZ(P, v) for a 3-dimensional
polytope in a way similar to the 2-dimensional case, for instance using some form
of generalized theory of multidimensional continued fractions. However little is
still known about this. Karpenkov writes “... with the number of compact faces
greater than 1 almost nothing is known” [Kar13, p.219]. The number of faces
corresponds to the number of compact polytopes in the pllp .

I.7 Dual defective varieties

For a variety X ⊂ PN , one defines the dual defect def X of X to be def X =
N − 1 − dimX∨ (i.e., def X = 0 if and only if X∨ is a hypersurface in PN∨).
If def X > 0 we say that X is defective. Using the theory from the previous
sections we give a new proof of the well-known result:

Proposition I.7.1. The only normal and projective toric surfaces which are
defective are those of the form P(1, 1, n).
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First we prove an easier result:

Lemma I.7.2. The only normal and projective toric surfaces associated to a
triangle P , which are defective, are those of the form P(1, 1, n).

Proof. We have by [MT11, Thm 1.4] that def X > 0 if and only if the expression

3 Vol(P )− 2E(P ) +
∑

v vertex ∈P
Eu(v) (I.2)

equals 0. We have that E(P ) = b, where b is the number of boundary points
of P , and letting i be the number of internal lattice points, we have by Picks’
formula

Vol(P ) = 2i+ b− 2.
We also have that Eu(v) = 2− RSVZ(P, v). Thus we get

3(2i+ b− 2)− 2b+ 6−
∑

v vertex ∈P
RSVZ(P, v)

= 6i+ b−
∑

v vertex ∈P
RSVZ(P, v).

We now claim that ∑
v vertex ∈P

RSVZ(P, v) ≤ 3i+ b,

which would imply that (I.2) is ≥ 0 with equality only possible if i = 0. To see
that the claim is true, let b1, b2, b3 be the number of lattice points on the 3 edges
of P . By doing Construction I.5.6 for a vertex we construct a sequence of points
A0, ..., Ar+1. By the construction we see that each of the points A1, ..., Ar has
to be either an inner point of P or an inner point of the edge opposite to the
vertex. Then we get r ≤ i+ bj − 2, thus RSVZ(P, v) = r + 1 ≤ i+ bj − 1, hence

∑
v vertex ∈P

RSVZ(P, v) ≤
3∑
j=1

i+ bj − 1 = 3i+ b,

proving the claim.
If i = 0, then we need to check when b =

∑
v vertex ∈P RSVZ(P, v). Assuming

there are two different edges with internal lattice points, we see by Construction
I.5.6 that

∑
v vertex ∈P RSVZ(P, v) = 3. Hence the only way in which a triangle

can satisfy
3 Vol(P )− 2E(P ) +

∑
v vertex ∈P

Eu(v) = 0,

is if it has two edges with no internal lattice points. After a change of basis
this will always be a polytope of the form Conv((0, 0), (n, 0), (0, 1)) which is
isomorphic to P(1, 1, n). That def P(1, 1, n) > 0 can be easily calculated from
Theorem I.5.19. Alternatively this also follows from the fact that all cones have
positive defect and P(1, 1, n) is the cone over the n-th Veronese embedding of
P1, i.e., the rational normal curve of degree n. �
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Using this we can prove the general case:

Proof. Let the polytope have vertices v1, ..., vn, indexed such that vj is connected
to vj−1 and vj+1 via an edge (take indices modulo n when necessary). To estimate
RSVZ(P, vj) we will consider the triangle Tj := vj−1vjvj+1 . Let ij be the number
of internal lattice points of P contained in Tj . By a similar argument as in the
previous lemma, by Construction I.5.6 we have that RSVZ(P, v) ≤ ij + 1. Since
an internal vertex of P at most can be contained in two triangles Tj , we get that∑n
j=1 ij ≤ 2i. Thus

∑
v vertex ∈P

RSVZ(P, v) ≤
n∑
j=1

ij + 1 ≤ 2i+ n.

The expression we wish to consider is

3 Vol(P )− 2E(P ) +
∑

v vertex ∈P
Eu(v)

= 3(2i+ b− 2)− 2b+ 2n−
∑

v vertex ∈P
RSVZ(P, v)

= 6i+b−6+2n−
∑

v vertex ∈P
RSVZ(P, v) ≥ 6i+b−6+2n−2i−n = 4i+b+n−6.

This last expression is always greater than 0 when n > 3. �

For 3-folds it is again more difficult to get general results, however for a
subclass of wps we can get similar results:

Proposition I.7.3. The only defective 3-dimensional wps of the form P(1, k,m, n)
with only isolated singularities are those of the form P(1, 1, 1, n).

Proof. As before, by [MT11, Thm 1.4] for a toric 3-fold X with isolated singu-
larities, def X > 0 if and only if the expression

4 Vol(P )− 3A(P ) + 2E(P )−
∑
v∈P

Eu(v) (I.3)

equals 0. For P(1, k,m, n) we have as before

Vol(P ) = k2m2n2,

A(P ) = knm(1 + k +m+ n),
E(P ) = k +m+ n+mn+ kn+ km,

and for a vertex v of P

Eu(v) = RSVZ(P, v) + 3−
∑

v�f,dim f=2
RSVZ(f, v).

We now claim that for the vertex v1 = (mn, 0, 0), Eu(v1) ≤ k2.
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Indeed, by using the description of P from Section I.6.1 we have that the
volume which equals RSVZ(P, v) is enclosed in a polygon with volume

det

−1 −n −m
0 0 k
0 k 0

 = k2.

Thus RSVZ(P, v) ≤ k2. Also for any face f containing v, RSVZ(f, v) ≥ 1.
Combining this we get

RSVZ(P, v) + 3−
∑

v�f,dim f=2
RSVZ(f, v) ≤ k2 + 3− 3 = k2.

By symmetry we also have Eu(v2) ≤ m2,Eu(v3) ≤ n2. Thus (I.3) reduces to

4k2m2n2 − 3knm(1 + k +m+ n) + 2(k +m+ n+mn+ kn+ km)−
∑
v∈P

Eu(v)

≥ 4k2m2n2−3knm(1+k+m+n)+2(k+m+n+mn+kn+km)−1−k2−m2−n2.

If we are not in the case P(1, 1, 1, n), we may assume without loss of generality
that k ≥ 3,m ≥ 2 and k > m > n. We have that

k2m2n2 − 3km2n = km2n(kn− 3) ≥ 0,
k2m2n2 − 3kmn2 = kmn2(mk − 3) ≥ 0,

2k2m2n2 − 3k2mn− 3kmn− k2 = k(k(mn(2mn− 3)− 1)− 3mn).

Now unless m = 2 and n = 1, we have 2mn−3 ≥ 2, thus mn(2mn−3)−1 ≥ mn,
implying k(mn(2mn− 3)− 1) ≥ 3mn. Hence

2k2m2n2 − 3k2mn− 3kmn− k2 ≥ 0.

Also we have that

kn− n2 ≥ 0,
km−m2 ≥ 0.

Combining all these we get

4k2m2n2 − 3knm(1+k +m+ n) + 2(k +m+ n+mn+ kn+ km)
−1− k2 −m2 − n2 ≥ 2(k + n+m+mn) + kn+ km− 1 > 0.

One can easily verify that the exception P(1, k, 2, 1) has defect 0.
That def P(1, 1, 1, n) > 0 follows from the fact that it is the cone over the

n-th Veronese embedding of P2. �

Using our algorithms for calculations of degrees of dual varieties, we have
checked which wps of the form P(1, k,m, n) that do not necessarily have isolated
singularities, are defective. For k,m, n ≤ 10 we have computed that the only de-
fective wps of the form P(1, k,m, n) are P(1, 1, 1, l),P(1, 1,m, lm),P(1, k,m, km)
which are cones over (P2,O(l)), (P(1, 1,m),O(l)), (P(1, k,m),O(1)) respectively.
Based on the numerical data we conjecture the following.
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Computations

Conjecture I.7.4. The only defective wps are those which are cones over a wps
(not necessarily with reduced weights) of lower dimension.
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while writing this article. I also wish to thank my co-advisor John Christian
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for helpful suggestions and comments, in particular for suggesting the current
formulation of Lemma I.5.1.

Appendix I.A Computations

The table below shows weights (W), Euler-obstructions (E1,E2,E3) and RSVZ(P, v)
(R1,R2,R3) for P(1, k,m, n), where k,m, n ≤ 10 and the singularities are isolated.
The computations were done using the Macaulay2 package EulerObstruction-
WPS which can be found at the author’s webpage[Nød]. Note also that the
package EDPolytope[HS] by Helmer and Sturmfels can in principle calculate
the degree of the dual variety of toric varieties XA of any dimension. However
unless A is quite small, their computation will not terminate.

W E1 E2 E3 R1 R2 R3
_____________ __ __ __ __ __ __

1 1 1 1 1 1 1 1 1
1 1 2 1 1 1 1 1 4
1 1 3 1 1 3 1 1 9
1 1 4 1 1 7 1 1 16
1 1 5 1 1 13 1 1 25
1 1 6 1 1 21 1 1 36
1 1 7 1 1 31 1 1 49
1 1 8 1 1 43 1 1 64
1 1 9 1 1 57 1 1 81
1 1 10 1 1 73 1 1 100
1 2 3 1 1 1 1 4 5
1 2 5 1 1 5 1 4 13
1 2 7 1 1 13 1 4 25
1 2 9 1 1 25 1 4 41
1 3 4 1 3 1 1 9 6
1 3 5 1 1 3 1 5 11
1 3 7 1 3 7 1 9 17
1 3 8 1 1 11 1 5 24
1 3 10 1 3 19 1 9 34
1 4 5 1 7 1 1 16 7
1 4 7 1 1 7 1 6 19
1 4 9 1 7 9 1 16 21
1 5 6 1 13 1 1 25 8
1 5 7 1 5 3 1 13 13
1 5 8 1 3 5 1 11 16
1 5 9 1 1 13 1 7 29
1 6 7 1 21 1 1 36 9
1 7 8 1 31 1 1 49 10
1 7 9 1 13 3 1 25 15
1 7 10 1 7 7 1 17 22
1 8 9 1 43 1 1 64 11
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1 9 10 1 57 1 1 81 12
2 3 5 1 1 1 4 5 6
2 3 7 1 1 3 4 5 10
2 5 7 1 3 1 4 11 7
2 5 9 1 1 5 4 6 15
2 7 9 1 7 1 4 19 8
3 4 5 1 1 1 5 6 6
3 4 7 3 1 1 9 6 7
3 5 7 1 1 3 5 6 10
3 5 8 1 5 1 5 13 7
3 7 8 1 7 1 5 17 7
3 7 10 3 3 1 9 13 8
4 5 7 1 1 3 6 6 10
4 5 9 7 1 1 16 7 8
4 7 9 1 3 1 6 12 7
5 6 7 5 1 1 13 8 7
5 7 8 1 3 1 6 13 7
5 7 9 1 1 5 6 7 15
5 8 9 1 5 1 6 16 8
7 8 9 13 1 1 25 10 8
7 9 10 3 3 1 10 15 8

The table below shows weights (W), Euler-obstructions (E1,E2,E3) and
RSVZ(P, v) (R1,R2,R3) for P(1, k,m, n), where k,m, n ≤ 6, where the singulari-
ties are not isolated.

W E1 E2 E3 R1 R2 R3
___________ __ __ __ __ __ __

1 2 2 1 0 0 1 2 2
1 2 4 1 0 2 1 2 8
1 2 6 1 0 8 1 2 18
1 3 3 1 -1 -1 1 3 3
1 3 6 1 -1 3 1 3 12
1 4 4 1 -2 -2 1 4 4
1 4 6 1 2 2 1 8 10
1 5 5 1 -3 -3 1 5 5
1 6 6 1 -4 -4 1 6 6
2 2 3 0 0 1 2 2 5
2 2 5 0 0 3 2 2 11
2 3 3 1 0 0 4 2 2
2 3 4 0 1 0 2 5 4
2 3 6 0 0 1 2 2 6
2 4 5 0 2 1 2 8 6
2 5 5 1 -1 -1 4 3 3
2 5 6 0 5 0 2 13 5
3 3 4 -1 -1 1 3 3 6
3 3 5 0 0 5 2 2 13
3 4 4 3 0 0 9 2 2
3 4 6 -1 0 -1 3 4 4
3 5 5 1 -1 -1 5 3 3
3 5 6 0 3 1 2 11 4
4 4 5 -2 -2 1 4 4 7
4 5 5 7 0 0 16 2 2
4 5 6 2 1 2 8 7 5
5 5 6 -3 -3 1 5 5 8
5 6 6 13 0 0 25 2 2
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Abstract

Suppose that XA ⊂ Pn−1 is a toric variety of codimension two defined
by an (n − 2) × n integer matrix A, and let B be a Gale dual of A. In
this paper we compute the Euclidean distance degree and polar degrees
of XA (along with other associated invariants) combinatorially working
from the matrix B. Our approach allows for the consideration of examples
that would be impractical using algebraic or geometric methods. It also
yields considerably simpler computational formulas for these invariants,
allowing much larger examples to be computed much more quickly than the
analogous combinatorial methods using the matrix A in the codimension
two case.
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II.1 Introduction

To a projective variety X ⊂ Pn we may associate the polar varieties of X; these
are subvarieties of X whose points have tangent spaces which intersect non-
transversally with a fixed linear subspace. The classes of the polar varieties in the
Chow ring are invariants of the projective embedding; in particular their degrees,
which are often refereed to as polar degrees, are projective invariants of X. As
projective invariants, polar varieties and polar degrees have been historically
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important in the study and classification of projective varieties [Alu18; Ban+10;
Ful13; Hol88; Kle+86; Pie15; Pie78; Tev06]. In particular knowing the polar
degrees of a smooth variety is equivalent to knowing the Chern classes of the
tangent bundle, giving a simple expression for this Chern class. Polar varieties
also arise in science and engineering problems where one tests the accuracy
of mathematical models against observed data. In this setting it is natural to
measure distance using the Euclidean norm and to compute the closest real
point to some observed data within the model being studied. In the context of
this Euclidean distance optimization problem the polar degrees can be used to
compute the Euclidean distance degree, a projective invariant which quantifies
the difficulty of solving the optimization problem [Dra+16; HS18; OSS14].

In this paper we consider the situation where X is a codimension two
projective variety parameterized by monomials, i.e., X is a codimension two
projective toric variety. In this case we develop computationally simple formulas
for the quantities which determine the polar degrees, Chern-Mather class, and
Euclidean distance degree of a projective toric variety.

We introduce the objects to be studied in this paper with an example from
classical algebraic geometry which also arises in cell biology when studying pore
forming cytotoxins used by numerous pathogenic bacteria [AH17; Los+13]. Let

A =
[
3 2 1 0
1 1 1 1

]
,

this matrix gives rise to the twisted cubic curve in P3 via the closure of the image
of a monomial map defined by A, that is

XA = {(t31t2 : t21t2 : t1t2 : t2) | (t1, t2) ∈ (C∗)2} ⊂ P3.

The toric variety XA has codimension two. Let k[x0, x1, x2, x3] be the
coordinate ring of P3, the toric ideal of XA in this ring is the prime binomial
ideal

I = (x2
2 − x1x3, x1x2 − x0x3, x

2
1 − x0x2).

Consider the matrix

B =


−2 −1
3 1
0 1
−1 −1

 .
The rows of the matrix B generate the kernel of the linear map defined by the
matrix A, we refer to A and B as Gale dual matrices and call B the Gale dual
of A.

Let k[y0, y1, y2, y3] be the coordinate ring of (P∨)3. The conormal variety
Con(XA) of XA in P3 × (P∨)3 parametrizes pairs of smooth points x ∈ XA and
planes containing TXA,x. Its bigraded ideal is defined by the sum of the ideal I
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and the ideal defined by the 3× 3 minors (3 = codim(XA) + 1) of the matrix
0 −x3 2x2 −x1
−x3 x2 x1 −x0
−x2 2x1 −x0 0
y0 y1 y2 y3

 .
The multidegree of the bigraded ideal defining Con(XA) are the coefficients of
the polynomial 4H3h + 3H2h2, which represents the class [Con(XA)] in the
Chow ring

CH∗
(
P3 × (P∨)3) ∼= Z[h,H]/(h4, H4).

Here h denotes the class of a hyperplane in P3 and H denotes the class of a
hyperplane in (P∨)3. The polar degrees of XA are by definition this multidegree

(δ0(XA), δ1(XA)) = (4, 3).

The first nonzero polar degree is the degree of the projective dual, in this case
deg(X∨A) = δ0(XA) = 4.

From the polar degrees we may also determine the Chern-Mather class of
XA, cM (XA) (since XA is smooth the Chern-Mather class agrees with the Chern
class of the tangent bundle, i.e. cM (XA) = c(TXA) ∩ [XA]). The Chern-Mather
class of XA (pushed forward to A∗(P3)) is

cM (XA) = 2h3 + 3h2 ∈ A∗(P3) ∼= Z[h]/(h4).

The Euclidean distance (ED) problem associated to XA seeks to determine the
closest point in XA to a fixed generic point u ∈ R4. More specifically we wish to
solve the optimization problem

Minimize the function f(t) = (t31t2−u1)2 +(t21t2−u2)2 +(t1t2−u3)2 +(t2−u4)2.
(II.1)

The critical points associated to this optimization problem are the solutions of
the system of polynomial equations

∂f

∂t1
= ∂f

∂t2
= 0.

This polynomial systems will have 7 non-zero complex solutions for generic
data u, this number is the ED degree of XA. Observe that the ED degree of
XA is equal to the sum of all non-zero polar degrees of XA. This will be true
in general (see [Dra+16]). In the context of systems biology solving this ED
problem corresponds to testing if a particular model for pore-forming toxins
describes experimentally measured data [AH17].

For a general projective variety the computation of the ED degree and
polar degrees can become quite difficult as the degree of the generators and the
dimension of the ambient space grows. This is true for all applicable algebraic or
geometric methods (i.e. Gröbner basis, homotopy continuation, etc.). For toric
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varieties, however, we may avoid the potentially time consuming algebraic or
geometric methods and compute these invariants combinatorially.

For a projective toric variety XA methods to compute the polar degrees,
Chern-Mather class, and EDdegree based on the polyhedral combinatorics of
the polytope Conv(A) are given in [HS18]. It is also shown in [HS18] that much
more computationally efficient formulas may be given in terms of the Gale dual
of the matrix A when codim(XA) = 1, i.e. when XA is a toric hypersurface.

In this paper we develop analogous formulas for the polar degrees, Chern-
Mather classes and ED degree of XA in terms of the Gale dual matrix, B, of
A for the next interesting case, when XA has codimension two. These formula
yield substantially simpler expressions which are much faster to evaluate using a
computer.

The methods developed here build on the work of [HS18] and [DS02]. We
also note that a method to compute the degree of the A-discriminant, i.e., the
projective dual of XA, in the codimension two case using the Gale dual matrix
is given in [DS02]. Since this number must appear as the first non-zero polar
degree our results also, in a sense, generalize their result.

Explicitly, by theorems of [MT11] and [HS18], we know that the ED degree
and polar degrees of a projective toric variety XA are determined by the relative
subdiagram volumes of the faces of the polytope Conv(A). Our contribution
(detailed in §II.3) is to give explicit formula for these subdiagram volumes in
terms of the Gale dual matrix B of A when XA has codimension two.

Working with the Gale dual is advantageous in low codimensions since in that
case we work in a low dimensional integer lattice. This allows us compute the
ED degree and polar degrees of large examples with a complicated face structure
quickly. For example, in §II.4 we consider a projective toric variety XA6 of
degree 581454473 in P9 (the matrix A6 is given in Appendix II.A). Using the
methods developed in this paper we compute EDdegree(XA6) = 74638158177 in
less than 30 seconds on a laptop, to find this number using algebraic or geometric
methods would require computing the degree of a zero dimensional variety with
over 74 billion isolated points in P9. Such a computation is unfeasible with
current algebraic or geometric methods, even using a super computer. Using the
combinatorial methods developed in [HS18] this computation takes over 2600
seconds, hence our new combinatorial method gives a speed up of about 98 times
in this case (see Table II.3). A Macaulay2 [GS] package implementing the results
developed in this paper can be found at the link (II.2) below:

http://martin-helmer.com/Software/toricED_Codim2.html (II.2)

The paper is organized as follows, in §II.2 we review background on compu-
tational tools and formulas that will be need in later sections. The main results
are given in §II.3. In §II.4 we test the performance of computer implementations
on a variety of examples and analyze the theoretical computational complexity
of our new combinatorial methods.
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II.2 Background and Preliminaries

In this section we give background on toric varieties and their polar degrees,
introduce Gale duality and gather some technical results needed in §II.3.

II.2.1 Toric Varieties, ED Degrees and Polar Degrees

Let A be a d × n integer matrix with columns a1, a2, . . . , an, and rank d such
that the vector (1, 1, . . . , 1) lies in the row space of A over Q. Note that we
allow A to have negative entries. Each column vector ai defines a monomial
tai = ta1i

1 ta2i
2 · · · tadid . The affine toric variety defined by A is

X̃A = {(ta1 , . . . , tan) : t ∈ (C∗)d} ⊂ Cn,

that is, X̃A is the closure in Cn of the monomial parametrization specified by
A. The affine toric variety X̃A is the affine cone over the projective toric variety
XA ⊂ Pn−1, that is XA is the closure in Pn−1 of the image of the same monomial
map. We have that dim(XA) = d− 1 and dim(X̃A) = d. To the projective toric
variety XA we can associate a polytope P = Conv(A), which is the convex hull
of the lattice points specified by the columns of the matrix A.

We have a particular interest in the case when the toric variety XA has
codimension two in Pn−1; in this case A is a (n − 2) × n integer matrix. Let
B be a Gale dual matrix of A, i.e. a (n× 2) matrix such that the image of B
equals the kernel of A. We will refer to a finitely generated free abelian group as
a lattice. Let ZB ⊂ Zn be the lattice spanned by the columns of the matrix B.
We may associate a lattice ideal, IB , to the lattice ZB as follows:

IB =
(
xl

+
− xl

−
| l ∈ ZB

)
, (II.3)

where l+i is equal to li if li > 0 and 0 otherwise, and where l−i is equal to |li| if
li < 0 and 0 otherwise.

Example II.2.1. The following example will be used throughout the paper to
illustrate definitions and results. Consider the surface XA ⊂ P4 arising from the
matrix

A =

−2 −2 1 0 0
4 0 0 1 0
1 1 1 1 1

 , with Gale dual B =


1 0
0 1
2 2
−4 0
1 −3

 .
Explicitly the surface XA is given by{(

t42t3
t21

: t3
t21

: t3t1 : t2t1 : t3
)
| t ∈ (C∗)3

}
= V (x1x

2
3x5 − x4

4, x2x
2
3 − x3

5) ⊂ P4.

(II.4)
The polytope P = Conv(A) associated to XA is given in Figure II.1. P has 3
vertices v1, v2, v3 and 3 edges e1, e2, e3.
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e1

e3
e2

v3 = a3

a4

a5v2 = a2

v1 = a1

Figure II.1: P = Conv(A).

The rows of the matrix B are denoted by bi, i = 1, ..., n. We assume as in
[DS02, p.13] that all bi are non-zero. This assumption is equivalent to saying
that XA is not a cone over a coordinate point. We also note that since XA

is irreducible, the rows of B necessarily generate Z2 [DS02, p.9]: If B has
index i > 1 in Z2, then there has to be an f , such that f i ∈ IB, but f /∈ IB,
contradicting that IB is prime.

We now review the ED problem for toric varieties. For what follows we fix
a vector λ = (λ1, . . . , λn) of positive real numbers. We define the λ-weighted
Euclidean norm on Rn to be ||x||λ = (

∑n
i=1 λix

2
i )1/2. For a given u ∈ Rn, we

wish to compute a real point v ∈ X̃A which is closest to the given u. In particular
the Euclidean distance problem is the constrained optimization problem:

Minimize ||u− v||λ such that v ∈ X̃A ∩ Rn. (II.5)

Alternatively, using the parametric description of XA, we can for generic u
formulate the ED problem as the unconstrained optimization problem

Minimize
n∑
i=1

λi(ui − tai)2 over all t = (t1, . . . , td) ∈ (R \ {0})d. (II.6)

For generic u and λ the number of complex critical points of (II.5) is constant,
we refer to this number as the Euclidean distance degree of XA and denote it
EDdegree(XA). This matches the definition of ED degree given in [Dra+16;
HS18; OSS14] for the toric variety XA. The ED degree quantifies the inherent
algebraic complexity of finding and representing the exact solutions to the ED
problems (II.5) and (II.6). For instance note that EDdegree(XA) is an upper
bound for the number of local minima of the ED problem associated to XA.
Since the degree of the monomial map defining XA may be greater than one,
i.e. we could have [Zd : ZA] > 1, the number of complex critical points of (II.6)
is given by EDdegree(XA) · [Zd : ZA].
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The relation between the ED degree and polar degrees is the following: The
ED degree of a projective variety X ⊂ Pn−1 is equal to the sum of the polar
degrees of X, see [Dra+16, Theorem 5.4], that is

EDdegree(X) = δ0(X) + δ1(X) + · · ·+ δn−1(X). (II.7)

We now define the polar degrees of X following the conventions of Fulton [Ful13],
Holme [Hol88], Piene [Pie78] and others. The j-th polar degree of X, written
δj(X), is the degree of the j-th polar variety of X with respect to a general
linear subspace `j = Pj+codim(X) ⊂ Pn−1:

Pj = {x ∈ Xsmooth | dim(TxX ∩ `j) ≥ j + 1} ⊂ Pn−1.

Following Kleiman [Kle+86], we can also obtain the polar degrees δj(X) from the
rational equivalence class of the conormal variety in the Chow ring CH∗(Pn−1 ×
(Pn−1)∨) ∼= Z[H,h]/(Hn, hn); in this convention H denotes the rational equiva-
lence class of a generic hyperplane from the Pn−1 factor and h denotes the rational
equivalence class of a generic hyperplane from the (Pn−1)∨. The conormal variety
of X is

Con(X) = {(p, L) | p ∈ Xreg and L ⊇ TpX} ⊂ Pn−1 × (Pn−1)∨.

The ideal of Con(X) can be constructed as follows. Let IX be the ideal defining
X in the coordinate ring of Pn−1 and let C[y] = C[y1, . . . , yn] be the coordinate
ring of (Pn−1)∨. Set c = codim(X), and let J be the ideal defined by the
(c + 1) × (c + 1)-minors of the matrix [J(X) y]T , where J(X) is the Jacobian
of X. The ideal of Con(X) in C[x, y] is K = (IX + J ) : (ISing(X))∞. The Chow
class of Con(X) is

[Con(X)] = δ0H
n−1h+ · · ·+ δn−2Hh

n−1 ∈ A∗(Pn−1 × (Pn−1)∨),

where the integers δ0 = δ0(X), . . . , δn−2 = δn−2(X) are the polar degrees of
X defined above. From the point of view of commutative algebra (i.e., in the
terminology of Miller and Sturmfels [MS04]) the polar degrees are the multidegree
of the bigraded ideal K.

II.2.2 Polar Degrees and the Chern-Mather class of XA via
Conv(A)

The Chern-Mather class was first introduced by MacPherson in [Mac74] and
is a generalization of the total Chern class of the tangent bundle to singular
varieties. In projective space we may express the Chern-Mather class in terms
of the polar classes, and conversely may express the polar classes in terms of
the Chern-Mather class [Pie78],[Alu18]; in the remainder of this paper we will
employ the latter point of view. To this end we now review formulas for the
polar degrees and ED degree of a projective toric variety XA in terms of the
Chern-Mather class of XA, CM (XA). In the context of toric varieties, we see that
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the coefficients of this characteristic class CM (XA) take the form of weighted
normalized lattice volumes, which we will refer to as the Chern-Mather volumes.
The Chern-Mather volume will agree with the usual normalized volume when
XA is smooth.

The Chern-Mather volumes are defined in terms of the local Euler obstruction
associated to a face of the polytope of a projective toric variety. The local Euler
obstruction of a variety is a constructible function Eu : X → Z. It was originally
used by MacPherson to construct Chern classes for singular varieties [Mac74].

Definition II.2.2. Given faces β ⊂ α of P = Conv(A) we define i(α, β) as the
index [Zα ∩ Rβ : Zβ], where Rβ is the linear subspace of Rd spanned by β.
We also define the relative normalized subdiagram volume µ(α, β) (cf. [GKZ94,
Definition 3.8]) as follows: let Aα/β denote the image of the lattice points A∩α
in the quotient lattice Zα/Zα ∩ Rβ, then

µ(α, β) = Vol(Conv(Aα/β))−Vol(Conv(Aα/β \ {0}), (II.8)

where the volume is normalized with respect to the lattice Zα/Zα ∩ Rβ.

Proposition II.2.3. [MT11, Thm. 4.7] For a projective toric variety XA ⊂ Pn−1,
the local Euler obstruction is constant on any torus-orbit and can be computed
recursively as follows

(1) Eu(P ) = 1,

(2) Eu(β) =
∑

α s.t. β is a
proper face of α

(−1)dim(α)−dim(β)−1µ(α, β)i(α, β)Eu(α).

Example II.2.4. Consider the surface XA from Example II.2.1. We have that
i(P, e3) = 4, while i(P, e1) = i(P, e2) = 1. To compute the subdiagram volume
µ using the matrix A we compute normalized volumes. For instance we see
that µ(P, v1) = Vol(P ) − Vol(Conv(a2, a3, a4, a5)) = 12 − 3 = 9 and that
µ(P, e1) = 1, µ(P, e2) = 1, µ(P, e3) = 2.

Since this example is a surface all these numbers are easily computable from
the definitions above using the A-matrix. However when XA has large dimension
this approach becomes much harder. In §II.3 we develop formulas in terms of
the B-matrix, which in this example recovers the above numbers, but has the
advantage of working easily for any XA of codimension two (even when the
dimension is very large).

Definition II.2.5. For a face β of P we define Vol(β) as the volume of β, normal-
ized with respect to the lattice Zβ.

Definition II.2.6. Let XA ⊂ Pn−1 be a projective toric variety and let P =
Conv(A). The dimension i Chern-Mather volume, Vi, of XA is given by

Vi =
∑

β a face ofP
with dim(β)=i

Vol(β) Eu(β).
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When XA is smooth we have that Eu(β) = 1 for all faces of P , and Vi is the
sum of the normalized volumes of all dimension i faces of P .

Let CH∗(Pn−1) ∼= Z[h]/(hn) denote the Chow ring of Pn−1, with h represent-
ing the rational equivalence class of a hyperplane in Pn−1. We may express the
push-forward of the Chern-Mather class of XA to Pn−1 as

cM (XA) =
dim(XA)∑
i=0

Vih
n−i ∈ CH∗(Pn−1), (II.9)

where the Vi are the Chern-Mather volumes of Definition II.2.6. From [Pie16] we
have that the Chern-Mather class, in the Chow ring of XA, may be written as

CM (XA) =
∑
α

Eu(α)[Xα] ∈ CH∗(XA). (II.10)

Using [HS18, Thm. 1.2] we may also write the polar degrees of a projective
toric variety XA ⊂ Pn−1 in terms of the Chern-Mather volumes of XA as

δi(XA) =
n−2∑
j=i+1

(−1)n−3−j
(

j

i+ 1

)
Vj−1 (II.11)

for i = 0, ..., n− 3. Using the formula above and the fact that the ED degree is
the sum of the polar degrees (see also [HS18, Thm. 1.1]) we obtain:

EDdegree(XA) =
n−3∑
j=0

(−1)n−3−j(2j+1 − 1)Vj . (II.12)

The main task, from a practical point of view, when computing the invariants
discussed above is computing the expressions µ(α, β) appearing in Proposition
II.2.3; giving formulas for this expression will be the main focus of §II.3. In
proving these results we will make use of the method of Helmer and Sturmfels
[HS18, Remark 2.2] stated here as Proposition II.2.7.

Proposition II.2.7. Let XA ⊂ Pn−1 be a projective toric variety with associated
polytope P = Conv(A), let α be a face of P and let β be a face of α. Order the
columns of A so that those in β comes first, then those from α \ β and finally
those in A \ α. The row Hermite normal form of this reordered matrix has block
structure ∗ ∗ ∗

0 C ∗
0 0 ∗


where the integer matrix C has dim(α)− dim(β) rows and

µ(α, β) = Vol(Conv(C ∪ 0))−Vol(Conv(C)).
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II.2.3 Working with the Gale Dual

When XA is a codimension two projective toric variety the Gale dual matrix B of
A has only two columns, meaning if we use B we may work over integer lattices
in Z2 rather than in the (often) much larger integer lattices in Zdim(XA). This
approach yields significant benefits in computational speed (see §II.4) and also
adds theoretical insights. In order to take advantage of this approach to compute
polar degrees and other invariants we will need some basic results relating the
structure of the Gale dual and the face structure of the polytope P = Conv(A).

Proposition II.2.8 ([CLS11, Lemma 14.3.3]). Fix I ⊂ {1, ..., n}. The following
are equivalent:

• There is a face β of P such that ai ∈ β if and only if i ∈ I.

• There are positive numbers ti such that
∑
i∈Ic

tibi = 0.

Let P = Conv(A) for a d× n integer matrix A. Motivated by Proposition
II.2.8 we define the following notations, for a face α of P

Aα = {ai | ai ∈ A ∩ α}, Bα = {bi | ai /∈ Aα}. (II.13)

Using a slight abuse of notation we let Aα (resp. Bα) denote both the sets above
and also the matrices with columns ai (resp. with rows bi). We will also let Iα
be the set of integer indices of the rows of Bα.

In the case where XA ⊂ Pn−1 is a codimension two projective toric variety
we can give a more specific description of the faces of P . In this case A is
an (n − 2) × n integer matrix. For any proper face α of P we have that Aα
has either dimα+ 1 or dimα+ 2 lattice points; otherwise we would contradict
the assumption that all bi are non-zero. In the first of these cases α will be a
simplex. Following [DS02] we make the following definition which, in terms of
the B-matrix, singles out the faces of P which are not simplices.

Definition II.2.9. A line through 0 in R2 is said to be a relevant line if it contains
two vectors br, bs in opposite directions.

Proposition II.2.10. Let XA ⊂ Pn−1 be a projective toric variety and let P =
Conv(A) be the associated polytope. Let β be a face of P . If all rows of Bβ
are contained in the same relevant line then dim β = n− |Bβ | − 2. If not then
dim β = n− |Bβ | − 1, in which case β is a simplex.

Proof. Assume all bi are contained in a relevant line. Let β = β0 ⊂ β1 ⊂ · · · ⊂
βr ⊂ P be a maximal chain of face inclusions. Since all bi are relevant we see
that we can remove one bi from β0 to get to the face β1, remove two bi to get
β2 and so on. Thus |Bβr | = |Bβ | − r. By Proposition II.2.8 a facet with points
from a relevant line necessarily has 2 lattice points. Hence |Bβ | = r + 2 and
dim β = (n− 4)− r = n− 4− (|Bβ | − 2) = n− |Bβ | − 2.

Assume that not all bi are contained in the same relevant line. By a similar
argument as above we can consider a maximal inclusion of faces. Either the
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facet βr has 3 lattice points, in which case dim β = n− |Bβ | − 1, or it has two,
which then has to be contained in a relevant line. However now there has to be
an inclusion βi ⊂ βi+1 such that all lattice points of βi+1 are in the relevant line,
but not all in βi. By Gale duality we must have that |βi| − |βi+1| ≥ 2. From
this it follows that dim β = n− |Bβ | − 1. Since β has n− |Bβ | lattice points it
is a simplex. �

Example II.2.11. For the matrix A in Example II.2.1 the corresponding Gale
dual matrix B is given by

B =


1 0
0 1
2 2
−4 0
1 −3

 ,
note that A · B = 0. We see that the span of (1, 0) is a relevant line which
corresponds to the fact that the edge e1 in Figure II.1 has three lattice points,
instead of two.

Definition II.2.12. For a Gale dual matrix B of an (n− 2)× n integer matrix A,
we define the notation [i, j] := det(bi, bj), where b` denotes the `th row of B.

Proposition II.2.13. Let B be a given 2×n matrix such that the rows of B span
Z2 over Z. Assume without loss of generality that [1, 2] 6= 0. Then B is the Gale
dual of the matrix

A =



[2, 3] −[1, 3] [1, 2] 0 0 · · · 0
[2, 4] −[1, 4] 0 [1, 2] 0 · · · 0
[2, 5] −[1, 5] 0 0 [1, 2] · · · 0
...

... 0 0 . . . . . . 0
[2, n− 1] −[1, n− 1] 0 0 · · · [1, 2] 0

1 1 1 1 1 · · · 1


.

Proof. Writing out the matrix multiplication we see that AB = 0, hence im(B) ⊆
ker(A). Letting v, w be generators of ker(A) we see that the columns c1, c2 of B
have to be of the form

c1 = pv + qw, c2 = sv + tw with D =
∣∣∣∣p q
s t

∣∣∣∣ 6= 0.

A computation shows that every 2× 2 minor of B will have D as a factor. Since
the rows of B span Z2 there must exist vectors v, w in the rowspan of B with
det(v, w) = 1. Write v =

∑n
i=1 aibi, w =

∑n
i=1 cibi. Then 1 = det(v, w) =∑n

i,j=1 aicj det(bi, bj), hence |D| must be a factor of 1 thus |D| = 1 and the
columns of B form a basis of ker(A). �

II.2.4 Computing Lattice Indices

Lattice indices appear frequently in the main results presented in §II.3. Our
primary motivation in §II.3 is to provide effective formula to compute the
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invariants discussed in §II.2.2; hence we require explicit methods for lattice index
computation. Consider a d× n integer matrix A of full rank d. Let ZA denote
the integer span of the columns of the matrix A. We wish to compute the lattice
index [Zd : ZA].

Proposition II.2.14. Let A be an d×n integer matrix with full rank, rank(A) = d.
Also let MA denote the d× d integer matrix specified by the non-zero columns of
the Hermite normal form of A (computed by elementary integer column operations
on A). We have that

[Zd : ZA] = det(MA).

Proof. The matrix A has rank d (over Z), this implies that the column space
is spanned by d vectors, and hence when we perform the elementary integer
column operations to compute the Hermite normal form we will retain only d
non-zero columns. The matrix MA is then a square matrix whose entries are
the coefficients of ZA in the standard basis for Zd, by [Rot10, Corollary 9.63]
the conclusion follows. �

A second way to compute the lattice index [Zd : ZA] is given by the following
proposition.

Proposition II.2.15. Let A be an d×n integer matrix with full rank, rank(A) = d.
Let v =

(
n
d

)
and let c1, . . . , cv be the v maximal (that is d×d) minors of A. Then

we have that
[Zd : ZA] = gcd(c1, . . . , cv).

Proof. The d× d minors of A generate what is called the dth Fitting ideal of A,
Fitd(A). By [Kea98, Lemma 11.2.1] we have that the Fitting ideal is preserved
by elementary (integer in our case) row or column operations on A, i.e. we have
that Fitd(A) = Fitd(Herm(A)) where Herm(A) is the (column-wise) Hermite
normal form of A. Since Z is a principal ideal domain Fitd(A) is generated
by gcd(c1, . . . , cv), and by Proposition II.2.14 we have that Fitd(Herm(A)) is
generated by [Zd : ZA]; this gives the stated result. �

We note that the second method to compute [Zd : ZA] is less computationally
efficient, but could still be convenient in some cases.

Remark II.2.16. Assume that XA ⊂ Pn−1 is a toric variety of codimension two
and let B be a Gale dual of A. Then, since the rows of B span Z2 [DS02, pg. 4],
we have by Proposition II.2.15 that gcd({[i, j]}i,j) = 1.

Remark II.2.17. We say that an integer vector v in Zl is a primitive vector if v
is not a non-trivial integer multiple of another integer vector in Zl. Let B be a
n× 2 integer matrix whose rows span Z2 and let v be a primitive vector in Z2.
It is well known that we can choose a basis for Z2 consisting of v and another
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vector w, such that det(v, w) = 1. Using this basis we can write bi = aiv + ciw
for some integers ai, ci. Then

det(v, bi) = ci, and det(bi, bj) = aicj − ajci.

Note that if gcd(det(v, bi)) = gcd(ci) > 1 then gcd([i, j]) > 1, which contra-
dicts the assumption that the rows of B span Z2 by Remark II.2.16. Hence
gcd(det(v, bi)) = 1.

Proposition II.2.18. Let A be the d× n integer matrix from Proposition II.2.13.
Then we have that [Zd : ZA] = [1, 2]n−4.

Proof. Let S denote the set of the last n − 4 columns of the matrix A from
Proposition II.2.13; we will now apply Proposition II.2.15. Each maximal minor
of A is the determinant of a (n− 2)× (n− 2) matrix m. This matrix m will have
at least (n− 4) columns coming from the set S, i.e. m will have at least n− 4
columns with only two non-zero entries.

If m has (n − 2) vectors from S then m is a lower triangular matrix and
det(m) = [1, 2]n−3. If m has (n − 3) vectors from S then m has one of the
vectors a1 or a2 as a column. Performing determinant preserving row and
column operations on m yields a diagonal matrix, from this we obtain one of the
following:

det(m) = ±[1, 2]n−4[2, i], or det(m) = ±[1, 2]n−4[1, i], for i = 3, ..., n− 1, or

det(m) = ±[1, 2]n−4

(
[1, 2]−

n−1∑
i=3

[2, i]
)
, or det(m) = ±[1, 2]n−4

n−1∑
i=2

[1, i]

with the choice depending on which of a1 or a2 appears in m and on which
column in S does not appear in m.

Observe that since
∑n
i=1 bi = 0 then, by elementary properties of determi-

nants, we have that the two last cases can be rewritten as:

det(m) = ±[1, 2]n−4

(
[1, 2]−

n−1∑
i=3

[2, i]
)

= ±[1, 2]n−4(
n−1∑
i=1

[i, 2]) = ±[1, 2]n−4[2, n],

and

det(m) = ±[1, 2]n−4
n−1∑
i=2

[1, i] = ±[1, 2]n−4[n, 1].

In the final case, if m has (n− 4) vectors from S, then both a1, a2 appear as
columns of m. Let k1, k2 be the indices of the columns vectors from S which do
not appear in m; note k1, k2 ∈ {3, . . . , n}. The current case has two subcases,
first the situation where k1 6= k2 6= n and second the situation where one of
k1 or k2 is equal to n. We may again perform elementary row and column
operations to obtain a diagonal matrix. In the first subcase, where k1 6= k2 6= n,
this computation gives:

det(m) = ±[1, 2]n−5(−[2, k1][1, k2] + [1, k1][2, k2]), k1 6= k2, k1, k2 ∈ {3, 4, . . . , n− 1} .
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By the Plücker relation defining G(2, 4) ⊂ P5 we have that

−[2, k1][1, k2] + [1, k1][2, k2] = [1, 2][k1, k2].

Hence det(m) = [1, 2]n−4[k1, k2], where 3 ≤ k1 6= k2 ≤ n− 1. Now consider the
second subcase, that is the case where one of k1 or k2 is equal to n (i.e where
the nth column of A does not appear in m). Suppose (without loss of generality)
that k2 = n, then we have that:

det(m) = ±[1, 2]n−5

(
[1, k1]

n−1∑
i=3, i 6=k1

[2, i]− [2, k1]
n−1∑

i=3, i 6=k1

[1, i]− [1, 2]([1, k1]+[2, k1])

)
.

Again applying the Plücker relations as above we have that

det(m) =± [1, 2]n−5

[1, 2]
n−1∑

i=3, i 6=k1

[k1, i]− [1, 2]([1, k1] + [2, k1])


=± [1, 2]n−4

 n−1∑
i=3, i 6=k1

[k1, i]− [1, k1]− [2, k1]


=± [1, 2]n−4

n−1∑
i=1

[k1, i] = ±[1, 2]n−4[k1, n].

Putting all the cases together we see that the maximal minors of A all have
values ±[1, 2]n−4[i, j] for some i 6= j. Hence their greatest common divisor
equals [1, 2]n−4 gcd([i, j]). By Remark II.2.16 we have that gcd([i, j]) = 1; the
conclusion follows. �

II.2.5 Other Results Needed for Gale Dual Computations

In this subsection we collect some results on the degrees of lattice ideals, these
results will be needed in §II.3.

The degree of a codimension one lattice ideal is the degree of the defining
polynomial.

Proposition II.2.19. The degree of a homogeneous lattice ideal IB associated to
a n× 1 matrix B is given by

deg(IB) =
∑
i|bi>0

bi.

If now IB is a codimension two lattice ideal we define the following: For each
i, j, if bi and bj lie in the interior of opposite quadrants, then define

νij := min{|bi1bj2|, |bi2bj1|}.

Let βi be the sum of all positive entries in the ith column of B.
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Proposition II.2.20. [DS02, Corollary 2.2] The degree of a homogeneous lattice
ideal IB associated to a n× 2 integer matrix B is given by

deg(IB) = β1β2 −
∑
i,j

νij .

Corollary II.2.21. If IB is a prime homogeneous lattice ideal associated to an
integer matrix B with Gale dual A then

Vol(Conv(A)) = β1β2 −
∑
i,j

νij .

Example II.2.22. For the B-matrix in Example II.2.1, all νij equal zero, hence
deg IB = β1β2 = 3 · 4 = 12.

Definition II.2.23. For an inclusion L ⊂M of abelian groups, we define T (M/L)
to be the torsion subgroup and |T (M/L)| to be its order.

When proving our main results in §II.3 we will sometimes need to compute
volumes of convex hulls of lattice points where some lattice points appear more
than once. The following proposition shows that this is also expressible as a
degree of a lattice ideal, hence the results above can be applied.

Theorem II.2.24. [OPV14, Theorem 4.6] Given an integer matrix B whose rows
generate a r-dimensional lattice ZB ⊂ Zn and defining a codimension r lattice
ideal IB, there exists a (n− r)×n matrix A = [v1, ..., vn] of rank n− r such that
ZB ⊂ ker(A) and

deg(IB) = |T (Zn/ZB)|Vol(Conv(0, v1, ..., vn))

where the volume is normalized with respect to ZA.

II.3 Computing invariants of codimension two toric
varieties

Let XA be a codimension two projective toric variety and let B be the Gale
dual of the matrix A. In this case A is an (n − 2) × n integer matrix and B
is an n× 2 integer matrix. From the results in §II.2.2 we see that to compute
the Chern-Mather volumes, polar degrees, and the ED degree of XA, we must
compute both the normalized relative subdiagram volumes of all chains of faces
and the normalized volumes of all faces of the polytope P = Conv(A). In this
section we present our main results. These results give explicit closed form
expressions for the required normalized volume and normalized subdiagram
volume computations in terms of the Gale dual matrix B. Both a theoretical
analysis and practical testing shows that the methods using the matrix B offer
a quite substantial computational performance gain relative to the methods of
[HS18] when codim(XA) = 2, see §II.4 for a discussion of this.
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Example II.3.1. As discussed above our goal in this paper is to compute the polar
degrees and ED degree (and other associated invariants) using the Gale dual
matrix B of A when XA has codimension two. Continuing Example II.2.1 we
now summarize the volumes and subdiagram volumes of the faces of the polytope
P = Conv(A) from Figure II.1 in Table II.1. In this section we will develop
the necessary results to fill in this table using only the matrix B. Using the

α Bα Vol(α) µ(P, α) i(P, α) Eu(α)
e1 {b1, b4} 3 1 1 1
e2 {b2, b4, b5} 1 1 1 1
e3 {b3, b4, b5} 1 2 4 8
v1 {b2, b3, b4, b5} 1 9 1 0
v2 {b1, b3, b4, b5} 1 8 1 2
v3 {b1, b2, b4, b5} 1 2 1 0

Table II.1: Invariants of P .

information in Table II.1 along with Definition II.2.6 we obtain the Chern-Mather
volumes

V0 = 0 + 2 + 0 = 2,

V1 = 3 · 1 + 1 · 1 + 1 · 8 = 12,

V2 = 12.

Substituting these values into (II.11), and (II.12) we have that the polar degrees
and ED degree are:

δ0(XA) = 3V2 − 2V1 + V0 = 14,

δ1(XA) = 3V2 − V1 = 24,

δ2(XA) = V2 = 12,

EDdegree(XA) = δ0(XA) + δ1(XA) + δ2(XA) = 50.

II.3.1 Gale Dual Formulas for Subdiagram Volumes in
Codimension Two

As above we consider a codimension two toric variety XA in Pn−1 and let
P = Conv(A). In this subsection we present several formulas for subdiagram
volumes covering all possible expressions which could appear in the computation
of the polar degrees and ED degree of XA. Let α and β be faces of P . These
subdiagram volumes can be broadly grouped into two types, those of the form
µ(P, β) and those of the form µ(α, β) where β ⊂ α.
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II.3.1.1 Subdiagram volumes µ(P, β)

Let β be a face such that Bβ only has vectors from the same relevant line. Let v
be a primitive vector in the relevant line and define λi by bi = λiv, for bi ∈ Bβ .
With these notations we define

vβ+ = {i | bi ∈ Bβ , λi > 0}

vβ− = {i | bi ∈ Bβ , λi < 0}.
Theorem II.3.2. Let XA ⊂ Pn−1 be a projective toric variety of codimension 2
and P = Conv(A). Let β be a face of P having codimension r with only lattice
points from a relevant line with primitive vector v. Let the set Iβ index the rows
of Bβ, then

µ(P, β) =
min

(∑
i∈vβ+

|λi|,
∑
i∈vβ−

|λi|
)

gcd (λi | bi = λiv)i∈Iβ
, and i(P, β) = gcd (λi | bi = λiv)i∈Iβ .

Proof. We will apply Proposition II.2.7. After reordering we may assume that
Bβ consists of the rows b2, ..., br of B. Since all lattice points of Bβ are contained
in the same relevant line we have [2, i] = 0 for all i = 3, ..., r. This implies that
after reordering the columns as in Proposition II.2.7 A has block form

A =
[
D ∗
0 C

]
. (II.14)

The submatrix C has r − 2 rows and is given by

C =


−[1, 3] [1, 2] 0 0 · · · 0
−[1, 4] 0 [1, 2] 0 · · · 0
−[1, 5] 0 0 [1, 2] · · · 0

...
...

...
... . . . 0

−[1, r] 0 0 · · · · · · [1, 2]

 .
By considering maximal minors we see that the lattice spanned by C has index
j = [1, 2]r−3 gcd([1, i])i∈Iβ . We know that bi = λiv for all i = 2, . . . , r, let
|b1, v| be the value of the determinant of the matrix with rows b1 and v, then
[1, i] = λi|b1, v| and we have

C = |b1, v| ·


−λ3 λ2 0 0 · · · 0
−λ4 0 λ2 0 · · · 0
−λ5 0 0 λ2 · · · 0
...

...
...

... . . . 0
−λr 0 0 · · · · · · λ2

 . (II.15)

Reformulating we see that the index j = λr−3
2 |v, b1|r−2 gcd(λi)i∈Iβ . Let P1 =

Conv (C), P2 = Conv (C ∪ {0}). By Proposition II.2.7 we have that

µ(A, β) = Vol(Conv (C ∪ {0}))−Vol(Conv (C)) = Vol(P2)−Vol(P1), (II.16)
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where Vol is the normalized (r − 2)-dimensional volume. First we compute

Vol(P1) = ±|v, b1|r−2

∣∣∣∣∣∣∣∣∣∣∣

−λ3 λ2 0 0 · · · 0
−λ4 0 λ2 0 · · · 0
−λ5 0 0 λ2 · · · 0
...

...
...

... . . . λ2
−λr − λ2 −λ2 −λ2 · · · · · · −λ2

∣∣∣∣∣∣∣∣∣∣∣
.

After doing row and column operations we get that

Vol(P1) = |v, b1|r−2λr−3
2

r∑
i=2
−λi.

Hence after taking the absolute value and normalizing with respect to the index
j we get

Vol(P1) = |
∑r
i=2 λi|

gcd(λi)i∈Iβ
.

Now consider the polytope P2 = Conv (C ∪ {0}). Volume is preserved under
taking cones, so we may instead consider the normalized r − 2 dimensional
volume of the convex hull of

C̃ = |b1, v| ·



−λ3 λ2 0 0 · · · 0 0
−λ4 0 λ2 0 · · · 0 0
−λ5 0 0 λ2 · · · 0 0
...

...
...

... . . . 0 0
−λr 0 0 · · · · · · λ2 0

1 1 1 · · · · · · 1 1


.

C̃ corresponds to a codimension one toric variety XC̃ , by Theorem II.2.24 we
have that

Vol (P2) = deg(IB̃)
|T (Zr/ZB̃)|

where B̃ =
[
λ2 λ3 · · · λr −

∑r
i=2 λi

]
is the Gale dual of C̃. Applying

Proposition II.2.19, we have that

Vol (P2) =
max

(∑
i∈vβ+

|λi|,
∑
i∈vβ−

|λi|
)

|T (Zr/ZB̃)|
.

Note that |T (Zr/ZB̃)| equals the greatest common divisor of elements of B̃,
i.e. gcd(λi)i∈Iβ . Substituting the computed values into (II.16) we have:

µ(P, β) =
max

(∑
i∈vβ+

|λi|,
∑
i∈vβ−

|λi|
)

gcd(λi)i∈Iβ
−
|
∑r
i=2 λi|

gcd(λi)i∈Iβ

=
min

(∑
i∈vβ+

|λi|,
∑
i∈vβ−

|λi|
)

gcd(λi)i∈Iβ
.
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Now compute the index i(P, β). Consider the submatrix D from (II.14),

D =



[2, r + 1] [1, 2] 0 0 · · · 0 0
[2, r + 2] 0 [1, 2] 0 · · · 0 0
[2, r + 3] 0 0 [1, 2] · · · . . . 0

...
... · · · · · ·

. . . . . . 0

[2, n− 1]
... · · ·

. . . · · · [1, 2] 0
1 1 1 · · · · · · 1 1


.

After taking the column-wise Hermite normal form of A, without switching the
order of the columns, we will have (n− 2) non-zero columns. By Proposition
II.2.14 we have that the index [Zn−2 : ZA] is equal to the determinant of these
columns, that is [Zn−2 : ZA] = [1, 2]n−4. Projecting onto the linear space
spanned by β, we get that [Zr−2 : ZA ∩ Rβ] = [1,2]n−4

detD′ where D′ is the nonzero
submatrix of the Hermite normal form of A corresponding to D. By Lemma
II.2.15 det(D′) is equal to the greatest common divisor of the maximal minors
of D. Consider the inclusion of lattices Zr−2 ⊃ ZA ∩ Rβ ⊃ Zβ, we have that

[Zr−2 : Zβ] = [Zr−2 : ZA ∩ Rβ]i(A, β).

Let c be the greatest common divisor of the maximal minors of C and d be
greatest common divisor of the maximal minors of D. Then [Zr−2 : Zβ] = c,
thus

i(P, β) = cd

[1, 2]n−4 .

One computes that c = [1, 2]r−3 gcd([1, i])i∈Iβ and that d = [1, 2]n−r−2 gcd([2, j])nj=1.
Thus

i(P, β) = cd

[1, 2]n−4 =
[1, 2]r−3 · gcd([1, i])i∈Iβ · [1, 2]n−r−2 · gcd([2, j])nj=1

[1, 2]n−4

=
gcd([1, i])i∈Iβ · gcd([2, j])nj=1

[1, 2]

=
gcd(λi det(b1, v))i∈Iβ · λ2 · gcd(det(v, bj))nj=1

λ2 det(b1, v)
= gcd(λi)i∈Iβ · gcd(det(v, bj))nj=1.

By Remark II.2.17 gcd(det(v, bj))nj=1 = 1. �

Example II.3.3. In Example II.2.1, the edge e1 in Figure II.1 is not a simplex,
hence by Theorem II.3.2 we have that i(P, e1) = gcd(1, 4) = 1, and µ(P, e1) =
min{1, 4} = 1.

Theorem II.3.4. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) = 2
and set P = Conv(A). Take a face β of P such that not all bi ∈ Bβ are contained
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in the same relevant line. Let wβ =
∑
i∈Iβ −bi and let B′β be the matrix obtained

by adding wβ as an extra row of Bβ. Then

µ(P, β) =
deg(IB′

β
)

|T (Zr+1/ZB′β)| −
∑
j∈Iβ | det(wβ ,bj)>0 det(wβ , bj)

|T (Zr+1/ZB′β)| ,

i(P, β) = |T (Zr+1/ZB′β)| = gcd([i, j])i,j∈Iβ .

Proof. Again we use Proposition II.2.7. After rearranging the columns, the
matrix has the following form:

A =



0 0 0 0 [2, 3] −[1, 3] [1, 2] 0 0 0
...

...
...

... [2, 4] −[1, 4] 0 [1, 2] . . . 0

0 0 0 0 [2, 5] −[1, 5] 0 0 . . . [1, 2]

[1, 2] 0 0 0
...

... 0 0 . . . 0

0 [1, 2] 0
... . . . . . . . . . . . . . . . ...

...
... . . . 0 [2, n− 1] −[1, n− 1] 0 0 · · · 0

1 1 1 1 1 1 1 1 1 1


.

Note that, by Proposition II.2.10, β has codimension r − 2. Now consider the
matrix A, the only row operations we need to perform to pick out the correct
submatrix C in Proposition II.2.7 is exchanging the top and bottom rows. Let
{c1, ..., cr} denote the columns of the resulting (r − 2) × r submatrix C. To
compute the subdiagram volume µ(P, β) we first compute Vol(Conv(c1, ..., cr, 0)).
Consider the (r− 1)× (r+ 1) matrix matrix A′ with rows a′1, ..., a′r+1 of the form

A′ =
[
c1 c2 · · · cr 0
1 1 · · · 1 1

]
.

Observe that by construction A′ has rank r − 1 and that B′β ⊂ kerA′. We
want to compute Vol(Conv(c1, ..., cr, 0)) normalized with respect to the lattice
spanned by C. We have that

Vol(Conv(c1, ..., cr, 0)) = Vol(Conv(a′1, ..., a′r+1)),

since the second convex hull is equivalent to taking the cone over Conv(c1, ..., cr, 0)
and normalized volume is preserved under taking cones.

B′β generates a lattice ideal IB′
β
of codimension two. Since B′β ⊂ ker(A′)

applying Theorem II.2.24 gives

Vol(Conv(c1, ..., cr, 0)) = Vol(Conv(a′1, ..., a′r+1)) =
deg IB′

β

[Zr+1 : ZB′β ] .
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Now consider the volume of the convex hull of {c1, ..., cr}, normalized with
respect to the lattice spanned by C. Let A′′ be the (r−1)×r matrix obtained by
adding the row (1, ..., 1) to C. There are two cases. If (1, ..., 1) is already contained
in the row span of C then all lattice points ci are contained in an affine hyperplane.
Dimension considerations dictate that the resulting normalized volume is zero.
Note that in this case we automatically get by Gale duality that wβ = 0, thus
verifying this result. If (1, ..., 1) is not in the row span of C then A′′ has rank r−1.
Consider the 1× r matrix B′′ with rows det(wβ , bi). Then B′′ is contained in
ker(A′′). We have that Vol(Conv(c1, ..., cr)) = kVol(Conv(0, a′′1 , ..., a′′r )) where

k = [Zr−1 : ZA′′]
[Zr−2 : ZC] . (II.17)

The equality above follows from the fact that, for a polytope P of dimension
n, the n-dimensional Euclidean volume of P is equal to the n + 1-dimensional
Euclidean volume of a pyramid of height one over P. The integer k in (II.17)
arises since the lattice indices of the polytopes generated by the points ci and
the points a′′i may differ.

We claim that [Zr−1 : ZA′′] = [1, 2]r−3 gcd(det(wβ , bi))i∈Iβ and [Zr−2 :
ZC] = [1, 2]r−3 gcd([i, j])i,j∈Iβ hence

k =
gcd(det(wβ , bi))i∈Iβ

gcd([i, j])i,j∈Iβ
.

Indeed [Zr−2 : ZC] has to equal [Zr−1 : ZA′] which we know, by the proof of
Proposition II.2.18, is equal to [1, 2]r−3 gcd([i, j])i,j∈Iβ . The claim for the last
of the indices can be proved using elementary row operations; A′′ is a r − 1× r
matrix. Denote by mi the maximal minor obtained by deleting column i. We
see that

m1 = [1, 2]r−3([1, 2]+[1, 3]+· · ·+[1, r]) = [1, 2]r−3 det(1,

r∑
i=1

bi) = [1, 2]r−3 det(wβ , bi).

Similarly m2 = [1, 2]r−3 det(b2, wβ). For k > 2 we see that after column and
row operations

mk = ±[1, 2]r−4

[2, k]
r∑

i=1 i 6=k
[1, i] + [1, k]

r∑
i=1 i 6=k

[i, 2]

 ,

which after substituting for wβ , rearranging and using the Plucker relation,
equals ±[1, 2]r−3 det(bk, wβ). This proves the claim that [Zr−1 : ZA′′] =
[1, 2]r−3 gcd(det(wβ , bi))i∈Iβ . Using this and Theorem II.2.24 we get that

Vol(Conv(c1, ..., cr)) = Vol(Conv(0, a′′1 , ..., a′′r ))
gcd(det(wβ , bi))i∈Iβ

gcd([i, j])i,j∈Iβ

= deg IB′′
|T (Zr+1/ZB′′)|

gcd(det(wβ , bi))i∈Iβ
gcd([i, j])i,j∈Iβ

.
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Now |T (Zr+1/ZB′′)| = gcd(det(wβ , bi))i∈Iβ and by Proposition II.2.19 we have
that

deg IB′′ =
∑

j∈Iβ ,det(wβ ,bj)>0

det(wβ , bj),

hence
Vol(Conv(c1, ..., cr)) =

∑
j∈Iβ ,det(wβ ,bj)>0 det(wβ , bj)i∈Iβ

gcd([i, j])i,j∈Iβ
.

Finally it remains to prove that i(A, β) = |T (Zr/ZB′β)| (the latter is equal to
gcd([i, j])i,j∈Iβ ). By considering the block form of A from above we see that
the lattice points of β generate a lattice of index [1, 2]n−r−1. We also know that
[Zn : ZA] = [1, 2]n−4. We get that

[1, 2]n−4i(A, β) = [1, 2]n−r−1[Zr−2 : ZC].

Since [Zr−2 : ZC] = [1, 2]r−3|T (Zr/ZB′β)| we obtain the desired result.
�

Example II.3.5. In Example II.2.1, the edge e3 in Figure II.1 is a simplex, by
Theorem II.3.4 we have

i(P, e3) = gcd(8,−8, 12) = 4, and µ(P, e3) = 12
4 −

4
4 = 2

where the last number is obtained as follows. The matrix B′e3 from Theorem
II.3.4 is

B′e3 =


2 2
−4 0
1 −3
1 1


and the vector we3 equals (1, 1). The degree of IB′e3 is 12 and is computed using
Proposition II.2.20. Also note that in this case we have

(det(we3 , b3),det(we3 , b4),det(we3 , b5)) = (0, 4,−4).

We may now compute the Euler obstructions Eu(ei) = i(P, ei)µ(P, ei) for any
edge ei, the results are summarized in Table II.1.

To find the Euler obstruction of the vertex v1 we will again apply Theorem
II.3.4 to compute µ(P, v1). For any vertex i(P, α) is automatically 1. The matrix
B′v1

is in this case just B itself, which has degree 12 (see Example II.2.11). We
have that wv1 equals (1, 0) hence

(det(wv1 , b2),det(wv1 , b3),det(wv1 , b4) det(wv1 , b5)) = (1, 2, 0,−3),

giving
µ(P, v1) = 12− 3 = 9.

To complete the computation of the Euler obstructions of the vertices (using
Proposition II.2.3) we also need to compute i(ei, vj) and µ(ei, vj). We develop
the necessary tools to do this using the matrix B in §II.3.1.2 below.
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II.3.1.2 Subdiagram volumes µ(α, β)

We now consider the subdiagram volumes of two proper faces of the polytope
associated to a codimension two projective toric variety.

Theorem II.3.6. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) =
2, set P = Conv(A), and let β ⊂ α be faces of P . We have that

µ(α, β) = 1, and i(α, β) = 1

if any of the following conditions hold:

(i) not all rows of Bα are contained in a relevant line,

(ii) all rows of Bβ are contained in the same relevant line.

Proof. First consider case (i), where not all rows of Bα are contained in a relevant
line. In this case both β and α are simplices; this means that the dim(α)-
dimensional volume of α\β is zero, and hence µ(α, β) = Vol(Conv(Aα)) = 1,
since α is a simplex. This concludes the proof of (i).

Now consider consider case (ii), where all rows of Bβ are contained in the
same relevant line. Set r = |Iβ | and s = |Iα|. To calculate µ(α, β) we are must
pick out the correct submatrix C in Proposition II.2.7 and compute the resulting
normalized volumes. By our assumption on the face structure of α and β the
correct submatrix will be an r − s× r − s matrix of full rank. But the convex
hull of r− s points in r− s dimensional space has volume 0, meaning the second
term in the expression for µ(α, β) in Proposition II.2.7 is zero. Thus µ(α, β)
is equal to the volume of the convex hull of the columns of C after we add 0.
By the argument above this is a simplex. The volume of a simplex (inside the
lattice spanned by the submatrix) equals one.

The lattice points of α span a linear subspace of dimension n− s− 2. The
lattice points of β span a linear subspace of dimension n − r − 2. The lattice
points of α \ β are s− r lattice point which span a linear subspace of dimension
s− r. Hence each ai ∈ α \ β is part of a basis of the lattice L generated by α.
Thus any lattice point of L which also lies in L′ has to be in the lattice generated
by β. It follows that the index i(α, β) = 1. �

Theorem II.3.7. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) = 2
and set P = Conv(A). Consider faces β ⊂ α of P where not all rows of Bβ are
contained in the same relevant line, but all rows Bα are contained in the same
relevant line. Let v be primitive vector of the relevant line containing the rows
of Bα and let γi = det(v, bi), for i ∈ Iβ. Then

µ(α, β) =
min

(∑
i : γi>0 |γi|,

∑
i : γi<0 |γi|

)
gcd(γi)i∈Iβ

, and i(α, β) = gcd(γi)i∈Iβ .
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Proof. This proof of this result is very similar to that of Theorem II.3.2. We
may order the rows of the matrix B (whose Gale dual defines P ) so that
Bα = {b1, b3, . . . , br+1} and Bβ = {b1, b2, . . . , bs} where b2 is not in the relevant
line v. Then we have that [1, 3] = [1, 4] = ... = [1, r + 1] = 0 since they are
all contained in a relevant line. Hence we see that the correct submatrix C in
Proposition II.2.7 is given by

C =


−[1, r + 2] [1, 2] 0 0 · · · 0
−[1, r + 3] 0 [1, 2] 0 · · · 0
−[1, r + 4] 0 0 [1, 2] · · · 0

...
...

...
... . . . 0

−[1, s] 0 0 · · · · · · [1, 2]

 .

This matrix has the same form as the matrix in (II.15), hence the remainder of
the proof proceeds similarly to that of Theorem II.3.2. In the resulting formula
we obtain sums over i such that bi ∈ Bβ \Bα, however since γi = 0 when i ∈ Bα
the same formula is true when looping over all rows of Bβ .

�

Example II.3.8. Resuming Example II.2.1 and Example II.3.5 we may now
complete the computation of the Euler obstruction Eu(v) for a vertex v in Figure
II.1. To compute the Euler obstructions of the vertices we need to compute the
numbers i(ei, vj) and µ(ei, vj) using Theorems II.3.6, II.3.6, and II.3.7. Since vj
is a vertex we have that i(ei, vj) = 1 whenever it is defined. Table II.2 gives the
numbers µ(ei, vj). Putting this together we have that

Eu(v1) = −µ(P, v) + µ(e2, v1) Eu(e2) + µ(e3, v1) Eu(e3) = −9 + 1 · 1 + 1 · 8 = 0.

The Euler obstructions of the other vertices are computes similarly and are
summarized in Table II.1.

µ(ei, vj) v1 v2 v3
e1 ∗ 2 1
e2 1 ∗ 1
e3 1 1 ∗

Table II.2: Subdiagram volumes µ(ei, vj). We write ∗ when there is no contain-
ment relation between ei and vj , i.e. when µ(ei, vj) is undefined.

II.3.2 Volume Calculation Via the Gale Dual in Codimension two

In this subsection we consider the problem of computing the volume of faces of
the polytope associated to a codimension two projective toric variety XA using
the Gale dual B of A.
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Proposition II.3.9. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) =
2 and set P = Conv(A). Let β be a face such that all rows of Bβ are contained
in a relevant line. Let v be a primitive vector in the relevant line. Then

Vol(β) =
∑

j∈Ic
β
| det(v,bj)>0

det(v, bj).

Proof. The lattice points of β defines a toric variety Xβ of codimension 1. We
have that degXβ = Vol(β). By Proposition II.2.19 we have that

degXβ =
∑

j∈Ic
β
| det(v,bj)>0

det(v, bj).

�

We may now fill in all values in Table II.1 using only the Gale dual matrix
B and obtain the ED degree and polar degrees of the variety XA from Example
II.2.1. The results detailed in this section allow us to compute the ED degree
and polar degrees of much larger examples much faster, as discussed in §II.4
below.

Finally we remark that we would have hoped to solve the recursion for
the Euler obstruction and find compact formulas for the polar degrees and
the ED degree of a projective toric variety of codimension two, similar to the
codimension one case [HS18, Theorem 3.7]. Unfortunately we have not been
able to simplify the expressions sufficiently to find satisfying formulas in the
codimension two case. While the lack of such formulas has little effect on the
computational performance of the codimension two methods finding them would
be mathematically appealing.

II.4 Computational Performance

In this section we briefly compare the computational performance of the spe-
cialized codimension two methods developed in §II.3 which use the Gale dual
matrix B with the performance of the general purpose (i.e. for any codimension)
A-matrix methods described in [HS18]. We will refer to these as the “B-matrix
method” and the “A-matrix method”, respectively.

When computing the polar degrees or ED degree of a projective toric variety
using (II.11), with either the A-matrix or B-matrix method, the primary compu-
tational task is to compute the Chern-Mather volumes of XA. While the number
of steps in the recursive loops for both the A and B matrix methods is the same
the computational cost of computing the subdiagram volumes µ(α, β) differs
quite substantially. We will focus on analyzing the cost of this computation in
the case where codim(XA) = 2 (i.e. where the methods of §II.3 are applicable).
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Example Size A A-matrix method [HS18] B-matrix method §II.3 Find faces Speedup factor
XA1 4× 6 4.6s 0.2s 0.3s 23.0
XA2 4× 6 6.1s 0.2s 0.3s 30.5
XA3 6× 8 106.1s 1.6s 2.3s 66.3
XA4 6× 8 118.4s 1.8s 2.7s 65.8
XA5 7× 9 495.5s 5.3s 8.1s 93.5
XA6 8× 10 2611.5s 26.7s 37.7s 97.8

Table II.3: Average run times to compute the polar degrees of a codimension two
projective toric variety XA. The run time to generate the face lattice of Conv(A)
is listed separately in the fifth column since both methods must perform this
step (hence the total run time is the sum the time to find the faces and the time
of either the A-matrix or B-matrix method).

II.4.1 Computational Cost of µ(α, β) for General A

First consider the A-matrix method. Let XA be a projective toric variety with
P = Conv(A) and let α ⊃ β be faces of P . Further suppose that the face lattice
has already been computed and that the relevant Hermite normal forms (needed
for Proposition II.2.7) have been stored in the process. Let r = dim(α)− dim(β).
To compute the subdiagram volume (using (II.8) or Proposition II.2.7) we must
compute the following things:

• the convex hulls of two collections of at least r + 1 lattice points in Rr

• the volumes of two dimension r polytopes.

For computing the convex hull of m points in Rr there exist known (optimal)
algorithms of complexity

O
(
m log(m) +mb

r
2 c
)
,

see [Cha93]. Calculating the volume of a polytope in dimension r is known to
be a #P -hard problem [DF88, Theorem 1]. For existing algorithms (to the best
of our knowledge) there is not a known compact (i.e. readable/meaningful) run
time bound for finding the dimension of an arbitrary polytope in dimension r and
different algorithms may vary from being exponential to factorial in r for different
polytopes. Using known algorithms, the computational cost of computing the
volume of the dimension r hypercube varies from being approximately factorial
in r, i.e. O(r!), to being approximately exponential in r, i.e. O(r24r), depending
on the algorithm chosen. See [BEF00] for an in depth discussion of current
algorithms. Hence, in particular, the cost of computing the subdiagram volume
µ(α, β) will be (at least) exponential, possibly factorial, in the relative dimension
r = dim(α)− dim(β). Further note that r may be as large as d− 2 for a d× n
integer matrix A.
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II.4.2 Computational Cost of µ(α, β) using §II.3 when
codim(XA) = 2

Let XA be a codimension two projective toric variety with P = Conv(A) and let
α ⊃ β be faces of P . We again suppose that the face lattice has already been
computed, and that faces contained in relevant lines have been identified during
this process (this includes the computation of the scaling factors λ of each vector
b = λv for v the primitive vector defining the relevant line). By precomputing
all lattice indices [Zd : ZAα] for each face α of P we may compute many of the
expressions µ(α, β) in constant time (i.e. only a table lookup is needed). Note
that, using Proposition II.2.14, the computation of the lattice index [Zd : ZAα]
for each face requires the computation of one Hermite normal form and one
determinant of the resulting square matrix; many efficient algorithms exist
for these computations. Assuming the above precomputations, the number of
operations required to compute µ(α, β) using the methods of §II.3 is as follows:

• constant if α is a proper face of P and either all lattice points defining β
are in a relevant line or if neither α nor β is contained in a relevant line

• linear in `β , where `β is the number of rows of Bβ , if α is a proper face of
P where all rows of Bα are contained in a relevant line but all rows of Bβ
are not

• proportional to the number of operations to compute a greatest common
divisor of `β integers if α = P and all rows of Bβ are contained in a relevant
line

• quadratic in `β if α = P and the rows of Bβ are not contained in a relevant
line (in this case we are summing 2× 2 determinants)

In particular we see that for the vast majority of possible pairs of faces α ⊃ β
the cost of computing µ(α, β) will be linear or constant, and at worst will be
polynomial in the number of rows of Bβ , which will always be less than or equal
to the number of rows of B.

II.4.3 Summary

Suppose A is a (n− 2)× n integer matrix defining a codimension 2 projective
toric variety XA. Examining the definitions of the Chern-Mather volume and
Euler obstruction we see that to compute all Chern-Mather volumes (and hence
to compute the ED degree or polar degrees) we must compute the subdiagram
volume µ(α, β) for all possible pairs of faces α ⊃ β of P = Conv(A). Let F
denote the number of faces of P , there are F 2−F

2 such pairs. Using the general
purpose A-matrix methods we must perform computations which are at least
exponential, possibly factorial, in dim(α)− dim(β); for the majority of pairs this
will mean computations that are at least exponential in a number larger than n

3 .
Let `β denote the number of rows in the matix Bβ ; this number will always

be less than or equal to n. With the specialized B-matrix methods of §II.3 the
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computation of µ(α, β) will be done in constant or linear time relative to `β for
F 2−3F

2 of the pairs with the remaining F pairs being done in at most quadratic,
O(`2β), time relative to the number of rows of Bβ .

In light of the discussion above the significant runtime gains yielded by the B-
matrix methods, as displayed in Table II.3, are not surprising. It should, however,
be noted that both combinatorial methods, either A-matrix or B-matrix, will be
able to compute ED degrees and other invariants for projective toric varieties XA

which simply would not be feasible using other current methods. For example
EDdegree(XA5) = 301137686 (see Table II.4) represents the degree of the variety
defined by the critical equations of the Euclidean distance function for XA5 .
Computing this number using algebraic/geometric methods (i.e. Gröbner basis,
numerical algebraic geometry, etc.) would require finding the degree of a zero
dimensional variety consisting of greater than 300 million isolated points in
P8. Such a computation would be infeasible with current algebraic/geometric
methods even over a span of weeks running on a super computer whereas the
A-matrix or B-matrix methods compute this number (on a laptop) in a matter
of minutes or seconds, respectively.
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Appendix II.A Computational Examples List

In this appendix we list the integer matrices A defining the codimension two
toric varieties listed in Table II.3.

A1 =


10 1 0 −7 0 0
−7 0 1 5 0 0
2 0 0 0 1 0
−4 0 0 3 0 1



A2 =


3 0 0 1 1 2
3 5 0 2 1 3
0 1 2 0 2 0
1 1 1 1 1 1



A3 =


0 0 0 −31 0 −7 1 −31
0 0 0 −12 0 −2 0 −11
0 0 1 −2 −1 0 0 −2
0 −1 0 1 1 0 0 1
−1 0 0 7 0 1 0 7
0 1 0 13 0 3 0 13


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A4 =


3 0 0 1 1 2 1 2
3 5 0 2 1 3 12 11
5 1 9 10 12 3 7 9
3 1 2 19 7 1 1 2
0 1 2 0 2 0 5 7
1 1 1 1 1 1 1 1



A5 =



3 0 0 1 1 2 1 2 7
3 5 0 2 1 3 12 11 12
5 1 9 10 12 3 7 9 3
3 1 2 19 7 1 1 2 1
0 1 2 0 2 0 5 7 21
3 1 5 11 22 10 15 0 1
1 1 1 1 1 1 1 1 1



A6 =



2 3 4 0 −1 −2 5 9 7 0
13 10 −2 21 −1 2 5 2 1 4
1 3 1 0 −2 21 31 2 1 2
7 15 11 3 4 2 6 7 8 1
14 2 3 1 9 12 −1 −1 −2 −1
1 −1 −2 0 2 0 4 7 −6 15
31 11 0 5 1 −2 4 5 0 −1
1 1 1 1 1 1 1 1 1 1


For reference we include the degree, the degree of the dual variety, and ED

degree of the toric varieties defined by the matrices above in Table II.4.

Example deg(XA) deg((XA)∨) EDdegree(XA)
XA1 19 27 170
XA2 28 45 252
XA3 70 125 2356
XA4 16924 30840 641134
XA5 4570434 8222171 301137686
XA6 581454473 1056983492 74638158177

Table II.4: The degree, degree of the A-discriminant, and the ED degree of the
projective toric varieties appearing in Table II.3.
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Appendix II.B Formulas expressed in alternate index
convention

In this subsection we restate the results of §II.3.1.1 and §II.3.1.2 (which used
the index convention of [MT11; Nød18]) above in the index convention of [HS18].
In [HS18] the lattice index is contained in the normalized volume Vol, while in
the convention of [MT11; Nød18] it is contained in Euler obstruction Eu. More
precisely we let

Eu′(β) = Eu(β)
i(A, β)

Vol′(β) = Vol(β)i(A, β)

µ′(α, β) = µ(α, β) i(α, β)i(A,α)
i(A, β) .

Let A be a d × n integer matrix with (1, . . . , 1) in its row space, let B be
the Gale dual of A and let P = Conv(A). In this subsection we assume that
[Zd : ZA] = 1. We can make this assumption without loss of generality since
for the purposes of computing the polar degrees we may always find such an A
defining a toric variety isomorphic to the original one.

The index convention presented in this subsection is more convenient for
volume computations, since we do not have to explicitly compute lattice indexes.
This conversion also gives a cleaner expression for the Euler obstruction of a
face since the expressions i(α, β) do not appear in the formula. More precisely
the Euler obstruction, of a face β of P , is given by

(1) Eu′(P ) = 1,

(2) Eu′(β) =
∑

α s.t. β is a
proper face of α

(−1)dim(α)−dim(β)−1 · µ′(α, β) · Eu′(α).

As before the dimension i Chern-Mather volume is given by

Vi =
∑

dim(α)=i

Vol′(α)Eu′(α).

The formulas for the the polar degrees (II.11), and hence the ED degree (II.7),
in terms of the Chern-Mather volumes remain unchanged.

We now restate the expressions for µ(α, β) given in the previous subsections
§II.3.1.1 and §II.3.1.2 in terms of this index convention. In the propositions
below we let A be a d× n integer matrix of full rank defining a projective toric
variety XA and let B be the Gale dual of A.

In Proposition II.B.1 the expression deg(IB′) is computed using Proposition
II.2.20.

Proposition II.B.1. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) =
2 and set P = Conv(A). Let β be a proper face of P . Then the subdiagram
volume µ′(P, β) is as follows:
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(a) if all rows of Bβ are contained in a relevant line v with bi = λiv for bi a
row of Bβ then, if v+ indices λi > 0 and v− indices λi < 0, we have

µ′(P, β) =
min

(∑
i∈v+

|λi|,
∑
i∈v− |λi|

)
gcd(λi)i∈Iβ

,

(b) if all rows of Bβ are not contained in a relevant line then

µ′(P, β) =
deg(IB′

β
)

|T (Zn/ZB′β)| −
∑
j:det(wβ ,bj)>0 det(wβ , bj)
|T (Zn/ZB′β)| .

where B′β is the matrix Bβ with the row wβ =
∑
i∈Iβ −bi added.

Proposition II.B.2. Let XA ⊂ Pn−1 be a projective toric variety with codim(XA) =
2 and set P = Conv(A). Let β ⊂ α be proper faces of P . Then the subdiagram
volume µ′(α, β) is as follows:

(a) if not all rows of Bα are contained in a relevant line or if all rows of Bβ
are contained in a relevant line then

µ′(α, β) =
[
Zd : ZAα

]
[Zd : ZAβ ] ,

(b) if not all rows of Bβ, but all rows of Bα, are contained in a relevant line,
then

µ′(α, β) =
[
Zd : ZAα

]
[Zd : ZAβ ] ·min

 ∑
bi : γi>0

|γi|,
∑

bi : γi<0
|γi|

 ,

where γi = det(v, bi) and i loops over all i ∈ Iβ.
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Abstract

We show that the moduli space of rank three toric vector bundles on
smooth toric varieties satisfies Murphy’s law.
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IV.1 Introduction

In [Pay08] Payne constructed the moduli space of toric vector bundles of fixed
rank and equivariant Chern class. He then proceeded to prove that the moduli
space of rank three toric vector bundles on quasi-affine toric varieties satisfies
Murphy’s law. In other words any singularity type arises on some moduli space
of rank three toric vector bundles on some quasi-affine toric variety.

In this paper we use similar techniques to prove that the moduli space
of rank three toric vector bundles on smooth projective toric varieties also
satisfies Murphy’s law, thus answering a question of Payne. This result implies,
among other things, that there exist rank three toric vector bundles on smooth
projective toric varieties definable in characteristic p > 0, which does not lift to
characteristic 0.
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IV.2 Preliminaries on toric varieties

All of the following preliminary material can be found in any introductory text on
toric geometry, for instance [CLS11] and [Ful93]. Let T = (k∗)n be an algebraic
torus and denote by M its character lattice Hom(T, k∗) and by N its dual lattice
of one-parameter subgroups. Both M and N are as groups isomorphic to Zn and
there is a pairing M ×N → Z which, after fixing an isomorphism M ' Zn, is
simply the ordinary scalar product. A toric variety X will in this paper denote
a normal irreducible variety containing T as an open dense subset, such that
the action of T on itself extends to an action on X. It is well-known that toric
varieties are classified via combinatorial data.

Definition IV.2.1. By a cone σ we will mean a strongly convex, rational polyhedral
cone σ ⊂ NQ = N ⊗Q.

There is a bijection between cones σ, up to GL(n,Z), and affine toric varieties
obtained by taking the spectrum Uσ of the semigroup algebra k[σ∨ ∩M ], where
we by σ∨ mean the dual cone of σ, inside M ⊗Q.

A general toric variety is glued from affine pieces corresponding to cones,
which is made precise by the following definition.

Definition IV.2.2. By a fan we will mean a collection Σ of finitely many cones σ,
which is closed under intersections and taking faces.

There is a bijection between fans, again up to GL(n,Z), and toric varieties
XΣ obtained by taking the disjoint union of Uσ and gluing Uσ to Uτ along the
intersection Uσ∩τ .

Fundamental to the theory of toric varieties is the following result, describing
the orbit (closures) of the T -action on XΣ.

Theorem IV.2.3. There is a bijection between cones σ ⊂ Σ and T -orbit (closures)
in XΣ. The correspondence sends a cone of dimension k to a T -orbit (closure)
of dimension n− k.

In particular the cones of dimension n corresponds to T -fixed points, while
the cones of dimension 1, called rays, corresponds to T -invariant Weil divisors.
We often by abuse of notation identify a ray ρ with the unique minimal lattice
point on it. We denote by Σ(l) the set of l-dimensional cones of Σ and σ(l) the
set of l-dimensional faces of the cone σ.

There is an exact sequence describing the divisor class group of a toric variety,

M → ZΣ(1) → Cl(XΣ)→ 0,

which is left exact if the linear span of the rays of Σ is n-dimensional, for instance
if XΣ is projective [CLS11, Theorem 4.1.3]. In particular this says that any
divisor is linearly equivalent to a T -invariant divisor, in other words to a linear
combination of divisors Dρ, where ρ ∈ Σ(1).

On a smooth variety the class group and the Picard group are the same,
however if the variety is singular they may be different. The T -invariant Cartier
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divisors is the subgroup CDivT of ZΣ(1) consisting of divisors D =
∑
aρDρ such

that for any cone σ ∈ Σ there exists a character mσ ∈M with 〈mσ, ρ〉 = aρ for
any ρ ∈ σ(1). This last technical condition is simply saying that D has to be
trivial on Uσ and that it has to be the divisor of an invariant rational function
on T , namely the one corresponding to the character mσ.

For a T -invariant Cartier divisor D we can also associate a piecewise linear
support function

φD : N ⊗Q→ Q

which maps any x ∈ N ⊗Q to 〈mσ, x〉 ∈ Q for any σ containing x. This support
function uniquely determines D.

IV.3 Toric vector bundles

A toric vector bundle E is a vector bundle on a toric variety XΣ together with a
T -action on the total space of the vector bundle, making the bundle projection
E → X into a T -equivariant morphism, such that for any t ∈ T, x ∈ XΣ the map
Ex → Et·x is linear. The study of toric vector bundles goes back to Kaneyama
[Kan75] and Klyachko [Kly89], who both gave classifications of toric vector
bundles in terms of combinatorial and linear algebra data. Klyachko applied
this to study, among other things, splitting of low rank vector bundles on Pn.
We here recollect Klyachko’s description:

To a toric vector bundle E of rank r on XΣ, we let E ' kr denote the fiber
at the identity of the torus. Klyachko shows that there for each ray ρ ∈ Σ(1) is
an associated filtration Eρ(j) of E, indexed over j ∈ Z. It has the property that
for any ray Eρ(j) = 0 for j sufficiently large and Eρ(j) = E for j sufficiently
small. Additionally it satisfies a compatibility condition:

For any maximal cone σ there exists characters u1, ..., ur ∈M and vectors
Lu ∈ E such that for any ray ρ of σ we have

Eρ(j) =
∑

j|〈u,ρ〉≥j

Lu.

The above decomposition is equivalent to the fact that on the affine Uσ, E
splits into a direct sum of line bundles O(ui). Klyachko’s classification theorem
is the following:

Theorem IV.3.1 ([Kly89, Thm 0.1.1]). The category of toric vector bundles on X
is equivalent to the category of finite dimensional vector spaces E, with filtrations
indexed by the rays as described above, satisfying the compatibility condition. A
morphism E → F corresponds to a linear map E → F , respecting the filtrations.

Thus, families of vector bundles give rise to families of filtrations of a fixed
vector space.
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IV.4 Moduli of toric vector bundles

In this section we recall Payne’s construction of the moduli space of toric vector
bundles of fixed equivariant Chern class.

The equivariant Chow ring AT∗ (XΣ) of a toric variety XΣ is isomorphic to
the ring of integral piecewise polynomial functions, which are polynomial on
each cone σ [Pay06, Theorem 1]. This generalizes the piecewise linear support
function associated to a divisor, described above.

For any cone τ ∈ Σ we let Mτ = M/τ⊥ ∩ M . If σ is a maximal cone
containing τ , let u1, . . . , ur be the characters such that E|Uσ = ⊕ri=1O(div(ui)).
Then the images of u1, . . . , ur in M(τ) define characters uτ1 , . . . , uτr in Mτ which
are independent of which maximal cone containing τ one chooses. Denote by
u(τ) the multiset of characters on the cone τ . Payne showed that the equivariant
Chern class cTi (E) of E is given on τ by the polynomial ei(u(τ)), where ei is the
i-th elementary symmetric function [Pay06, Theorem 3].

Definition IV.4.1. A framed rank r toric vector bundle is a toric vector bundle
E together with an isomorphism φ : E → kr, where E is the fiber of E over the
identity of the torus.

Payne proved the following:

Theorem IV.4.2 ([Pay08, Theorem 3.9]). Given a toric variety XΣ and a rank r
equivariant Chern class c there exists a fine moduli scheme Mc of framed rank r
toric vector bundles on XΣ with total equivariant Chern class c.

We note that the scheme Mc is defined over SpecZ [Pay08, p. 1207]. The
scheme Mc is constructed as a locally closed subscheme of a product of flag
varieties, as follows: Let E be a framed rank r toric vector bundle of equivariant
Chern class c. Fixing the Chern class c is equivalent to fixing compatible
multisets u(σ) of linear functions on each σ. Recall we have fixed the isomorphism
φ : E ' kr. For any ray ρ, consider the dimensions of the subspaces appearing
in the filtration Eρ(j). Let Fl(ρ) be the flag variety of subspaces of kr having
exactly these dimensions. Let Flc =

∏
ρ Fl(ρ). We see that E gives an element

of Flc by taking the the subspaces appearing in the filtrations for any ray.
Any bundle with Chern class c must have the same dimensions of subspaces

appearing in the filtrations as E [Pay08, p. 1205]. Moreover the Chern class
c restricts how the subspaces can meet each other in the following way. If
σ = Cone(ρ1, . . . , ρs) we require the equality

dim∩si=1E
ρi(ji) = #{u ∈ u(σ)|〈u, ρi〉 ≤ ji for i = 1, . . . , s}.

These rank conditions correspond to the vanishing of certain polynomials in the
Plücker coordinates of the partial flag varieties Flρ as well as the non-vanishing
of certain others. Thus the resulting scheme is locally closed in Flc and is in fact
the scheme Mc.
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IV.5 Murphy’s law on smooth projective toric varieties

We say that a moduli space M satisfies Murphy’s law if any singularity type
defined over SpecZ arises on M . This notion was introduced by Vakil [Vak06]
who proceeded to show that Murphy’s law holds for many moduli spaces.

Payne has showed that for moduli of bundles of rank 2, the moduli space Mc

is smooth [Pay08, p.1209]. We will now be interested in rank 3 bundles. The
starting observation is that if the bundle has rank 3 then all the rank conditions
correspond to incidences between points and lines in P2. If x1, . . . , xd are points
and l1, . . . , ld′ are lines in P2, then from a subset

I ⊂ {1, . . . , d} × {1, . . . , d′}

we can define a set of incidences of points and lines stating that xi ∈ lj if and
only if (i, j) ∈ I. There is an associated incidence scheme

CI ⊂
d∏
i=1
P2 ×

d′∏
i=1
P2∨,

parametrizing all such sets of points and lines. Payne uses the scheme CI to
prove Murphy’s law for moduli of rank three toric vector bundles on quasi-
affine and quasi-projective toric varieties. The proof is via, given a set of
incidences I between points and lines in P2, constructing a quasi-affine toric
variety such that Mc is PGL3-equivariantly isomorphic to CI and applying
Mnëv’s universality theorem [Mnë88], which states that any singularity appears
on some such incidence scheme. This is essentially the same idea used by Vakil to
prove the original formulation of Murphy’s law for other moduli spaces [Vak06].
The way Payne proves this for toric vector bundles is by putting all the points
and all the lines as non-trivial subspaces of a filtration Eρ(l) and then choosing
the fan such that all pairs of rays are maximal cones. By construction we get
the incidence scheme CI , which has the desired properties.

The material in this section was inspired by the following question:

Question IV.5.1 ([Pay08, Remark 4.4]). Does the moduli of toric vector bundles
on projective toric varieties satisfy Murphy’s law?

Using techniques similar to the above, we can now prove Murphy’s law for
moduli of rank at least three toric vector bundles on smooth projective toric
varieties.

Theorem IV.5.2. Given an incidence I between points and lines in P2 there
exists a smooth projective toric variety and a rank three Chern class c on it,
such that Mc is PGL3-equivariantly isomorphic to CI . Thus Murphy’s law holds
for moduli spaces of rank three framed toric vector bundles on smooth projective
toric varieties. Also Murphy’s law holds for the coarse moduli scheme of rank
three toric vector bundles on smooth projective varieties.

Proof. Set n = d+ d′ − 1. Let Xn be the toric variety obtained by blowing up
Pn along the following linear spaces of increasing dimension: first all invariant

117



IV. Murphy’s law for toric vector bundles on smooth projective toric varieties

points, then all strict transforms of invariant lines and so on until we have blown
up all invariant subvarieties of codimension at least three. We call the new fan
Σ. Blowing up a toric variety corresponds to inserting a new ray in the relative
interior of the cone corresponding to the subvariety we blow up. The original
n+ 1 = d+ d′ rays ρ1, . . . , ρn+1 of Pn are thus still rays of Σ. Set

yi = xi, i = 1, . . . , d

yd+i = li, i = 1, . . . , d′.
We now specify the equivariant Chern class. In other words we describe
the multiset u(σ) for each σ ∈ Σ. For simplicity we first assume that σ =
Cone(ρ1, ρ2, ρ1 + ρ2 + ρ3, ρ1 + ρ2 + ρ3 + ρ4, . . . , ρ1 + . . .+ ρn). Similar to Payne
[Pay08, Top of p.1211] we now define u(σ) according to the four cases.

u(σ) =


{0, e∗1 − e∗3, e∗2 − e∗3} if y1, y2 are both points
{0, e∗2 − e∗3, e∗1 + e∗2 − 2e∗3} if y1 is a point containing the line y2

{e∗1 − e∗3, e∗2 − e∗3, e∗2 − e∗3} if y1 is a point not contained in the line y2

{e∗1 − e∗3, e∗2 − e∗3, e∗1 + e∗2 − 2e∗3} if y1, y2 are both lines

Every maximal cone σ′ is of the same form as σ, up to permutation of the ρi,
thus for other maximal cones the definition of u(σ′) is done in the analogous
way.

The above might seem mysterious, however if we fix a bundle E with equiv-
ariant Chern class as above, the point is that this forces the filtrations on ρi to
be of the form

Ei(j) =


k3 if j ≤ 0
yi if j = 1
0 if 1 < j

and the filtration on any other ray to be trivial, in other words to jump directly
from 0 to k3 at step 0 of the filtration. It is straight-forward to check that
Klyachko’s compatibility condition is satisfied for these filtrations: the characters
on Uσ is exactly the characters u(σ). Thus the above filtrations correspond to a
toric vector bundle whose Chern classes are the elementary symmetric functions
of u(σ). Thus u(σ) correspond to a well-defined equivariant Chern class. All
pairs ρi, ρj form a two-dimensional cone σij , thus from the Chern class on this
cone we get all incidences from I. Moreover because we have blown up so much,
no three ρi, ρj , ρk form a cone, thus we do not get any extra incidences. Thus
Mc = CI and we are done.

The statement on the coarse moduli scheme follows from the fact that it is the
quotient of Mc by GL3 [Pay08, Corollary 3.11]. By Mnëv’s universality theorem
[Laf03, Section 1.8] we have that for any affine scheme Y defined over SpecZ,
there exists some incidence scheme CI on which PGL3 acts freely such that
the quotient CI/GL3 is isomorphic to an open subvariety of Y × As projecting
surjectively to Y , for some s. Thus such quotients satisfy Murphy’s law which
implies that Murphy’s law is satisfied for the coarse moduli scheme of rank three
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toric vector bundles. This argument is the same as Payne’s argument in [Pay08,
Theorem 4.2]. �

Remark IV.5.3. The toric varieties Xn from the proof appear in the literature:
If one blows up Xn also along the strict transforms of all codimension two linear
spaces, the resulting variety is the Losev–Manin space LMn. By [CT15, Remark
1.5] the blowup at a general point of Xn+1 is a small modification of a P1-bundle
over M0,n. Using this, Castravet and Tevelev prove that the blowup at a general
point of Xn is not a Mori Dream Space, for large n.

IV.6 Liftability of toric vector bundles

Recall that any toric variety is defined over SpecZ, since the definition in
terms of a fan does not depend on the ground field. Thus, any toric variety in
characteristic p can be uniquely lifted to a variety in characteristic 0; the one
defined by the same fan. Hence it is natural to ask whether also any toric vector
bundle, defined over a field of characteristic p, lifts to characteristic 0.

There are different possible senses in which one could ask for a lifting of a
toric vector bundle F from characteristic p to characteristic 0. One could ask if
one could lift F , or its projectivization P(F ), as a variety to a variety defined in
characteristic 0, as for toric varieties. Alternatively, one could ask if one could
lift F as a vector bundle to characteristic 0. In other words whether there exist
a flat family X = XΣ × SpecR over a discrete valuation ring R of characteristic
0, satisfying the following: The general fiber is the toric variety defined over
the fraction field K of R associated to Σ, while the special fiber is the toric
variety associated to Σ, but now defined over the residue field k, which is a field
of positive characteristic. There is also a vector bundle F on X , such that the
restriction of F to the special fiber equals F . Even stronger we may require the
vector bundle F on the total space X to be equivariant under the torus action.
Details on these various notions of liftability, as well as criteria for comparing
them are discussed in [Emi18].

The above result implies formally that there exists rank three toric vector
bundles on smooth projective toric varieties, definable in characteristic p, which
cannot be lifted as an equivariant vector bundle to characteristic 0. This is
because there exist singularities of the moduli space Mc, defined over finite fields,
having arbitrarily ugly behaviour, and in particular, do not lift to characteristic
0. Given a singular point of Mc whose singularity type is such that it can be
defined in characteristic p, but not liftable to characteristic 0, we can pull back
the universal family of the fine moduli space along the inclusion of the point
into Mc. The resulting scheme parametrizes vector bundles which cannot lift. In
other words, there exist vector bundles F on X/k, with the property that there
cannot exist a flat family of vector bundles, F → X → SpecR over a discrete
valuation ring R of characteristic 0, such that the restriction of F to the special
fiber is F . If such a lifting did exist, then the total space of F would be a lift of
the total space of F as a scheme, which would in turn imply that the singularity
lifts.
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It is tempting to ask whether there are combinatorial explanations for these
phenomena. Di Rocco, Jabbusch and Smith defined a representable matroid
M(E) associated to a toric vector bundle (recalled in Paper V). It is well known
that there exists matroids representable over some fields, but not over others.
Motivated by this and the above discussion we pose the following question.

Question IV.6.1. Is non-representability of the matroid M(E) over the field K
an obstruction to lifting E to K (in any of the senses of lifting discussed above)?

From matroid theory it is easy to construct examples of toric vector bundles
whose matroid cannot be represented in characteristic 0. An example is the
following.

Example IV.6.2. Let XΣ be any smooth toric surface with 7 rays ρ1, . . . , ρ7
defined over a field of characteristic 2. Let E be a rank three toric vector bundle
with filtrations given by

Eρi(j) =


E if j ≤ 0
Hi if j = 1
0 if 1 < j

,

where Hi, i = 1, ..., 7 are all seven points of the Fano plane in P(E), i.e. the
seven non-zero points in P(E) with all coordinates either 0 or 1. Then the
matroid M(E) will be the Fano matroid. This matroid is only representable in
characteristic 2.

Mnëv’s universality theorem, and thus also our proof of Murphy’s law, is
non-constructive, thus it does not help in answering Question IV.6.1. We do not
know how to prove non-liftability for an explicit example such as Example IV.6.2.
If a lifting exists over a discrete valuation ring SpecR, then we can lift the
filtrations to filtrations of R-modules. However it is not clear to us whether the
matroids of the base changes to k or K would be the same or not. We believe
techniques used in [AZ17] to prove non-liftability of schemes which are blow-ups
of projective space in linear spaces might be useful in answering Question IV.6.1,
especially since projectivized toric vector bundles are closely related to blow-ups
of projective space in linear spaces, for details see [Gon+12] or the sections on
Cox rings in Paper V.
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Some positivity results for toric
vector bundles
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V

Abstract

We give a criterion for a projectivized toric vector bundle to be a Mori
dream space and describe its Cox ring using generators and relations. Both
of these results are in terms of the matroids of all symmetric powers of
the bundle. We also give a criterion for a toric vector bundle to be big
and describe several interesting examples of toric vector bundles which
highlights how positivity properties for toric vector bundles are more
complicated than for toric line bundles.
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V.1 Introduction

Positivity is an important notion in the study of the geometry of projective
varieties. For toric varieties we have a very good understanding of various
positivity properties of line bundles, in terms of the combinatorics defining the
variety. In this paper we investigate various positivity properties of toric vector
bundles. Equivalently, we study positivity of line bundles on projectivized toric
vector bundles.
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V. Some positivity results for toric vector bundles

Di Rocco, Jabbusch and Smith [DJS18] associate to a toric vector bundle E
a representable matroid M(E). To each element e in the ground set of M(E),
there is an associated divisor De, such that ⊕eO(De) surjects onto E , and the
induced map on global sections is surjective.

In this paper we investigate the connection between the matroid and positivity
properties of E . Positivity of line bundles is closely related to sections of multiples
of the bundle. The analogous notion for vector bundles is symmetric powers.
An important property of the matroid M(E) is that it does not necessarily
commute with taking symmetric powers. This makes the study of vector bundles
significantly harder than the study of line bundles. To be able to study positivity,
we thus have to study the matroids of all symmetric powers SkE at the same
time. To do this we define a set of vectors M(E) containing the ground set of
the matroid M(E), but also containing all matroid vectors in the ground set of
some symmetric power SkE which cannot be written as a symmetric product of
matroid vectors for lower symmetric powers. The first main result in this paper
is the following:

Theorem V.1.1 (Theorem V.4.18). Let E be a toric vector bundle on the smooth
toric variety XΣ. Then Cox(P(E)) is finitely generated if and only if M(E) is
finite.

The second main result is a presentation of the Cox ring of P(E)) in terms
of generators and relations. The generators correspond bijectively to the set
M(E) ∪ Σ(1). We are also able to describe all relations, in terms of relations
between vectors in M(E), see Section V.6 and in particular Theorem V.6.4.

Our results on Cox rings reproves many of the results in [Gon+12], using
different techniques: We use the Klyachko filtrations directly. Our results are
also more general. A heuristic explanation for our results on Cox rings is the
following: We have that M(E ⊗ L ) = M(E), for any line bundle L , since
tensoring with a 1-dimensional vector space does not change linear algebra
relations. Thus the matroid of E is most naturally considered an invariant of
E ⊗L , where L is allowed to vary freely. To study the Cox ring we need to
study sections of SkE ⊗L , where k and L are allowed to vary. However it is
sufficient to restrict to algebra generators of the Cox ring over Cox(XΣ) and
these are exactly sections corresponding to the set M(E).

Our third main result is a criterion for a toric vector bundle to be big.

Theorem V.1.2 (Theorem V.7.5). A toric vector bundle is big if and only if
there exists k > 0 and v ∈ M(SkE), such that the associated polytope is full
dimensional.

Additionally we give some other interesting examples and results which are
related to positivity of toric vector bundles:

• A big toric vector bundle with the property that no Minkowski sum of the
polytopes in the parliament is full-dimensional (Example V.7.2).

• A way of interpreting the nefness/ampleness of a toric vector bundle in
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terms of a notion of concavity for the piecewise linear support function on
the associated branched cover of a fan (Proposition V.8.6).

• A toric surface with ample rank two vector bundles Ek such that SkEk is
not globally generated (Section V.9).

• A sequence of toric vector bundles showing that there cannot exist a bound
depending on the dimension of the variety and/or the rank of the vector
bundle with the following property: If E is ample and the degree of E|C
is larger than this bound for any invariant curve C, then E is globally
generated or very ample (Example V.10.4).

V.2 Preliminaries on toric varieties

We here recall some preliminary material on toric varieties and toric vector
bundles. Let T = (C∗)n be an algebraic torus and denote by M its character
lattice Hom(T,C∗) and by N its dual lattice of one-parameter subgroups. A
toric variety X will in this paper denote a normal irreducible variety containing
T as an open dense subset, such that the action of T on itself extends to an
action on X. It is well known that any toric variety corresponds to a fan Σ
in NQ = N ⊗ Q. We will denote the toric variety associated to Σ by XΣ. In
this paper we assume that the ground field equals C and that XΣ is smooth
and complete. This is because the theory of parliaments of polytopes is only
developed under these assumptions. We believe that much of the following will
remain true with only minor modifications in the case of any Q-factorial toric
variety, in other words for any simplicial fan.

Any divisor D on XΣ is linearly equivalent to a sum D =
∑
ρ aρDρ of T -

invariant divisors. Alternatively it corresponds to a piecewise linear support
function φD : NQ → Q given by

x 7→ 〈mσ, x〉,

where σ is any cone containing x and mσ is Cartier data for D on Uσ. In other
words mσ satisfies aρ = 〈mσ, ρ〉 for any ray ρ of σ.

Associated to a divisor D there is a polytope PD defined by

PD = {x ∈MQ|〈x, ρ〉 ≤ aρ}.

We have the following well-known formula for the global sections of D [Ful93, p.
66]:

H0(XΣ,O(D)) '
⊕

m∈PD∩M
Cχm.

Remark V.2.1. In the above we have used the convention that the Cartier data
mσ of a divisor D =

∑
aρDρ satisfies 〈mσ, ρ〉 = aρ, while many texts on toric

geometry use the convention that it satisfies 〈mσ, ρ〉 = −aρ. This has the
consequence that polytopes will be drawn in the opposite direction of what
is usual in toric geometry, for instance in [CLS11] and [Ful93]. This is done

125



V. Some positivity results for toric vector bundles

because we are largely interested in the parliament of polytopes studied in
[DJS18], and they use this convention, thus we have chosen to follow it. This has
the consequence that some formulas and results will have an extra minus-sign
compared to their usual formulations. For a similar reason we will talk about
concave support functions, instead of the usual convex ones.

A toric vector bundle E is a vector bundle on a toric variety XΣ together with
a T -action on the total space of the vector bundle, making the bundle projection
E → X into a T -equivariant morphism, such that for any t ∈ T, x ∈ XΣ the map
Ex → Et·x is linear. The study of toric vector bundles goes back to Kaneyama
[Kan75] and Klyachko [Kly89], who both gave classifications of toric vector
bundles in terms of combinatorial and linear algebra data. Klyachko applied
this to study, among other things, splitting of low rank vector bundles on Pn.
We here recollect Klyachko’s description:

To a toric vector bundle E of rank r on XΣ, we let E ' Cr denote the fiber
at the identity of the torus. Klyachko shows that there for each ray ρ ∈ Σ(1) is
an associated filtration Eρ(j) of E, indexed over j ∈ Z. It has the property that
for any ray Eρ(j) = 0 for j sufficiently large and Eρ(j) = E for j sufficiently
small. Additionally it satisfies a compatibility condition:

For any maximal cone σ there exists characters u1, ..., ur ∈M and vectors
Lu ∈ E such that for any ray ρ of σ we have

Eρ(j) =
∑

j|〈u,ρ〉≥j

Lu.

The above decomposition is equivalent to the fact that on the affine Uσ, E
splits into a direct sum of line bundles O(ui). Klyachko’s classification theorem
is the following:

Theorem V.2.2 ([Kly89, Thm 0.1.1]). The category of toric vector bundles on X
is equivalent to the category of finite dimensional vector spaces E, with filtrations
indexed by the rays as described above, satisfying the compatibility condition. A
morphism E → F corresponds to a linear map E → F , respecting the filtrations.

V.3 Parliaments of polytopes

We next briefly recall the notion of a parliament of polytopes introduced in
[DJS18], which is a way of describing global sections of E in terms of lattice
points in a collection of polytopes.

For a toric vector bundle the cohomology groups Hi(XΣ, E) decompose as
a direct sum ⊕u∈MHi(XΣ, E)u, over the χu-isotypical components. Klyachko
showed that

H0(XΣ, E)u = ∩ρ∈Σ(1)E
ρ(〈u, ρ〉).

The notion of parliaments of polytopes gives a more detailed way of studying
H0(XΣ, E).

Consider the set of all intersections of the form ∩ρEρ(jρ). There is a unique
representable matroid M(E) associated to E , whose ground set is constructed
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inductively as follows: For any intersection of dimension one, add a vector
from this intersection to the ground set. Assume that we have added vectors
corresponding to all intersections of dimension i and let V be an intersection of
dimension i+ 1. Let G be the set of all such vectors contained in V . Let W be a
complementary subspace to Span(G) inside V . We choose a basis for W and add
all the basis vectors to the ground set of the matroid. Performing this process on
all possible such intersections, we get a set of vectors whose associated matroid
M(E) is uniquely determined by E . We will often, by abuse of notation, identify
the matroid with a fixed choice for its ground set.

By construction M(E) has the property that each of the intersections
∩nρEρ(jρ) can be written as the span of vectors from a ground set of the matroid.
To each vector e ∈M(E) we associate a divisor De =

∑
ρ aρDρ, where

aρ = max{j ∈ Z : e ∈ Eρ(j)}.

We denote by Pe the associated polytope:

Pe = {u ∈MR|〈u, ρ〉 ≤ max(j ∈ Z : e ∈ Eρ(j)), for all ρ}.

Proposition V.3.1 ([DJS18, Proposition 1.1]). The lattice points in the parlia-
ment of polytopes correspond to a torus equivariant generating set of H0(X, E).

A crucial difference from the case of line bundles on toric varieties is that the
sections associated to all the lattice points aren’t necessarily linearly independent.
If the polytopes are disjoint then then they actually give a basis, but if there is
any overlap there might be relations among them. The matroid structure of the
indexing set describes precisely the dimension of a χu-isotypical component.

Proposition V.3.2. Given a toric vector bundle E and a character u ∈ M we
have

dimH0(XΣ, E)u = dim Span{e ∈M(E)|u ∈ Pe}.

Proof. This follows by the equivalence from [DJS18, proof of Proposition 1.1]:

e ∈ H0(XΣ, E)u = ∩Eρ(〈u, ρ〉)⇔ u ∈ Pe ∩M.

�

An equivalent way of formulating the above statements on global sections is
to observe that by construction there is a surjection

F =
⊕

e∈M(E)

O(De)→ E → 0,

which is surjective on global sections [DJS18, Remark 3.6]. Indeed, due to
Klyachko’s equivalence of categories such a map corresponds to a surjective map
of vector spaces ψ : F → E. The vector space F has a basis consisting of one
basis vector we for each e ∈M(E). The map ψ is simply the map sending we to
e. By construction it will be surjective on global sections.
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We think the following observation will be useful for studying parliaments of
polytopes: Observe that the above surjection corresponds to a closed embedding

i : P(E)→ P(F)

such that i∗OP(F)(1) = OP(E)(1). P(F) is itself a toric variety XΣ′ whose fan
lives in N ′Q = NQ ⊕ N ′′Q, for a lattice N ′′ of rank equal to the number of
matroid vectors minus one. Thus OP(F)(1) defines a polytope POP(F)(1) in M ′Q
whose lattice points corresponds to elements of H0(XΣ′ ,OP(F)(1)) = H0(XΣ,F).
Moreover the parliament for F also corresponds to global sections of F .

We recall the construction of the fan Σ′ in N ′Q = NQ ⊕N ′′Q. Let D0, . . . , Ds

be the divisors in the parliament of E and write

Di =
∑
ρ

aiρDρ

There are rays w0, . . . , ws in N ′′Q having the structure of the fan of Ps, exhibiting
the Ps-bundle structure of P(F). For any ray ρ ∈ Σ(1) we have an associated
ray ρ′ of Σ′ with minimal generator

ρ′ = ρ+
∑
i

aiρwi.

A cone of Σ′ is the Minkowski sum of any cone of Σ plus any cone generated by
a proper subset of {w0, . . . , ws}.

Lemma V.3.3. For fixed i, the rational equivalence class of the divisor

Dwi +
∑
ρ

aiρDρ′ ,

equal that of OP(F)(1). Fixing any one such representation, the polytopes Pe are
obtained as the intersections of POP(F)(1) with the fibers over the s + 1 lattice
points of the standard simplex ∆s in M ′′Q, along the map MQ →M ′′Q.

Proof. Set G = F ⊗O(−Di). Both XΣ and P(G) are toric varieties, thus their
Picard groups are easily computable from the combinatorics of the fans. Since
P(G) is a projective bundle over XΣ, we also know the relationship between these
Picard groups. Comparing the two ways of computing these groups, we see that
the class of Dwi has to equal the class of OP(G)(1), or its negative. But Dwi is
effective, thus it has to be the positive OP(G)(1). But this implies that on P(F)
the class of OP(F)(1) equals that of Dwi +Di.

We now fix a representation of OP(F)(1), say OP(F)(1) = Dw0 +
∑
ρ a0ρDρ′ .

The polytope POP(F)(1) is given by the inequalities, for some (x, y) ∈ NQ ⊗N ′′Q

x1 ≤ 0

...
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xs ≤ 0

−x1 − · · · − xs ≤ 1

〈(x, y), ρ′〉 ≤ a0ρ

Let F0 be the subset of POP(F)(1) where x1 = . . . = xs = 0. Then we see that
the above inequalities reduce to

〈y, ρ〉 ≤ a0ρ

Thus F0 is exactly PD0 × (0, . . . , 0) ⊂ NQ⊗N ′′Q. Similarly, if Fi is the locus with
xi = −1 and xj = 0 for j 6= i, then Fj is the polytope given by

〈y, ρ〉+ 〈(0, . . . ,−1, . . . , 0),
∑
j

ajρwj〉 ≤ a0ρ

which after cancelling a0ρ is given by

〈y, ρ〉 ≤ aiρ

Thus Fi is PDwi times a point. �

Corollary V.3.4. The parliament of polytopes of E is obtained by projecting the
s+ 1 polytopes M × vi ∩ POP(F)(1) (which could be empty), where the vi are the
vertices of the standard s-simplex ∆s in M ′′Q. Moreover the lattice points in the
parliament of polytopes are the images of all lattice points of POP(F)(1).

Proof. Most of this is clear from the above lemma. Note that the lattice points
in POP(F)(1) are all m′ ∈M ′ such that H0(X ′Σ,OP(F)(1))m′ is non-zero. By the
inequalities defining the polytope we see that for m′ = (m,m′′) we must have
that m′′ lies in the standard simplex inM ′′Q. But this has only s+1 lattice points
(corresponding exactly to the polytopes Fi defined in the proof of Lemma V.3.3),
hence any corresponding m lies in some face Fi. �

Corollary V.3.5. The global sections of E are obtained by projecting s+1 polytopes
along p : M ′Q →MQ and then identifying sections according to the dependence
structure of the matroid M(E).

Remark V.3.6. When all polytopes in the parliament are non-empty, we have
that the big polytope POP(F)(1) is the Cayley polytope of the polytopes in the
parliament. In that case the above statements follow from well-known results
on Cayley polytopes. In that case we also have that under the projection
q : M ′Q → M ′′Q POP(F)(1) is mapped to the standard simplex. See for instance
[BN08, Section 2] for details on Cayley polytopes.

Remark V.3.7. Fix E , and define the polytope Q as the convex hull of all
polytopes in the parliament. If E is ample, then the fiber of p of any point in
the interior of Q intersected with POP(F)(1) is non-empty, although it need not
contain lattice points. Studying the size of the fiber, using a similar construction
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for complexity one T -varieties, under taking multiples of a line bundle L , is
the idea used by Altmann and Ilten to prove Fujita’s freeness conjecture for
complexity one T -varieties [AI17]. In particular it also is true for rank two toric
vector bundles. Thus, for any ample line bundle L on X = P(E), where E has
rank 2, we have that (dimX + 1)L +KX is basepoint free. One could hope that
it would be possible to use this construction to study also higher rank bundles,
although the fact that the matroid of the symmetric power SkE does not equal
the symmetric power of the ground set of M(E) makes it significantly harder.
An example of a bundle for which the matroid of the symmetric power does not
equal the symmetric power of the matroid can be seen in Example V.7.4.

Remark V.3.8. Di Rocco, Jabbusch and Smith ask [DJS18, p.3] whether there
is, for a globally generated toric vector bundle E , a relation between regular
triangulations of the parliaments of E and the equations of P(E) under the
embedding by the linear system OP(E)(1). The above makes this plausible: The
linear system OP(E)(1) gives a rational map P(F) 99K PN = P(H0(XΣ′ ,F)).
The surjection H0(XΣ,F)→ H0(XΣ, E) implies that P(H0(XΣ, E)) is a linear
subspace of PN . Then a regular triangulation of POP(F)(1) induces a regular
triangulation of the parliament of E , under the projection p.

V.4 Cox rings of projectivized toric vector bundles

Let XΣ be a smooth projective toric variety. Let E be a toric vector bundle
on XΣ; we denote the natural map from P(E) to XΣ by π. We wish to study
the Cox ring of P(E). Let ρ1, . . . , ρn be the rays of Σ, and denote by Di the
torus-invariant divisor associated to ρi. By the description of the Picard group
of a projective bundle we have

Cox(P(E)) '
⊕

k,k1,...,kn∈Z
H0(P(E),O(k) + π∗k1D1 + . . .+ π∗knDn)

'
⊕

k,k1,...,kn∈Z
H0(XΣ, S

kE ⊗ k1D1 ⊗ · · · ⊗ knDn).

We will study the latter C-algebra.
By construction the matroid M(E) has the property that each of the inter-

sections ∩ρEρ(jρ) can be written as the span of vectors from the ground set of
the matroid. We denote by L(E) the set of all such intersections. Recall that we
constructed the divisor De associated to a matroid vector e ∈M(E), given by
De =

∑
ρ aρDρ, where

aρ = max{j ∈ Z : e ∈ Eρ(j)}.

We will now need a slight generalization of these divisors; to each linear space
V ∈ L(E) we associate a divisor DV =

∑
ρ aρDρ, where

aρ = max{j ∈ Z : V ⊂ Eρ(j)}.
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We denote by PV the associated polytope. If V is one-dimensional we often
identify it with a non-zero vector e in its span and identify the associated divisor
(and polytope) with De (and Pe). The parliament of polytopes is the collection
of polytopes Pe, for e in the ground set of the matroid M(E).

In the following paragraphs we present several technical results on these
divisors. The main motivation behind these is to study the multiplication maps

H0(P(E),L1)⊗H0(P(E),L2)→ H0(P(E),L1 ⊗L2).

We show that any such multiplication map can be lifted to a multiplication map
of sections of line bundles on the toric variety XΣ. Using this, we give a criterion
for P(E) to be a Mori Dream Space.

Many of the conclusions we obtain on Cox rings were already shown in the
paper [Gon+12], using different methods. However we think that our perspective
is illuminating for understanding toric vector bundles, since our results are
formulated and proved using the Klyachko filtrations directly. Moreover, we are
able to isolate precisely what the generators of the Cox ring of P(E) are: They
are pullbacks of sections from the base, together with sections corresponding
to matroid vectors of some SkE which are not symmetric powers of matroid
vectors of symmetric powers of E smaller than k. A key ingredient for doing this
is knowing the Klyachko filtrations of tensor products and symmetric powers of
E , which was described in [Gon11]:

Proposition V.4.1 ([Gon11, Corollary 3.2]). Let E1, ...Es be toric vector bundles
on XΣ. Then the Klyachko filtrations of their tensor product E1 ⊗ · · · ⊗ Es are
given by

(E1 ⊗ · · · ⊗ Es)ρ(j) =
∑

j1+···+js=j
Eρ1 (j1)⊗ · · · ⊗ Eρs (js),

for any ray ρ ∈ Σ and j ∈ Z.

Proposition V.4.2 ([Gon11, Corollary 3.5]). Let E be toric vector bundles on XΣ.
Then the Klyachko filtrations of its symmetric power SkE are given by

(SkE)ρ(j) =
∑

j1+···+jk=j
Im(Eρ(j1)⊗ · · · ⊗ Eρ(jk)→ SkE),

for any ray ρ ∈ Σ and j ∈ Z.

We now proceed to use these descriptions to study what happens to the
divisors in the parliament of polytopes under taking tensor and symmetric
products.

Lemma V.4.3. Given two vector bundles E and F and vector subspaces V ⊂ E
and W ⊂ F , we have that

DV +DW = DV⊗W ,

where V ⊗W is regarded as a vector subspace in E ⊗ F , the fiber over E ⊗ F at
the identity.
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Proof. The filtrations of E ⊗ F is given by the tensor product of the filtrations
of E and F . The claim is local, so in other words we can check the coefficient of
each ray separately. Restricted to a fixed ray we can write the filtration of E ⊗F
in terms of a basis for E containing a basis for V and a basis for F containing a
basis for W . Then we see that

cρ = max{l | V ⊗W ⊂ (E ⊗ F )ρ(l)},

is exactly the sum aρ + bρ, where

aρ = max{l | V ⊂ Eρ(l)},

bρ = max{l |W ⊂ F ρ(l)},

proving the claim. �

Corollary V.4.4. If E1, . . . , Es are vector bundles and Vi ⊂ Ei are subspaces, then

DV1 + . . .+DVs = DV1⊗···⊗Vs .

Proof. By induction on s. �

Lemma V.4.5. Given a vector bundle E and subspaces Vi ⊂ E, then

DV1 + . . .+DVs = DV1···Vs ,

where V1 · · ·Vs is the subspace of SsE which by definition is the image of V1 ⊗
· · · ⊗ Vs under the natural map E⊗s → SsE.

Proof. The filtrations of SsE is given by taking sums of symmetric products of
the subspaces appearing in the filtrations Proposition V.4.2. The claim is local,
so in other words we can check the coefficient of each ray separately. Writing
DV1···Vs =

∑
ρ cρDρ and DVi =

∑
ρ a

i
ρDρ we have that

cρ = max{l | V1 · · ·Vs ⊂ (SsE)ρ(l)}.

By Proposition V.4.2 we have that cρ has to be greater than or equal to the sum∑
i a
i
ρ. If it is actually greater, then we contradict Corollary V.4.4: there has to be

some v ∈ ∩(E⊗s)ρ(cρ) which is not in the vector space W0 = ∩ρ(E⊗s)ρ(
∑
i a
i
ρ).

We can map v to its image v in SsE and on to w1 ∈ W1 = ∩ρ(Es)ρ(
∑
i a
i
ρ).

Since W0 →W1 is simply induced from the quotient morphism E⊗s → SsE we
can lift w1 to some w0 in W0.

By Proposition V.4.1 we observe that the vector spaces appearing in the
filtrations of E⊗s are invariant under the action of the symmetric group on s
letters. Thus if w0 is in W0, then v also has to be there, which is a contradiction.

�

Recall that for a character u ∈M , H0(XΣ, E)u = ∩Eρ(〈u, ρ〉).
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Proposition V.4.6. The natural map H0(E)u⊗H0(F)v → H0(E⊗F)u+v is given
by sending s ∈ ∩Eρ(〈u, ρ〉) and t ∈ ∩F ρ(〈v, ρ〉) to s⊗ t ∈ ∩(E ⊗ F )ρ(〈u+ v, ρ〉).

Proof. We consider the local situation: On any open affine Uσ, where σ ∈ Σ, we
have that the bundles split as a sum of line bundles, i.e.

E|Uσ ' ⊕si=1O(ui),

F|Uσ ' ⊕tj=1O(vj).

Thus the multiplication map corresponds to a map

⊕si=1H
0(O(ui))⊗⊕tj=1H

0(O(vj))→ ⊕s,ti,j=1H
0(O(ui + vj)),

which is given simply by sending χui ∈ H0(O(ui), Uσ), χvj ∈ H0(O(vj), Uσ) to
χui+vj ∈ H0(O(ui + vj), Uσ).

Now by construction of the matroids, ui corresponds to some ei ∈M(E) and
vj corresponds to some fj ∈M(F), thus the above can be written as

H0(Uσ, Dei)⊗H0(Uσ, Dfj )→ H0(Uσ, Dei +Dfj ) = H0(Uσ, Dei⊗fj ).

Thus locally the multiplication of sections s, t is given by s⊗ t, and the result
follows. �

Proposition V.4.7. Given a map E → F of vector bundles, corresponding to the
linear map φ : E → F , the induced map H0(E) → H0(F) is given by sending
s ∈ H0(E)u = ∩Eρ(〈u, ρ〉) to φ(s) ∈ H0(F)u.

Proof. This follows from Klyachko’s classification theorem. �

Corollary V.4.8. The natural map SaE⊗SbE → Sa+bE induces the map H0(SaE⊗
SbE)→ H0(Sa+bE) given by s⊗ t 7→ st.

By the above we also get

Proposition V.4.9. The natural map H0(SaE)⊗H0(SbE)→ H0(Sa+bE) is given
by s⊗ t 7→ st.

Proof. This follows from the above, since it is the composition

H0(SaE)⊗H0(SbE)→ H0(SaE ⊗ SbE)→ H0(Sa+bE).

�

Lemma V.4.10. If E is a vector bundle and L a line bundle then M(E ⊗ L) '
M(E) under any isomorphism E ⊗ L ' E. If v ∈M(E) then the corresponding
v′ ∈M(E ⊗ L) satisfies Dv′ = Dv ⊗ L.
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Proof. We will think of L as a divisor, thus we can write L =
∑
aiDi. Then we

have that Eρ(j) ' (E ⊗ L)ρ(j + aρ). The matroid is constructed by choosing
bases (in a particular manner) of all possible subspaces of the form ∩ρEρ(jρ).
By the above equality we see that under the isomorphism E ⊗ L ' E we get
exactly the same subspaces for E ⊗ L thus the matroids are equal.

Given v ∈M(E) we can write Dv =
∑
bρDρ. Then by the above we see that

Dv′ =
∑

(aρ + bρ)Dρ, which equals Dv ⊗ L. �

The above has the following consequences: Constructing the parliament of
polytopes for a E is equivalent to constructing the surjection⊕

e∈M(E)

O(De)→ E → 0.

We see by the lemma that constructing the parliament for E ⊗ L corresponds to
the tensored sequence ⊕

e∈M(E)

O(De)⊗ L → E ⊗ L → 0.

In other words the sequence will remain surjective on global sections after
tensoring with any line bundle L.

Proposition V.4.11. Given a vector bundle E and line bundles L1,L2 on XΣ
and vectors e1, e2 in the ground set of M(E), there exists a commutative diagram

H0(O(De1)⊗ L1)u ⊗H0(O(De2)⊗ L2))v H0(O(De1e2)⊗ L1 ⊗ L2))u+v

H0(SkE ⊗ L1)u ⊗H0(SlE ⊗ L2)v H0(Sk+lE ⊗ L1 ⊗ L2)u+v

φ

f g

η

where η and φ are multiplication maps and f is the map coming from the par-
liament of polytopes. Also, g is induced from the map of vector spaces sending
1 ∈ C to e1e2 in Sk+lE.

Proof. We have that φ(χu⊗χv) = χu+v. Moreover g(χu+v) = e1e2 ∈ H0(Sk+lE⊗
L1 ⊗ L2)u+v = ∩ρ(E ⊗ L1 ⊗ L2)ρ(〈u, ρ〉).

Going in the other direction f(χu ⊗ χv) = e1 ⊗ e2, where we now consider
e1 ∈ H0(SkE ⊗ L1)u = ∩(E ⊗ L1)ρ(〈u, ρ〉) and e2 ∈ H0(SkE ⊗ L2)v = ∩(E ⊗
L2)ρ(〈u, ρ〉). We see that η(e1 ⊗ e2) = e1e2. �

In particular all multiplication maps of global sections of line bundles on
P(E) can be lifted to multiplication of global sections of line bundles on XΣ.

We now come to a key definition of this section, namely that of a set of vectors
M(E), whose elements correspond to matroid vectors of some SkE which are not
symmetric products of matroid vectors for smaller k. We will subsequently see
that the elements of M(E) (together with generators for Cox(XΣ)) correspond
to generators of Cox(P(E)).
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Definition V.4.12. Given a toric vector bundle E we construct the set M(E) by
induction on k as follows: The step k = 1 corresponds to adding all vectors in
the ground set of M(E) to M(E). Assume now we have completed step k − 1.
Step k amounts to adding all vectors of M(SkE) which cannot be written as a
symmetric product of vectors already in M(E).

For a vector e ∈ M(E) we denote by deg e the integer such that e ∈
M(Sdeg eE).

Proposition V.4.13. Given a toric vector bundle E, there exists a surjective map
of C-algebras⊕

t1,...,tn∈Z

⊕
si∈Z≥0|ei∈M(E)

H0(XΣ,O(
∑
i

siDei + t1D1 + . . .+ tnDn))

→
⊕

k∈Z≥0,
t1,...,tn∈Z

H0(XΣ, S
kE ⊗ O(t1D1 + . . .+ tnDn)),

where in each summand in the above sum only finitely many si are non-zero.

Proof. The first double sum is simply the ring of all sections of all integral linear
combinations of the T -invariant divisors on XΣ, as well as of all positive sums
of divisors De, where e ∈M(E). Thus it is a C-algebra under multiplication of
sections of line bundles on XΣ.

The map is defined as follows: We fix a summand, thus we pick t1, . . . , tn and
some non-zero si, which we denote by s1, . . . sm. We define L1 as O(

∑
i siDei)

and L2 as O(
∑
i tiDi). We set k =

∑
i si deg ei. Then there is, by the assump-

tions on ei and Klyachko’s equivalence of categories, a map of vector bundles

L1 ⊗ L2 → SkE ⊗ L2,

given by sending 1 ∈ L1 ⊗ L2 ' C to es11 · · · esmm . This in turn induces a map
H0(XΣ,L1 ⊗ L2) → H0(XΣ, S

kE ⊗ L2) which is the map in the statement
above. We note that if es11 · · · esmm is in M(SkE) then this map is the same as the
corresponding summand in the map induced by the parliaments of polytopes
construction.

Fix the numbers k, t1, . . . , tn. They correspond to the bundle F = SkE ⊗
O(t1D1 + . . .+ tnDn). By Lemma V.4.10 we have that M(F) = M(SkE). All
summands in the map⊕

w∈M(F)

H0(XΣ,O(Dw))→ H0(XΣ, S
kE ⊗ O(t1D1 + . . .+ tnDn))

induced by the parliament of polytopes for SkE will appear in the big sum in
the proposition statement, by the remark at the end of the preceding paragraph
and by the construction of M(E). Thus the map is surjective for any graded
piece k, t1, ..., tn, hence it is surjective.

By Proposition V.4.11 the map is compatible with the multiplication maps,
hence the map is a map of C-algebras. �
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Motivated by the above we make the following definition.

Definition V.4.14. For a natural number k we define SkM(E) as all symmetric
k-products of vectors in the ground set of the matroidM(E). ByM(SaE)M(SbE)
we mean all symmetric products e1e2 of vectors e1 ∈M(SaE) and e2 ∈M(SbE).

Before coming to the characterization of being a Mori Dream Space we need
the following technical lemmas.

Lemma V.4.15. Assume that for a natural number c and all integers kρ we have
the equality

Spana,b,jρ,lρ{∩ρS
aEρ(jρ) ∩ρ SbEρ(lρ)|jρ + lρ = kρ, a+ b = c} = ∩ρScEρ(kρ).

Then M(ScE) ⊂ ∪a,b|a+b=cM(SaE)M(SbE).

Proof. The matroid M(ScE) is constructed by [DJS18, Algorithm 3.2] from the
intersections ∩ρScEρ(kρ). We are supposed to, in a certain order depending
on the dimension of the intersection, choose a basis for the intersection, or
of a quotient. By our assumption we know that we can pick a basis for each
such intersection consisting of vectors of the form v1v2 where v1 ∈ M(SaE),
v2 ∈M(SbE). By elementary linear algebra we can also choose such a basis for
each quotient. The proposition follows. �

Lemma V.4.16. Assume that for a natural number c and fixed integers kρ we
have

Spana,b,jρ,lρ{∩ρS
aEρ(jρ) ∩ρ SbEρ(lρ)|jρ + lρ = kρ, a+ b = c} ( ∩ρScEρ(kρ).

Then there exists a line bundle L and s ∈ H0(ScE ⊗L) which is not in the image
of the map

⊕
a,b,L1,L2:L1⊗L2=LH

0(SaE ⊗ L1)⊗H0(SbE ⊗ L2)→ H0(ScE ⊗ L).

Proof. Let W = ∩ρScEρ(kρ). We define L = −DW =
∑
ρ−kρDρ. Then

H0(ScE ⊗ L)0 = ∩(ScE ⊗ L)ρ(0) = ∩ScEρ(kρ) = W,

thus we obtain W as the space of T -invariant global sections of E ⊗ L. The
image of ⊕

a,b,L1,L2
L1⊗L2=L

H0(SaE ⊗ L1)⊗H0(SbE ⊗ L2),

of degree 0 can be described as follows: First of all to map to the character 0 we
can pick any character v in the first factor and −v in the second factor, thus we
get this sum equals⊕

v,a,b,L1,L2
L1⊗L2=L

H0(SaE ⊗ L1)v ⊗H0(SbE ⊗ L2)−v.
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This is equal to the direct sum⊕
a,b,j′ρ,l

′
ρ

j′ρ+l′ρ=kρ

∩ρSaEρ(j′ρ + 〈v, ρ〉) ∩ρ SbEρ(l′ρ − 〈v, ρ〉),

because varying j′ρ and l′ρ corresponds exactly to varying the line bundles L1,L2.
We set jρ = j′ρ + 〈v, ρ〉 and lρ = l′ρ − 〈v, ρ〉. By the assumption the image of this
direct sum is contained in a space of smaller dimension than W , thus there must
exist some s ∈ W , s /∈ {∩ρSaEρ(jρ) ∩ρ SbEρ(lρ)|jρ + lρ = kρ}. Hence we are
done. �

Remark V.4.17. The above proof shows that a linear space V ⊂ E is in L(E) if
and only if there exists a line bundle L and a character u such that H0(E⊗L)u =
V .

Theorem V.4.18. P(E) is a Mori Dream Space if and only if the set M(E) is
finite. Equivalently if and only if there exists an integer c such that for any k ≥ c
we have that

M(SkE) ⊂ ∪a+b=kM(SaE)M(SbE).

Proof. By the way we constructed M(E) it is clear that if such a c exists then
M(E) is finite.

Assume that M(E) is finite. Then by Proposition V.4.13 we have that
Cox(P(E)) is the image of the section ring of finitely many line bundles on XΣ,
hence it is finitely generated.

Lastly we will prove that if no such c exists, then Cox(P(E)) cannot be finitely
generated. Since no such c exist we must have an infinite sequence c1, c2, c3, . . .
satisfying

M(SciE) 6⊂ ∪a+b=ciM(SaE)M(SbE)
For any fixed such ci we see by Lemma V.4.15 that the assumptions of Lemma V.4.16
has to be satisfied for some kiρ. Set Li =

∑
ρ−kiρDρ. By Lemma V.4.16 there

exists a section si ∈ H0(SciE ⊗Li) which cannot be in the algebra generated by
sections of bundles of the form SkE ⊗ L, for k < ci. Thus to generate the Cox
ring there has to be at least one generator which is a section of some SciE ⊗ L.
Since this is true for any ci, of which there are infinitely many, there cannot be
a finite generating set for Cox(P(E)). This concludes the proof. �

V.5 Examples of Cox rings

Proposition V.5.1. Assume that M(SkE) ⊂ SkM(E) for all k. Then P(E) is a
Mori Dream Space.

Proof. This follows from Theorem V.4.18. �

Proposition V.5.2. Assume that E is a toric vector bundle of rank r such that
all subspaces appearing in the filtrations are either of dimension 0, 1, r. Then
M(SkE) ⊂ Sk(M(E)), and in particular P(E) is a Mori Dream Space.
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Proof. It is clearly sufficient to consider only the rays which have a one-dimensional
space in the filtration. Let v1, . . . , vs be the vectors in these one-dimensional
spaces, thus M(E) = {v1, . . . , vs}.

Let the filtration on ray ρi be given by

Ei(j) =


E if j ≤ ai
vi if ai < j ≤ bi
0 if bi < j

.

Then the filtration of SkE is given by

SkEi(j) =



SkE if j ≤ kai
viw if kai < j ≤ (k − 1)ai + bi
...
vk−1
i w if 2ai + (k − 2)bi < j ≤ ai + (k − 1)bi
vki if ai + (k − 1)bi < j ≤ kbi
0 if kbi < j

,

where in each step w can be any vector not in the span of vi. Thus to compute
the matroid we need to consider the spaces

∩iSkEi(ji) = {f = vlii zi ∈ S
kE where (k−li+1)ai+(li−1)bi < ji ≤ (k−li)ai+libi},

where, for each i, zi can be any vector in Sk−liE. If we can show that each such
space is spanned by symmetric powers of {v1, . . . , vs} then we are done. We see
that an f in this intersection corresponds to a hypersurface f of degree k in
P(E) vanishing to order li at the hyperplane Hi = V (vi). But if f vanishes to
order li at Hi then f = vlii g for some hypersurface g of degree k − li. Iterating
we obtain that f = vl11 v

l2
2 · · · vlss , which implies exactly what we wish to prove.

�

The above give new proofs of Theorem 5.7 and Theorem 5.9 in [HS18]:

Corollary V.5.3. If E has rank 2 or if E is a tangent bundle, then P(E) is a Mori
Dream Space.

V.6 A presentation of the Cox ring

We here give a presentation of the Cox ring of P(E), in terms of generators and
relations, defined from the matroids M(SkE). The essential idea is that the
relations between matroid vectors in M(SkE) correspond to all relations between
sections of line bundles of the same degree OP(E)(k). Moreover all relations
between sections which are products of sections of different OP(E)(1)-degree can
be described in terms of the difference between SkM(E) and M(SkE). Using
this we obtain a presentation of the Cox ring of any projectivized toric vector
bundle.
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To each ray ρ ∈ Σ(1) we associate a variable Sρ. These correspond to
pullbacks of all generators for Cox(XΣ) and will be some of the generators of
Cox(P(E)). To each vector v ∈M(E) we associate a variable Tv. Each Tv will also
be a generator of Cox(P(E)). The variable Tv correspond to the following element
in Cox(P(E)): Write Dv =

∑
ρ aρDρ. Consider the bundle Sdeg vE ⊗ O(−Dv).

Then v will be in M(Sdeg vE ⊗O(−Dv)) under the isomorphism E ⊗C ' E, by
Lemma V.4.10. The associated divisor D′v is the trivial divisor, hence it has a
unique global section. Its image in H0(XΣ, S

deg vE ⊗ O(−Dv)) under the map
given by the parliament of polytopes is the section which we label Tv.

We will show that Sρ and Tv are all generators of Cox(P(E)). Moreover we
will also describe the ideal of relations between these generators. It is a sum of
two ideals I and J , which we now introduce.

Let Rel(SkE) denote the space of linear relations between vectors in M(SkE).
For any relation r =

∑
i λivi in Rel(SkE) we associate the divisor

Dr =
∑
ρ

min
i
{αρi|λi 6= 0}Dρ :=

∑
ρ

βrρDρ.

Associated to relations between matroid vectors for a fixed symmetric power k
we get relations in the Cox ring given by the ideal

I = 〈
∑
i

λiS
i
rTvi |r =

∑
λivi ∈ Rel(SkE)〉,

where Sir =
∏
ρ S

αρi−βrρ
ρ .

The reason the polynomials in the ideal I give relations in the Cox ring is the
following: For simplicity we consider what happens when k = 1, in other words
for M(E). Any v ∈ M(E) defines a divisor Dv and thus a polytope Pv giving
global sections. This polytope could be empty or full-dimensional or anything
in between. However if we consider F = E ⊗ O(−Dv) then by construction
v ∈M(F) and the associated divisor D′v is the trivial divisor. In particular it
has a unique global section.

If we now fix a non-trivial relation r =
∑
i λivi in Rel(E), we have for any vi

a unique associated global section. These are the sections corresponding to the
variables Tvi . Multiplying Tvi with a monomial in the Sρ corresponds to tensoring
with effective divisors which are pull-backs from the base. In particular, the
polytope will become bigger. The relations in the ideal I are relations obtained
from multiplying each variable with monomials in Sρ, such that the polytopes
corresponding to vi overlap. As soon as they overlap, there must be a relation
between the corresponding sections by Proposition V.3.2.

Example V.6.1. Consider the projectivization of the tangent bundle TP2 of P2.
We denote by D0, D1, D2 the T -invariant divisors. The parliament of polytopes
is shown in Figure V.1. The matroid has three divisors, equal to D0, D1 and D2.
Thus there are three T -variables in Cox(P(TP2)): T0, T1, T2. Ti is the unique
section of OTP2

(1)−Di of weight 0.
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P1P0

P2

Figure V.1: The 3 polytopes of the parliament of TP2 .

Since the three matroid vectors are linearly dependent, we know that there
will be a relation in the Cox ring involving T0, T1, T2. The relation will be given
by multiplying up with Si variables (corresponding to the Di as pullbacks of
divisors from the base) until the three polytopes overlap and are of the same
degree in Pic(P(TP2)). This is in this case exactly of degree OTP2

(1) and is shown
in the image. Thus the associated relation is

T0S0 + T1S1 + T2S2.

Remark V.6.2. Any v ∈M(SkE) is either in M(E) or is a symmetric product of
elements in M(E). If it is the latter then by the letter Tv we denote the monomial∏l
i=1 Tvi where v equals the symmetric product v1 · · · vl, with vi ∈M(E). Thus,

for any v ∈ M(SkE) the symbol Tv correspond to a distinguished element in
Cox(P(E)).

In addition to the relations in I, we also get relations between generators of
different degrees. Fix v1 ∈M(SaE) and v2 ∈M(SbE) and consider the associated
sections: They are Tv1 ∈ H0(SaE ⊗ −Dv1)0 and Tv2 ∈ H0(SbE ⊗ −Dv2)0,
respectively. Then the product Tv1Tv2 will lie in H0(Sa+bE ⊗ −Dv1 − Dv2)0.
Choosing a basis {w1, . . . , ws} ⊂ M(Sa+bE ⊗ −Dv1 −Dv2) of the latter space,
we can write v1v2 =

∑
aiwi. Then we get the relation of sections

Tv1Tv2 =
∑
i

aiTwiSwi ,

where Twi ∈ H0(Sa+b ⊗ −Dwi)0 and Swi is defined as follows: We can write
Dwi −Dv1 −Dv2 =

∑
mρDρ. By assumption this is an effective divisor (since

v1v2 lies in the intersection spanned by wi) thus we can define Swi =
∏
ρ S

mρ
ρ .

We let J be the ideal generated by all relations such as this. The ideal J in some
sense measures the difference betweenM(SkE) and SkM(E); if (SkE) = SkM(E)
for all k, then the ideal J is empty.

Even though we defined the generators of J in terms of symmetric products
of two matroid vectors, the following lemma shows that they imply that the
analogous relations for symmetric products of arbitrarily many vectors lies in J .
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Lemma V.6.3. Given v1, . . . , vp with vi ∈ M(SaiE) and let {w1, . . . , ws} be a
basis of H0(S

∑
aiE ⊗ (

∑
i−Dvi))0 and write v1 · · · vp =

∑
biwi. Then the

relation ∏
i

Tvi −
∑
i

biTwiSwi

lies in J , where Swi is some monomial in Sρ, defined as above.

Proof. We will prove this for p = 3; the general case follows by iterating the
process. Thus we assume that v1v2v3 =

∑
biwi, where wi ∈M(S3E).

Let v1v2 =
∑
ckzk, where zk ∈M(S2E), thus we have an associated relation

in J
T1T2 =

∑
k

ckTzkSzk .

Multiplying the above by T3 we get

T1T2T3 =
∑
k

ckTzkT3Szk .

For a fixed k write zkv3 =
∑
dk,jwj , thus we have an associated relation

TzkT3 =
∑
j

dk,jTwjSk,j .

Substituting this into the above we get

T1T2T3 =
∑
k

ckSzk
∑
j

dk,jTwjSk,j =
∑
j

Twj (
∑
k

ckdk,jSzkSk,j).

We have that by construction Szk corresponds to the effective divisor Dzk −
Dv1 −Dv2 and Sk,i corresponds to Dwi −Dzk −Dv3 , hence their product SzkSk,i
corresponds to the sum Dwi − Dv1 − Dv2 − Dv3 = Swi . Observe also that
by combining the expressions for v1v2v3 we see that bi =

∑
k ckdk,i, thus the

relation above simplifies to

T1T2T3 =
∑
i

biTwiSwi ,

which is what we wanted to show. �

Theorem V.6.4. The Cox ring of P(E) is

C[Sρ, Tv|/(I + J).

Proof. From the fact that the Cox ring of the toric variety is C[Sρ] [Cox95] and
the existence of the surjections⊕

vi∈M(SkE

O(Dvi)⊗ L → SkE ⊗ L,
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which are surjective on global sections, it is clear that Sρ and Tv generate the
Cox ring of P(E), thus we need to determine the relations. Since Cox(P(E))
is graded by Pic(P(E)) we must have that any relation is between elements of
the same class in the Picard group, i.e. between elements of some fixed class
OP(E)(k) +

∑
ρ tρDρ. We also have a finer grading given by the character u of

the torus. After tensoring with div(−u) we may assume that u = 0. First we
show that both I and J is contained in the ideal of the Cox ring.

Fixing a relation r =
∑
i λivi in Rel(SkE) we have, for each i, an associated

trivial divisor D′vi of SkE ⊗ O(−Dvi) and a section in H0(SkE ⊗ O(−Dvi))0
which corresponds to Tvi . By construction Sir corresponds to the effective divisor∑

ρ(aρi − βrρ)Dρ, thus a section in H0(E)0. Multiplying Tvi and Sir together
gives a section of SkE ⊗O(

∑
ρ−αρiDρ +

∑
ρ(αρi − βrρ)Dρ) = SkE ⊗O(−Dr) of

weight 0.
We have that λiTviSir corresponds to the section λivi ∈ (SkE⊗O(−Dr))ρ(0) =

H0(SkE(−Dr))0. Thus
∑
i λiTviS

i
r corresponds to

∑
i λivi ∈ H0(SkE⊗O(−Dr))0,

which is zero, thus
∑
i λiTviS

i
r must be a relation, so I is contained in the Cox

ideal.
Fixing a generator Tv1Tv2 −

∑
i aiTwiSwi of J (as defined above) we see that

under the isomorphism (since wi is a basis for the latter space)

⊕iH0(O(Dwi))0 → H0(Sa+bE ⊗ O(−Dv1 −Dv2))0

v1v2 is sent to the same as
∑
i aiwi thus the generator has to be a relation in

the Cox ring. Thus J is contained in the Cox ideal.
Conversely, assume that we are given a relation between sections in Cox(P(E))

of multidegree (k, l1, . . . , ls) and weight 0, in other words in V = H0(SkE ⊗
O(l1D1 + · · ·+ lsDs))0. We can write the relation as∑

i∈K
ci
∏
j

Tni,jvi,j

∏
ρ

Smρ,iρ = 0,

where K is the index-set of all monomials appearing in the relation. Choose a
basis w1, . . . , wq of V , where wi ∈M(SkE).

Fix i and write zj =
∏
j v

ni,j
i,j =

∑q
i=1 ai,jwi. Then the relations in I and J

imply that we have the relation

∏
j

Tni,jvi,j =
q∑
i=1

ai,jTwiSi,j

where Si,j is some monomial in Sρ. Thus we can replace
∏
j T

ni,j
vi,j in the relation

with the sum above. Doing this for all monomials zj we get a polynomial whose
only T -variables appearing are Twi , in other words a polynomial

∑q
i=1 biTwiSi,

where Si is some monomial in Sρ. This is by assumption equal to 0, however it
corresponds to the element

∑q
i=1 biwi in V . Since the wi by construction form

a basis for V , this forces bi = 0 for all i. Thus the relation we started with is a
sum of relations coming from I and J .

�
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Remark V.6.5. Note that in the above we do not assume that Cox(P(E)) is
finitely generated.

Remark V.6.6. This generalizes the presentations of the Cox rings of rank two
bundles and tangent bundles given in [HS18, Theorem 5.7, Theorem 5.9].

Example V.6.7. Consider again the tangent bundle of P2. By Proposition V.5.2
the ideal J is empty. Thus by Example V.6.1

Cox(P(TP2)) = C[T0, T1, T2, S0, S1, S2]/(T0S0 + T1S1 + T2S2).

This is consistent with the well-known description of P(TP2) as a (1, 1) divisor in
P2 × P2.

Example V.6.8. From the above we can recover all results on Cox rings of toric
vector bundles found in [Gon+12]. For example let E be a bundle with filtrations
given as

Eρ(j) =


E if j ≤ 0
Vρ if j = 1
0 if 1 < j

where dimVρ > 1 which is what is mostly studied in [Gon+12]. Let Y be
the iterated blowup of P(E) in all linear spaces in L(E); first blow up points
(corresponding to hyperplanes Vρ), then strict transform of lines and so on. Let
X be Y minus all exceptional divisors over linear subspaces not equal to some Vρ.
By [Gon+12, Theorem 3.3] the Cox ring of P(E) is isomorphic to the Cox ring
of X. We can see this as follows from our theorem: Effective divisors of some
SkE ⊗O(D) correspond exactly to f ∈ ∩(SkE⊗D)ρ(0), for some D =

∑
ρ aρDρ.

In other words to degree k polynomials f on P(E) vanishing to order aρ at Vρ.
Such effective divisors which are not symmetric products of divisors of lower
OP(E)(1)-degree, correspond exactly to polynomials f which cannot be written
as a product of lower degree such polynomials. This corresponds exactly to
generators of the Cox ring of the associated blow-up of P(E). By well-known
results on generators of Cox rings of such blow-ups, these are often not finitely
generated, for instance if Vρ consist of 9 or more general hyperplanes [Muk04].

For example we can pick Vρ to be 5 general hyperplanes in E ' C3, corre-
sponding to five general points of P2 = P(E). Then the Cox ring is generated
by sections pulled back from the base, together with the ten lines between
the corresponding points of P(E), corresponding to the fact that M(E) has
ten elements, and by the unique quadric passing through the five points; this
corresponds to the fact that there is one unique intersection of the filtrations for
S2E which is not the span of symmetric products of vectors in M(E).

Remark V.6.9. The above results is satisfying from a theoretical point view, since
we are able to completely describe the Cox rings of P(E) in terms of the matroids
of SkE . However, in practice these results are not necessarily as satisfying, since
for a specific bundle E it is not easy to say what the relationship betweenM(SkE)
and SkM(E) is for any k: It is at least as hard as describing generators of Cox
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rings of general iterated blow-ups of projective space in linear spaces, which is
well-known to be a hard problem.

The above results does significantly improve our understanding of sections of
line bundles on P(E). Elements of M(E) correspond exactly to sections of some
such line bundles, which is not in the algebra generated by sections of lower
OP(E)(1)-degree. We will in the next section that this has the consequence that
to check whether E is big we need also to consider the matroids of all SkE at
once.

V.7 A bigness criterion

Let E be a toric vector bundle on the toric variety XΣ. We say that E is big if
OP(E)(1) is a big line bundle. This is what Jabbusch calls L-big [Jab09]. In this
section we investigate when a toric vector bundle is big.

Example V.7.1. If E is a direct sum of line bundles then E is big if and only
if some positive linear combination of the line bundles is big [Laz04a, Lemma
2.3.2]. Thus O(−1)⊕O(2) on Pd is big, but not nef.

Di Rocco, Jabbusch and Smith ask whether a toric vector bundle is big if and
only if some Minkowski sum of the polytopes in the parliament is full-dimensional
[DJS18, p.3]. The following example shows that this is not the case.

Example V.7.2. Let X = P1 × P1 and denote by H1 and H2 the pullbacks of
the hyperplane classes of each factor. Let E = OX(H1)⊕OX(H2 −H1). Then
since D = H1 +H2 = 2H1 + (H2 −H1) is big, we see by the previous example
that E is big. However the parliament of polytopes is the following: PH1 is a
line segment of length 1 while PH2−H1 is empty. Thus no Minkowski sum of the
polytopes in the parliament is full-dimensional.

For divisorsD and E on a toric variety we have the inclusion PD+PE ⊂ PD+E ,
however in general this is not an equality. This is the reason for the above example
giving a big vector bundle even if no Minkowski sum is full-dimensional. To
rectify this we might ask the similar question which still might be true:

Question V.7.3. Is E big if and only if a positive linear combination of the
divisors in the parliament is big?

The following example shows that this is also not true.

Example V.7.4. Let be P2 be given as a toric variety as the complete fan with
ray generators ρ0 = −e1 − e2, ρ1 = e1, ρ2 = e2. Consider the rank 3 bundle on
P2 given by Klyachko filtrations for i = 1, 2:

Ei(j) =


E if j ≤ −1
Wi if j = 0
vi if j = 1
0 if 1 < j

,
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and for i = 0

E0(j) =


E if j ≤ 0
W0 if j = 1
v0 if j = 2
0 if 1 < j

.

Here vi are general vectors of E ' C3 and Wi is a general 2-dimensional vector
space containing vi. Let lij = Wi ∩ Wj . Then M(E) = {vi, lij} and each
associated divisor is trivial. Hence no positive sum of these can be big. However,
considering S2E we have that the intersection S2E0(1)∩S2E1(0)∩S2E2(0) is one
dimensional, so there is a matroid vector w in this intersection. We see that Dw =
OP2(1), thus it is big, which implies that H0(XΣ, S

2kE) = H0(P(E),OP(E)(2k))
grows as kdim P(E). This means that E is big.

In the example above we have that E is big even if no positive sum of divisors
in the parliament is big. However we have that there is a big divisor in the
parliament of SkE for all sufficiently large k (in the example all k ≥ 2). The
following theorem shows that this will always happen.

Theorem V.7.5. A toric vector bundle is big if and only if there exists k > 0 and
a vector v ∈M(SkE) such that Pv is full dimensional.

Proof. By [Laz04b, Example 6.1.23] we have that E is big if and only if for some
(every) ample A we have that H0(SkE ⊗A−1) 6= 0 for some k > 0.

Assume E is not big and let A be an ample line bundle. Then for every k > 0
we have that H0(SkE ⊗A−1) = 0. That means that for any v ∈M(SkE) we have
H0(O(Dv)⊗A−1) = 0, since the map O(Dv)⊗A−1 → SkE ⊗A−1 is injective
on global sections. There is an induced map O(lDv) ⊗ A−1 → SklE ⊗ A−1

which is non-zero, since it corresponds to the map of vector spaces sending 1
to vl. If there exists l > 0 such that H0(O(lDv)⊗ A−1) 6= 0 then we see that
also the induced map on global sections is non-zero, thus H0(SklE ⊗A−1) 6= 0,
contradicting the fact that E is not big. Thus H0(O(lDv)⊗A−1) = 0 for all l,
thus each Dv is not big and thus each polytope Pv is not full dimensional.

Conversely assume that no such v exists. That means that for each v ∈
M(SkE) the polytope Pv is not full dimensional. Since Pv is not full dimensional
Dv is not big, thus H0(O(Dv)⊗A−1) = 0. Thus H0(SkE ⊗A−1) = 0 for every
k, thus E is not big. �

V.8 Positivity and concave support functions

A fundamental result on positivity of divisors on toric varieties is the following
equivalences.

Theorem V.8.1 ([CLS11, Theorem 6.1.7, Lemma 6.1.13, Theorem 6.1.14]). Given
a divisor D =

∑
ρ aρDρ on a toric variety, the following conditions are equivalent

• D is nef
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• mσ ∈ PD for all σ

• φD is concave

• φD(v) ≥ 〈mσ′ , v〉 for all σ′ not containing v.

The following conditions are also equivalent

• D is ample

• φD is strictly concave

• φD(v) > 〈mσ′ , v〉 for all σ′ not containing v.

As for line bundles, one can ask for various positivity properties of vector
bundles. These properties are often defined in terms of corresponding properties
for the line bundle OP(E)(1) on the associated projective bundle P(E) of rank one
quotients of E . One has that positivity notions which coincide for line bundles
do not necessarily coincide for vector bundles.

Following Hartshorne [Har66] we say that a vector bundle is nef, ample, very
ample respectively if OP(E)(1) is a nef, ample, very ample line bundle, respectively.
On a toric variety, there are well known criteria for checking whether a toric
vector bundle is positive:

Theorem V.8.2 ([HMP10, Theorem 2.1]). E is ample (resp. nef) if and only if
E|C is ample (resp. nef) for all invariant curves C ⊂ XΣ.

Remark V.8.3. For checking the ampleness of a line bundle it is sufficient to
restrict to invariant curves in XΣ which are extremal in the Mori cone of curves,
since invariant curves generate the Mori cone [CLS11, Theorem 6.3.20] and
since the ample cone is the interior of the dual of the Mori cone. In the case of
higher rank vector bundles it is easy to construct examples showing that it is
not sufficient to restrict to extremal curves in XΣ.

Theorem V.8.4 ([DJS18, Theorem 1.2]). A toric vector bundle E is globally
generated if and only if for all maximal cones σ, where E|Uσ = ⊕ri=1O(div(ui)),
there exists linearly independent e1, . . . , er ∈M(E) such that ui ∈ Pei for all i.

Theorem V.8.5 ([DJS18, Corollary 6.7]). A toric vector bundle E is very ample
if and only if, for all maximal cones σ, where E|Uσ = ⊕ri=1O(div(ui)), there
exist linearly independent e1, . . . , er ∈M(E) such that ui ∈ Pei for all i and such
that the following is true: Each ui is automatically a vertex of Pei . We require
that the edges of Pei emanating from the vertex ui generate a cone which is a
translate of σ∨ for all i.

We will now reinterpret the criterion to be nef/ample in terms of concave
support functions, which will lead us to a result of similar spirit to Theorem V.8.1
for higher rank toric vector bundles.
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V.8.1 Branched covers of fan

We here briefly recall Payne’s notion of the branched cover of a fan which is
associated to E [Pay09]. Payne gives a systematic treatment of cone complexes
and how to associate a cone complex which is a branched cover of the fan Σ to a
toric vector bundle E . We will a bit more naively construct the branched cover
as in [Pay09, Example 1.2].

We are given a toric variety XΣ and a toric vector bundle E on XΣ and we
will construct a topological space ΣE together with projection map f : ΣE → Σ
with the structure of a rank r branched cover. This means that for any cone
σ the inverse image of σ under f is isomorphic to r copies of σ, counted with
multiplicity. We will also construct an associated piecewise linear support
function ΨE on ΣE .

For each maximal cone σi we can consider the restriction E|Uσi =
∑r
k=1O(div uik)

where uik are characters of the torus. For each of the r summands we take a copy
of σi, denoted by σik. We define σiE to be

∐
k σik/ ∼ where the equivalence

relation ∼ is given as follows: If τ is a face of σi such that uik = uil on τ we
identify the corresponding copies of τ : τik ∼ τil. The piecewise linear function
ΨE is linear on each cone σik, given by v 7→ 〈uik, v〉.

The topological space ΣE is given by
∐
i σiE/ ≡ where the equivalence

relation ≡ is given as follows. Fix a cone τ of codimension one, it is contained
in two maximal cones σ1 and σ2. Set E|Uσ1

=
∑
kO(div(u1k)) and E|Uσ2

=∑
kO(div(u2k)). Then τ corresponds to a curve C which is isomorphic to P1

and any vector bundle on P1 splits as a sum of line bundles. A result by Hering,
Mustata and Payne shows that for an invariant curve C, E|C splits equivariantly
as a sum of line bundles. Moreover, the numbers aj such that the splitting
type on C is ⊕jOP1(aj), correspond to unique pairs of characters (u1k, u2l):
u1k − u2l = ajρτ , where by ρτ we mean the primitive generator of τ⊥ positive
on σ. Thus, up to permutation, we may assume that u1k is paired with u2k for
all k. We then glue σ1k to σ2k via identifying the face τ1k with the face τ2k.

In other words if one is in a fixed sheet σ1k above a maximal cone σ and
moves towards a neighbouring maximal cone σ2 through a cone of codimension
one τ , then the sheet σ2l you end up in is the one corresponding to the pairing of
the characters on σ1, σ2 when we restrict E to C. Note that this well-defined: If,
for instance, u11 = u12, then it seems we could reorder and glue different sheets
together, however then the corresponding σ11 and σ12 will already be identified
via ∼, so we get the same object.

The piecewise linear function ΨE on ΣE is obtained from the local versions
above. There is also a projection map π : ΣE → |Σ| given by mapping each
σik isomorphically onto σi. By a line segment in ΣE , we will mean a connected
subset l such that the projection π(l) is a line segment in |Σ| and so that the
fiber over each point of π(l) is a single point. We will say that ΨE is concave, if
it is concave when restricted to any line segment.

Fix a line segment in ΣE with endpoints v and w. The projection π(w) has
to be contained in at least one maximal cone σ. There are r sheets in ΣE , each
mapping isomorphically to σ. The sheets are by construction in bijection to
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characters ui such that E|Uσ ' ⊕ri=1O(div(ui)). Thus which sheet w is contained
in corresponds to a distinguished character ui. We say that any such ui is a
character obtained by moving in a straight line from v inside ΣE .

Proposition V.8.6. Given a toric vector bundle E on a smooth complete toric
variety XΣ, the following are equivalent.

(1) E is nef (ample)

(2) ΨE is (strictly) concave for all i

(3) ΨE(v) ≥ 〈ui, v〉 (ΨE(v) > 〈ui, v〉) where ui is any character obtained by
moving in a straight line from v inside ΣE .

Proof. Note that (2) and (3) only say something about ΨE restricted to line
segments, thus we fix a line segment l in ΣE . The projection π(l) ⊂ |Σ| is a line
segment in NQ. Let Σ′ be the subfan of Σ consisting of all cones in Σ intersecting
π(l), as well as all their faces. The line segment l determines a character uσ on
each maximal cone σ ∈ Σ′. The collection of these characters define a divisor Dl

on XΣ′ . By construction we see that ΨE |l = φDl ◦ π|l. We claim that E is nef
(ample) if and only if φDl |l is (strictly) concave for all l. Assuming this claim we
see that the proposition follows from the corresponding statement for divisors.

The proof of the claim depends on an adaption of standard techniques on
toric line bundles. We put the detailed statement in Lemma V.8.7 below. To
prove the claim note E is nef if and only if E|C is nef for any invariant curve
C. By [HMP10, Corollary 5.5] E|C splits as a sum of line bundles OC(Di), thus
nefness is equivalent to the inequalities Di · C ≥ 0, for all i, C. Let C be given
by the cone τ of codimension one, and assume τ is contained in the maximal
cones σ and σ′. By [CLS11, Proposition 6.3.8]

Di · C = 〈uσ′ − uσ, v〉 = φd(v)− 〈uσ, v〉,

where v is the generator of τ⊥ which is positive on σ′ and Di corresponds to the
characters uσ, uσ′ .

By the above inequality we see that if E is nef then clause (4) of Lemma V.8.7
is satisfied, thus by (1) the support function φD|l is concave for any l.

Conversely if the support function is concave for all lines l, then we can
pick l starting in the generator of τ⊥ which is positive on σ′ and ending in the
interior of σ. Then the inequality (2) of Lemma V.8.7 is exactly stating that the
corresponding divisor satisfies Di · C ≥ 0. Since this is true for all divisors and
curves, E is nef.

The case of ampleness is the same argument, only with concavity replaced
with strict concavity, as well as that we require inequalities to be strict. �

Lemma V.8.7 (cf. [CLS11, Lemma 6.1.5]). Let D be a Cartier divisor on a toric
variety corresponding to the fan Σ. Fix a line l which is contained in the support
of Σ. Then the following are equivalent:

(1) The support function φD|l : l→ R is concave.
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(2) φD(v) ≥ 〈uσ, v〉 for all v ∈ l and maximal cones σ intersecting l.

(3) φD(v) = max〈uσ, v〉, where v ∈ l and the maximum is over maximal cones
σ intersecting l.

(4) For every cone of codimension one τ = σ∩σ′ such that σ and σ′ intersects
l there is v0 ∈ σ′ \ σ with φD(v0) ≥ 〈uσ, v0〉.

Proof. The proof is essentially identical to the proof of [CLS11, Lemma 6.1.5],
except that one has to replace all instances of the support of Σ with l and only
consider cones which intersects l. �

Remark V.8.8. In [KM18] Kaveh and Manon prove that a toric vector bundle is
nef (ample) if and only if E is what they call buildingwise (strictly) convex. This
statement is similar to the above, although formulated in a different language.

V.9 A counterexample

We here describe a sequence of ample bundles Ek such that SkEk is not globally
generated. This example was worked out jointly with Greg Smith (private
correspondence).

Let XΣ be the smooth complete toric surface with rays

v1 =
[
1
0

]
, v2 =

[
1
1

]
, v3 =

[
1
2

]
, v4 =

[
0
1

]
, v5 =

[
−1
0

]
, v6 =

[
0
−1

]
.

Let E be a rank 2 toric vector bundle on XΣ. Assume that for each ray,
the filtration has both a one-dimensional and a two-dimensional vector space
appearing. Let the integers for which the filtration jumps on ray vi be given
by ai, bi, where bi > ai. Letting pi be the one-dimensional space appearing in
ray vi, we assume that q := p1 = p2 = p3 = p4 and that q, p5, p6 are pairwise
distinct.

We have that E is ample if and only if the restriction to any invariant curve is
ample. This is equivalent to the list of inequalities below. These can be derived
as follows. An invariant curve C corresponds to a ray of the fan. Restricted
to the curve E|C splits as a sum of line bundles D1 and D2. The numbers
below are C ·Di, for all i, C. Fix for instance the curve C corresponding to v2.
The splitting type is determined by the restriction of E to the maximal cones
σ12 = Cone(v1, v2) and σ23 = Cone(v2, v3) containing v2. We have that σ12
corresponds to the characters (b1, b2 − b1) and (a1, a2 − a1) and σ23 corresponds
to (2b2 − b3, b3 − b2) and (2a2 − a3, a3 − a2). By [HMP10, Corollary 5.10] the
restriction to C is determined by a unique pairing of the characters from σ12
and σ23, such that the differences of the characters are parallel to v⊥2 . Doing
this we obtain the first two inequalities in the list, the ten others correspond to
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the other five curves.

b1 + b3 − 2b2 > 0 a1 + a3 − 2a2 > 0
b2 + b4 − b3 > 0 a2 + a4 − a3 > 0
b3 + a5 − 2b4 > 0 a3 + b5 − 2a4 > 0

b4 + b6 > 0 a4 + a6 > 0
b5 + b1 > 0 a5 + a1 > 0

b6 + a2 − a1 > 0 a6 + b2 − b1 > 0.

Let the bundle Ek, k ≥ 1 be defined by

a1 = 1 b1 = 4
a2 = −2 b2 = 6k − 1
a3 = 3k − 6 b3 = 12k − 5
a4 = 6k − 5 b4 = 6k − 3
a5 = 0 b5 = 9k − 3
a6 = 6− 6k b6 = 4.

We can check that the ampleness inequalities are satisfied for Ek. However we
can show that SkEk is not globally generated:

The characters on the cone σ2,3 are given by u1 = (2a2 − a3, a3 − a2), u2 =
(2b2 − b3, b3 − b2). On σ23 we need to choose a matroid vector corresponding to
the character u = u1 + (k − 1)u2. This will be of the form qk−1p5 or qk−1p6. In
the first case we need to have

ka6 ≥ a2 − a3 + (k − 1)(b2 − b3)

while in the second case we need to have

ka5 ≥ a3 − 2a2 + (k − 1)(b3 − 2b2)

Inserting the chosen values and cleaning up we see that these inequalities are

0 ≥ k

0 ≥ 1

Both of these are clearly false, hence SkEk cannot be globally generated.
In conclusion, this example shows that on a toric variety X there cannot exist

a number k such that for any ample toric vector bundle E , we have that SkE is
always globally generated, not even for rank two bundles on a toric surface.
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V.10 Pullbacks under multiplication maps

For a toric variety XΣ there is, for any positive integer k, a toric morphism
fk : XΣ → XΣ called “multiplication by k” or the “toric Frobenius map”. It is
given by the map of lattices N → N which multiplies any element by k. For a
toric vector bundle E on XΣ we thus have bundles f∗kE , for any positive integer
k.

The interest in the multiplication maps come from the fact that for a line
bundle L , the pullback f∗kL is “more positive” than L , since f∗kL = L ⊗k.
This is similar to the Frobenius map for varieties in characteristic p, which was
used by Deligne-Illusie-Reynard to prove the Kodaira vanishing theorem [DI87].
The toric Frobenius has been used to great effect in proving vanishing theorems
on toric varieties [Fuj07], [CLS11, Chapter 9]. Thus, one would expect that
applying f∗k to a toric vector bundle E will only “increase the positivity” of E .
However, here we show that such analogous statements are not true for several
positivity properties of toric vector bundles.

We now fix k and set F = f∗kE . By [CLS11, Proposition 6.2.7] the pullback
f∗kD is just kD, multiplication by k. Since E locally is a sum of divisors this
shows that the Klyachko filtrations of F is given by Ei(j) = F i(jk). Thus the
vector spaces in the filtrations are the same, in particular M(E) = M(F). Also
for v ∈ M(F) we have that the associated divisor Dv = kEv, where Ev is the
divisor associated to v ∈M(E).

Lemma V.10.1. For any k, l we have that Slf∗kE ' f∗kSlE.

Proof. By the above we know the Klyachko filtrations of f∗kE . We also know the
Klyachko filtrations of a symmetric power. Writing out the filtrations for any
ray, we see that they are identical. �

Proposition V.10.2. For any positive integer k we have that f∗kE is globally
generated, nef, big or ample if and only if E is globally generated, nef, big or
ample, respectively.

Proof. For nef (resp. ample) the argument is easy: E is nef (resp. ample) if and
only if for each T-invariant curve C, E|C is nef (resp. ample). Now E|C is a sum
of line bundles Di and f∗kE|C is the sum of kDi. Since Di is nef (ample) if and
only if kDi is nef (resp. ample), the result follows.

The statement on bigness follows directly from Theorem V.7.5. Since the
polytopes for f∗kE are simply k times the polytopes for E we see that a polytope
in the parliament of one of the bundles being full-dimensional is equivalent to
the corresponding polytope for the other bundle being full-dimensional.

For global generation we use the criterion in Theorem V.8.4. E is globally
generated if and only if for any maximal cone σ, with E|Uσ ' ⊕ri=1O(div(ui))
there exists a basis v1, . . . , vr ∈ M(E) such that ui ∈ Pvi . Similarly f∗kE is
globally generated if and only if there exists a basis w1, . . . , wr ∈M(f∗kE) such
that kui ∈ Pwi . Now since Dwi = kDvi , Pwi = kPvi and M(E) = M(f∗kE) we
see that the two criteria above imply each other.
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�

Remark V.10.3. The end of the above proof shows that the corresponding
equivalence can fail for some other notions of positivity: in particular [DJS18,
Theorem 6.2] implies that if E separates 1-jets then f∗kE separates k-jets, but
clearly the converse is not true. This is because separating k-jets correspond to
certain edges having lattice length at least k. Thus any toric vector bundle E
where one of the relevant edges has length 1 does not separate k-jets for any
k ≥ 2, however f∗kE will separate k-jets.

Example V.10.4. Fix an ample toric vector bundle E on XΣ which is not globally
generated or very ample, for instance the examples in Section V.9. Then E|C is
a vector bundle

∑
O(ai) on C ' P1 for any invariant curve C ⊂ XΣ with ai > 0.

Now F = f∗kE will satisfy F|C =
∑
O(kai). In particular, the restriction to any

invariant curve is greater than or equal to k, which can be picked arbitrarily
large. However by Theorem V.10.2, F is still not globally generated or very
ample. Thus there cannot in general exist any bound depending on dimension,
or even the fan, guaranteeing that if each summand in E|C is more positive
than this bound, then E is globally generated or very ample. For line bundles
this exists, depending only on dimension, by the statements implying Fujita’s
conjecture [Pay06].

The above examples suggests that the multiplication maps might be less useful
for studying toric vector bundles, compared to their usefulness for line bundles:
Many of the vanishing theorems in toric geometry follow from the fact that
for a line bundle one obtains injections Hi(XΣ,O(D)) ⊂ Hi(XΣ,O(f∗kD)) =
Hi(XΣ,O(kD)) [Fuj07]. If D is ample then f∗kD is very ample for large k. For
toric vector bundles, the analogous statement does not hold, thus it is not clear
if one can use this technique to get vanishing theorems for positive toric vector
bundles.

Example V.10.5. Let E = TPn(−1) and let F = f∗n+1E . From the Euler sequence
one obtains the two exact sequences

0→ O(−1)→ On+1 → E → 0,

0→ O(−n− 1)→ On+1 → F → 0.

The second sequence is obtained by pulling back the Euler exact sequence along
f∗n+1; pullback is exact for vector bundles. We see that all higher cohomology of
E vanishes, however the same is not the case for F = f∗n+1E .

Letting G = (f∗n+1TPn)(−n), we have the exact sequence

0→ O(−n)→ O(1)n+1 → G → 0.

In particular G is very ample and Hi(Pn,G) = 0 for i > 0. However, the higher
cohomology of f∗kG is nonzero for k ≥ 2. We note that we also have that f∗kG,
k ≥ 2 is a very ample toric vector bundle such that all polytopes in the parliament
are very ample, but with non-vanishing higher cohomology.
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Remark V.10.6. Let E be a toric vector bundle and let F = f∗kE . Then,
since restricted to Uσ the bundle splits as a direct sum, we see that ci(F) =
kici(E). This implies that for any weighted degree n polynomial P in the
Chern classes, where ci has weight i, we have that P (c1(F), c2(F), . . . , cr(F)) =
knP (c1(E), c2(E), . . . , cr(E)). Then Example V.10.5 implies that there cannot
exist any homogeneous polynomial in the Chern classes of E such that if this
polynomial is larger than some constant, all higher cohomology of very ample
bundles vanishes.
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